Sample records for nacl salt spray

  1. Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity

    NASA Astrophysics Data System (ADS)

    Spanò, Carmelina; Bottega, Stefania

    2016-02-01

    Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.

  2. An innovative spraying setup to obtain uniform salt(s) mixture deposition to investigate hot corrosion

    NASA Astrophysics Data System (ADS)

    Mannava, Venkateswararao; Swaminathan, A. Vignesh; Kamaraj, M.; Kottada, Ravi Sankar

    2016-02-01

    A hot corrosion study via molten salt deposition and its interaction with creep/fatigue play a critical role in predicting the life of gas turbine engine components. To do systematic hot corrosion studies, deposition of molten salts on specimens should be uniform with good adherence. Thus, the present study describes an in-house developed spraying setup that produces uniform and reliable molten salt deposition in a repeatable fashion. The efficacy of the present method was illustrated by depositing 90 wt. % Na2SO4 + 5 wt. % NaCl + 5 wt. % NaV O3 salt mixture on hot corrosion coupons and on creep specimens, and also by comparing with other deposition methods.

  3. Effect of NaCl Solution Spraying on Fatigue Lives of Smooth and Slit Specimens of 0.37% Carbon Steel

    NASA Astrophysics Data System (ADS)

    Makabe, Chobin; Ferdous, Md. Shafiul; Shimabukuro, Akimichi; Murdani, Anggit

    2017-07-01

    The fatigue crack initiation life and growth rate are affected by experimental conditions. A corrosive environment can be created in a laboratory by means of dropping salt water onto the specimen surface, spraying chloride mist into the experimental chamber, etc. In the case of smooth specimens of some metals, fatigue life is shortened and the fatigue limit disappears under such corrosive experimental conditions. In this study, the effects of intermittent spraying of 3% NaCl solution-mist on corrosion fatigue behavior were investigated. The material used was 0.37% carbon steel. This is called JIS S35C in Japan. Spraying of 3% NaCl solution-mist attacked the surface layer of the specimen. It is well known that the pitting, oxidation-reduction reaction, etc. affect the fatigue strength of metals in a corrosive environment. We carried out corrosion fatigue tests with smooth specimens, holed specimens and slit specimens. Then the effects of such specimen geometry on the fatigue strength were investigated when the NaCl solution-mist was sprayed onto the specimen surface. In the case of lower stress amplitude application in slit specimens, the fatigue life in a corrosive atmosphere was longer than that in the open air. It is discussed that the behavior is related to the crack closure which happens when the oxide builds up and clogs the crack or slit.

  4. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    PubMed

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan

    2017-09-15

    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima.

    PubMed

    Swapnil, Prashant; Rai, Ashwani K

    2018-05-01

    Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

  7. Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet.

    PubMed

    Sandberg, Monica B; Maunsbach, Arvid B; McDonough, Alicia A

    2006-08-01

    The distal convoluted tubule (DCT) apical Na(+)-Cl(-) cotransporter (NCC) is responsible for the reabsorption of 5-10% of filtered NaCl and is the target for thiazide diuretics. NCC abundance is increased during dietary NaCl restriction and by aldosterone and decreased during a high-salt (HS) diet and mineralocorticoid blockade. This study tested the hypothesis that subcellular distribution of NCC is also regulated in response to changes in dietary salt. Six-week-old Sprague-Dawley rats were fed a normal-salt diet (NS; 0.4% NaCl) for 3 wk, then switched to a HS diet (4% NaCl) for 3 wk or a low-salt diet (LS; 0.07% NaCl) for 1 wk. Under anesthesia, kidneys were excised, renal cortex was dissected, and NCC was analyzed with specific antibodies after either 1) density gradient centrifugation followed by immunoblotting or 2) fixation followed by immunoelectron microscopy. The HS diet decreased NCC abundance to 0.50 +/- 0.10 of levels in LS diet (1.00 +/- 0.23). The HS diet also caused a redistribution of NCC from low to higher density membranes. Immunoelectron microscopy revealed that NCC resides predominantly in the apical membrane in rats fed the LS diet and increases in subapical vesicles in rats fed the HS diet. In conclusion, a HS diet provokes a rapid and persistent redistribution of NCC from apical to subapical membranes, a mechanism that would facilitate a homeostatic decrease in NaCl reabsorption in the DCT to compensate for increased dietary salt.

  8. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO 4 ). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  9. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-01

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  10. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    NASA Astrophysics Data System (ADS)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  11. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  12. Nano spray-dried sodium chloride and its effects on the microbiological and sensory characteristics of surface-salted cheese crackers.

    PubMed

    Moncada, Marvin; Astete, Carlos; Sabliov, Cristina; Olson, Douglas; Boeneke, Charles; Aryana, Kayanush J

    2015-09-01

    Reducing particle size of salt to approximately 1.5 µm would increase its surface area, leading to increased dissolution rate in saliva and more efficient transfer of ions to taste buds, and hence, perhaps, a saltier perception of foods. This has a potential for reducing the salt level in surface-salted foods. Our objective was to develop a salt using a nano spray-drying method, to use the developed nano spray-dried salt in surface-salted cheese cracker manufacture, and to evaluate the microbiological and sensory characteristics of cheese crackers. Sodium chloride solution (3% wt/wt) was sprayed through a nano spray dryer. Particle sizes were determined by dynamic light scattering, and particle shapes were observed by scanning electron microscopy. Approximately 80% of the salt particles produced by the nano spray dryer, when drying a 3% (wt/wt) salt solution, were between 500 and 1,900 nm. Cheese cracker treatments consisted of 3 different salt sizes: regular salt with an average particle size of 1,500 µm; a commercially available Microsized 95 Extra Fine Salt (Cargill Salt, Minneapolis, MN) with an average particle size of 15 µm; and nano spray-dried salt with an average particle size of 1.5 µm, manufactured in our laboratory and 3 different salt concentrations (1, 1.5, and 2% wt/wt). A balanced incomplete block design was used to conduct consumer analysis of cheese crackers with nano spray-dried salt (1, 1.5, and 2%), Microsized salt (1, 1.5, and 2%) and regular 2% (control, as used by industry) using 476 participants at 1wk and 4mo. At 4mo, nano spray-dried salt treatments (1, 1.5, and 2%) had significantly higher preferred saltiness scores than the control (regular 2%). Also, at 4mo, nano spray-dried salt (1.5 and 2%) had significantly more just-about-right saltiness scores than control (regular 2%). Consumers' purchase intent increased by 25% for the nano spray-dried salt at 1.5% after they were notified about the 25% reduction in sodium content of the

  13. Desorption isotherms of salted minced pork using K-lactate as a substitute for NaCl.

    PubMed

    Muñoz, I; Arnau, J; Costa-Corredor, A; Gou, P

    2009-12-01

    The aim of this study was to obtain and compare water desorption isotherms of ground meat containing NaCl (0.107kg NaCl/kg raw-meat dry matter) and/or K-lactate as NaCl substitute at two different levels of molar substitution (30% and 100%). A thin layer of salted ground meat was dried and sampled at pre-determined times. The moisture content of the samples and their water activities (a(w)) were measured at 5°C and 25°C. Results showed that ground meat with NaCl and/or different K-lactate contents had a similar water desorption isotherm for a(w) ranging from 0.7 to 1.0. Below 0.7, the water equilibrium content fell with small decreases in a(w) faster for meat with NaCl than for meat with K-lactate. K-lactate could reduce the excessive hardening at the surface of salted meat products. Experimental desorption isotherms were compared to those estimated using two approaches of the Ross equation. Models provided a good fit for the experimental data.

  14. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    PubMed Central

    Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen

    2017-01-01

    304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group. PMID:28772547

  15. Salting effects on protein components in aqueous NaCl and urea solutions: toward understanding of urea-induced protein denaturation.

    PubMed

    Li, Weifeng; Zhou, Ruhong; Mu, Yuguang

    2012-02-02

    The mechanism of urea-induced protein denaturation is explored through studying the salting effect of urea on 14 amino acid side chain analogues, and N-methylacetamide (NMA) which mimics the protein backbone. The solvation free energies of the 15 molecules were calculated in pure water, aqueous urea, and NaCl solutions. Our results show that NaCl displays strong capability to salt out all 15 molecules, while urea facilitates the solvation (salting-in) of all the 15 molecules on the other hand. The salting effect is found to be largely enthalpy-driven for both NaCl and urea. Our observations can explain the higher stability of protein's secondary and tertiary structures in typical salt solutions than that in pure water. Meanwhile, urea's capability to better solvate protein backbone and side-chain components can be extrapolated to explain protein's denaturation in aqueous urea solution. Urea salts in molecules through direct binding to solute surface, and the strength is linearly dependent on the number of heavy atoms of solute molecules. The van der Waals interactions are found to be the dominant force, which challenges a hydrogen-bonding-driven mechanism proposed previously.

  16. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  17. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  18. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  19. Tolerability and effects on quality of life of liposomal nasal spray treatment compared to nasal ointment containing dexpanthenol or isotonic NaCl spray in patients with rhinitis sicca.

    PubMed

    Hahn, C; Böhm, M; Allekotte, S; Mösges, R

    2013-09-01

    This study aimed to investigate symptom reduction via the liposomal nasal spray LipoNasal (LN) in patients with rhinitis sicca. Tolerability and the impact on quality of life were also examined. The same parameters were established in parallel for treatment approaches with Bepanthen (BP) nasal ointment containing dexpanthenol and the Rhinomer (RH) nasal spray containing NaCl. This prospective, controlled, open-label observation study was a multicenter trial. 92 patients with rhinitis sicca were allocated to three arms according to their symptoms: LN: n = 33; BP: n = 32 and RH: n = 27. The study comprised three visits at an interval of 14 days. Efficacy was examined by the Rhinitis Sicca Symptom Score (RSSS) documented daily and at the visits based on an endoscopic evaluation. The nasal spray sensory scale was used to investigate the tolerability. Quality of life (QoL) was measured by means of the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) and the "Short Form 12" of the "Impact on Health-Related Quality of Life (HRQL)" questionnaire on general quality of life. Nasal symptoms improved significantly (p = 0.001) under all three treatment approaches, reflected by the reduction in the RSSS and the Endoscopy Sum Score. A comparison of the three groups showed that no therapy was significantly superior to any of the others (p = 0.410). The tolerability of all treatments was good. Concerning the nasal moisturization, LipoNasal was evaluated better than Bepanthen and Rhinomer. Quality of life improved in all groups, but not significantly. The results show good efficacy and tolerability of the liposomal nasal spray compared to generally recognized treatments of rhinitis sicca with dexpanthenol nasal ointment and NaCl nasal spray. LipoNasal therefore constitutes a good treatment for patients suffering from dry nose.

  20. Study of constraints in using household NaCl salt for retrospective dosimetry

    NASA Astrophysics Data System (ADS)

    Elashmawy, M.

    2018-05-01

    Thermoluminescence (TL) characteristics of 5 different household NaCl salts and one analytical salt were determined to investigate the possible factors that affect the reliability of using household salt for retrospective dosimetry. Salts' TL sensitivities were found to be particle-size dependent and approached saturation at the largest size, whereas for salts that have the same particle size, the TL sensitivity depended on their origin. TL dependence on the particle size interprets significant variations in TL response reported in the literature for the same salt patch. The first TL readout indicated that all salts have similar glow curves with one distinctive peak. Typical second TL readout at two different doses showed a dramatic decrease in TL sensitivity associated with a significant change in the glow curve structure possessing two prominent peaks. Glow curve deconvolution (GCD) of the first TL readout for all salts yielded 6 individual glow peaks of first-order kinetics, whereas in GCD of second TL readouts, 5 individual glow peaks of second-order kinetics were obtained. Similarities in the glow curve structures of the first and second TL readouts suggest that additives such as KIO3 and MgCO3 have no effect on the TL process. Fading effect was evaluated for the salt of highest TL sensitivity, and it was found that the integral TL intensity decreased gradually and lost 40% of its initial value over 2 weeks, after which it remained constant. Results conclude that a household salt cannot be used for retrospective dosimetry without considering certain constraints such as the salt's origin and particle size. Furthermore, preparedness for radiological accidents and accurate dose reconstructions require that most of the commonly distributed household salt brands should be calibrated in advance and stored in a repository to be recalled in case of accidents.

  1. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production.

    PubMed

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2014-03-01

    Steviol glycosides are natural non-caloric sweeteners which are extracted from the leaves of Stevia rebaudiana plant. Present study deals the effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia plant for steviol glycoside (SGs) production. Yellow-green and compact calli obtained from in vitro raised Stevia leaves sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of NaCl (0.05-0.20%) and Na2CO3 (0.0125-0.10%) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension biomass cultured on salts showed less growth as well as browning of medium when compared with control. Quantification of SGs content in callus culture (collected on 15th day) and suspension cultures (collected at 10th and 15th days) treated with and without salts were analyzed by HPLC. It was found that abiotic stress induced by the salts increased the concentration of SGs significantly. In callus, the quantity of SGs got increased from 0.27 (control) to 1.43 and 1.57% with 0.10% NaCl, and 0.025% Na2CO3, respectively. However, in case of suspension culture, the same concentrations of NaCl and Na2CO3 enhanced the SGs content from 1.36 (control) to 2.61 and 5.14%, respectively, on the 10th day.

  2. Effects of NaCl stress on seed germination and seedling development of Brassica insularis Moris (Brassicaceae).

    PubMed

    Santo, A; Mattana, E; Frigau, L; Marzo Pastor, A; Picher Morelló, M C; Bacchetta, G

    2017-05-01

    Brassica insularis is a protected plant that grows on both coastal and inland cliffs in the western Mediterranean Basin. The objective of this study was to test if any variability exists in the salt stress response during seed germination and seedling development in this species relative to its provenance habitat. Variability among three populations in the salt stress effects on seed germination and recovery under different temperatures was evaluated. The effect of nebulisation of a salt solution on seedling development was evaluated between populations growing at different distances from the sea. Seeds of B. insularis could germinate at NaCl concentrations up to 200 mm. Seed viability was negatively affected by salt, and recovery ability decreased with increasing temperature or salinity. Inter-population variability was detected in salt response during the seed germination phase, as well as in seedling salt spray tolerance. The inland population seedlings had drastically decreased survival and life span and failed to survive to the end of the experiment. In contrast, at least 90% of the coastal seedlings survived, even when sprayed at the highest frequency with salt solution. This study allowed investigation of two natural factors, soil salinity and marine aerosols, widely present in the B. insularis habitat, and provided the first insights into ecology of this protected species and its distribution in the Mediterranean. These results might be useful in understanding the actual distributions of other species with the same ecology that experience these same abiotic parameters. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles.

    PubMed

    Estillore, Armando D; Morris, Holly S; Or, Victor W; Lee, Hansol D; Alves, Michael R; Marciano, Meagan A; Laskina, Olga; Qin, Zhen; Tivanski, Alexei V; Grassian, Vicki H

    2017-08-09

    Individual airborne sea spray aerosol (SSA) particles show diversity in their morphologies and water uptake properties that are highly dependent on the biological, chemical, and physical processes within the sea subsurface and the sea surface microlayer. In this study, hygroscopicity data for model systems of organic compounds of marine origin mixed with NaCl are compared to data for authentic SSA samples collected in an ocean-atmosphere facility providing insights into the SSA particle growth, phase transitions and interactions with water vapor in the atmosphere. In particular, we combine single particle morphology analyses using atomic force microscopy (AFM) with hygroscopic growth measurements in order to provide important insights into particle hygroscopicity and the surface microstructure. For model systems, a range of simple and complex carbohydrates were studied including glucose, maltose, sucrose, laminarin, sodium alginate, and lipopolysaccharides. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM). It is shown here that the E-AIM model describes well the deliquescence transition and hygroscopic growth at low mass ratios but not as well for high ratios, most likely due to a high organic volume fraction. AFM imaging reveals that the equilibrium morphology of these single-component organic particles is amorphous. When NaCl is mixed with the organics, the particles adopt a core-shell morphology with a cubic NaCl core and the organics forming a shell similar to what is observed for the authentic SSA samples. The observation of such core-shell morphologies is found to be highly dependent on the salt to organic ratio and varies depending on the nature and solubility of the organic component. Additionally, single particle organic volume fraction AFM analysis of NaCl : glucose and NaCl : laminarin mixtures shows that the ratio of salt to organics in solution does not correspond exactly for

  4. Scanning and transmission electron microscopy and X-ray analysisof leaf salt glands of Limoniastrum guyonianum Boiss. under NaCl salinity.

    PubMed

    Zouhaier, Barhoumi; Abdallah, Atia; Najla, Trabelsi; Wahbi, Djebali; Wided, Chaïbi; Aouatef, Ben Ammar; Chedly, Abdelly; Abderazzak, Smaoui

    2015-11-01

    Leaf salt glands of Limoniastrum guyonianum were examined by scanning and transmission electron microscopes and energy dispersive X-ray analysis (EDAX) system, after growing for three months on sandy soil with or without 300 mM NaCl. Results showed that salt glands were irregularly scattered on both leaf sides and sunk under the epidermal level. Salt excretion occurred in both conditions and is mainly composed of calcium and magnesium in control plants, and essentially sodium and chloride in plants subjected to salt treatment. A salt gland is comprised of collecting, accumulating, and central compartments, and is made up of total thirty-two cells. The collecting cells were characterized by large central vacuoles. Accumulating cells contain numerous, large, and unshaped vacuoles and rudimentary chloroplasts. The central compartment was comprised of four basal cells and each one is surmounted by an apical cell. The basal cells are granulated, containing large nucleus, numerous mitochondria, endoplasmic reticulum, ribosomes, polyribosomes, and small vacuoles or vesicles. Equally, the apical cells are rich in organelles. Application of 300 mM NaCl to the culture medium increased vacuoles number and size, and organelles density especially the mitochondria which suggests energy requirement for ions transport. The reduction in size and number of vacuoles toward the interior of salt glands of treated plants and the fusion of the smallest ones with the plasma membrane substantiate the implication of such vacuoles in salt excretion process. The current study which is the first report on L. guyonianum salt gland has provided an in-depth understanding on structure-function relationship in the multicellular salt glands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.

    PubMed

    Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe

    2012-02-07

    Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.

  6. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  7. The combination of arbuscular mycorrhizal fungi inoculation (Glomus versiforme) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (Cucumis sativus L.) under salinity.

    PubMed

    Ahmad, Husain; Hayat, Sikandar; Ali, Muhammad; Liu, Tao; Cheng, Zhihui

    2018-06-01

    Salinity is one of the major obstacles in the agriculture industry causing huge losses in productivity. Several strategies such as plant growth regulators with arbuscular mycorrhizal fungi (AMF) have been used to decrease the negative effects of salt stress. In our experiment, 28-homobrassinolide (HBL) with spraying intervals was combined with AMF ( Glomus versiforme ) in cucumber cultivars Jinyou 1 # (salt sensitive) and (Changchun mici, in short, CCMC, salt tolerant) under NaCl (100 mmol/L). Studies have documented that the foliar application of HBL and AMF colonization can enhance tolerance to plants under stress conditions. However, the mechanism of the HBL spraying intervals after 15 and 30 days in combination with AMF in cucumber under salt stress is still unknown. Our results revealed that the HBL spraying interval after 15 days in combination with AMF resulted in improved growth, photosynthesis, and decreased sodium toxicity under NaCl. Moreover, the antioxidant enzymes SOD (superoxide dismutase; EC 1.15.1.1) and POD activity (peroxidase; EC 1.11.1.7) showed a gradual increase after every 10 days, while the CAT (catalase; EC 1.11.1.6) increased after 30 days of salt treatments in both cultivars. This research suggests that the enhanced tolerance to salinity was mainly related to elevated levels of antioxidant enzymes and lower uptake of Na + , which lowers the risk of ion toxicity and decreases cell membrane damage.

  8. Evolution of nitrate and nitrite during the processing of dry-cured ham with partial replacement of NaCl by other chloride salts.

    PubMed

    Armenteros, Mónica; Aristoy, María-Concepción; Toldrá, Fidel

    2012-07-01

    Nitrate and nitrite are commonly added to dry-cured ham to provide protection against pathogen microorganisms, especially Clostridium botulinum. Both nitrate and nitrite were monitored with ion chromatography in dry-cured hams salted with different NaCl formulations (NaCl partially replaced by KCl and/or CaCl(2), and MgCl(2)). Nitrate, that is more stable than nitrite, diffuses into the ham and acts as a reservoir for nitrite generation. A correct nitrate and nitrite penetration was detected from the surface to the inner zones of the hams throughout its processing, independently of the salt formulation. Nitrate and nitrite achieved similar concentrations, around 37 and 2.2 ppm, respectively in the inner zones of the ham for the three assayed salt formulations at the end of the process, which are in compliance with European regulations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    PubMed

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  10. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  11. Natural variability in Drosophila larval and pupal NaCl tolerance.

    PubMed

    Riedl, Craig A L; Oster, Sara; Busto, Macarena; Mackay, Trudy F C; Sokolowski, Marla B

    2016-05-01

    The regulation of NaCl is essential for the maintenance of cellular tonicity and functionality, and excessive salt exposure has many adverse effects. The fruit fly, Drosophila melanogaster, is a good osmoregulator and some strains can survive on media with very low or high NaCl content. Previous analyses of mutant alleles have implicated various stress signaling cascades in NaCl sensitivity or tolerance; however, the genes influencing natural variability of NaCl tolerance remain for the most part unknown. Here, we use two approaches to investigate natural variation in D. melanogaster NaCl tolerance. We describe four D. melanogaster lines that were selected for different degrees of NaCl tolerance, and present data on their survival, development, and pupation position when raised on varying NaCl concentrations. After finding evidence for natural variation in salt tolerance, we present the results of Quantitative Trait Loci (QTL) mapping of natural variation in larval and pupal NaCl tolerance, and identify different genomic regions associated with NaCl tolerance during larval and pupal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    PubMed

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  13. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C

    NASA Astrophysics Data System (ADS)

    Horita, Juske; Cole, David R.; Wesolowski, David J.

    1995-03-01

    The effect of dissolved NaCl on equilibrium oxygen and hydrogen isotope fractionation factors between liquid water and water vapor was precisely determined in the temperature range from 130-350°C, using two different types of apparatus with static or dynamic sampling techniques of the vapor phase. The magnitude of the oxygen and hydrogen isotope effects of NaCl is proportional to the molality of liquid NaCl solutions at a given temperature. Dissolved NaCl lowers appreciably the hydrogen isotope fractionation factor between liquid water and water vapor over the entire temperature range. NaCl has little effect on the oxygen isotope fractionation factor at temperatures below about 200°C, with the magnitude of the salt effect gradually increasing from 200-350°C. Our results are at notable variance with those of Truesdell (1974) and Kazahaya (1986), who reported large oxygen and hydrogen isotope effects of NaCl with very complex dependencies on temperature and NaCl molality. Our high-temperature results have been regressed along with our previous results between 50 and 100°C (Horita et al., 1993a) and the low-temperature literature data to simple equations which are valid for NaCl solutions from 0 to at least 5 molal NaCl in the temperature range from 10-350°C. Our preliminary results of oxygen isotope fractionation in the system CaCO3-water ± NaCl at 300°C and 1 kbar are consistent with those obtained from the liquid-vapor equilibration experiments, suggesting that the isotope salt effects are common to systems involving brines and any other coexisting phases or species (gases, minerals, dissolved species, etc.). The observed NaCl isotope effects at elevated temperatures should be taken into account in the interpretation of isotopic data of brine-dominated natural systems.

  14. The Use of a Sea Salt-based Spray for Diabetic Foot Ulcers: A Novel Concept.

    PubMed

    Pougatsch, David A; Rader, Andrew; Rogers, Lee C

    2017-02-01

    Several patients present to wound healing specialists seeking a natural or alternative medical approach to their wounds. The purpose of this prospective, case-cohort study of 10 patients was to evaluate the use of Oceanzyme Wound Care Spray (Ocean Aid, Inc, Boynton Beach, FL) in improving healing in diabetic foot ulcers during a 12-week period. This product contains water purified by reverse osmosis, coral reef sea salt, lysozyme, and sodium benzoate. The primary endpoint was wound closure, and secondary endpoints were infection rate and wound area reduction. Overall, 2 patients healed, 2 withdrew, and the remaining 6 had an average of 73% reduction in wound area. While more study is needed, the use of this sea salt-based spray may provide a viable alternative for patients seeking a natural therapy for their wound care.

  15. Preliminary results for salt aerosol production intended for marine cloud brightening, using effervescent spray atomization

    PubMed Central

    Cooper, Gary; Foster, Jack; Galbraith, Lee; Jain, Sudhanshu; Neukermans, Armand; Ormond, Bob

    2014-01-01

    The large-scale production of vast numbers of suitable salt nuclei and their upward launch is one of the main technological barriers to the experimental testing of marine cloud brightening (MCB). Very promising, though not definitive, results have been obtained using an adapted version of effervescent spray atomization. The process is simple, robust and inexpensive. This form of effervescent spraying uses only pressurized water and air sprayed from small nozzles to obtain very fine distributions. While it is far from optimized, and may not be the best method if full deployment is ever desired, we believe that even in its present form the process would lend itself well to preliminary field test investigations of MCB. Measurements obtained using standard aerosol instrumentation show approximately lognormal distributions of salt nuclei with median diameters of approximately 65 nm and geometric standard deviations slightly less than 2. However, these measurements are not in agreement with those based on scanning electron microscopy imaging of collected particles, an observation that has not yet been explained. Assuming the above distribution, 1015 particles per second could be made with 21 kW of spray power, using approximately 200 nozzles. It is envisioned that existing snow making equipment can be adapted to launch the nuclei 60–100 m into the air, requiring approximately 20 kW of additional power. PMID:25404673

  16. Covering surface nanobubbles with a NaCl nanoblanket.

    PubMed

    Berkelaar, Robin P; Zandvliet, Harold J W; Lohse, Detlef

    2013-09-10

    By letting a NaCl aqueous solution of low (0.01 M) concentration evaporate on a highly oriented pyrolytic graphite (HOPG) surface, it is possible to form a thin film of salt. However, pre-existing surface nanobubbles prevent the homogeneous coverage of the surface with the salt, keeping the footprint areas on the substrate pristine. Comparing the surface nanobubbles in the salt solution with their associated footprint after drying, provides information on the shrinkage of nanobubbles during the hours-long process of drying the liquid film. At a slightly higher NaCl concentration and thus salt layer thickness, the nanobubbles are covered with a thin blanket of salt. Once the liquid film has evaporated until a water film remains that is smaller than the height of the nanobubbles, the blanket of salt cracks and unfolds into a flower-like pattern of salt flakes that is located at the rim of the nanobubble footprint. The formation of a blanket of salt covering the nanobubbles is likely to considerably or even completely block the gas out-flux from the nanobubble, partially stabilizing the nanobubbles against dissolution.

  17. A combined physicochemical-biological method of NaCl extraction from the irrigation solution in the BTLSS

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia

    2016-07-01

    The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  18. Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties.

    PubMed

    Xu, Hua-Neng; Liu, Yang; Zhang, Lianfu

    2015-08-07

    Emulsions stabilized by protein particles have gained increasing research attention due to their combined advantages of biocompatibility and superior stability. In this study, colloidal particles consisting of soy protein isolates (SPIs) prepared through a heat-treatment procedure are used to make oil-in-water emulsions at a protein concentration of 10 g L(-1) and a pH of 5.91. We investigate parallelly the effects of NaCl on the stability and rheological properties of the particle suspensions and their stabilized emulsions at salt concentrations of 0, 100 and 400 mM. The aggregation behavior of the particles is strongly dependent on the NaCl concentration, showing signs of sedimentation at low NaCl concentration (100 mM) but redispersion again at high NaCl concentration (400 mM). The extensive particle aggregation is beneficial to the formation of a continuous interfacial film for the emulsions, and hence results in a remarkable increase of creaming stability and interfacial viscoelastic moduli. The results can be explained in terms of two competitive effects of NaCl: salting-out and salting-in, which are attributed to complex electrostatic interactions between the particles as a function of NaCl concentration. The delicate balance between salting-out and salting-in provides an interesting insight into the nature of underlying protein particle interactions in aqueous suspensions and a possible mechanism for tailoring their emulsifying properties via salt effects.

  19. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-08-14

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.

  20. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-01-01

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418

  1. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension.

    PubMed

    Liu, Yunmeng; Rafferty, Tonya M; Rhee, Sung W; Webber, Jessica S; Song, Li; Ko, Benjamin; Hoover, Robert S; He, Beixiang; Mu, Shengyu

    2017-01-09

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8 + T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8 + T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8 + T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K + channel Kir4.1, and stimulation of the Cl - channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.

  2. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension

    PubMed Central

    Liu, Yunmeng; Rafferty, Tonya M.; Rhee, Sung W.; Webber, Jessica S.; Song, Li; Ko, Benjamin; Hoover, Robert S.; He, Beixiang; Mu, Shengyu

    2017-01-01

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl− channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension. PMID:28067240

  3. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    NASA Astrophysics Data System (ADS)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  4. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  5. Effects of dilute aqueous NaCl solution on caffeine aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogenmore » bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.« less

  6. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  7. Effect of Maillard Reacted Peptides on Human Salt Taste and the Amiloride-Insensitive Salt Taste Receptor (TRPV1t)

    PubMed Central

    Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T.; Mummalaneni, Shobha; DeSimone, John A.

    2008-01-01

    Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000–5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague–Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t. PMID:18603652

  8. Cell growth and water relations of the halophyte, Atriplex nummularia L., in response to NaCl.

    PubMed

    Casas, A M; Bressan, R A; Hasegawa, P M

    1991-06-01

    Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic "over adjustment" as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118-125).

  9. Sorption isotherms of salted minced pork and of lean surface of dry-cured hams at the end of the resting period using KCl as substitute for NaCl.

    PubMed

    Comaposada, J; Arnau, J; Gou, P

    2007-12-01

    The effect of KCl on sorption isotherms was determined on salted minced meat (with 0%, 30% and 100% molar substitution of NaCl by KCl) at 5°C and 25°C and meat from a 3mm thick slice from the surface of dry-cured hams (with 0% and 35% molar substitution of NaCl by KCl) held at 70-75%, 75-80% and 80-85% air relative humidity during the resting period. The sorption isotherms were determined gravimetrically by exposing the meat samples to several atmospheres of known relative humidity controlled by different saturated salts according to the COST90 method. The sorption equipment consisted of a chamber containing 11 containers, covering the water activity (a(w)) range from 0.112 to 0.946 at 25°C. The hermetically closed sorption containers filled with KCl and minced meat samples were irradiated at 3kGrey (gamma irradiation (60)Co). The water content at equilibrium was higher in minced meat with NaCl than in minced meat with KCl (100% molar substitution of NaCl by KCl) at 5°C within the range of 0.4313 and 0.7565 a(w). However, when substitution was 30% in minced meat and 35% in hams the isotherms were similar to isotherm without substitution.

  10. Effects of Variations in Salt-Spray Conditions on the Corrosion Mechanisms of an AE44 Magnesium Alloy

    DOE PAGES

    Martin, Holly J.; Horstemeyer, M. F.; Wang, Paul T.

    2010-01-01

    The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying.more » The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.« less

  11. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  12. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    PubMed

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  13. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  14. Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress.

    PubMed

    Tsabarducas, V; Chatzistathis, T; Therios, I; Koukourikou-Petridou, M; Tananaki, C

    2015-12-01

    One-year-old self-rooted cuttings of three Citrus limon cultivars (Nouvel Athos, Lisbon, Maglini) were grown in 1 L black plastic bags, containing a mixture of sand: perlite (1:1), in order to investigate: i) if genotypic differences to salt stress existed, ii) if KNO3 can alleviate salinity stress, iii) the role of carbohydrates (such as the sugars fructose, glucose and sucrose) and proline as possible osmoregulators in C. limon osmoprotection, and iv) if genotypic differences to salt stress tolerance exist among the 3 studied cultivars. The experiment included 3 treatments: i) control (C), i.e. 25% modified Hoagland (No2) solution (MHS)-NaCl, ii) T1, 25% MHS+80 mM NaCl, iii) T2, 25% MHS+80 mM NaCl+5 mM KNO3. Plant growth was negatively affected by high NaCl (T1); the highest Cl and Na quantities have been absorbed by Lisbon, while the lowest ones by Maglini. Salt stress reduced macronutrient and Zn concentrations, as well as the total carbohydrate concentration, and increased peroxidase (POD) activity and chlorophyll fluorescence in the leaves of the 3 C. limon cultivars studied; five mM KNO3 application alleviated the harmful effect of salt stress on leaf total carbohydrate concentration and leaf N and K concentrations. Sucrose was dramatically reduced in all the three genotypes studied, while leaf fructose concentration was significantly increased in Nouvel Nouvel Nouvel Athos and Maglini under salt stress. Leaf proline concentration of Maglini was significantly decreased by the high NaCl concentration, while Nouvel Athos and Lisbon had high proline concentration in their leaves. In conclusion, from the significantly decreased levels of proline for Maglini, together with the greatest reduction of the ratio Fv/Fm and the least enhancement of POD activity-compared to the other two cultivars-it can be concluded that Maglini was more susceptible to salinity, and should not be preferred for cultivation under NaCl stress. Finally, rich KNO3 application

  15. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  16. Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution.

    PubMed

    Jing, Zhang; Dejun, Kong

    2018-02-11

    A cold sprayed Al coating on S355 structural steel was processed using a laser remelting (LR). The surface and cross-section morphologies, chemical compositions, and phases of as-obtained Al coating before and after LR were analyzed using a scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and their hardness was measured using a micro-hardness tester. The friction-wear behaviors of Al coating before and after LR in 3.5% NaCl solution were conducted to simulate the sand and gravel scouring on its surface in seawater, the effects of wear loads and speeds on the tribological properties of Al coating were analyzed, and the wear mechanisms under different wear loads and speeds were also discussed. The results show that the Al coating after LR is primarily composed of an Al phase and its hardness is 104.66 HV, increasing 54.70 HV than the cold sprayed Al coating. The average coefficient of friction (COF) of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 0.285, 0.239, and 0.435, respectively, while that after LR is 0.243, 0.227, and 0.327, respectively, decreased by 14.73%, 5.02% and 24.83% compared to the cold sprayed Al coating. The wear rate of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 1.60 × 10 -4 , 2.36 × 10 -4 , and 2.40 × 10 -4 mm³/m·N, respectively, while that after LR is 1.59 × 10 -4 , 1.70 × 10 -4 , and 1.94 × 10 -4 mm³/m·N, respectively, decreased by 1%, 32%, and 23%, respectively, indicating that LR has high anti-friction performance. Under the wear load action of 1.0 N, the average COF of laser remelted Al coating at the wear speeds of 300, 400 and 500 times/min is 0.294, 0.279, and 0.239, respectively, and the corresponding wear rate is 1.06 × 10 -4 , 1.24 × 10 -4 , and 1.70 × 10 -4 mm³/m·N, respectively. The wear mechanism of cold sprayed Al coating is primarily corrosion wear at the loads of 0.5 and 1.0 N, and that at the load

  17. Salt reduction in foods using naturally brewed soy sauce.

    PubMed

    Kremer, Stefanie; Mojet, Jozina; Shimojo, Ryo

    2009-08-01

    In recent years, health concerns related to salt/sodium chloride consumption have caused an increased demand for salt-reduced foods. Consequently, sodium chloride (NaCl) reduction in foods has become an important challenge. The more so, since a decrease in NaCl content is often reported to be associated with a decrease in consumer acceptance. The objective of the present study was to investigate whether or not it would be possible to reduce the NaCl content in standard Western European foods by replacing it with naturally brewed soy sauce. Three types of foods were investigated: salad dressing (n = 56), soup (n = 52), and stir-fried pork (n = 57). In the 1st step, an exchange rate (ER) by which NaCl can be replaced with soy sauce without a significant change in the overall taste intensity was established per product type, by means of alternative forced choice tests. In the 2nd step, the same consumers evaluated 5 samples per product type with varying NaCl and/or soy sauce content on pleasantness and several sensory attributes. The results showed that it was possible to achieve a NaCl reduction in the tested foods of, respectively, 50%, 17%, and 29% without leading to significant losses in either overall taste intensity or product pleasantness. These results suggest that it is possible to replace NaCl in foods with naturally brewed soy sauce without lowering the overall taste intensity and to reduce the total NaCl content in these foods without decreasing their consumer acceptance. Health concerns related to salt consumption cause an increased demand for salt-reduced foods. Consequently, the development of foods with reduced salt content without decreasing the consumer acceptance is an important challenge for the food industry. A new possible salt reduction approach is described in the present article: The replacement of salt with naturally brewed soy sauce.

  18. Discretionary salt use in airline meal service.

    PubMed

    Wallace, S; Wellman, N S; Dierkes, K E; Johnson, P M

    1987-02-01

    Salt use in airline meal service was studied through observation of returned meal trays of 932 passengers. Observation and weighing of salt packets on returned trays revealed that 64% of passengers did not salt their airline dinner, while 6% used the entire salt packet, 0.92 gm NaCl (362 mg Na). Average discretionary salt use among the 234 passengers (25%) who added salt was 0.57 gm NaCl (232 mg Na). Estimates of total sodium in the four airline dinners averaged 2.0 gm NaCl (786 mg Na). Laboratory assays of menu items produced by the airline foodservice differed 3% to 19% from estimated values. Sodium content of the four airline dinner menus was similar and did not affect salt use. Discretionary salt use was related to the total amount of entrée consumed but was not affected by the amount of salad consumed. It is postulated that salt use in the "captive" airline situation is predicated on consistent, habitual practices. Lowering sodium consumption in this setting may require alteration in both food preparation methods and quantity of salt presented in the packets.

  19. Oxygen-rich Mass Loss with a Pinch of Salt: NaCl in the Circumstellar Gas of IK Tauri and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Apponi, A. J.; Woolf, N. J.; Ziurys, L. M.

    2007-10-01

    The NaCl molecule has been observed in the circumstellar envelopes of VY Canis Majoris (VY CMa) and IK Tauri (IK Tau)-the first identifications of a metal refractory in oxygen-rich shells of evolved stars. Five rotational transitions of NaCl at 1 and 2 mm were detected toward VY CMa and three 1 mm lines were observed toward IK Tau, using the telescopes of the Arizona Radio Observatory. In both objects, the line widths of the NaCl profiles were extremely narrow relative to those of other molecules, indicating that sodium chloride has not reached the terminal outflow velocity in either star, likely a result of early condensation onto grains. Modeling the observed spectra suggests abundances, relative to H2, of f~5×10-9 in VY CMa and f~4×10-9 in IK Tau, with source sizes of 0.5" and 0.3", respectively. The extent of these sources is consistent with the size of the dust acceleration zones in both stars. NaCl therefore appears to be at least as abundant in O-rich shells as compared to C-rich envelopes, where f~(0.2-2)×10-9, although it appears to condense out earlier in the O-rich case. Chemical equilibrium calculations indicate that NaCl is the major carrier of sodium at T~1100 K for oxygen-rich stars, with predicted fractional abundances in good agreement with the observations. These measurements suggest that crystalline salt may be an important condensate for sodium in both C- and O-rich circumstellar shells.

  20. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less

  1. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure

    PubMed Central

    2011-01-01

    Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP). Substituting potassium and/or magnesium salts for sodium chloride (NaCl) may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt) with a novel mineral salt [50% sodium chloride and rich in potassium chloride (25%), magnesium ammonium potassium chloride, hydrate (25%)] (Smart Salt). Methods A randomized, double-blind, placebo-controlled study was conducted with an intervention period of 8-weeks in subjects (n = 45) with systolic (S)BP 130-159 mmHg and/or diastolic (D)BP 85-99 mmHg. During the intervention period, subjects consumed processed foods salted with either NaCl or Smart Salt. The primary endpoint was the change in SBP. Secondary endpoints were changes in DBP, daily urine excretion of sodium (24-h dU-Na), potassium (dU-K) and magnesium (dU-Mg). Results 24-h dU-Na decreased significantly in the Smart Salt group (-29.8 mmol; p = 0.012) and remained unchanged in the control group: resulting in a 3.3 g difference in NaCl intake between the groups. Replacement of NaCl with Smart Salt resulted in a significant reduction in SBP over 8 weeks (-7.5 mmHg; p = 0.016). SBP increased (+3.8 mmHg, p = 0.072) slightly in the Regular salt group. The difference in the change of SBP between study groups was significant (p < 0.002). Conclusions The substitution of Smart Salt for Regular salt in subjects with high normal or mildly elevated BP resulted in a significant reduction in their daily sodium intake as well as a reduction in SBP. Trial Registration ISRCTN: ISRCTN01739816 PMID:21888642

  2. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  3. A possible NaCl pathway in the bioregenerative human life support system

    NASA Astrophysics Data System (ADS)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  4. Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats.

    PubMed

    Yoshinaga, Mariko; Toda, Natsuko; Tamura, Yuki; Terakado, Shouko; Ueno, Mai; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Uehara, Yoshio

    2012-09-01

    We investigated the effects of long-term miso soup drinking on salt-induced hypertension in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups that consumed 1) water, 2) a 0.9% NaCl solution, 3) a 1.3% sodium NaCl solution, or 4) miso soup containing 1.3% NaCl. They were followed for 8 wk. Systolic blood pressure and hypertensive organ damage were determined. Systolic blood pressure increased in an age- and dose-dependent manner in Dahl S rats drinking salt solutions. The systolic blood pressure increase was significantly less in the Dahl S rats that drank miso soup, although the ultimate cumulative salt loading was greater than that in the Dahl S rats given the 1.3% NaCl solution. This blood pressure decrease was associated with a morphologic attenuation of glomerular sclerosis in the kidney and collagen infiltration in the heart. Urinary protein excretions were less in the miso group than in the rats given the 1.3% NaCl solution. The fractional excretion of sodium was increased and that of potassium was decreased in Dahl S rats given the 1.3% NaCl solution, and these effects were reversed in rats given miso soup toward the values of the control. We found that long-term miso soup drinking attenuates the blood pressure increase in salt-induced hypertension with organ damage. This may be caused by a possible retardation of sodium absorption in the gastrointestinal tract or by the direct effects of nutrients in the miso soup from soybeans. The decrease was associated with decreases in cardiovascular and renal damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution

    PubMed Central

    Jing, Zhang; Dejun, Kong

    2018-01-01

    A cold sprayed Al coating on S355 structural steel was processed using a laser remelting (LR). The surface and cross-section morphologies, chemical compositions, and phases of as-obtained Al coating before and after LR were analyzed using a scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and their hardness was measured using a micro-hardness tester. The friction-wear behaviors of Al coating before and after LR in 3.5% NaCl solution were conducted to simulate the sand and gravel scouring on its surface in seawater, the effects of wear loads and speeds on the tribological properties of Al coating were analyzed, and the wear mechanisms under different wear loads and speeds were also discussed. The results show that the Al coating after LR is primarily composed of an Al phase and its hardness is 104.66 HV, increasing 54.70 HV than the cold sprayed Al coating. The average coefficient of friction (COF) of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 0.285, 0.239, and 0.435, respectively, while that after LR is 0.243, 0.227, and 0.327, respectively, decreased by 14.73%, 5.02% and 24.83% compared to the cold sprayed Al coating. The wear rate of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 1.60 × 10−4, 2.36 × 10−4, and 2.40 × 10−4 mm3/m·N, respectively, while that after LR is 1.59 × 10−4, 1.70 × 10−4, and 1.94 × 10–4 mm3/m·N, respectively, decreased by 1%, 32%, and 23%, respectively, indicating that LR has high anti-friction performance. Under the wear load action of 1.0 N, the average COF of laser remelted Al coating at the wear speeds of 300, 400 and 500 times/min is 0.294, 0.279, and 0.239, respectively, and the corresponding wear rate is 1.06 × 10−4, 1.24 × 10−4, and 1.70 × 10−4 mm3/m·N, respectively. The wear mechanism of cold sprayed Al coating is primarily corrosion wear at the loads of 0.5 and 1.0 N, and that at the load

  6. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  7. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles.

    PubMed

    Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Yeo, Eui-Joo; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.

  8. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity

    PubMed Central

    de Vos, Arjen C.; Broekman, Rob; Groot, Maartje P.; Rozema, Jelte

    2010-01-01

    Background and Aims There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses. Methods In the greenhouse, plants were exposed to salt spray (400 mm NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mm NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na+ concentrations, Na+ : K+ ratio, net K+/Na+ selectivity, N, P, K+, Ca2+, Mg2+, proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured. Key Results Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mm NaCl did not affect growth. However, at 200 mm NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mm NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na+ and proline concentrations, reduced K+, Ca2+ and Mg2+ concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0·95) with RZS concentrations and not with plant growth. Conclusions Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root

  9. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation.

    PubMed

    Fan, Jianhua; Zheng, Lvhong

    2017-09-01

    Salt stress has been proven very effective in enhancing the lipid content among many photoautotrophically grown microalgae species including marine and freshwater algae. Nevertheless, its effect on heterotrophic grown cells and lipid accumulation is scarcely known. This study sought to demonstrate a new train of thought for cost-effective biofuels production by heterotrophic culture of Chlamydomonas reinhardtii coupling with subsequent salt and light stress. NaCl treatments (25-200 mM) gradually suppressed the cell growth. After one day's acclimation, the cells restored slow growth with light supplement (200 μmol/m2/s) in low salt concentration (0-50 mM). However, high concentration of NaCl (200 mM) dose caused permanent damage, with over 47% cells death after 3 days treatment. The highest lipid content of 35.8% and lipid productivity of 28.6 mg/L/d were achieved by 50 mM NaCl stress and light treatment upon heterotrophic grown cells. Cells lost their green pigmentation and became yellowish under 100-200 mM NaCl conditions, whereas cells grown in 0-50 mM NaCl retained their dark-green pigmentation. Variable-to-maximum fluorescence ratio (Fv/Fm) and non-photochemical quenching (NPQ) value were markedly influenced under salt and light stress, indicating that severe inhibition of photosynthetic ability was occurred. Moreover, we further demonstrated the dynamic changes of cell growth and lipid accumulation would potentially be caused by the increase of intracellular redox state. To our knowledge, this study is the first instance in which C. reinhardtii was applied to oil accumulation by using combination of heterotrophic culture and multiple stress, and opened up a new territory for the further development of microalgae-based biofuels production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Effects of selective lingual gustatory deafferentation on suprathreshold taste intensity discrimination of NaCl in rats.

    PubMed

    Colbert, Connie L; Garcea, Mircea; Spector, Alan C

    2004-12-01

    In rats, chorda tympani nerve transection (CTX) greatly increases the detection threshold of sodium chloride (NaCl) and severely disrupts salt discriminability. Here it is shown that CTX has surprisingly little effect, if any, on suprathreshold intensity discrimination. Glossopharyngeal nerve transection (GLX), which has no reported effect on salt sensibility, also did not affect performance. Rats were tested in a 2-response, operant taste intensity discrimination task. Difference thresholds for CTX rats were only slightly higher (-0.15 log/10 unit) than those for GLX and sham-transected rats, when 0.05 M served as the standard, and did not significantly differ when 0.1 M NaCl was the standard. Although the perceived intensity of NaCl might be reduced by CTX, input from remaining taste nerves sufficiently maintains the relative discriminability of suprathreshold NaCl concentrations.

  11. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  12. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

    PubMed Central

    Choi, Yun-Sang

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle. PMID:26761884

  13. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-11-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.

  14. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed Central

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-01-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933

  15. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less

  16. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    PubMed

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (p<0.05) in water retention was found when a combination of NaCl and polyphosphates was used. A high textural parameter was observed in the two treatments with NaCl, but not in the group with only polyphosphate. For the polyphosphate group, T22 was lower (p<0.05) than in the other three before heating; however, after heating, T21 and T22 were both significantly decreased, and a new component emerged, T23, which was significantly lower than the others. For the NaCl treatment, heated or not, T22 was always the highest. It was revealed that NaCl had affected the WHC by increasing the mobility and distribution of water, particularly with polyphosphate, but polyphosphate could not be an equal substitute for NaCl given its resulting lowest textural properties and poor microstructure. By presenting different hydration states in the protein swelling stage, the meat batter qualities were differentiated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.

    PubMed

    Ben-Hayyim, G; Kochba, J

    1983-07-01

    A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.

  18. Early Detection of Salt Stress Damage by Biophotons in Red Bean Seedling

    NASA Astrophysics Data System (ADS)

    Ohya, Tomoyuki; Kurashige, Hideaki; Okabe, Hirotaka; Kai, Shoichi

    2000-06-01

    The optical detection of the stress damage to plants by NaCl solutions was attempted during germination of a seed and growth of a root. We compared the photon intensity of red beans before and after NaCl treatment and found that the photon intensity after NaCl treatment decreased as the NaCl concentration increased. For the saturated NaCl concentration (4.5 M), however, the observed photon intensity drastically increased, and the simultaneous destruction of cell membranes was observed. The intensity of biophoton emission from red beans showed characteristic change with salt concentrations. When the salt stress was applied to the red beans at an early growth stage, their root elongations were suppressed and photon intensity from the root decreased. This was not the case for the root at the late stage. This shows that biophoton intensity due to salt stress depends on not only NaCl concentration but also the growth stage of the plant. We may conclude that the extent of damage to roots by salt stress can be evaluated from biophoton response.

  19. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  20. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1

    PubMed Central

    Ben-Hayyim, Gozal; Kochba, Joshua

    1983-01-01

    A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067

  1. NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars

    PubMed Central

    Thiam, Mahamadou; Ourèye SY, Mame

    2013-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8 g·L−1) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200 mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations. PMID:25937976

  2. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity.

    PubMed

    Voigt, Eduardo Luiz; Almeida, Tânia Dias; Chagas, Roberta Magalhães; Ponte, Luiz Ferreira Aguiar; Viégas, Ricardo Almeida; Silveira, Joaquim Albenísio Gomes

    2009-01-01

    Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.

  3. Solubility of KF and NaCl in water by molecular simulation.

    PubMed

    Sanz, E; Vega, C

    2007-01-07

    The solubility of two ionic salts, namely, KF and NaCl, in water has been calculated by Monte Carlo molecular simulation. Water has been modeled with the extended simple point charge model (SPC/E), ions with the Tosi-Fumi model and the interaction between water and ions with the Smith-Dang model. The chemical potential of the solute in the solution has been computed as the derivative of the total free energy with respect to the number of solute particles. The chemical potential of the solute in the solid phase has been calculated by thermodynamic integration to an Einstein crystal. The solubility of the salt has been calculated as the concentration at which the chemical potential of the salt in the solution becomes identical to that of the pure solid. The methodology used in this work has been tested by reproducing the results for the solubility of KF determined previously by Ferrario et al. [J. Chem. Phys. 117, 4947 (2002)]. For KF, it was found that the solubility of the model is only in qualitative agreement with experiment. The variation of the solubility with temperature for KF has also been studied. For NaCl, the potential model used predicts a solubility in good agreement with the experimental value. The same is true for the hydration chemical potential at infinite dilution. Given the practical importance of solutions of NaCl in water the model used in this work, whereas simple, can be of interest for future studies.

  4. Textural improvement of salt-reduced Alaska pollack (Theragra chalcogramma) roe product by CaCl2.

    PubMed

    Chen, Chaoping; Okazaki, Emiko; Osako, Kazufumi

    2016-12-15

    Salt-reduced Alaska pollack roe benefits public health by decreasing NaCl intake; however, it has a poor texture with low breaking strength. This study addresses the feasibility of NaCl reduction in salted roe products, with focusing on the improvement of breaking strength using CaCl2. Salted roe products were prepared by immersing Alaska pollack roe in either NaCl solutions (3.5, 7.0, 15.0, 20.0, and 25.0%) or 7.0% NaCl solutions with added CaCl2 (0.0, 0.5, 1.0, 2.0, and 3.0%). Breaking strength, moisture and salt contents, eggshell protein composition of the salted roe products, as well as total endogenous transglutaminase (TGase) activity in various NaCl and CaCl2 concentrations were analyzed. CaCl2 addition enhanced eggshell protein crosslinking and breaking strength of the salt-reduced roe products. An acyl transfer reaction catalyzed by calcium-dependent TGase may be responsible for the eggshell protein crosslinking and improved texture. Thus, we successfully developed a salt-reduced Alaska roe product using CaCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Improvement of seawater salt quality by hydro-extraction and re-crystallization methods

    NASA Astrophysics Data System (ADS)

    Sumada, K.; Dewati, R.; Suprihatin

    2018-01-01

    Indonesia is one of the salt producing countries that use sea water as a source of raw materials, the quality of salt produced is influenced by the quality of sea water. The resulting average salt quality contains 85-90% NaCl. The Indonesian National Standard (SNI) for human salt’s consumption sodium chloride content is 94.7 % (dry base) and for industrial salt 98,5 %. In this study developed the re-crystallization without chemical and hydro-extraction method. The objective of this research to choose the best methods based on efficiency. The results showed that re-crystallization method can produce salt with NaCl content 99,21%, while hydro-extraction method content 99,34 % NaCl. The salt produced through both methods can be used as a consumption and industrial salt, Hydro-extraction method is more efficient than re-crystallization method because re-crystallization method requires heat energy.

  6. Effects of NO(y) aging on the dehydration dynamics of model sea spray aerosol.

    PubMed

    Woods, Ephraim; Heylman, Kevin D; Gibson, Amanda K; Ashwell, Adam P; Rossi, Sean R

    2013-05-23

    The reactions of NO(y) species in the atmosphere with sea spray aerosol replace halogen anions with nitrate. These experiments show the effect of increasing the nitrate content of model sea spray aerosol particles on the morphology changes and the phase transitions driven by changes in relative humidity (RH). The components of the model particles include H2O, Na+, Mg2+, Cl-, NO3-, and SO4(2-). Tandem differential mobility analyzer (TDMA) measurements yield the water content and efflorescence relative humidity (ERH) of these particles, and probe molecule spectroscopic measurements reveal subsequent phase transitions and partially characterize the salt composition on the surface of dry particles. The results show three effects of increasing the nitrate composition: decreasing the EFH (46 to 29%), production of a metastable aqueous layer on the surface of effloresced particles, and decreasing the sulfate content near the surface of dry particles. For the mixtures studied here, the initial crystallization event forms a core of NaCl. For particles that contain a substantial metastable aqueous layer following efflorescence, probe molecule spectroscopy shows a second crystallization at a lower RH. This subsequent phase transition is likely the formation of Na2SO4. Homogeneous nucleation theory (HNT) using a semiempirical formulation predicts the ERH of all mixtures within 2.0% RH, with a mean absolute deviation of 1.0%. The calculations suggest that structures associated with highly concentrated or supersaturated magnesium ions strongly affect the interfacial tension between the NaCl crystal nucleus and the droplet from which it forms.

  7. Solubility of NaCl in water by molecular simulation revisited.

    PubMed

    Aragones, J L; Sanz, E; Vega, C

    2012-06-28

    In this paper, the solubility of NaCl in water is evaluated by using computer simulations for three different force fields. The condition of chemical equilibrium (i.e., equal chemical potential of the salt in the solid and in the solution) is obtained at room temperature and pressure to determine the solubility of the salt. We used the same methodology that was described in our previous work [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] although several modifications were introduced to improve the accuracy of the calculations. It is found that the predictions of the solubility are quite sensitive to the details of the force field used. Certain force fields underestimate the experimental solubility of NaCl in water by a factor of four, whereas the predictions of other force fields are within 20% of the experimental value. Direct coexistence molecular dynamic simulations were also performed to determine the solubility of the salt. Reasonable agreement was found between the solubility obtained from free energy calculations and that obtained from direct coexistence simulations. This work shows that the evaluation of the solubility of salts in water can now be performed in computer simulations. The solubility depends on the ion-ion, ion-water, and water-water interactions. For this reason, the prediction of the solubility can be quite useful in future work to develop force fields for ions in water.

  8. Protection by Thermal and Chemical Activation with Cerium Salts of the Alloy AA2017 in Aqueous Solutions of NaCl

    NASA Astrophysics Data System (ADS)

    Bethencourt, Manuel; Botana, Francisco Javier; Cano, María José; González-Rovira, Leandro; Marcos, Mariano; Sánchez-Amaya, José María

    2012-01-01

    A wide variety of anticorrosive treatments for aluminum alloys that can be employed as "green" alternatives to those based on Cr(VI) are currently under development. This article reports a study of the morphological and anticorrosive characteristics of surface layers formed on the Al-Cu alloy AA2017 by immersion treatment in baths of cerium salt, accelerated by increased temperature and the employment of hydrogen peroxide. Scanning electron microscopy (SEM)/X-ray energy dispersive spectroscopy (XEDS) studies of the samples treated have demonstrated the existence of a heterogeneous layer formed by a film of aluminum oxide/hydroxide on the matrix, and a series of dispersed islands of cerium over the cathodic intermetallics. The protective efficacy has been evaluated using electrochemical techniques, linear polarizations (LP) and electrochemical impedance spectroscopy (EIS), and salt spray tests. The results obtained indicate that the layer provided good resistance to corrosion in media with chlorides, and the method gives a considerable reduction of the time required for the immersion treatments.

  9. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  10. Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.

    PubMed

    Galal, Abdelnasser

    2017-03-01

    Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na + and K + ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.

  11. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance.

    PubMed

    Laffray, Xavier; Alaoui-Sehmer, Laurence; Bourioug, Mohamed; Bourgeade, Pascale; Alaoui-Sossé, Badr; Aleya, Lotfi

    2018-04-04

    Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5-8-fold), potassium (0.6-fold), and chloride (9.5-14-fold) concentrations in the root tips while the K + /Na + ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.

  12. Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

    PubMed Central

    Bae, Su Min; Cho, Min Guk; Hong, Gi Taek; Jeong, Jong Youn

    2018-01-01

    Abstract This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures (70°C, 75°C, 80°C, and 85°C). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE a* values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE a* values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products. PMID:29805289

  13. Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures 1

    PubMed Central

    Thomas, John C.; De Armond, Richard L.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs. ImagesFigure 4Figure 5 PMID:16668687

  14. Ultrasonic cavitation erosion of high-velocity oxygen-fuel (HVOF) sprayed near-nanostructured WC-10Co-4Cr coating in NaCl solution.

    PubMed

    Hong, Sheng; Wu, Yuping; Zhang, Jianfeng; Zheng, Yugui; Qin, Yujiao; Lin, Jinran

    2015-09-01

    The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola.

    PubMed

    Liu, J; Gao, H; Wang, X; Zheng, Q; Wang, C; Wang, X; Wang, Q

    2014-03-01

    This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on the growth of salt-stressed canola. Seedlings at the four-leaf stage were treated with 150 mM NaCl and different concentrations of 24-EBL (10(-6), 10(-8), 10(-10), 10(-12) M) for 15 days. A concentration of 10(-10) M 24-EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24-EBL mainly promoted shoot growth of salt-stressed plants and also ameliorated leaf water status. Foliar spraying of salt-stressed canola with 24-EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na(+) and Cl(-) sharply increased in different organs under salt stress, and 24-EBL reduced their accumulation. 24-EBL improved the uptake of K(+), Ca(2+), Mg(2+) and NO3(-) in roots, which were mainly transported to upper leaves, while NO3(-) was mainly transported to middle leaves. Thus, 24-EBL improvements in ion homeostasis of K(+)/Na(+), Ca(2+)/Na(+), Mg(2+)/Na(+) and NO3(-)/Cl(-), especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24-EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt-stressed canola was ameliorated after 24-EBL treatment. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition.

    PubMed

    Xing, Tong; Zhao, Xue; Han, Minyi; Cai, Linlin; Deng, Shaolin; Zhou, Guanghong; Xu, Xinglian

    2017-09-01

    The selection of broilers for augmented growth rate and breast has brought about wooden-breast (WB) muscle abnormalities, which caused substantial economic losses. The objective of this study was to compare water holding capacity, water mobility and distribution, salt-soluble protein (SSP) content, and protein profiles of normal and WB chicken meat with different additions of NaCl. Thirty WB and 30 normal chicken breasts were selected from a deboning line of a major Chinese processing plant at 2 to 3 h post mortem. Two different meat batters were formulated to 150 mg/g meat protein and different NaCl contents (0%, 1%, 2%, 3%, and 4%). Results indicated that as NaCl contents increased, the cooking loss of meat batters decreased (P < 0.05). Increasing the NaCl content to 3% or more increased the solubility of myofibrillar protein and the extraction of SSPs, which resulted in the improving of cooking yield. Over a range of salt concentrations, normal and WB meat showed different protein profiles, with myosin heavy chain exhibiting a higher intensity at ≥3% salt level. Low-field nuclear magnetic resonance (LF-NMR)revealed an increased T22 and higher P22 in raw WB meat compared to normal meat (P < 0.05). Regarding the meat batters, WB meat batters had reduced T21 and lower immobilized water proportions at low NaCl contents (<2%). After heating, T2 shifted towards higher relaxation times with increasing NaCl contents in meat gels. Meat gels prepared from WB had a lower proportion of water within the myofibrillar protein matrix and a greater proportion of exuded bulk water at NaCl contents <3% (P < 0.05), while at higher NaCl contents the difference was eliminated, thus improving water retention capacity. In conclusion, for raw meat, meat batters and gels, water distribution and mobility of WB exhibited significant differences compared to normal meat. The addition of NaCl affected water mobility and distributions in meat batters, with a level of 3% NaCl eliminating the

  17. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  18. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-03-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  19. NaCl responsive taste cells in the mouse fungiform taste buds.

    PubMed

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  20. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  1. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  2. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  3. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  4. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  5. Protection against salt toxicity in Azolla pinnata-Anabaena azollae symbiotic association by using combined-N sources.

    PubMed

    Mishra, A K; Singh, Satya S

    2006-09-01

    Protection from salt stress was observed in the terms of yield (fresh and dry weight, chlorophyll and protein) and nitrogenase activity. Azollapinnata appeared highly sensitive to 40 mM external NaCl stress. Fronds of Azolla unable to grow beyond a concentration of 30 mM NaCl and accordingly death was recorded at 40 mM NaCl on the 6th day of incubation. Yield was inhibited by various levels of NaCl (0, 10, 20 and 30 mM). Addition of combined-N to the growth medium protected the association partially from salt toxicity. Among the N-sources (NO3-, NH4+ and urea) tried, urea mitigated the salt-induced toxicity most efficiently. Reduction in nitrogenase activity was observed when intact Azolla was grown in nutrient medium either supplemented with different levels of NaCl or combined nitrogen. Only NO3- (5 mM) protected the enzymatic activity from salt toxicity while other concentrations of ammonium, nitrate and urea slowed down the salt-induced inhibition of enzyme activity in Azolla-Anabaena association. These results suggested that an optimum protection from salt stress could be obtained by using a combination of combined nitrogen sources. The reason for this protection might be due to the availability of combined nitrogen to the association, nitrogen is only available through the biological nitrogen fixation which is the most sensitive to salt stress.

  6. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    PubMed

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  7. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice.

    PubMed

    Roy, Swarnendu; Chakraborty, Usha

    2018-01-01

    Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na + ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H 2 O 2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na + ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na + ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.

  8. Plasma-membrane H(+)-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L.

    PubMed

    Niu, X; Zhu, J K; Narasimhan, M L; Bressan, R A; Hasegawa, P M

    1993-01-01

    An Atriplex nummularia L. cDNA probe encoding the partial sequence of an isoform of the plasma-membrane H(+)-ATPase was isolated, and used to characterize the NaCl regulation of mRNA accumulation in cultured cells of this halophyte. The peptide (477 amino acids) translated from the open reading frame has the highest sequence homology to the Nicotiana plumbaginifolia plasma-membrane H(+)-ATPase isoform pma4 (greater than 80% identity) and detected a transcript of approximately 3.7 kb on Northern blots of both total and poly(A)+ RNA. The mRNA levels were comparable in unadapted cells, adapted cells (cells adapted to and growing in 342 mM NaCl) and deadapted cells (cells previously adapted to 342 mM NaCl that are now growing without salt). Increased mRNA abundance was detected in deadapted cells within 24 h after exposure to NaCl but not in unadapted cells with similar salt treatments. The NaCl up-regulation of message abundance in deadapted cells was subject to developmental control. Analogous to those reported for glycophytes, the plasma-membrane H(+)-ATPase are encoded by a multigene family in the halophyte.

  9. Elaboration of garlic and salt spice with reduced sodium intake.

    PubMed

    Rodrigues, Jéssica F; Junqueira, Gabriela; Gonçalves, Carla S; Carneiro, João D S; Pinheiro, Ana Carla M; Nunes, Cleiton A

    2014-12-01

    Garlic and salt spice is widely used in Brazilian cookery, but it has a high sodium content; as high sodium intake has been strongly correlated to the incidence of chronic diseases. This study aimed to develop a garlic and salt spice with reduced sodium intake. Sensory evaluation was conducted by applying the spices to cooked rice. First, the optimal concentration of spice added during rice preparation was determined. Subsequently, seasonings (3:1) were prepared containing 0%, 50% and 25% less NaCl using a mixture of salts consisting of KCl and monosodium glutamate; a seasoning with a 0% NaCl reduction was established as a control. Three formulations of rice with different spices were assessed according to sensory testing acceptance, time-intensity and temporal domain of sensations. The proportions of salts used in the garlic and salt spice did not generate a strange or bad taste in the products; instead, the mixtures were less salty. However, the seasonings with lower sodium levels (F2 and F3) were better accepted in comparison to the traditional seasoning (F1). Therefore, a mixture of NaCl, KCl and monosodium glutamate is a viable alternative to develop a garlic and salt spice with reduced sodium intake.

  10. Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Swaminathan, S.; Agarwal, R.

    2010-07-19

    Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30more » mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.« less

  11. Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake.

    PubMed

    Ekinci, Elif I; Thomas, Georgina; Thomas, David; Johnson, Cameron; Macisaac, Richard J; Houlihan, Christine A; Finch, Sue; Panagiotopoulos, Sianna; O'Callaghan, Chris; Jerums, George

    2009-08-01

    OBJECTIVE This prospective randomized double-blind placebo-controlled crossover study examined the effects of sodium chloride (NaCl) supplementation on the antialbuminuric action of telmisartan with or without hydrochlorothiazide (HCT) in hypertensive patients with type 2 diabetes, increased albumin excretion rate (AER), and habitual low dietary salt intake (LDS; <100 mmol sodium/24 h on two of three consecutive occasions) or high dietary salt intake (HDS; >200 mmol sodium/24 h on two of three consecutive occasions). RESEARCH DESIGN AND METHODS Following a washout period, subjects (n = 32) received 40 mg/day telmisartan for 4 weeks followed by 40 mg telmisartan plus 12.5 mg/day HCT for 4 weeks. For the last 2 weeks of each treatment period, patients received either 100 mmol/day NaCl or placebo capsules. After a second washout, the regimen was repeated with supplements in reverse order. AER and ambulatory blood pressure were measured at weeks 0, 4, 8, 14, 18, and 22. RESULTS In LDS, NaCl supplementation reduced the anti-albuminuric effect of telmisartan with or without HCT from 42.3% (placebo) to 9.5% (P = 0.004). By contrast, in HDS, NaCl supplementation did not reduce the AER response to telmisartan with or without HCT (placebo 30.9%, NaCl 28.1%, P = 0.7). Changes in AER were independent of changes in blood pressure. CONCLUSIONS The AER response to telmisartan with or without HCT under habitual low salt intake can be blunted by NaCl supplementation. By contrast, when there is already a suppressed renin angiotensin aldosterone system under habitual high dietary salt intake, the additional NaCl does not alter the AER response.

  12. Effects of Salt Supplementation on the Albuminuric Response to Telmisartan With or Without Hydrochlorothiazide Therapy in Hypertensive Patients With Type 2 Diabetes Are Modulated by Habitual Dietary Salt Intake

    PubMed Central

    Ekinci, Elif I.; Thomas, Georgina; Thomas, David; Johnson, Cameron; MacIsaac, Richard J.; Houlihan, Christine A.; Finch, Sue; Panagiotopoulos, Sianna; O'Callaghan, Chris; Jerums, George

    2009-01-01

    OBJECTIVE This prospective randomized double-blind placebo-controlled crossover study examined the effects of sodium chloride (NaCl) supplementation on the antialbuminuric action of telmisartan with or without hydrochlorothiazide (HCT) in hypertensive patients with type 2 diabetes, increased albumin excretion rate (AER), and habitual low dietary salt intake (LDS; <100 mmol sodium/24 h on two of three consecutive occasions) or high dietary salt intake (HDS; >200 mmol sodium/24 h on two of three consecutive occasions). RESEARCH DESIGN AND METHODS Following a washout period, subjects (n = 32) received 40 mg/day telmisartan for 4 weeks followed by 40 mg telmisartan plus 12.5 mg/day HCT for 4 weeks. For the last 2 weeks of each treatment period, patients received either 100 mmol/day NaCl or placebo capsules. After a second washout, the regimen was repeated with supplements in reverse order. AER and ambulatory blood pressure were measured at weeks 0, 4, 8, 14, 18, and 22. RESULTS In LDS, NaCl supplementation reduced the anti-albuminuric effect of telmisartan with or without HCT from 42.3% (placebo) to 9.5% (P = 0.004). By contrast, in HDS, NaCl supplementation did not reduce the AER response to telmisartan with or without HCT (placebo 30.9%, NaCl 28.1%, P = 0.7). Changes in AER were independent of changes in blood pressure. CONCLUSIONS The AER response to telmisartan with or without HCT under habitual low salt intake can be blunted by NaCl supplementation. By contrast, when there is already a suppressed renin angiotensin aldosterone system under habitual high dietary salt intake, the additional NaCl does not alter the AER response. PMID:19549737

  13. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  14. Quality monitoring of salt produced in Indonesia through seawater evaporation on HDPE geomembrane lined ponds

    NASA Astrophysics Data System (ADS)

    Jumaeri; Sulistyaningsih, T.; Alighiri, D.

    2018-03-01

    Salt is one of the primary ingredients that humans always need for various purposes, both for consumption and industry. The need for high-quality salt continues to increase, as long as industry growth. It must improve product quality through the development of salt production process technology. In this research, the quality monitoring of salt produced in Indonesia by evaporation of seawater on ponds lined using high-density polyethylene (HDPE) geomembrane has been studied. The manufacturing of salt carried out through the gradual precipitation principle on prepared ponds. HDPE geomembrane is used to coat evaporation ponds with viscosity 12-22°Be and crystallization ponds with a viscosity of 23°Be. The monitoring of the product is carried out in the particular periods during the salt production period. The result of control shows that the quality of salt produced in HDPE geomembrane coated salt ponds has an average NaCl content of 95.75%, so it has fulfilled with Indonesia National Standard (SNI), that is NaCl> 94.70%. The production of salt with HDPE geomembrane can improve the quality of salt product from NaCl 85.4% (conventional system) to 95.75%.

  15. Highly Corrosion Resistant and Sandwich-like Si3N4/Cr-CrNx/Si3N4 Coatings Used for Solar Selective Absorbing Applications.

    PubMed

    Zhang, Ke; Du, Miao; Haoa, Lei; Meng, Jianping; Wang, Jining; Mi, Jing; Liu, Xiaopeng

    2016-12-14

    Highly corrosion resistant, layer-by-layer nanostructured Si 3 N 4 /Cr-CrN x /Si 3 N 4 coatings were deposited on aluminum substrate by DC/RF magnetron sputtering. Corrosion resistance experiments were performed in 0.5, 1.0, 3.0, and 5.0 wt % NaCl salt spray at 35 °C for 168 h. Properties of the coatings were comprehensively investigated in terms of optical property, surface morphology, microstructure, elemental valence state, element distribution, and potentiodynamic polarization. UV-vis-near-IR spectrophotometer and FTIR measurements show that the change process in optical properties of Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coatings can be divided into three stages: a rapid active degradation stage, a steady passivation stage, and a transpassivation degradation stage. With the increase in the concentration of NaCl salt spray, solar absorptance and thermal emittance experienced a slight degradation. SEM images reveal that there is an increase in surface defects, such as microcracks and holes and -cracks. XRD and TEM measurements indicate that the phase structure changed partially and the content of CrO x and Al 2 O 3 has increased. Auger electron spectroscopy shows that the elements of Cr, N, and O have undergone a minor diffusion. Electrochemical polarization curves show that the as-deposited Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coatings have excellent corrosion resistance of 3633.858 kΩ, while after corroding in 5.0 wt % NaCl salt spray for 168 h the corrosion resistance dropped to 13.759 kΩ. However, these coatings still have an outstanding performance of high solar absorptance of 0.924 and low thermal emittance of 0.090 after corroding in 3.0 wt % NaCl salt spray for 120 h. Thus, the Si 3 N 4 /Cr-CrN x /Si 3 N 4 /Al coating is a good choice for solar absorber coatings applied in the high-saline environment.

  16. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    PubMed

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.

  17. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  18. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.

    PubMed

    Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry

    2016-01-27

    To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.

  19. Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl2 Simulated Carbon Storage Brines.

    PubMed

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2017-06-20

    Carbon capture, utilization, and storage (CCUS), a climate change mitigation strategy, along with unconventional oil and gas extraction, generates enormous volumes of produced water containing high salt concentrations and a litany of organic compounds. Understanding the aqueous solubility of organic compounds related to these operations is important for water treatment and reuse alternatives, as well as risk assessment purposes. The well-established Setschenow equation can be used to determine the effect of salts on aqueous solubility. However, there is a lack of reported Setschenow constants, especially for polar organic compounds. In this study, the Setschenow constants for selected hydrophilic organic compounds were experimentally determined, and linear free energy models for predicting the Setschenow constant of organic chemicals in concentrated brines were developed. Solid phase microextraction was employed to measure the salting-out behavior of six selected hydrophilic compounds up to 5 M NaCl and 2 M CaCl 2 and in Na-Ca-Cl brines. All compounds, which include phenol, p-cresol, hydroquinone, pyrrole, hexanoic acid, and 9-hydroxyfluorene, exhibited log-linear behavior up to these concentrations, meaning Setschenow constants previously measured at low salt concentrations can be extrapolated up to high salt concentrations for hydrophilic compounds. Setschenow constants measured in NaCl and CaCl 2 brines are additive for the compounds measured here; meaning Setschenow constants measured in single salt solutions can be used in multiple salt solutions. The hydrophilic compounds in this study were selected to elucidate differences in salting-out behavior based on their chemical structure. Using data from this study, as well as literature data, linear free energy relationships (LFERs) for prediction of NaCl, CaCl 2 , LiCl, and NaBr Setschenow constants were developed and validated. Two LFERs were improved. One LFER uses the Abraham solvation parameters, which include

  20. A stop-restart solid propellant study with salt quench

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.

    1976-01-01

    Experiments were conducted to gain insight into the unsatisfactory performance of the salt quench system of solid propellants in earlier studies. Nine open-air salt spray tests were conducted and high-speed cinematographic coverage was obtained of the events. It is shown that the salt spray by the detonator is generally a two-step process yielding two different fractions. The first fraction consists of finely powdered salt and moves practically unidirectionally at a high velocity (thousand of feet per second) while the second fraction consists of coarse particles and moves randomly at a low velocity (a few feet per second). Further investigation is required to verify the speculation that a lower quench charge ratio (weight of salt/propellant burning area) than previously employed may lead to an efficient quench

  1. Shift in sodium chloride sources in past 10 years of salt reduction campaign in Japan.

    PubMed

    Shimbo, S; Hatai, I; Saito, T; Yokota, M; Imai, Y; Watanabe, T; Moon, C S; Zhang, Z W; Ikeda, M

    1996-11-01

    Twenty four-hr total food duplicate samples were collected from nonsmoking house-wives (aged mostly 30 to 60 years) twice at a 10-year interval in winter seasons, once in around 1980 and then in around 1990 in 11 prefectures in Japan. In practice, 342 and 472 samples were obtained in the 1980 and 1990 studies, respectively. Sodium chloride (NaCl) intake via each food item was estimated from the weight of the item in the duplicate. The comparison of 1990 results with 1980 results showed that the total NaCl intake (i.e., NaCl intake via all food items) decreased after a 10-year campaign to lower salt intake. The NaCl/energy ratio however stayed essentially unchanged. Whereas NaCl intake via pickles decreased remarkably and that via miso paste [a fermentation product of soy bean, rice (or wheat) and salt] slightly, the decreases were counteracted by a substantial increase in NaCl intake via soy bean sauce. Meaning of this unexpected counteraction was discussed in relation to the difficulties in the campaign to lower salt intake.

  2. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress.

    PubMed

    Sripinyowanich, Siriporn; Chamnanmanoontham, Nontalee; Udomchalothorn, Thanikarn; Maneeprasopsuk, Somporn; Santawee, Panudda; Buaboocha, Teerapong; Qu, Li-Jia; Gu, Hongya; Chadchawan, Supachitra

    2013-12-01

    The rice (Oryza sativa L.) nucleolin gene, OsNUC1, transcripts were expressed in rice leaves, flowers, seeds and roots but differentially expressed within and between two pairs of salt-sensitive and salt-resistant rice lines when subjected to salt stress. Salt-resistant lines exhibited higher OsNUC1 transcript expression levels than salt-sensitive lines during 0.5% (w/v) NaCl salt stress for 6d. Two sizes of OsNUC1 full-length cDNA were found in the rice genome database and northern blot analysis confirmed their existence in rice tissues. The longer transcript (OsNUC1-L) putatively encodes for a protein with a serine rich N-terminal, RNA recognition motifs in the central domain and a glycine- and arginine-rich repeat in the C-terminal domain, while the shorter one (OsNUC1-S) putatively encodes for the similar protein without the N-terminus. Without salt stress, OsNUC1-L expressing Arabidopsis thaliana Atnuc1-L1 plants displayed a substantial but incomplete revertant phenotype, whereas OsNUC1-S expression only induced a weak effect. However, under 0.5% (w/v) NaCl salt stress they displayed a higher relative growth rate, longer root length and a lower H2O2 level than the wild type plants, suggesting a higher salt resistance. Moreover, they displayed elevated AtSOS1 and AtP5CS1 transcript levels. We propose that OsNUC1-S plays an important role in salt resistance during salt stress, a new role for nucleolin in plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress.

    PubMed

    Siddiqui, Manzer H; Mohammad, Firoz; Khan, M Masrooor A; Al-Whaibi, Mohamed H

    2012-01-01

    In the present study, N and S assimilation, antioxidant enzymes activity, and yield were studied in N and S-treated plants of Brassica juncea (L.) Czern. & Coss. (cvs. Chuutki and Radha) under salt stress. The treatments were given as follows: (1) NaCl(90) mM+N(0)S(0) mg kg(-1) sand (control), (2) NaCl(90) mM+N(60)S(0) mg kg(-1) sand, (3) NaCl(90) mM+N(60)S(20) mg kg(-1) sand, (4) NaCl(90) mM+N(60)S(40) mg kg(-1) sand, and (5) NaCl(90) mM+N(60)S(60) mg kg(-1) sand. The combined application of N (60 mg kg(-1) sand) and S (40 mg kg(-1) sand) proved beneficial in alleviating the adverse effect of salt stress on growth attributes (shoot length plant(-1), fresh weight plant(-1), dry weight plant(-1), and area leaf(-1)), physio-biochemical parameters (carbonic anhydrase activity, total chlorophyll, adenosine triphosphate-sulphurylase activity, leaf N, K and Na content, K/Na ratio, activity of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase, and content of glutathione and ascorbate), and yield attributes (pods plant(-1), seeds pod(-1), and seed yield plant(-1)). Therefore, it is concluded that combined application of N and S induced the physiological and biochemical mechanisms of Brassica. The stimulation of antioxidant enzymes activity and its synergy with N and S assimilation may be one of the important mechanisms that help the plants to tolerate the salinity stress and resulted in an improved yield.

  4. Assessment of soil and wash water quality beneath salt-spreader racks.

    DOT National Transportation Integrated Search

    2008-01-01

    The Virginia Department of Transportation's (VDOT) winter maintenance program hinges primarily on the use of granular NaCl for deicing. On average, VDOT applies more than 300,000 tons of NaCl each winter season. The majority of this salt is spread by...

  5. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    PubMed

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers

    PubMed Central

    Kriegel, Franziska; Ermann, Niklas; Forbes, Ruaridh; Dulin, David; Dekker, Nynke H.

    2017-01-01

    Abstract The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt. PMID:28460037

  8. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    PubMed

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  10. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly differentmore » from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.« less

  11. Cadmium hampers salt tolerance of Sesuvium portulacastrum.

    PubMed

    Wali, Mariem; Martos, Soledad; Pérez-Martín, Laura; Abdelly, Chedly; Ghnaya, Tahar; Poschenrieder, Charlotte; Gunsé, Benet

    2017-06-01

    It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl 2 . Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na + concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H + -ATPase 1) and SOS1 (plasma membrane Na + transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na + concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance.

    PubMed

    Navarro-Torre, S; Barcia-Piedras, J M; Mateos-Naranjo, E; Redondo-Gómez, S; Camacho, M; Caviedes, M A; Pajuelo, E; Rodríguez-Llorente, I D

    2017-03-01

    There is an increasing interest to use halophytes for revegetation of salt affected ecosystems, as well as in understanding their mechanisms of salt tolerance. We hypothesized that bacteria from the phyllosphere of these plants might play a key role in its high tolerance to excessive salinity. Eight endophytic bacteria belonging to Bacillus and closely related genera were isolated from phyllosphere of the halophyte Arthrocnemum macrostachyum growing in salty agricultural soils. The presence of plant-growth promoting (PGP) properties, enzymatic activities and tolerance towards NaCl was determined. Effects of inoculation on seeds germination and adult plant growth under experimental NaCl treatments (0, 510 and 1030 mM NaCl) were studied. Inoculation with a consortium including the best performing bacteria improved considerably the kinetics of germination and the final germination percentage of A. macrostachyum seeds. At high NaCl concentrations (1030 mM), inoculation of plants mitigated the effects of high salinity on plant growth and physiological performance and, in addition, this consortium appears to have increased the potential of A. macrostachyum to accumulate Na + in its shoots, thus improving sodium phytoextraction capacity. Bacteria isolated from A. macrostachyum phyllosphere seem to play an important role in plant salt tolerance under stressing salt concentrations. The combined use of A. macrostachyum and its microbiome can be an adequate tool to enhance plant adaptation and sodium phytoextraction during restoration of salt degraded soils. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters.

    PubMed

    Hintz, William D; Relyea, Rick A

    2017-04-01

    The use of road deicing salts in regions that experience cold winters is increasing the salinity of freshwater ecosystems, which threatens freshwater resources. Yet, the impacts of environmentally relevant road salt concentrations on freshwater organisms are not well understood, particularly in stream ecosystems where salinization is most severe. We tested the impacts of deicing salts-sodium chloride (NaCl), magnesium chloride (MgCl 2 ), and calcium chloride (CaCl 2 )-on the growth and development of newly hatched rainbow trout (Oncorhynchus mykiss). We exposed rainbow trout to a wide range of environmentally relevant chloride concentrations (25, 230, 860, 1500, and 3000 mg Cl -  L -1 ) over an ecologically relevant time period (25 d). We found that the deicing salts studied had distinct effects. MgCl 2 did not affect rainbow trout growth at any concentration. NaCl had no effects at the lowest three concentrations, but rainbow trout length was reduced by 9% and mass by 27% at 3000 mg Cl -  L -1 . CaCl 2 affected rainbow trout growth at 860 mg Cl -  L -1 (5% reduced length; 16% reduced mass) and these effects became larger at higher concentrations (11% reduced length; 31% reduced mass). None of the deicing salts affected rainbow trout development. At sub-lethal and environmentally relevant concentrations, our results do not support the paradigm that MgCl 2 is the most toxic deicing salt to fish, perhaps due to hydration effects on the Mg 2+ cation. Our results do suggest different pathways for lethal and sub-lethal effects of road salts. Scaled to the population level, the reduced growth caused by NaCl and CaCl 2 at critical early-life stages has the potential to negatively affect salmonid recruitment and population dynamics. Our findings have implications for environmental policy and management strategies that aim to reduce the impacts of salinization on freshwater organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing.

    PubMed

    Inguglia, Elena S; Zhang, Zhihang; Burgess, Catherine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-02-01

    The present study investigated the effect of geometric parameters of the ultrasound instrument during meat salting in order to enhance salt diffusion and salt distribution in pork meat on a lab scale. The effects of probe size (∅2.5 and 1.3cm) and of different distances between the transducer and the meat sample (0.3, 0.5, and 0.8cm) on NaCl diffusion were investigated. Changes in the moisture content and NaCl gain were used to evaluate salt distribution and diffusion in the samples, parallel and perpendicular to ultrasound propagation direction. Results showed that 0.3cm was the most efficient distance between the probe and the sample to ensure a higher salt diffusion rate. A distance of 0.5cm was however considered as a trade-off distance to ensure salt diffusion and maintenance of meat quality parameters. The enhancement of salt diffusion by ultrasound was observed to decrease with increased horizontal distance from the probe. This study is of valuable importance for meat processing industries willing to apply new technologies on a larger scale and with defined operational standards. The data suggest that the geometric parameters of ultrasound systems can have strong influence on the efficiency of ultrasonic enhancement of NaCl uptake in meat and can be a crucial element in determining salt uptake during meat processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles.

    PubMed

    Alharby, Hesham F; Metwali, Ehab M R; Fuller, Michael P; Aldhebiani, Amal Y

    2016-11-01

    Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L -1 ) and ZnO-NPs (0, 15 and 30 mg L -1 ). Treatments with NaCl at both 3 and 6 g L -1 suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS-PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.

  16. Hazard identification for human and ecological effects of sodium chloride road salt.

    DOT National Transportation Integrated Search

    2007-07-01

    The New Hampshire Department of Environmental Services (DES) requested an evaluation of : the human and ecological risks associated with the application of sodium chloride (NaCl) road : salt to roadways. NaCl is the major de-icing agent used in NH to...

  17. Salt reduction in vegetable fermentation: reality or desire?

    PubMed

    Bautista-Gallego, J; Rantsiou, K; Garrido-Fernández, A; Cocolin, L; Arroyo-López, F N

    2013-08-01

    NaCl is a widely used chemical in food processing which affects sensory characteristics and safety; in fact, its presence is frequently essential for the proper preservation of the products. Because the intake of high contents of sodium is linked to adverse effects on human health, consumers demand foods with low-sodium content. A 1st step to reduce the use of salt would imply the proper application of this compound, reducing its levels to those technologically necessary. In addition, different chloride salts have been evaluated as replacers for NaCl, but KCl, CaCl2 , and ZnCl2 show the most promising perspectives of use. However, prior to any food reformulation, there is a need for exhaustive research before its application at industrial level. Salt reduction may lead to an increased risk in the survival/ growth of pathogens and may also alter food flavor and cause economic losses. This review deals with the technological, microbiological, sensorial, and health aspects of the potential low-salt and salt-substituted vegetable products and how this important segment of the food industry is responding to consumer demand. © 2013 Institute of Food Technologists®

  18. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    PubMed Central

    Quinet, Muriel; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C.; Lutts, Stanley

    2010-01-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice. PMID:20472577

  19. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    PubMed

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  20. Boron accumulation by Lemna minor L. under salt stress.

    PubMed

    Liu, Chunguang; Gu, Wancong; Dai, Zheng; Li, Jia; Jiang, Hongru; Zhang, Qian

    2018-06-12

    Excess boron (B) is toxic to aquatic organisms and humans. Boron is often present in water with high salinity. To evaluate the potential of duckweed (Lemna minor L.) for removing B from water under salt stress, we cultured duckweed in water with 2 mg/L of B and sodium chloride (NaCl) concentrations ranging from 0 to 200 mM for 4 days. The results show that with increasing salinity, the capacity of L. minor to accumulate B initially decreased and then increased. L. minor used different mechanisms to accumulate boron at lower and higher levels of salt stress. The growth and chlorophyll synthesis of L. minor were significantly inhibited when the concentration of NaCl reached 100 mM. Our results suggest that L. minor is suitable for the accumulation of B when NaCl salinity is below 100 mM.

  1. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  2. Method to synthesize and produce thin films by spray pyrolysis

    DOEpatents

    Squillante, Michael R.

    1982-06-22

    Forming a film by spraying onto a heated substrate an atomized solution containing the appropriate salt of a constituent element of the film and a highly soluble (i.e., greater than 1 M) organic acid in sufficient amount to reduce the oxidation state of at least one solute element of the spray solution after contacting the heated substrate.

  3. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production.

    PubMed

    Hounslow, Emily; Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman; Gilmour, D James; Wright, Phillip C

    2016-11-01

    Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. Salt increase can act as a lipid trigger for C. reinhardtii.

  4. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Zhou, A.; Baidoo, E.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed.more » Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.« less

  5. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers.

    PubMed

    Kriegel, Franziska; Ermann, Niklas; Forbes, Ruaridh; Dulin, David; Dekker, Nynke H; Lipfert, Jan

    2017-06-02

    The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  7. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  8. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.

    The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake

  9. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets.

    PubMed

    Huang, Zengrong; Zhao, Long; Chen, Dandan; Liang, Mingxiang; Liu, Zhaopu; Shao, Hongbo; Long, Xiaohua

    2013-01-01

    Proline accumulation is an important mechanism for osmotic regulation under salt stress. In this study, we evaluated proline accumulation profiles in roots, stems and leaves of Jerusalem artichoke (Helianthus tuberosus L.) plantlets under NaCl stress. We also examined HtP5CS, HtOAT and HtPDH enzyme activities and gene expression patterns of putative HtP5CS1, HtP5CS2, HtOAT, HtPDH1, and HtPDH2 genes. The objective of our study was to characterize the proline regulation mechanisms of Jerusalem artichoke, a moderately salt tolerant species, under NaCl stress. Jerusalem artichoke plantlets were observed to accumulate proline in roots, stems and leaves during salt stress. HtP5CS enzyme activities were increased under NaCl stress, while HtOAT and HtPDH activities generally repressed. Transcript levels of HtP5CS2 increased while transcript levels of HtOAT, HtPDH1 and HtPDH2 generally decreased in response to NaCl stress. Our results supports that for Jerusalem artichoke, proline synthesis under salt stress is mainly through the Glu pathway, and HtP5CS2 is predominant in this process while HtOAT plays a less important role. Both HtPDH genes may function in proline degradation.

  10. The area postrema does not modulate the long-term salt sensitivity of arterial pressure.

    PubMed

    Collister, J P; Osborn, J W

    1998-10-01

    The hindbrain circumventricular organ, the area postrema (AP), receives multiple signals linked to body fluid homeostasis. In addition to baroreceptor input, AP cells contain receptors for ANG II, vasopressin, and atrial natriuretic peptide. Hence, it has been proposed that the AP is critical in long-term adjustments in sympathetic outflow in response to changes in dietary NaCl. The present study was designed to test the hypothesis that long-term control of arterial pressure over a range of dietary NaCl requires an intact AP. Male Sprague-Dawley rats were randomly selected for lesion of the AP (APx) or sham lesion. Three months later, rats were instrumented with radiotelemetry transmitters for continuous monitoring of mean arterial pressure (MAP) and heart rate and were placed in individual metabolic cages. Rats were given 1 wk postoperative recovery. The dietary salt protocol consisted of a 7-day period of 1.0% NaCl (control), 14 days of 4.0% NaCl (high), 7 days of 1.0% NaCl, and finally 14 days of 0.1% NaCl (low). The results are reported as the average arterial pressure observed on the last day of the given dietary salt period: APx (n = 7) 114 +/- 2 (1.0%), 110 +/- 3 (4.0%), 110 +/- 3 (1.0%), and 114 +/- 4 (0.1%) mmHg; sham (n = 6) 115 +/- 2 (1.0%), 114 +/- 3 (4.0%), 111 +/- 3 (1. 0%), and 113 +/- 2 (0.1%) mmHg. Neither group of rats demonstrated significant changes in MAP throughout the entire dietary salt protocol. Furthermore, no significant differences in MAP were detected between groups throughout the protocol. All lesions were histologically verified. These results suggest that the area postrema plays no role in long-term control of arterial pressure during chronic changes in dietary salt.

  11. Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    PubMed Central

    Ishiwatari, Yutaka; Theodorides, Maria L.; Bachmanov, Alexander A.

    2011-01-01

    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies. PMID:21743094

  12. Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties.

    PubMed

    Golowczyc, Marina A; Silva, Joana; Teixeira, Paula; De Antoni, Graciela L; Abraham, Analía G

    2011-01-05

    The injuries caused by spray drying (SD) of three potential probiotic lactobacilli isolated from kefir grains and the impact on some probiotic properties, were evaluated. Results demonstrated that Lactobacillus plantarum 83114 and L. kefir 8321 showed a slight reduction of viability (0.11 and 0.29 log CFU/ml respectively) after SD process, and L. kefir 8348 was found to be more sensitive to the process with a reduction in viability of 0.70 log CFU/ml. Neither membrane damage, evaluated by increased sensitivity to NaCl, lysozyme, bile salt and penicillin G, nor changes in acidifying activity in MRS and milk by lactobacilli were detected after SD. L. plantarum 83114 and L. kefir 8321 after SD did not lose their capacity to adhere to intestinal cells. Nevertheless, L. kefir 8348 showed a significant loss of adhesion capacity after SD. In addition, rehydrated spray-dried L. kefir 8321 retained the ability to protect against Salmonella invasion of intestinal cells. This effect was observed when L. kefir is co-incubated with Salmonella before invasion assay. This work shows that the membrane integrity evaluated by indirect methods and some probiotic properties of lactobacilli isolated from kefir did not change significantly after SD, and these powders could be used in functional foods applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

    PubMed

    Vallon, Volker; Schroth, Jana; Lang, Florian; Kuhl, Dietmar; Uchida, Shinichi

    2009-09-01

    The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.

  14. Effect of salt intake and potassium supplementation on urinary renalase and serum dopamine levels in Chinese adults.

    PubMed

    Wang, Yang; Wang, Dan; Chu, Chao; Mu, Jian-Jun; Wang, Man; Liu, Fu-Qiang; Xie, Bing-Qing; Yang, Fan; Dong, Zhen-Zhen; Yuan, Zu-Yi

    2015-01-01

    The aim of our study was to assess the effects of altered salt and potassium intake on urinary renalase and serum dopamine levels in humans. Forty-two subjects (28–65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for an additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). Urinary renalase excretions were significantly higher during the high-salt diet intervention than during the low-salt diet. During high-potassium intake, urinary renalase excretions were not significantly different from the high-salt diet, whereas they were significantly higher than the low-salt levels. Serum dopamine levels exhibited similar trends across the interventions. Additionally, a significant positive relationship was observed between the urine renalase and serum dopamine among the different dietary interventions. Also, 24-hour urinary sodium excretion positively correlated with urine renalase and serum dopamine in the whole population. The present study indicates that dietary salt intake and potassium supplementation increase urinary renalase and serum dopamine levels in Chinese subjects. © 2015 S. Karger AG, Basel

  15. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  16. Aircraft Monitoring of Sea-Spray and Changes in Hurricane Intensity

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.

    2010-12-01

    Sea spray above the ocean surface in hurricanes enhances the transfer of sensible heat to the atmospheric boundary layer. Sea spray becomes of greater significance as the intensity and thereby the wind speed of the hurricane increases. A fuller knowledge of the distribution of sea spray over the ocean may help in understanding changes in intensity of the most dangerous hurricanes. An instrument to measure the salt content of rain has been developed and installed on one of NOAA’s P3 hurricane research aircraft. The instrument detects changes in the conductivity of a thin film of water on the surface of the instrument. Calibration of the instrument has been completed at the University of Texas A&M wind tunnel facility. An earlier version of the sensor was flown into Hurricane Paloma (2008) at an elevation of 4 km. Changes in salt concentration were detected. A sturdier version of the instrument was flown into winter storms off the coast of Newfoundland in February of 2010. For the most part, the instrument did not function because the precipitation was a solid. But the one time the on-board meteorologist noted there was liquid precipitation, the instrument did function. Rain samples collected at ground level from eleven land falling hurricanes ranged from 5 ppm to 50 ppm (Lawrence et al, 2006 Fall AGU abstract, session A33). Hurricane Katrina showed the highest concentration of salt at 50 ppm. Sea salt measurements in rain from Hurricane Earl were underway starting on August 28 with continued plans through September 3. Salinity measurements by the instrument will be compared to wind velocities measured by the on-board radar. Because sea spray increases heat-transfer from the ocean to the hurricane atmosphere, especially in category 3 to 5 hurricanes, these studies may help improve models that predict changes in hurricane intensity.

  17. Assessing sea wave and spray effects on Marine Boundary Layer structure

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George

    2017-04-01

    Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.

  18. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress.

    PubMed

    Arias-Moreno, Diana Marcela; Jiménez-Bremont, Juan Francisco; Maruri-López, Israel; Delgado-Sánchez, Pablo

    2017-08-17

    In arid and semiarid regions, low precipitation rates lead to soil salinity problems, which may limit plant establishment, growth, and survival. Herein, we investigated the NaCl stress effect on chlorophyll fluorescence, photosynthetic-pigments, movement and chloroplasts ultrastructure in chlorenchyma cells of Opuntia streptacantha cladodes. Cladodes segments were exposed to salt stress at 0, 100, 200, and 300 mM NaCl for 8, 16, and 24 h. The results showed that salt stress reduced chlorophyll content, F v /F m , ΦPSII, and qP values. Under the highest salt stress treatments, the chloroplasts were densely clumped toward the cell center and thylakoid membranes were notably affected. We analyzed the effect of exogenous catalase in salt-stressed cladode segments during 8, 16, and 24 h. The catalase application to salt-stressed cladodes counteracted the NaCl adverse effects, increasing the chlorophyll fluorescence parameters, photosynthetic-pigments, and avoided chloroplast clustering. Our results indicate that salt stress triggered the chloroplast clumping and affected the photosynthesis in O. streptacantha chlorenchyma cells. The exogenous catalase reverted the H 2 O 2 accumulation and clustering of chloroplast, which led to an improvement of the photosynthetic efficiency. These data suggest that H 2 O 2 detoxification by catalase is important to protect the chloroplast, thus conserving the photosynthetic activity in O. streptacantha under stress.

  19. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    NASA Astrophysics Data System (ADS)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  20. Low-Salt Intake during Mating or Gestation in Rats Is Associated with Low Birth and Survival Rates of Babies.

    PubMed

    Chou, Ranna; Hara, Anna; Du, DongDong; Shimizu, Namiko; Sakuyama, Hiroe; Uehara, Yoshio

    2014-01-01

    We investigated the influence of maternal salt restriction during mating or gestation on birth rate and offspring growth in Dahl salt-sensitive rats (DS). DS were divided into 5 groups: DS fed a low-salt (0.3% NaCl, w/w) (DS-low) or high-salt (4% NaCl, w/w) diet (DS-high) during mating and DS-high or DS-low during gestation, and DS fed regular chow (0.75% NaCl, w/w) (DS-regular) throughout mating and gestation. During the unspecified periods, the rats were given regular chow. DS-low during mating delivered fewer infants than high-salt mothers (P < 0.05). The birth rate on regular chow was 87%. Six out of 11 DS-low rats during pregnancy produced pups while the rats fed a high-salt diet all delivered pups (P < 0.025). The pup survival rate was 67% for high-salt mothers during mating and 54% for mothers on a low-salt diet. The pup survival rate was 95% for mothers on a high-salt diet during pregnancy and 64% for mothers on a low-salt diet (P < 0.0001). Seven out of 8 DS-regular rats during mating delivered 59 neonates. However, 66% of the neonates survived. A low-salt diet during mating or pregnancy lowers birth rate and the neonates from low-salt mothers during pregnancy were more likely to die than those from high-salt mothers.

  1. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    PubMed

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl.

    PubMed

    Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José

    2015-07-02

    The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.

  3. Salt Appetite: Interaction of Forebrain Angiotensinergic and Hindbrain Serotonergic Mechanisms

    NASA Technical Reports Server (NTRS)

    Menani, Jose Vanderlei; Colombari, Debora S. A.; Beltz, Terry G.; Thunhorst, Robert L.; Johnson, Alan Kim

    1998-01-01

    Methysergide injected into the lateral parabrachial nucleus (LPBN) increases the salt appetite of rats depleted of sodium by furosemide (FURO). The present study investigated the effects of angiotensin 2 (ANG 2) receptor blockade in the subfornical organ (SFO) on this increased salt appetite. The intake of 0.3 M NaCl and water was induced by combined administration of the diuretic, FURO, and the angiotensin-convertina, enzyme inhibitor, captopril (CAP). Pretreatment of the SFO with the anciotensin Type 1 (AT,) receptor antagonist, losartan (1 microgram/200 nl), reduced water intake but not 0.3 M NaCl intake induced by subcutaneous FURO+ CAP. Methysergide (4 microgram/200 nl) injected bilaterally into the LPBN increased 0.3 M NaCl intake after FURO + CAP. Losartan injected into the SFO prevented additional 0.3 M NaCl intake caused by methysergide injections into the LPBN. These results indicate that AT, receptors located in the SFO may have a role in mediatina the intake of sodium and water induced by sodium depletion. They also suggest that after treatment with FURO + CAP an LPBN-associated scrotonergic mechanism inhibits increased sodium intake.

  4. Effective salt criteria in callus-cultured tomato genotypes.

    PubMed

    Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz

    2010-01-01

    Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.

  5. Effects of Partial Substitutions of NaCl with KCl, CaSO4 and MgSO4 on the Quality and Sensorial Properties of Pork Patties.

    PubMed

    Davaatseren, Munkhtugs; Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi; Choi, Mi-Jung

    2014-01-01

    This study investigated the effects of NaCl replacers (KCl, CaSO4, and MgSO4) on the quality and sensorial properties of pork patty. In the characteristics of spray-dried salt particles, KCl showed the largest particle size with low viscosity in solution. Meanwhile CaSO4 treatment resulted in the smallest particle size and the highest viscosity (p<0.05). In comparison of the qualities of pork patties manufactured by varying level of Na replacers, MgSO4 treatment exhibited low cooking loss comparing to control (p<0.05). Textural properties of KCl and MgSO4 treatments showed similar pattern, i.e., low level of the replacers caused harder and less adhesive texture than those of control (p<0.05), whereas the hardness of these products was not different with control when the replacers were added more than 1.0%. The addition of CaSO4 also manifested harder and less adhesive than control (p<0.05), but the textural properties of CaSO4 treatment was not affected by level of Ca-salt. Eventually, sensorial properties indicated that KCl and CaSO4 influenced negative effects on pork patties. In contrast, MgSO4 showed better sensorial properties in juiciness intensity, tenderness intensity as well as overall acceptability than control, reflecting that MgSO4 was an effective Na-replacer in meat product formulation.

  6. Effect of salts on the water sorption kinetics of dried pasta.

    PubMed

    Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    The water sorption kinetics of dried pasta were measured in the 20-90 °C range in 1.83 mol/L of NaCl and at 80 °C in 1.83 mol/L of LiCl, KCl, NaBr and NaI solutions in order to elucidate the role of salt in the kinetics. At the temperatures higher than 70.8 °C, the change in the enthalpy of sorption, ΔH, in the 1.83 mol/L NaCl solution was 33.1 kJ/mol, which was greater than the ΔH value in water, and the activation energy for the sorption, E, in the salt solution was 25.6 kJ/mol, which was slightly lower than the E value in water. The Hofmeister series of ions was an index for their effect on the equilibrium amount of the sorbed solution of pasta. The apparent diffusion coefficient of water into pasta was not correlated with the crystal radius of the salts, but was with the Stokes radius of the hydrated ions. Equations were formulated to predict the amount of sorbed solution under any condition of temperature and NaCl concentration.

  7. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    PubMed

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-04-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  9. Effects of fibre type and structure of longissimus lumborum (Ll), biceps femoris (Bf) and semimembranosus (Sm) deer muscles salting with different Nacl addition on proteolysis index and texture of dry-cured meats.

    PubMed

    Żochowska-Kujawska, J

    2016-11-01

    The aim of the present study was to describe the effect of fibre type and structure as well as NaCl level on the proteolysis index and texture parameters observed in dry-cured meats produced from individual deer muscles. The biceps femoris, semimembranosus and longissimus lumborum muscles were cut from deer main elements, shaped into blocks by trimming off the edges, cured by adding 4, 6 and 8% of salt (w/w) and dried in a ripening chamber for 29days. The results indicated that deer dry-cured muscles with higher percentage of red fibres (type I) showed higher texture parameters, proteolysis index as well as lower moisture losses than muscles with higher amount of white fibres (type IIB). Dry-cured deer muscles with lower NaCl content showed higher values of proteolysis index and lower hardness, cohesiveness, springiness, and chewiness, as well as lower changes in structure elements. Copyright © 2016. Published by Elsevier Ltd.

  10. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.

    PubMed

    Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim

    2010-12-08

    This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.

  11. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress.

    PubMed

    Asthana, Ravi K; Nigam, Subhasha; Maurya, Archana; Kayastha, Arvind M; Singh, Sureshwar P

    2008-05-01

    Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.

  12. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    PubMed

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  13. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  14. Sea salt irradiation experiments relevant to the surface conditions of ocean worlds such as Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Hand, Kevin P.; Carlson, Robert W.

    2015-11-01

    We have conducted a set of laboratory experiments to measure changes in NaCl, KCl, MgCl2, and mixtures of these salts, as a function of exposure to the temperature, pressure, and radiation conditions relevant to ice covered ocean worlds in our solar system. Reagent grade salts were placed onto a diffuse aluminum target at the end of a cryostat coldfinger and loaded into an ultra-high vacuum chamber. The samples were then cooled to 100 K and the chamber pumped down to ~10-8 Torr, achieving conditions comparable to the surface of several moons of the outer solar system. Samples were subsequently irradiated with 10 keV electrons at an average current of 1 µA.We examined a range of conditions for NaCl including pure salts grains (~300 µm diameter), salt grains with water ice deposited on top, and evaporites. For the evaporites saturated salt water was loaded onto the cryostat target, the chamber closed, and then slowly pumped down to remove the water, leaving behind a salt evaporate for irradiation.The electron bombardment resulted in the trapping of electrons in halogen vacancies, yielding the the F- and M- color centers. After irraditiation we observed yellow-brown discoloration in NaCl. KCl was observed to turn a distinct violet. In NaCl these centers have strong absorptions at 450 nm and 720 nm, respectively, providing a highly diagnostic signature of otherwise transparent alkali halides, making it possible to remotely characterize and quantify the composition and salinity of ocean worlds.

  15. Effects of Salts on the Halophilic Alga Dunaliella viridis1

    PubMed Central

    Johnson, Mary K.; Johnson, Emmett J.; MacElroy, Robert D.; Speer, Henry L.; Bruff, Barbara S.

    1968-01-01

    Determinations of the salt sensitivity of enzymes extracted from the halophilic alga Dunaliella viridis revealed that pentose phosphate isomerase, ribulose diphosphate carboxylase, glucose-6-phosphate dehydrogenase, and phosphohexose isomerase were inhibited by NaCl concentrations far lower than that in the growth medium (3.75 m). The inhibition was reversible and was not prevented by preparing the extracts in the presence of salt. Potassium, lithium, and cesium chlorides were equally inhibitory. In contrast, whole cells require rather high levels of NaCl for optimal growth, whereas growth is inhibited by low levels of the other cations. The results suggest a specific mechanism for the exclusion of sodium from the interior of the cell. Images PMID:5646631

  16. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    PubMed

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  17. A thermochemical explanation for the stability of NaCl3 and NaCl7

    NASA Astrophysics Data System (ADS)

    Fernandes de Farias, Robson

    2017-03-01

    Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.

  18. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  19. Salt intake during pregnancy alters offspring's myocardial structure.

    PubMed

    Alves-Rodrigues, E N; Veras, M M; Rosa, K T; de Castro, I; Furukawa, L N S; Oliveira, I B; Souza, R M; Heimann, J C

    2013-05-01

    To evaluate the effects of low or high salt intake during pregnancy on left ventricle of adult male offspring. Low- (LS, 0.15%), normal- (NS, 1.3%) or high-salt (HS, 8% NaCl) diet was given to Wistar rats during pregnancy. During lactation all dams received NS as well as the offspring after weaning. To evaluate cardiac response to salt overload, 50% of each offspring group was fed a high-salt (hs, 4% NaCl) diet from the 21st to the 36th week of age (LShs, NShs, HShs). The remaining 50% was maintained on NS (LSns, NSns and HSns). Echocardiography was done at 20 and 30 weeks of age. Mean blood pressure (MBP), histology and left ventricular angiotensin II content (AII) were analyzed at 36 weeks of age. Interventricular septum, left ventricular posterior wall and relative wall thickness increased from the 20th to the 30th week of age only in HShs, cardiomyocyte mean volume was higher in HShs compared to NShs, LShs and HSns. AII and left ventricular fibrosis were not different among groups. HS during pregnancy programs adult male offspring to a blood pressure and angiotensin II independent concentric left ventricular hypertrophy, with no fibrosis, in response to a chronic high-salt intake. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Synergistic Interactions of Sugars/Polyols and Monovalent Salts with Phospholipids Depend upon Sugar/Polyol Complexity and Anion Identity.

    PubMed

    Clark, Ginevra A; Henderson, J Michael; Heffern, Charles; Akgün, Bülent; Majewski, Jaroslaw; Lee, Ka Yee C

    2015-11-24

    We found that interactions of dipalmitoylphosphatidylcholine (DPPC) lipid monolayers with sugars are influenced by addition of NaCl. This work is of general importance in understanding how sugar-lipid-salt interactions impact biological systems. Using Langmuir isothermal compressions, fluorescence microscopy, atomic force microscopy, and neutron reflectometry, we examined DPPC monolayers upon addition of sugars/polyols and/or monovalent salts. Sugar-lipid interactions in the presence of NaCl increased with increasing complexity of the sugar/polyol in the order glycerol ≪ glucose < trehalose. When the anion was altered in the series NaF, NaCl, and NaBr, only minor differences were observed. When comparing LiCl, NaCl, and KCl, sodium chloride had the greatest influence on glucose and trehalose interactions with DPPC. We propose that heterogeneity created by cation binding allows for sugars to bind the lipid headgroups. While cation binding increases in the order K(+) < Na(+) < Li(+), lithium ions may also compete with glucose for binding sites. Thus, both cooperative and competitive factors contribute to the overall influence of salts on sugar-lipid interactions.

  1. Corrosion behavior of plasma-sprayed Al 2O 3-Cr 2O 3 coatings in hot lithium molten salt

    NASA Astrophysics Data System (ADS)

    Cho, Soo Haeng; Park, Sung Bin; Kang, Dae Seong; Jeong, Myeong Soo; Park, Heong; Hur, Jin Mok; Lee, Han Soo

    2010-04-01

    In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to molten lithium chloride environment at 675 °C for 216 h under an oxidizing atmosphere. The substrates of the IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an Al 2O 3-Cr 2O 3 top coat. The as-coated and tested specimens were examined by optical microscopy (OM), scanning electron microscopy (SEM)/X-ray energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), respectively. The bare superalloy reveals an obvious weight loss, and the scale formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot corrosion resistance in the presence of LiCl-3 wt.% Li 2O molten salt when compared with those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot corrosion resistance of the structural materials for handling high temperature lithium molten salts.

  2. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  3. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus

    PubMed Central

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-01-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. PMID:25124288

  4. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    PubMed

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  5. Preparation of Ferrotitanium from Ilmenite by Electrolysis-Assisted Calciothermic Reduction in CaCl2-NaCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongren; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Gong, Kai; Ru, Juanjian; Xiong, Li

    2016-02-01

    Electrolysis-assisted calciothermic reduction method is proposed and successfully used to prepare ferrotitanium alloy from ilmenite by using equal-molar CaCl2-NaCl molten salt as electrolyte, molybdenum rod as cathode, and graphite as anode at 973 K with cell voltages of 3.2-4.4 V under inert atmosphere. Thermodynamics analysis of the process is presented, and the products obtained are examined with x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. It is demonstrated that the calciothermic reduction of ilmenite is a stepwise process since intermediate CaTiO3 is observed in the products partially reduced. In the calciothermic reduction process, the reduction of FeTiO3 first gives rise to the formation of Fe and CaTiO3, which as intermediates will further react with calcium metal to form ferrotitanium alloys. This is in good agreement with the prediction of thermodynamics. Experimental results also show that increasing cell voltage can accelerate the formation of calcium metal through electrolysis of CaO and CaCl2 and, hence, promote the calciothermic reduction of ilmenite. As the electrolytic zone and reduction zone are combined in the same bath, the theoretical energy requirement for the production of FeTi in the calciothermic process is lower than that in the aluminothermic process.

  6. Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene.

    PubMed Central

    Gläser, H U; Thomas, D; Gaxiola, R; Montrichard, F; Surdin-Kerjan, Y; Serrano, R

    1993-01-01

    The progressive salinization of irrigated land poses a threat to the future of agriculture in arid regions. The identification of crucial metabolic steps in salt tolerance is important for the understanding of stress physiology and may provide the tools for its genetic engineering. In the yeast Saccharomyces cerevisiae we have isolated a gene, HAL2, which upon increase in gene dosage improves growth under NaCl and LiCl stresses. The HAL2 protein is homologous to inositol phosphatases, enzymes known to be inhibited by lithium salts. Complementation analysis demonstrated that HAL2 is identical to MET22, a gene involved in methionine biosynthesis. Accordingly, methionine supplementation improves the tolerance of yeast to NaCl and LiCl. These results demonstrate an unsuspected interplay between methionine biosynthesis and salt tolerance. Images PMID:8393782

  7. Salt taste responses of the IXth nerve in Sprague-Dawley rats: lack of sensitivity to amiloride.

    PubMed

    Kitada, Y; Mitoh, Y; Hill, D L

    1998-03-01

    To explore characteristics of the salt taste function of taste receptor cells located on the posterior tongue, we recorded electrophysiological responses from the whole glossopharyngeal nerve in Sprague-Dawley (SD) rats. For all salts, relative response magnitudes increased with increased stimulus concentrations (0.2-2.0 M) of NH4+, K+, and Na+ salts. The order of effectiveness of stimulation for Cl- salts was NH4Cl > KCl > NaCl. For sodium salts, relative response magnitudes were anion dependent. Sodium salts with small anions (NaCl, NaSCN, and NaNO3) had a much stronger stimulating effect than sodium salts with large anion groups (Na2SO4, C2H3O2Na, and C6H11O7Na). The responses of the glossopharyngeal nerve to the Na+ salts of NaCl, C2H3O2Na, and C6H11O7Na were not inhibited by the lingual application of the epithelial sodium transport blocker amiloride. This is in contrast to large amiloride sensitivity of the chorda tympani nerve. Amiloride also failed to inhibit the responses to K+ salts (KCl and KC2H3O2) and to NH4Cl. These results demonstrate that taste receptors innervated by the glossopharyngeal nerve in SD rats lack amiloride sensitivity as observed in the glossopharyngeal nerve of spontaneously hypertensive and Wistar-Kyoto rats. Furthermore, the difference between the small-anion group and the large-anion group of Na+ salts in their effectiveness to produce responses in the glossopharyngeal nerve parallels the effects noted for the anion dependence in the portion of the taste response resistant to amiloride in the chorda tympani nerve. Sodium salts with the smaller anion produced the larger responses in both glossopharyngeal and chorda tympani nerves after amiloride.

  8. Optically stimulated luminescence of natural NaCl mineral from Dead Sea exposed to gamma radiation.

    PubMed

    Roman-Lopez, J; Piña López, Y I; Cruz-Zaragoza, E; Marcazzó, J

    2018-08-01

    In this work, the continuous wave - optically stimulated luminescence (CW-OSL) emissions of natural salt minerals, collected from Dead Sea in summer of 2015, were studied. The CW-OSL dose response of natural salt showed a linear range between 0.5Gy and 10Gy of gamma radiation of 60 Co. Samples exposed at 3Gy exhibited good repeatability with a variation coefficient of 4.6%. The CW-OSL response as function of the preheating temperature (50-250°C) was analyzed. An increase of 15% of the CW-OSL response was observed in NaCl samples during storage period of 336h. The results showed that the natural Dead Sea salt minerals could be applied as natural dosimeter of gamma radiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of Red and Green Glassworts (Salicornia herbacea L.) on Physicochemical and Textural Properties of Reduced-salt Cooked Sausages

    PubMed Central

    2014-01-01

    This study was conducted to determine the effects of red and green glasswort on the physicochemical and textural properties of reduced-salt cooked sausages. The control was formulated with 1.5% NaCl; then, three reduced-salt treatments were prepared, with 0.75% NaCl (RS), 0.75% NaCl+1.0% red glasswort (RSR) and 0.75% NaCl+1.0% green glasswort (RSG), respectively. The addition of glasswort within the added amount of 1% had no influence on the pH value of the reduced-salt cooked sausages, regardless of the glasswort type. In terms of color, RSG treatment conveyed a higher hue angle value than the RSR treatment (p<0.05). Increases in the protein solubility (total and myofibrillar proteins) and apparent viscosity of reduced-salt meat batter that were due to the addition of glasswort were observed; however, there were no differences according to the type of glasswort (p>0.05). Furthermore, the addition of glasswort, regardless of its type, resulted in decreased cooking loss, and increased emulsion stability. As a result, reduced-salt cooked sausages formulated with either red or green glasswort demonstrated similar textural properties to those of the control. In conclusion, the type of glasswort within an added amount of 1% had no influence on the physicochemical and textural properties of reduced-salt cooked sausages, except for the color characteristics. In terms of color alteration by the addition of glasswort, the red glasswort, which in comparison with the green glasswort could minimize the color changes of reduced-salt cooked sausages, might be an effective source for manufacturing meat products. PMID:26761180

  10. High and Low Salt Intake during Pregnancy: Impact on Cardiac and Renal Structure in Newborns.

    PubMed

    Seravalli, Priscila; de Oliveira, Ivone Braga; Zago, Breno Calazans; de Castro, Isac; Veras, Mariana Matera; Alves-Rodrigues, Edson Nogueira; Heimann, Joel C

    2016-01-01

    Previous studies from our laboratory demonstrated that dietary salt overload and salt restriction during pregnancy were associated with cardiac and renal structural and/or functional alterations in adult offspring. The present study evaluated renal and cardiac structure and the local renin-angiotensin system in newborns from dams fed high-, normal- or low-salt diets during pregnancy. Female Wistar rats were fed low- (LS, 0.15% NaCl), normal- (NS, 1.3% NaCl) or high- (HS, 8% NaCl) salt diets during pregnancy. Kidneys and hearts were collected from newborns (n = 6-8/group) during the first 24 hours after birth to evaluate possible changes in structure using stereology. Protein expression of renin-angiotensin system components was evaluated using an indirect enzyme-linked immunosorbent assay (ELISA). No differences between groups were observed in total renal volume, volume of renal compartments or number of glomeruli. The transverse diameter of the nuclei of cardiomyocytes was greater in HS than NS males in the left and right ventricles. Protein expression of the AT1 receptor was lower in the kidneys of the LS than in those of the NS and HS males but not females. Protein expression of the AT2 receptor was lower in the kidneys of the LS males and females than in those of the NS males and females. High salt intake during pregnancy induced left and right ventricular hypertrophy in male newborns. Salt restriction during pregnancy reduced the expression of renal angiotensin II receptors in newborns.

  11. Effect of Salt Reduction on Consumer Acceptance and Sensory Quality of Food

    PubMed Central

    Hoppu, Ulla; Hopia, Anu; Pohjanheimo, Terhi; Rotola-Pukkila, Minna; Mäkinen, Sari; Pihlanto, Anne

    2017-01-01

    Reducing salt (NaCl) intake is an important public health target. The food industry and catering services are searching for means to reduce the salt content in their products. This review focuses on options for salt reduction in foods and the sensory evaluation of salt-reduced foods. Simple salt reduction, mineral salts and flavor enhancers/modifiers (e.g., umami compounds) are common options for salt reduction. In addition, the modification of food texture and odor-taste interactions may contribute to enhanced salty taste perception. Maintaining consumer acceptance of the products is a challenge, and recent examples of the consumer perception of salt-reduced foods are presented. PMID:29186893

  12. Purification, characterisation and salt-tolerance molecular mechanisms of aspartyl aminopeptidase from Aspergillus oryzae 3.042.

    PubMed

    Gao, Xianli; Yin, Yiyun; Zhou, Cunshan

    2018-02-01

    A salt-tolerant aspartyl aminopeptidase (approximately 57kDa) from Aspergillus oryzae 3.042 was purified and identified. Specific inhibitor experiments indicated that it was an aminopeptidase containing Zn 2+ . Its optimal and stable pH values and temperatures were 7 and 50°C, respectively. Its relative activity remained beyond 30% in 3M NaCl solution for 15d, and its K m and V max were slightly affected in 3M NaCl solution, indicating its excellent salt-tolerance. A comprehensive analysis including protein homology modelling, molecular dynamics simulation, secondary structure, acidic residues and hydrophobicity of interior residues demonstrated that aspartyl aminopeptidase had a greater stability than non-salt-tolerant protease in high salinity. Higher contents of ordered secondary structures, more salt bridges between hydrated surface acidic residues and specific basic residues and stronger hydrophobicity of interior residues were the salt-tolerance mechanisms of aspartyl aminopeptidase. Copyright © 2017. Published by Elsevier Ltd.

  13. Growth responses and ion accumulation in the halophytic legume Prosopis strombulifera are determined by Na2SO4 and NaCl.

    PubMed

    Reginato, M; Sosa, L; Llanes, A; Hampp, E; Vettorazzi, N; Reinoso, H; Luna, V

    2014-01-01

    Halophytes are potential gene sources for genetic manipulation of economically important crop species. This study addresses the physiological responses of a widespread halophyte, Prosopis strombulifera (Lam.) Benth to salinity. We hypothesised that increasing concentrations of the two major salts present in soils of central Argentina (Na2SO4, NaCl, or their iso-osmotic mixture) would produce distinct physiological responses. We used hydroponically grown P. strombulifera to test this hypothesis, analysing growth parameters, water relations, photosynthetic pigments, cations and anions. These plants showed a halophytic response to NaCl, but strong general inhibition of growth in response to iso-osmotic solutions containing Na2SO4. The explanation for the adaptive success of P. strombulifera in high NaCl conditions seems to be related to a delicate balance between Na(+) accumulation (and its use for osmotic adjustment) and efficient compartmentalisation in vacuoles, the ability of the whole plant to ensure sufficient K(+) supply by maintaining high K(+)/Na(+) discrimination, and maintenance of normal Ca(2+) levels in leaves. The three salt treatments had different effects on the accumulation of ions. Findings in bi-saline-treated plants were of particular interest, where most of the physiological parameters studied showed partial alleviation of SO4(2-)-induced toxicity by Cl(-). Thus, discussions on physiological responses to salinity could be further expanded in a way that more closely mimics natural salt environments. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Effects of supplementary desalted mother liquor as replacement of commercial salt in diet for Thai native cattle on digestibility, energy and nitrogen balance, and rumen conditions.

    PubMed

    Sato, Yoshiaki; Angthong, Wanna; Butcha, Patima; Takeda, Motoharu; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2018-05-16

    Four Thai native cattle were used in a 4 × 4 Latin square design experiment to evaluate the availability of desalted mother liquor (DML) as replacement of salt in concentrate. Each cattle was assigned to one of the following concentrate feeding treatments: C1, 1% NaCl was added as salt; C2, 2% NaCl was added as salt; D1, 1% NaCl was replaced by DML; D2, 2% NaCl was replaced by DML, on a dry matter (DM) basis. The animals were fed rice straw and experimental concentrates (40:60) at 1.9% of body weight on a DM basis, daily. Acid detergent fiber expressed exclusive of residual ash (ADFom) digestibility in DML treatment was higher than salt treatment (p < .05) and D2 feeding showed the highest value (60.8%). There were no significant differences in blood metabolites, nitrogen retention, ruminal ammonia nitrogen, methane emission or energy efficiency among treatments. Molar percent of acetate on volatile fatty acids in rumen fluid 4 hr post-feeding tended to be higher in DML treatment than salt treatment (p = .08). The results indicated that adding DML could improve ADFom digestibility and salt could be replaced by DML up to 2% as NaCl in concentrate without adverse effects on nitrogen balance, rumen conditions, blood metabolites and methane emission. © 2018 Japanese Society of Animal Science.

  15. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    PubMed

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The molecular basis for attractive salt-taste coding in Drosophila.

    PubMed

    Zhang, Yali V; Ni, Jinfei; Montell, Craig

    2013-06-14

    Below a certain level, table salt (NaCl) is beneficial for animals, whereas excessive salt is harmful. However, it remains unclear how low- and high-salt taste perceptions are differentially encoded. We identified a salt-taste coding mechanism in Drosophila melanogaster. Flies use distinct types of gustatory receptor neurons (GRNs) to respond to different concentrations of salt. We demonstrated that a member of the newly discovered ionotropic glutamate receptor (IR) family, IR76b, functioned in the detection of low salt and was a Na(+) channel. The loss of IR76b selectively impaired the attractive pathway, leaving salt-aversive GRNs unaffected. Consequently, low salt became aversive. Our work demonstrated that the opposing behavioral responses to low and high salt were determined largely by an elegant bimodal switch system operating in GRNs.

  17. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    PubMed

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-02

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.

  18. Development of salt production technology using prism greenhouse method

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Jaziri, A. A.; Prihanto, A. A.; Arisandi, D. M.; Kurniawan, A.

    2018-01-01

    The main problem of salt production in Indonesia is low productivity and quality because the technology used commonly by Indonesian salt farmers is traditional method. This research aims to increase production of salt by using the prism greenhouse method. The prism greenhouse method is a salt production system with a combination of several salt production technologies, including geomembrane, threaded filter, and prism greenhouse technology. This research method used descriptive method. The results of this study were the productivity increased threefold, and the quality of salt produced also increased in terms of the content of NaCl from 85% to 95%. In addition, salt production with the prism greenhouse method has several advantages, such as faster harvest time, weather resistance, easy to use, and higher profit than traditional methods.

  19. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension.

    PubMed

    Kido, Makiko; Ando, Katsuyuki; Onozato, Maristela L; Tojo, Akihiro; Yoshikawa, Masahiro; Ogita, Teruhiko; Fujita, Toshiro

    2008-02-01

    Hypertensive cardiovascular damage is accelerated by salt loading but counteracted by dietary potassium supplementation. We suggested recently that antioxidant actions of potassium contribute to protection against salt-induced cardiac dysfunction. Therefore, we examined whether potassium supplementation ameliorated cuff-induced vascular injury in salt-sensitive hypertension via suppression of oxidative stress. Four-week-old Dahl salt-sensitive rats were fed a normal-salt (0.3% NaCl), high-salt (8% NaCl), or high-salt plus high-potassium (8% KCl) diet for 5 weeks, and some of the rats fed a high-salt diet were also given antioxidants. One week after the start of the treatments, a silicone cuff was implanted around the femoral artery. Examination revealed increased cuff-induced neointimal proliferation with adventitial macrophage infiltration in arteries from salt-loaded Dahl salt-sensitive rats compared with that in arteries from non-salt-loaded animals (intima/media ratio: 0.471+/-0.070 versus 0.302+/-0.037; P<0.05), associated with regional superoxide overproduction and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and mRNA overexpression. On the other hand, simultaneous potassium supplementation attenuated salt-induced neointimal hyperplasia (intima/media ratio: 0.205+/-0.012; P<0.001), adventitial macrophage infiltration, superoxide overproduction, and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and overexpression. Antioxidants, which decrease vascular oxidative stress, also reduced neointima formation induced by salt excess. In conclusion, high-potassium diets seems to have a protective effect against the development of vascular damage induced by salt loading mediated, at least in part, through suppression of the production of reactive oxygen species probably generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase.

  20. Inhibition effect of sugar-based amphiphiles on eutectic formation in the freezing-thawing process of aqueous NaCl solution.

    PubMed

    Ogawa, Shigesaburo; Osanai, Shuichi

    2007-04-01

    DSC and simultaneous XRD-DSC measurements were carried out to clarify the interaction among the ingredients in a ternary aqueous solution composed of NaCl, a sugar-based amphiphile or free sugar, and water. Two aspects of the inhibition of eutectic formation were suggested through the addition of the sugar amphiphile. One was the retention of the glass state of the eutectic phase, and the other was the trapping of NaCl hydrate into the sugar moiety of the amphiphilic aggregate. The difference between the free sugar and the amphiphilic one in terms of the trapping of NaCl hydrate was attributable to their dissimilarity in the dissolution state. The results indicated that the free sugars in water could interact with NaCl hydrate on the basis of their various hydroxyl groups. On the other hand, the sugar-based amphiphiles generated a self-assembly aggregate in the system, and interacted with NaCl hydrate by a salting-in effect with their sugar moiety in the freezing-thawing process. It was confirmed that the number of sugar units played an important role in trapping NaCl hydrate in the system. The effects of the structural isomerism in the sugars were slight with regard to the inhibition of eutectic formation.

  1. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    PubMed

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Salt-induced inhibition of the precipitin reaction of concanavalin A with polysaccharides and glycoprotein.

    PubMed

    Salahuddin, A; Begum, R; Averill, B K

    1984-06-15

    The time course of the precipitin reactions of concanavalin A with glycogen, dextran and ovalbumin was investigated by a light-scattering method near 30 degrees C in 10 mM-Tris/HCl buffer, pH 7.4, containing neutral salts, i.e. NaCl, KCl, NaBr, KI and NaClO4. With 0.8 microM-lectin and 0.36 mg of glycogen/ml, the half-life, t 1/2, of the precipitin reaction was independent of salt concentration between 0.1 M and 1.5 M, and was the same (175s) in the presence of NaCl, KCl, NaBr and KI but was significantly (27%) higher in NaClO4. In contrast, the five salts caused significant to marked enhancement in t 1/2 for the reactions of concanavalin A with dextran and ovalbumin. Likewise, whereas the turbidity produced in 1 h as a result of lectin-glycogen precipitation remained unchanged, those measured for the binding of dextran and ovalbumin were decreased in the presence of three salts. The increase in t 1/2 and decrease in turbidity were found to be higher with NaClO4, followed by KI; NaBr produced moderate and NaCl (or KCl) small but generally significant inhibition of the precipitin reactions with dextran and ovalbumin. The results showed that the lectin-ligand precipitin reactions involve salt-sensitive polar interactions that are less pronounced with compactly folded ligands such as glycogen.

  3. Effects of imidazolium-based ionic liquids on the stability and dynamics of gramicidin A and lipid bilayers at different salt concentrations.

    PubMed

    Lee, Hwankyu; Kim, Sun Min; Jeon, Tae-Joon

    2015-09-01

    Gramicidin A (gA) dimers with bilayers, which consist of phospholipids and ionic liquids (ILs) at different molar ratios, were simulated at different salt concentrations of 0.15 and 1M NaCl. Bilayer thickness is larger than the length of a gA dimer, and hence lipids around the gA dimer are significantly disordered to adapt to the gA dimer, yielding membrane curvature. As the IL concentration increases, the bilayer thickness decreases and becomes closer to the gA length, leading to less membrane curvature. Also, ILs significantly increase lateral diffusivities of the gA dimer and lipids at 0.15M NaCl, but not at 1M NaCl because strong electrostatic interactions between salt ions and lipid head groups suppress an increase in the lateral mobility of the bilayer at high salt concentration. These findings help explain the conflicting experimental results that showed the increased ion permeability in electrophysiological experiments at 1M NaCl, but the reduced ion permeability in fluorescent experiments at 0.15M NaCl. ILs disorder lipids and make bilayers thinner, which yields less membrane curvature around the gA dimer and thus stabilizes the gA dimer, leading to the increased ion permeability. This IL effect predominantly occurs at 1M NaCl, where ILs only slightly increase the bilayer dynamics because of the strong electrostatic interactions between salt ions and lipids. In contrast, at 0.15M NaCl, ILs do not only stabilize the curved bilayer but also significantly increase the lateral mobility of gA dimers and lipids, which can reduce gA-induced pore formation, leading to the decreased ion permeability. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Study on quality standards of decoction pieces of salt Alpinia].

    PubMed

    Li, Wenbing; Hu, Changjiang; Long, Lanyan; Huang, Qinwan; Xie, Xiuqiong

    2010-12-01

    To establish the quality criteria for decoction pieces of salt Alpinia. Decoction pieces of salt Alpinia were measured with moisture, total ash, acid-insoluble ash, water-extract and volatile oils according to the procedures recorded in the Chinese Pharmacopoeia 2010. The content of Nootkatone was determined by HPLC, and NaCl, by chloridion electrode method. We obtained results of total ash, acid-insoluble ash, water-extract and volatile oils of 10 batches of decoction pieces of salt Alpinia moisture; Meanwhile we set the HPLC and chloridion electrode method. This research established a fine quality standard for decoction pieces of salt Alpinia.

  5. Miso (Japanese soybean paste) soup attenuates salt-induced sympathoexcitation and left ventricular dysfunction in mice with chronic pressure overload.

    PubMed

    Ito, Koji; Hirooka, Yoshitaka; Sunagawa, Kenji

    2014-02-01

    The hypothalamic mineralocorticoid receptor (MR)-angiotensin II type 1 receptor (AT1R) pathway is activated in mice with chronic pressure overload (CPO). When this activation is combined with high salt intake, it leads to sympathoexcitation, hypertension, and left ventricular (LV) dysfunction. Salt intake is thus an important factor that contributes to heart failure. Miso, a traditional Japanese food made from fermented soybeans, rice, wheat, or oats, can attenuate salt-induced hypertension in rats. However, its effects on CPO mice with salt-induced sympathoexcitation and LV dysfunction are unclear. Here, we investigated whether miso has protective effects in these mice. We also evaluated mechanisms associated with the hypothalamic MR-AT1R pathway. Aortic banding was used to produce CPO, and a sham operation was performed for controls. At 2 weeks after surgery, the mice were given water containing high NaCl levels (0.5%, 1.0%, and 1.5%) for 4 weeks. The high salt loading in CPO mice increased excretion of urinary norepinephrine (uNE), a marker of sympathetic activity, in an NaCl concentration-dependent manner; however, this was not observed in Sham mice. Subsequently, CPO mice were administered 1.0% NaCl water (CPO-H) or miso soup (1.0% NaCl equivalent, CPO-miso). The expression of hypothalamic MR, serum glucocorticoid-induced kinase-1 (SGK-1), and AT1R was higher in the CPO-H mice than in the Sham mice; however, the expression of these proteins was attenuated in the CPO-miso group. Although the CPO-miso mice had higher sodium intake, salt-induced sympathoexcitation was lower in these mice than in the CPO-H group. Our findings indicate that regular intake of miso soup attenuates salt-induced sympathoexcitation in CPO mice via inhibition of the hypothalamic MR-AT1R pathway.

  6. Inhibition of Mammalian Target of Rapamycin Complex 1 Attenuates Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats.

    PubMed

    Kumar, Vikash; Wollner, Clayton; Kurth, Theresa; Bukowy, John D; Cowley, Allen W

    2017-10-01

    The goal of the present study was to explore the protective effects of mTORC1 (mammalian target of rapamycin complex 1) inhibition by rapamycin on salt-induced hypertension and kidney injury in Dahl salt-sensitive (SS) rats. We have previously demonstrated that H 2 O 2 is elevated in the kidneys of SS rats. The present study showed a significant upregulation of renal mTORC1 activity in the SS rats fed a 4.0% NaCl for 3 days. In addition, renal interstitial infusion of H 2 O 2 into salt-resistant Sprague Dawley rats for 3 days was also found to stimulate mTORC1 activity independent of a rise of arterial blood pressure. Together, these data indicate that the salt-induced increases of renal H 2 O 2 in SS rats activated the mTORC1 pathway. Daily administration of rapamycin (IP, 1.5 mg/kg per day) for 21 days reduced salt-induced hypertension from 176.0±9.0 to 153.0±12.0 mm Hg in SS rats but had no effect on blood pressure salt sensitivity in Sprague Dawley treated rats. Compared with vehicle, rapamycin reduced albumin excretion rate in SS rats from 190.0±35.0 to 37.0±5.0 mg/d and reduced the renal infiltration of T lymphocytes (CD3 + ) and macrophages (ED1 + ) in the cortex and medulla. Renal hypertrophy and cell proliferation were also reduced in rapamycin-treated SS rats. We conclude that enhancement of intrarenal H 2 O 2 with a 4.0% NaCl diet stimulates the mTORC1 pathway that is necessary for the full development of the salt-induced hypertension and kidney injury in the SS rat. © 2017 American Heart Association, Inc.

  7. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring.

    PubMed

    Segovia, Stephanie A; Vickers, Mark H; Harrison, Claudia J; Patel, Rachna; Gray, Clint; Reynolds, Clare M

    2018-01-01

    Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl), high-salt (SD; 10% kcal from fat, 4% NaCl), high-fat (HF; 45% kcal from fat, 1% NaCl) or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl) diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1 . There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2 . Gut expression of inflammatory ( Il1r1, Tnfα, Il6 , and Il6r ) and renin-angiotensin system ( Agtr1a, Agtr1b ) markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin-angiotensin regulation.

  8. Salting out of methane by sodium chloride: A scaled particle theory study.

    PubMed

    Graziano, Giuseppe

    2008-08-28

    The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.

  9. Structure and Corrosion Resistance of Welded Joints of Alloy 1151 in Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Bakulo, A. V.; Yakushin, B. F.; Puchkov, Yu. A.

    2017-07-01

    The corrosion behavior of joints formed by TIG and IMIG welding from clad sheets of heat-hardenable aluminum alloy 1151 of the Al - Cu - Mg system is studied. The corrosion tests are performed in an aqueous solution of NaCl in a salt-spray chamber. The welded joints are subjected to a metallographic analysis.

  10. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernández, A

    2010-05-01

    NaCl plays an important role in table olive processing affecting the flavour and microbiological stability of the final product. However, consumers demand foods low in sodium, which makes necessary to decrease levels of this mineral in fruits. In this work, the effects of diverse mixtures of NaCl, CaCl(2) and KCl on the fermentation profiles of cracked directly brined Manzanilla-Aloreña olives, were studied by means of response surface methodology based in a simplex lattice mixture design with constrains. All salt combinations led to lactic acid processes. The growth of Enterobacteriaceae populations was always limited and partially inhibited by the presence of CaCl(2). Only time to reach half maximum populations and decline rates of yeasts, which were higher as concentrations of NaCl or KCl increased, were affected, and correspondingly modelled, as a function of salt mixtures. However, lactic acid bacteria growth parameters could not be related to initial environmental conditions. They had a longer lag phase, slower growth and higher population levels than yeasts. Overall, the presence of CaCl(2) led to a slower Enterobacteriaceae and lactic acid bacteria growth than the traditional NaCl brine but to higher yeast activity. The presence of CaCl(2) in the fermentation brines also led to higher water activity, lower pH and combined acidity as well as a faster acidification while NaCl and KCl had fairly similar behaviours. Apparently, NaCl may be substituted in diverse proportions with KCl or CaCl(2) without substantially disturbing water activity or the usual fermentation profiles while producing olives with lower salt content. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  11. Effects of pH, sodium chloride, and curing salt on the infectivity of Toxoplasma gondii tissue cysts.

    PubMed

    Pott, S; Koethe, M; Bangoura, B; Zöller, B; Daugschies, A; Straubinger, R K; Fehlhaber, K; Ludewig, M

    2013-06-01

    Toxoplasma gondii is one of the most common zoonotic parasites in the world. The parasite causes no or mild symptoms in immunocompetent humans. However, a high potential hazard exists for seronegative pregnant women and immunocompromised patients. The consumption of meat containing tissue cysts or oocyst-contaminated vegetables and fruits or the handling of cat feces poses a high risk of infection with T. gondii. It is known that raw minced meat, raw fresh sausages, and locally produced raw meat products are possible causes of T. gondii infection. The infectivity of T. gondii tissue cysts in meat products depends, among other factors, on the pH and the salt concentration. Therefore, the impact of these two factors on the tissue cysts was examined. For this purpose, dissected musculature and brain from experimentally infected mice (donor mice) were placed in a cell culture medium (RPMI 1640). The medium was adjusted to different pH values (pH 5, 6, and 7) with lactic acid and to different salt concentrations (2.0, 2.5, and 3.0%) with sodium chloride (NaCl) or nitrite-enriched curing salt (NCS) for the various tests. After storage at 4°C for different time periods, the materials were fed to bioassay mice. Later, the brains were examined for presence of T. gondii to assess the infectivity. The data show that T. gondii tissue cysts have a high pH tolerance. Cysts were infectious in the muscle for up to 26 days (pH 5). In contrast to their tolerance to pH, cysts were very sensitive to salt. Muscle cysts survived at an NaCl concentration of up to 2.0% only, and for no longer than 8 days. At NaCl concentrations of 2.5 and 3.0%, the cysts lost their infectivity after 1 day. When NCS instead of NaCl was used under the same conditions, T. gondii muscle cysts retained infectivity for only 4 days at 2.0%. Consequently, NCS (NaCl plus 0.5% nitrite) has a stronger effect on T. gondii cysts than does common table salt. Sausages produced with low NaCl concentration and short

  12. Al/Cl2 molten salt battery

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  13. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    PubMed

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  14. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  15. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.

    PubMed

    Diray-Arce, Joann; Clement, Mark; Gul, Bilquees; Khan, M Ajmal; Nielsen, Brent L

    2015-05-06

    Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The

  16. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    PubMed

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Salt exclusion in silane-laced epoxy coatings.

    PubMed

    Wang, Peng; Schaefer, Dale W

    2010-01-05

    The corrosion protection mechanism of a one-step silane-laced epoxy coating system was investigated using neutron reflectivity. Pure epoxy and silane-laced epoxy films were examined at equilibrium with saturated NaCl water solution. The results demonstrate that the addition of silane introduces a salt-exclusion effect to epoxy coating. Specifically, the addition of silane densifies the epoxy network, which leads to exclusion of hydrated salt ions by a size effect. The effect is particularly significant at the metal-coating interface. Exclusion of ions improves the corrosion resistance, particularly for metals susceptible to pitting.

  18. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.

    PubMed

    Liu, Y; Cain, J P; Wang, H; Laskin, A

    2007-10-11

    the variations of HNO3 uptake on pure NaCl, a sea salt-like mixture of NaCl and MgCl2 (Mg-to-Cl molar ratio of 0.114) and real sea salt particles as a function of relative humidity. Results show behavior of the uptake coefficient to be similar for all three types of salt particles with D(p) approximately 0.9 miccrom over the relative humidity range 20-80%. Gaseous HNO3 uptake coefficient peaks around a relative humidity of 55%, with gamma(net) well over 0.2 for sea salt. Below the efflorescence relative humidity the uptake coefficient declines with decreasing RH for all three sea salt types, and it does so without exhibiting a sudden shutoff of reactivity. The uptake of HNO3 on sea salt particles was more rapid than that on the mixture of NaCl and MgCl2, and uptake on both sea salt and sea salt-like mixture was faster than on pure NaCl. The uptake of HNO3 on deliquesced, pure NaCl particles was also examined over the particle size range of 0.57 salt aerosols begin to notably contribute to light scattering.

  19. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.

  20. A simple and efficient method for preparing partially purified phosvitin from egg yolk using ethanol and salts.

    PubMed

    Ko, K Y; Nam, K C; Jo, C; Lee, E J; Ahn, D U

    2011-05-01

    The objective of this study was to develop a new protocol that could be used for large-scale separation of phosvitin from egg yolk using ethanol and salts. Yolk granules, which contain phosvitin, were precipitated after diluting egg yolk with 9 volumes of distilled water. The pH of the yolk solution was adjusted to pH 4.0 to 8.0 using 6 N HCl or NaOH, and then yolk granules containing phosvitin was separated by centrifugation at 3,220 × g for 30 min. Lipids and phospholipids were removed from the insoluble yolk granules using 85% ethanol. The optimal volumes and concentration of ethanol in removing lipids from the precipitants were determined. After centrifugation, the lipid-free precipitants were homogenized with 9 volumes of ammonium sulfate [(NH(4))(2)SO(4)] or NaCl to extract phosvitin. The optimal pH and concentration of (NH(4))(2)SO(4) or NaCl for the highest recovery rate and purity for phosvitin in final solution were determined. At pH 6.0, all the phosvitin in diluted egg yolk solution was precipitated. Among the (NH(4))(2)SO(4) and NaCl conditions tested, 10% (NH(4))(2)SO(4) or 10% NaCl at pH 4.0 yielded the greatest phosvitin extraction from the lipid-free precipitants. The recovery rates of phosvitin using (NH(4))(2)SO(4) and NaCl were 72 and 97%, respectively, and their purity was approximately 85%. Salt was removed from the extract using ultrafiltration. The salt-free phosvitin solution was concentrated using ultrafiltration, the impurities were removed by centrifugation, and the resulting solution was freeze-dried. The partially purified phosvitin was suitable for human use because ethanol was the only solvent used to remove lipids, (NH(4))(2)SO(4) or NaCl was used to extract phosvitin, and ultrafiltration was used to remove salt and concentrate the extract. The developed method was simple and suitable for a large-scale preparation of partially purified phosvitin.

  1. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage.

    PubMed

    Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C

    2018-05-08

    The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.

  2. Stress corrosion evaluation of HP 9Ni-4Co-0.20C steel

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1993-01-01

    A stress corrosion cracking (SCC) evaluation was undertaken on HP 9Ni-4Co-0.20C steel in support of the Advanced Solid Rocket Motor (ASRM) program. This alloy was tested in plate, bar, and ring forging forms. Several heat treating procedures yielded ultimate tensile strengths ranging from 1,407 to 1,489 MPa (204 to 216 ksi). The test environments were high humidity, alternate immersion in 3.5-percent NaCl, and 5-percent salt spray. Stress levels ranged from 25 to 90 percent of the yield strengths. The majority of the tests were conducted for 90 days. Even though the specimens rusted significantly in salt spray and alternate immersion, no failures occurred. Therefore, it can be concluded that this alloy, in the forms and at the strength levels tested, is highly resistant to SCC in salt and high humidity environments.

  3. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route.

    PubMed

    Benavides, A L; Aragones, J L; Vega, C

    2016-03-28

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.

  4. [Accumulation characteristics of applied cinnamic acid in cucumber seedling-soil system under NaCl stress].

    PubMed

    Wang, Ying; Wu, Feng-Zhi; Wang, Yu-Yan

    2011-11-01

    Taking cucumber cultivars' Jinlv No. 5' (salt-tolerant) and 'Jinyou No. 1' (salt-sensitive) as test materials, a pot experiment was conducted to study the effects of applying cinnamic acid on the accumulation of applied cinnamic acid in cucumber seedling-soil system under NaCl (585 mg x kg(-1) soil) stress. The concentration of applied cinnamic acid was the main factor affecting the accumulation of the exogenous cinnamic acid in the cucumber plant and soil. With the increasing concentration of applied cinnamic acid, except in the treatment of highest concentration (200 mg x kg(-1) soil) cinnamic acid, the total content of cinnamic acid in cucumber plant was increased. NaCl stress enhanced the toxicity of cinnamic acid. In the treatments of low and medium concentration cinnamic acid, the cinnamic acid content in cucumber plant increased; whereas in the treatments of high concentration cinnamic acid, the decline of the seedlings growth was observed, and led to the decrease of the cinnamic acid content in the plant. The content of cinnamic acid in 'Jinlv No. 5' plant decreased at the concentration of applied cinnamic acid being > 200 mg x kg(-1) soil, while that in 'Jinyou No. 1' started to decrease when the concentration of applied cinnamic acid was > 100 mg x kg(-1) soil, reflecting the discrepancy in salt tolerance of the two cultivars. For the cucumber plant, its leaf had the highest content of cinnamic acid. In the cucumber seedling-soil system, most of applied cinnamic acid was mainly accumulated in soil.

  5. Effect of ice growth rate on the measured Workman-Reynolds freezing potential between ice and dilute NaCl solutions.

    PubMed

    Wilson, P W; Haymet, A D J

    2010-10-07

    Workman-Reynolds freezing potentials have been measured across the interface between ice and dilute NaCl solutions as a function of ice growth rate for three salt concentrations. Growth rates of up to 40 μm·s(-1) are used, and it is found that the measured voltage peaks at rates of ∼25 μm·s(-1). Our initial results indicate that the freezing potential can be used as a probe into various aspects of the DC electrical resistance of ice as a function of variables such as salt concentration.

  6. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef

    USDA-ARS?s Scientific Manuscript database

    Inhibition of Clostridium perfringens spore germination and outgrowth in reduced sodium roast beef by a blend of buffered lemon juice concentrate and vinegar (MoStatin LV) during abusive exponential cooling was evaluated. Roast beef containing salt (NaCl; 1, 1.5, or 2%, wt/wt), blend of sodium pyro-...

  7. Metabolic Shift of Escherichia coli under Salt Stress in the Presence of Glycine Betaine

    PubMed Central

    Metris, A.; George, S. M.; Mulholland, F.; Carter, A. T.

    2014-01-01

    An important area of food safety focuses on bacterial survival and growth in unfavorable environments. In order to understand how bacteria adapt to stresses other than nutrient limitation in batch cultures, we need to develop mechanistic models of intracellular regulation and metabolism under stress. We studied the growth of Escherichia coli in minimal medium with added salt and different osmoprotectants. To characterize the metabolic efficiency with a robust parameter, we identified the optical density (OD) values at the inflection points of measured “OD versus time” growth curves and described them as a function of glucose concentration. We found that the metabolic efficiency parameter did not necessarily follow the trend of decreasing specific growth rate as the salt concentration increased. In the absence of osmoprotectant, or in the presence of proline, the metabolic efficiency decreased with increasing NaCl concentration. However, in the presence of choline or glycine betaine, it increased between 2 and 4.5% NaCl before declining at 5% NaCl and above. Microarray analysis of the transcriptional network and proteomics analysis with glycine betaine in the medium indicated that between 4.5 and 5% NaCl, the metabolism switched from aerobic to fermentative pathways and that the response to osmotic stress is similar to that for oxidative stress. We conclude that, although the growth rate appeared to decrease smoothly with increasing NaCl, the metabolic strategy of cells changed abruptly at a threshold concentration of NaCl. PMID:24858086

  8. Behavior of toxic metals and radionuclides during molten salt oxidation of chlorinated plastics.

    PubMed

    Yang, Hee-Chul; Cho, Yong-Jun; Eun, Hee-Chul; Yoo, Jae-Hyung; Kim, Joon-Hyung

    2004-01-01

    Molten salt oxidation is one of the promising alternatives to incineration for chlorinated organics without the emission of chlorinated organic pollutants. This study investigated the behavior of three hazardous metals (Cd, Pb, and Cr) and four radioactive metal surrogates (Cs, Ce, Gd, and Sm) in the molten Na2CO3 oxidation reactor during the destruction of PVC plastics. In the tested temperature ranges (1143 1223K) and NaCl content (0-10%), the impact of temperature on the retention of cadmium and lead in the molten salt reactor was very small, but that of the NaCl content for their retention was relatively higher. The influence of NaCl accumulation was, however, proven to be practically negligible due to the low-temperature operating characteristics of the molten salt oxidation system. Neither temperature increase nor chlorine accumulation in the MSO reactor reduced the retention of Cr, Ce, Gd, and Sm. Over 99.98% of these metals remained in the reactor. The influence of the temperature on the cesium behavior is relatively large for a chlorine addition, however, over 99.7% of cesium remained in the reactor throughout the entire test. The experimental metal entrainment rate and the entrained metal particle size distribution agree well with the theoretical equilibrium metal distributions.

  9. Physiological and Transcriptomic Responses of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) to Salt Stress

    PubMed Central

    Gao, Jianwei

    2017-01-01

    Salt stress is one of the major abiotic stresses that severely impact plant growth and development. In this study, we investigated the physiological and transcriptomic responses of Chinese cabbage “Qingmaye” to salt stress, a main variety in North China. Our results showed that the growth and photosynthesis of Chinese cabbage were significantly inhibited by salt treatment. However, as a glycophyte, Chinese cabbage could cope with high salinity; it could complete an entire life cycle at 100 mM NaCl. The high salt tolerance of Chinese cabbage was achieved by accumulating osmoprotectants and by maintaining higher activity of antioxidant enzymes. Transcriptomic responses were analyzed using the digital gene expression profiling (DGE) technique after 12 h of treatment by 200 mM NaCl. A total of 1235 differentially expressed genes (DEGs) including 740 up- and 495 down-regulated genes were identified. Functional annotation analyses showed that the DEGs were related to signal transduction, osmolyte synthesis, transcription factors, and antioxidant proteins. Taken together, this study contributes to our understanding of the mechanism of salt tolerance in Chinese cabbage and provides valuable information for further improvement of salt tolerance in Chinese cabbage breeding programs. PMID:28895882

  10. γ-Adducin Stimulates the Thiazide-sensitive NaCl Cotransporter

    PubMed Central

    Dimke, Henrik; San-Cristobal, Pedro; de Graaf, Mark; Lenders, Jacques W.; Deinum, Jaap; Hoenderop, Joost G.J.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays a key role in renal salt reabsorption and the determination of systemic BP, but the molecular mechanisms governing the regulation of NCC are not completely understood. Here, through pull-down experiments coupled to mass spectrometry, we found that γ-adducin interacts with the NCC transporter. γ-Adducin colocalized with NCC to the distal convoluted tubule. 22Na+ uptake experiments in the Xenopus laevis oocyte showed that γ-adducin stimulated NCC activity in a dose-dependent manner, an effect that occurred upstream from With No Lysine (WNK) 4 kinase. The binding site of γ-adducin mapped to the N terminus of NCC and encompassed three previously reported phosphorylation sites. Supporting this site of interaction, competition with the N-terminal domain of NCC abolished the stimulatory effect of γ-adducin on the transporter. γ-Adducin failed to increase NCC activity when these phosphorylation sites were constitutively inactive or active. In addition, γ-adducin bound only to the dephosphorylated N terminus of NCC. Taken together, our observations suggest that γ-adducin dynamically regulates NCC, likely by amending the phosphorylation state, and consequently the activity, of the transporter. These data suggest that γ-adducin may influence BP homeostasis by modulating renal NaCl transport. PMID:21164023

  11. Thermal spray coating for corrosion under insulation (CUI) prevention

    NASA Astrophysics Data System (ADS)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  12. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.

    PubMed

    Guo, Yuanyuan; Song, Yushuang; Zheng, Hongxiang; Zhang, Yi; Guo, Jianrong; Sui, Na

    2018-06-08

    Sweet sorghum is a C 4 crop that shows high salt tolerance and high yield. NADP-malate dehydrogenase ( NADP-ME) is a crucial enzyme of the C 4 pathway. The regulatory mechanism of NADP-ME remains unclear. In this study, we isolated SbNADP-ME from sweet sorghum. The open reading frame of SbNADP-ME is 1911 bp and 637 amino acid residues. Quantitative real-time PCR analysis showed that SbNADP-ME transcription in sweet sorghum was enhanced by salt stress. The SbNADP-ME transcript level was highest under exposure to 150 mM NaCl. Arabidopsis overexpressing SbNADP-ME showed increased germination rate and root length under NaCl treatments. At the seedling stage, physiological photosynthesis parameters, chlorophyll content, PSII photochemical efficiency, and PSI oxidoreductive activity in the wild type decreased more severely than in the overexpression lines but less than in T-DNA insertion mutants under salt stress. Overexpression of SbNADP-ME in Arabidopsis may also increase osmotic adjustment and scavenging activity on DPPH and decrease membrane peroxidation. These results suggest that SbNADP-ME overexpression in Arabidopsis increases salt tolerance and alleviates PSII and PSI photoinhibition under salt stress by improving photosynthetic capacity.

  13. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress.

    PubMed

    Morant-Manceau, Annick; Pradier, Elisabeth; Tremblin, Gérard

    2004-01-01

    The effect of salt stress (NaCl 85.7 or 110 mmol/L) was investigated in the triticale T300 and its parental species, Triticum dicoccum farrum (Triticum df) and Secale cereale cv. Petkus. Triticum df and T300 were more salt-tolerant than the rye (110 mmol/L NaCl was the highest concentration allowing rye growth to the three-leaf stage). Na+, K+ and Cl- ions accounted for almost half of the osmotic adjustment in Triticum df and T300, and up to 90% in rye. Salinity decreased the net photosynthesis and transpiration rates of the three cereals as compared to control plants, but induced no significant change in chlorophyll a fluorescence parameters. Water-use efficiency (WUE) increased with salinity. In the presence of 110 mmol/L NaCl, the K+/Na+ ratio decreased markedly in rye as compared to the other two cereals. Proline concentration, which increased in Triticum df and T300, could have protected membrane selectivity in favour of K+. Proline content remained low in rye, and increasing soluble sugar content did not appear to prevent competition between Na+ and K+. The salt sensitivity of rye could be due to low K+ uptake in the presence of a high NaCl concentration.

  14. The Effect of Salt Intake and Potassium Supplementation on Serum Gastrin Levels in Chinese Adults: A Randomized Trial

    PubMed Central

    Wang, Yuan-Yuan; He, Wen-Wen; Liu, Yan-Chun; Lin, Yi-Feng; Hong, Lu-Fei

    2017-01-01

    Excess dietary salt is strongly correlated with cardiovascular disease, morbidity, and mortality. Conversely, potassium likely elicits favorable effects against cardiovascular disorders. Gastrin, which is produced by the G-cells of the stomach and duodenum, can increase renal sodium excretion and regulate blood pressure by acting on the cholecystokinin B receptor. The aim of our study was to assess the effects of altered salt and potassium supplementation on serum gastrin levels in humans. A total of 44 subjects (38–65 years old) were selected from a rural community in northern China. All subjects were sequentially maintained on a relatively low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for 7 days (18.0 g/day of NaCl), and then a high-salt diet supplemented with potassium for another 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). The high-salt intake significantly increased serum gastrin levels (15.3 ± 0.3 vs. 17.6 ± 0.3 pmol/L). This phenomenon was alleviated through potassium supplementation (17.6 ± 0.3 vs. 16.5 ± 0.4 pmol/L). Further analyses revealed that serum gastrin was positively correlated with 24 h urinary sodium excretion (r = 0.476, p < 0.001). By contrast, gastrin level was negatively correlated with blood pressure in all dietary interventions (r = −0.188, p = 0.031). The present study indicated that variations in dietary salt and potassium supplementation affected the serum gastrin concentrations in the Chinese subjects. PMID:28420122

  15. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    NASA Astrophysics Data System (ADS)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  16. Method to synthesize and produce thin films by spray pyrolysis

    DOEpatents

    Turcotte, Richard L.

    1982-07-06

    Forming a film by spraying onto a heated substrate an atomized solution containing the appropriate salt of a constituent element of the film and a reducing agent at a concentration greater than 1 M and greater than 10 times the stoichiometric amount of reducing agent.

  17. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field

    NASA Astrophysics Data System (ADS)

    Kolafa, Jiří

    2016-11-01

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  18. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field.

    PubMed

    Kolafa, Jiří

    2016-11-28

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  19. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae)

    USGS Publications Warehouse

    Vasquez, Edward A.; Glenn, Edward P.; Brown, J. Jed; Guntenspergen, Glenn R.; Nelson, Stephen G.

    2005-01-01

    A distinct, non-native haplotype of the common reed Phragmites australis has become invasive in Atlantic coastal Spartina marshes. We compared the salt tolerance and other growth characteristics of the invasive M haplotype with 2 native haplotypes (F and AC) in greenhouse experiments. The M haplotype retained 50% of its growth potential up to 0.4 M NaCl, whereas the F and AC haplotypes did not grow above 0.1 M NaCl. The M haplotype produced more shoots per gram of rhizome tissue and had higher relative growth rates than the native haplotypes on both freshwater and saline water treatments. The M haplotype also differed from the native haplotypes in shoot water content and the biometrics of shoots and rhizomes. The results offer an explanation for how the M haplotype is able to spread in coastal salt marshes and support the conclusion of DNA analyses that the M haplotype is a distinct ecotype of P. australis.

  20. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam

    2011-12-01

    Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.

  1. Salting out the polar polymorph: analysis by alchemical solvent transformation.

    PubMed

    Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D; Peters, Baron

    2014-01-07

    We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m(2) and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m(2). Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) < J(γ, brine) < J(α, water). For γ-glycine nuclei, Debye-Hückel theory qualitatively, but not quantitatively, captures the effect of salt addition. Only the alchemical solvent transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.

  2. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea.

    PubMed

    Goussi, Rahma; Manaa, Arafet; Derbali, Walid; Cantamessa, Simone; Abdelly, Chedly; Barbato, Roberto

    2018-06-01

    Salinity is one of the most important abiotic stress affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary process affected by salinity. Here, we report the effects of salt stress on photosynthesis in the model halophyte Thellungiella salsuginea. Plants were grown in hydroponic system and then treated for 2 weeks with different NaCl concentrations (0, 100, 200 and 400 mM). Leaf analysis using both photonic and transmission electron microscopes showed some changes in mesophyll cell organization, including shape and dimension. Under high NaCl concentration (400 mM) a swelling of thylakoids and starch accumulation was also observed. The obtained results also showed a change in the photosynthetic efficiency of both photosystems (PSI and PSII), depending on both NaCl concentrations and duration of the stress treatment. Under moderate salinity (100 and 200 mM NaCl) no significant variation was observed in PSI and PSII yield parameters. Chlorophyll a fluorescence transient showed some variations in OJ, JI and IP phases under salt stress depending also on NaCl levels and the duration of stress. Under high salinity PSII donor side was affected as well as quantum yield of PSI which also showed a donor side limitation. A significant decrease on quantum yields Y(I) and Y(II) under high salt treatment (400 mM NaCl) for prolonged period of time (15 days) was observed. The decrease of these parameters was quantitatively compensated by a corresponding increase of energy thermal dissipation Y(NPQ) in photosystem II and a increase in the Y(ND) in PSI. Analysis of derived parameters from the OJIP transient curve revealed that ABS/RC decreased under NaCl treatment by reason of the increase in size of antenna of active reaction centers. An increase in the performance index PI (ABS) , a slight decrease in the rate of DI O /RC, TR O /RC and the level of electron transport per PSII RC (ET O /RC) were observed during

  3. Alteration of Tight Junction Protein Expression in Dahl Salt-Sensitive Rat Kidney.

    PubMed

    Jo, Chor Ho; Kim, Sua; Oh, Il Hwan; Park, Joon-Sung; Kim, Gheun-Ho

    2017-01-01

    Altered pressure natriuresis is an important mechanism of hypertension, but it remains elusive at the molecular level. We hypothesized that in the kidney, tight junctions (TJs) may have a role in pressure natriuresis because paracellular NaCl transport affects interstitial hydrostatic pressure. To assess the association of salt-sensitive hypertension with altered renal TJ protein expression, Dahl salt-sensitive (SS) and salt-resistant (SR) rats were put on an 8% NaCl-containing rodent diet for 4 weeks. Systolic blood pressure (SBP) and urine NaCl excretion were measured weekly, and kidneys were harvested for immunoblotting and quantitative PCR analysis at the end of the animal experiments. SBP was significantly higher in SS rats than in SR rats during the first to fourth weeks of the animal experiments. During the first and second week, urinary NaCl excretion was significantly lower in SS rats as compared with SR rats. However, the difference between the two groups vanished at the third and fourth weeks. In the kidney, claudin-4 protein and mRNA were significantly increased in SS rats as compared with SR rats. On the other hand, occludin protein and mRNA were significantly decreased in SS rats as compared with SR rats. The expression of claudin-2, claudin-7, and claudin-8 did not vary significantly between the two groups. In SS rats, SS hypertension was associated with differential changes in renal TJ protein expression. Both upregulation of claudin-4 and downregulation of occludin might increase paracellular NaCl transport in the kidney, resulting in impaired pressure natriuresis in SS rats. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure▿

    PubMed Central

    Bassin, J. P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M. C. M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescence in situ hybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance of Nitrospira sp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “Candidatus Accumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonas sp.) and phosphate removal (“Candidatus Accumulibacter”). PMID:21926194

  5. Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Lin, Wushao; Wang, Zheng; Tang, Xiaoyun; Zhang, Xiaoyu; Yi, Bingqi

    2018-01-01

    The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols.

  6. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance.

    PubMed

    Vera-Estrella, Rosario; Barkla, Bronwyn J; García-Ramírez, Liliana; Pantoja, Omar

    2005-11-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H(+)-ATPases from leaves and roots. TP Na(+)/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H(+)-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na(+)/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H(+)-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM.

  7. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    PubMed

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  8. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    DOE PAGES

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-09-16

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leavesmore » rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO 4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.« less

  9. Effect of Salt Intake and Potassium Supplementation on Serum Renalase Levels in Chinese Adults

    PubMed Central

    Wang, Yang; Liu, Fu-Qiang; Wang, Dan; Mu, Jian-Jun; Ren, Ke-Yu; Guo, Tong-Shuai; Chu, Chao; Wang, Lan; Geng, Li-Ke; Yuan, Zu-Yi

    2014-01-01

    Abstract Renalase, a recently discovered enzyme released by the kidneys, breaks down blood-borne catecholamines and may thus regulate blood pressure (BP). Animal studies have suggested that high levels of dietary salt might reduce blood and kidney renalase levels. We conducted a randomized trial to assess the effects of altered salt and potassium intake on serum renalase levels and the relationship between serum renalase levels and BP in humans. Forty-two subjects (28–65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). Serum renalase levels were significantly higher than baseline levels during the low-salt diet intervention period. Renalase levels decreased with the change from the low-salt to high-salt diet, whereas dietary potassium prevented the decrease in serum renalase induced by the high-salt diet. There was a significant inverse correlation between the serum renalase level and 24-h urinary sodium excretion. No significant correlation was found between the renalase level and BP among the different dietary interventions. The present study indicates that variations in dietary salt intake and potassium supplementation affect the serum renalase concentration in Chinese subjects. PMID:25058146

  10. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  11. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.

    PubMed

    Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro

    2017-06-01

    In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na + ) in their roots, thus avoiding excessive Na + accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K + ), calcium (Ca 2+ ), chloride ion (Cl - ) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines.

    PubMed

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Lluch, Carmen; Herrera-Cervera, José A

    2016-11-01

    Brassinosteroids (BRs) are steroid plant hormones that have been shown to be involved in the response to salt stress in cross-talk with other plant growth regulators such as polyamines (PAs). In addition, BRs are involved in the regulation of the nodulation in the rhizobium-legume symbiosis through the alteration of the PAs content in leaves. In this work, we have studied the effect of exogenous 24-epibrassinolide (EBL) in the response to salinity of nitrogen fixation in the symbiosis Medicago truncatula-Sinorhizobium meliloti. Foliar spraying of EBL restored the growth of plants subjected to salt stress and provoked an increment of the nitrogenase activity. In general, PAs levels in leaves and nodules decreased by the salt and EBL treatments, however, the co-treatment with NaCl and EBL augmented the foliar spermine (Spm) concentration. This increment of the Spm levels was followed by a reduction of the membrane oxidative damage and a diminution of the proline accumulation. The effect of BRs on the symbiotic interaction was evaluated by the addition of 0.01, 0.1 and 0.5 μM EBL to the growing solution, which provoked a reduction of the nodule number and an increment of the PAs levels in shoot. In conclusion, foliar treatment with EBL had a protective effect against salt stress in the M. truncatula-S. meliloti symbiosis mediated by an increment of the Spm levels. Treatment of roots with EBL incremented PAs levels in shoot and reduced the nodule number which suggests a cross-talk between PAs and BRs in the nodule suppression and the protection against salt stress. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. The 4D evolution of porosity during ongoing pressure-solution processes in NaCl using x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward

    2016-04-01

    Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or

  14. Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador - Pacific or Atlantic origin?

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, Sandro; Trachte, Katja; Rollenbeck, Ruetger; Lehnert, Lukas; Fuchs, Julia; Bendix, Joerg

    2016-08-01

    Sea salt (NaCl) has recently been proven to be of the utmost importance for ecosystem functioning in Amazon lowland forests because of its impact on herbivory, litter decomposition and, thus, carbon cycling. Sea salt deposition should generally decline as distance from its marine source increases. For the Amazon, a negative east-west gradient of sea salt availability is assumed as a consequence of the barrier effect of the Andes Mountains for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rainforest in the Andes of southern Ecuador. To analyse sea salt availability, we investigated the deposition of sodium (Na+) and chloride (Cl-), which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, sea salt deposition was analysed from both, rain and occult precipitation (OP) along an altitudinal gradient over a period between 2004 and 2009. To assess the influence of easterly and westerly air masses on the deposition of sodium and chloride over southern Ecuador, sea salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis data set and back-trajectory statistical methods were combined. Our results, based on deposition time series, show a clear difference in the temporal variation of sodium and chloride concentration and Na+ / Cl- ratio in relation to height and exposure to winds. At higher elevations, sodium and chloride present a higher seasonality and the Na+ / Cl- ratio is closer to that of sea salt. Medium- to long-range sea salt transport exhibited a similar seasonality, which shows the link between our measurements at high elevations and the sea salt synoptic transport. Although the influence of the easterlies was predominant regarding the atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the north equatorial Atlantic, Caribbean

  15. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds.

    PubMed

    Wang, Chen; Lei, Ying Duan; Wania, Frank

    2016-12-06

    Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na 2 SO 4 , NH 4 Cl, and NH 4 NO 3 was measured and compared with existing data for NaCl and (NH 4 ) 2 SO 4 . Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na 2 SO 4 > (NH) 2 SO 4 > NaCl > NH 4 Cl > NH 4 NO 3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO 4 2- > Cl - > NO 3 - and of cations: Na + > NH 4 + . The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.

  16. Voltage dependence of the rat chorda tympani response to Na+ salts: implications for the functional organization of taste receptor cells.

    PubMed

    Ye, Q; Heck, G L; DeSimone, J A

    1993-07-01

    1. Voltage-clamp and current-clamp data were obtained from a circumscribed region of the anterior rat lingual epithelium while simultaneously monitoring the afferent, stimulus-evoked, neural response from the same receptive field. 2. Chorda tympani (CT) responses at constant Na(+)-salt concentration were enhanced by submucosa negative voltage clamp and suppressed by positive voltage clamp. The complete CT response profile, including the time course of adaptation, was not uniquely determined by NaCl concentration alone. The response could be reproduced at different NaCl concentrations by applying a compensating voltage. 3. The form of the concentration and voltage dependence of the CT response indicates that the complete stimulus energy is the Na+ electrochemical potential difference across receptor cell apical membranes, and not Na+ concentration alone. This is the underlying principal behind the equivalence of chemical and electric taste for Na+ salts. 4. CT responses to sodium gluconate (25 and 200 mM) and 25 mM NaCl produced amiloride-insensitive components (AIC) of low magnitude. NaCl at 200 mM produced a significantly larger AIC. The AIC was voltage-clamp independent. The relative magnitude of the AIC was positively correlated with the transepithelial conductance of each salt. This suggests that the large AIC for 200 mM NaCl results from its relatively high permeability through the paracellular pathway. 5. Analysis of the CT response under voltage clamp revealed two anion effects on Na(+)-salt taste, both of which act through the paracellular shunt. 1) Anions modify the transepithelial potential (TP) across tight junctions and thereby modulate the cell receptor potential. This anion effect can be eliminated by voltage clamping the TP. 2) Sufficiently mobile anions facilitate electroneutral diffusion of Na+ salts through tight junctions. This effect is observed especially when Cl- is the anion and when the stimulus concentration favors NaCl influx, allowing Na

  17. Calcium ascorbate as a potential partial substitute for NaCl in dry fermented sausages: effect on colour, texture and hygienic quality at different concentrations.

    PubMed

    Gimeno, O; Astiasarán, I; Bello, J

    2001-01-01

    A control product (2.6% NaCl) and different treatments with reduced levels of salt (1, 2.3% NaCl; 2, 2.0% NaCl; 3, 1.7% NaCl; 4, 1.4% NaCl) and increased amounts of calcium ascorbate with an equivalent ionic strength to that of the control were assayed. The percentages of reduction of sodium content in relation to the control were 15, 24, 37 and 45% and the supply of calcium was 26, 33, 42 and 50% of the Recommended Dietary Allowance (RDAs established by NRC, US) for treatments 1, 2, 3 and 4, respectively. Partial substitution of NaCl by calcium ascorbate caused higher acidification related with the higher lactic acid bacteria development and probably with the presence of calcium. The instrumental measurement of colour gave rise to some significant differences especially with the highest amount of calcium ascorbate (treatment 4), giving rise to significant higher a* and b* values and lower L* values in relation to the control. Treatments 2, 3 and 4 lead to products with lower hardness and gumminess values than the control. No problems related to the hygienic quality were observed.

  18. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties.

    PubMed

    Jisha, K C; Puthur, Jos T

    2014-07-01

    The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

  19. Short communication: Salt tolerance of Lactococcus lactis R-604 as influenced by mild stresses from ethanol, heat, hydrogen peroxide, and UV light.

    PubMed

    Gonzalez, Ernesto E; Olson, Douglas; Aryana, Kayanush

    2017-06-01

    Lactococcus lactis is a culture widely used in salt-containing dairy products. Salt hinders bacterial growth, but exposure to environmental stress may protect cells against subsequent stress, including salt. The objective of this study was to evaluate the salt tolerance of L. lactis R-604 after exposure to various stresses. The culture was subjected to 10% (vol/vol) ethanol for 30 min, mild heat at 52°C for 30 min, 15 mM hydrogen peroxide for 30 min, or UV light (254 nm) for 5 min and compared with a control. Starting with 5 log cfu/mL for all treatments, growth was determined in M17 broth with 5 NaCl concentrations (0, 1, 3, 5, and 7% wt/vol). Plating was conducted daily for 5 d. Salt tolerance was enhanced with mild heat exposure before growth in M17 broth with 5% (wt/vol) NaCl on d 3, 4, and 5, and with exposure to hydrogen peroxide and ethanol stresses before growth in M17 broth with 5% (wt/vol) NaCl on d 4 and 5. Exposure of this culture to mild heat, hydrogen peroxide, or ethanol before growth in M17 broth containing 5% (wt/vol) salt can enhance its survival, which could be beneficial when using it in salt-containing dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  1. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    DOEpatents

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  2. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  3. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    NASA Astrophysics Data System (ADS)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  4. Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Lyall, Vijay; Phan, Tam-Hao T; Ren, ZuoJun; Mummalaneni, Shobha; Melone, Pamela; Mahavadi, Sunila; Murthy, Karnam S; DeSimone, John A

    2010-03-01

    Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP(2)) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 x 10(-6) M; a specific ENaC blocker) and resiniferatoxin (RTX; 0-10 x 10(-6) M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 x 10(-6) and 1 x 10(-6) M. At concentrations >1 x 10(-6) M, RTX inhibited the CT response. An increase in PIP(2) by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP(2) (a short chain synthetic PIP(2)) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP(2) by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 x 10(-6) M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP(2). An increase in PIP(2) enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na(+) response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 x 10(-6) M) or in TRPV1 KO mice. We conclude that PIP(2) is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP(2) seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its

  5. Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco.

    PubMed

    Chen, Xianyang; Bao, Hexigeduleng; Guo, Jie; Jia, Weitao; Li, Yinxin

    2015-01-01

    Recently, we found NHX1, the gene encoding a Na(+)/H(+) exchanger, participated in plant disease defense. Although NHX1 has been confirmed to be involved in plant salt tolerance, whether the NHX1 transgenic plants exhibit both salt tolerance and disease resistance has not been investigated. The T1 progenies of Nicotiana tabacum L. lines expressing SeNHX1 (from Salicornia europaea) were generated for the present study. Compared with PBI-type control plants, SeNHX1 transgenic tobaccos exhibited more biomass, longer root length, and higher K(+)/Na(+) ratio at post germination or seedling stage under NaCl treatment, indicating enhanced salt tolerance. The vacuolar H(+) efflux in SeNHX1 transgenic tobacco was increased after treatment of NaCl with different concentration. Meanwhile, the SeNHX1 transgenic tobaccos showed smaller wilted spot area, less H2O2 accumulation in leaves after infection of Phytophthora parasitica var. nicotianae. Further investigation demonstrated a larger NAD(P)(H) pool in SeNHX1 transgenic tobacco. These evidences revealed that overexpression of SeNHX1 intensified the compartmentation of Na(+) into vacuole under salt stress and improved the ability of eliminating ROS after pathogen attack, which then enhanced salt tolerance and disease resistance simultaneously in tobacco. Our findings indicate NHX1 has potential value in creating crops with both improved salt tolerance and disease resistance.

  6. Preparation of Ferrotitanium Alloys by Electrolysis-Assisted Calciothermic Reduction of Ilmenite in Equimolar CaCl2-NaCl Electrolyte: Effect of Calcium Oxide

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongren; Zhang, Yingjie; Hua, Yixin; Xu, Cunying; Dong, Peng; Zhang, Qibo; Wang, Ding

    2018-04-01

    The effect of CaO content on the preparation of ferrotitanium alloys from ilmenite with the method of the electrolysis-assisted calciothermic reduction has been investigated by use of ilmenite powders as raw materials that positions them next to the cathodic molybdenum plate, equimolar CaCl2-NaCl molten salt with 2-7 mol.% CaO as electrolyte and graphite as anode at 700°C with cell voltage of 2.8 V under argon atmosphere. It is demonstrated that increasing the reactant CaO content is beneficial to the calciothermic reduction of ilmenite and the intermediate CaTiO3. Experimental results also show that after 14 h of calciothermic reduction process, the products are ferrotitanium alloys and the specific energy consumption is only about 10.21 kWh kg-1 when adding 5 mol.% CaO into equimolar CaCl2-NaCl molten salt and approximately 14.40 kWh kg-1 when CaO content is increased to 7 mol.%.

  7. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

    PubMed

    Fiorini, Dennis; Pacetti, Deborah; Gabbianelli, Rosita; Gabrielli, Serena; Ballini, Roberto

    2015-08-28

    Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace-SPME-gas chromatographic (HS-SPME-GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2-C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluation of the direct and diffusion methods for the determination of fluoride content in table salt

    PubMed Central

    Martínez-Mier, E. Angeles; Soto-Rojas, Armando E.; Buckley, Christine M.; Margineda, Jorge; Zero, Domenick T.

    2010-01-01

    Objective The aim of this study was to assess methods currently used for analyzing fluoridated salt in order to identify the most useful method for this type of analysis. Basic research design Seventy-five fluoridated salt samples were obtained. Samples were analyzed for fluoride content, with and without pretreatment, using direct and diffusion methods. Element analysis was also conducted in selected samples. Fluoride was added to ultra pure NaCl and non-fluoridated commercial salt samples and Ca and Mg were added to fluoride samples in order to assess fluoride recoveries using modifications to the methods. Results Larger amounts of fluoride were found and recovered using diffusion than direct methods (96%–100% for diffusion vs. 67%–90% for direct). Statistically significant differences were obtained between direct and diffusion methods using different ion strength adjusters. Pretreatment methods reduced the amount of recovered fluoride. Determination of fluoride content was influenced both by the presence of NaCl and other ions in the salt. Conclusion Direct and diffusion techniques for analysis of fluoridated salt are suitable methods for fluoride analysis. The choice of method should depend on the purpose of the analysis. PMID:20088217

  9. Drinking salt water enhances rehydration in horses dehydrated by frusemide administration and endurance exercise.

    PubMed

    Butudom, P; Schott, H C; Davis, M W; Kobe, C A; Nielsen, B D; Eberhart, S W

    2002-09-01

    Because the primary stimulus for thirst is an increase in plasma tonicity, we hypothesised that dehydrated horses would drink a greater total volume of fluid voluntarily during the first hour of recovery when they were initially offered salt water. To test this hypothesis, bodyweight (bwt), fluid intake (FI) and [Na+] were measured in 6 Arabian horses offered 3 rehydration solutions. After dehydration was induced by frusemide administration (1 mg/kg bwt, i.v.) followed by 45 km treadmill exercise, water (W), 0.45% NaCl and 0.9% NaCl were offered, in a randomised order, during the initial 5 min after completing exercise. Horses were subsequently placed in a stall and further intake of plain water during the first hour of recovery was measured. By the end of exercise, horses lost 5.2 +/- 0.2, 5.6 +/- 0.3 and 5.7 +/- 0.2% (P>0.05) bwt and FI during the first 5 min of recovery was 10.5 +/- 0.7, 11.6 +/- 0.8 and 11.6 +/- 1.5 l (P>0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. After 20 min of recovery, [Na+] had decreased with W but remained unchanged from the end exercise values for both saline solutions. During the initial hour of recovery, further water intake was 0.9 +/- 0.4, 5.0 +/- 0.5 and 6.9 +/- 0.7 l (P<0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. Therefore, total FI was 11.4 +/- 0.5, 16.6 +/- 0.7 and 18.5 +/- 1.7 l (P<0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively, and persisting bwt loss after 60 min of recovery was greater (P<0.05) for W (3.5%) than for the 2 saline solutions (24% for 0.45% NaCl and 1.9% for 0.9% NaCl). In conclusion, providing salt water as the initial rehydration fluid maintained an elevated [Na+] and resulted in greater total FI and recovery of bwt loss during the first hour of recovery, in comparison to offering only plain water.

  10. Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.

    2017-07-01

    The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.

  11. Effect of Salt Stress on Growth, Na+ Accumulation and Proline Metabolism in Potato (Solanum tuberosum) Cultivars

    PubMed Central

    Jaarsma, Rinse; de Vries, Rozemarijn S. M.; de Boer, Albertus H.

    2013-01-01

    Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na+ homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na+ levels in root and stem with the highest leaf Na+ concentration of all cultivars, resulting in a high Na+ shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na+ accumulation was found and the SDI for Na+ points to a role of stem Na+ accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na+ accumulation in stem tissue, resulting in reduced Na+ transport to the leaves. PMID:23533673

  12. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    PubMed

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  13. Molecular dynamics simulations of Palmitic acid adsorbed on NaCl

    NASA Astrophysics Data System (ADS)

    Lovrić, Josip; Brizquez, Stéphane; Duflot, Denis; Monnerville, Maurice; Pouilly, Brigitte; Toubin, Céline

    2015-04-01

    The aerosol and gases effects in the atmosphere play an important role on health, air quality and climate, affecting both political decisions and economic activities around the world [1]. Among the several approaches of studying the origin of these effects, computational modeling is of fundamental importance, providing insights on the elementary chemical processes. Sea salts are the most important aerosol in the troposphere (109T/year) [2]. Our theoretical work consists in modeling a (100) NaCl surface coated with palmitic acid (PA) molecules. Molecular dynamics simulations are carried out with the GROMACS package [3], in the NPT ensemble at different temperatures, different PA coverages and various humidity. We focus on two aspects of the PA organization at the salt surface: the first one is related to transition in molecular orientation of the adsorbate as a function of PA coverage. The second one implies the effect of humidity, by adding water molecules, on the organization of the fatty acid at the salt surface, and especially on the occurrence of PA isolated islands as observed in the experiments [4]. For high humidity conditions, PA are removed from the salt surface and form islands on top of the water. This effect is enhanced when temperature increases. Acknowledgments: this research has been supported by the CaPPA project (Chemical and Physical Properties of the Atmosphere), funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-10-LABX-005. [1] O. Boucher et al, 5th Assessment Report IPCC, (2013) [2] B. J. Finlayson-Pitts, Chem. Rev.103, 4801-4822 (2003) [3] http://www.gromacs.org/ [4] S. Sobanska et al, private communication

  14. Impact of high fat/high salt diet on myocardial oxidative stress.

    PubMed

    Mayyas, Fadia; Alzoubi, Karem H; Al-Taleb, Zahraa

    2017-01-01

    High fat high salt diet contributes to oxidative stress and cardiac diseases. To determine the impact of moderately high fat diet (HFD), high salt (HS) or their combination on blood pressure (Bp) and myocardial oxidants/antioxidants. Sprague Dawley rats were assigned into four groups; conventional diet (control, 5% fat, 0.5% NaCl), HFD (25% fat, 0.5% NaCl), HS (5% fat, 8% NaCl), or combined diet (HFD+HS) for 10 weeks. Bp and cardiac oxidants and antioxidants were measured. HFD, HS, and their combination didn't cause obesity or dyslipidemia. Both HS and combined diets resulted in an increase in the heart/body weight ratio accompanied by an increase in Bp. No changes were observed in levels of the glutathione (GSH) system or superoxide dismutase (SOD) activities. However, a significant decrease in TBARS levels was observed in the HFD and the combined diet with a parallel increase in catalase activity in all groups. Relative to HFD, the combined diet was associated with increases in GSH reductase/peroxidase and SOD activities. The lack of changes in the GSH system, the decrease in TBARS, and the increase in catalase activity suggest that normal hearts adapt compensatory mechanisms to prevent oxidative damage in response to HFD/and or HS.

  15. Impacts of Irradiation Sources on Quality Attributes of Low-salt Sausage during Refrigerated Storage

    PubMed Central

    Kim, Hyun-Wook; Choi, Yun-Sang

    2017-01-01

    This study was performed to investigate the impacts of irradiation sources on quality attributes of low-salt sausage during refrigerated storage. Control sausage was prepared with 1.5% sodium chloride (NaCl), whereas low-salt sausage was formulated with 0.75% NaCl (a 50% reduction; L-control). Sausage samples were vacuum-packaged, and low-sausages were irradiated with gamma-ray, electron-beam and X-ray at 5 kGy, respectively. The samples were stored at 4°C for 28 d to determine changes in quality attributes. The pH of low-salt sausages was unaffected by irradiation at 5 kGy (p>0.05). Higher redness values were found at irradiated low-salt sausages compared to control (p<0.05). The hardness, gumminess and chewiness of control sausage were higher than those of low-salt sausages (p<0.05). However, there were no significant differences in the textural parameters between low-salt sausage treatments. The overall sensory acceptability score of irradiated/low-salt sausages were lower than L-control due to decreased scores for cooked meat flavor but increased radiolytic off-flavor (p<0.05). The initial 2-thiobarbituric acid-reactive substances (TBARS) values of irradiated/low-salt sausages were higher than control and L-control (p<0.05). However, the TBARS values of irradiated treatments were significantly lower than control at the end of storage. Irradiation could effectively inhibit the microorganism growth (total aerobic bacteria, coliforms, Enterobacteriaceae, and Pseudomonas spp.) in low-salt sausages (p<0.05). Therefore, our findings show that irradiation could be to improve microbial safety of low-salt sausages, and suggest that further studies should be necessary to reducing radiolytic off-flavor of irradiated/low-salt sausages. PMID:29147093

  16. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  17. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid.

    PubMed

    Barroso, C; Romero, L C; Cejudo, F J; Vega, J M; Gotor, C

    1999-07-01

    The expression of Atcys-3A gene coding for cytosolic O-acetylserine(thiol)lyase, a key enzyme in cysteine biosynthesis, from Arabidopsis thaliana is significantly induced by exposure to salt and heavy-metal stresses. Addition of NaCl to mature plants induced a rapid accumulation of the mRNA throughout the leaf lamina and roots, and later on in stems, being mainly restricted to vascular tissues. The salt-specific regulation of Atcys-3A was also mediated by abscisic acid (ABA) since: (1) exogenous addition of ABA to the culture medium mimicked the salt-induced plant response by raising the level of Atcys-3A transcript, and (2) Arabidopsis mutants aba-1 and abi2-1 were not able to respond to NaCl. Our results suggest that a high rate of cysteine biosynthesis is required in Arabidopsis under salt stress necessary for a plant protection or adaptation mechanism. This hypothesis was supported by the observation that intracellular levels of cysteine and glutathione increased up to 3-fold after salt treatment.

  19. ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION OF FLY ASH AND SPRAY DRYER BY-PRODUCT

    EPA Science Inventory

    The paper describes small pilot-scale experiments, showing that the pressure drop increase during the fabric filtration of redispersed spray dryer by-product (chiefly calcium salts and fly ash) is significantly reduced by electrostatic enhancement of the filtration. The pressure ...

  20. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.

    PubMed

    Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos

    2018-08-15

    This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Replacement of salt by a novel potassium- and magnesium-enriched salt alternative improves the cardiovascular effects of ramipril.

    PubMed Central

    Mervaala, E. M.; Paakkari, I.; Laakso, J.; Nevala, R.; Teräväinen, T. M.; Fyhrquist, F.; Vapaatalo, H.; Karppanen, H.

    1994-01-01

    1. The influence of salt (sodium chloride; NaCl) (an additional 6% in the diet) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of ramipril was studied in stroke-prone spontaneously hypertensive rats in a 6-week study. The intake of sodium chloride was adjusted to the same level by adding the salt alternative at a 1.75 times higher amount than regular salt. 2. Salt produced a marked rise in blood pressure and induced cardiac hypertrophy and significant mortality, while the salt alternative neither increased blood pressure nor caused any mortality and produced less cardiac hypertrophy than salt. 3. Ramipril treatment at a daily dose of 3 mg kg-1 normalized blood pressure and prevented the development of cardiac hypertrophy of rats on control diet. These effects of ramipril were blocked by the addition of salt but were only slightly attenuated by the addition of the salt alternative. The mortality in the salt group was prevented by ramipril. 4. Responses of mesenteric arterial rings in vitro were examined at the end of the study. Salt, but not the salt alternative, increased vascular contractile responses to noradrenaline. Ramipril treatment improved the arterial relaxation responses to acetylcholine and to sodium nitroprusside. The vascular relaxation enhancing effect of ramipril was blocked by salt but only slightly attenuated by the salt alternative. 5. Ramipril treatment did not significantly increase plasma renin activity in the presence or in the absence of salt supplementation. The salt alternative did not cause hyperkalaemia, either alone or in combination with ramipril treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032605

  2. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis.

    PubMed

    Wei, Yangyang; Xu, Yanchao; Lu, Pu; Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Lin, Zhongxu; Liu, Fang; Wang, Kunbo

    2017-01-01

    Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress.

  3. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis

    PubMed Central

    Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Liu, Fang

    2017-01-01

    Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress. PMID:28552980

  4. Effects of salt concentration and pH on structural and functional properties of Lactobacillus acidophilus: FT-IR spectroscopic analysis.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-03-03

    The effects of sodium chloride concentration and varying pH levels on the structural and functional properties of Lactobacillus acidophilus were investigated. Reconstituted skim milk was inoculated with Lb. acidophilus at varying salt concentrations (0, 1, 2, 5 and 10% NaCl) and pH levels (4.0, 5.0 and 6.0) and ACE-inhibitory activity and proteolytic activity were determined and the viable cell count was enumerated after 24h of fermentation at 37 °C. The degree of proteolysis exhibited an increase with higher salt concentration at pH 5.0 and 6.0. ACE-inhibitory activity was found to be the highest at pH 5.0 at all salt concentrations. Fourier transform infrared spectroscopy results demonstrated significant changes occurring beyond 2% NaCl particularly at low pH (4.0). The findings revealed that significant changes occurred in amide I and amide III regions when Lb. acidophilus was subjected to varying salt concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions.

    PubMed

    Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R; Ahamad, Tansir; Alshehri, Saad M; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W

    2016-07-12

    Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g(-1) in 1 M NaCl at a scan rate of 5 mV·s(-1). Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g(-1).

  6. RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels.

    PubMed

    Hemp, Sean T; Smith, Adam E; Bunyard, W Clayton; Rubinstein, Michael H; Long, Timothy E

    2014-05-13

    Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG- b -DEG 95 TMA 5 ) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG 98 TMA 2 - b -OEG- b -DEG 98 TMA 2 ) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels.

  7. Renal neural mechanisms in salt-sensitive hypertension.

    PubMed

    DiBona, G F

    1995-01-01

    Genetic forms of salt (NaCl)-sensitive hypertension are characterized by increased renal sympathetic nerve activity responses to environmental stimuli. The increases in renal sympathetic nerve activity produce marked changes in renal function with renal vasoconstriction and sodium and water retention which can contribute to the initiation, development and maintenance of hypertension. In genetic forms of NaCl-sensitive hypertension, increased dietary NaCl intake produces alterations in norepinephrine kinetics with decreased concentrations of norepinephrine in regions of the anterior hypothalamus which are critical for the regulation of peripheral sympathetic nerve activity. This local central decrease in tonic alpha 2 adrenoceptor sympathoinhibitory input leads to increased peripheral (renal) sympathetic nerve activity and hypertension. Similarly, with increased dietary NaCl intake, patients with NaCl-sensitive hypertension develop increased arterial pressure, renal vasoconstriction, increased glomerular capillary pressure and increased urinary albumin excretion. Thus, increased dietary NaCl intake can, via central nervous system actions, produce increases in renal sympathetic nerve activity whose renal functional effects contribute to the pathophysiology of hypertension.

  8. Effect of halide salts on development of surface browning on fresh-cut 'Granny Smith' (Malus × domestica Borkh) apple slices during storage at low temperature.

    PubMed

    Li, Yongxin; Wills, Ron B H; Golding, John B; Huque, Roksana

    2015-03-30

    The postharvest life of fresh-cut apple slices is limited by browning on cut surfaces. Dipping in halide salt solutions was examined for their inhibition of surface browning on 'Granny Smith' apple slices and the effects on biochemical factors associated with browning. Delay in browning by salts was greatest with chloride = phosphate > sulfate > nitrate with no difference between sodium, potassium and calcium ions. The effectiveness of sodium halides on browning was fluoride > chloride = bromide > iodide = control. Polyphenol oxidase (PPO) activity of tissue extracted from chloride- and fluoride-treated slices was not different to control but when added into the assay solution, NaF > NaCl both showed lower PPO activity at pH 3-5 compared to control buffer. The level of polyphenols in treated slices was NaF > NaCl > control. Addition of chlorogenic acid to slices enhanced browning but NaCl and NaF counteracted this effect. There was no effect of either halide salt on respiration, ethylene production, ion leakage, and antioxidant activity. Dipping apple slices in NaCl is a low cost treatment with few impediments to commercial use and could be a replacement for other anti-browning additives. The mode of action of NaCl and NaF is through decreasing PPO activity resulting in reduced oxidation of polyphenols. © 2014 Society of Chemical Industry.

  9. The stress corrosion resistance and the cryogenic temperature mechanical properties of annealed Nitronic 60 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    Ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of annealed, straightened, and centerless ground Nitronic 60 stainless steel alloy bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing strength with decreasing temperature to -196 C. Below liquid nitrogen temperature the smooth tensile and notched tensile strengths decreased slightly while the elongation and reduction of area decreased drastically. The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens and transverse C-ring specimens exposed to: alternate immersion in a 3.5% NaCl bath; humidity cabinet; and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack. Approximately 3/4 of the transverse C-rings exposed to alternate immersion and to salt spray experienced a pitting attack on the top and bottom ends. Additional stress corrosion tests were performed on transverse tensile specimens. No failures occurred in the 90% stressed specimens exposed for 90 days in the alternate immersion and salt spray environments

  10. Evaporation of NaCl solution from porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-05-01

    Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.

  11. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  12. In-mouth salt release measurement during food chewing using sensors

    NASA Astrophysics Data System (ADS)

    Emorine, Marion; Mielle, Patrick; Maratray, Jacques; Thomas-Danguin, Thierry; Salles, Christian

    2011-09-01

    In most countries, health authorities recommend a 20% reduction of the salt content in manufactured food products. Understanding the release of taste compounds from food is essential to better known the mechanism of flavour perception, in order to develop low salt products that are acceptable to the consumers. In this aim, two sensors have been designed to allow the in-mouth monitoring of conductivity from 0.34 to 340 mM NaCl and temperature during mastication of hot snacks as conductivity is highly dependant on the temperature.

  13. Salinity induction of recycling Crassulacean acid metabolism and salt tolerance in plants of Talinum triangulare.

    PubMed

    Montero, Estefanía; Francisco, Ana Marta; Montes, Enrique; Herrera, Ana

    2018-06-08

    Crassulacean acid metabolism (CAM) can be induced by salinity, thus conferring the plant higher water-use efficiency. Talinum triangulare does not frequently encounter salt in its natural habitat but is cultivated in soils that may become salinized. Here we examined whether plants of T. triangulare can grow in saline soils and show salt-induced CAM. Leaf gas exchange, carbon isotopic ratio (δ13C), nocturnal acid accumulation (ΔH+), water relations, photosynthetic pigment and mineral contents, leaf anatomy and growth were determined in greenhouse in plants irrigated with 0, 150, 300 and 400 mm NaCl. Salinity reduced gas exchange and induced CAM, ΔH+ reaching 50.2 μmol H+ g-1 fresh mass under 300 mm NaCl. No nocturnal CO2 uptake, but compensation, was observed. Values of δ13C were lowest under 0 and 400 mm NaCl, and highest under 150 and 300 mm. The difference in osmotic potential (ψs) between control and treated plants averaged 0.45 MPa for the three [NaCl] values, the decrease in ψs being accounted for by up to 63 % by Na+ and K+. Pigment contents were unaffected by treatment, suggesting lack of damage to the photosynthetic machinery. Changes in stomatal index with unchanged stomatal density in newly expanded leaves suggested inhibited differentiation of epidermal cells into stomata. Whole-leaf and parenchymata thickness increased under 150 and 300 mm NaCl. Only plants irrigated with 400 mm NaCl showed reductions in biomass (stems, 41 %; reproductive structures, 78 %). The K/Na molar ratio decreased with [NaCl] from 2.0 to 0.4. The operation of CAM in the recycling mode was evidenced by increased ΔH+ with no nocturnal CO2 uptake. Talinum triangulare can be classified as a halo-tolerant species based on its low K/Na molar ratio under salinity and the relatively small reduction in growth only at the highest [NaCl].

  14. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    PubMed

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no

  15. Effect of salt intake and potassium supplementation on serum renalase levels in Chinese adults: a randomized trial.

    PubMed

    Wang, Yang; Liu, Fu-Qiang; Wang, Dan; Mu, Jian-Jun; Ren, Ke-Yu; Guo, Tong-Shuai; Chu, Chao; Wang, Lan; Geng, Li-Ke; Yuan, Zu-Yi

    2014-07-01

    Renalase, a recently discovered enzyme released by the kidneys, breaks down blood-borne catecholamines and may thus regulate blood pressure (BP). Animal studies have suggested that high levels of dietary salt might reduce blood and kidney renalase levels. We conducted a randomized trial to assess the effects of altered salt and potassium intake on serum renalase levels and the relationship between serum renalase levels and BP in humans.Forty-two subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl).Serum renalase levels were significantly higher than baseline levels during the low-salt diet intervention period. Renalase levels decreased with the change from the low-salt to high-salt diet, whereas dietary potassium prevented the decrease in serum renalase induced by the high-salt diet. There was a significant inverse correlation between the serum renalase level and 24-h urinary sodium excretion. No significant correlation was found between the renalase level and BP among the different dietary interventions.The present study indicates that variations in dietary salt intake and potassium supplementation affect the serum renalase concentration in Chinese subjects.

  16. Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis.

    PubMed

    Espinoza, Catherine; Liang, Yan; Stacey, Gary

    2017-03-01

    In nature, plants need to respond to multiple environmental stresses that require the involvement and fine-tuning of different stress signaling pathways. Cross-tolerance, in which plants pre-treated with chitin (a fungal microbe-associated molecular pattern) have improved salt tolerance, was observed in Arabidopsis, but is not well understood. Here, we show a unique link between chitin and salt signaling mediated by the chitin receptor CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1). Transcriptome analysis revealed that salt stress-induced genes are highly correlated with chitin-induced genes, although this was not observed with other microbe-associated molecular patterns (MAMPs) or with other abiotic stresses. The cerk1 mutant was more susceptible to NaCl than was the wild type. cerk1 plants had an irregular increase of cytosolic calcium ([Ca 2+ ] cyt ) after NaCl treatment. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation experiments indicated that CERK1 physically interacts with ANNEXIN 1 (ANN1), which was reported to form a calcium-permeable channel that contributes to the NaCl-induced [Ca 2+ ] cyt signal. In turn, ann1 mutants showed elevated chitin-induced rapid responses. In short, molecular components previously shown to function in chitin or salt signaling physically interact and intimately link the downstream responses to fungal attack and salt stress. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Consumption of a high-salt diet by ewes during pregnancy alters nephrogenesis in 5-month-old offspring.

    PubMed

    Tay, S H; Blache, D; Gregg, K; Revell, D K

    2012-11-01

    Maternal nutrition during pregnancy can affect kidney development in the foetus, which may lead to adverse consequences in the mature kidney. It was expected that high-salt intake by pregnant ewes would lead to a reduction in foetal glomerular number but that the ovine kidney would adapt to maintain homoeostasis, in part by increasing the size of each glomerulus. Merino ewes that were fed either a control (1.5% NaCl) or high-salt (10.5% NaCl) diet during pregnancy, as well as their 5-month-old offspring, were subjected to a dietary salt challenge, and glomerular number and size and sodium excretion were measured. The high-salt offspring had 20% fewer glomeruli compared with the control offspring (P < 0.001), but they also had larger glomerular radii compared with the control offspring (P < 0.001). Consequently, the cross-sectional area of glomeruli was 18% larger in the high-salt offspring than in the control offspring (P < 0.05). There was no difference in the daily urinary sodium excretion between the two offspring groups (P > 0.05), although the high-salt offspring produced urine with a higher concentration of sodium. Our results demonstrated that maternal high-salt intake during pregnancy affected foetal nephrogenesis, altering glomerular number at birth. However, the ability to concentrate and excrete salt was not compromised, which indicates that the kidney was able to adapt to the reduction in the number of glomeruli.

  18. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequencymore » in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental

  19. Characteristics of salt taste and free chlorine or chloramine in drinking water.

    PubMed

    Wiesenthal, K E; McGuire, M J; Suffet, I H

    2007-01-01

    Salty taste with or without chlorine or chloramine flavour is one of the major consumer complaints to water utilities. The flavour profile analysis (FPA) taste panel method determined the average taste threshold concentration for salt (NaCl) in Milli-Q water to be 640 +/- 3 mg/L at pH 8. Chlorine and chloramine disinfectants have no antagonistic or synergistic effects on the taste of NaCl, salt, in Milli-Q water. The flavour threshold concentrations for chlorine or chloramine in Milli-Q water alone or in the presence of NaCl could not be estimated by the Weber-Fechner curves due to the chlorine or chloramine flavour outliers in the 0.2-0.8 mg/L concentration range. Apparently, NaCl is not equilibrated with the concentration of ions in the saliva in the mouth and the concentration of free chlorine or chloramines cannot be tasted correctly. Therefore, dechlorinated tap water may be the best background water to use for a particular drinking water evaluation of chlorine and chloramine thresholds. Laboratory FPA studies of free chlorine found that a 67% dilution of Central Arizona Project (CAP) (Tucson, AZ) water with Milli-O water was required to reduce the free chlorine flavour to a threshold value instead of a theoretical value of 80% (Krasner and Barrett, 1980). No synergistic effect was found for chlorine flavour on the dilution of CAP water with Milli-Q water. When Central Avra Valley (AVRA) groundwater was used for the dilution of CAP water, a synergistic effect of the TDS present was observed for the chlorine flavour. Apparently, the actual mineral content of drinking water, and not just NaCl in Milli-Q water, is needed for comparative flavour tests for chlorine and chloramines.

  20. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  1. Candidate molten salt investigation for an accelerator driven subcritical core

    NASA Astrophysics Data System (ADS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  2. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions

    PubMed Central

    Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R.; Ahamad, Tansir; Alshehri, Saad M.; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C.-W.

    2016-01-01

    Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g−1. PMID:27404086

  3. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    PubMed Central

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm−3) as well as a gravimetric capacity of 161 mA h g−1 and volumetric capacity of 281 mA h cm−3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g−1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812

  4. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  5. Effect of salts on formation and stability of vitamin E-enriched mini-emulsions produced by spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2014-11-19

    Emulsion-based delivery systems are being utilized to incorporate lipophilic bioactive components into various food, personal care, and pharmaceutical products. This study examined the influence of inorganic salts (NaCl and CaCl2) on the formation, stability, and properties of vitamin E-enriched emulsions prepared by spontaneous emulsification. These emulsions were simply formed by titration of a mixture of vitamin E acetate (VE), carrier oil (MCT), and nonionic surfactant (Tween 80) into an aqueous salt solution with continuous stirring. Salt type and concentration (0-1 N NaCl or 0-0.5 N CaCl2) did not have a significant influence on the initial droplet size of the emulsions. On the other hand, the isothermal and thermal stabilities of the emulsions depended strongly on salt levels. The cloud point of the emulsions decreased with increasing salt concentration, which was attributed to accelerated droplet coalescence in the presence of salts. Dilution (2-6 times) of the emulsions with water appreciably improved their thermal stability by increasing their cloud point, which was mainly attributed to the decrease in aqueous phase salt levels. The isothermal storage stability of the emulsions also depended on salt concentration; however, increasing the salt concentration decreased the rate of droplet growth, which was the opposite of its effect on thermal stability. Potential physicochemical mechanisms for these effects are discussed in terms of the influence of salt ions on van der Waals and electrostatic interactions. This study provides important information about the effect of inorganic salts on the formation and stability of vitamin E emulsions suitable for use in food, personal care, and pharmaceutical products.

  6. Mild Salt Stress Conditions Induce Different Responses in Root Hydraulic Conductivity of Phaseolus vulgaris Over-Time

    PubMed Central

    Calvo-Polanco, Monica; Sánchez-Romera, Beatriz; Aroca, Ricardo

    2014-01-01

    Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl− have also a main role in the whole process. We studied the effects of 30 mM NaCl on Phaseolus vulgaris plants after 9 days and found different responses in root hydraulic conductivity over-time. An initial and final reduction of root hydraulic conductivity, stomatal conductance, and leaf water potential in response to NaCl was attributed to an initial osmotic shock after 1 day of treatment, and to the initial symptoms of salt accumulation within the plant tissues after 9 days of treatment. After 6 days of NaCl treatment, the increase in root hydraulic conductivity to the levels of control plants was accompanied by an increase in root fructose content, and with the intracellular localization of root plasma membrane aquaporins (PIP) to cortex cells close to the epidermis and to cells surrounding xylem vessels. Thus, the different responses of bean plants to mild salt stress over time may be connected with root fructose accumulation, and intracellular localization of PIP aquaporins. PMID:24595059

  7. Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles.

    PubMed Central

    Carmona-Ribeiro, A M; Chaimovich, H

    1986-01-01

    Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002

  8. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance.

    PubMed

    de Abreu, Carlos Eduardo Braga; Araújo, Gyedre dos Santos; Monteiro-Moreira, Ana Cristina de Oliveira; Costa, José Hélio; Leite, Hugo de Brito; Moreno, Frederico Bruno Mendes Batista; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2014-08-01

    Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC-ESI-MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.

  9. Investigation of anticorrosion properties of nanocomposites of spray coated zinc oxide and titanium dioxide thin films on stainless steel (304L SS) in saline environment

    NASA Astrophysics Data System (ADS)

    P, Muhamed Shajudheen V.; S, Saravana Kumar; V, Senthil Kumar; Maheswari A, Uma; M, Sivakumar; Rani K, Anitha

    2018-01-01

    The present study reports the anticorrosive nature of nanocomposite thin films of zinc oxide and titanium dioxide on steel substrate (304L SS) using spray coating method. The morphology and chemical constituents of the nanocomposite thin film were characterized by field effect scanning electron microscopy and energy dispersive analysis of x-ray (EDAX) studies. From the EDAX studies, it was observed that nanocomposite coatings of desired stoichiometry can be synthesized using present coating technique. The cyclic voltametric techniques such as Tafel analysis and electrochemical impedance spectroscopy (EIS) analysis were conducted to study the anticorrosion properties of the coatings. The E corr values obtained from Tafel polarization curves of the sample coated with nanocomposites of ZnO and TiO2 in different ratios (5:1, 1:1 and 1:5) indicated that the corrosion resistance was improved compared to bare steel. The coating resistance values obtained from the Nyquist plot after fitting with equivalent circuit confirmed the improved anticorrosion performance of the coated samples. The sample coated with ZnO: TiO2 in the ratio 1:5 showed better corrosion resistance compared to other ratios. The Tafel and EIS studies were repeated after exposure to 5% NaCl for 390 h and the results indicated the anticorrosive nature of the coating in the aggressive environment. The root mean square deviation of surface roughness values calculated from the AFM images before and after salt spray indicated the stability of coating in the saline environment.

  10. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying

    PubMed Central

    2016-01-01

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  11. Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang

    2008-10-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.

  12. Influence of aldosterone and salt or ouabain in a10 rat aorta smooth muscle cells.

    PubMed

    Schwerdt, Gerald; Frisch, Annett; Mildenberger, Sigrid; Hilgenfeld, Tim; Grossmann, Claudia; Gekle, Michael

    2012-01-01

    It is currently under debate whether aldosterone is able to induce fibrosis or whether it acts only as a cofactor under pathological conditions, e.g. as an elevated salt (NaCl) load. We tested the interaction of 10 nM aldosterone, 15 mM NaCl and 1 μM ouabain using rat aorta smooth muscle cells (A10) with respect to the following parameters: necrosis, apoptosis, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase activity, glutathione (GSH) content, collagen and fibronectin homeostasis and intracellular calcium distribution. Necrosis rates were increased after 48 h of incubation with aldosterone, salt or ouabain and in the combination of aldosterone and salt or ouabain. Apoptosis rates were decreased. A reduced defense capacity against oxidative stress was mirrored in the decreased G6PD activity and GSH content. Collagen III or fibronectin synthesis rates were unchanged, but gelatinase activity was increased resulting in a decreased media collagen III and fibronectin content. Calcium stores were increased by aldosterone in combination with ouabain. Aldosterone and salt per se can lead to cell injury that is aggravated in combination or with cardiotonic steroids. In cooperation with other vascular cells, this can generate a permissive milieu enabling aldosterone or salt to promote more extensive vascular injury. Copyright © 2012 S. Karger AG, Basel.

  13. Protective effects of AT1-receptor blocker and CA antagonist combination on renal function in salt loaded spontaneously hypertensive rats.

    PubMed

    Gjorgjievska, K; Zafirov, D; Jurhar-Pavlova, M; Cekovska, S; Atanasovska, E; Pavlovska, K; Zendelovska, D

    2015-01-01

    Salt sensitive hypertension is known to be a contributing factor for the progression of kidney disease. This study was undertaken to investigate the role of excessive dietary salt on renal function and to evaluate the effect of valsartan and amlodipin given as a combination therapy on blood pressure and parameters specific to the renal function in salt loaded SHR rats. 48 male SHR rats at age of 20 weeks and body weight ranging between 270-350 g were used. SHR rats were divided into 3 groups: control group of rats -SHRC (n = 16) given tab water ad libitum and two salt treated groups in which tab water was replaced with a solution of NaCl (1%) from age of 8 weeks given ad libitum: SHRVAL+AMLO group (n = 16) where investigated drugs were administered at a dose of 10 mg/kg/ b.w. (valsartan) and 5 mg/kg/ b.w. (amlodipin) by gavage and SHR NaCl group (n = 16) that received saline in the same volume and the same time intervals as the SHRVAL+AMLO group. For a period of 12 weeks we have investigated the effect of the VAL+AMLO drug combination on systolic blood pressure (SBP), body weight and renal function tests. Salt loading with 1% solution in the SHR NaCl group has lead to significant increase of blood pressure, proteinuria and decrease in creatinine clearance. Combined treatment with AT1 receptor blocker and calcium antagonist has managed to control blood pressure and ameliorated renal damage.

  14. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.).

    PubMed

    Ghorbani, A; Razavi, S M; Ghasemi Omran, V O; Pirdashti, H

    2018-03-25

    Salinity is now an increasingly serious environmental issue that affects the growth and yield of many plants. In the present work, the influence of inoculation with the symbiotic fungus, Piriformospora indica, on gas exchange, water potential, osmolyte content, Na/K ratio and chlorophyll fluorescence of tomato plants under three salinity levels (0, 50, 100 and 150 mm NaCl) and three time periods (5, 10 and 15 days after exposure to salt) was investigated. Results indicate that P. indica inoculation improved growth parameters of tomato under salinity stress. This symbiotic fungus significantly increased photosynthetic pigment content under salinity, and more proline and glycine betaine accumulated in inoculated roots than in non-inoculated roots. P. indica further significantly improved K + content and reduced Na + level under salinity treatment. After inoculation with the endophytic fungus, leaf physiological parameters, such as water potential, net photosynthesis, stomatal conductance and transpiration, were all higher under the salt concentrations and durations compared with controls without P. indica. With increasing salt level and salt treatment duration, values of F 0 and qP increased but F m , F v /F m , F' v /F' m and NPQ declined in the controls, while inoculation with P. indica improved these values. The results indicate that the negative effects of NaCl on tomato plants were alleviated after P. indica inoculation, probably by improving physiological parameters such as water status and photosynthesis. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  15. Genetic Diversity of Salt Tolerance in Miscanthus

    PubMed Central

    Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard

    2017-01-01

    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243

  16. Castable cements to prevent corrosion of metals in molten salts

    DOE PAGES

    Gomez-Vidal, Judith C.; Morton, E.

    2016-04-22

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 °C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72±0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl – 65.58more » wt% LiCl at 650 °C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C shows a corrosion rate of 9E-04 mm/year. Here, the present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.« less

  17. New Approaches to Production of Turkish-type Dry-cured Meat Product “Pastirma”: Salt Reduction and Different Drying Techniques

    PubMed Central

    Hastaoglu, Emre; Vural, Halil

    2018-01-01

    Abstract In this study, the possible changes in the quality characteristics of pastırma, Turkish-type dry-cured meat product, produced by using two different salts (NaCl-KCl) in a curing mixture and two different production techniques (natural and controlled condition) were examined. Moisture, pH, salt, sodium, potassium, TBA, fat, water activity, instrumental colour, texture, and sensory analyses were implemented in order to determine the possible effects of these applications. Fat, aw, pH, colour, tiobarbituric acid (TBA), texture, salt, Na and K values may allow these desired modifications in pastirma production to be limited. The substitution of 15% KCl instead of NaCl was acceptable in terms of the sensorial properties of the pastirma. However, the sensory analyses did not allow for using a higher KCl instead of NaCl because both the hardness and chewiness in the texture of the pastirma samples salted with 30% of KCl were not scored positively. Besides this, negative effects, which may occur during the pastirma production under natural conditions, can be eliminated by the production being under controlled conditions. PMID:29805273

  18. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes.

    PubMed

    Morais, Maria Cristina; Panuccio, Maria Rosaria; Muscolo, Adele; Freitas, Helena

    2012-06-01

    Salt tolerance of two co-occurring legumes in coastal areas of Portugal, a native species--Ulex europaeus, and an invasive species--Acacia longifolia, was evaluated in relation to plant growth, ion content and antioxidant enzyme activities. Plants were submitted to four concentrations of NaCl (0, 50, 100 and 200 mM) for three months, under controlled conditions. The results showed that NaCl affects the growth of both species in different ways. Salt stress significantly reduced the plant height and the dry weight in Acacia longifolia whereas in U. europaeus the effect was not significant. Under salt stress, the root:shoot ratio (W(R):W(S)) and root mass ratio (W(R):W(RS)) increased as a result of increasing salinity in A. longifolia but the same was not observed in U. europaeus. In addition, salt stress caused a significant accumulation of Na+, especially in U. europaeus, and a decrease in K+ content and K+/Na+ ratio. The activities of antioxidant enzymes were higher in A. longifolia compared to U. europaeus. In A. longifolia, catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2.) activities increased significantly, while ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POX, EC 1.11.1.7) activities remained unchanged in comparison with the control. In U. europaeus, NaCl concentration significantly reduced APX activity but did not significantly affect CAT, GR and POX activities. Our results suggest that the invasive species copes better with salinity stress in part due to a higher rates of CAT and GR activities and a higher K+/Na+ ratio, which may represent an additional advantage when competing with native species in co-occurring salty habitats. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    PubMed

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Quality characteristics of low-fat chicken nuggets: effect of common salt replacement and added bottle gourd (Lagenaria siceraria L.).

    PubMed

    Verma, Arun Kumar; Sharma, Brahma Deo; Banerjee, Rituparna

    2012-07-01

    There is growing demand for the meat products having healthier characteristics. In an endeavour to develop low-salt, low-fat and high-fibre chicken nuggets an investigation was carried out to observe the effects of partial replacement (40%) of sodium chloride in pre-standardised low-fat chicken nuggets (Control, 20 g kg⁻¹ NaCl) with a salt substitute blend as well as incorporation of bottle gourd (Lagenaria siceraria L.) in the resulting low-salt, low-fat products at three different levels, i.e. 50, 75 and 100 g kg⁻¹ (Treatments, 12 g kg⁻¹ NaCl) on the various quality attributes. Sodium chloride replacement decreased (P < 0.01) emulsion and product pH, cooking yield, moisture, ash, yellowness, hue value and textural properties. pH values, moisture and dietary fibre increased (P < 0.01) while cooking yield, % protein, textural properties and total cholesterol were decreased with the incorporation of bottle gourd in low-salt, low-fat nuggets. Sensory attributes of the product were not affected with salt replacement; however, inclusion of bottle gourd at higher levels decreased (P < 0.05) flavour and texture scores. The results suggest that low-salt, low-fat and high-fibre chicken nuggets can be developed with the use of a salt substitute blend and bottle gourd without affecting their acceptability. Copyright © 2012 Society of Chemical Industry.

  1. Salt-induction of betaine aldehyde dehydrogenase mRNA, protein, and enzymatic activity in sugar beet. [Beta vulgaris L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1991-05-01

    In Chenopodiaceae such as sugar beet (Beta vulgaris L.), glycine betaine (betaine) accumulates in response to drought or salinity stress and functions in the cytoplasm as a compatible osmolyte. The last enzyme in the biosynthetic pathway, betaine aldehyde dehydrogenase (BADH), increases as much as 4-fold in response to rising salinity in the external medium. This increase is accompanied by an increase in both protein and mRNA levels. The steady state increases in BADH were examined at a series of NaCl concentrations from 100 to 500 mM NaCl. BADH protein levels were examined by native PAGE, and by western blot analysismore » using antibodies raised against BADH purified from spinach. mRNA levels were examined by northern plot analysis of total RNA isolated from the leaves and hybridized with a sugar beet BADH cDNA clone. The time course for BADH mRNA induction was determined in a salt shock experiment utilizing 400 mM NaCl added to the external growth medium. Disappearance of BADH was examined in a salt relief experiment using plants step-wise salinized to 500 mM NaCl and then returned to 0 mM NaCl.« less

  2. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    PubMed Central

    2010-01-01

    Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei. PMID:20540813

  3. Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet

    PubMed Central

    Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.

    2008-01-01

    The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797

  4. Recombinant expression and characterization of an acid-, alkali- and salt-tolerant β-1,3-1,4-glucanase from Paenibacillus sp. S09.

    PubMed

    Cheng, Rui; Xu, Linxiang; Wang, Shiming; Wang, Yang; Zhang, Jianfa

    2014-04-01

    A new β-1,3-1,4-glucanase gene (PlicA) was cloned from Paenibacillus sp. S09. The ORF contained 717 bp coding for a 238 amino acid protein. PlicA, expressed in Escherichia coli and purified by Ni(2+)-affinity chromatography, had optimum activity at 55 °C and pH 6.2. The specific activity toward barley β-glucan reached 7,055 U/mg. K m and V max values with barley β-glucan were 3.7 mg/ml and 3.3 × 10(3) μmol/min mg, respectively. The enzyme exhibited acid- and alkali-tolerance with more than 80 % activity remaining after incubation for 4 h at pH 3.5-12. PlicA was salt-tolerant (>90 % activity retained in 4 M NaCl at 25 °C for 24 h) and salt-activated: activity rising 1.5-fold in 0.5 M NaCl. The thermostability was improved by NaCl and CaCl2. This is the first report of an acid-, alkali- and salt-tolerant bacterial β-1,3-1,4-glucanase with high catalytic efficiency.

  5. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundeen, S.G.; Savage, D.C.

    1990-08-01

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less

  6. Hydrogen gas improves left ventricular hypertrophy in Dahl rat of salt-sensitive hypertension.

    PubMed

    Matsuoka, Hiroki; Miyata, Seiko; Okumura, Nozomi; Watanabe, Takuya; Hashimoto, Katsunori; Nagahara, Miki; Kato, Kazuko; Sobue, Sayaka; Takeda, Kozue; Ichihara, Masatoshi; Iwamoto, Takashi; Noda, Akiko

    2018-06-14

    Hypertension is an important risk factor for death resulting from stroke, myocardial infarction, and end-stage renal failure. Hydrogen (H 2 ) gas protects against many diseases, including ischemia-reperfusion injury and stroke. The effects of H 2 on hypertension and its related left ventricular (LV) function have not been fully elucidated. The purpose of this study was to investigate the effects of H 2 gas on hypertension and LV hypertrophy using echocardiography. Dahl salt-sensitive (DS) rats were randomly divided into three groups: those fed an 8% NaCl diet until 12 weeks of age (8% NaCl group), those additionally treated with H 2 gas (8% NaCl + H 2 group), and control rats maintained on a diet containing 0.3% NaCl until 12 weeks of age (0.3% NaCl group). H 2 gas was supplied through a gas flowmeter and delivered by room air (2% hydrogenated room air, flow rate of 10 L/min) into a cage surrounded by an acrylic chamber. We evaluated interventricular septal wall thickness (IVST), LV posterior wall thickness (LVPWT), and LV mass using echocardiography. IVST, LVPWT, and LV mass were significantly higher in the 8% NaCl group than the 0.3% NaCl group at 12 weeks of age, whereas they were significantly lower in the 8% NaCl + H 2 group than the 8% NaCl group. There was no significant difference in systolic blood pressure between the two groups. Our findings suggest that chronic H 2 gas inhalation may help prevent LV hypertrophy in hypertensive DS rats.

  7. Kinetin Reversal of NaCl Effects

    PubMed Central

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  8. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken.

    PubMed

    Balamurugan, S; Ahmed, Rafath; Chibeu, Andrew; Gao, Anli; Koutchma, Tatiana; Strange, Phil

    2016-02-02

    National and international health agencies have recommended a significant reduction in daily intake of sodium by reducing the amount of NaCl in foods, specifically processed meats. However, sodium reduction could increase the risk of survival and growth of spoilage and pathogenic microorganisms on these products. Therefore, alternate processing technologies to improve safety of sodium reduced foods are necessary. This study examined the effects of three different salt types and concentrations on high-pressure inactivation of Listeria monocytogenes in pre-blended ground chicken formulations. Ground chicken formulated with three salt types (NaCl, KCl, CaCl2), at three concentrations (0, 1.5, 2.5%) and inoculated with a four strain cocktail of L. monocytogenes (10(8) CFU g(-1)) were subjected to four pressure treatments (0, 100, 300, 600 MPa) and two durations (60, 180 s) in an experiment with factorial design. Surviving cells were enumerated by plating on Oxford agar and analysed by factorial ANOVA. Pressure treatments at 100 or 300 MPa did not significantly (P=0.19-050) reduce L. monocytogenes populations. Neither salt type nor concentration had a significant effect on L. monocytogenes populations at these pressure levels. At 600 MPa, salt types, concentrations and duration of pressure treatment all had a significant effect on L. monocytogenes populations. Formulations with increasing concentrations of NaCl or KCl showed significantly lower reduction in L. monocytogenes, while increase in CaCl2 concentration resulted in a significantly higher L. monocytogenes reduction. For instance, increase in NaCl concentration from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 2.49 and 1.29, respectively, when exposed to 600 MPa for 60s. In the case of CaCl2, increase from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 7.28 and 7.47, respectively. These results demonstrate that high-pressure processing is a viable process to improve microbial safety of sodium

  9. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    PubMed

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p < 0.001) variation among cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  10. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  11. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis.

    PubMed

    Kugler, Annette; Köhler, Barbara; Palme, Klaus; Wolff, Patricia; Dietrich, Petra

    2009-11-27

    In Arabidopsis thaliana, the family of cyclic nucleotide-gated channels (CNGCs) is composed of 20 members. Previous studies indicate that plant CNGCs are involved in the control of growth processes and responses to abiotic and biotic stresses. According to their proposed function as cation entry pathways these channels contribute to cellular cation homeostasis, including calcium and sodium, as well as to stress-related signal transduction. Here, we studied the expression patterns and regulation of CNGC19 and CNGC20, which constitute one of the five CNGC subfamilies. GUS, GFP and luciferase reporter assays were used to study the expression of CNGC19 and CNGC20 genes from Arabidopsis thaliana in response to developmental cues and salt stress. CNGC19 and CNGC20 were differentially expressed in roots and shoots. The CNGC19 gene was predominantly active in roots already at early growth stages. Major expression was observed in the phloem. CNGC20 showed highest promoter activity in mesophyll cells surrounding the veins. Its expression increased during development and was maximal in mature and senescent leaves. Both genes were upregulated in the shoot in response to elevated NaCl but not mannitol concentrations. While in the root, CNGC19 did not respond to changes in the salt concentration, in the shoot it was strongly upregulated in the observed time frame (6-72 hours). Salt-induction of CNGC20 was also observed in the shoot, starting already one hour after stress treatment. It occurred with similar kinetics, irrespective of whether NaCl was applied to roots of intact plants or to the petiole of detached leaves. No differences in K and Na contents of the shoots were measured in homozygous T-DNA insertion lines for CNGC19 and CNGC20, respectively, which developed a growth phenotype in the presence of up to 75 mM NaCl similar to that of the wild type. Together, the results strongly suggest that both channels are involved in the salinity response of different cell types in

  12. Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction.

    PubMed

    Le Guenic, Sarah; Gergela, David; Ceballos, Claire; Delbecq, Frederic; Len, Christophe

    2016-08-22

    Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered.

  13. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.

    PubMed

    Li, Jie; Xie, Yanan; Wang, Rui; Fang, Zemin; Fang, Wei; Zhang, Xuecheng; Xiao, Yazhong

    2018-04-01

    Laccase (benzenediol: oxygen oxidoreductases, EC1.10.3.2) is a multi-copper oxidase capable of oxidizing a variety of phenolic and other aromatic organic compounds. The catalytic power of laccase makes it an attractive candidate for potential applications in many areas of industry including biodegradation of organic pollutants and synthesis of novel drugs. Most laccases are vulnerable to high salt and have limited applications. However, some laccases are not only tolerant to but also activated by certain concentrations of salt and thus have great application potential. The mechanisms of salt-induced activity enhancement of laccases are unclear as yet. In this study, we used dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, intrinsic fluorescence emission, circular dichroism, ultraviolet-visible light absorption, and an enzymatic assay to investigate the potential correlation between the structure and activity of the marine-derived laccase, Lac15, whose activity is promoted by low concentrations of NaCl. The results showed that low concentrations of NaCl exert little influence on the protein structure, which was partially folded in the absence of the salt; moreover, the partially folded rather than the fully folded state seemed to be favorable for enzyme activity, and this partially folded state was distinctive from the so-called 'molten globule' occasionally observed in active enzymes. More data indicated that salt might promote laccase activity through mechanisms involving perturbation of specific local sites rather than a change in global structure. Potential binding sites for chloride ions and their roles in enzyme activity promotion are proposed.

  14. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    PubMed Central

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  15. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion.

    PubMed

    Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A; Chambrey, Régine

    2017-01-01

    We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl - /HCO 3 - exchanger pendrin and the Na + -driven Cl - /2HCO 3 - exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na + balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na + balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na + homeostasis and provide evidence that the Na + /Cl - cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K + concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca 2+ -activated K + channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K + concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. Copyright © 2016 by the American Society of Nephrology.

  16. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction.

    PubMed

    Zicha, J; Dobešová, Z; Behuliak, M; Kuneš, J; Vaněčková, I

    2011-05-01

    Increased potassium intake attenuates the development of salt-dependent hypertension, but the detailed mechanisms of blood pressure (BP) reduction are still unclear. The aims of our study were (i) to elucidate these mechanisms, (ii) to compare preventive potassium effects in immature and adult animals and (iii) to evaluate the therapeutic effects of dietary potassium supplementation in rats with established salt hypertension.   Young (4-week-old) and adult (24-week-old) female salt-sensitive Dahl rats were fed a high-salt diet (5% NaCl) or a high-salt diet supplemented with 3% KCl for 5 weeks. The participation of vasoconstrictor (renin-angiotensin and sympathetic nervous systems) and vasodilator systems [prostanoids, Ca(2+) -activated K(+) channels, nitric oxide (NO)] was evaluated using a sequential blockade of these systems. Preventive potassium supplementation attenuated the development of severe salt hypertension in young rats, whereas it had no effects on BP in adult rats with moderate hypertension. Enhanced sympathetic vasoconstriction was responsible for salt hypertension in young rats and its attenuation for potassium-induced BP reduction. Conversely, neither salt hypertension nor its potassium-induced attenuation were associated with significant changes of the vasodilator systems studied. The relative deficiency of vasodilator action of NO and Ca(2+) -activated K(+) channels in salt hypertensive Dahl rats was not improved by potassium supplementation. The attenuation of enhanced sympathetic vasoconstriction is the principal mechanism of antihypertensive action exerted by preventive potassium supplementation in immature Dahl rats. Dietary potassium supplementation has no preventive effects on BP in adult salt-loaded animals or no therapeutic effects on established salt hypertension in young rats. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  17. Novel ideas about salt, blood pressure, and pregnancy.

    PubMed

    Rakova, Natalia; Muller, Dominik N; Staff, Anne Cathrine; Luft, Friedrich C; Dechend, Ralf

    2014-03-01

    The molecular mechanisms leading to preeclampsia are poorly understood. It has been related to certain immune mechanisms, as well as the pathological regulation of the renin-angiotensin system together with perturbed salt and plasma volume regulation. Finally, a non-specific, vascular, inflammatory response is generated, which leads to the clinical syndrome. Here, we present novel findings in salt (NaCl) metabolism implying that salt is not only important in blood pressure control and volume homeostasis, but also in immune regulation. Sodium and chloride can be stored without accumulation of water in the interstitium at hypertonic concentrations through interactions with proteoglycans. Macrophages in the interstitium act as osmosensors for salt, producing increased amounts of vascular endothelial factor C, which increases the density of the lymph-capillary network and the production of nitric oxide in vessels. An increased interstitial salt concentration activates the innate immune system, especially Th17 cells, and may be an important trigger for autoimmune diseases. The novel findings with the idea of sodium storage and local mechanisms of volume and immune regulation are appealing for preeclampsia and may unify the "immune" and "vascular" hypotheses of preeclampsia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Nonpoint Source Road Salt Pollution from Urban Stormwater

    NASA Astrophysics Data System (ADS)

    DeGaetano, S.; Walter, M. T.

    2014-12-01

    In colder climates, such as the Northeast, road salts are commonly applied to deice roads in order to increase pedestrian and driver safety. This study was conducted to establish the mass if NaCl entering the local aquatic systems from Cornell's campus. Using trail cameras, two typical storm water pipes (draining into Cascadilla Creek) were monitored to determine the volume of runoff on an hourly bases. Grab samples were taken three times a week obtain storm water chloride concentration. In general, the average measured salt concentration was found to be 3.61 g/L, while high precipitation events Cl- concentration spiked to levels exceeding 12 g/L (≈ 20 g/L of salt). Combining runoff volumes and salt concentration values, a mass per drainage area was calculated for each monitored pipe. Outfall #1, located just upstream from the Wilson Synchrotron Module, expelled 262,300 kg of salt over a 42-day period of data collection while Outfall#2 discharged 4160 kg during the same period. These results were averaged and then applied to the total impervious area on Cornell's campus to approximate the total mass of sodium chloride leaving campus during the period of data collection.

  19. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  20. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes.

    PubMed Central

    Mazur, P; Rall, W F; Rigopoulos, N

    1981-01-01

    As suspensions of cells freeze, the electrolytes and other solutes in the external solution concentrate progressively, and the cells undergo osmotic dehydration if cooling is slow. The progressive concentration of solute comes about as increasing amounts of pure ice precipitate out of solution and cause the liquid-filled channels in which the cells are sequestered to dwindle in size. The consensus has been that slow freezing injury is related to the composition of the solution in these channels and not to the amount of residual liquid. The purpose of the research reported here was to test this assumption on human erythrocytes. Ordinarily, solute concentration and the amount of liquid in the unfrozen channels are inversely coupled. To vary them independently, one must vary the initial solute concentration. Two solutes were used here: NaCl and the permeating protective additive glycerol. To vary the total initial solute concentration while holding the mass ratio of glycerol to NaCl constant, we had to allow the NaCl tonicity to depart from isotonic. Specifically, human red cells were suspended in solutions with weight ratios of glycerol to NaCl of either 5.42 or 11.26, where the concentrations of NaCl were 0.6, 0.75, 1.0, 2.0, 3.0, or 4.0 times isotonic. Samples were then frozen to various subzero temperatures, which were chosen to produce various molalities of NaCl (0.24-3.30) while holding the fraction of unfrozen water constant, or conversely to produce various unfrozen fractions (0.03-0.5) while holding the molality of salt constant. (Not all combinations of these values were possible). The following general findings emerged: (a) few cells survived the freezing of greater than 90% of the extracellular water regardless of the salt concentration in the residual unfrozen portion. (b) When the fraction of frozen water was less than 75% the majority of the cells survived even when the salt concentration in the unfrozen portion exceeded 2 molal. (c) Salt concentration

  2. Electron scattering in graphene with adsorbed NaCl nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less

  3. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress.

    PubMed

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Wdowikowska, Anna; Kłobus, Grażyna

    2013-07-01

    The effect of salt stress (50mM NaCl) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. Plants were grown under salt stress for 1, 3 or 6 days. In salt-stressed plants, weak stimulation of ATP hydrolytic activity of PM H(+)-ATPase and significant stimulation of proton transport through the plasma membrane were observed. The H(+)/ATP coupling ratio in the plasma membrane of plants subjected to salt stress significantly increased. The greatest stimulation of PM H(+)-ATPase was in 6-day stressed plants. Increased H2O2 accumulation under salt stress conditions in cucumber roots was also observed, with the greatest accumulation observed in 6-day stressed plants. Additionally, during the sixth day of salinity, there appeared heat shock proteins (HSPs) 17.7 and 101, suggesting that repair processes and adaptation to stress occurred in plants. Under salt stress conditions, fast post-translational modifications took place. Protein blot analysis with antibody against phosphothreonine and 14-3-3 proteins showed that, under salinity, the level of those elements increased. Additionally, under salt stress, activity changes of PM H(+)-ATPase can partly result from changes in the pattern of expression of PM H(+)-ATPase genes. In cucumber seedlings, there was increased expression of CsHA10 under salt stress and the transcript of a new PM H(+)-ATPase gene isoform, CsHA1, also appeared. Accumulation of the CsHA1 transcript was induced by NaCl exposure, and was not expressed at detectable levels in roots of control plants. The appearance of a new PM H(+)-ATPase transcript, in addition to the increase in enzyme activity, indicates the important role of the enzyme in maintaining ion homeostasis in plants under salt stress. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Characterization of a salt-responsive 24-kilodalton glycoprotein in Mesembryanthemum crystallinum.

    PubMed Central

    Yen, H E; Edwards, G E; Grimes, H D

    1994-01-01

    A concanavalin A (Con A)-binding polypeptide with a molecular mass of 24 kD (termed "SRgp24") was associated with the intercellular space of Mesembryanthemum crystallinum L. callus. When callus was grown in medium containing between 0 and 100 mM NaCl, SRgp24 was detected by Con A binding. Increasing the NaCl concentration to 200 mM caused a reduction in the amount of SRgp24 within 3 d, and returning the callus to medium without salt resulted in an accumulation of SRgp24. Immunoblot analysis showed that appreciable amounts of SRgp24 accumulated in the leaves when plants were grown under sodium-limiting conditions. Unlike most of the cell-wall Con A-binding proteins in M. crystallinum callus, the carbohydrate moiety of SRgp24 was resistant to endoglycosidase H digestion. After purification of SRgp24, the N terminus was sequenced and found to share 55 to 60% identity with the N terminus of osmotin, a group 5 pathogenesis-related protein (PR-5) that accumulates in salt-adapted tobacco cell suspension. Immunocytochemical assays, with affinity-purified antibodies to SRgp24, indicated that SRgp24 preferentially accumulated in the cell-wall region. We conclude that SRgp24 is a salt-responsive glycoprotein related to the PR-5 family in M. crystallinum. PMID:7972493

  5. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  6. The effect of environmentally friendly hot-dipping auxiliary on the morphology of alloy coatings

    NASA Astrophysics Data System (ADS)

    Chen, Suhong; Guo, Kai; Zhu, Yi; Gao, Feng; Han, Zhijun

    2017-10-01

    Zn-Al-Mg-RE hot-dip alloy coatings which prepared by the environmentally friendly plating auxiliary were investigated by X-ray diffraction (XRD), SEM analysis and salt spray measurement. Significant variation in coating surface morphology and element content are observed with increasing content of Al and Mg in this paper. A reinforced ternary eutectic Zn-Al-MgZn2 is confirmed which attribute to improvement metallographic structure derived from certain ternary eutectic reaction in alloy solidification. For Mg-containing coatings, the enhanced corrosion resistance is observed by corrosion resistance test in salt spray at 35°C with 5% NaCl in terms of corrosion weight changes. It is found that the incorporation of 3 wt.% Mg and 0.1 wt.% rare earth element in to Zn-Al-Mg-RE bath caused structural refinement of the crystal and also helped to achieve excellent surface morphology.

  7. NaCl intake and preference threshold of spontaneously hypertensive rats.

    PubMed

    Fregly, M J

    1975-09-01

    Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.

  8. Modeling metal droplet sprays in spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muoio, N.G.; Crowe, C.T.; Fritsching, U.

    1995-12-31

    Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.

  9. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    NASA Astrophysics Data System (ADS)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  10. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants.

    PubMed

    Win, Khin Thuzar; Fukuyo, Tanaka; Keiki, Okazaki; Ohwaki, Yoshinari

    2018-06-01

    Plant growth promoting bacteria (PGPB) endophytes that express 1-aminocyclopropane-1-carboxylate (ACC) deaminase reportedly confer plant tolerance to abiotic stresses such as salinity by lowering stress-related ethylene levels. Two preselected ACC deaminase expressing endophytic Pseudomonas spp. strains, OFT2 and OFT5, were compared in terms of their potential to promote plant growth, leaf water contents, photosynthetic performance, and ionic balance of tomato plants under conditions of moderate NaCl stress (75 mM). Salinity stress strongly affected growth, leaf water contents, and photosynthetic performance of tomato seedlings, and inoculation with either OFT2 or OFT5 ameliorated these adverse effects. Decreases in plant biomass due to salinity stress were significant in both uninoculated control plants and in plants inoculated with OFT2 compared with plants without NaCl stress. However, no reductions in total biomass were observed in plants that were inoculated with the OFT5 strain. Strain OFT5 influenced growth, physiological status, and ionic balance of tomato plants more efficiently than strain OFT2 under NaCl stress. In particular, inoculated OFT5 reduced salt-induced ethylene production by tomato seedlings, and although it did not reduce shoot uptake of Na, it promoted shoot uptake of other macronutrients (P, K, and Mg) and micronutrients (Mn, Fe, Cu, and Zn). These nutrients may activate processes that alleviate the effects of salt, suggesting that OFT5 can be used to improve nutrient uptake and plant growth under moderate salt-affected conditions by reducing stress-related ethylene levels. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity.

    PubMed

    Siddikee, Md Ashaduzzaman; Glick, Bernard R; Chauhan, Puneet S; Yim, Woo jong; Sa, Tongmin

    2011-04-01

    Three 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria were isolated from West Coast soil of Yellow Sea, Incheon, South Korea and evaluated for their efficiency in improving red pepper plant growth under salt stress. The strains RS16, RS656 and RS111 were identified by 16S rRNA gene sequencing as Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba, respectively. Two hour exposure of 100, 150 and 200 mM NaCl stress on 8 day old red pepper seedlings caused 44, 64 and 74% increase ethylene production, while at 150 mM NaCl stress, inoculation of B. licheniformis RS656, Z. alba RS111, and Br. iodinum RS16 reduces ethylene production by 44, 53 and 57%, respectively. Similarly, 3 week old red pepper plants were subjected to salt stress for two weeks and approximately ∼50% reduction in growth recorded at 150 mM NaCl stress compared to negative control whereas bacteria inoculation significantly increase the growth compared to positive control. Salt stress also caused 1.3-fold reduction in the root/shoot dry weight ratio compared to the absence of salt while bacteria inoculation retained the biomass allocation similar to control plants. The salt tolerance index (ratio of biomass of salt stressed to non-stressed plant) was also significantly increased in inoculated plants compared to non-inoculated. Increase nutrient uptakes under salt stress by red pepper further evident that bacteria inoculation ameliorates salt stress effect. In summary, this study indicates that the use of ACC deaminase-producing halotolerant bacteria mitigates the salt stress by reducing salt stress-induced ethylene production on growth of red pepper plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. The effect of yeast extract addition on quality of fermented sausages at low NaCl content.

    PubMed

    Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Pollonio, Marise Aparecida Rodrigues

    2011-03-01

    Fermented sausages with 25% or 50% of their NaCl replaced by KCl and supplemented with 1% or 2% concentrations of yeast extract were produced. The sausage production process was monitored with physical, chemical and microbiological analyses. After production, the sausage samples were submitted to a consumer study and their volatile compounds were extracted by solid-phase microextraction and analyzed by GC-MS. The replacement of NaCl by KCl did not significantly influence the physical, chemical or microbiological characteristics. The sensory quality of the fermented sausages with a 50% replacement was poor compared with the full-salt control samples. The use of yeast extract at a 2% concentration increased volatile compounds that arose from amino acids and carbohydrate catabolism. These compounds contributed to the suppression of the sensory-quality defects caused by the KCl introduction, thus enabling the production of safe fermented sausages that have acceptable sensory qualities with half as much sodium content. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  13. Organophosphate inhibition of avian salt gland Na, K-ATPase activity

    USGS Publications Warehouse

    Eastin, W.C.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    1. Adult black ducks (Anas rubripes) were given freshwater or saltwater (1.5% NaCl) for 11 days and half of each group was also given an organophosphate (17 p.p.m. fenthion) in the diet on days 6–11.2. After 11 days, ducks drinking saltrwater had lost more weight and had higher plasma Na and uric acid concentration and osmolalities than birds drinking freshwater.3. Saltwater treatment stimulated the salt gland to increased weight and Na, K-ATPase activity.4. Fenthion generally reduced plasma and brain cholinesterase activity and depressed cholinesterase and Na, K-ATPase activities in salt glands of birds drinking saltwater.

  14. Effect of salt on the glass transition of condensed tapioca starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert A; Kasapis, Stefan

    2017-08-15

    This work examines the effect of including hydrated NaCl and CaCl 2 (up to 6% w/w) on the physicochemical properties of condensed tapioca starch. Samples were prepared by hot pressing at 120°C to produce condensed systems that covered a range of moisture contents from 7.34% w/w (23% relative humidity) to 19.52% w/w (75% relative humidity). Tensile storage modulus and heat flow measurements were taken using DMA and MDSC, which were accompanied by FTIR, WAXD and ESEM. Increasing the salt level enhances the mechanical strength of starch in the glassy state and shifts the glass transition temperature to a higher value. Antiplasticising effects of NaCl and CaCl 2 on the non-phosphorylated tapioca starch are indistinguishable from each other. Observations are complemented by intensification of absorbance peaks in FTIR spectra and a systematic change in shape and intensity of diffraction patterns with increasing addition of salt consistent with interactions between added ions and macromolecule. Copyright © 2017. Published by Elsevier Ltd.

  15. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  16. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    PubMed

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  17. A Salt-Induced 60-Kilodalton Plasma Membrane Protein Plays a Potential Role in the Extreme Halotolerance of the Alga Dunaliella.

    PubMed Central

    Fisher, M.; Pick, U.; Zamir, A.

    1994-01-01

    The halotolerant alga Dunaliella salina grows in saline conditions as varied as 0.5 and 5 M NaCl, maintaining throughout this range a low intracellular ion concentration. To discover factors potentially involved in ionic homeostasis, we grew cells in media with different salinities or osmolarities and compared their protein profiles. The comparisons indicated that the amount of a 60-kD protein, p60, greatly increased with an increase in salinity and was moderately enhanced when NaCl was substituted with iso-osmotic glycerol. Cells transferred from low to high NaCl or from high glycerol to iso-osmotic NaCl media transiently ceased to grow, and resumption of growth coincided approximately with an increase in p60. The protein, extracted from a plasma membrane fraction, was purified to homogeneity. Anti-p60 antibodies cross-reacted with a 60-kD protein in Dunaliella bardawil. Immunoelectron microscopy of D. salina cell sections indicated that p60 was exclusively located in the plasma membrane. Its induction by salt, the correlation between its accumulation and growth resumption in high concentrations of salt, and its plasma membrane localization suggest the possibility that p60 could play a role in ionic homeostasis in conditions of high salinity, although different types of function could also be considered. PMID:12232413

  18. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    PubMed

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots

    PubMed Central

    Zhang, Yanyan; Wang, Yifeng; Taylor, Jemma L.; Jiang, Zhonghao; Zhang, Shu; Mei, Fengling; Wu, Yunrong; Wu, Ping; Ni, Jun

    2015-01-01

    It is well established that both salt and reactive oxygen species (ROS) stresses are able to increase the concentration of cytosolic free Ca2+ ([Ca2+]i), which is caused by the flux of calcium (Ca2+). However, the differences between these two processes are largely unknown. Here, we introduced recombinant aequorin into rice (Oryza sativa) and examined the change in [Ca2+]i in response to salt and ROS stresses. The transgenic rice harbouring aequorin showed strong luminescence in roots when treated with exogenous Ca2+. Considering the histological differences in roots between rice and Arabidopsis, we reappraised the discharging solution, and suggested that the percentage of ethanol should be 25%. Different concentrations of NaCl induced immediate [Ca2+]i spikes with the same durations and phases. In contrast, H2O2 induced delayed [Ca2+]i spikes with different peaks according to the concentrations of H2O2. According to the Ca2+ inhibitor research, we also showed that the sources of Ca2+ induced by NaCl and H2O2 are different. Furthermore, we evaluated the contribution of [Ca2+]i responses in the NaCl- and H2O2-induced gene expressions respectively, and present a Ca2+- and H2O2-mediated molecular signalling model for the initial response to NaCl in rice. PMID:25754405

  1. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    NASA Astrophysics Data System (ADS)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  2. The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter*

    PubMed Central

    Moreno, Erika; Plata, Consuelo; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R.; Vázquez, Norma; Leyva-Ríos, Karla; Islas, León; Cutler, Christopher; Pacheco-Alvarez, Diana; Mercado, Adriana; Cariño-Cortés, Raquel; Castañeda-Bueno, María; Gamba, Gerardo

    2016-01-01

    The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter. PMID:27587391

  3. Combined effects of oregano essential oil and salt on the growth of Escherichia coli in salad dressing.

    PubMed

    Cattelan, Marília Gonçalves; Nishiyama, Yara Paula de Oliveira; Gonçalves, Tânia Maria Vinturim; Coelho, Alexandre Rodrigo

    2018-08-01

    There is a broad research interest in the search for alternatives to chemical additives for use as natural food preservatives. Although many natural compounds have biological in vitro properties evidenced, in situ studies are still scarce. This study evaluated the effect of oregano essential oil (OEO) and salt (NaCl) concentrations against Escherichia coli (ATCC 8739), in salad dressing, using the response surface methodology. The experiment included a 2 2 central composite rotatable design (CCRD) in a total of 11 formulations of salad dressings. Oregano essential oil was characterized by gas chromatography and salad dressings by ash, lipids, proteins and moisture. OEO was composed mainly by carvacrol (65.1%) and p-cymene (12.0%). Salad dressings showed similar chemical profiles. A mathematical model for the prediction of the antibacterial activity in salad dressing was obtained. The results revealed that the interaction between OEO and salt showed effect on the bacterial count. However, the effect of salt was negative suggesting that the highest NaCl concentrations decreases the bacterial count. Therefore, within the parameters studied, the use of OEO to control E. coli in salad dressing can be considered promising and allows reduction in the levels of salt to be incorporated in food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    PubMed

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    PubMed

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  6. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance

    PubMed Central

    Khan, Hammad A.; Siddique, Kadambot H.M.

    2017-01-01

    Abstract Reproductive processes of chickpea (Cicer arietinum L.) are particularly sensitive to salinity. We tested whether limited photoassimilate availability contributes to reproductive failure in salt-stressed chickpea. Rupali, a salt-sensitive genotype, was grown in aerated nutrient solution, either with non-saline (control) or 30mM NaCl treatment. At flowering, stems were either infused with sucrose solution (0.44M), water only or maintained without any infusion, for 75 d. The sucrose and water infusion treatments of non-saline plants had no effect on growth or yield, but photosynthesis declined in response to sucrose infusion. Salt stress reduced photosynthesis, decreased tissue sugars by 22–47%, and vegetative and reproductive growth were severely impaired. Sucrose infusion of salt-treated plants increased total sugars in stems, leaves and developing pods, to levels similar to those of non-saline plants. In salt-stressed plants, sucrose infusion increased dry mass (2.6-fold), pod numbers (3.8-fold), seed numbers (6.5-fold) and seed yield (10.4-fold), yet vegetative growth and reproductive failure were not rescued completely by sucrose infusion. Sucrose infusion partly rescued reproductive failure in chickpea by increasing vegetative growth enabling more flower production and by providing sucrose for pod and seed growth. We conclude that insufficient assimilate availability limits yield in salt-stressed chickpea. PMID:27140441

  7. The effect of salt replacers and flavor enhancer on the processing characteristics and consumer acceptance of turkey sausages.

    PubMed

    Pietrasik, Zeb; Gaudette, Nicole J

    2015-07-01

    Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients. © 2014 Society of Chemical Industry.

  8. Coordinated Changes in Antioxidative Enzymes Protect the Photosynthetic Machinery from Salinity Induced Oxidative Damage and Confer Salt Tolerance in an Extreme Halophyte Salvadora persica L.

    PubMed Central

    Rangani, Jaykumar; Parida, Asish K.; Panda, Ashok; Kumari, Asha

    2016-01-01

    Salinity-induced modulations in growth, photosynthetic pigments, relative water content (RWC), lipid peroxidation, photosynthesis, photosystem II efficiency, and changes in activity of various antioxidative enzymes were studied in the halophyte Salvadora persica treated with various levels of salinity (0, 250, 500, 750, and 1000 mM NaCl) to obtain an insight into the salt tolerance ability of this halophyte. Both fresh and dry biomass as well as leaf area (LA) declined at all levels of salinity whereas salinity caused an increase in leaf succulence. A gradual increase was observed in the Na+ content of leaf with increasing salt concentration up to 750 mM NaCl, but at higher salt concentration (1000 mM NaCl), the Na+ content surprisingly dropped down to the level of 250 mM NaCl. The chlorophyll and carotenoid contents of the leaf remained unaffected by salinity. The photosynthetic rate (PN), stomatal conductance (gs), the transpiration rate (E), quantum yield of PSII (ΦPSII), photochemical quenching (qP), and electron transport rate remained unchanged at low salinity (250 to 500 mM NaCl) whereas, significant reduction in these parameters were observed at high salinity (750 to 1000 mM NaCl). The RWC% and water use efficiency (WUE) of leaf remained unaffected by salinity. The salinity had no effect on maximum quantum efficiency of PS II (Fv/Fm) which indicates that PS II is not perturbed by salinity-induced oxidative damage. Analysis of the isoforms of antioxidative enzymes revealed that the leaves of S. persica have two isoforms each of Mn-SOD and Fe-SOD and one isoform of Cu-Zn SOD, three isoforms of POX, two isoforms of APX and one isoform of CAT. There was differential responses in activity and expression of different isoforms of various antioxidative enzymes. The malondialdehyde (MDA) content (a product of lipid peroxidation) of leaf remained unchanged in S. persica treated with various levels of salinity. Our results suggest that the absence of pigment

  9. Effect of salt reduction on wheat-dough properties and quality characteristics of puff pastry with full and reduced fat content.

    PubMed

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Lynch, Kieran M; Arendt, Elke K

    2016-11-01

    Puff pastry is a major contributor of fat and sodium intake in many countries. The objective of this research was to determine the impact of salt (0-8.4g/100g flour) on the structure and quality characteristics of puff pastry with full and reduced (-40%) fat content as well as the rheological properties of the resulting dough. Therefore, empirical rheological tests were carried out including dough extensibility, dough stickiness and GlutoPeak test. The quality of the puff pastry was characterized with the VolScan, Texture Analyzer and C-Cell. NaCl reduction significantly changed rheological properties of the basic dough as well as a number of major quality characteristics of the puff pastry. Significant differences due to NaCl addition were found in particular for dough resistance, dough stickiness, Peak Maximum Time and Maximum Torque (p<0.05). Peak firmness and total firmness decreased significantly (p<0.05) with increasing salt levels for puff pastry containing full fat. Likewise, maximal lift, specific volume, number of cells and slice brightness increased with increasing NaCl at both fat levels. Although a sensorial comparison of puff pastries revealed that salt reduction (30%) was perceptible, no significant differences were found for all other investigated attributes. Nevertheless, a reduction of 30% salt and 40% fat in puff pastry is achievable as neither the perception and visual impression nor attributes such as volume, firmness and flavour of the final products were significantly affected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri.

    PubMed

    Marsden, Anne E; Grudzinski, Kevin; Ondrey, Jakob M; DeLoney-Marino, Cindy R; Visick, Karen L

    2017-01-01

    Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid's symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of "normal" wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.

  11. Invasive Knotweeds are Highly Tolerant to Salt Stress

    NASA Astrophysics Data System (ADS)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  12. Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles.

    PubMed

    Han, Dongfei; Link, Hannes; Liesack, Werner

    2017-08-11

    Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils, but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response) and 14 h (late response) of stress exposure. Physiological and transcriptomic stress response corresponded well. Salt stress induced differential expression of 301 genes, with sigma factor σ 32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH 4 to CO 2 remained unaffected, while gene expression involved in energy-yielding reactions ( nuoEFGHI ) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities. Importance Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with

  13. Thermal-gradient migration of brine inclusions in salt crystals

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.

    1982-09-01

    High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.

  14. Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose-Salt Blends.

    PubMed

    Thorat, Alpana A; Forny, Laurent; Meunier, Vincent; Taylor, Lynne S; Mauer, Lisa J

    2017-12-27

    The effects of salts on the stability of amorphous sucrose and its crystallization in different environments were investigated. Chloride (LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , and AlCl 3 ) and sulfate salts with the same cations (Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CuSO 4 , Fe(II)SO 4 , and Fe(III)SO 4 ) were studied. Samples (sucrose controls and sucrose:salt 1:0.1 molar ratios) were lyophilized, stored in controlled temperature and relative humidity (RH) conditions, and monitored for one month using X-ray diffraction. Samples were also analyzed by differential scanning calorimetry, microscopy, and moisture sorption techniques. All lyophiles were initially amorphous, but during storage the presence of a salt had a variable impact on sucrose crystallization. While all samples remained amorphous when stored at 11 and 23% RH at 25 °C, increasing the RH to 33 and 40% RH resulted in variations in crystallization onset times. The recrystallization time generally followed the order monovalent cations < sucrose < divalent cations < trivalent cations. The presence of a salt typically increased water sorption as compared to sucrose alone when stored at the same RH; however, anticrystallization effects were observed for sucrose combined with salts containing di- and trivalent cations in spite of the increased water content. The cation valency and hydration number played a major role in dictating the impact of the added salt on sucrose crystallization.

  15. Use of sodium dodecyl sulfate pretreatment and 2-stage curing for improved quality of salted duck eggs.

    PubMed

    Lian, Zixuan; Qiao, Longshan; Zhu, Guanghong; Deng, Yun; Qian, Bingjun; Yue, Jin; Zhao, Yanyun

    2014-03-01

    The effects of use of sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing on the microbial, physicochemical, and microstructural qualities of salted duck eggs were studied. After pretreatment in 0.5% (w/v) SDS solution at room conditions for 15 min, no discolorations were observed and no microorganisms were detected on the egg shells. In the 2-stage curing process, 25% (w/v) and 30% (w/v) saline solutions were evaluated in the 1st step (Stage I, approximately 18 d), whereas 4% (w/v) saline solution was applied in the 2nd step (Stage II, approximately 15 d). Along with increased curing time, water content decreased and NaCl content increased in the egg yolks from approximately 0.40% to 0.86%, whereas the water content of egg albumen remained at approximately 85% during the 2-stage curing. More importantly, the NaCl content of albumen maintained at approximately 4.0% at Stage II curing. Yolk index as a sign of maturity for salted duck eggs reached 1 at the end of Stage I (18 d) and retained the same value during Stage II curing regardless of the NaCl concentration in the Stage I saline solution. Oil exudation in egg yolks increased as the time of curing increased. As seen from scanning electron microscopy, oil was released from yolk granules. This study indicated that SDS pretreatment is effective to reduce microbial load on the shells of fresh duck eggs and the 2-stage curing can improve physicochemical qualities of the salted duck eggs and shortened curing time to about 7 to 17 d as compared to the traditional 1-step curing method. Spoiled saline solution and uneven distribution of salt are the 2 major problems in producing salted duck eggs. Sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing process have shown effective to solve these problems, respectively. The SDS pretreatment was able to remove microorganisms and soil from the surface of fresh egg shells, thus preventing the spoilage of the saline solution. The 2-stage curing process

  16. Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize (Zea mays L.)

    PubMed Central

    Akram, Muhammad S.; Shahid, Muhammad; Tariq, Mohsin; Azeem, Muhammad; Javed, Muhammad T.; Saleem, Seemab; Riaz, Saba

    2016-01-01

    Soil salinity severely affects plant nutrient use efficiency and is a worldwide constraint for sustainable crop production. Plant growth-promoting rhizobacteria, with inherent salinity tolerance, are able to enhance plant growth and productivity by inducing modulations in various metabolic pathways. In the present study, we reported the isolation and characterization of a salt-tolerant rhizobacterium from Kallar grass [Leptochloa fusca (L.) Kunth]. Sequencing of the 16S rRNA gene revealed its lineage to Staphylococcus sciuri and it was named as SAT-17. The strain exhibited substantial potential of phosphate solubilization as well as indole-3-acetic acid production (up to 2 M NaCl) and 1-aminocyclopropane-1-carboxylic acid deaminase activity (up to 1.5 M NaCl). Inoculation of a rifampicin-resistant derivative of the SAT-17 with maize, in the absence of salt stress, induced a significant increase in plant biomass together with decreased reactive oxygen species and increased activity of cellular antioxidant enzymes. The derivative strain also significantly accumulated nutrients in roots and shoots, and enhanced chlorophyll and protein contents in comparison with non-inoculated plants. Similar positive effects were observed in the presence of salt stress, although the effect was more prominent at 75 mM in comparison to higher NaCl level (150 mM). The strain survived in the rhizosphere up to 30 days at an optimal population density (ca. 1 × 106 CFU mL-1). It was concluded that S. sciuri strain SAT-17 alleviated maize plants from salt-induced cellular oxidative damage and enhanced growth. Further field experiments should be conducted, considering SAT-17 as a potential bio-fertilizer, to draw parallels between PGPR inoculation, elemental mobility patterns, crop growth and productivity in salt-stressed semi-arid and arid regions. PMID:27375588

  17. Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity

    PubMed Central

    Schwendner, Petra; Bohmeier, Maria; Rettberg, Petra; Beblo-Vranesevic, Kristina; Gaboyer, Frédéric; Moissl-Eichinger, Christine; Perras, Alexandra K.; Vannier, Pauline; Marteinsson, Viggó T.; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Westall, Frances; Riedo, Andreas; Monaghan, Euan P.; Ehrenfreund, Pascale; Cabezas, Patricia; Walter, Nicolas; Cockell, Charles

    2018-01-01

    Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways. PMID:29535699

  18. Comparative Toxicities of Salts on Microbial Processes in Soil

    PubMed Central

    Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-01

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO42− than Cl− salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO42− salts but not to Cl− salts; no evidence was found to distinguish K+ and Na+ salts. PMID:26801570

  19. Salt-mediated multicell formation in Deinococcus radiodurans.

    PubMed Central

    Chou, F I; Tan, S T

    1991-01-01

    The highly radiation-resistant tetracoccal bacterium Deinococcus radiodurans exhibited a reversible multi-cell-form transition which depended on the NaCl concentration in the medium. In response to 0.8% NaCl addition into the medium, the pair/tetrad (designated 2/4) cells in a young culture grew and divided but did not separate and became 8-, 16-, and 32-cell units successively. In exponential growth phase, the cells divided in a 16/32 pattern. Potassium ions were equally effective as Na+ in mediating this multicell-formation effect; Mg2+, Li+, and Ca2+ also worked but produced less multiplicity. This effect appears to be species specific. This-section micrographs revealed that in a 16/32-cell unit, eight 2/4 cells were encased in an orderly manner within a large peripheral wall, showing five cycles of septation. Our results suggest the presence of a salt-sensitive mechanism for controlling cell separation in D. radiodurans. Images PMID:2022617

  20. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  1. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    PubMed

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  2. Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense.

    PubMed

    Gharbi, Emna; Martínez, Juan-Pablo; Benahmed, Hela; Lepoint, Gilles; Vanpee, Brigitte; Quinet, Muriel; Lutts, Stanley

    2017-03-01

    Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2μM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ 13 C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ 13 C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ 13 C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense. Copyright © 2016. Published by Elsevier GmbH.

  3. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  4. Durability of building stones against artificial salt crystallization

    NASA Astrophysics Data System (ADS)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  5. Evaporative crystallization of salts from Electrodialysis concentrated brine at atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Du, Wei; Cheng, Penggao; Tang, Na; Wang, Xuekui

    2018-02-01

    A large amount of concentrated brine was produced as by-product during the process of the electrodialysis seawater desalination. In this study, the crystallization sequences of different salts from the brine through evaporative crystallization at both atmospheric and subatmospheric pressures were investigated in detail. The profile of the boiling temperature with density and the relationship between the boiling temperature and the pressure were recorded. The combination of Powder X-Ray Diffraction and the polarizing microscope was employed to identify the salts in the solid form. It can be inferred that NaCl crystallized out firstly and then MgSO4·6H2O and CaSO4 precipitate in order at both atmospheric and subatmospheric pressures, and it should be noticed that CaSO4 crystallized as anhydrate at 70°C and 90°C while as dihydrate at 50°C. At the end of all the experiments the precipitation rates of CaSO4 and NaCl have reached to more than 95% while MgSO4 only reached to about 60%.

  6. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress.

    PubMed

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2009-07-01

    Salt stress has become a severe global problem, and salinity is one of the most important abiotic factors limiting plant growth and yield. It is known that arbuscular mycorrhizal (AM) fungi decrease plant yield losses under salinity. With the aim of determining whether AM inoculation would give an advantage to root development under salt stress, a greenhouse experiment was carried out with AM or without AM fungi. Maize plants were grown in a sand and soil mixture with 5 NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of nonsaline pretreatment. At all salt levels, mycorrhizal plants had higher dry shoot and root mass, higher root activity, and lower root to shoot ratios than non-mycorrhizal plants. In salt-free soil, root length, root surface area, root volume, and number of root tips and forks were significantly larger in mycorrhizal plants than in non-mycorrhizal plants, whereas, under salt stress, average root diameter and root volume of mycorrhizal plants were larger than those of non-mycorrhizal plants. Regardless of the NaCl level, mycorrhizal plants had lower specific root length, lower percentage of root length in the 0-0.2 mm diameter class, and higher percentage of root length in both the 0.2-0.4 mm and 0.4-0.6 mm diameter classes, which suggests that the root system shows a significant shift towards a thicker root system when maize plants were inoculated with Glomus mosseae (Nicolson & Gerdemann). The results presented here indicate that the improvements in root activity and the coarse root system of mycorrhizal maize may help in alleviating salt stress on the plant.

  7. Blockade of AT1 Receptors Protects the Blood–Brain Barrier and Improves Cognition in Dahl Salt-Sensitive Hypertensive Rats

    PubMed Central

    Pelisch, Nicolas; Hosomi, Naohisa; Ueno, Masaki; Nakano, Daisuke; Hitomi, Hirofumi; Mogi, Masaki; Shimada, Kenji; Kobori, Hiroyuki; Horiuchi, Masatsugu; Sakamoto, Haruhiko; Matsumoto, Masayasu; Kohno, Masakazu; Nishiyama, Akira

    2011-01-01

    BACKGROUND The present study tested the hypothesis that inappropriate activation of the brain renin–angiotensin system (RAS) contributes to the pathogenesis of blood–brain barrier (BBB) disruption and cognitive impairment during development of salt-dependent hypertension. Effects of an angiotensin II (AngII) type-1 receptor blocker (ARB), at a dose that did not reduce blood pressure, were also examined. METHODS Dahl salt-sensitive (DSS) rats at 6 weeks of age were assigned to three groups: low-salt diet (DSS/L; 0.3% NaCl), high-salt diet (DSS/H; 8% NaCl), and high-salt diet treated with ARB, olmesartan at 1 mg/kg. RESULTS DSS/H rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive functions, which were associated with increased brain AngII levels, as well as decreased mRNA levels of tight junctions (TJs) and collagen-IV in the hippocampus. In DSS/H rats, olmesartan treatment, at a dose that did not alter blood pressure, restored the cognitive decline, and ameliorated leakage from brain microvessels. Olmesartan also decreased brain AngII levels and restored mRNA expression of TJs and collagen-IV in DSS/H rats. CONCLUSIONS These results suggest that during development of salt-dependent hypertension, activation of the brain RAS contributes to BBB disruption and cognitive impairment. Treatment with an ARB could elicit neuroprotective effects in cognitive disorders by preventing BBB permeability, which is independent of blood pressure changes. PMID:21164491

  8. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum1

    PubMed Central

    Ostrem, James A.; Olson, Steve W.; Schmitt, Jürgen M.; Bohnert, Hans J.

    1987-01-01

    Mesembryanthemum crystallinum responds to salt stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665596

  9. Effect of salt acclimation on digitalis-like compounds in the toad.

    PubMed

    Lichtstein, D; Gati, I; Babila, T; Haver, E; Katz, U

    1991-01-23

    Digitalis-like compounds (DLC) were shown to be a normal constituent of the skin and plasma of toads. In order to assess the possible physiological role of these compounds in the toad, their levels were determined in the brain, plasma and skin following acclimation in different NaCl solutions. We demonstrate that an increase in salt concentrations in the animal medium from 0 to 1.2% decreased the levels of DLC in the brain by 50% without altering significantly its levels in the plasma and skin. An increase in medium salt concentration to 1.5% resulted in a 50% increase of DLC levels in the skin without changing its levels in the plasma or brain. These results suggest that skin and brain DLC may participate in the long-term salt and water homeostasis in the toad, while the plasma compound either participates in the short-term regulations of salt and water homeostasis or have some other, unknown, function.

  10. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis x C. dactylon) and their physiological responses to salt and drought stress.

    PubMed

    Lu, Shaoyun; Peng, Xinxiang; Guo, Zhenfei; Zhang, Gengyun; Wang, Zhongcheng; Wang, Congying; Pang, Chaoshu; Fan, Zhen; Wang, Jihua

    2007-08-01

    A protocol was established for in vitro selection of salinity tolerant somaclonal variations from suspension cultured calli of triploid bermudagrass cv. TifEagle. To induce somaclonal variations the calli were subcultured for 18 months and were then subject to three-round selections for salt-tolerant calli by placing on solid medium containing 0.3 M NaCl for 10 days followed by a recovery for 2 weeks. The surviving calli were regenerated on regeneration medium containing 0.1 M NaCl. Three somaclonal variant lines (2, 71, and 77) were obtained and analyzed. The selected somaclonal lines showed higher relative growth and less injury than TifEagle under salt stress, indicating that they increased salt tolerance. In addition, they had higher relative water content and lower electrolyte leakage than TifEagle after withholding irrigation, indicating that they also increased drought tolerance. The three somaclonal variant lines had higher proline content than TifEagle under normal growth condition. The line 71 had a higher K(+)/Na(+) ratio, whereas the lines 2 and 77 had higher CAT activity under control and salt stress conditions, indicating that different mechanisms for salt tolerance might exist in these three lines.

  11. Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable salt concentrations.

    PubMed

    Val Del Rio, Angeles; Pichel, Andres; Fernandez-Gonzalez, Nuria; Pedrouso, Alba; Fra-Vázquez, Andrea; Morales, Nicolas; Mendez, Ramon; Campos, Jose Luis; Mosquera-Corral, Anuska

    2018-02-15

    The partial nitritation-anammox (PN-AMX) process applied to wastewaters with high NaCl concentration was studied until now using simulated media, without considering the effect of organic matter concentration and the shift in microbial populations. This research work presents results on the application of this process to the treatment of saline industrial wastewater. Obtained results indicated that the PN-AMX process has the capability to recover its initial activity after a sudden/acute salt inhibition event (up to 16 g NaCl/L). With a progressive salt concentration increase for 150 days, the PN-AMX process was able to remove the 80% of the nitrogen at 7-9 g NaCl/L. The microbiological data indicated that NaCl and ammonia concentrations and temperature are important factors shaping PN-AMX communities. Thus, the NOB abundance (Nitrospira) decreases with the increase of the salt concentration, while heterotrophic denitrifiers are able to outcompete anammox after a peak of organic matter in the feeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microbiological changes occurring in trout fillets (Oncorhynchus mykiss W. 1792) salted and treated with potassium sorbate during production and storage.

    PubMed

    Oksüztepe, Gülsüm; Gürel Inanli, Ayşe

    2007-08-15

    In this study, microbiological changes during processing and storage of salted-cured trout fillets treated with potassium sorbate were investigated. For this purpose, 10 and 15% (w/w) NaCl and 1, 5 and 10% (w/v) potassium sorbate were applied to the fillets. The processed fillets were vacuum-packed and storage at 4 degrees C. The samples were analyzed in some periods of production and in the storage days of 7, 14, 28, 42, 56, 70 and 84 for numbers of total mesophilic aerob, psycrophylic, yeast and mould. In conclusion, the microbiological quality of all samples treated with 15% NaCl and potassium sorbate were found better. Consequently, it can be concluded that the usage of potassium sorbate may be useful and a synergistic effect between salt and potassium sorbate determined.

  13. Salt Potentiates Methylamine Counteraction System to Offset the Deleterious Effects of Urea on Protein Stability and Function

    PubMed Central

    Singh, Laishram R.; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction. PMID:25793733

  14. Salt potentiates methylamine counteraction system to offset the deleterious effects of urea on protein stability and function.

    PubMed

    Rahman, Safikur; Rehman, Md Tabish; Singh, Laishram R; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea's harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea's effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.

  15. An overview of spray drift reduction testing of spray nozzles

    USDA-ARS?s Scientific Manuscript database

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  16. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  17. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  18. Impacts of road salts on leaching behavior of lead contaminated soil.

    PubMed

    Wu, Jingjing; Kim, Hwidong

    2017-02-15

    Research was conducted to explore the effects of road salts on lead leaching from lead contaminated soil samples that were collected in an old residence area in Erie, PA. The synthetic precipitate leaching procedure (SPLP) test was employed to evaluate lead leaching from one of the lead contaminated soils in the presence of various levels of road salts (5%, 10%, 20%, 30% and 40%). The results of the leaching test showed that lead leaching dramatically increased as the road salt content increased as a result of the formation of lead-chloride complexes, but different lead leaching patterns were observed in the presence of NaCl- and CaCl 2 -based road salts at a high content of road salts (>20%). Additional leaching tests that include 30% road salts and different soil samples showed a variety of leaching patterns by soil samples. The sequential extraction of each soil sample showed that a high fraction of organic matter bound lead was associated with lead contamination. The higher the fraction of organic matter bound lead contained in soil, the greater the effects of calcium on reducing lead leaching, observations showed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well.

    PubMed

    Ai, Li; Huang, Yaping; Wang, Chuan

    2018-06-04

    A halophilic lipase (LipS2) was produced by Chromohalobacter canadensis strain which was isolated from ancient salt well of Zigong, China. LipS2 was purified to homogeneity and showed a single band with molecular mass of 58 kDa by SDS-PAGE. LipS2 preferred middle-to-long acyl chain esters with C14 triglycerides as optimum substrate. It was noteworthy that LipS2 displayed efficient hydrolysis activity to some vegetable oils which were composed of polyunsaturated fatty acid. LipS2 showed high activity in range of 2.5-3.5 M NaCl, no activity without salt. Optimum temperature and pH were 55 °C and pH 8.5, respectively. Notably, the thermostability and pH stability of LipS2, varying with salt concentration, reached optimum in the presence of 3.0 M NaCl. LipS2 was stimulated by Ca 2+ and Mg 2+ , inhibited by Zn 2+ , Cu 2+ , Mn 2+ , Fe 2+ , and Hg 2+ . Moreover, LipS2 displayed significant tolerance to organic solvents including methanol, ethanol, ethyl acetate and acetone, especially, LipS2 activity was enhanced markedly by the hexane and benzene. Non-ionic surfactants increased LipS2 activity, while ionic surfactants decreased activity. This was the first report on halophilic lipase of Chromohalobacter from ancient salt well. The results suggested that LipS2 may have considerable potential for biotechnological applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation.

    PubMed

    Chin, Koo B; Go, Mi Y; Xiong, Youling L

    2009-03-01

    Functional properties of heat-induced gels prepared from microbial transglutaminase (TG)-treated porcine myofibrillar protein (MP) containing sodium caseinate with or without konjac flour (KF) under various salt concentrations (0.1, 0.3 and 0.6MNaCl) were evaluated. The mixed MP gels with KF exhibited improved cooking yields at all salt concentrations. TG treatment greatly enhanced gel strength and elasticity (storage modulus, G') at 0.6M NaCl, but not at lower salt concentrations. The combination of KF and TG improved the gel strength at 0.1 and 0.3M NaCl and G' at all salt concentrations, when compared with non-TG controls. Incubation of MP suspensions (sols) with TG promoted the disappearance of myosin heavy chain and the production of polymers. The TG-treated MP mixed gels had a compact structure, compared to those without TG, and the KF incorporation modified the gel matrix and increased its water-holding capacity. Results from differential scanning calorimetry suggested possible interactions of MP with KF, which may explain the changes in the microstructure of the heat-induced gels.

  1. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  2. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ basil

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the effects of salinity on growth and nutrient uptake in basil (Ocimum basilicum L.). Plants were fertilized with a complete nutrient solution and exposed to no, low, or moderate levels of salinity from NaCl or CaCl2. Plants in the control and moderate salinity tre...

  3. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress.

    PubMed

    Abouelsaad, Ibrahim; Renault, Sylvie

    2018-04-21

    Jasmonic acid (JA) has been mostly studied in responses to biotic stresses, such as herbivore attack and pathogenic infection. More recently, the involvement of JA in abiotic stresses including salinity was highlighted; yet, its role in salt stress remained unclear. In the current study, we compared the physiological and biochemical responses of wild-type (WT) tomato (Solanum lycopersicum) cv Castlemart and its JA-deficient mutant defenseless-1 (def-1) under salt stress to investigate the role of JA. Plant growth, photosynthetic pigment content, ion accumulation, oxidative stress-related parameters, proline accumulation and total phenolic compounds, in addition to both enzymatic and non-enzymatic antioxidant activities, were measured in both genotypes after 14 days of 100 mM NaCl treatment. Although we observed in both genotypes similar growth pattern and sodium, calcium and potassium levels in leaves under salt stress, def-1 plants exhibited a more pronounced decrease of nitrogen content in both leaves and roots and a slightly higher level of sodium in roots compared to WT plants. In addition, def-1 plants exposed to salt stress showed reactive oxygen species (ROS)-associated injury phenotypes. These oxidative stress symptoms in def-1 were associated with lower activity of both enzymatic antioxidants and non-enzymatic antioxidants. Furthermore, the levels of the non-enzymatic ROS scavengers proline and total phenolic compounds increased in both genotypes exposed to salt stress, with a higher amount of proline in the WT plants. Overall the results of this study suggest that endogenous JA mainly enhanced tomato salt tolerance by maintaining ROS homeostasis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    PubMed

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  5. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.

    PubMed

    Turk, Martina; Méjanelle, Laurence; Sentjurc, Marjeta; Grimalt, Joan O; Gunde-Cimerman, Nina; Plemenitas, Ana

    2004-02-01

    The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:2Delta9,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.

  6. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    PubMed

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN < 0 N-heteroaromatics. It further revealed that QN was well-matched in the prediction of salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN < 0 and with Cl(-) for QN > 0.

  7. Physical properties of salt, anhydrite and gypsum : preliminary report

    USGS Publications Warehouse

    Robertson, Eugene C.; Robie, Richard A.; Books, Kenneth G.

    1958-01-01

    This summary is the result of a search of the available literature. Emphasis is placed on the mechanical and calorimetric properties of salt; the measurements of elastic, thermal, magnetic, and mass properties of salt are merely tabulated. Under hydrostatic pressure 100 percent at a nearly constant stress difference of about 300 kg/cm2. Similarily, under temperatures > 400?C at one atmosphere, salt deforms plastically to strains > 100 percent under stress differences of about 100 kg/cm2. Entha1pies were calculated for various temperatures to 2,000? C from the low temperature and high temperature heat capacities and the heats of solution of the following minerals: salt (or halite), NaCl; anhydrite, CaS04; quartz, Si02; and calcite, CaC03. Three combinations of these minerals were assumed to represent three possible natural salt beds, and the heats required to raise the temperature of each to 1,500?C and to 2,000?C were calculated. For a half and half mixture of salt and anhydrite, 1,300 cal/gm were required to raise the temperature to 2,000?C. For an evaporite containing 60 percent salt and about equal amounts of anhydrite, calcite, and quartz, 1,100 cal/gm are required to raise the temperature to 2,OOO?C. Most of the measurements of the elastic moduli were made on single crystals of salt, anhydrite, and gypsum. For the most part, the measurements of density, magnetic susceptibility, and other properties were made on natural salt samples.

  8. Interaction of chromatin with NaCl and MgCl2. Solubility and binding studies, transition to and characterization of the higher-order structure.

    PubMed

    Ausio, J; Borochov, N; Seger, D; Eisenberg, H

    1984-08-15

    Chicken erythrocyte chromatin containing histones H1 and H5 was carefully separated into a number of well-characterized fractions. A distinction could be made between chromatin insoluble in NaCl above about 80 mM, and chromatin soluble at all NaCl concentrations. Both chromatin forms were indistinguishable electrophoretically and both underwent the transition from the low salt "10 nm" coil to the "30 nm" higher-order structure solenoid by either raising the MgCl2 concentration to about 0.3 mM or the NaCl concentration to about 75 mM. The transitions were examined in detail by elastic light-scattering procedures. It could be shown that the 10 nm form is a flexible coil. For the 30 nm solenoid, the assumption of a rigid cylindrical structure was in good agreement with 5.7 nucleosomes per helical turn. However, disagreement of calculated frictional parameters with values derived from quasielastic light-scattering and sedimentation introduced the possibility that the higher-order structure, under these conditions, is more extended, flexible, or perhaps a mixture of structures. Values for density and refractive index increments of chromatin are also given. To understand the interaction of chromatin with NaCl and with MgCl2, a number of experiments were undertaken to study solubility, precipitation, conformational transitions and binding of ions over a wide range of experimental conditions, including chromatin concentration.

  9. Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada

    NASA Astrophysics Data System (ADS)

    Howard, Ken W. F.; Maier, Herb

    2007-04-01

    North America's fifth most populated municipality — the Greater Toronto Area (GTA) — is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.

  10. Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada.

    PubMed

    Howard, Ken W F; Maier, Herb

    2007-04-01

    North America's fifth most populated municipality--the Greater Toronto Area (GTA)--is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.

  11. Effects of pH and Salts on Physical and Mechanical Properties of Pea Starch Films.

    PubMed

    Choi, W S; Patel, D; Han, J H

    2016-07-01

    To identify the significant contribution of intermolecular hydrogen bonds of starch molecules to the film structure formation, pH of film-forming solutions was adjusted and also various salts (NaCl, CaCl2 , CaSO4 , and K2 SO4 ) were mixed into the glycerol-plasticized pea starch film. The film made from pH 7 possessed the highest tensile strength-at-break (2 times) and elastic modulus (4 to 15 times) and the lowest elongation-at-break compared with those of the films made from acid and alkali environments. The pH 7 film also has the highest film density and the lowest total soluble matter. At the level of 0.01 to 0.1 M of CaSO4 and 0.1 M of K2 SO4 in a kilogram of starch, the water solubility of the film increased, while chloride salts slightly lowered the solubility. NaCl and CaSO4 reduced water vapor permeability (WVP), while CaCl2 slightly increased WVP at 0.01 and 0.06 M concentrations, and K2 SO4 significantly increased WVP at 0.03 and 0.15 M. Presence of salts increased tensile strength (5 to 14 times than the control films) and elastic modulus (35 to 180 times) of starch film at 0.01 to 0.03 M of CaSO4 and K2 SO4 . Elongation-at-break increased significantly as salt concentration increases to an optimal level. However, when the concentration exceeded above the optimal level, the E of starch films decreased and showed no significant difference from the control film. Overall, the addition of salts modified physical and mechanical properties of pea starch films more than pH adjustment without any salt addition. © 2016 Institute of Food Technologists®

  12. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    PubMed Central

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  13. Short term effects of increasing dietary salt concentrations on urine composition in healthy cats.

    PubMed

    Paßlack, N; Burmeier, H; Brenten, T; Neumann, K; Zentek, J

    2014-09-01

    High dietary salt (NaCl) concentrations are assumed to be beneficial in preventing the formation of calcium oxalate (CaOx) uroliths in cats, since increased water intake and urine volume have been observed subsequent to intake. In human beings, dietary NaCl restriction is recommended for the prevention of CaOx urolith formation, since high NaCl intake is associated with increased urinary Ca excretion. The aim of the present study was to clarify the role of dietary NaCl in the formation of CaOx uroliths in cats. Eight cats received four diets that differed in Na and Cl concentrations (0.38-1.43% Na and 0.56-2.52% Cl dry matter, DM). Each feeding period consisted of a 21 day adaptation period, followed by a 7 day sampling period for urine collection. Higher dietary NaCl concentrations were associated with increased urine volume and renal Na excretion. Urinary Ca concentration was constant, but renal Ca excretion increased from 0.62 to 1.05 mg/kg bodyweight (BW)/day with higher dietary NaCl concentrations (P ≤ 0.05). Urinary oxalate (Ox), citrate, P and K concentrations decreased when NaCl intake was high (P ≤ 0.05), and urinary pH was low in all groups (6.33-6.45; P > 0.05). Relative supersaturation of CaOx in the urine was unaffected by dietary NaCl concentrations. In conclusion, the present study demonstrated several beneficial effects of high dietary NaCl intake over a relatively short time period. In particular, urinary Ca concentration remained unchanged because of increased urine volume. Decreased urinary Ox concentrations might help to prevent the formation of CaOx uroliths, but this should be verified in future studies in diseased or predisposed cats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System

    PubMed Central

    Ma, Xiaohua; Zheng, Jian; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2017-01-01

    Salt stress critically affects the physiological processes and morphological structure of plants, resulting in reduced plant growth. Salicylic acid (SA) is an important signal molecule that mitigates the adverse effects of salt stress on plants. Large pink Dianthus superbus L. (Caryophyllaceae) usually exhibit salt-tolerant traits under natural conditions. To further clarify the salt-tolerance level of D. superbus and the regulating mechanism of exogenous SA on the growth of D. superbus under different salt stresses, we conducted a pot experiment to examine the biomass, photosynthetic parameters, stomatal structure, chloroplast ultrastructure, reactive oxygen species (ROS) concentrations, and antioxidant activities of D. superbus young shoots under 0.3, 0.6, and 0.9% NaCl conditions, with and without 0.5 mM SA. D. superbus exhibited reduced growth rate, decreased net photosynthetic rate (Pn), increased relative electric conductivity (REC) and malondialdehyde (MDA) contents, and poorly developed stomata and chloroplasts under 0.6 and 0.9% salt stress. However, exogenously SA effectively improved the growth, photosynthesis, antioxidant enzyme activity, and stoma and chloroplast development of D. superbus. However, when the plants were grown under severe salt stress (0.9% NaCl condition), there was no significant difference in the plant growth and physiological responses between SA-treated and non-SA-treated plants. Therefore, our research suggests that exogenous SA can effectively counteract the adverse effect of moderate salt stress on D. superbus growth and development. PMID:28484476

  15. Listeria monocytogenes mutants with altered growth phenotypes at refrigeration temperature and high salt concentrations.

    PubMed

    Burall, Laurel S; Laksanalamai, Pongpan; Datta, Atin R

    2012-02-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes.

  16. Listeria monocytogenes Mutants with Altered Growth Phenotypes at Refrigeration Temperature and High Salt Concentrations

    PubMed Central

    Burall, Laurel S.; Laksanalamai, Pongpan

    2012-01-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes. PMID:22179239

  17. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression

    PubMed Central

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants. PMID:27695475

  18. The stress corrosion resistance and the cryogenic temperature mechanical properties of hot rolled Nitronic 32 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of hot rolled and centerless ground Nitronic 32 stainless steel bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing smooth tensile strength with decreasing temperature to liquid hydrogen temperature. However, below -200 F (-129.0 C) the notched tensile strength decreased slightly and below -320 F (-196.0 C) the decrease was significant. The elongation and reduction of area decreased drastically at temperatures below -200 F (-129.0 C). The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens stressed to 0, 75, and 90 percent of the 0.2 percent yield strength and on transverse 'C'-ring specimens stressed to 75 and 90 percent of the yield strength and exposed to: alternate immersion in a 3.5 percent NaCl bath, humidity cabinet environment, and a 5 percent salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack; however, the 'C'-rings exposed to the alternate immersion and to the salt spray experienced some shallow etching and pitting, respectively. Small cracks appeared in two of the 'C'-rings after one month exposure to the salt spray.

  19. Salt sensitivity of tubuloglomerular feedback in the early remnant kidney

    PubMed Central

    Singh, Prabhleen

    2013-01-01

    We previously reported internephron heterogeneity in the tubuloglomerular feedback (TGF) response 1 wk after subtotal nephrectomy (STN), with 50% of STN nephrons exhibiting anomalous TGF (Singh P, Deng A, Blantz RC, Thomson SC. Am J Physiol Renal Physiol 296: F1158–F1165, 2009). Presently, we tested the theory that anomalous TGF is an adaptation of the STN kidney to facilitate increased distal delivery when NaCl balance forces the per-nephron NaCl excretion to high levels. To this end, the effect of dietary NaCl on the TGF response was tested by micropuncture in STN and sham-operated Wistar rats. An NaCl-deficient (LS) or high-salt NaCl diet (HS; 1% NaCl in drinking water) was started on day 0 after STN or sham surgery. Micropuncture followed 8 days later with measurements of single-nephron GFR (SNGFR), proximal reabsorption, and tubular stop-flow pressure (PSF) obtained at both extremes of TGF activation, while TGF was manipulated by microperfusing Henle's loop (LOH) from the late proximal tubule. Activating TGF caused SNGFR to decline by similar amounts in Sham-LS, Sham-HS and STN-LS [ΔSNGFR (nl/min) = −16 ± 2, −11 ± 3, −11 ± 2; P = not significant by Tukey]. Activating TGF in STN-HS actually increased SNGFR by 5 ± 2 nl/min (P < 0.0005 vs. each other group by Tukey). HS had no effect on the PSF response to LOH perfusion in sham [ΔPSF (mmHg) = −9.6 ± 1.1 vs. −9.8 ± 1.0] but eliminated the PSF response in STN (+0.3 ± 0.9 vs. −5.7 ± 1.0, P = 0.0002). An HS diet leads to anomalous TGF in the early remnant kidney, which facilitates NaCl and fluid delivery to the distal nephron. PMID:24259514

  20. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    NASA Astrophysics Data System (ADS)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  1. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    PubMed

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  2. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    PubMed Central

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  3. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-04-21

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.

  4. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  5. Applicability of salt reduction strategies in pizza crust.

    PubMed

    Mueller, Eva; Koehler, Peter; Scherf, Katharina Anne

    2016-02-01

    In an effort to reduce population-wide sodium intake from processed foods, due to major health concerns, several different strategies for sodium reduction in pizza crust without any topping were evaluated by sensory analyses. It was possible to reduce sodium by 10% in one single step or to replace 30% of NaCl by KCl without a noticeable loss of salty taste. The late addition of coarse-grained NaCl (crystal size: 0.4-1.4 mm) to pizza dough led to an enhancement of saltiness through taste contrast and an accelerated sodium delivery measured in the mouth and in a model mastication simulator. Likewise, the application of an aqueous salt solution to one side of the pizza crust led to an enhancement of saltiness perception through faster sodium availability, leading to a greater contrast in sodium concentration. Each of these two strategies allowed a sodium reduction of up to 25% while maintaining taste quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model

    PubMed Central

    Song, Jie; Wang, Baoshan

    2015-01-01

    Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. PMID:25288631

  7. Salt inactivates endothelial nitric oxide synthase in endothelial cells.

    PubMed

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An

    2009-03-01

    There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.

  8. Salt tolerances of some mainland tree species select as through nursery screening.

    PubMed

    Miah, Md Abdul Quddus

    2013-09-15

    A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases.

  9. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Pesticide Factsheets

    The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of sea salt aerosol emission size distribution, and the model's parameterization of the sea salt emission factor as a function of sea surface temperature. This dataset is associated with the following publication:Gantt , B., J. Kelly , and J. Bash. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 8: 3733-3746, (2015).

  10. Evaluation of a rapid protocol for the assessment of salt sensitivity against the blood pressure response to dietary sodium chloride restriction.

    PubMed

    Galletti, F; Ferrara, I; Stinga, F; Iacone, R; Noviello, F; Strazzullo, P

    1997-04-01

    The "gold standard" for the assessment of salt sensitivity of hypertension is the blood pressure response to dietary NaCl restriction; nevertheless, for practical purposes, a more rapid test that would not depend on the patient's compliance to the dietary prescription would be very useful in clinical research and medical practice. The aim of this study was thus to evaluate the effectiveness and reliability of a rapid, easy-to-standardize protocol for the assessment of salt sensitivity against the blood pressure response to dietary salt restriction. A total of 108 hypertensive patients were screened for salt sensitivity by the modified protocol of Grim et al. Thereafter, nine patients identified by the test as salt sensitive and nine identified as salt resistant followed, for two consecutive periods of 1 week, a diet with normal (200 mmol/day) or low (50 mmol/day) NaCl content. Compliance to the diet was checked by repeated 24-h urine collections. The group as a whole experienced a significant fall in blood pressure during the low Na diet (mean pressure = 123 +/- 3 v 118 +/- 3 mm Hg; P < .05). However, whereas patients identified as salt sensitive by the Grim protocol had a marked and significant blood pressure decrease (systolic -12 mm Hg, diastolic -7 mm Hg), no change was observed in those classified as salt resistant (systolic -2 mm Hg, diastolic -2 mm Hg). A significant correlation between changes in urinary Na excretion and changes in blood pressure was found only in salt-sensitive hypertensive patients. In conclusion, the modified Grim protocol tested in this study was able to correctly predict a significant blood pressure response to dietary salt restriction in the majority of cases. A validation of this test in a larger patient population may be advisable.

  11. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension

    PubMed Central

    Leenen, Frans H. H.; Chen, Ling; Golovina, Vera A.; Hamlyn, John M.; Pallone, Thomas L.; Van Huysse, James W.; Zhang, Jin; Wier, W. Gil

    2012-01-01

    Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na+ and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na+]. This leads, via the Na+-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na+ pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na+]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na+ channels, EO, ouabain-sensitive α2 Na+ pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na+ channel-EO-α2 Na+ pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α2 Na+ pump-Na+/Ca2+ exchanger-Ca2+ signaling pathway. Circulating EO also activates an EO-α2 Na+ pump-Src kinase signaling cascade. This increases the expression of the Na+/Ca2+ exchanger-transient receptor potential cation channel Ca2+ signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several

  12. Freezing and melting of salt hydrates next to solid surfaces probed by infrared-visible sum frequency generation spectroscopy.

    PubMed

    Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali

    2013-06-12

    Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.

  13. Salt craving: the psychobiology of pathogenic sodium intake.

    PubMed

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2008-08-06

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.

  14. Electrochemical Deposition of High Purity Silicon from Molten Salts

    NASA Astrophysics Data System (ADS)

    Haarberg, Geir Martin

    Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 oC were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.

  15. Electrochemical Deposition of High Purity Silicon in Molten Salts

    NASA Astrophysics Data System (ADS)

    Haarberg, Geir Martin

    Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 °C were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.

  16. The chemical, microbial, sensory and technological effects of intermediate salt levels as a sodium reduction strategy in fresh pork sausages.

    PubMed

    Cluff, MacDonald; Steyn, Hannes; Charimba, George; Bothma, Carina; Hugo, Celia J; Hugo, Arno

    2016-09-01

    The reduction of sodium in processed meat products is synonymous with the use of salt replacers. Rarely has there been an assessment of the use of intermediate salt levels as a sodium reduction strategy in itself. In this study, 1 and 1.5% salt levels were compared with 0 and 2% controls in fresh pork sausages for effects on chemical, microbial, sensory and technological stability. Although significant (P < 0.001 to P < 0.01) differences were found between the 0 and 2% controls, no significant differences could be detected between the 2, 1.5 and 1% added NaCl treatments for the following: total bacteria counts on days 3, 6 and 9; TBARS of pork sausages stored at 4 °C on days 6 and 9 and stored at -18 °C on days 90 and 180; taste, texture and overall liking during sensory evaluation; and % cooking loss, % total loss and % refrigeration loss. Consumers were able to differentiate between the 2 and 1% added NaCl treatments in terms of saltiness. This study indicated that salt reduction to intermediate levels can be considered a sodium reduction strategy in itself but that further research with regards to product safety is needed. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    PubMed

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  18. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  19. Diversity and Evolution of Salt Tolerance in the Genus Vigna

    PubMed Central

    Iseki, Kohtaro; Takahashi, Yu; Muto, Chiaki; Naito, Ken; Tomooka, Norihiko

    2016-01-01

    Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops. PMID:27736995

  20. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. Copyright © 2016 the American Physiological Society.

  1. Thermodynamic analysis of the interaction of partially hydrophobic cationic polyelectrolytes with sodium halide salts in water

    NASA Astrophysics Data System (ADS)

    Bončina, Matjaž; Lukšič, Miha; Seručnik, Mojca; Vlachy, Vojko

    2014-05-01

    Isothermal titration calorimetry was used to determine the temperature and concentration dependence of the enthalpy of mixing of 3,3- and 6,6-ionene fluorides, bromides, and iodides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) in water. The magnitudes of the enthalpies, measured in the temperature range from 273 to 318 K, depended on the number of methylene groups on the ionene polyion (hydrophobicity), and on the anion of the added salt (ion-specificity). All enthalpies of mixing of 3,3- and 6,6-ionene fluorides with low molecular weight salts (NaCl, NaBr, and NaI) were negative, which is in contrast to the predictions of standard theories of polyelectrolyte solutions. This fact was interpreted in the light of the ion-water short-range interactions that are not accounted for in those theories. In contrast, the enthalpies of mixing of 3,3- and 6,6-ionene bromides and iodides with NaF were positive, being in accord with theory. Using the calorimetric data, we performed a model thermodynamic analysis of the polyelectrolyte-salt mixing process to obtain changes in the apparent standard Gibbs free energy, enthalpy, entropy, and heat capacity relative to the pure ionene fluorides in water. The results prove that halide ions replace fluoride counterions with a strength increasing in the order chloride < bromide < iodide. The process is enthalpy governed, accompanied by a positive change in the heat capacity.

  2. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. © 2016 Institute of Food Technologists®

  3. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    PubMed Central

    Villarino, Gonzalo H.; Hu, Qiwen; Scanlon, Michael J.; Mueller, Lukas; Mattson, Neil S.

    2017-01-01

    One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq) has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1), a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species. PMID:28771200

  4. Upward and downward facing high mass flux spray cooling with additives: A novel technique to enhance the heat removal rate at high initial surface temperature

    NASA Astrophysics Data System (ADS)

    Pati, A. R.; Kumar, A.; Mohapatra, S. S.

    2018-06-01

    The objective of the current work is to enhance the spray cooling by changing the orientation of the nozzle with different additives (acetone, methanol, ethanol, benzene, n-hexane, tween 20 and salt) in water. The experiments are carried out by upward, downward and both upward and downward facing sprays. The optimization result depicts that the spray produced by upward facing spray gives higher heat flux than the downward facing spray and also cooling by both the upward and downward facing spray simultaneously produces better result than the individual. Further experiments with both upward and downward facing spray by using different coolants reveal that in case of cooling by ethanol (500 ppm) + water mixture, the maximum enhancement of surface heat flux ( 2.57 MW/m2) and cooling rate (204 °C/s) is observed. However, the minimum surface heat flux is achieved in case of methanol (100 ppm) + water due to higher contact angle (710) among all the considered coolants.

  5. Gibberellins Producing Endophytic Fungus Porostereum spadiceum AGH786 Rescues Growth of Salt Affected Soybean

    PubMed Central

    Hamayun, Muhammad; Hussain, Anwar; Khan, Sumera A.; Kim, Ho-Youn; Khan, Abdul L.; Waqas, Muhammad; Irshad, Muhammad; Iqbal, Amjad; Rehman, Gauhar; Jan, Samin; Lee, In-Jung

    2017-01-01

    In the pursuit of sustainable agriculture through environment and human health friendly practices, we evaluated the potential of a novel gibberellins (GAs) producing basidiomycetous endophytic fungus Porostereum spadiceum AGH786, for alleviating salt stress and promoting health benefits of soybean. Soybean seedlings exposed to different levels of NaCl stress (70 and 140 mM) under greenhouse conditions, were inoculated with the AGH786 strain. Levels of phytohormones including GAs, JA and ABA, and isoflavones were compared in control and the inoculated seedlings to understand the mechanism through which the stress is alleviated. Gibberellins producing endophytic fungi have been vital for promoting plant growth under normal and stress conditions. We report P. spadiceum AGH786 as the ever first GAs producing basidiomycetous fungus capable of producing six types of GAs. In comparison to the so for most efficient GAs producing Gibberella fujikuroi, AGH786 produced significantly higher amount of the bioactive GA3. Salt-stressed phenotype of soybean seedlings was characterized by low content of GAs and high amount of ABA and JA with reduced shoot length, biomass, leaf area, chlorophyll contents, and rate of photosynthesis. Mitigation of salt stress by AGH786 was always accompanied by high GAs, and low ABA and JA, suggesting that this endophytic fungus reduces the effect of salinity by modulating endogenous phytohormones of the seedlings. Additionally, this strain also enhanced the endogenous level of two isoflavones including daidzen and genistein in soybean seedlings under normal as well as salt stress conditions as compared to their respective controls. P. spadiceum AGH786 boosted the NaCl stress tolerance and growth in soybean, by modulating seedlings endogenous phytohormones and isoflavones suggesting a valuable contribution of this potent fungal biofertilizer in sustainable agriculture in salt affected soils. PMID:28473818

  6. Layered growth with bottom-spray granulation for spray deposition of drug.

    PubMed

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  7. Excreting and non-excreting grasses exhibit different salt resistance strategies

    PubMed Central

    Moinuddin, Muhammad; Gulzar, Salman; Ahmed, Muhammad Zaheer; Gul, Bilquees; Koyro, Hans-Werner; Khan, Muhammad Ajmal

    2014-01-01

    The combination of traits that makes a plant successful under saline conditions varies with the type of plant and its interaction with the environmental conditions. Knowledge about the contribution of these traits towards salt resistance in grasses has great potential for improving the salt resistance of conventional crops. We attempted to identify differential adaptive response patterns of salt-excreting versus non-excreting grasses. More specifically, we studied the growth, osmotic, ionic and nutrient (carbon/nitrogen) relations of two salt-excreting (Aeluropus lagopoides and Sporobolus tremulus) and two non-excreting (Paspalum paspalodes and Paspalidium geminatum) perennial C4 grasses under non-saline and saline (0, 200 and 400 mM NaCl) conditions. Growth and relative growth rate decreased under saline conditions in the order P. geminatum > S. tremulus = A. lagopoides > P. paspalodes. The root-to-shoot biomass allocation was unaffected in salt-excreting grasses, increased in P. paspalodes but decreased in P. geminatum. Salt-excreting grasses had a higher shoot/root Na+ ratio than non-excreting grasses. K+, Ca2+ and Mg2+ homoeostasis remained undisturbed among test grasses possibly through improved ion selectivity with rising substrate salinity. Salt-excreting grasses increased leaf succulence, decreased ψs and xylem pressure potential, and accumulated proline and glycinebetaine with increasing salinity. Higher salt resistance of P. paspalodes could be attributed to lower Na+ uptake, higher nitrogen-use efficiency and higher water-use efficiency among the test species. However, P. geminatum was unable to cope with salt-induced physiological drought. More information is required to adequately document the differential strategies of salt resistance in salt-excreting and non-excreting grasses. PMID:24996428

  8. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    PubMed Central

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  9. Evaluation of 1, 3, 6, 8-Pyrene Tetra Sulfonic Acid tetra sodium salt (PTSA) as an agricultural spray tracer dye

    USDA-ARS?s Scientific Manuscript database

    The ability to measure spray deposition and movement with the use of tracer materials is a necessity for agricultural application research. Ideally, any tracer material used is highly soluble in the solution being sprayed, easily recoverable from both artificial and plant samples, stable in solutio...

  10. The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings.

    PubMed

    Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A

    2015-01-01

    Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.

  11. Salt effects on Origanum majorana fatty acid and essential oil composition.

    PubMed

    Baâtour, Olfa; Kaddour, Rym; Mahmoudi, Hela; Tarchoun, Imen; Bettaieb, Iness; Nasri, Nawel; Mrah, Sabah; Hamdaoui, Ghaith; Lachaâl, Mokhtar; Marzouk, Brahim

    2011-11-01

    The effects of salt on the essential oil yield and fatty acid composition of aerial parts of two marjoram varieties were investigated. Plants with 6 leaves were treated with NaCl (75mM). Salt treatment led to a reduction in aerial part growth. Salinity increased the fatty acid content more significantly in Tunisian variety (TV) than in Canadian variety (CV). CV showed an increase in double-bond index (DBI) and a decrease in malondialdehyde content under salt stress, while the opposite was observed in TV. The DBI was mainly affected by a strong reduction in oleic and linoleic acids in TV, whereas a strong stimulation of linoleic acid in CV was observed. Salt decreased and increased the essential oil yield in TV and CV respectively. The main constituents of the essential oil of TV were trans-hydrate sabinene and terpinen-4-ol, which showed a significant decrease under salt stress. In contrast, the main constituents of the essential oil of CV were sabinene and trans-hydrate sabinene, which showed a significant decrease and increase respectively under salt stress. Marjoram oil is a rich source of many compounds such as essential oils and fatty acids, but the distribution of these compounds differed significantly between the two varieties studied. Copyright © 2011 Society of Chemical Industry.

  12. Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da-Hai, E-mail: gresea_young@hotmail.com; Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Dornburger Strasse 159, 07743 Jena; Song, Li-Ying, E-mail: lysong@genetics.ac.cn

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CkNHX1 was isolated from Caragana korshinskii. Black-Right-Pointing-Pointer CkNHX1 was expressed mainly in roots, and significantly induced by NaCl in stems. Black-Right-Pointing-Pointer Expression of CkNHX1 enhanced the resistance to NaCl and LiCl in yeast and Atsos3-1. Black-Right-Pointing-Pointer Expression of CkNHX1-{Delta}C had little effect on NaCl/LiCl tolerance in Atsos3-1. Black-Right-Pointing-Pointer C-terminal region of CkNHX1 is required for its Na{sup +} and Li{sup +} transporting activity. -- Abstract: Sodium/proton exchangers (NHX antiporters) play important roles in plant responses to salt stress. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na{sup +}/H{sup +} transporting activity. In thismore » study, CkNHX1 were isolated from Caragana korshinskii, a pea shrub with high tolerance to salt, drought, and cold stresses. Transcripts of CkNHX1 were detected predominantly in roots, and were significantly induced by NaCl stress in stems. Transgenic yeast and Arabidopsisthalianasos3-1 (Atsos3-1) mutant over-expressing CkNHX1 and its hydrophilic C terminus-truncated derivative, CkNHX1-{Delta}C, were generated and subjected to NaCl and LiCl stresses. Expression of CkNHX1 significantly enhanced the resistance to NaCl and LiCl stresses in yeast and Atsos3-1 mutant. Whereas, compared with expression of CkNHX1, the expression of CkNHX1-{Delta}C had much less effect on NaCl tolerance in Atsos3-1 and LiCl tolerance in yeast and Atsos3-1. All together, these results suggest that the predominant expression of CkNHX1 in roots might contribute to keep C. korshinskii adapting to the high salt condition in this plant's living environment; CkNHX1 could recover the phenotype of Atsos3-1 mutant; and the hydrophilic C-terminal region of CkNHX1 should be required for Na{sup +}/H{sup +} and Li{sup +}/H{sup +} exchanging activity of CkNHX1.« less

  13. Rheological characterization of hair shampoo in the presence of dead sea salt.

    PubMed

    Abu-Jdayil, B; Mohameed, H A; Sa'id, M; Snobar, T

    2004-02-01

    In Jordan, a growing industry has been established to produce different types of Dead Sea (DS) cosmetics that have DS salt (contains mainly NaCl, KCl, and MgCl(2)) in their formulas. In this work, the effect of DS salt on the rheology of hair shampoo containing the sodium lauryl ether sulfate as a main active matter was studied. The effects of DS salt and active matter concentration, and the temperature and time of salt mixing, on the rheological properties of hair shampoo were investigated. The salt-free shampoo showed a Newtonian behavior at 'low active matter' (LAM) and shear thinning at 'high active matter' (HAM). The presence of DS salt changed the rheological behavior of LAM shampoo from Newtonian (for the salt-free shampoo) to shear thinning. On the other hand, the behavior of HAM shampoo switched from shear thinning to Newtonian behavior in the presence of high concentration of DS salt. The addition of DS salt increased the apparent viscosity of shampoo to reach a maximum value that corresponded to a salt concentration of 1.5 wt.%. Further addition of DS salt led to a decrease in the shampoo viscosity to reach a value less than that of the salt-free sample at high salt concentration. Changing the mixing temperature (25-45 degrees C) and mixing time (15-120 min) of DS salt with shampoo has no significant influence on the rheological behavior. However, the mixing process increased the apparent viscosity of salt-free shampoo. The power law model fitted well the flow curves of hair shampoo with and without DS salt.

  14. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictionsmore » also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.« less

  15. Salt Induced and Salt Suppressed Proteins in Tomato Leaves

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum cv. Money Maker) seedlings at the two-leaf stage were grown in one-half strength Hoagland solution supplemented with 50 mM NaCl for 4 days, with 100 mM NaCl for 4 days, with 150 mM NaCl for 4 days, and with a final concentration 200 mM NaCl for 2 days. Solutions were ref...

  16. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    PubMed Central

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Ángela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants. PMID:25429292

  17. Opposite extremes in ethylene/nitric oxide ratio induce cell death in suspension culture and root apices of tomato exposed to salt stress.

    PubMed

    Poór, P; Borbély, P; Kovács, Judit; Papp, Anita; Szepesi, Ágnes; Takács, Z; Tari, Irma

    2014-12-01

    The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.

  18. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    PubMed

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  19. Optimizing a readout protocol for low dose retrospective OSL-dosimetry using household salt.

    PubMed

    Christiansson, Maria; Mattsson, Sören; Bernhardsson, Christian; Rääf, Christopher L

    2012-06-01

    The authors' aim has been to find a single aliquot regenerative dose (SAR) protocol that accurately recovers an unknown absorbed dose in the region between 1-250 mGy in household salt. The main investigation has been conducted on a specific mine salt (>98.5% NaCl) intended for household use, using optical stimulation by blue LED (λ = 462 nm). The most accurate dose recovery for this brand of salt is found to be achieved when using Peak Signal Summing (PSS) of the OSL-decay and a preheat temperature of 200°C after the test dose. A SAR protocol for the household salt with preset values of regenerative doses (R1--R5) and a test dose (TED) of 17 mGy is also suggested here. Under laboratory conditions, the suggested protocol recovers unknown absorbed doses in this particular brand within 5% (2 SD) in the dose range between 1-250 mGy. This is a very promising result for low dose applications of household salt as a retrospective dosimeter after a nuclear or radiological event.

  20. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.

    PubMed

    Nejidat, Ali

    2005-03-01

    Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.

  2. Superconductivity could occur Na-supersaturated NaCl

    NASA Astrophysics Data System (ADS)

    Hanaki, Koji

    1997-04-01

    A flow-into electron and a flow-out hole mean flow-into of two unit electric c harges. Even if an exciton consisting of an electron and a hole is a neutral q uasi-particle, overlapping of excitons, namely, the bose condensation changes into a superconductor where half the electric current is due to holes moving t oward the reverse direction. The Meisner effect of the bose condensation comes from the precession of the each exciton under the magnetic field^1. Moreo ver, the present mechanism is supported with that superconducting material alw ays has two kinds of carriers. The superconductivity of NaCl comes from the ab ove-mentioned theory. Free stable holes at first and then electrons are produc ed in NaCl when considerable number of Cl^- lattice vacancies are brought in NaCl mainly because some electrons in the Cl-3p filled band fall into the v acancies. The coexistence of two kinds of stable carriers does not always mean the presence of excitons like VO with electrons not paired and localized in e ach V atom though. While, the absorption spectrum of the NaCl has already conf irmed the presence of excitons; the strength of the spectrum seems to indicate the formation of the bose condensation. Thus we could expect a new supercondu ctor. 1) Hanaki B.Am.P.Soc.,40-1(1995)568

  3. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    PubMed

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para

  4. Comparison of the performance between a spray gun and a spray boom in ornamentals.

    PubMed

    Foqué, D; Nuyttens, D

    2011-01-01

    Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.

  5. Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen.

    PubMed

    Scotti-Campos, Paula; Duro, Nuno; Costa, Mário da; Pais, Isabel P; Rodrigues, Ana P; Batista-Santos, Paula; Semedo, José N; Leitão, A Eduardo; Lidon, Fernando C; Pawlowski, Katharina; Ramalho, José C; Ribeiro-Barros, Ana I

    2016-06-01

    The actinorhizal tree Casuarina glauca tolerates extreme environmental conditions, such as high salinity. This species is also able to establish a root-nodule symbiosis with N2-fixing bacteria of the genus Frankia. Recent studies have shown that C. glauca tolerance to high salt concentrations is innate and linked to photosynthetic adjustments. In this study we have examined the impact of increasing NaCl concentrations (200, 400 and 600mM) on membrane integrity as well as on the control of oxidative stress in branchlets of symbiotic (NOD+) and non-symbiotic (KNO3+) C. glauca. Membrane selectivity was maintained in both plant groups at 200mM NaCl, accompanied by an increase in the activity of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase). Regarding cellular membrane lipid composition, linolenic acid (C18:3) showed a significant decline at 200mM NaCl in both NOD+ and KNO3+ plants. In addition, total fatty acids (TFA) and C18:2 also decreased in NOD+ plants at this salt concentration, resulting in malondialdehyde (MDA) production. Such initial impact at 200mM NaCl is probably due to the fact that NOD+ plants are subjected to a double stress, i.e., salinity and low nitrogen availability. At 400mM NaCl a strong reduction of TFA and C18:3 levels was observed in both plant groups. This was accompanied by a decrease in the unsaturation degree of membrane lipids in NOD+. However, in both NOD+ and KNO3+ lipid modifications were not reflected by membrane leakage at 200 or 400mM, suggesting acclimation mechanisms at the membrane level. The fact that membrane selectivity was impaired only at 600mM NaCl in both groups of plants points to a high tolerance of C. glauca to salt stress independently of the symbiotic relation with Frankia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    PubMed

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. [Effects of seed priming on physiology of seed germination and seeding growth of Marsdenia tenacissima under NaCl stress].

    PubMed

    Xiao, Xue-feng; Liu, Li; Guo, Qiao-sheng; Li, Chao; Wang, Ping-li; Yang, Sheng-chao; Hang, Yue-yu

    2015-01-01

    To offer the reference and method for salt damage in the cultivation of Marsdenia tenacissima, the seeds of M. tenacissima collected from Maguan city ( Yunnan province) were taken as the test materials to study the effects of different priming materials on improving germination and growth under high-level salt stress condition. Four different treatments, which were GA3, KNO3-KH2PO4, PEG-6000, NaCl, combined with ANOVA were applied to test the performance of germination energy, germination percentage, germination index, MDA, SOD, and CAT. The results showed that the seed germination was obviously inhibited under salt stress and the soaked seeds with different priming materials could alleviate the damage of salt stress. Under these treatments, the activities of SOD, CAT the content of soluble protein significantly increased. While the content of MDA significantly decreased. The maximum index was obtained when treated with 1.20% KNO3-KH2PO4, the germination percentage increased from 52.67% to 87.33% and the activity of SOD increased from 138.01 to 219.44 respectively. Comparing with the treatment of 1.20% KNO3-KH2PO4, the germination percentage of treating with 300 mg x L(-1) GA3 increased from 52.67% to 80.67%, while the activity of SOD increased from 138.01 to 444.61.

  8. Salt Inactivates Endothelial Nitric Oxide Synthase in Endothelial Cells12

    PubMed Central

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J.; Li, Xiang-An

    2009-01-01

    There is a 1–4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension. PMID:19176751

  9. Salt tolerance at single cell level in giant-celled Characeae

    PubMed Central

    Beilby, Mary J.

    2015-01-01

    Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50–100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in

  10. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  11. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less

  12. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    PubMed

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  13. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Warren, S. G.

    2014-12-01

    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of

  14. Salting-out and multivalent cation precipitation of anionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, R.D. Jr.; Keppel, R.A.; Cosper, M.B.

    1981-02-01

    In this surfactant/polymer flooding process, a carefully designed surfactant slug is injected into an oil-bearing formation with a view to reducing the oil/water interfacial tension substantially so as to facilitate mobilization of oil droplets trapped in the less accessible void spaces of the reservoir rock. When the surfactant comes into contact with reservoir brine, oil and rock, several phenomena can occur which result in loss of surfactant from the slug, i.e., salting-out of surfactant by NaCl, precipitation of insoluble soaps by multivalent cations such as calcium, partitioning to oil of both dissolved and precipitated surfactant, and adsorption of surfactant onmore » reservoir rock have been identified as important surfactant loss processes. This study presents some experimental data which illustrate the effects of salt and multivalent cations, identifies the mechanisms which are operative, and develops mathematical relationships which enable one to describe the behavior of surfactant systems when brought into contact with salt, multivalent cations, or both. 26 references.« less

  15. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    NASA Astrophysics Data System (ADS)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  16. Culture conditions and salt effects on essential oil composition of sweet marjoram (Origanum majorana) from Tunisia.

    PubMed

    Baâtour, Olfa; Tarchoune, Imen; Mahmoudi, Hela; Nassri, Nawel; Abidi, Wissal; Kaddour, Rym; Hamdaoui, Ghaith; Nasri-Ayachi, Mouhiba Ben; Lachaâl, Mohtar; Marzouk, Brahim

    2012-06-01

    O. majorana shoots were investigated for their essential oil (EO) composition. Two experiments were carried out; the first on hydroponic medium in a culture chamber and the second on inert sand in a greenhouse for 20 days. Plants were cultivated for 17 days in hydroponic medium supplemented with NaCl 100 mmol L⁻¹. The results showed that the O. majorana hydroponic medium offered higher essential oil yield than that from the greenhouse. The latter increased significantly in yield (by 50 %) under saline constraint while it did not change in the culture chamber. Under greenhouse conditions and in the absence of salt treatment, the major constituents were terpinen-4-ol and trans-sabinene hydrate. However, in the culture chamber, the major volatile components were cis-sabinene hydrate and terpinen-4-ol. In the presence of NaCl, new compounds appeared, such as eicosane, spathulenol, eugenol, and phenol. In addition, in the greenhouse, with or without salt, a very important change of trans-sabinene hydrate concentration in EO occurred, whereas in the culture chamber change appeared in cis-sabinene hydrate content.

  17. Productivity and food value of Amaranthus cruentus under non-lethal salt stress

    NASA Astrophysics Data System (ADS)

    Macler, Bruce A.; MacElroy, Robert D.

    Stress effects from the accumulation of metal salts may pose a problem for plants in closed biological systems such as spacecraft. This work examined the effects of salinity on growth, photosynthesis and carbon allocation in the crop plant, Amaranthus. Plants were germinated and grown in modified Hoagland's solution with NaCl concentrations of 0 to 1.0%. Plants received salt treatments at various times in development to assess effects on particular life history phases. For Amaranthus cruentus, germination, vegetative growth, flowering, seed development and yield were normal at salinities from 0 to 0.2%. Inhibition of these phases increased from 0.2 to 0.4% salinity and was total above 0.5%. 1.0% salinity was lethal to all developmental phases. Onset of growth phases were not affected by salinity. Plants could not be adapted by gradually increasing salinity over days or weeks. Water uptake increased, while photosynthetic CO2 uptake decreased with increasing salinity on a dry weight basis during vegetative growth. Respiration was not affected by salinity. After flowering, respiration and photosynthesis decreased markedly, such that 1.0% NaCl inhibited photosynthesis completely. Protein levels were unchanged with increasing salinity. Leaf starch levels were lower at salinities of 0.5% and above, while stem starch levels were not affected by these salinities. The evidence supports salt inhibition arising from changes in primary biochemical processes rather than from effects on water relations. While not addressing the toxic effects of specific ions, it suggests that moderate salinity per se need not be a problem in space systems.

  18. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf.

    PubMed

    Prusty, Manas R; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G Q; Jena, Kshirod K

    2018-01-01

    Cultivated rice ( Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na + exclusion mechanism in root which removes Na + from the xylem stream by membrane Na + and K + transporters, and resulted in low Na + accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species ( O . alta, O . latifolia , and O . coarctata ) and four species ( O . rhizomatis, O . eichingeri, O . minuta , and O . grandiglumis ) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na + concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na + in leaf of wild species might be affected by OsHKT1;4 -mediated Na + exclusion in

  19. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    PubMed Central

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  20. Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: effects of losartan and atenolol.

    PubMed

    de Cavanagh, Elena M V; Ferder, León F; Ferder, Marcelo D; Stella, Inés Y; Toblli, Jorge E; Inserra, Felipe

    2010-12-01

    Renin-angiotensin system (RAS) modulation by high dietary sodium may contribute to salt-induced hypertension, oxidative stress, and target organ damage. We investigated whether angiotensin II (Ang-II) type 1 (AT1)-receptor blockade (losartan) could protect the aorta and renal arteries from combined hypertension- and high dietary salt-related oxidative stress. Spontaneously hypertensive rats (3-month-old, n = 10/group) received tap water (SHR), water containing 1.5% NaCl (SHR+S), 1.5% NaCl and 30 mg losartan/kg/day (SHR+S+L), or 50 mg atenolol/kg/day (SHR+S+A). Atenolol was used for comparison. Ten Wistar-Kyoto rats (WKY) were controls. Systolic blood pressure (SBP) was determined by tail plethysmography. After 5 months of treatment, vascular remodeling and oxidative stress (superoxide production and NAD(P)H-oxidase activity (chemiluminescence), malondialdehyde (MDA) content (high-performance liquid chromatography), endothelial nitric oxide synthase (eNOS) activity [(14)C-arginine to (14)C citrulline], CuZn-SOD activity (spectrophotometry)) were studied. In SHR, salt-loading significantly aggravated hypertension, urinary protein excretion, intraparenchymal renal artery (IPRArt) perivascular fibrosis, aortic and renal artery oxidative stress, and induced endothelial cell loss in IPRArts. In salt-loaded SHR, 5-month losartan and atenolol treatments similarly reduced SBP, but only losartan significantly prevented (i) urinary protein excretion increase, (ii) or attenuated hypertension-related vascular remodeling, (iii) aortic MDA accumulation, (iv) renal artery eNOS activity lowering, and (v) aortic and renal artery superoxide dismutase (SOD) activity reduction. In SHR+S, the contributions to aortic superoxide production were as follows: uncoupled eNOS > xanthine oxidase (XO) > NAD(P)H oxidase. In this salt-sensitive genetic hypertension model, losartan protects from hypertension- and high dietary salt-related vascular oxidative stress, exceeding the benefits of BP

  1. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies.

    PubMed

    Wang, Shujing; Zhang, Ning; Hu, Tao; Dai, Weiguo; Feng, Xiuying; Zhang, Xinyi; Qian, Feng

    2015-12-07

    Monoclonal antibodies display complicated solution properties in highly concentrated (>100 mg/mL) formulations, such as high viscosity, high aggregation propensity, and low stability, among others, originating from protein-protein interactions within the colloidal protein solution. These properties severely hinder the successful development of high-concentration mAb solution for subcutaneous injection. We hereby investigated the effects of several small-molecule excipients with diverse biophysical-chemical properties on the viscosity, aggregation propensity, and stability on two model IgG1 (JM1 and JM2) mAb formulations. These excipients include nine amino acids or their salt forms (Ala, Pro, Val, Gly, Ser, HisHCl, LysHCl, ArgHCl, and NaGlu), four representative salts (NaCl, NaAc, Na2SO4, and NH4Cl), and two chaotropic reagents (urea and GdnHCl). With only salts or amino acids in their salt-forms, significant decrease in viscosity was observed for JM1 (by up to 30-40%) and JM2 (by up to 50-80%) formulations, suggesting charge-charge interaction between the mAbs dictates the high viscosity of these mAbs formulations. Most of these viscosity-lowering excipients did not induce substantial protein aggregation or changes in the secondary structure of the mAbs, as evidenced by HPLC-SEC, DSC, and FT-IR analysis, even in the absence of common protein stabilizers such as sugars and surfactants. Therefore, amino acids in their salt-forms and several common salts, such as ArgHCl, HisHCl, LysHCl, NaCl, Na2SO4, and NaAc, could potentially serve as viscosity-lowering excipients during high-concentration mAb formulation development.

  2. 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad

    2007-12-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.

  3. Transcriptome Analysis of the Response to NaCl in Suaeda maritima Provides an Insight into Salt Tolerance Mechanisms in Halophytes

    PubMed Central

    Tambat, Subodh; Vasudevan, Madavan

    2016-01-01

    Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor

  4. Effect of air desiccation and salt stress factors on in vitro regeneration of rice (Oryza sativa L.)

    PubMed Central

    Siddique, Abu Baker; Ara, Israt; Islam, S M Shahinul; Tuteja, Narendra

    2014-01-01

    Enhancement of callus induction and its regeneration efficiency through in vitro techniques has been optimized for 2 abiotic stresses (salt and air desiccation) using 3 rice genotypes viz. BR10, BRRI dhan32 and BRRI dhan47. The highest frequency of callus induction was obtained for BRRI dhan32 (64.44%) in MS medium supplemented with 2, 4-D (2.5 mgL−1) and Kin (1.0 mgL−1). Different concentrations of NaCl (2.9, 5.9, 8.8 and 11.7 gL−1) were used and its effect was recorded on the basis of viability of calli (VC), relative growth rate (RGR), tolerance index (TI) and relative water content (RWC). It was observed that in all cases BRRI dhan47 showed highest performance on tolerance to VC (45.33%), RGR (1.03%), TI (0.20%) and RWC (10.23%) with 11.7 gL−1 NaCl. Plant regeneration capability was recorded after partial air desiccation pretreatment to calli for 15, 30, 45 and 60 h. In this case BRRI dhan32 gave maximum number of regeneration (76.19%) when 4 weeks old calli were desiccated for 45 h. It was observed that air desiccation was 2-3 folds more effective for enhancing green plantlet regeneration compared to controls. Furthermore, desiccated calli also showed the better capability to survive in NaCl induced abiotic stress; and gave 1.9 fold (88.80%) increased regeneration in 11.7 gL−1 salt level for BRRI dhan47. Analysis of variance (ANOVA) showed that the genotypes, air desiccation and NaCl had significant effect on plant regeneration at P < 0.01. PMID:25482754

  5. Effect of air desiccation and salt stress factors on in vitro regeneration of rice (Oryza sativa L.).

    PubMed

    Siddique, Abu Baker; Ara, Israt; Islam, S M Shahinul; Tuteja, Narendra

    2014-01-01

    Enhancement of callus induction and its regeneration efficiency through in vitro techniques has been optimized for 2 abiotic stresses (salt and air desiccation) using 3 rice genotypes viz. BR10, BRRI dhan32 and BRRI dhan47. The highest frequency of callus induction was obtained for BRRI dhan32 (64.44%) in MS medium supplemented with 2, 4-D (2.5 mgL(-1)) and Kin (1.0 mgL(-1)). Different concentrations of NaCl (2.9, 5.9, 8.8 and 11.7 gL(-1)) were used and its effect was recorded on the basis of viability of calli (VC), relative growth rate (RGR), tolerance index (TI) and relative water content (RWC). It was observed that in all cases BRRI dhan47 showed highest performance on tolerance to VC (45.33%), RGR (1.03%), TI (0.20%) and RWC (10.23%) with 11.7 gL(-1) NaCl. Plant regeneration capability was recorded after partial air desiccation pretreatment to calli for 15, 30, 45 and 60 h. In this case BRRI dhan32 gave maximum number of regeneration (76.19%) when 4 weeks old calli were desiccated for 45 h. It was observed that air desiccation was 2-3 folds more effective for enhancing green plantlet regeneration compared to controls. Furthermore, desiccated calli also showed the better capability to survive in NaCl induced abiotic stress; and gave 1.9 fold (88.80%) increased regeneration in 11.7 gL(-1) salt level for BRRI dhan47. Analysis of variance (ANOVA) showed that the genotypes, air desiccation and NaCl had significant effect on plant regeneration at P < 0.01.

  6. Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.

    2011-01-01

    A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.

  7. Effect of Salt on the Metabolism of ‘Candidatus Accumulibacter’ Clade I and II

    PubMed Central

    Wang, Zhongwei; Dunne, Aislinn; van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2018-01-01

    Saline wastewater is known to affect the performance of phosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) process. However, studies comparing the effect of salinity on different PAO clades are lacking. In this study, ‘Candidatus Accumulibacter phosphatis’ Clade I and II (hereafter referred to as PAOI and PAOII) were highly enriched (∼90% in relative abundance as determined by quantitative FISH) in the form of granules in two sequencing batch reactors. Anaerobic and aerobic batch experiments were conducted to evaluate the effect of salinity on the kinetics and stoichiometry of PAOI and PAOII. PAOI and PAOII communities showed different priority in using polyphosphate (poly-P) and glycogen to generate ATP in the anaerobic phase when exposed to salt, with PAOI depending more on intracellular poly-P degradation (e.g., the proportion of calculated ATP derived from poly-P increased by 5–6% at 0.256 mol/L NaCl or KCl) while PAOII on glycolysis of intracellularly stored glycogen (e.g., the proportion of calculated ATP derived from glycogen increased by 29–30% at 0.256 mol/L NaCl or KCl). In the aerobic phase, the loss of phosphate uptake capability was more pronounced in PAOII due to the higher energy cost to synthesize their larger glycogen pool compared to PAOI. For both PAOI and PAOII, aerobic conversion rates were more sensitive to salt than anaerobic conversion rates. Potassium (K+) and sodium (Na+) ions exhibited different effect regardless of the enriched PAO culture, suggesting that the composition of salt is an important factor to consider when studying the effect of salt on EBPR performance. PMID:29616002

  8. Salt content in canteen and fast food meals in Denmark.

    PubMed

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten; Knuthsen, Pia; Saxholt, Erling; Fagt, Sisse

    2010-03-16

    A high salt (=NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. To determine the salt content in worksite canteen meals and fast food. For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in-house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus) and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. The salt content in lunch meals in worksite canteens were 3.8+/-1.8 g per meal and 14.7+/-5.1 g per 10 MJ for men (n=109), and 2.8+/-1.2 g per meal and 14.4+/-6.2 g per 10 MJ for women (n=71). Salt content in fast food ranged from 11.8+/-2.5 g per 10 MJ (burgers) to 16.3+/-4.4 g per 10 MJ (sausages) with a mean content of 13.8+/-3.8 g per 10 MJ. Salt content in both fast food and in worksite canteen meals is high and should be decreased.

  9. Salt content in canteen and fast food meals in Denmark

    PubMed Central

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten; Knuthsen, Pia; Saxholt, Erling; Fagt, Sisse

    2010-01-01

    Background A high salt (=NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective To determine the salt content in worksite canteen meals and fast food. Design For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in-house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus) and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results The salt content in lunch meals in worksite canteens were 3.8±1.8 g per meal and 14.7±5.1 g per 10 MJ for men (n=109), and 2.8±1.2 g per meal and 14.4±6.2 g per 10 MJ for women (n=71). Salt content in fast food ranged from 11.8±2.5 g per 10 MJ (burgers) to 16.3±4.4 g per 10 MJ (sausages) with a mean content of 13.8±3.8 g per 10 MJ. Conclusion Salt content in both fast food and in worksite canteen meals is high and should be decreased. PMID:20305749

  10. Effect of calcium and light on the germination of Urochondra setulosa under different salts*

    PubMed Central

    Shaikh, Faiza; Gul, Bilquees; Li, Wei-qiang; Liu, Xiao-jing; Khan, M. Ajmal

    2007-01-01

    Urochondra setulosa (Trin.) C.E. Hubbard is a coastal halophytic grass thriving on the coastal dunes along the Pakistani seashore. This grass could be useful in coastal sand dune stabilization using seawater irrigation. The purpose of this investigation was to test the hypothesis that Ca2+ (0.0, 2.5, 5.0, 10.0 and 50.0 mmol/L) alleviates the adverse effects of KCl, MgSO4, NaCl and Na2SO4 at 0, 200, 400, 600, 800 and 1000 mmol/L on the germination of Urochondra setulosa. Seed germination was inhibited with increase in salt concentration with few seeds germinated at and above 400 mmol/L concentration. No seed germinated in any of the KCl treatments. Inclusion of CaCl2 substantially alleviated the inhibitory effects of all salts. Germination was higher under photoperiod in comparison to those seeds germinated under complete darkness. Among the CaCl2 concentrations used, 10 mmol/L was most effective in alleviating salinity effects and allowing few seeds to germinate at 1000 mmol/L KCl, MgSO4, NaCl and Na2SO4 solution. PMID:17173358

  11. Salt craving: The psychobiology of pathogenic sodium intake

    PubMed Central

    Morris, Michael J.; Na, Elisa S.; Johnson, Alan Kim

    2008-01-01

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate – an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors. PMID:18514747

  12. Foliar spray banding characteristics

    Treesearch

    A.R. Womac; C.W. Smith; Joseph E. Mulrooney

    2004-01-01

    Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...

  13. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.

  14. The Efficiency of Different Salts to Screen Charge Interactions in Proteins: A Hofmeister Effect?

    PubMed Central

    Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2004-01-01

    Understanding the screening by salts of charge-charge interactions in proteins is important for at least two reasons: a), screening by intracellular salt concentration may modulate the stability and interactions of proteins in vivo; and b), the in vitro experimental estimation of the contributions from charge-charge interactions to molecular processes involving proteins is generally carried out on the basis of the salt effect on process energetics, under the assumption that these interactions are screened out by moderate salt concentrations. Here, we explore experimentally the extent to which the screening efficiency depends on the nature of the salt. To this end, we have carried out an energetic characterization of the effect of NaCl (a nondenaturing salt), guanidinium chloride (a denaturing salt), and guanidinium thiocyanate (a stronger denaturant) on the stability of the wild-type form and a T14K variant of Escherichia coli thioredoxin. Our results suggest that the efficiency of different salts to screen charge-charge interactions correlates with their denaturing strength and with the position of the constituent ions in the Hofmeister rankings. This result appears consistent with the plausible relation of the Hofmeister rankings with the extent of solute accumulation/exclusion from protein surfaces. PMID:15041679

  15. Stabilization of molten salt materials using metal chlorides for solar thermal storage.

    PubMed

    Dunlop, T O; Jarvis, D J; Voice, W E; Sullivan, J H

    2018-05-29

    The effect of a variety of metal-chlorides additions on the melting behavior and thermal stability of commercially available salts was investigated. Ternary salts comprised of KNO 3, NaNO 2, and NaNO 3 were produced with additions of a variety of chlorides (KCl, LiCl, CaCl 2 , ZnCl 2 , NaCl and MgCl 2 ). Thermogravimetric analysis and weight loss experiments showed that the quaternary salt containing a 5 wt% addition of LiCl and KCl led to an increase in short term thermal stability compared to the ternary control salts. These additions allowed the salts to remain stable up to a temperature of 630 °C. Long term weight loss experiments showed an upper stability increase of 50 °C. A 5 wt% LiCl addition resulted in a weight loss of only 25% after 30 hours in comparison to a 61% loss for control ternary salts. Calorimetry showed that LiCl additions allow partial melting at 80 °C, in comparison to the 142 °C of ternary salts. This drop in melting point, combined with increased stability, provided a molten working range increase of almost 100 °C in total, in comparison to the control ternary salts. XRD analysis showed the oxidation effect of decomposing salts and the additional phase created with LiCl additions to allow melting point changes to occur.

  16. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    PubMed

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  17. A Salt-Inducible Mn-Catalase (KatB) Protects Cyanobacterium from Oxidative Stress.

    PubMed

    Chakravarty, Dhiman; Banerjee, Manisha; Bihani, Subhash C; Ballal, Anand

    2016-02-01

    Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress. On exposure to H2O2, the NaCl-treated Anabaena showed reduced formation of reactive oxygen species, peroxides, and oxidized proteins than the control cells (i.e. not treated with NaCl) exposed to H2O2. This protective effect correlated well with the substantial increase in production of KatB, a Mn-catalase. Addition of NaCl did not safeguard the katB mutant from H2O2, suggesting that KatB was indeed responsible for detoxifying the externally added H2O2. Moreover, Anabaena deficient in KatB was susceptible to oxidative effects of salinity stress. The katB gene was strongly induced in response to osmotic stress or desiccation. Promoter-gfp analysis showed katB to be expressed only in the vegetative cells but not in heterocysts. Biochemically, KatB was an efficient, robust catalase that remained active in the presence of high concentrations of NaCl. Our findings unravel the role of Mn-catalase in acclimatization to salt/oxidative stress and demonstrate that the oxidative stress resistance of an organism can be enhanced by a simple compound such as NaCl. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats.

    PubMed

    Bopda, Orelien Sylvain Mtopi; Longo, Frida; Bella, Thierry Ndzana; Edzah, Protais Marcellin Ohandja; Taïwe, Germain Sotoing; Bilanda, Danielle Claude; Tom, Esther Ngo Lemba; Kamtchouing, Pierre; Dimo, Theophile

    2014-04-28

    The leaves of Kalanchoe pinnata (Crassulaceae) are used in Cameroon folk medicine to manage many diseases such as cardiovascular dysfunctions. In this work, we aimed to evaluate the activities of aqueous leaf extract of Kalanchoe pinnata on the blood pressure of normotensive rat (NTR) and salt hypertensive rats (SHR), as well as its antioxidant properties. Hypertension was induced in rats by oral administration of 18% NaCl for 4 weeks. For the preventive study, three groups of rats received 18% NaCl solution and the plant extract at 25 mg/kg/day, 50 mg/kg/day or 100 mg/kg/day by gavage. Two positive control groups received 18% NaCl solution and either spironolactone (0.71 mg/kg/day) or eupressyl (0.86 mg/kg/day) by gavage for 4 weeks. At the end of this experimental period, systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and heart rate (HR) were measured by the invasive method. Some oxidative stress biomarkers (reduced glutathione (GSH), superoxide dismutase (SOD), nitric monoxide (NO) were evaluated in heart, aorta, liver and kidney. NO level was indirectly evaluated by measuring nitrite concentration. Kalanchoe pinnata extract prevented significantly the increase of systolic and diastolic arterial pressures in high salt-loaded rats (SHR). In SHR, concomitant administration of Kalanchoe pinnata at 25, 50 and 100 mg/kg/day significantly prevented the increase in blood pressure by 32%, 24% and 47% (for SAP); 35%, 33% and 56% (for DAP), respectively. No significant change was recorded in heart rate of those rats. The plant extract improved antioxidant status in various organs, but more potently in aorta. Thus, antioxidant and modulatory effects of Kalanchoe pinnata at the vasculature might be of preponderant contribution to its overall antihypertensive activity. The work demonstrated that the concomitant administration of high-salt and the aqueous extract of Kalanchoe pinnata elicits prevention of salt-induced hypertension in rat. This

  19. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    PubMed

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  20. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    NASA Astrophysics Data System (ADS)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and