Science.gov

Sample records for nadir angle results

  1. Extension of the GPS satellite antenna patterns to nadir angles beyond 14°

    NASA Astrophysics Data System (ADS)

    Jaeggi, A.; Dilssner, F.; Schmid, R.; Dach, R.; Springer, T.; Bock, H.; Steigenberger, P.; Andres, Y.; Enderle, W.

    2012-04-01

    The absolute phase center model igs08.atx adopted by the International GNSS Service (IGS) in 2011 is based on robot calibrations for more than 200 terrestrial GNSS receiver antennas and consistent correction values for the GNSS transmitter antennas estimated from tracking data of the global IGS ground network. As the calibration of the satellite antennas is solely based on terrestrial measurements, the estimation of their phase patterns is limited to a nadir angle of 14°. This is not sufficient for the analysis of spaceborne GPS data collected by low Earth orbiting (LEO) satellites that record - depending on the missions' orbital altitude - observations at nadir angles of up to 17°. We use GPS tracking data from the LEO missions Jason-1/2, MetOp-A, GRACE, and GOCE to extend the IGS satellite antenna patterns to nadir angles beyond 14° using different processing strategies and GNSS software packages (BERNESE, NAPEOS). In order to achieve estimates that are consistent with the PCVs currently used within the IGS, GPS satellite orbits and clocks are fixed to reprocessed solutions obtained by adopting the IGS conventional values from igs08.atx. Due to significant near-field multipath effects arising in the LEO spacecraft environment, it is necessary to solve for GPS (nadir-dependent only) and LEO (azimuth- and elevation-dependent) antenna patterns simultaneously. We compare and combine the results obtained with both software packages and derive the PCV extension proposed for igs08.atx.

  2. Change detection from very high resolution satellite time series with variable off-nadir angle

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Brumana, Raffaella; Cuca, Branka; Previtali, Mattia

    2015-06-01

    Very high resolution (VHR) satellite images have the potential for revealing changes occurred overtime with a superior level of detail. However, their use for metric purposes requires accurate geo-localization with ancillary DEMs and GCPs to achieve sub-pixel terrain correction, in order to obtain images useful for mapping applications. Change detection with a time series of VHS images is not a simple task because images acquired with different off-nadir angles have a lack of pixel-to-pixel image correspondence, even after accurate geo-correction. This paper presents a procedure for automatic change detection able to deal with variable off-nadir angles. The case study concerns the identification of damaged buildings from pre- and post-event images acquired on the historic center of L'Aquila (Italy), which was struck by an earthquake in April 2009. The developed procedure is a multi-step approach where (i) classes are assigned to both images via object-based classification, (ii) an initial alignment is provided with an automated tile-based rubber sheeting interpolation on the extracted layers, and (iii) change detection is carried out removing residual mis-registration issues resulting in elongated features close to building edges. The method is fully automated except for some thresholds that can be interactively set to improve the visualization of the damaged buildings. The experimental results proved that damages can be automatically found without additional information, such as digital surface models, SAR data, or thematic vector layers.

  3. Extending the GPS satellite antenna patterns of the IGS to nadir angles beyond 14° using LEO data

    NASA Astrophysics Data System (ADS)

    Dach, R.; Jaeggi, A.; Bock, H.; Beutler, G.; Montenbruck, O.; Schmid, R.

    2010-12-01

    The absolute phase center model adopted by the International GNSS Service (IGS) in 2006 is based on robot calibrations for a number of terrestrial GNSS receiver antennas and consistent correction values for the GNSS transmitter antennas estimated from data of the global IGS tracking network. As the calibration of the satellite antennas is solely based on terrestrial measurements, the estimation of their phase patterns is limited to a nadir angle of 14°. This is not sufficient for the analysis of spaceborne GPS data collected by low Earth orbiting (LEO) satellites that record observations at nadir angles of up to 17°. Moreover, phase center variation (PCV) estimates for nadir angles close to 14° derived from terrestrial measurements might be affected by uncertainties in the troposphere modeling. This drawback could also be overcome by the use of LEO data. We use GPS tracking data from several LEO missions to extend the IGS satellite antenna patterns to nadir angles beyond 14°. In order to achieve estimates that are consistent with the PCVs currently used within the IGS, GPS and LEO orbits are fixed to solutions obtained by adopting the IGS conventional values. Due to significant near-field multipath effects in the LEO spacecraft environment, it is necessary to solve for GPS (nadir-dependent only) and LEO (azimuth- and elevation-dependent) antenna patterns simultaneously. We analyze the separability of these parameters and discuss appropriate constraints. We assess the contribution of different LEO missions to a combined solution and analyze the impact of LEO orbit modeling errors.

  4. Sensitivity of MODIS 2.1-(micrometers) Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.; Arnold, T.

    2000-01-01

    In this sensitivity study, we examined the ratio technique, the official method for remote sensing of aerosols over land from Moderate Resolution Imaging Spectroradiometer (MODIS) DATA, for view angles from nadir to 65 deg. off-nadir using Cloud Absorption Radiometer (CAR) data collected during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment conducted in 1995. For the data analyzed and for the view angles tested, results seem to suggest that the reflectance (rho)0.47 and (rho)0.67 are predictable from (rho)2.1 using: (rho)0.47 = (rho)2.1/6, which is a slight modification and (rho)0.67 = (rho)2.1/2. These results hold for target viewed from backscattered direction, but not for the forward direction.

  5. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) <= 0.10. This was half the error obtained using the 3.75 micron and corresponds to an error in aerosol optical thickness of Delat.tau approximately 0.06. These results, though applicable to several biomes (e.g. forests, and brighter lower canopies), have only been tested at one view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  6. Nadir Measurements of Carbon Monoxide Distributions by the Tropospheric Emission Spectrometer Instrument Onboard the Aura Spacecraft: Overview of Analysis Approach and Examples of Initial Results

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Luo, Ming; Logan, Jennifer A.; Beer, Reinhard; Worden, Helen; Kulawik, Susan S.; Rider, David; Osterman, Greg; Gunson, Michael; Eldering, Annmarie; Goldman, Aaron; Shephard, Mark; Clough, Shepard A.; Rodgers, Clive; Lampel, Michael; Chiou, Linda

    2006-01-01

    We provide an overview of the nadir measurements of carbon monoxide (CO) obtained thus far by the Tropospheric Emission Spectrometer (TES). The instrument is a high resolution array Fourier transform spectrometer designed to measure infrared spectral radiances from low Earth orbit. It is one of four instruments successfully launched onboard the Aura platform into a sun synchronous orbit at an altitude of 705 km on July 15, 2004 from Vandenberg Air Force Base, California. Nadir spectra are recorded at 0.06/cm spectral resolution with a nadir footprint of 5 x 8 km. We describe the TES retrieval approach for the analysis of the nadir measurements, report averaging kernels for typical tropical and polar ocean locations, characterize random and systematic errors for those locations, and describe instrument performance changes in the CO spectral region as a function of time. Sample maps of retrieved CO for the middle and upper troposphere from global surveys during December 2005 and April 2006 highlight the potential of the results for measurement and tracking of global pollution and determining air quality from space.

  7. Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra: retrieval algorithm and first results

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Burrows, John P.

    2004-02-01

    SCIAMACHY is a UV/visible/near-infrared grating spectrometer on board the European environmental satellite ENVISAT that observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries with moderate spectral resolution (0.2-1.5 nm). At the University of Bremen a modified DOAS algorithm (WFM-DOAS) is being developed primarily for the retrieval of CH4, CO, CO2, H2O, N2O, and O2 total columns from SCIAMACHY near-infrared and visible nadir spectra. A first version of this algorithm has been implemented based on a fast look-up table approach. The algorithm and the look-up table is described along with an initial error analysis. Weighting functions and averaging kernels indicate that the SCIAMACHY near-infrared nadir measurements are highly sensitive to trace gas concentration changes even in the lowest kilometer of the atmosphere. The results presented have been obtained by applying WFM-DOAS to small spectral fitting windows focusing on CH4, CO2, CO, and O2 column retrieval and CH4 and CO2 to O2 column ratios (denoted XCH4 and XCO2, respectively). These type of data products are planned to be used within the EU research project EVERGREEN to constrain surface sources and sinks of CH4 and CO2 using inverse modeling techniques. This study discussed the first set of WFM-DOAS products generated for and to be further improved within EVERGREEN. Although no detailed validation has been performed yet we found that the retrieved columns have the right order of magnitude and show (at least qualitatively) the expected correlation of the well mixed gases CO2 and CH4 with O2 and surface topography. The standard deviation of the dry air column averaged mixing ration XCO2 within 10° latitude bands is +/-10 ppmv or 2.7% (XCH4: +/-50 ppbv or +/-2.8%) for measurements over land (over ocean the scatter is a factor of 2-4 larger). These values have been determined from ~25% of the ground pixels of one orbit which fulfill the following requirements: (nearly) cloud

  8. Recent Results on the CKM Angle Alpha

    SciTech Connect

    Mihalyi, A.; /Wisconsin U., Madison

    2005-10-18

    The method to measure the CKM angle {alpha} and the modes sensitive to it are discussed. It is shown that the B {yields} {rho}{rho} decays provide the most stringent constraint on {alpha}, which is found to be {alpha} = 96{sup o} {+-} 10{sup o}(stat) {+-} 4{sup o}(syst){+-} 13{sup o}(penguin).

  9. Reflectance anisotropy for nadir observations of coniferous forest canopies

    SciTech Connect

    Syren, P. . Lab. of Remote Sensing)

    1994-07-01

    Nadir-viewed reflectances from forest canopies in four spectral bands, centered at 485 nm, 654 nm, 841 nm, and 1,676 nm were measured at different sun angles. Reflectances were measured made from a helicopter ca. 10 km NE of Stockholm, Sweden, over mature and young stands of Scotch pine (Pinus sylvestris) and Norway spruce (Picea abies). The results show a significant increase in nadir reflectance with decreasing solar zenith angle. On the average, reflectance factors increased by 1--2% for each degree of decreasing solar zenith angle. Band ratios showed that there is a disproportional reflectance response in several of the spectral bands at varying zenith angles, differently expressed according to stand type and age. Within the solar zenith angle interval 30--70[degree], canopy reflectance was expressed as linear functions for each spectral band. These functions were used to calculate factors for reflectance standardization. Nomograms, containing reflectance correction factors for mature spruce stands, are presented. These can be directly applied in time-series analysis of multitemporal spectral data.

  10. Interpreting Negative Results in an Angle Maximization Problem.

    ERIC Educational Resources Information Center

    Duncan, David R.; Litwiller, Bonnie H.

    1995-01-01

    Presents a situation in which differential calculus is used with inverse trigonometric tangent functions to maximize an angle measure. A negative distance measure ultimately results, requiring a reconsideration of assumptions inherent in the initial figure. (Author/MKR)

  11. Preliminary Results from the Second EUVE Right Angle Program Catalog

    NASA Astrophysics Data System (ADS)

    Christian, D. J.; Craig, N.; Cahill, W. D.; Roberts, B.; Malina, R. F.

    1997-12-01

    We present preliminary results of our search for new sources in the EUVE Right Angle Program (RAP) data. The EUVE all-sky survey telescopes (also known as ``scanners'') are mounted at right angles to the Deep Survey and spectrometer instruments, and obtain photometric data in four bands centered at ~ 100 Angstroms (Lexan/B), ~ 200 Angstroms (Al/Ti/C), ~ 400 Angstroms (Ti/Sb/Al), and ~ 550 Angstroms (Sn/SiO). This allows the Right Angle Program to accumulate data serendipitously during pointed spectroscopic observations. The long exposure times possible with RAP observations provide much greater sensitivity than the all-sky survey. One-half of the scanner data since January 1994 has been analyzed, yielding approximately 200 new source detections. We present light-curves and variability measurements for the brighter sources. We have detected stellar flares from several yet to be identified sources. Source identifications and distribution by type will be also be presented.

  12. Review of weak mixing angle results at SLC and LEP

    SciTech Connect

    Woods, M.

    1995-10-01

    In this paper, the authors review recent precise measurements of the weak mixing angle by the SLD experiment at SLC and by the ALEPH, DELPHI, L3, and OPAL experiments at LEP. If they assume that the Minimal Standard Model provides a complete description of the quark and lepton couplings to the Z boson, they find sin{sup 2} {theta}{sub W}{sup eff} = 0.23143 {+-} 0.00028. If this assumption is relaxed to apply to lepton couplings only, they find sin{sup 2}{theta}{sub W}{sup eff} = 0.23106 {+-} 0.00035. They compare these results with other precision electroweak tests.

  13. Results from the G0 forward angle measurement

    SciTech Connect

    J. Liu

    2006-07-01

    The results from the G0 forward angle experiment are reported in this talk. The parity-violating asymmetry of elastic e-p scattering has been measured within the range of the four-momentum transfer (Q2) from 0.12 to 1.0 (GeV/c)2, which yields linear combinations of the strange electric and magnetic form factors of the nucleon, G{sub E}{sup s} + etaG{sub M}{sup s}, in the same Q2 range. The G0 results, combined with the measurements from other experiments, indicate that G{sub E}{sup s} and G{sub M}{sup s} are both likely non-zero.

  14. Inferring hemispherical reflectance of the earth's surface for global energy budgets from remotely sensed nadir or directional radiance values

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Sellers, P. J.

    1985-01-01

    The relationship between directional reflectances spanning the entire reflecting hemisphere and hemispherical reflectance (albedo) and the effect of solar zenith angle and cover type on these relationships were investigated, using the results obtained from NOAA's 7/8 AVHRR ground-level reflectance measurements. Bands 1 (0.58-0.6B microns) and 2 (0.73-1. 1 microns) were used for reflectance measurements of 11 natural vegetation surfaces ranging from bare soils to dense vegetation canopies. The results show that errors in inferring hemispherical reflectance from nadir reflectance can be between 11 and 45 percent for all cover types and solar angles, depending on the viewing angles. A technique is described in which a choice of two specific view angles reduces this error to less than 6 percent for both bands and for all sun angles and cover types.

  15. Correction of Sampling Errors in Ocean Surface Cross-Sectional Estimates from Nadir-Looking Weather Radar

    NASA Technical Reports Server (NTRS)

    Caylor, I. Jeff; Meneghini, R.; Miller, L. S.; Heymsfield, G. M.

    1997-01-01

    The return from the ocean surface has a number of uses for airborne meteorological radar. The normalized surface cross section has been used for radar system calibration, estimation of surface winds, and in algorithms for estimating the path-integrated attenuation in rain. However, meteorological radars are normally optimized for observation of distributed targets that fill the resolution volume, and so a point target such as the surface can be poorly sampled, particularly at near-nadir look angles. Sampling the nadir surface return at an insufficient rate results in a negative bias of the estimated cross section. This error is found to be as large as 4 dB using observations from a high-altitude airborne radar. An algorithm for mitigating the error is developed that is based upon the shape of the surface echo and uses the returned signal at the three range gates nearest the peak surface echo.

  16. Preliminary Results of the Extreme Ultraviolet Explorer Right Angle Program

    NASA Astrophysics Data System (ADS)

    McDonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Malina, R. F.

    1993-12-01

    During the guest observer phase of the EUVE Mission, data are being collected with the survey scanners and the Deep Survey Scanner. The EUVE Right Angle Program (RAP) involves the analysis of this data set and the coordination of possible simultaneous observations with ground based instruments. This data set consists of several discrete pointings performed at a much deeper level than the previous EUVE all-sky survey, although covering only a few percent of the sky. Analysis of this data set has detected a large number of previously undetected EUV sources. We present here a preliminary list of the sources observed during the EUVE Right Angle Program and compare properties of this list with properties of the EUVE Bright Source List. This work has been supported by NASA contract NAS5--30180.

  17. Dust aerosol retrieval results from MISR (multi-angle imaging spectro-radiometer)

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Diner, David J.; Kahn, Ralph; Gaitley, Barbara

    2004-01-01

    Satellite measurements provide important tools for understanding the effect of mineral dust aerosols on past and present climate and climate predictions. Multi-angle instruments such as Multi-angle Imaging Spectro- Radiometer (MISR) provide independent constraints on aerosol properties based on their sensitivity to the shape of aerosol scattering phase functions. The current MISR operational retrieval algorithm (version 16 and higher) was modified by incorporating new non-spherical dust models that account for naturally occurring dust shapes and compositions. We present selected examples of MISR version 16 retrievals over AERONET sunphotometer land and ocean sites during the passage of dust fronts. Our analysis shows that during such events MISR retrieves Angstrom exponents characteristic of large particles, having little spectral variation in extinction over the MISR wavelength range (442, 550, 672 and 866 nm channels), as expected. The retrieved fraction of non-spherical particles is also very high. This quantity is not retrieved by satellite instruments having only nadir-viewing cameras. Our comparison of current (version 16) MISR-retrieved aerosol optical thickness (AOT) with AERONET instantaneous AOT shows better coverage and stronger correlations than when making identical comparisons with previous AOT retrievals (version 15). The MISR algorithm successful mixtures include a non-spherical dust component with high frequency in retrievals over dark water and slightly lower frequency over land. Selection frequencies of non-spherical dust models also decrease in dusty regions affected by pollution.

  18. Tropospheric Ozone from limb nadir matching of MIPAS and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Rahpoe, Nabiz; Ebojie, Felix; Jia, Jia; Weber, Mark; Rozanov, Alexei; Bovensmann, Heinrich; Burrows, John P.; von Clarmann, Thomas; Stiller, Gabriele; Laeng, Alexandra; Lossow, Stefan

    2016-04-01

    The tropospheric total ozone column (TTOC) is retrieved by applying the limb nadir matching method (LNM) for two different sensors on board the Envisat satellite. Each sensor provides independent information of the total ozone column (TOC, nadir) and stratospheric ozone column (SOC, limb). The latter is derived from the limb viewing geometry of MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), while total ozone column (TOC) from the nadir viewing SCIAMACHY (SCanning Imaging spectrometer for AtMospheric CHartrographY) measurements. The residual ozone column or tropospheric total ozone column (TTOC) is then derived by subtraction of the SOC from the collocated TOC. Although this method is straightforward, the underlying difficulties are the exact knowledge of the tropopause height, matching/collocation of the two measurements, and instrumental differences between two sensors. Our results are compared with available tropospheric ozone columns derived from the SCIAMACHY - SCIAMACHY limb-nadir combination in order to understand the differences and the potential of LNM method for different sensor combination.

  19. The Peruvian Continental Margin: Results from wide angle seismic Data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Bialas, J.; Kopp, H.; Kukowski, N.; Huebscher, C.

    2003-04-01

    Within the scope of the GEOPECO (Geophysical Experiments at the Peruvian Continental Margin) project, seismic investigations along the Pacific margin of Peru were carried out using ocean bottom hydrophones (OBH) and seismometers (OBS) recording marine airgun shots. The structure and the P- wave velocity of the oblique subducting Nazca and overriding South-American Plates from 8°S to 15°S were determined by forward modeling and tomographic inversion of the wide-angle seismic data combined with the analysis of reflection seismic data. The region south of 12°S has been influenced by the southward migration of the aseismic Nazca Ridge the past 11 Ma. The oceanic Nazca Plate is divided by Mendana Fracture Zone (MFZ) which marks a transition zone of a different crustal age of approximately 28 Ma in the north to 38 Ma in the south at the Peruvian trench. North of MFZ the oceanic crust is influenced by Trujillo Trough trending N15E and the surrounding extensional stresses leading to a crustal thinning as can be seen in the northernmost refraction seismic model. The oceanic crust south of MFZ is overall homogeneous with a thin pelagic sedimentary layer and normal oceanic crustal layers. The P-wave velocity of the mantle is overall 7.9-8.1km/s. The Peruvian Continental Margin is characterized by the continental slope and several basins, Trujillo and Yaquina basin, Lima basin and Pisco basin, which are partly affected by the southward migration of the subducting Nazca Ridge. This caused uplift and subsidence along the margin leading to erosional tectonic features. The basins and continental basement could be mapped with forward modeling and tomographic inversion as well as the continental backstop on each profile. An accretionary prism is set up with a width of 20 to 30 km and 4 to 5 km thickness which does not further increase in size as revealed by the profiles recorded further north of Nazca Ridge. This and a taper of 14- 17 degrees at the collision zone indicates that

  20. Flight Test Results of an Angle of Attack and Angle of Sideslip Calibration Method Using Output-Error Optimization

    NASA Technical Reports Server (NTRS)

    Siu, Marie-Michele; Martos, Borja; Foster, John V.

    2013-01-01

    As part of a joint partnership between the NASA Aviation Safety Program (AvSP) and the University of Tennessee Space Institute (UTSI), research on advanced air data calibration methods has been in progress. This research was initiated to expand a novel pitot-static calibration method that was developed to allow rapid in-flight calibration for the NASA Airborne Subscale Transport Aircraft Research (AirSTAR) facility. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. Subscale flight tests demonstrated small 2-s error bounds with significant reduction in test time compared to other methods. Recent UTSI full scale flight tests have shown airspeed calibrations with the same accuracy or better as the Federal Aviation Administration (FAA) accepted GPS 'four-leg' method in a smaller test area and in less time. The current research was motivated by the desire to extend this method for inflight calibration of angle of attack (AOA) and angle of sideslip (AOS) flow vanes. An instrumented Piper Saratoga research aircraft from the UTSI was used to collect the flight test data and evaluate flight test maneuvers. Results showed that the output-error approach produces good results for flow vane calibration. In addition, maneuvers for pitot-static and flow vane calibration can be integrated to enable simultaneous and efficient testing of each system.

  1. Near-Nadir Radar Backscatter From Ocean Waves

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1992-01-01

    Paper discusses aspects of theory of near-nadir radar backscatter from well-developed sea. Study contributed to development of new technique for determination of sea-state bias in satellite altimeter measurements. Paper questions assumptions, bringing accepted interpretation of nadir and near-nadir radar backscattering into doubt.

  2. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.

    1990-01-01

    An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).

  3. NADIR: A Flexible Archiving System Current Development

    NASA Astrophysics Data System (ADS)

    Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.

    2014-05-01

    The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.

  4. Impact of Footprint Diameter and Off-Nadir Pointing on the Precision of Canopy Height Estimates from Spaceborne Lidar

    NASA Technical Reports Server (NTRS)

    Pang, Yong; Lefskky, Michael; Sun, Guoqing; Ranson, Jon

    2011-01-01

    A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16 . To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required. This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16 were considered for a 25 m diameter footprint diameter. Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R(sup 2) of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir

  5. Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Ni, B.; Bortnik, J.; Thorne, R. M.; Ma, Q.; Chen, L.

    2013-12-01

    Adopting several realistic models for the wave distribution and ambient plasmaspheric density, we perform a comprehensive analysis to evaluate hiss-induced scattering coefficients, the relative role of each resonant harmonic, and the overall effect of hiss scattering on the pitch angle evolution and associated decay (loss) processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique component of the hiss emission is negligible. A quasi-parallel propagating wave model of hiss emissions provides a good approximation for evaluation of scattering rates of ≤ 2 MeV electrons. However, realistic wave propagation angles as a function of latitude along the field line must be taken into account to accurately quantify the rates of hiss scattering above 2 MeV. Ambient plasma density is also a critical parameter that can influence hiss scattering rates and resultant pitch angle evolution of electron flux. While the first order cyclotron and the Landau resonances are dominant for hiss-induced scattering of less than 2 MeV electrons, higher order resonances become important and even dominant at intermediate equatorial pitch angles for ultra-relativistic (≥ 3 MeV) electrons. Hiss induced electron pitch angle evolution consistently shows a relatively rapid initial transport of electrons from high to lower pitch angles, with a gradual approach towards an equilibrium shape, and a final state where the entire distribution decays exponentially with time. Although hiss scattering rates near the loss cone control the pitch angle evolution and the ultimate loss of ultra-relativistic electrons, the presence of a scattering bottleneck (a pronounced drop in diffusion rate at intermediate pitch angles) significantly affects the loss rate and leads to characteristic top hat shaped pitch angle distributions at energies below ~1 MeV. Decay timescales are determined to be on the order of a few days, tens of days, and > 100 days for 500 keV, 2 Me

  6. Satellite navigation for meteorological purposes: Inverse referencing for NOAA-N and ERS-1 imagers with a 1 km nadir pixel size

    NASA Astrophysics Data System (ADS)

    Klokočník, J.; Kostelecký, J.; Grassl, H.; Schlüssel, P.; Pospíšilová, L.; Gooding, R. H.; Lála, P.

    Iterative methods for inverse referencing from mean orbital elements or osculating position and velocity, accounting for all necessary orbital perturbations with respect to given nadir pixel size, are described. [Inverse referencing means that the geodetic coordinates of a point on the surface are given and the corresponding image coordinates (scan line number and pixel number) are obtained from satellite orbital elements or coordinates.] The idea is to treat a pixel like a satellite tracking station on the ground. This permits the use of existing software for the computation of satellite ephemerides and orbit determination. The time of culmination of a satellite over the pixel and the off-nadir angle at that moment have been computed. Two variants for such a computation have been tested. Numerical results for the NOAA-N meteorological satellites and ERS-1 are presented. The present state of our software for inverse referencing should fulfil ordinary requirements posed by meteorologists. For NOAA-N satellites, the accuracy achieved roughly the nadir pixel size. The main obstacle to an increase in accuracy is the low quality of the mean orbital elements usually available. For ERS-1, the accuracy may achieve a level of 100 m. A software package, containing versions of the FORTRAN 77 programs PIXPO 3, PIXPO 4 and PIXPOSC, for various data types, including US-2 line or TBUS mean elements or a state vector, is available for scientific exchange.

  7. Preliminary results from an airdata enhancement algorithm with application to high-angle-of-attack flight

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.

    1991-01-01

    A technique was developed to improve the fidelity of airdata measurements during dynamic maneuvering. This technique is particularly useful for airdata measured during flight at high angular rates and high angles of attack. To support this research, flight tests using the F-18 high alpha research vehicle (HARV) were conducted at NASA Ames Research Center, Dryden Flight Research Facility. A Kalman filter was used to combine information from research airdata, linear accelerometers, angular rate gyros, and attitude gyros to determine better estimates of airdata quantities such as angle of attack, angle of sideslip, airspeed, and altitude. The state and observation equations used by the Kalman filter are briefly developed and it is shown how the state and measurement covariance matrices were determined from flight data. Flight data are used to show the results of the technique and these results are compared to an independent measurement source. This technique is applicable to both postflight and real-time processing of data.

  8. Estimating spectral albedo and nadir reflectance through inversion of simple BRDF models with AVHRR/MODIS-like data

    NASA Astrophysics Data System (ADS)

    Privette, Jeffrey L.; Eck, Thomas F.; Deering, Donald W.

    1997-12-01

    In recent years, many computationally efficient bidirectional reflectance models have been developed to account for angular effects in land remote sensing data, particularly those from the NOAA advanced very high resolution radiometer (AVHRR), polarization and directionality of the Earth's reflectances (POLDER), and the planned EOS moderate-resolution imaging spectrometer (MODIS) and multi-angle imaging spectroradiometer (MISR) sensors. In this study, we assessed the relative ability of 10 such models to predict commonly used remote sensing products (nadir reflectance and albedo). Specifically, we inverted each model with ground-based data from the portable apparatus for rapid acquisition of bidirectional observations of the land and atmosphere (PARABOLA) arranged in subsets representative of satellite sampling geometries. We used data from nine land cover types, ranging from soil to grassland (First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)) to forest (Boreal Ecosystem-Atmosphere Study (BOREAS)). Retrieved parameters were used in forward model runs to estimate nadir reflectance and spectral albedo over a wide range of solar angles. We rank the models by the accuracy of the estimated products and find results to be strongly dependent on the view azimuth angle range of the inversion data, and less dependent on the spectral band and land cover type. Overall, the nonlinear model of Rahman et al. [993] and the linear kernel-driven RossThickLiSparse model [Wanner et al., 1995] were most accurate. The latter was at least 25 times faster to invert than the former. Interestingly, we found these two models were not able to match the various bidirectional reflectance distribution function (BRDF) shapes as well as other models, suggesting their superior performance lies in their ability to be more reliably inverted with sparse data sets. These results should be useful to those interested in the computationally fast normalization

  9. Polypeptide motions are dominated by peptide group oscillations resulting from dihedral angle correlations between nearest neighbors.

    PubMed

    Fitzgerald, James E; Jha, Abhishek K; Sosnick, Tobin R; Freed, Karl F

    2007-01-23

    To identify basic local backbone motions in unfolded chains, simulations are performed for a variety of peptide systems using three popular force fields and for implicit and explicit solvent models. A dominant "crankshaft-like" motion is found that involves only a localized oscillation of the plane of the peptide group. This motion results in a strong anticorrelated motion of the phi angle of the ith residue (phi(i)) and the psi angle of the residue i - 1 (psi(i-1)) on the 0.1 ps time scale. Only a slight correlation is found between the motions of the two backbone dihedral angles of the same residue. Aside from the special cases of glycine and proline, no correlations are found between backbone dihedral angles that are separated by more than one torsion angle. These short time, correlated motions are found both in equilibrium fluctuations and during the transit process between Ramachandran basins, e.g., from the beta to the alpha region. A residue's complete transit from one Ramachandran basin to another, however, occurs in a manner independent of its neighbors' conformational transitions. These properties appear to be intrinsic because they are robust across different force fields, solvent models, nonbonded interaction routines, and most amino acids. PMID:17223689

  10. An improved tropospheric ozone database retrieved from SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Rozanov, Alexei; Ladstätter-Weißenmayer, Annette; Ebojie, Felix; Rahpoe, Nabiz; Bötel, Stefan; Burrows, John

    2015-04-01

    Tropospheric ozone is one of the most important green-house gases and the main component of photochemical smog. It is either transported from the stratosphere or photochemically produced during pollution events in the troposphere that threaten the respiratory system. To investigate sources, transport mechanisms of tropospheric ozone in a global view, limb nadir matching (LNM) technique applied with SCIAMACHY instrument is used to retrieve tropospheric ozone. With the fact that 90% ozone is located in the stratosphere and only about 10% can be observed in the troposphere, the usage of satellite data requires highly qualified nadir and limb data. In this study we show an improvement of SCIAMACHY limb data as well as its influence on tropospheric ozone results. The limb nadir matching technique is also refined to increase the quality of the tropospheric ozone. The results are validated with ozone sonde measurements.

  11. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  12. Results from Core-collapse Simulations with Multi-dimensional, Multi-angle Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; Burrows, Adam; Ott, Christian D.; Livne, Eli

    2011-02-01

    We present new results from the only two-dimensional multi-group, multi-angle calculations of core-collapse supernova evolution. The first set of results from these calculations was published in 2008 by Ott et al. We have followed a nonrotating and a rapidly rotating 20 M sun model for ~400 ms after bounce. We show that the radiation fields vary much less with angle than the matter quantities in the region of net neutrino heating. This happens because most neutrinos are emitted from inner radiative regions and because the specific intensity is an integral over sources from many angles at depth. The latter effect can only be captured by multi-angle transport. We then compute the phase relationship between dipolar oscillations in the shock radius and in matter and radiation quantities throughout the post-shock region. We demonstrate a connection between variations in neutrino flux and the hydrodynamical shock oscillations, and use a variant of the Rayleigh test to estimate the detectability of these neutrino fluctuations in IceCube and Super-Kamiokande. Neglecting flavor oscillations, fluctuations in our nonrotating model would be detectable to ~10 kpc in IceCube, and a detailed power spectrum could be measured out to ~5 kpc. These distances are considerably lower in our rapidly rotating model or with significant flavor oscillations. Finally, we measure the impact of rapid rotation on detectable neutrino signals. Our rapidly rotating model has strong, species-dependent asymmetries in both its peak neutrino flux and its light curves. The peak flux and decline rate show pole-equator ratios of up to ~3 and ~2, respectively.

  13. Post-launch performance evaluation of the OMPS Nadir Mapper and Nadir Profiler

    NASA Astrophysics Data System (ADS)

    Grotenhuis, Michael G.; Wu, Xiangqian; Flynn, Larry; Beach, Eric; Niu, Jianguo; Yu, Wei

    2014-09-01

    The Joint Polar Satellite System (JPSS) represents the latest generation of polar-orbiting satellites operated by the National Oceanic and Atmospheric Administration (NOAA). The first in the JPSS series of satellites, the Suomi National Polar-orbiting Partnership (NPP) spacecraft was launched in November 2011 to bridge the gap between the current Polar Operational Environmental Satellites (POES) and the future JPSS-1. The Ozone Mapping Profiler Suite (OMPS) is a suite of hyperspectral instruments onboard the Suomi NPP spacecraft designed to continue atmospheric ozone records through both atmospheric profiles and global distribution mapping. OMPS will also be included on the future JPSS payloads. In order to properly extend measurements from previous ozone instruments, including the Solar Backscatter Ultraviolet (SBUV) instrument on POES, proper OMPS calibration is necessary. In this study, the postlaunch performance of the OMPS Nadir Mapper (NM) and Nadir Profiler (NP) are evaluated through their Sensor Data Records (SDRs), which validates their end-to-end calibration. This is achieved through stability monitoring and intercomparison.

  14. Aerosol measurements in the IR: from limb to nadir?

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Irion, F. W.; Mills, F. P.; Steele, H. M.; Gunson, M. R.

    2001-01-01

    Vertical profiles of aerosol concentration have been derived from the ATMOS solar occultation dataset. The EOS instrument TES has motivated studies of the feasibility of quantifying aerosols in nadir and limb emission measurements.

  15. Evaluating Orbiting Carbon Observatory 2 (OCO-2) Nadir and Glint Observing Sequences

    NASA Astrophysics Data System (ADS)

    Nassar, R.; Deng, F.; Polavarapu, S.; Neish, M.; Jones, D. B. A.; O'Dell, C.

    2014-12-01

    NASA's Orbiting Carbon Observatory 2 (OCO-2) mission successfully launched on July 2, 2014. OCO-2 measures spectra of reflected solar radiation from the Earth's surface, which are used to derive high precision column-averaged CO2 mole fractions (XCO2). OCO-2 will alternate between nadir and glint mode every 16 days (233 orbits) with occasional target observations primarily for calibration and validation. Nadir mode typically has better signal-to-noise ratio (SNR) over land and the highest probability of avoiding clouds, but poor SNR over water. Glint mode yields good SNR over water (from the specular reflectance of solar radiation) and land, but glint observations are more susceptible to encountering clouds due to their longer paths through the atmosphere, especially at high solar zenith angles. Is there a quantifiable benefit to cycling between nadir and glint more frequently or increasing the fraction of observations from either mode? This question is investigated by generating synthetic OCO-2 observations for the baseline observing sequence (16-day nadir/glint) and by more frequent alternation (per orbit). Observation distributions (after application of filters) demonstrate the different coverage obtained by the two observing scenarios on a 16-day scale. A forward CO2 simulation of the Environment Canada Carbon Assimilation System (EC-CAS) is designated as the 'truth' in an Observing System Simulation Experiment (OSSE) and sampled with the observational coverage from each observing sequence, yielding two sets of synthetic XCO2 observations. The GEOS-Chem CO2 adjoint is used to evaluate the ability of the different synthetic datasets to constrain surface CO2 fluxes. The combination of two model systems in this OSSE enables assessment of the sensitivity of the fluxes to transport errors as well as biases in the OCO-2 observations, leading to a more robust overall assessment of the strengths and weakness of the two observing sequences.

  16. Lateral and axial resolutions of an angle-deviation microscope for different numerical apertures: experimental results

    NASA Astrophysics Data System (ADS)

    Chiu, Ming-Hung; Lai, Chin-Fa; Tan, Chen-Tai; Lin, Yi-Zhi

    2011-03-01

    This paper presents a study of the lateral and axial resolutions of a transmission laser-scanning angle-deviation microscope (TADM) with different numerical aperture (NA) values. The TADM is based on geometric optics and surface plasmon resonance principles. The surface height is proportional to the phase difference between two marginal rays of the test beam, which is passed through the test medium. We used common-path heterodyne interferometry to measure the phase difference in real time, and used a personal computer to calculate and plot the surface profile. The experimental results showed that the best lateral and axial resolutions for NA = 0.41 were 0.5 μm and 3 nm, respectively, and the lateral resolution breaks through the diffraction limits.

  17. PITCH-ANGLE SCATTERING: RESONANCE VERSUS NONRESONANCE, A BASIC TEST OF THE QUASILINEAR DIFFUSIVE RESULT

    SciTech Connect

    Ragot, B. R.

    2012-01-01

    Due to the very broad range of the scales available for the development of turbulence in space and astrophysical plasmas, the energy at the resonant scales of wave-particle interaction often constitutes only a tiny fraction of the total magnetic turbulent energy. Despite the high efficiency of resonant wave-particle interaction, one may therefore question whether resonant interaction really is the determining interaction process between particles and turbulent fields. By evaluating and comparing resonant and nonresonant effects in the frame of a quasilinear calculation, the dominance of resonance is here put to the test. By doing so, a basic test of the classical resonant quasilinear diffusive result for the pitch-angle scattering of charged energetic particles is also performed.

  18. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    SciTech Connect

    Chen, Wei-Ren; Do, Changwoo; Hong, Kunlun; Liu, Emily; Liu, Yun; Porcar, L.; Smith, Gregory Scott; Wu, Bin; Egami, T; Smith, Sean C

    2012-01-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 (G4) polyelectrolyte polyamidoamine (PAMAM) starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, (r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work which provides a link between the neutron scattering experiment and MD computation. The simulations enable scattering calculations of not only the hydrocarbons, but also the contribution to the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we question the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  19. NO2 from SCIAMACHY limb and nadir measurements - validation of the operational data products

    NASA Astrophysics Data System (ADS)

    Azam, Faiza; Weigel, Katja; Weber, Mark; Rozanov, Alexei; Bovensmann, Heinrich; Burrows, John P.

    2014-05-01

    SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY), aboard Envisat, 2002-2012, observed the transmitted, scattered and reflected solar radiation from the earth's atmosphere in limb, nadir and solar/lunar occultation geometries covering UV-Visible to NIR (240-2830 nm) spectral range with a moderate spectral resolution of 0.2-1.5nm. Monitoring the stability and verifying the quality of its decadal scale products is a prerequisite to their usage for long term analysis and interpretations, as well as stratospheric ozone studies and assessments. With this perspective, the ESA project SCILOV-10 (SCIAMACHY long term validation 2010) aims at the lifetime validations and documentation of the quality of various operational data products retrieved from SCIAMACHY in limb and nadir geometries. The limb observations provide vertically resolved global coverage and the nadir measurements give vertical column amounts on the same coverage scale. NO2 plays an important role in the stratospheric ozone chemistry by controlling the ozone abundances through catalytic destruction or by mitigating ozone depletion through reservoir formation. In the troposphere its concentration determines the ozone amount. Here we present the validation results of the operational limb stratospheric NO2 profiles and the nadir NO2 total column products. The limb dataset is compared with the corresponding scientific SCIAMACHY retrievals at the Institute of Environmental Physics (IUP) Bremen and with correlative measurements form other satellites as ACE-FTS, HALOE, SAGE II and OSIRIS. The nadir product is validated with the corresponding IUP measurements and with GOME NO2 data product.

  20. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    NASA Astrophysics Data System (ADS)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  1. Results of trench perpendicular wide angle seismic transects across the Manila subduction zone offshore southern Taiwan

    NASA Astrophysics Data System (ADS)

    Eakin, D. H.; McIntosh, K. D.; Van Avendonk, H. J.

    2011-12-01

    Multi-channel seismic reflection and wide-angle seismic data collected in 2009 aboard the R/V Marcus Langseth as part of the TAIGER program delineate the crustal structure of the Manila subduction zone in the northern South China Sea. As part of that project, we recorded marine seismic data using a deployment of ocean-bottom-seismometers (OBS) from the U.S. instrument pool and National Taiwan Ocean University. The region between northern Luzon and southern Taiwan evolves from oceanic subduction to incipient arc-continent collision. This presentation focuses on results of 2 offshore transects across the Manila subduction zone offshore southern Taiwan. Our goal here is to document the transition from pure oceanic subuction in the south to incipient arc-continent collision in the north, an understanding of which is integral for future geodynamic modeling of the advanced arc-continent collision in the north. The northern transect, line T2 is located at 21.4° N and used 30 OBSs. Line T1 was located at 20.5° N and used 27 OBSs across the Manila subduction zone. Data quality is extremely variable due to the local geology and quality of seafloor coupling at each instrument. Preliminary travel-time tomography of transect T2 shows a 10-15 km thick Eurasian crust with crustal velocities of 5-7.5 km/sec entering the Manila trench suggesting thinned continental crust, serpentinized upper mantle, or both in this region. The model shows the accretionary prism to be cored by high velocity material (6-7 km/sec) that may be the result of accretion of crustal material from the subducting Eurasian slab. We also observe asymmetric crustal thickening beneath the Gagua Ridge that is potentially a result of failed subduction of the Philippine Sea Plate westward along the Gagua Ridge. The wide-angle data is complimented by MCS reflection data to constrain sediment thickness, top of the crystalline basement, and moho. Preliminary work is in progress with transect T1 which will be

  2. Seismogenic Processes In The Nankai Trough: Results Form Wide-angle Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Nakanishi, A.; Park, J.-O.; Kaneda, Y.

    Active seismic studies to reveal the seismogenic zone structure have been widely car- ried out in the Nankai trough since the last five years. A subducted seamount colliding to the Japanese island arc crust was successfully imaged off the cape Muroto by an extensive active seismic survey. This subducted seamount is proposed as a barrier preventing a lateral propagation of the co-seismic rupture during the 1946 Nankaido Earthquake. In terms of the rupture process of the 1944 Nankaido Earthquake, both seismic and tsunami data (Kikuchi and Yamanaka, 2001; Tanioka and Satake, 1999) show the co-seismic ruptures were concentrated at the east of the Kii peninsula and did not extend to the Tokai district. Historic earthquake data also show that a recur- rence interval of the mega-thrust earthquakes off the Tokai district is not as regular as at other areas in the Nankai Trough. A key question is, therefore, if there is signifi- cant structural factor to prevent the rupture in this area. Even though it is proposed the Paleo-Zenisu ridge might be subducted in the eastern Nankai trough, no clear seismic image has been obtained. In July to August of 2001, an active seismic study using a super densely deployed OBS array was performed, as a part of an onshore-offshore wide-angle seismic survey, off the Tokai district. Results of first arrival tomography of the wide-angle seismic data show following structures: i) root of the Zenisu ridge ex- tends down to 15-20 km depth consisting of thicker lower crustal body (Vp = 6.6 - 7.4 km/s), ii) slightly thickening of subducted oceanic crust is recognized at immediately landward the Nankai trough suggesting the possible Paleo-Zenisu ridge. But, crustal volume of the Paleo-Zenisu might be significantly smaller than the present day Zenisu ridge, iii) abrupt thickening of middle (Vp =6.0 - 6.4 km/s) and lower (Vp=6.6-7.4 km/s) crust toward the Izu island arc is observed at the southern end of the profile. The structure representing the

  3. Interpreting vegetation reflectance measurements as a function of solar zenith angle

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.; Ranson, K. J.

    1979-01-01

    Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.

  4. First Results Obtained with Wide-Angle Cerenkov Light Telescope BEO p. Mussala

    NASA Astrophysics Data System (ADS)

    Slavcheva Malamova, E.; Angelov, I.; Davidkov, K.; Stamenov, J.; Kirov, I.

    2003-07-01

    The first results from experiment using Cerenkov light of EAS, reflected from the snow surface of Ice Lake p. Mussala, Bulgaria are described. The construction of the telescope was started in autumn 2000.The first measurements with 1-meter diameter reflectors and FEU110 were carried out in winter 2000-2001. During 2002-2003 the detector was improved. The first results obtained in winter 2002-2003 are presented in this paper. Introduction Our experiment is based on the Prof. A.E. Chudakov (1972)[1] idea to detect the Cerenkov light from EAS reflected by snow surface.The special feature of that method is the possibility to use a sensitive area over some hundred square kilometers with comparatively small detectors. The intensity of Cerenkov light from EAS is proportional to the energy of the primary cosmic ray particle so this method is a calorimetric one. It gives the possibility for experimental investigation of the primary spectrum of the cosmic rays with very and ultra high energies. The Basic Environmental Observatory on peak Mussala (2925-m a.s.l) provides a real opportunity for realization of that method. The Ice Lake is located in the Mussala circus region, at 200 m below the peak (2925-m a.s.l). The lake's area is approximately 20.103 m2 . Its surface retains an ice-cover approximately 7 to 8 months annually. Detector is situated on the 212m high mountain ledge nearby Ice Lake and registers the Cerenkov light of the air showers reflected from the snow surface of the lake.The limits of the zenith angle for the photons descended by the reflecting surface, are determined by the terrain's specifics: d=0.73 rad The detector setting up consists of two parab olic reflectors with 1.40-meter diameter each. The light spots are detected by two photomultipliers (FEU-49B),

  5. Postlaunch Performance of the Suomi National Polar-Orbiting Partnership Ozone Mapping and Profiler Suite (OMPS) Nadir Sensors

    NASA Technical Reports Server (NTRS)

    Seftor, C. J.; Jaross, G.; Kowitt, M.; Haken, M.; Li, J.; Flynn, L. E.

    2014-01-01

    The prelaunch specifications for nadir sensors of the Ozone Mapping and Profiler Suite (OMPS) were designed to ensure that measurements from them could be used to retrieve total column ozone and nadir ozone profile information both for operational use and for use in long-term ozone data records. In this paper, we will show results from our extensive analysis of the performance of the nadir mapper (NM) and nadir profiler (NP) sensors during the first year and a half of OMPS nadir operations. In most cases, we determined that both sensors meet or exceed their prelaunch specifications. Normalized radiance (radiance divided by irradiance) measurements have been determined to be well within their 2% specification for both sensors. In the case of stray light, the NM sensor is within its 2% specification for all but the shortest wavelengths, while the NP sensor is within its 2% specification for all but the longest wavelengths. Artifacts that negatively impacted the sensor calibration due to diffuser features were reduced to less than 1% through changes made in the solar calibration sequence. Preliminary analysis of the disagreement between measurements made by the NM and NP sensors in the region where their wavelengths overlap indicates that it is due to shifts in the shared dichroic filter after launch and that it can be corrected. In general, our analysis indicates that both the NM and NP sensors are performing well, that they are stable, and that any deviations from nominal performance can be well characterized and corrected.

  6. Postradiotherapy 2-Year Prostate-Specific Antigen Nadir as a Predictor of Long-Term Prostate Cancer Mortality

    SciTech Connect

    Zelefsky, Michael J.; Shi Weiji; Yamada, Yoshiya; Kollmeier, Marisa A.; Cox, Brett; Park, Jessica; Seshan, Venkatraman E.

    2009-12-01

    Purpose: To report the influence of posttreatment prostate-specific antigen (PSA) nadir response at 2 years after external beam radiotherapy (RT) on distant metastases (DM) and cause-specific mortality (CSM). Methods and Materials: Eight hundred forty-four patients with localized prostate cancer were treated with conformal RT. The median duration of follow-up was 9.1 years. A fixed landmark time point at 2 years was used to assess the influence of nadir PSA value as a time-dependent variable on long-term outcomes. Results: Multivariate analysis demonstrated that nadir PSA <=1.5 ng/mL at the landmark was an independent predictor of progression-free survival after adjusting for T stage, Gleason score, pre-RT PSA value, and RT dose (p = 0.03). The 5- and 10-year cumulative incidences of DM were 2.4% and 7.9%, respectively, in those with nadir PSA levels <=1.5 ng/mL at the 2-year landmark, and were 10.3% and 17.5%, respectively, in patients with higher nadir values. Multivariate analysis showed that the higher nadir PSA value at the 2-year landmark (p = 0.002), higher Gleason scores (p < 0.001), and increasing T stage (p = 0.03) were predictors of DM after adjusting for pre-RT PSA values and RT dose. Multivariate analysis also showed that higher Gleason scores (p = 0.002), and higher nadir PSA values at the 2-year landmark (p = 0.03) were risk factors associated with CSM after adjusting for T stage and pre-RT PSA value. Conclusions: Nadir PSA values of <=1.5 ng/mL at 2 years after RT for prostate cancer predict for long-term DM and CSM outcomes. Patients with higher absolute nadir levels at 2 years after treatment should be evaluated for the presence of nonresponding disease, and earlier salvage treatment interventions should be considered.

  7. An evaluation of the exposure in nadir observation of the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Ambrosio, M.; Anchordoqui, L.; Anzalone, A.; Arai, Y.; Aramo, C.; Asano, K.; Ave, M.; Barrillon, P.; Batsch, T.; Bayer, J.; Belenguer, T.; Bellotti, R.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Błeçki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellini, G.; Catalano, O.; Cellino, A.; Chikawa, M.; Christl, M. J.; Connaughton, V.; Cortés, J. F.; Crawford, H. J.; Cremonini, R.; Csorna, S.; D'Olivo, J. C.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; del Peral, L.; Dell'Oro, A.; De Pascale, M. P.; Di Martino, M.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Franceschi, A.; Fujimoto, J.; Galeotti, P.; Garipov, G.; Geary, J.; Giaccari, U. G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Iguchi, T.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kim, Sug-Whan; Kleifges, M.; Klimov, P. A.; Ko, S. H.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kuznetsov, E.; La Rosa, G.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Marcelli, L.; Marini, A.; Martin-Chassard, G.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Maurissen, A.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Mot, B.; Murakami, T.; Nagano, M.; Nagata, M.; Nagataki, S.; Nakamura, T.; Nam, J. W.; Nam, S.; Nam, K.; Napolitano, T.; Naumov, D.; Neronov, A.; Nomoto, K.; Ogawa, T.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Pacheco, N.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Peter, T.; Picozza, P.; Pollini, A.; Prieto, H.; Reardon, P.; Reina, M.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Scuderi, M.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziebło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tomida, T.; Tone, N.; Trillaud, F.; Tsenov, R.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zamora, A.; Zuccaro Marchi, A.

    2013-04-01

    We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Observatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mission to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth's nighttime atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based observation and we compute the annual exposure in nadir observation. The results are based on studies of the expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of clouds and different types of background light. We show that the annual exposure is about one order of magnitude higher than those of the presently operating ground-based observatories.

  8. Nadir CA-125 level as prognosis indicator of high-grade serous ovarian cancer

    PubMed Central

    2013-01-01

    Purpose The capacity of nadir CA-125 levels to predict the prognosis of epithelial ovarian cancer remains controversial. This study aimed to explore whether the nadir CA-125 serum levels could predict the durations of overall survival (OS) and progression free survival (PFS) in patients with high-grade serous ovarian cancer (HG-SOC) from the USA and PRC. Materials and methods A total of 616 HG-SOC patients from the MD Anderson Cancer Center (MDACC, USA) between 1990 and 2011 were retrospectively analyzed. The results of 262 cases from the Jiangsu Institute of Cancer Research (JICR, PRC) between 1992 and 2011 were used to validate the MDACC data. The CA-125 immunohistochemistry assay was performed on 280 tissue specimens. The Cox proportional hazards model and the log-rank test were used to assess the associations between the clinicopathological characteristics and duration of survival. Results The nadir CA-125 level was an independent predictor of OS and PFS (p < 0.01 for both) in the MDACC patients. Lower nadir CA-125 levels (≤10 U/mL) were associated with longer OS and PFS (median: 61.2 and 16.8 months with 95% CI: 52.0–72.4 and 14.0–19.6 months, respectively) than their counterparts with shorter OS and PFS (median: 49.2 and 10.5 months with 95% CI: 41.7–56.7 and 6.9–14.1 months, respectively). The nadir CA-125 levels in JICR patients were similarly independent when predicting the OS and PFS (p < 0.01 for both). Nadir CA-125 levels less than or equal to 10 U/mL were associated with longer OS and PFS (median: 59.9 and 15.5 months with 95% CI: 49.7–70.1 and 10.6–20.4 months, respectively), as compared with those more than 10 U/mL (median: 42.0 and 9.0 months with 95% CI: 34.4–49.7 and 6.6–11.2 months, respectively). Baseline serum CA-125 levels, but not the CA-125 expression in tissues, were associated with the OS and PFS of HG-SOC patients in the MDACC and JICR groups. However, these values were not independent. Nadir CA-125

  9. Tropospheric ozone retrieval by using SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Ladstätter-Weissenmayer, Annette; Ebojie, Felix; Rozanov, Alexei; Burrows, John

    2014-05-01

    Tropospheric ozone is photochemically produced during pollution events and transported from the stratosphere towards the troposphere. It is the third most important green house gases and the main component of summer smog. Global covered satellite measurements are well suitable to investigate sources, sinks, and transport mechanisms of tropospheric ozone in a global view, and to study a characteristic behaviour of the tropospheric ozone in regions. However, the usage of satellite data is associated to a large uncertainty as 90% ozone is located in the stratosphere and only the remaining part of 10% can be observed in the troposphere. The limb-nadir matching (LNM) technique is one of the methods suitable to retrieve tropospheric ozone distributions from space borne observations of the scattered solar light in the UV-visible spectral range. In this study we apply the LNM approach to alternating limb and nadir measurements performed by the SCIAMACHY instrument. A precise tropopause height is used to subtract the stratospheric ozone from the total ozone amount for each matching point. The focus of this work is to reduce the uncertainty of the resulting tropospheric ozone distributions by analysing possible error sources, refining both limb and nadir retrievals and the matching technique.

  10. Crown depth as a result of evolutionary games: decreasing solar angle should lead to shallower, not deeper crowns.

    PubMed

    Vermeulen, Peter Johannes

    2014-06-01

    There is a general notion in the literature that, with increasing latitude, trees have deeper crowns as a result of a lower solar elevation angle. However, these predictions are based on models that did not include the effects of competition for light between individuals. Here, I argue that there should be selection for trees to increase the height of the crown base, as this decreases shading by neighbouring trees, leading to an evolutionarily stable strategy (ESS). Because the level of between-tree shading increases with decreasing solar angle, the predicted ESS will shift to higher crown base height. This argument is supported by a simulation model to check for the effects of crown shape and the change of light intensity that occurs with changing solar angle on model outcomes. So, the lower solar angle at higher latitudes would tend to select for shallower, and not deeper, crowns. This casts doubt on the common belief that a decreasing solar angle increases crown depth. More importantly, it shows that different assumptions about what should be optimized can lead to different predictions, not just for absolute trait values, but for the direction of selection itself. PMID:24548219

  11. New Archiving Distributed InfrastructuRe (NADIR): Status and Evolution

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Knapic, C.; Smareglia, R.

    2015-09-01

    The New Archiving Distributed InfrastructuRe (NADIR) has been developed at INAF-OATs IA2 (Italian National Institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives), as an evolution of the previous archiving and distribution system, used on several telescopes (LBT, TNG, Asiago, etc.) to improve performance, efficiency and reliability. At the present, NADIR system is running on LBT telescope and Vespa (Italian telescopes network for outreach) Ramella et al. (2014), and will be used on TNG, Asiago and IRA (Istituto Radio Astronomia) archives of Medicina, Noto and SRT radio telescopes Zanichelli et al. (2014) as the data models for radio data will be ready. This paper will discuss the progress status, the architectural choices and the solutions adopted, during the development and the commissioning phase of the project. A special attention will be given to the LBT case, due to some critical aspect of data flow and policies and standards compliance, adopted by the LBT organization.

  12. Thermal infrared nadir observations of 24 atmospheric gases

    NASA Astrophysics Data System (ADS)

    Clarisse, Lieven; R'Honi, Yasmina; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2011-05-01

    Thermal infrared nadir sounders are ideal for observing total columns or vertical profiles of atmospheric gases such as water, carbon dioxide and ozone. High resolution sounders with a spectral resolution below 5 cm-1 can distinguish fine spectral features of trace gases. Forty years after the launch of the first hyperspectral sounder IRIS, we have now several state of the art instruments in orbit, with improved instrumental specifications. In this letter we give an overview of the trace gases which have been observed by infrared nadir sounders, focusing on new observations of the Infrared Atmospheric Sounding Interferometer (IASI). We present typical observations of 14 rare reactive trace gas species. Several species are reported here for the first time in nadir view, including nitrous acid, furan, acetylene, propylene, acetic acid, formaldehyde and hydrogen cyanide, observations which were made in a pyrocumulus cloud from the Australian bush fires of February 2009. Being able to observe this large number of reactive trace gases will likely improve our knowledge of source emissions and their impact on the environment and climate.

  13. Measurement of nadir and near-nadir 94-GHz brightness temperatures of several tactical-scene clutter types

    NASA Astrophysics Data System (ADS)

    Wikner, David A.; Pizzillo, Thomas J.

    1999-07-01

    The authors present 94-GHz radiometric brightness temperatures of various clutter materials at nadir. The clutter materials measured include field vegetation, asphalt pavement, and an asphalt shingle roof and data is presented for each clutter type. We also report measurements that quantify the effect of water on the brightness temperature of metal. These measurements were made by adding calibrated quantities of water to a metal plate while recording the plate's millimeter-wave brightness temperature. Off-nadir data out to 45 deg is also presented for the field vegetation and asphalt pavement. Using a simple rough scattering model for the materials, we made estimates of the emissivity of the field vegetation and asphalt. The emissivity of the roof was determined by measuring its brightness temperature as it was heated.

  14. NADIR: Monitoring, Error Handling, and Logging with Tango

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Knapic, C.; Smareglia, R.

    2014-05-01

    The ingest and transport of a large amount of astronomical data, in geographically distributed archives, imply some challenging issues, like remote control and configuration, monitoring and logging anomalous conditions, fault tolerance and error handling. Based on this considerations and on our experience in data management, we started development of a New Archiving Distributed InfrastructuRe (NADIR), using Tango (Team 2013; S. Gara 2012), a well known distributed control system (DCSs) within scientific environments, taking advantage of its key features, like reliability, scalability, logging and alarm system, consolidated pattern and template, to solve this complexity. In this paper we discuss about design choices and technical aspects around this project.

  15. ICU Blood Pressure Variability May Predict Nadir of Respiratory Depression After Coronary Artery Bypass Surgery

    PubMed Central

    Costa, Anne S. M.; Costa, Paulo H. M.; de Lima, Carlos E. B.; Pádua, Luiz E. M.; Campos, Luciana A.; Baltatu, Ovidiu C.

    2016-01-01

    Objectives: Surgical stress induces alterations on sympathovagal balance that can be determined through assessment of blood pressure variability. Coronary artery bypass graft surgery (CABG) is associated with postoperative respiratory depression. In this study we aimed at investigating ICU blood pressure variability and other perioperative parameters that could predict the nadir of postoperative respiratory function impairment. Methods: This prospective observational study evaluated 44 coronary artery disease patients subjected to coronary artery bypass surgery (CABG) with cardiopulmonary bypass (CPB). At the ICU, mean arterial pressure (MAP) was monitored every 30 min for 3 days. MAP variability was evaluated through: standard deviation (SD), coefficient of variation (CV), variation independent of mean (VIM), and average successive variability (ASV). Respiratory function was assessed through maximal inspiratory (MIP) and expiratory (MEP) pressures and peak expiratory flow (PEF) determined 1 day before surgery and on the postoperative days 3rd to 7th. Intraoperative parameters (volume of cardioplegia, CPB duration, aortic cross-clamp time, number of grafts) were also monitored. Results: Since, we aimed at studying patients without confounding effects of postoperative complications on respiratory function, we had enrolled a cohort of low risk EuroSCORE (European System for Cardiac Operative Risk Evaluation) with < 2. Respiratory parameters MIP, MEP, and PEF were significantly depressed for 4–5 days postoperatively. Of all MAP variability parameters, the ASV had a significant good positive Spearman correlation (rho coefficients ranging from 0.45 to 0.65, p < 0.01) with the 3-day nadir of PEF after cardiac surgery. Also, CV and VIM of MAP were significantly associated with nadir days of MEP and PEF. None of the intraoperative parameters had any correlation with the postoperative respiratory depression. Conclusions: Variability parameters ASV, CV, and VIM of the MAP

  16. Diode laser transscleral cyclophotocoagulation followed by phacotrabeculectomy on medically unresponsive acute primary angle closure eyes: the long-term result

    PubMed Central

    2014-01-01

    Background To explore the intraocular pressure-lowering effect and complications of diode laser transscleral cyclophotocoagulation (DLTSC) followed by phacotrabeculectomy on medically unresponsive acute primary angle closure eyes. Methods Nine eyes of nine medically unresponsive acute primary angle closure patients were enrolled. All the patients underwent cyclophotocoagulation followed by phacotrabeculectomy to control the prolonged acute attack. Data were recorded prospectively and then analyzed retrospectively. The reduction in intraocular pressure, improvement of vision and the complications were evaluated. Results After DLTSC, the IOP of all the patients were reduced, but all were above 21 mmHg under topical anti-glaucoma medications. After phacotrabeculectomy, the IOP of all the patients was decreased. At the final visit, the vision of all the patients was improved and the IOP of all the patients was below 21 mmHg without anti-glaucoma medications. There were no complications during the DLTSC and phacotrabeculectomy. Uveitis was the common complications after the both procedures, which were resolved by medication treatment. Conclusion Diode laser transscleral cyclophotocoagulation followed by phacotrabeculectomy is an alternative procedure to control the intraocular pressure of medically unresponsive acute primary angle closure eyes with few complications. PMID:24606842

  17. Understanding angular effects in VHR imagery and their significance for urban land-cover model portability: A study of two multi-angle in-track image sequences

    NASA Astrophysics Data System (ADS)

    Matasci, Giona; Longbotham, Nathan; Pacifici, Fabio; Kanevski, Mikhail; Tuia, Devis

    2015-09-01

    This paper investigates the angular effects causing spectral distortions in multi-angle remote sensing imagery. We study two WorldView-2 multispectral in-track sequences acquired over the cities of Atlanta, USA, and Rio de Janeiro, Brazil, consisting of 13 and 20 co-located images, respectively. The sequences possess off-nadir acquisition angles up to 47.5° and bear markedly different sun-satellite configurations with respect to each other. Both scenes comprise classic urban structures such as buildings of different size, road networks, and parks. First, we quantify the degree of distortion affecting the sequences by means of a non-linear measure of distance between probability distributions, the Maximum Mean Discrepancy. Second, we assess the ability of a classification model trained on an image acquired at a certain view angle to predict the land-cover of all the other images in the sequence. The portability across the sequence is investigated for supervised classifiers of different nature by analyzing the evolution of the classification accuracy with respect to the off-nadir look angle. For both datasets, the effectiveness of physically- and statistically-based normalization methods in obtaining angle-invariant data spaces is compared and synergies are discussed. The empirical results indicate that, after a suitable normalization (histogram matching, atmospheric compensation), the loss in classification accuracy when using a model trained on the near-nadir image to classify the most off-nadir acquisitions can be reduced to as little as 0.06 (Atlanta) or 0.03 (Rio de Janeiro) Kappa points when using a SVM classifier.

  18. Recent Results from the Wide Angle Search for Planets (WASP) Prototype

    NASA Astrophysics Data System (ADS)

    Kane, S. R.; Horne, K.; Lister, T.; Collier Cameron, A.; Street, R. A.; Pollacco, D. L.; James, D.; Tsapras, Y.

    2004-12-01

    WASP0 is a prototype for what is intended to become a collection of WASPs whose primary aim is to detect transiting extra-solar planets across the face of their parent star. We present some recent results from the WASP0 camera, including observations of the known transiting planet around HD 209458. The current status of the next generation camera (SuperWASP) located on La Palma is briefly outlined.

  19. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation

    NASA Astrophysics Data System (ADS)

    Dragani, Rossana

    2016-07-01

    This paper presents a comparative assessment of ultraviolet nadir-backscatter and infrared limb-emission ozone profile assimilation. The Meteorological Operational Satellite A (MetOp-A) Global Ozone Monitoring Experiment 2 (GOME-2) nadir and the ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) limb profiles, generated by the ozone consortium of the European Space Agency Climate Change Initiative (ESA O3-CCI), were individually added to a reference set of ozone observations and assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system (DAS). The two sets of resulting analyses were compared with that from a control experiment, only constrained by the reference dataset, and independent, unassimilated observations. Comparisons with independent observations show that both datasets improve the stratospheric ozone distribution. The changes inferred by the limb-based observations are more localized and, in places, more important than those implied by the nadir profiles, albeit they have a much lower number of observations. A small degradation (up to 0.25 mg kg-1 for GOME-2 and 0.5 mg kg-1 for MIPAS in the mass mixing ratio) is found in the tropics between 20 and 30 hPa. In the lowermost troposphere below its vertical coverage, the limb data are found to be able to modify the ozone distribution with changes as large as 60 %. Comparisons of the ozone analyses with sonde data show that at those levels the assimilation of GOME-2 leads to about 1 Dobson Unit (DU) smaller root mean square error (RMSE) than that of MIPAS. However, the assimilation of MIPAS can still improve the quality of the ozone analyses and - with a reduction in the RMSE of up to about 2 DU - outperform the control experiment thanks to its synergistic assimilation with total-column ozone data within the DAS. High vertical resolution ozone profile observations are essential to accurately monitor and forecast ozone concentrations in a DAS

  20. Computer communications through telecommunications satellite systems - The NADIR project

    NASA Astrophysics Data System (ADS)

    Grange, J.-L.

    Current developments in satellite digital communication in Europe are surveyed, and the status of the French NADIR project begun in 1980 is reported. The geographic coverage, transmission rates, propagation delays, broadcasting and multidestination channels, and error rates characteristic of present satellite systems are discussed, and the specific performance parameters of the Telecom-1 system, comprising three geosynchronous satellites (one operational and two backup) with six 25-Mbit/sec, 12-14-GHz digital transponders and one 4-6 GHz analog port (for telephone and TV services) each, are examined. Telecom-1 will operate in a TDMA-AD mode with coverage of up to 320 earth stations in Central and Western Europe, transmission rates of 2.4-2000 kbit/sec, and error rates less than 10 to the -6th during 99 percent of the time. New applications foreseen include remote processing, distributed databases, computer teleconferencing, and electronic mail systems; new basic tools such as bulk-transfer and transaction-transfer protocols and database-management systems will be required. These tools are under development and testing (using the ANIS Telecom-1 simulator) by NADIR.

  1. Recent Results from the Wide Angle Search for Planets (WASP) Prototype

    NASA Astrophysics Data System (ADS)

    Kane, S. R.; Horne, K.; Street, R. A.; Pollaco, D. L.; James, D.; Tsapras, Y.; Collier Cameron, A.

    WASP0 is a prototype for what is intended to become a collection of WASPs whose primary aim is to detect transiting extrasolar planets across the face of their parent star. The WASP0 instrument is a wide-field (9-degree) 6.3 cm aperture F/2.8 Apogee 10 CCD camera (2Kx2K chip, 16-arcsec pixels). The camera is mounted piggy-back on a commercial 10-inch Meade telescope. We present some recent results from the WASP camera, including observations from La Palma of the known transiting planet around HD 209458 and preliminary analysis of other stars located in the same field. We also outline further problems which restrict the ability to achieve photon limited precision with a wide-field commercial CCD.

  2. The impact of ozone field horizontal inhomogeneities on nadir-viewing orbital backscatter UV measurements

    NASA Technical Reports Server (NTRS)

    Mueller, Martin D.; Poli, Paul; Joiner, Joanna

    2005-01-01

    Radiative transfer calculations for nadir-viewing satellites normally assume the atmosphere to be horizontally homogeneous. Yet it has been shown recently that horizontal gradients can lead to significant errors in satellite infrared and microwave soundings. We extend the methodology to backscatter ultra-violet observations of ozone, and present a first estimate of the effect s magnitude. The Solar Backscatter Ultra-Violet/2 (SBUV/2) instrument, a pure nadir sounder, serves as our test bed. Our results indicate that in a vast majority of cases the abovementioned errors can be neglected. However, occurrence of higher errors, particularly at wavelengths longer than 300 nm, coincides with some of the most interesting atmospheric phenomena like tropopause folds and the South polar ozone hole. This leads to a seasonal variation of the magnitude of the effect. Due to the mostly zonal geometry of the ozone distribution, there is also the possibility that biases may be introduced, which is particularly critical if the data are to be assimilated or used to determine trends. The results presented are tested for robustness using different model atmospheres. The influence of horizontal inhomogeneities will be even more pronounced for cross-track sounders and limb viewers, and easier to detect once higher resolution atmospheric models are available. This will be investigated in future studies.

  3. Constraining the physical properties of Titan's empty lake basins using nadir and off-nadir Cassini RADAR backscatter

    NASA Astrophysics Data System (ADS)

    Michaelides, R. J.; Hayes, A. G.; Mastrogiuseppe, M.; Zebker, H. A.; Farr, T. G.; Malaska, M. J.; Poggiali, V.; Mullen, J. P.

    2016-05-01

    We use repeat synthetic aperture radar (SAR) observations and complementary altimetry passes acquired by the Cassini spacecraft to study the scattering properties of Titan's empty lake basins. The best-fit coefficients from fitting SAR data to a quasi-specular plus diffuse backscatter model suggest that the bright basin floors have a higher dielectric constant, but similar facet-scale rms surface facet slopes, to surrounding terrain. Waveform analysis of altimetry returns reveals that nadir backscatter returns from basin floors are greater than nadir backscatter returns from basin surroundings and have narrower pulse widths. This suggests that floor deposits are structurally distinct from their surroundings, consistent with the interpretation that some of these basins may be filled with evaporitic and/or sedimentary deposits. Basin floor deposits also express a larger diffuse component to their backscatter, which is likely due to variations in subsurface structure or an increase in roughness at the wavelength scale (Hayes, A.G. et al. [2008]. Geophys. Res. Lett. 35, 9). We generate a high-resolution altimetry radargram of the T30 altimetry pass over an empty lake basin, with which we place geometric constraints on the basin's slopes, rim heights, and depth. Finally, the importance of these backscatter observations and geometric measurements for basin formation mechanisms is briefly discussed.

  4. Precipitation measurement using SIR-C: A feasibility study. Investigation at nadir

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1993-01-01

    The most significant limitation of the imaging SAR in rain measurements is the ground return coupled to the rain cell. Here we report a study of the possibility of using the X-SAR and the C-band channel of SIR-C for rain measurement. Earlier signal-to-clutter calculations rule out the use of X-SAR at steeper off-vertical angles of incidence (i.e., 20 less than theta less than 50). Only rain rates greater than 30 mm/hr at angles of incidence greater than 60 degrees showed good signal-to-clutter ratio (SCR). This study involved calculations at vertical incidence. There is adequate signal-to-noise ratio (SNR) at vertical incidence, but the presence of high-range side-lobe levels leads to small SCR for measurement over oceans at both X and C bands. For larger rain thickness (greater than two km), the SCR gets better and smaller rain rates (greater than 10 mm/hr) can be measured. However, rain measurements over forests seem to be feasible at nadir even for smaller rain thickness (less than two km). We conclude that X band may be usable over the forest at vertical incidence to measure rain rates greater than five mm/hr even for shallow rain thickness and over ocean for large rain thickness.

  5. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-01-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  6. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Astrophysics Data System (ADS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-08-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  7. NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wu, A.

    2012-01-01

    Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.

  8. NPP VIIRS and Aqua MODIS RSB comparison using observations from simultaneous nadir overpasses (SNO)

    NASA Astrophysics Data System (ADS)

    Wu, Aisheng; Xiong, Xiaoxiong

    2012-09-01

    Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door's opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (~0.4 μm) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.

  9. [Surgical results of dissection of the superficial temporal artery in patients with preglaucoma and initial open-angle glaucoma].

    PubMed

    Shilkin, G A; Iartseva, N S; Mironova, E M; Oreshkina, R M; Mikhaĭlova, G D

    1989-01-01

    Results of superficial temporal artery dissection performed in 42 patients (44 eyes) with preglaucoma and initial open-angle glaucoma have shown no impairement of visual field, visual acuity, optic disc in the period from 0.5 to 1.5 years after it. The increased linear rate of bloodflow after the operation remained stable in 17 eyes of patients with preglaucoma and in 14 eyes of patients with glaucoma. Intraocular pressure became normalized in 20 and 19 eyes as well as intraocular fluid outflow in 14 and 13 eyes, respectively. In both groups there was a tendency to normalization of retinal functions and hydrodynamics of the eye. Thus, the operation produces improvement of regional bloodflow, tonographic and electrophysiologic indices. Its usage is considered to be reasonable, but, when determining indications to it, an individual approach is necessary. PMID:2755669

  10. TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ON)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ON) News:  TES News ... Title:  TES Discipline:  Tropospheric Chemistry Level:  L2 Instrument:  TES/Aura L2 Water Vapor Spatial Coverage:  5.3 x 8.5 km nadir ...

  11. TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ONS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ONS) News:  TES News ... Title:  TES Discipline:  Tropospheric Chemistry Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  5.3 8.5 km nadir ...

  12. TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3NS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3NS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters:  Ammonia Order Data:  Reverb:   Order Data ...

  13. TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3N)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3N) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters:  Ammonia Order Data:  Reverb:   Order Data ...

  14. Characterization of Global Near-Nadir Backscatter for Remote Sensing Radar Design

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.; Long, David G.

    2000-01-01

    In order to evaluate side-lobe contamination from the near-nadir region for Ku-Band radars, a statistical characterization of global near-nadir backscatter is constructed. This characterization is performed for a variety of surface types using data from TRMM, Seasat, and Topex. An assessment of the relative calibration accuracy of these sensors is also presented.

  15. Characterization of Global Near-Nadir Backscatter for Remote Sensing Radar Design

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.; Long, David G.

    2000-01-01

    In order to evaluate side-lobe contamination from the near-nadir region for Ku-Band radars, a statistical characterization of global near-nadir backscatter is constructed. This characterization is performed for a variety of surface types using data from TRMM, Seasat, and Topex. An assessment of the relative calibration accuracy of them sensors is also presented.

  16. TES/Aura L2 Carbon Monoxide (CO) Lite Nadir (TL2COLN)

    Atmospheric Science Data Center

    2015-06-16

    TES/Aura L2 Carbon Monoxide (CO) Lite Nadir (TL2COLN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Carbon Monoxide Spatial Coverage:  5.3 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Carbon Monoxide Order Data:  Reverb:   Order Data ...

  17. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News ... L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.2 x 8.5 km nadir ... Subset Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  18. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News:  TES News ... L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 x 8.5 km nadir ... Subset Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  19. Capturing tropospheric ozone time variability : a study using TES Nadir Retrievals

    NASA Technical Reports Server (NTRS)

    Bowman, Kevin; Steck, T.; Worden, H.; Worden, J.; Clough, S.; Rodgers, C.

    2001-01-01

    We perform nadir retrievals of ozone using simulated radiances from ozone-sondes over Bermuda from April 14 to May 25, 1993. Using a novel two-step retrieval strategy, we characterize the sensitivity of TES nadir retrievals to time variations of ozone. 02000 Optical Society of America.

  20. TES/Aura L2 Formic Acid (FOR) Nadir (TL2FORN)

    Atmospheric Science Data Center

    2015-02-04

    TES/Aura L2 Formic Acid (FOR) Nadir (TL2FORN) News:  TES News Join ... L2 Platform:  TES/Aura L2 Formic Acid Spatial Coverage:  5.3 x 8.5 km nadir Spatial ... Access:  OPeNDAP Parameters:  Formic Acid Volume Mixing Ratio Precision Vertical Resolution Order ...

  1. TES/Aura L2 Formic Acid (FOR) Lite Nadir (TL2FORLN)

    Atmospheric Science Data Center

    2015-06-16

    TES/Aura L2 Formic Acid (FOR) Lite Nadir (TL2FORLN) News:  TES News ... L2 Instrument:  TES/Aura L2 Formic Acid Spatial Coverage:  5.3 km nadir Spatial ... Access:  OPeNDAP Parameters:  Formic Acid Volume Mixing Ratio Vertical Resolution Precision Order ...

  2. TES/Aura L2 Formic Acid (FOR) Nadir (TL2FORNS)

    Atmospheric Science Data Center

    2015-02-04

    TES/Aura L2 Formic Acid (FOR) Nadir (TL2FORNS) News:  TES News Join ... L2 Platform:  TES/Aura L2 Formic Acid Spatial Coverage:  5.3 x 8.5 km nadir Spatial ... Access:  OPeNDAP Parameters:  Formic Acid Volume Mixing Ratio Precision Vertical Resolution Order ...

  3. Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.

    2001-01-01

    Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.

  4. The Grenville Front Tectonic Zone: Results from the 1986 Great Lakes Onshore Seismic Wide-Angle Reflection and Refraction Experiment

    NASA Astrophysics Data System (ADS)

    Epili, Duryodhan; Mereu, Robert F.

    1991-09-01

    The Grenville Front, which marks the orogenic boundary between the Archean Superior Structural Province and the much younger Grenville Province to the southeast, is one of the major tectonic features of the Canadian Shield. Within Canada, it is approximately 1900 km in length extending from the north shore of Lake Huron across Ontario and Quebec to Labrador. In 1986, a major coincident onship near-vertical reflection and onshore wide-angle reflection/refraction experiment (GLIMPCE-Great Lakes International Multidisciplinary Program on Crustal Evolution) was conducted along a series of lines across the Great lakes. One of the lines, line J, ran across Georgian Bay and Lake Huron for a distance of 350 km and crossed the Grenville Front Tectonic Zone (GFTZ). The seismic signals from the air gun array source were well recorded by the onshore stations up to distances of 250 km with a seismic trace spacing of 50-62.5 m. The GFTZ had a profound effect on the nature of the reflector patterns observed on the onshore seismic sections. Data recorded by the stations on the east end of the line indicate that the crustal P phases are very complex and form a "shinglelike" pattern of reflected waves. Data recorded by stations at the center and at the western end of the line show that the Pg phases are normal and lack the shinglelike appearance. This character of arrivals was also observed on the corresponding S wave sections. A combined P and S wave forward modeling analysis shows that the GFTZ is composed of bands of reflectors dipping at angles of 20°-35° extending to the lower crust. These reflectors were also well imaged on the coincident near-vertical reflection data. Reflectors under the Britt domain to the east of the GFTZ have a shallower dip than those along the zone. The structure of the crust under the Manitoulin terrane to the west of the GFTZ is laterally homogeneous with a major intracrustal reflector at a depth of 17-20 km below the surface. Poisson's ratio is

  5. Relation between cusp ion structures and dayside reconnection for four IMF clock angles: OpenGGCM-LTPT results

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Raeder, J.; Sibeck, D. G.; Trattner, K. J.

    2015-06-01

    When, where, and which type of reconnection (antiparallel or component) happens on the dayside magnetopause are long-standing unsolved questions due to insufficient in situ observation of reconnection sites. Previous studies showed that the dispersed ion signatures observed in the magnetospheric cusps depend on the reconnection mechanism, suggesting that cusp ion signatures can be a good tool to investigate the locations and properties of dayside reconnection. We investigate this close relation between cusp signatures and magnetopause reconnection for four different interplanetary magnetic field (IMF) clock angles (CA) using the Open Global Geospace Circulation Model (OpenGGCM) and the Liouville Theorem Particle Tracer(LTPT). OpenGGCM produces dayside reconnection under the resistive MHD theory, and LTPT calculates cusp ion signatures caused by the simulated reconnection. Our model results show that for CA = 0°, antiparallel reconnection at both the northern and southern lobes causes a reverse dispersion in which ion energies increase with increasing latitude. For CA = 60°, unsteady antiparallel reconnection at both the northern and southern lobes causes double reverse dispersions. For CA = 120°, component reconnection near the subsolar point produces a dispersionless signature in the low-latitude cusp, and antiparallel reconnection on the duskside northern magnetopause produces a normal dispersion in the high-latitude cusp in which ion energies decrease with increasing latitude. For CA = 180°, antiparallel reconnection near the subsolar point causes a normal dispersion.

  6. Backscattering enhancement for Marshall-Palmer distributed rains for a W-band nadir-pointing radar with a finite beam width

    NASA Technical Reports Server (NTRS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Oguchi, Tomohiro

    2005-01-01

    In this paper, we expand the previous theory to be applied to a generic drop size distribution with spheroidal raindrops including spherical raindrops. Results will be used to discuss the multiple scattering effects on the backscatter measurements acquired by a W-band nadir-pointing radar.

  7. Identifying the occurrence of lightning and transient luminous events by nadir spectrophotometric observation

    NASA Astrophysics Data System (ADS)

    Adachi, Toru; Sato, Mitsuteru; Ushio, Tomoo; Yamazaki, Atsushi; Suzuki, Makoto; Kikuchi, Masayuki; Takahashi, Yukihiro; Inan, Umran S.; Linscott, Ivan; Hobara, Yasuhide; Frey, Harald U.; Mende, Stephen B.; Chen, Alfred B.; Hsu, Rue-Ron; Kusunoki, Kenichi

    2016-07-01

    We propose a new technique to identify the occurrence of lightning and transient luminous events (TLEs) using multicolor photometric data obtained by space borne nadir measurements. We estimate the spectral characteristics of lightning and TLEs by converting the optical data obtained by the ISUAL limb experiment to the GLIMS nadir geometry. We find that the estimated spectral shapes of TLE-accompanied lightning are clearly different from those of pure lightning. The obtained results show that (1) the intensity of FUV signals and (2) the ratio of 337/red (609-753 nm) spectral irradiance are useful to identify the occurrence of TLEs. The occurrence probabilities of TLEs are 10%, 40%, 80%, in the case of lightning events having the 337/red spectral irradiance ratio of 0.95, 2.95, 14.79, respectively. By using the 60% criterion of the 337/red ratio and the existence of FUV emissions, we classify the 1039 GLIMS-observed lightning events into 828 pure lightning and 211 TLE-accompanied lightning. Since the GLIMS trigger level is adjusted to observe extremely-bright events, the occurrence probability of TLEs obtained here most probably reflects the characteristics of energetic lightning. The estimated global map is consistent with previously determined distributions: the highest activities of lightning and TLEs are found over the North/South American continents, African continent, and Asian maritime regions. While the absolute occurrence number of pure lightning and TLE-accompanied lightning are found to maximize in the equatorial region, the occurrence probability of TLEs possibly increase somewhat in the mid-latitude region. Since the occurrence probabilities of TLEs are higher over the ocean than over land, it is likely that the GLIMS-observed TLEs are due primarily to elves which tends to occur more frequently over the ocean.

  8. Preliminary results from a subsonic high-angle-of-attack flush airdata sensing (HI-FADS) system - Design, calibration, algorithm development, and flight test evaluation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.

    1990-01-01

    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research vehicle. This paper discusses the airdata algorithm development and composite results expressed as airdata parameter estimates and describes the HI-FADS system hardware, calibration techniques, and algorithm development. An independent empirical verification was performed over a large portion of the subsonic flight envelope. Test points were obtained for Mach numbers from 0.15 to 0.94 and angles of attack from -8.0 to 55.0 deg. Angles of sideslip ranged from -15.0 to 15.0 deg, and test altitudes ranged from 18,000 to 40,000 ft. The HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz.

  9. In-flight flow visualization results from the X-29A aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Saltzman, John A.

    1992-01-01

    Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.

  10. The Caribbean-South American plate boundary at 65°W: Results from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Magnani, M. B.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2010-08-01

    We present the results of the analysis of new wide-angle seismic data across the Caribbean-South American plate boundary in eastern Venezuela at about 65°W. The ˜500 km long profile crosses the boundary in one of the few regions dominated by extensional structures, as most of the southeastern Caribbean margin is characterized by the presence of fold and thrust belts. A combination of first-arrival traveltime inversion and simultaneous inversion of PmP and Pn arrivals was used to develop a P wave velocity model of the crust and the uppermost mantle. At the main strike-slip fault system, we image the Cariaco Trough, a major pull-apart basin along the plate boundary. The crust under the Southern Caribbean Deformed Belt exhibits a thickness of ˜15 km, suggesting that the Caribbean Large Igneous Province extends to this part of the Caribbean plate. The velocity structures of basement highs and offshore sedimentary basins imaged by the profile are comparable to those of features found in other parts of the margin, suggesting similarities in their tectonic history. We do not image an abrupt change in Moho depth or velocity structure across the main strike-slip system, as has been observed elsewhere along the margin. It is possible that a terrane of Caribbean island arc origin was accreted to South America at this site and was subsequently bisected by the strike-slip fault system. The crust under the continental portion of the profile is thinner than observed elsewhere along the margin, possibly as a result of thinning during Jurassic rifting.

  11. NADIR: A prototype system for detecting network and file system abuse

    SciTech Connect

    Hochberg, J.G.; Jackson, K.A.; Stallings, C.A.; McClary, J.F.; DuBois, D.H.; Ford, J.R.

    1992-10-01

    This paper describes the design of a prototype computer misuse detection system for the Los Alamos Notional Laboratory`s Integrated Computing Network (ICN). This automated expert system, the Network Anomaly Detection and Intrusion Reporter (NADIR), streamlines and supplements the manual audit record review traditionally performed by security auditors. NADIR compares network activity, as summarized in weekly profiles of individual users and the ICN as a whole, against expert rules that define security policy, improper or suspicious behavior, and normal user activity. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes analysis by NADIR of two types of ICN activity: user authentication and access control, and mass file storage. It highlights system design issues of data handling, exploiting existing auditing systems, and performing audit analysis at the network level.

  12. NADIR: A prototype system for detecting network and file system abuse

    SciTech Connect

    Hochberg, J.G.; Jackson, K.A.; Stallings, C.A.; McClary, J.F.; DuBois, D.H.; Ford, J.R.

    1992-01-01

    This paper describes the design of a prototype computer misuse detection system for the Los Alamos Notional Laboratory's Integrated Computing Network (ICN). This automated expert system, the Network Anomaly Detection and Intrusion Reporter (NADIR), streamlines and supplements the manual audit record review traditionally performed by security auditors. NADIR compares network activity, as summarized in weekly profiles of individual users and the ICN as a whole, against expert rules that define security policy, improper or suspicious behavior, and normal user activity. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes analysis by NADIR of two types of ICN activity: user authentication and access control, and mass file storage. It highlights system design issues of data handling, exploiting existing auditing systems, and performing audit analysis at the network level.

  13. Development of a Model to Correct Multi-View Angle above Water Measurements for the Analysis of the Bidirectional Reflectance of Coral and Other Reef Substrates

    NASA Astrophysics Data System (ADS)

    Miller, I.; Forster, B. C.; Laffan, S. W.

    2012-07-01

    Spectral reflectance characteristics of substrates in a coral reef environment are often measured in the field by viewing a substrate at nadir. However, viewing a substrate from multiple angles would likely result in different spectral characteristics for most coral reef substrates and provide valuable information on structural properties. To understand the relationship between the morphology of a substrate and its spectral response it is necessary to correct the observed above-water radiance for the effects of atmosphere and water attenuation, at a number of view and azimuth angles. In this way the actual surface reflectance can be determined. This research examines the air-water surface interaction for two hypothetical atmospheric conditions (clear Rayleigh scattering and totally cloudcovered) and the global irradiance reaching the benthic surface. It accounts for both water scattering and absorption, with simplifications for shallow water conditions, as well as the additive effect of background reflectance being reflected at the water-air surface at angles greater than the critical refraction angle (~48°). A model was developed to correct measured above-water radiance along the refracted view angle for its decrease due to path attenuation and the "n squared law of radiance" and the additive surface reflectance. This allows bidirectional benthic surface reflectance and nadir-normalised reflectance to be determined. These theoretical models were adapted to incorporate above-water measures relative to a standard, diffuse, white reference panel. The derived spectral signatures of a number of coral and non-coral benthic surfaces compared well with other published results, and the signatures and nadir normalised reflectance of the corals and other benthic surface classes indicate good class separation.

  14. TES/Aura L2 Ammonia (NH3) Lite Nadir (TL2NH3LN)

    Atmospheric Science Data Center

    2015-08-26

    TES/Aura L2 Ammonia (NH3) Lite Nadir (TL2NH3LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Ammonia Order Data:  Reverb:   Order Data ...

  15. TES/Aura L2 Ozone (O3) Lite Nadir (TL2O3LN)

    Atmospheric Science Data Center

    2015-08-26

    TES/Aura L2 Ozone (O3) Lite Nadir (TL2O3LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ozone Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Ozone Order Data:  Reverb:   Order Data Guide ...

  16. TES/Aura L2 Carbon Dioxide (CO2) Lite Nadir (TL2CO2LN)

    Atmospheric Science Data Center

    2015-06-24

    TES/Aura L2 Carbon Dioxide (CO2) Lite Nadir (TL2CO2LN) News:  TES ... Level:  L2 Instrument:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  17. KaRIn on SWOT: modeling and simulation of near-nadir Ka-band interferometric SAR images

    NASA Astrophysics Data System (ADS)

    Fjørtoft, Roger; Koudogbo, Fifamè; Duro, Javier; Ruiz, Christian; Gaudin, Jean-Marc; Mallet, Alain; Pourthie, Nadine; Lion, Christine; Ordoqui, Patrick; Arnaud, Alain

    2010-10-01

    The principal instrument of the wide-swath altimetry mission SWOT is KaRIn, a Ka-band interferometric SAR system operating on near-nadir swaths on both sides of the satellite track. Due to the short wavelength and particular observation geometry, there are very limited reports on the backscattering from natural surfaces. Simulators that cover both radiometric and geometric aspects are therefore developed in the framework of the CNES phase 0 and A studies of SWOT. This article presents the modeling and simulation approaches that have been adopted, and shows some preliminary simulation results.

  18. Comparing nadir and limb observations of polar mesospheric clouds: The effect of the assumed particle size distribution

    NASA Astrophysics Data System (ADS)

    Bailey, Scott M.; Thomas, Gary E.; Hervig, Mark E.; Lumpe, Jerry D.; Randall, Cora E.; Carstens, Justin N.; Thurairajah, Brentha; Rusch, David W.; Russell, James M.; Gordley, Larry L.

    2015-05-01

    Nadir viewing observations of Polar Mesospheric Clouds (PMCs) from the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft are compared to Common Volume (CV), limb-viewing observations by the Solar Occultation For Ice Experiment (SOFIE) also on AIM. CIPS makes multiple observations of PMC-scattered UV sunlight from a given location at a variety of geometries and uses the variation of the radiance with scattering angle to determine a cloud albedo, particle size distribution, and Ice Water Content (IWC). SOFIE uses IR solar occultation in 16 channels (0.3-5 μm) to obtain altitude profiles of ice properties including the particle size distribution and IWC in addition to temperature, water vapor abundance, and other environmental parameters. CIPS and SOFIE made CV observations from 2007 to 2009. In order to compare the CV observations from the two instruments, SOFIE observations are used to predict the mean PMC properties observed by CIPS. Initial agreement is poor with SOFIE predicting particle size distributions with systematically smaller mean radii and a factor of two more albedo and IWC than observed by CIPS. We show that significantly improved agreement is obtained if the PMC ice is assumed to contain 0.5% meteoric smoke by mass, in agreement with previous studies. We show that the comparison is further improved if an adjustment is made in the CIPS data processing regarding the removal of Rayleigh scattered sunlight below the clouds. This change has an effect on the CV PMC, but is negligible for most of the observed clouds outside the CV. Finally, we examine the role of the assumed shape of the ice particle size distribution. Both experiments nominally assume the shape is Gaussian with a width parameter roughly half of the mean radius. We analyze modeled ice particle distributions and show that, for the column integrated ice distribution, Log-normal and Exponential distributions better represent the range

  19. Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust

    NASA Technical Reports Server (NTRS)

    Kramer, Max

    1932-01-01

    Wind-tunnel tests are described, in which the angle of attack of a wing model was suddenly increased (producing the effect of a vertical gust) and the resulting forces were measured. It was found that the maximum lift coefficient increases in proportion to the rate of increase in the angle of attack. This fact is important for the determination of the gust stresses of airplanes with low wing loading. The results of the calculation of the corrective factor are given for a high-performance glider and a light sport plane of conventional type.

  20. The ExoMars Trace Gas Orbiter NOMAD Spectrometer Suite for Nadir and Solar Occultation Observations of Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Carine Vandaele, Ann; López-Moreno, José Juan; Patel, Manish; Bellucci, Giancarlo; Drummond, Rachel; Neefs, Eduard; Depiesse, Cedric; Daerden, Frank; Rodriguez-Gómez, Julio; Neary, Lori; Robert, Séverine; Willame, Yannick; Mahieux, Arnaud

    2015-04-01

    NOMAD (Nadir and Occultation for MArs Discovery) is one of four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in January 2016 and to begin nominal science mission around Mars in late 2017. It consists of a suite of three high-resolution spectrometers - Solar Occultation (SO), LNO (Limb Nadir and Occultation) and UVIS (Ultraviolet-Visible) - which will generate a huge dataset of Martian atmospheric observations during the mission, across a wide spectral range. Specifically, the SO spectrometer channel will perform occultation measurements, operating between 2.2-4.3μm at a resolution of 0.15cm-1, with 180-1000m vertical spatial resolution and an SNR of 1500-3000. LNO will perform limb scanning, nadir and occultation measurements, operating between 2.2-3.8μm at a resolution of 0.3cm-1. In nadir, global coverage will extend between ±74O latitude with an IFOV of 0.5x17km on the surface. This channel can also make occultation measurements should the SO channel fail. UVIS will make limb, nadir and occultation measurements between 200-650nm, at a resolution of 1nm. It will have 300-1000m vertical resolution during occultation and 5x60km ground resolution during 15s nadir observations. An order-of-magnitude increase in spectral resolution over previous instruments will allow NOMAD to map previously unresolvable gas species, such as important trace gases and isotopes. CO, CO2, H2O, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, O3 and several isotopologues of methane and water will be detectable, providing crucial measurements of the Martian D/H and methane isotope ratios. It will also be possible to map the sources and sinks of these gases, such as regions of surface volcanism/outgassing and atmospheric production, over the course of an entire Martian year, to further constrain atmospheric dynamics and climatology. NOMAD will also continue to monitor the Martian water, carbon, ozone and dust cycles, extending existing datasets made by successive

  1. Towards 3D Matching of Point Clouds Derived from Oblique and Nadir Airborne Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    Because of the low-expense high-efficient image collection process and the rich 3D and texture information presented in the images, a combined use of 2D airborne nadir and oblique images to reconstruct 3D geometric scene has a promising market for future commercial usage like urban planning or first responders. The methodology introduced in this thesis provides a feasible way towards fully automated 3D city modeling from oblique and nadir airborne imagery. In this thesis, the difficulty of matching 2D images with large disparity is avoided by grouping the images first and applying the 3D registration afterward. The procedure starts with the extraction of point clouds using a modified version of the RIT 3D Extraction Workflow. Then the point clouds are refined by noise removal and surface smoothing processes. Since the point clouds extracted from different image groups use independent coordinate systems, there are translation, rotation and scale differences existing. To figure out these differences, 3D keypoints and their features are extracted. For each pair of point clouds, an initial alignment and a more accurate registration are applied in succession. The final transform matrix presents the parameters describing the translation, rotation and scale requirements. The methodology presented in the thesis has been shown to behave well for test data. The robustness of this method is discussed by adding artificial noise to the test data. For Pictometry oblique aerial imagery, the initial alignment provides a rough alignment result, which contains a larger offset compared to that of test data because of the low quality of the point clouds themselves, but it can be further refined through the final optimization. The accuracy of the final registration result is evaluated by comparing it to the result obtained from manual selection of matched points. Using the method introduced, point clouds extracted from different image groups could be combined with each other to build a

  2. An Overview of Three-year JEM-GLIMS Nadir Observations of Lightning and TLEs

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Adachi, T.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.

    2015-12-01

    JEM-GLIMS nadir observations of lightning and TLEs at the ISS started from November 2012 and successfully ended on August 2015. For three-year observation period, JEM-GLIMS succeeded in detecting over 8,000 lightning events and 670 TLEs. The detected optical emissions of sprites showed clear horizontal displacement with the range of 10-20 km from the peak location of the +CG emissions and from the +CG locations detected by NLDN and WWLLN. Using VITF electric field waveform data, source locations of VHF pulses excited by the parent CG discharges are estimated. It is found that the possible VHF source locations were mostly located within the area of the parent lightning emissions. These facts may imply that the center region of the neutralized charge by CG discharges in the thundercloud located near the return stroke point and that the some seed conditions were established in advance at the sprite location before the occurrence of sprites. The global occurrence distributions and rates of lightning discharges and TLEs are also estimated. The estimated mean global occurrence rate of lightning discharges is ~1.5 events/s, which is smaller number than that derived from MicroLab-1/OTD and TRMM/LIS measurements. This may be originated in the fact that JEM-GLISM detected only intense lightning optical events due to the high threshold level for the event triggering. To the contrary, the estimated mean global occurrence rate of TLEs is ~9.8 events/min, which is two times higher than the ISUAL result. It is likely that JEM-GLIMS could detect dimmer optical emissions of TLEs than ISUAL since the distance between the JEM-GLIMS instruments and TLEs is much closer. At the presentation, we will summarize the results derived from three-year JEM-GLIMS nadir observations. We will discuss possible occurrence conditions of sprites, properties of global occurrence rates of lightning and TLEs, and their LT dependences more in detail.

  3. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric

  4. Retrieval of tropospheric ozone columns from SCIAMACHY limb-nadir matching observations

    NASA Astrophysics Data System (ADS)

    Ebojie, F.; Savigny, C.; Ladstätter-Weissenmayer, A.; Bötel, S.; Weber, M.; Alexei, R.; Bovensmann, H.; Burrows, J.

    2012-04-01

    Satellite observations of tropospheric ozone are of critical importance in obtaining a global and more thorough knowledge of the phenomena affecting air quality. Tropospheric ozone has a significant adverse effect on the climate system. In the lower troposphere, during summer, it is a major constituent of photochemical smog and excess of it is toxic to the ecosystem, animal and man. It is equally known as a major oxidant and also involved in the production of other oxidants such as hydroxyl (OH) radicals. In the middle and upper troposphere, ozone acts as a greenhouse gas. The retrieval of tropospheric ozone from UV/VIS/NIR satellite spectrometer such as the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the ESA satellite Envisat is difficult because only about 10 % of the Total Ozone Column (TOC) is in the troposphere. In this analysis we present the retrieval of tropospheric ozone columns from SCIAMACHY limb-nadir matching observations. This technique is a residual approach that involves the subtraction of the stratospheric ozone columns derived from the limb observations from the total ozone columns derived from the nadir observations. The stratospheric ozone columns were derived by integrating the stratospheric ozone profiles from the tropopause, which was obtained from the re-analyses data of the European Centre for Medium-Range Weather Forecasts (ECMWF) in 1.5o x 1.5o x 91 levels based on both the thermal definition of tropopause using the WMO lapse-rate criterion as well as the potential vorticity definition of the tropopause. The total ozone columns were on the other hand retrieved using the Weighting Function DOAS algorithm (WFDOAS) at the spectral window of 326.6 - 334.5 nm. Equally of importance in our analysis is the tropospheric ozone columns derived from the ozonesondes by integrating the tropospheric ozone profiles from the bottom to the top of the troposphere, which was determined from the

  5. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.

    1990-01-01

    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.

  6. Six years of total ozone column measurements from SCIAMACHY nadir observations

    NASA Astrophysics Data System (ADS)

    Lerot, C.; van Roozendael, M.; van Geffen, J.; van Gent, J.; Fayt, C.; Spurr, R.; Lichtenberg, G.; von Bargen, A.

    2008-11-01

    Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2-0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  7. Six years of total ozone column measurements from SCIAMACHY nadir observations

    NASA Astrophysics Data System (ADS)

    Lerot, C.; van Roozendael, M.; van Geffen, J.; van Gent, J.; Fayt, C.; Spurr, R.; Lichtenberg, G.; von Bargen, A.

    2009-04-01

    Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2-0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  8. Perception of Perspective Angles.

    PubMed

    Erkelens, Casper J

    2015-06-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles between bars lying on the floor of the laboratory. Perspective angles were also estimated from pictures taken from the same point of view. Converging and diverging angles were judged to test three models of visual space. Four subjects evaluated the perspective angles by matching them to nonperspective angles, that is, angles between the legs of a compass oriented in the frontal plane. All subjects judged both converging and diverging angles larger than the physical angle and smaller than the angles in the proximal stimuli. A model of shallow visual space describes the results. According to the model, lines parallel to visual lines, vanishing at infinity in physical space, converge to visual lines in visual space. The perceived shape of perspective angles is incompatible with the perceived length and width of the bars. The results have significance for models of visual perception and practical implications for driving and flying in poor visibility conditions. PMID:27433312

  9. Perception of Perspective Angles

    PubMed Central

    2015-01-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles between bars lying on the floor of the laboratory. Perspective angles were also estimated from pictures taken from the same point of view. Converging and diverging angles were judged to test three models of visual space. Four subjects evaluated the perspective angles by matching them to nonperspective angles, that is, angles between the legs of a compass oriented in the frontal plane. All subjects judged both converging and diverging angles larger than the physical angle and smaller than the angles in the proximal stimuli. A model of shallow visual space describes the results. According to the model, lines parallel to visual lines, vanishing at infinity in physical space, converge to visual lines in visual space. The perceived shape of perspective angles is incompatible with the perceived length and width of the bars. The results have significance for models of visual perception and practical implications for driving and flying in poor visibility conditions. PMID:27433312

  10. Impact of baseline and nadir neutrophil index in non-small cell lung cancer and ovarian cancer patients: Assessment of chemotherapy for resolution of unfavourable neutrophilia

    PubMed Central

    2013-01-01

    Background Chronic inflammation has been recognized to foster tumour development. Whether chemotherapy can be used to neutralize chronic inflammation is unclear. Methods We evaluated baseline and nadir neutrophils in 111 patients (pts.) with non-small cell lung cancer (NSCLC) and 118 pts. with ovarian cancer (OC) treated with chemotherapy administered with dose-individualization to achieve nadir neutropenia of 1.5. We used predefined baseline neutrophil cut-offs 4.5 × 109/L (NSCLC) and 3.9 × 109/L (OC). Results Absence of chemotherapy-induced nadir neutropenia (CTCAE grade 0, neutrophils ≥ LLN) was seen in 23% of OC and 25% of NSCLC pts. Absence of nadir neutropenia was associated with decreased overall survival (OS) compared with presence (>grade 0) of neutropenia (9 vs. 14 months, P = 0.004 for NSCLC and 23 vs. 56 months; P = 0.01 for OC). Obtaining grade 3/4 neutropenia did not improve survival compared with grade 1/2 neutropenia. In multivariate analyses, baseline neutrophils ≥4.5 × 109/L (HR: 2.0; 95% CI: 1.11-3.44;P = 0.02) and absence of nadir neutropenia (HR: 1.6; 95% CI: 1.02-2.65;P = 0.04) for NSCLC and absence of nadir neutropenia (HR: 1.7; 95% CI: 1.04;2.93;P = 0.04) for OC were independently associated with short OS. Three prognostic neutrophil index (NI) groups were defined. Favourable NI: low baseline neutrophils and presence of nadir neutropenia (>grade 0), Intermediate NI: elevated baseline neutrophils and presence of nadir neutropenia (>grade 0), and Poor NI: elevated baseline neutrophils and absence of nadir neutropenia (grade 0). For NSCLC patients, the median OS was 18.0, 13.4, and 8.8 months for favourable, intermediate and poor NI, respectively (fav vs. poor P = 0.002; fav vs. intermed P = 0.04; and intermed vs. poor P = 0.03). For OC patients, median OS was 69, 52 and 23 months for favourable, intermediate and poor NI, respectively (fav vs. poor P = 0.03; fav vs. intermed P = 0.3; and intermed vs

  11. Recent results in the study of heavy-ion elastic scattering at large angles. [180/sup 0/

    SciTech Connect

    Barrette, J.; Kahana, S.

    1983-01-01

    The observation, a few years ago, of unexpected large cross sections at backward angles in the elastic scattering of mass-asymmetric heavy ion systems gave us hope that we could learn something new and more precise on the properties of the average ion-ion potential. The subsequent observation of broad regular structures in the elastic and inelastic excitation functions near theta/sub cm/ = 180/sup 0/ were also very promising. Numerous models were proposed to explain some or all the observed features. These models can be divided mainly in two groups. Some try to modify directly the average optical potential whereas others associate the observed cross sections to a modification of specific partial waves outside the scope of the optical potential. This separation in two groups is not always clear since as demonstrated adding a Regge pole to a strongly absorbing potential is under some conditions perfectly equivalent to changing the shape of this potential. Similarly the resonances added to an S matrix can be understood as the manifestation of the potential resonances of a completely different optical potential. We describe recent calculations which have been carried on to try to understand the behavior of the data near the barrier.

  12. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-06-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2:3 μm . Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  13. NLC occurrence frequency retrieval from SCIAMACHY, GOME and GOME-2 nadir data

    NASA Astrophysics Data System (ADS)

    Langowski, Martin; Von Savigny, Christian

    2016-07-01

    Noctilucent clouds NLCs are clouds occurring in the polar summer mesopause region at about 82-86 km altitude, and they can be observed poleward of about 50 degrees latitude. Due to their high altitude, they can scatter sunlight to the ground, even if it is dark at the ground, which makes them a fascinating bright phenomenon in the summer night sky. First observations of NLCs were reported in the 1880ies after the eruption of the Krakatau volcano. Afterwards they were seen every year and current long time studies show, that their occurrence rate is well anticorrelated with solar activity and it increased over time for the last decades. Ever since the NLCs were observed it was discussed whether their increasing occurrence rate can be interpreted as a sign of climate change in the upper atmosphere. With the SCIAMACHY, GOME and GOME 2 nadir measurements, which are very similar for each instrument a long time dataset of over 20 years of data is available to retrieve NLC occurrence frequencies. All three instruments have a very stable local times with descending nodes ranging between 9:30 a.m. and 10:30 a.m.. We present the algorithm to retrieve NLC occurrence frequencies from these instruments and results of this retrieval.

  14. What's Your Angle on Angles?

    ERIC Educational Resources Information Center

    Browning, Christine A.; Garza-Kling, Gina; Sundling, Elizabeth Hill

    2007-01-01

    Although the nature of the research varies, as do concepts of angle, research in general supports the supposition that angle is a complex idea, best understood from a variety of perspectives. In fact, the concept of angle tends to be threefold, consisting of: (1) the traditional, static notion of two rays meeting at a common vertex; (2) the idea…

  15. Biodegradable 3D-Porous Collagen Matrix (Ologen) Compared with Mitomycin C for Treatment of Primary Open-Angle Glaucoma: Results at 5 Years

    PubMed Central

    Yuan, Fei; Li, Lei; Chen, Xiuping; Yan, Xiang; Wang, Liyang

    2015-01-01

    Purpose. To evaluate the effectiveness and safety of the Ologen as an aid for trabeculectomy performed for primary open-angle glaucoma compared with mitomycin C. Methods. In this prospective, randomized, parallel assignment, comparative study, 31 eyes of 21 primary open-angle glaucoma patients were allocated for trabeculectomy with the Ologen implant; another 32 eyes of 23 patients were treated with trabeculectomy augmented with mitomycin C. The patients were followed up for 5 years and evaluated for intraocular pressure, rate of success, status of the bleb, and adverse events. Result. The mean postoperative intraocular pressure was statistically different at 3 m, 6 m, 1 y, 3 y, and 5 y follow-up. The rates of both complete success (P = 0.017) and overall success (P = 0.031) in the Ologen group were significantly higher than those in the mitomycin C group. The difference of the bleb extent and vascularity was statistically significant in both groups. There was no significant difference in postoperative complication. Conclusions. Ologen provides higher rates of surgical success compared with mitomycin C for patients with primary open-angle glaucoma undergoing trabeculectomy. It may be a new, safe, simple, and effective therapeutic approach for treating primary open-angle glaucoma. PMID:26078875

  16. View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds

    PubMed Central

    Horváth, Ákos; Seethala, Chellappan; Deneke, Hartwig

    2014-01-01

    We investigated the view angle dependence of domain mean Moderate Resolution Imaging Spectroradiometer (MODIS) liquid water path (LWP) and that of corresponding cloud optical thickness, effective radius, and liquid cloud fraction as proxy for plane-parallel retrieval biases. Independent Advanced Microwave Scanning Radiometer–EOS LWP was used to corroborate that the observed variations with sun-view geometry were not severely affected by seasonal/latitudinal changes in cloud properties. Microwave retrievals showed generally small (<10%) cross-swath variations. The view angle (cross-swath) dependence of MODIS optical thickness was weaker in backscatter than forward scatter directions and transitioned from mild ∩ shape to stronger ∪ shape as heterogeneity, sun angle, or latitude increased. The 2.2 µm effective radius variations always had a ∪ shape, which became pronounced and asymmetric toward forward scatter in the most heterogeneous clouds and/or at the lowest sun. Cloud fraction had the strongest and always ∪-shaped view angle dependence. As a result, in-cloud MODIS cloud liquid water path (CLWP) showed surprisingly good view angle (cross-swath) consistency, usually comparable to that of microwave retrievals, due to cancelation between optical thickness and effective radius biases. Larger (20–40%) nadir-relative increases were observed in the most extreme heterogeneity and sun angle bins, that is, typically in the polar regions, which, however, constituted only 3–8% of retrievals. The good consistency of MODIS in-cloud CLWP was lost for gridbox mean LWP, which was dominated by the strong cloud fraction increase with view angle. More worryingly, MODIS LWP exhibited significant and systematic absolute increases with heterogeneity and sun angle that is not present in microwave LWP. Key Points Microwave LWP shows small overall and cross-swath variations MODIS in-cloud LWP also shows good view angle consistency in most cases MODIS retrievals show strong

  17. Influence of subaqueous shelf angle on coastal plain-shelf-slope deposits resulting from a rise or fall in base-level

    SciTech Connect

    Wood, L.J.; Ethridge, F.G.; Schumm, S.A. )

    1991-03-01

    Extensive research in the past decade concerning the effects of base-level fluctuations on coastal plain-shelf-slope systems along passive margins has failed to properly assess the influence of the subaqueous shelf angle on the development, character, and preservation of the resulting deposits. A series of experiments were performed in a 4 m by 7 m flume to examine the effect that differing shelf angles have on a simulated coastal plain-shelf-slope system undergoing a cycle of base-level rise and fall. Results of the experiments indicate that the angle of the shelf affects (1) the amount of sediment available for deposition, (2) the timing of the influx of drainage basin sediment into the lower portions of the fluvial system, and (3) the width to depth ratio and sinuosity of fluvial systems that develop on the shelf. Base-level fall over a steep shelf results in deep, narrow, straight fluvial channels on the shelf and fine-grained, thick shelf-margin deltas. Depositional systems show high sedimentation rates, but a low ratio of coarse-grained to fine-grained sediment. Multiple fluvial incisions on the shelf are rapidly abandoned for a single incised valley. In contrast, gentle shelf angles result in shallow, wide, meandering fluvial channels on the shelf and coarser-grained, thinner shelf-margin deltas. Depositional systems have a lower sedimentation rate, but a high ratio of coarse-grained to fine-grained sediment. Multiple fluvial incisions on the shelf are active for a longer period of time. During subsequent base-level rise, deposits have a low potential for preservation owing to their thin nature and the slower rate at which transgression occurs over the shelf.

  18. Using SOURCES to Examine the Nadir of Race Relations (1890-1920)

    ERIC Educational Resources Information Center

    LaVallee, Carol; Waring, Scott M.

    2015-01-01

    The "nadir of race relations" is a term used by historians to describe the time period after Reconstruction, 1890-1920. During this time, African Americans were free; some argue, however, that it was a worse time than when these individuals were enslaved (Brundage 1990; Woodward 2002). There is a debate whether this time period…

  19. Nadir and oblique canopy reflectance sensing for N application in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for subsequent control of N fertilization. The several sensor systems that are now commercially available have design and operational differences, including sensed wavelengths, size of the sensed area, and nadir vs. ...

  20. TES/Aura L2 Water Vapor (H2O) Lite Nadir (TL2H2OLN)

    Atmospheric Science Data Center

    2015-06-16

    TES/Aura L2 Water Vapor (H2O) Lite Nadir (TL2H2OLN) News:  TES News ... Title:  TES Discipline:  Tropospheric Chemistry Version:  V6 Level:  L2 Instrument:  TES/Aura L2 Water Vapor Spatial Coverage:  5.3 km nadir ...

  1. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  2. OSTEOSYNTHESIS OF PROXIMAL HUMERAL END FRACTURES WITH FIXED-ANGLE PLATE AND LOCKING SCREWS: TECHNIQUE AND RESULTS

    PubMed Central

    Cohen, Marcio; Amaral, Marcus Vinicius; Monteiro, Martim; Brandão, Bruno Lobo; Motta Filho, Geraldo Rocha

    2015-01-01

    Describe the results of proximal humeral fractures surgically treated with the Philos locking plate system. Method: Between March 2003 and October 2004 we prospectively reviewed 24 of 26 patients with proximal humerus fractures treated with a Philos plate. The mean follow-up time was 12 months and the mean age of patients was 57 years. Six patients had four-part proximal humerus fractures, 11 patients had three-part proximal humerus fractures, and nine patients had two-part proximal humerus fractures. Clinical evaluation was performed using the University of California at Los Angeles (UCLA) criteria. Results: The mean UCLA score was 30 points (17-34). All fractures showed union. Three patients showed fracture union at varus position. The mean UCLA score for these patients was 27 points. Conclusion: Osteosynthesis with Philos plate provides a stable fixation method with good functional outcome. PMID:26998460

  3. Preliminary investigation of the reststrahlen phenomenology at low-grazing angles

    NASA Astrophysics Data System (ADS)

    Harr, Richard; Polcha, Michael

    2005-06-01

    Detection of buried and flush buried landmines has been dangerous and time consuming for both military and humanitarian de-mining personnel throughout the world. In an effort to make the process safer, faster, and more reliable, scientists have successfully employed Ground Penetrating Radar (GPR) systems in nadir and near nadir viewing angles. Leveraging this successful technology, Forward-Looking Ground Penetrating Radar (FLGPR) technology, using low grazing angles, is being developed which promises to provide an increase in detection stand-off distance thereby increasing safety of personnel during land-based mine detection efforts. However, the application of GPR for the detection of buried plastic mines has been problematic, research has begun to exploit the comination of broadband and hyper-spectral passive electro-optical technologies with GPR technologies. One such embodiment is to use Forward Looking InfraRed (FLIR) technology with the intention to augment the capability of, and overcome limitations inherent to, current FLGPR technology. The emphasis in using FLIR is to understand and exploit specific spectral features which are complementary fo FLGPR and exhibited by buried metal and plastic mine targets. One spectral feature being investigated is the resstrahlen emission which results when soil is excavated or disturbed. This paper is a preliminary investigation of the performance of a vehicle based FLIR camera system for detecting resstrahlen emissions from disturbed soils. Specifically, this paper will examine the robustness of the resstrahlen feature in a forward-looking low grazing angle application. The data presented in this paper was collected at an eastern US Army testing site over targets deployed in soils which had been disturbed from one day before the start of the collection.

  4. LIDORT V2PLUS: a comprehensive radiative transfer package for UV/VIS/NIR nadir remote sensing

    NASA Astrophysics Data System (ADS)

    Spurr, Robert J. D.

    2004-02-01

    The LIDPORT V2PLUS radiative transfer package is designed for simulation and retrieval applications for nadir viewing remote sensing instruments such as GOME, GOME-2, SCIAMACHY, OMI and MODIS. The package is based on the LIDORT family of linearized discrete ordinate models, and it will deliver earthshine radiances, analytic profile, total column and surface property Jacobians. LIDORT V2PLUS includes a quasi-exact single scatter computation for all solar beams and the line of sight direction in a curved spherical-shell refracting atmosphere, and a full treatment of the diffuse radiation field in the pseudo-spherical approximation at all points along the line-of-sight. We give examples of radiances and O3 air mass factors at 325 nm, and Jacobians for O3 total column and profiles and for surface albedos, with particular emphasis on the wide-angle spherically-corrected viewing mode. We also look at the effect of horizontal inhomogeneity caused by varying surface properties along the line of sight.

  5. Photometric Characteristics of Sprites and Elves Derived from JEM-GLIMS Nadir Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, Y.; Adachi, T.; Kobayashi, N.; Mihara, M.; Ushio, T.; Morimoto, T.; Suzuki, M.; Yamazaki, A.; Inan, U.; Linscott, I.

    2013-12-01

    The main goal of the JEM-GLIMS mission is to identify the horizontal structures of Transient Luminous Events (TLEs) and spatiotemporal relationship between TLEs and their parent lightning discharges based on the nadir observations from the International Space Station (ISS). For this purpose JEM-GLIMS equips two sets of optical instruments (LSI: CMOS camera, and PH: spectrophotometers) and two sets of radio wave receivers (VLFR: VLF receiver, and VITF: VHF interferometer). As all these instruments are installed at the bottom plane of the bus module facing to the Earth, JEM-GLIMS can carry out the nadir observations continuously. JEM-GLIMS was launched by HTV3 and was successfully installed at the exposed facility of the Japanese Experiment Module (JEM) on August 9, 2012. After the initial checkout operations, JEM-GLIMS finally started continuous observations on November 20, 2012. In the period from November 20, 2012 to June 30, 2013, totally 1597 transient optical events related to lightning flashes and/or TLE emissions were detected by the optical instruments. In 578 of these events, both LSI and PH detected clear transient optical signals well above the noise level. In order to derive sprite events from the detected transient optical events, we analyzed PH light-curve data first and estimated the peak irradiance related to the transient optical flashes. Then, we compared these intensities with the atmospheric transmittance. Finally, LSI image data are examined to clarify the morphological properties of the optical emission. We analyzed a transient optical event detected at 00:56:29.198 UT on December 15, 2012. The peak intensities of PH channels are estimated to be 1.4E-2 W/m2 (150-280 nm), 2.3E-4 W/m2 (316 nm), 5.9E-4 W/m2 (337 nm), 4.0E-4 W/m2 (392 nm), 4.2E-4 W/m2 (762 nm), and 6.3E-2 W/m2 (600-900 nm), respectively. It is found that all these intensities are significantly stronger than the lightning emission affected by the atmospheric transmittance. This fact

  6. Extending the long-term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Yang, K.; Prata, A. J.; Krotkov, N. A.

    2015-02-01

    Uninterrupted, global space-based monitoring of volcanic sulfur dioxide (SO2) emissions is critical for climate modeling and aviation hazard mitigation. We report the first volcanic SO2 measurements using ultraviolet (UV) Ozone Mapping and Profiler Suite (OMPS) nadir mapper data. OMPS was launched on the Suomi National Polar-orbiting Partnership satellite in October 2011. We demonstrate the sensitivity of OMPS SO2 measurements by quantifying SO2 emissions from the modest eruption of Paluweh volcano (Indonesia) in February 2013 and tracking the dispersion of the volcanic SO2 cloud. The OMPS SO2 retrievals are validated using Ozone Monitoring Instrument and Atmospheric Infrared Sounder measurements. The results confirm the ability of OMPS to extend the long-term record of volcanic SO2 emissions based on UV satellite observations. We also show that the Paluweh volcanic SO2 reached the lower stratosphere, further demonstrating the impact of small tropical volcanic eruptions on stratospheric aerosol optical depth and climate.

  7. Multi-Angle Switched HIFU: A New Ultrasound Device for Controlled Non-Invasive Induction of Small Spherical Ablation Zones—Simulation and Ex-Vivo Results

    NASA Astrophysics Data System (ADS)

    Novák, Petr; Jamshidi-Parsian, Azemat; Benson, Donny G.; Webber, Jessica S.; Moros, Eduardo G.; Shafirstein, Gal; Griffin, Robert J.

    2009-04-01

    Current HIFU devices produce elongated elliptical lesions (cigar shaped) in a single energy deposition. This prohibits the effective use of HIFU in small animal research as well as in clinical treatment where small volumes of tissue surrounded by critical structures need to be destroyed. We developed an ultrasound ablation device that non-invasively creates spheroidal lesions of an arbitrary diameter of up to 1 cm in a depth of up to 5 cm. The device consists of two focused ultrasound transducers aimed to the ablation target volume from two directions at a 90 degree angle. The operation of the transducers is switched back and forth so that only one transducer is energized at a time. A transient analysis of this ablation approach was performed using coupled simulations of acoustical pressure distributions, resulting temperature distributions, and thermal dose deposited to soft tissue. A prototype of the device was developed and tested in-vitro in a phantom and later in ex-vivo experiments in pig liver. The experimental results agreed with the numerical simulations and confirmed the ability of the multi-angle switched HIFU (MASH) device to create small spheroidal lesions in soft tissue within 2 minutes without significantly affecting the surrounding tissues.

  8. Reconfiguration of a Nadir-Pointing 2-Craft Coulomb Tether

    NASA Astrophysics Data System (ADS)

    Natarajan, A.; Schaub, H.; Parker, G. G.

    The linear dynamics and stability analysis of reconfiguring a 2-spacecraft Coulomb tether formation is investigated. In this concept the tether between two craft is replaced with electrostatic force fields. Here the relative distance between the two satellites is increased or decreased using electrostatic Coulomb forces. The two craft are connected by an electrostatic tether which is capable of both tensile and compressive forces. The resulting virtual structure can change its shape by modifying the desired reference length. As a result, the two-craft formation will essentially act as a long, slender, nearly-rigid body of variable length. Inter-spacecraft Coulomb forces cannot influence the inertial angular momentum of this formation. However, the gravity gradient effect can be exploited to stabilize the attitude of this Coulomb tether formation about an orbit radial direction. Limits of the Coulomb tether expansion and contraction rates are discussed using linearized time-varying dynamical models. These allow the reference length time histories to be designed while ensuring linear stability of the virtual structure.

  9. S-NPP OMPS Nadir In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Pan, S.; Flynn, L. E.; Niu, J.; Grotenhuis, M.; Beck, C. T.; Beach, E.; Zhang, Z.; Tolea, A.

    2014-12-01

    This presentation describes the results of in-flight characterization of the S-NPP Ozone Mapping Profiler Suite (OMPS) charge-coupled device (CCD) performance during the first nearly three years of the OMPS mission in orbit. Data from OMPS's three two-dimension CCD arrays have been collected to characterize in-flight detector behaviors. Our results show that offset, gain, and dark current rate trends remain within sensor requirement limits. System linearity performance trends are stable. The distribution of individual pixel dark rates is slowly growing as expected from pre-launch analyses. The current in-flight dark and linearity calibration corrections provide Sensor Data Records (SDRs) with insignificant error after correction of less than an average of ~0.1% in the Earth radiance retrieval. The instrument optics is less stable than predicted leading to intra-orbit wavelength scale variations as the temperature gradients vary across the instrument. Measurement-based estimates of these effects are as large a ±0.02 nm and are used to make corrections to within +-0.005 nm on a granule by granule basis. Examination of reflectivity, aerosol and ozone EDRs provide evidence of absolute calibration errors with a significant cross track variation. A soft calibration adjustment is under development to remove them.

  10. Horizontal distributions of sprites derived from the JEM-GLIMS nadir observations

    NASA Astrophysics Data System (ADS)

    Sato, M.; Mihara, M.; Adachi, T.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Ishida, R.; Sakamoto, Y.; Yoshida, K.; Hobara, Y.

    2016-04-01

    Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) started the nadir observations of lightning discharges and transient luminous events (TLEs) from the International Space Station (ISS) since November 2012. In the nadir observations, JEM-GLIMS optical instruments have to simultaneously detect incomparably intense lightning emissions and weak TLE emissions. To distinguish TLEs, especially sprite events, from lightning events, combined data analytical methods are adopted: (1) a subtraction of the wideband camera image from the narrowband camera image, (2) a calculation of the intensity ratio between different photometer channels, and (3) an estimation of the polarization and charge moment changes for the TLE-producing lightning discharges. We succeeded in identifying numbers of sprite events using the combined analytical methods, and here we report three sprite events detected by JEM-GLIMS as a case study. In the subtracted images, sprite emissions are located over the area of the sprite-producing lightning emissions. However, these sprites and sprite-producing lightning discharges did not occur at the nadir point of the ISS. For this reason, the geometry conversion of the sprite and sprite-producing lightning emissions as observed from the point just over the sprite-producing lightning discharges is performed. In the geometry-converted images, the locations of the sprite emissions are clearly displaced by 8-20 km from the peak positions of the sprite-producing lightning emissions. Thus, the first quantitative spatial distributions of sprites and sprite-producing lightning discharges from the JEM-GLIMS nadir observations are revealed.

  11. Early-stage rifting of the northern Tyrrhenian Sea Basin: Results from a combined wide-angle and multichannel seismic study

    NASA Astrophysics Data System (ADS)

    Moeller, S.; Grevemeyer, I.; Ranero, C. R.; Berndt, C.; Klaeschen, D.; Sallares, V.; Zitellini, N.; Franco, R.

    2013-08-01

    Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (˜8-4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (˜10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15-17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°-50° and that the rifted domain is horizontally stretched by a factor of β ˜ 1.3 (˜8-10 mm/a). The crust has been thinned from ˜24 to ˜17 km indicating a similar amount of extension (˜30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half

  12. Using Nadir and Directional Emissivity as a Probe of Particle Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Wolff, Michael J.; Bandfield, Joshua L.; Clayton, Geoffrey C.

    Real surfaces are not expected to be diffuse emitters, thus observed emissivity values of surface dust deposits are a function of viewing geometry. Attempts to model infrared emission spectral profiles of surface dust deposits at nadir have not yet matured to match the sophistication of astrophysical dust radiative transfer codes. In the absence of strong thermal gradients, directional emissivity may be obtained theoretically via a combination of reciprocity and Kirchhoff's Law. Owing to a lack of laboratory data on directional emissivity for comparison, theorists have not explored the potential utility of directional emissivity as a direct probe of surface dust microphysical properties. Motivated by future analyses of MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset, we explore the effects of dust particle size and composition on observed radiances at nadir and off-nadir geometries in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to laboratory spectra of standard mineral assemblages will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP).

  13. Recall of Nadir CD4 Cell Count and Most Recent HIV Viral Load Among HIV-Infected, Socially Marginalized Adults.

    PubMed

    Buisker, Timothy R; Dufour, Mi-Suk Kang; Myers, Janet J

    2015-11-01

    Lower nadir CD4 cell counts and higher HIV viral loads are associated with increased risks of adverse events in the progression of HIV disease. In cases where medical records are inaccessible or incomplete, little evidence is available regarding whether nadir CDR cell count or HIV viral load is reliably reported in any patient population. We compare survey data collected from 207 HIV-infected individuals detained in San Francisco jails to data collected from electronic medical records (EMR) kept by the jails and community health providers. The sensitivity of self-reported nadir CD4 cell count less than 200 was 82 % [95 % confidence interval (CI) 68, 88], and the sensitivity of reporting an undetectable most recent HIV viral load was 93 % (95 % CI 84, 97). This suggests that in a highly socially marginalized population, nadir CD4 cell count and most recent HIV viral load are recalled accurately when compared to EMR. PMID:25711297

  14. Monitoring regional vegetation change using reflectance measurements from multiple solar zenith angles.

    PubMed

    Russell, M

    2001-09-01

    Many traditional models of vegetation canopy reflectance have commonly used one of two approaches. Either the canopy is assumed to consist of discrete objects of known reflectance and geometric-optics are then used to calculate shading effects, or, as in the turbid medium approach, the canopy is treated as a horizontally homogeneous layer of small elements of known optical properties and radiative transfer theory is used to calculate canopy reflectance. This paper examines the effect of solar zenith angle on the reflectance of red and near-infrared radiation from forests using a combination of these modelling approaches. Forests are first modelled as randomly spaced eucalypt crowns over a homogeneous understorey and the fractional coverage of four components: shaded and sunlit canopy and shaded and sunlit understorey are calculated. Reflectance from each fraction is then modelled for a range of solar zenith angles using the Verhoef SAIL model. The overall scene reflection as seen by a nadir viewing satellite sensor is compared for three forest types representing a gradient of crown density from open dry grassy woodlands to dense wetter closed forest with an understorey of mesophytic plants. Modelled trends in scene reflectance change are consistent with aircraft measurements carried out at three different solar zenith angles. Results indicate that an increase in both tree density and solar zenith angle leads to an increase in the dominance of shaded components. In the visible band, both the sparsely treed woodland and the medium density dry forest show similar trends to that predicted by a turbid medium model, however, the wet forest shows a less rapid decrease in reflectance with solar zenith angle. In the near-infrared band, as tree density increases from woodland to wet forest, overall scene reflectance shows increased departure from that modelled using the traditional assumption of smooth homogeneous canopies, changing from an increase with solar zenith angle

  15. Preliminary results for a large angle oblique jet impingement and flow and for the effect of initial conditions on the near field of an axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Kleis, S. J.

    1973-01-01

    The structure of an axisymmetric jet in the near field is discussed for jet noise and for jet impingment schemes for STOL aircraft. It is inferred from previous studies, and the inference is supported by analysis, that the scale and intensity of the turbulence structure at the jet exit plane are the important boundary conditions which effect the development of the flow in the near field. The techniques to study these effects while maintaining a uniform mean flow and the results which document the range of the initial conditions are presented. The large angle, oblique jet impingment condition is of interest in terms of the jet/flap interaction. Detailed turbulence data can be obtained with the specially constructed facility. The development of the flow and instrumentation system and initial data from the new facility are presented.

  16. Equivalent Biochemical Control and Improved Prostate-Specific Antigen Nadir After Permanent Prostate Seed Implant Brachytherapy Versus High-Dose Three-Dimensional Conformal Radiotherapy and High-Dose Conformal Proton Beam Radiotherapy Boost

    SciTech Connect

    Jabbari, Siavash; Weinberg, Vivian K.; Shinohara, Katsuto; Speight, Joycelyn L.; Gottschalk, Alexander R.; Hsu, I.-C.; Pickett, Barby; McLaughlin, Patrick W.; Sandler, Howard M.; Roach, Mack

    2010-01-15

    Purpose: Permanent prostate implant brachytherapy (PPI), three-dimensional conformal radiotherapy (3D-CRT), and conformal proton beam radiotherapy (CPBRT) are used in the treatment of localized prostate cancer, although no head-to-head trials have compared these modalities. We studied the biochemical control (biochemical no evidence of disease [bNED]) and prostate-specific antigen (PSA) nadir achieved with contemporary PPI, and evaluated it against 3D-CRT and CPBRT. Patients and Methods: A total of 249 patients were treated with PPI at the University of California, San Francisco, and the outcomes were compared with those from a 3D-CRT cohort and the published results of a high-dose CPBRT boost (CPBRTB) trial. For each comparison, subsets of the PPI cohort were selected with patient and disease criteria similar to those of the reference group. Results: With a median follow-up of 5.3 years, the bNED rate at 5 and 7 years achieved with PPI was 92% and 86%, respectively, using the American Society for Therapeutic Radiology and Oncology (ASTRO) definition, and 93% using the PSA nadir plus 2 ng/mL definition. Using the ASTRO definition, a 5-year bNED rate of 78% was achieved for the 3D-CRT patients compared with 94% for a comparable PPI subset and 93% vs. 92%, respectively, using the PSA nadir plus 2 ng/mL definition. The median PSA nadir for patients treated with PPI and 3D-CRT was 0.10 and 0.40 ng/mL, respectively (p < .0001). For the CPBRT comparison, the 5-year bNED rate after a CPBRTB was 91% using the ASTRO definition vs. 93% for a similar group of PPI patients. A greater proportion of PPI patients achieved a lower PSA nadir compared with those achieved in the CPBRTB trial (PSA nadir <=0.5 ng/mL, 91% vs. 59%, respectively). Conclusion: We have demonstrated excellent outcomes in low- to intermediate-risk patients treated with PPI, suggesting at least equivalent 5-year bNED rates and a greater proportion of men achieving lower PSA nadirs compared with 3D-CRT or

  17. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  18. EP3/FP dual receptor agonist ONO-9054 administered morning or evening to patients with open-angle glaucoma or ocular hypertension: results of a randomised crossover study

    PubMed Central

    Berlin, Michael S; Rowe-Rendleman, Cheryl; Ahmed, Ike; Ross, Douglas T; Fujii, Akifumi; Ouchi, Takafumi; Quach, Christine; Wood, Andrew; Ward, Caroline L

    2016-01-01

    Background/aims The novel prostaglandin E (EP) 3 and prostaglandin F (FP) receptor agonist ONO-9054 is effective in lowering intraocular pressure (IOP) in patients with ocular hypertension and open-angle glaucoma when administered once daily. This study compares the effects of morning (AM) versus evening (PM) dosing of ONO-9054 on tolerability and IOP lowering. Methods This was a single-centre, randomised, double-masked, two-sequence, placebo-controlled crossover study in 12 subjects with bilateral primary open-angle glaucoma or ocular hypertension. Two 14-day crossover regimens were separated by a 2-week washout: ONO-9054 (1 drop to each eye) in the morning (07:00) and vehicle in the evening (19:00) and vice versa. IOP was measured multiple times during select days. Ocular examinations also evaluated safety and tolerability. Results Mild ocular hyperaemia, reported by six subjects with PM dosing, was the most frequent adverse event. Mild to moderate dryness was also slightly more frequent after PM dosing. Maximum IOP reduction from baseline occurred on day 2 with decreases from baseline of −7.4 mm Hg (−30.8%) for AM dosing and −9.1 mm Hg, (−38.0%) for PM dosing; after 14 days, mean reduction in IOP was −6.8 mm Hg (−28.6%) for AM dosing and −7.5 mm Hg (−31.0%) for PM dosing. Conclusions PM dosing of ONO-0954 was associated with a slightly increased frequency of mild hyperaemia and mild to moderate dryness. Both dosing schedules provided sustained reduction in IOP. Trial registration number NCT01670266. PMID:26453641

  19. Assessment of the stratospheric NO2 column using long-term ground-based UV-visible and satellite nadir observations

    NASA Astrophysics Data System (ADS)

    Pinardi, Gaia; Van Roozendael, Michel; Lambert, Jean-Christopher; Hendrick, Francois; Granville, José; Tack, Frederik; Goutail, Florence; Pommereau, Jean-Pierre; Pazmino, Andrea; Wittrock, Folkard; Richter, Andreas; Wagner, Thomas; Gu, Myojeong; Friess, Udo; Navarro, Monica; Puentedura, Olga

    2015-04-01

    Zenith-sky UV-visible instruments have been used to monitor stratospheric NO2 columns from pole to pole for more than 2 decades, as part of the Network for the Detection of Atmospheric Composition Change (NDACC). Long-term monitoring and fit-for-purpose data quality are essential commitments of the network. Recently, recommendations were made for a better harmonization of the retrieval of NO2 stratospheric vertical columns (Van Roozendael and Hendrick 2012, http://ndacc-uvvis-wg.aeronomie.be/tools/NDACC_UVVIS-WG_NO2settings_v4.pdf). Those include, in addition to the use of harmonized SCD settings, a common approach to the air-mass factor (AMF) calculation, based on pre-calculated look-up tables of climatological AMFs resolved in latitude, time, wavelength, surface albedo, solar zenith angle and station altitude. The impact of the NDACC recommendations on the quality of the zenith-sky UV-visible stratospheric NO2 columns is first illustrated based on 10 SAOZ (Système d'Analyse par Observations Zénithales) instruments deployed from the Arctic to the Antarctic. The long-term time-series of SAOZ and other ground-based NDACC zenith-sky measurements are then used in synergy with data from an ensemble of satellite UV-vis nadir sensors (GOME-2, SCIAMACHY and OMI), for characterising the stratospheric NO2 columns on the global scale. Appropriate photochemical state matching is applied whenever necessary to combine/compare the different data sets. Results are interpreted in terms of ground-based network data homogeneity, and accuracy, consistency and long-term stability of space-borne stratospheric NO2 columns. The consistency with previously published studies including stratospheric NO2 column measurements from limb sensors such as MIPAS and SCIAMACHY is also discussed. These quality-assessed ground-based and satellite data sets offer new perspectives for the analysis of the variability and trends of stratospheric NO2 at the global scale.

  20. Aerosol Optical Depth Model Assessment With High-Resolution Multiple Angle Sensors

    NASA Astrophysics Data System (ADS)

    Martin, J. S.; Nielsen, K. E.; Vincent, D. A.; Durkee, P. A.; Reid, J. S.

    2005-12-01

    The Naval Postgraduate School Aerosol Optical Depth (NPS AOD) model has been used successfully to retrieve aerosol optical depths over water using Advanced Very High Resolution Radiometer (AVHRR) imagery. In this work, the NPS AOD model is applied to the QuickBird high-resolution commercial satellite imagery collected at multiple zenith angles around Sir Bu Nuair Island, United Arab Emirates in September 2004 during the Unified Aerosol Experiment, United Arab Emirates (UAE2) Campaign. The QuickBird-retrieved aerosol optical depths are compared to other satellite and ground-based optical depth retrievals, including those from the Aeerosol Robotic NETwork (AERONET), the MODerate resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and AVHRR. Adapting the NPS AOD model to the nominally 2.4-meter resolution imagery from QuickBird required using modal radiances determined over an area that matched the lower resolution imagers (~ 275 meters to 1 kilometer). Additionally, the NPS AOD model was originally developed for the AVHRR imager on the NOAA-14 satellite. The NPS AOD model selects a modeled aerosol size distribution and scattering phase function based on the ratio the red and near-infrared channels of the AVHRR and the scattering angle derived from solar-sensor geometry. As such, the LUT that relates the ratio of red and near-infrared radiances was based on the center effective wavelengths of the NOAA-14 channels. The AOD retrievals from the other imagers must be adjusted to account for the changes in center effective wavelengths of the red and near-IR channels. Results show that the application of the NPS AOD model to QuickBird data yields findings that are consistent with other satellite and ground-based retrievals. In general, the NPS AOD model works well for nadir and near-nadir view angles, but not for zenith angles greater than 50 degrees. A non-linearized single scattering model and additional scattering streams will be

  1. Preliminary Results on the Mechanics of the Active Mai'iu Low Angle Normal Fault (Dayman Dome), Woodlark Rift, SE Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Boulton, C. J.; Mizera, M.; Webber, S. M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L. M.; Biemiller, J.

    2015-12-01

    Rapid slip on the Mai'iu low-angle normal fault (LANF) has exhumed a smooth, corrugated fault surface contiguous for >24 km up-dip, rising from near sea level to ~2900 m. The fault emerges from the ground dipping ~21° N and flattens over the crest of the dome to dip south. Geomorphic analysis reveals a progressive back-tilting of the surface during exhumation accompanied by cross-cutting antithetic-sense high-angle faults—features that we attribute to "rolling-hinge" deformation of a once more steeply-dipping fault. Near the scarp base, the footwall exposes mafic mylonites that deformed at ~400-450°C. The younger Mai'iu fault cross-cuts this ductile mylonite zone, with most brittle slip being localized into a ~20 cm-thick, gouge-filled core. Near the range front, active faults bite across both the hangingwall and footwall of the Mai'iu fault and record overprinting across a dying, shallow (<~1 km deep) part of the fault by more optimally oriented, steeper faults. Such depth-dependent locking up of the fault suggests it weakens primarily by friction reduction rather than cohesion loss. Outcrop-scale fractures in the exhumed footwall reflect formation in an Andersonian stress regime. Previous campaign GPS data suggest the fault slips at up to ~1 cm/yr. To improve resolution and test for aseismic creep, we installed 12 GPS sites across the fault trace in 2015. Quantitative XRD indicates the gouges were derived primarily from mafic footwall, containing up to 65% corrensite and saponite. Hydrothermal friction experiments on two gouges from a relict LANF strand were done at varying normal stresses (30-120 MPa), temperatures (50-200oC), and sliding velocities (0.3-100 μm/s). Results reveal very weak frictional strength (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening behavior conducive to fault creep. At the highest temperatures (T≥150oC) and lowest sliding velocities (<3 μm/s), a transition to velocity-weakening behavior indicates the potential for

  2. Results of a study of Mach number and Reynolds number effects on the lee side vortex flow field characteristics of an ogive-cylinder-frustum-cylinder at angles of attack to 25 degrees, volume 1

    NASA Technical Reports Server (NTRS)

    Foley, J. E.

    1972-01-01

    An experimental program was conducted to survey the lee side vortex flow field about an ogive-cylinder-frustum-cylinder at angles of attack to 25 degrees for two Reynolds numbers at Mach number 0.8, and one Reynolds number at Mach number 1.96. The data were obtained using miniature 5-port conical pressure probes calibrated for angle of attack and roll angle over a Mach number range of 0.6 to 3.0. The results are presented here as local flow field properties and circulation strengths for various body stations.

  3. P-wave velocity structure of the southern Ryukyu margin east of Taiwan: Results from the ACTS wide-angle seismic experiment

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Berthet, T.; Lallemand, S.; Schnurle, P.; Lee, C.-S.; Liu, C.-S.; McIntosh, K.; Theunissen, T.

    2012-11-01

    An active seismic experiment has been conducted across the southern Ryukyu margin east of Taiwan over the whole trench-arc-backarc system in May 2009. Twenty-four ocean bottom seismometers (OBS) were deployed from the Ryukyu trench to the southern Okinawa trough over the Ryukyu arc and forearc. Wide angle seismic data were recorded by the OBS array while coincident reflection seismic data were acquired using a 6 km long streamer and a 6600 cubic inch seismic airgun array. Results from tomographic inversion of 21091 travel time picks along this line allowed us to image crustal structures of the Ryukyu margin down to a depth of 25 km. The transect has been designed to provide a better seismic velocity structure of the subduction zone in a highly deformed area that has produced an M8 earthquake in 1920. The line crosses a seismic cluster of earthquakes which source mechanisms are still poorly understood. The subducting oceanic crust of the Huatung Basin is about 5-6 km thick. The underlying mantle exhibits low seismic velocities around 7.8 km/s suggesting some hydrothermal alterations or alteration of the upper mantle through faults generated by the flexure of the subducting plate as it enters the subduction. Low velocities, up to 4.5 km/s, associated with the accretionary wedge are well imaged from the trench back to the Nanao forearc. A major result concerns the abrupt termination of the buttress at the rear of the accretionary wedge. Despite the low resolution of the tomographic inversion near the subduction interface, several lines of evidence supporting the presence of a low velocity zone beneath the toe of the forearc buttress could be established. The Moho beneath the Ryukyu non-volcanic arc is located at a depth around 25 km depth.

  4. Sun-view angle effects on reflectance factors of corn canopies

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  5. Retrieval of CO from nadir remote-sensing measurements in the infrared by use of four different inversion algorithms.

    PubMed

    Clerbaux, Cathy; Hadji-Lazaro, Juliette; Payan, Sébastien; Camy-Peyret, Claude; Wang, Jinxue; Edwards, David P; Luo, Ming

    2002-11-20

    Four inversion schemes based on various retrieval approaches (digital gas correlation, nonlinear least squares, global fit adjustment, and neural networks) developed to retrieve CO from nadir radiances measured by such downward-looking satelliteborne instruments as the Measurement of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Infrared Atmospheric Sounding Interferometer (IASI) instruments were compared both for simulated cases and for atmospheric spectra recorded by the Interferometric Monitor for Greenhouse Gases (IMG). The sensitivity of the retrieved CO total column amount to properties that may affect the inversion accuracy (noise, ancillary temperature profile, and water-vapor content) was investigated. The CO column amounts for the simulated radiance spectra agreed within 4%, whereas larger discrepancies were obtained when atmospheric spectra recorded by the IMG instrument were analyzed. The assumed vertical temperature profile is shown to be a critical parameter for accurate CO retrieval. The instrument's line shape was also identified as a possible cause of disagreement among the result provided by the groups of scientist who are participating in this study. PMID:12463254

  6. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  7. Seismic Refraction & Wide-angle Reflection Experiment on the Northern Margin of North China Craton -Data Acquisition and Preliminary Processing Result

    NASA Astrophysics Data System (ADS)

    Li, W.; Gao, R.; Keller, G. R.; Hou, H.; Li, Q.; Cox, C. M.; Chang, J. C.; Zhang, J.; Guan, Y.

    2010-12-01

    The evolution history of Central Asian Orogen Belt (CAOB) is still the main tectonic problems in northeastern Asia. The Siberia Craton (NC), North China Craton (NCC) and several blocks collided, and the resulting tectonic collage formed as the Paleo-Asian Ocean disappeared. Concerning the northern margin of North China Craton, many different geological questions remain unanswered, such as: the intracontinental orogenic process in the Yanshan orogen and the nature and location of the suture between the southern NC and the northern NCC. In Dec 2009, a 400 km long seismic refraction and wide-angle reflection profile was completed jointly by Institute of Geology, CAGS and University of Oklahoma. The survey line extended from the west end of the Yanshan orogen, across a granitoid belt to the Solonker suture zone. The recording of seismic waves from 8 explosions (500~1500 kg each) was conducted in four deployments of 300 Reftek125 (Texan) seismic recorders, with an average spacing of 1 km. For the calculations, we used the Rayinvr, Vmed and Zplot programs for ray tracing, model modification and phase picking. The initial result show that: 1)the depth of low velocity sediment cover ranges from 0.6 to 2.7 km (velocity: 2.8~5.6 km/s); 2)the depth of basement is 5.6~10 km (the depth of basement under the granitoid belt deepens to 10 km and velocity increases to 6.2 km/s); 3)the upper crust extends to a depth of 15.5~21 km and has the P-wave velocities between 5.6 and 6.4 km/s; 4)the thickness of the lower crust ranges from 22~28 km(velocity: 6.4~6.9 km/s); and 5)the depth of Moho varies from 39.5 km under the granitoid belt to 49 km under the Yanshan orogen. Based on these results, we can preliminarily deduce that: 1) the concave depression of the Moho observed represents the root of the Yanshan orogen, and it may prove that the orogen is dominated by thick-skinned tectonics; 2) the shape of velocity variations under the granitoid belt is suggestive of a magma conduit. It

  8. Angle performance on optima MDxt

    SciTech Connect

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  9. The inference of atmospheric ozone using satellite nadir measurements in the 1042/cm band

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Drayson, S. R.

    1973-01-01

    A description and detailed analysis of a technique for inferring atmospheric ozone information from satellite nadir measurements in the 1042 cm band are presented. A method is formulated for computing the emission from the lower boundary under the satellite which circumvents the difficult analytical problems caused by the presence of atmospheric clouds and the watervapor continuum absorption. The inversion equations are expanded in terms of the eigenvectors and eigenvalues of a least-squares-solution matrix, and an analysis is performed to determine the information content of the radiance measurements. Under favorable conditions there are only two pieces of independent information available from the measurements: (1) the total ozone and (2) the altitude of the primary maximum in the ozone profile.

  10. Results from 1984 airborne Doppler lidar wind measurement program. Flight 6: Analysis of line-of-sight elevation angle errors and apparent Doppler velocities

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1987-01-01

    During the summer of 1984 the Marshall Space Flight Center's Airborne Doppler Lidar System (ADLS) made a series of wind measurements in the California Central Valley. This study quantifies the lidar beam angle errors and velocity errors through analysis of ground return signals. Line-of-sight elevation (LOSE) angle errors are under 1 deg. Apparent Doppler ground velocities, as large as 2m/s, are considerably less than in a previous flight experiment in 1981. No evidence was found of a Schuler resonance phenomenon common to inertial navigation systems (INS), however the aperiodic nature of the apparent velocities implies an error in the INS-derived ground speeds. Certain features and subtleties in the ground returns are explained in terms of atmospheric structure and characteristics of the ADLS hardware and software. Finally, least squares and low-pass filtering techniques are suggested for eliminating errors during post-processing.

  11. Some results of investigations conducted in the interplanetary medium using the wide-angle plasma detectors on the Prognoz-6 spacecraft

    NASA Astrophysics Data System (ADS)

    Verigin, M. I.

    Measurements of the ion and electron components of plasma in the magnetic field and energetic particle fluxes in interplanetary space were obtained using a wide-angle plasma detector. The effect of two solar-flare events in November 1977 and January 1978 on the energetic characteristics of interplanetary space was analyzed on the basis of the plasma measurements. It is found that protons can be accelerated to energies of several MeV in oblique shock waves.

  12. Retrieval and monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument.

    PubMed

    Sierk, B; Richter, A; Rozanov, A; Von Savigny, Ch; Schmoltner, A M; Buchwitz, M; Bovensmann, H; Burrows, J P

    2006-09-01

    The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard the European Envisat spacecraft performs continuous spectral observations of reflected, scattered and transmitted sunlight in various observation geometries. A unique feature of SCIAMACHY is the capability of probing the atmosphere in three different observation geometries:The nadir, limb, and occultation measurement modes. In nadir mode, column densities of trace gases are retrieved with a spatial resolution of typically 30 x 60 km using the Differential Optical Absorption Spectroscopy (DOAS) technique (Platt and Perner, 1983). Alternating with the nadir measurement, vertical profiles of absorber concentration in the stratosphere are derived in limb and occultation. In this paper we present an overview over some applications of SCIAMACHY data in space-based monitoring of atmospheric pollution. The DOAS algorithms for the retrieval of total column amounts from nadir spectra are briefly described and case studies of pollution events are presented. We also illustrate the technique used to derive stratospheric concentration profiles from limb observations and show comparisons with other remote sensing systems. Special emphasis will be given to techniques, which take advantage of SCIAMACHY's different viewing geometries. In particular, we will discuss the potential and limits of strategies to infer tropospheric abundances of O3 and NO2. PMID:16715354

  13. Wide angle X-ray scattering (WAXS) study of "two-line" ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Rea, B.A.; Davis, J.A.

    1996-01-01

    Wide angle X-ray scattering (WAXS) measurements have been made on a suite of "two-line" ferrihydrite (FHY2) samples containing varying amounts of coprecipitated arsenate. Samples prepared at pH 8 with counter ions chloride, nitrate, and a mixture of both also were examined. The raw WAXS scattering functions show that "two-line" ferrihydrite actually has a large number of non-Bragg (i.e., diffuse scattering) maxima up to our observation limit of 16 A??-1. The type of counter ion used during synthesis produces no significant change in this function. In unarsenated samples, Radial Distribution Functions (RDFs) produced from the scattering functions show a well-defined Fe-O peak at 2.02 A?? in excellent agreement with the mean distance of 2.01 A?? from extended X-ray absorption fine structure (EXAFS) analysis. The area under the Fe-O peak is consistent with only octahedral oxygen coordination about iron, and an iron coordination about oxygen of 2.2, in agreement with the EXAFS results, the sample composition, and XANES measurements. The second peak observed in the RDFs is clearly divided into two populations of correlations, at 3.07 and 3.52 A??, respectively. These distances are close to the EXAFS-derived Fe-Fe subshell distances of 3.02-3.05 and 3.43-3.46 A??, respectively, though this is misleading as the RDF peaks also include contributions from O-Fe and O-O correlations. Simulated RDFs of the FeOOH polymorphs indicate how the observed RDF structure relates to the EXAFS pair-correlation function, and allow comparisons with an ordered ferrihydrite structure. The effect of increasing arsenate content is dramatic, as the RDF peaks are progressively smeared out, indicating a wider range of interatomic distances even at moderate surface coverages, and a loss of longer range correlations. At an As/Fe ratio of 0.68, the surface saturation level of arsenate, the RDF shows little order beyond what would be expected from small pieces of dioctahedral Fe oxyhydroxyl chains or

  14. Detection Method of Lightning and TLEs by JEM-GLIMS Nadir Observation

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Sato, M.; Ushio, T.; Yamazaki, A.; Suzuki, M.; Masayuki, K.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.

    2013-12-01

    A scientific payload named JEM-GLIMS aboard the International Space Station (ISS) is aimed at observing lightning and Transient Luminous Events (TLEs) globally. Keeping its field-of-view toward the nadir direction, GLIMS clarifies the horizontal structures of lightning and TLEs, which is a crucial issue to understand the electrodynamic coupling between the troposphere and ionosphere. A difficult point, however, is that careful analyses are necessary to separate the emissions of lightning and TLEs which spatially overlap along the line-of-sights in the case of nadir observation. In this study, we analyze the multi-wavelength optical data obtained by GLIMS to identify lightning and TLEs. The main data analyzed are those of imager (LSI) and spectrophotometer (PH). LSI consists of two cameras equipped with a broadband red filter and a narrowband 762-nm filter, respectively, and obtains imagery at a spatial resolution of 400 m/pixel on the ground surface. PH detects time-resolved emission intensity at a sampling rate of 20 kHz by six photometer channels measuring at 150-280, 337, 762, 600-900, 316 and 392 nm, respectively. During a period between November 2012 and June 2013, GLIMS observed 815 lightning and/or TLE events, and in 494 of them, both LSI and PH data showed clear signals above the noise level. As the first step, we carried out case study using an event observed at 09:50:47UT on Jan 29 2013 which did not cause strong saturation on the LSI and PH data. The estimated peak irradiance was 1.38x10^(-3) W/m^(2) at 600-900 nm, which is equivalent to the top 10 % bright lightning events observed by FORTE satellite in the past. This finding suggests that GLIMS selectively observes the most optically-powerful events. The peak irradiance was estimated also for the other PH channels. At all visible channels other than a far ultra violet (FUV) channel, the peak irradiance was estimated to be in good agreement with the atmospheric transmittance curve calculated between 10

  15. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    NASA Technical Reports Server (NTRS)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  16. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  17. Generalization of the Euler Angles

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  18. Towards a NNORSY Ozone Profile ECV from European Nadir UV/VIS Measurements

    NASA Astrophysics Data System (ADS)

    Felder, Martin; Kaifel, Anton; Huckle, Roger

    2010-12-01

    The Neural Network Ozone Retrieval System (NNORSY) has been adapted and applied to several different satellite instruments, including the backscatter UV/VIS instruments ERS2-GOME, SCIAMACHY and METOP-GOME-2. The retrieved long term ozone field hence spans the years 1995 till now. To provide target data for training the neural networks, the lower parts of the atmosphere are sampled by ozone sondes from the WOUDC and SHADOZ data archives. Higher altitudes are covered by a variety of limb-sounding instruments, including the SAGE and POAM series, HALOE, ACE-FTS and AURA-MLS. In this paper, we show ozone profile time series over the entire time range to demonstrate the "out-of-the-box" consistency and homogeneity of our data across the three different nadir sounders, i.e. without any kind of tuning applied. These features of Essential Climate Variable (ECV) datasets [1] also lie at the heart of the recently announced ESA Climate Change Initiative, to which we hope to contribute in the near future.

  19. AIRS and Full-Resolution CrIS: Comparison Using Tropical Simultaneous Nadir Observations

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Manning, E. M.

    2015-12-01

    AIRS on EOS-Aqua and CrIS on Suomi NPP are two hyperspectral infrared sounders with similar capabilities and orbits, so there is a great opportunity to compare their absolute calibration while they are both in orbit. This insures that long-term climate record can be created by concatenating the two instrument records. There are significant differences in instrument architecture which may lead to subtle differences and complicate any attempt to combine the records. We use Tropical Simultaneous Nadir Observations (TSNOs), cases where both instruments are looking nearly at the same place at the same time, to explore the differences. Differences are explored as a function of wavelength, day vs. night, land vs. ocean, and different levels of cloudiness. Differences unique to the design of each instrument are seen. With the currently available AIRS L1c and CrIS CCAST calibrated data radiometric differences as large a 0.3K are seen. These differences need to be corrected or at least flagged to prevent them from becoming artifacts in a long-term climate record.

  20. Modelling Steep Surfaces by Various Configurations of Nadir and Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Casella, V.; Franzini, M.

    2016-06-01

    Among the parts of the territory requiring periodical and careful monitoring, many have steep surfaces: quarries, river basins, land-slides, dangerous mountainsides. Aerial photogrammetry based on lightweight unmanned aircraft systems (UAS) is rapidly becoming the tool of election to survey limited areas of land with a high level of detail. Aerial photogrammetry is traditionally based on vertical images and only recently the use of significantly inclined imagery has been considered. Oblique photogrammetry presents peculiar aspects and offers improved capabilities for steep surface reconstruction. Full comprehension of oblique photogrammetry still requires research efforts and the evaluation of diverse case studies. In the present paper, the focus is on the photogrammetric UAS-based survey of a part of a large sandpit. Various flight configurations are considered: ordinary linear strips, radial strips (as the scarp considered has a semi-circular shape) and curved ones; moreover, nadir looking and oblique image blocks were acquired. Around 300 control points were measured with a topographic total station. The various datasets considered are evaluated in terms of density of the extracted point cloud and in terms of the distance between the reconstructed surface and a number of check points.

  1. A New Radiometric Calibration Paradigm for the OMPS Nadir Total Column and Profile Instruments

    NASA Technical Reports Server (NTRS)

    Heath, Donald; Georgiew, Georgi

    2011-01-01

    A fused silica Mie Scattering Diffuser (MSD) has been developed at Ball Aerospace & Technology Corp. that has measured characteristics which could be used to increase the accuracy of the spectral albedo calibration of the Ozone Mapping and Profiler Suite (OMPS) Nadir ozone total column and profile instrument by almost an order of magnitude. Measurements have been made of the optical characteristics on both natural and synthetic forms of fused silica MSDs. Preliminary measurements suggest that MSDs are useable in the solar reflective wavelength region from 250 nm to 3.7 m. To date synthetic and natural MSDs have been irradiated for 60 hours of UV radiation from a solar simulator, and synthetic MSDs have been irradiated with increasing doses of Co-60 gamma rays at 30, 500 krads up to 1.5 Mrads, and 30 krads of 200 MeV protons. The principal effects have been small loses in transmittance at wavelengths < 350 nm. The high energy particle irradiation measurements were provided by Neal Nickles and Dean Spieth.

  2. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Del Frate, F.

    2014-07-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320-325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet.

  3. Second-Generation Multi-Angle Imaging Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Macenka, Steven; Hovland, Larry; Preston, Daniel; Zellers, Brian; Downing, Kevin

    2004-01-01

    A report discusses an early phase in the development of the MISR-2 C, a second, improved version of the Multi-angle Imaging SpectroRadiometer (MISR), which has been in orbit around the Earth aboard NASA's Terra spacecraft since 1999. Like the MISR, the MISR-2 would contain a pushbroom array of nine charge-coupled- device (CCD) cameras one aimed at the nadir and the others aimed at different angles sideways from the nadir. The major improvements embodied in the MISR-2 would be the following: A new folded-reflective-optics design would render the MISR-2 only a third as massive as the MISR. Smaller filters and electronic circuits would enable a reduction in volume to a sixth of that of the MISR. The MISR-2 would generate images in two infrared spectral bands in addition to the blue, green, red, and near-infrared spectral bands of the MISR. Miniature polarization filters would be incorporated to add a polarization-sensing capability. Calibration would be performed nonintrusively by use of a gimbaled tenth camera. The main accomplishment thus far has been the construction of an extremely compact all-reflective-optics CCD camera to demonstrate feasibility.

  4. Evaluation of the Sensor Data Record from the Nadir Instruments of the Ozone Mapping Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Wu, Xiangqian; Liu, Quanhua; Zeng, Jian; Grotenhuis, Michael; Qian, Haifeng; Caponi, Maria; Flynn, Larry; Jaross, Glen; Sen, Bhaswar; Buss, Richard H., Jr.; Johnsen, William; Janz, Scott; Pan, Chunhui; Niu, Jianguo; Beck, Trevor; Beach, Eric; Yu, Wei; Raja, M. K. Rama Varma; Stuhmer, Derek; Cumpton, Daniel; Owen, Cristina; Li, Wen-Hao

    2014-01-01

    This paper evaluates the first 15 months of the Ozone Mapping and Profiler Suite (OMPS) Sensor Data Record (SDR) acquired by the nadir sensors and processed by the National Oceanic and Atmospheric Administration Interface Data Processing Segment. The evaluation consists of an inter-comparison with a similar satellite instrument, an analysis using a radiative transfer model, and an assessment of product stability. This is in addition to the evaluation of sensor calibration and the Environment Data Record product that are also reported in this Special Issue. All these are parts of synergetic effort to provide comprehensive assessment at every level of the products to ensure its quality. It is found that the OMPS nadir SDR quality is satisfactory for the current Provisional maturity. Methods used in the evaluation are being further refined, developed, and expanded, in collaboration with international community through the Global Space-based Inter-Calibration System, to support the upcoming long-term monitoring.

  5. Seismic Images of the Crust across D-E Seismic Profile (TS04-Tsujal Project): Results of Reflection and Wide-Angle Seismic Study

    NASA Astrophysics Data System (ADS)

    Nunez, D.; Lopez Ortiz, J. Y.; Bartolome, R.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Danobeitia, J.; Zamora-Camacho, A.; Escudero, C. R.

    2014-12-01

    As a part of TSUJAL Project (Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment), a geophysical study has been carried out during February and March 2014 in western continental margin of Jalisco where seismic reflection, wide-angle seismic, bathymetry and potential fields (gravity and magnetism) data have been obtained. Eight land seismic stations vertical component and 4.5 Hz model TEXAN 125A (REFTEK), were deployed along an offshore-onshore seismic profile of 140 km length in SW-NE orientation. These stations registered, in continuous model, the airgun shots provided by RRS James Cook used for Multichannel Seismic Reflection data acquisition every 50 m of distance interval and total capacity of 5800 ci along seismic profile D-E (TS04). In the onshore region, these stations were deployed every 20 km from Pérula to Nacastillo (Jalisco, Mexico). The study region corresponds to onshore-offshore line limited by (18o 54'N, 105o 59'W) (19o 26'N, 105o7'W) coordinates. In this work, seismic images of the crust along a deep seismic profile of 140 km length are presented. These images provide new cortical information about the southern part of Rivera Plate, continental accretionary wedge and first kilometers of Jalisco Block continental zone.

  6. On Orbit Measurement of Response vs. Scan Angle for the Infrared Bands on TRMM/VIRS

    NASA Technical Reports Server (NTRS)

    Barnes, William L.; Lyu, Cheng-Hsuan; Barnes, Robert A.

    1999-01-01

    The Visible and Infrared Scanner on the Tropical Rainfall Measuring Mission (TRMM/VIRS) is a whiskbroom imaging radiometer with two reflected solar bands and three emissive infrared bands. All five detectors are on a single cooled focal plane. This configuration necessitated the use of a paddlewheel scan mirror to avoid the effects of focal plane rotation that arise when using a scan mirror that is inclined to its axis of rotation. System radiometric requirements led to the need for protected silver as the mirror surface. Unfortunately, the SiO(x) coatings currently used to protect silver from oxidation introduce a change in reflectance with angle of incidence (AOI). This AOI dependence results in a modulation of system level response with scan angle. Measurement of system response vs. scan angle (RVS) was not difficult for the VIRS reflected solar bands, but attaining the required accuracy for the IR bands in the laboratory was not possible without a large vacuum chamber and a considerable amount of custom designed testing apparatus. Therefore, the decision was made to conduct the measurement on-orbit. On three separate occasions, the TRMM spacecraft was rotated about its pitch axis and, after the nadir view passed over the Earth's limb, the VIRS performed several thousand scans while viewing deep space. The resulting data has been analyzed and the RVS curves generated for the three IR bands are being used in the VIRS radiometric calibration algorithm. This, to our knowledge, the first time this measurement has been made on-orbit. Similar measurements are planned for the EOS-AM and EOS-PM MODIS sensors and are being considered for several systems under development. The VIRS on-orbit results will be compared to VIRS and MODIS system level laboratory measurements, MODIS scan mirror witness sample measurements and modeled data.

  7. Low earth orbiting Nadir Etalon Sounding Spectrometer instrument concept for temperature, moisture and trace species, LeoNESS

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Sterritt, L. W.; Roche, A. E.; Rosenberg, W. J.; Morrow, H. E.; Shenk, W. E.; Susskind, J.

    1992-01-01

    A concept for a low earth orbiting nadir etalon spectrometer sounder (LeoNESS) is described which can achieve retrieval of temperature, H2O, surface, boundary conditions, cloudiness, and trace species with an accuracy that meets or exceeds the AIRS specifications. Options employing 65-K and 30-K detectors are examined; the former may be implemented via passive radiative cooling. The concept, which is derived from the Cryogenic Limb Array Etalon Spectrometer, has the potential for improving the horizontal and vertical resolution.

  8. Atmospheric correction for ocean spectra retrievals from high-altitude multi-angle, multi-spectral photo-polarimetric remote sensing observations: Results for coastal ocean waters.

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; van Diedenhoven, B.; Knobelspiesse, K. D.; Cairns, B.; Wasilewski, A. P.; McCubbin, I.

    2015-12-01

    A major challenge for spaceborne observations of ocean color is to correct for atmospheric scattering, which typically contributes ≥85% to the top-of-atmosphere (TOA) radiance and varies substantially with aerosols. Ocean color missions traditionally analyze TOA radiance in the near-infrared (NIR), where the ocean is black, to constrain the TOA atmospheric scattering in the visible (VIS). However, this procedure is limited by insufficient sensitivity of NIR radiance to absorption and vertical distribution of aerosols, and by uncertainties in the extrapolation of aerosol properties from the NIR to the VIS.To improve atmospheric correction for ocean color observations, one needs to change the traditional procedure for this correction and/or increase the aerosol information. The instruments proposed to increase the aerosol information content for the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission include ultraviolet and Oxygen A-band observations, as well as multispectral and multiangle polarimetry. However few systematic studies have been performed to quantify the improvement such measurements bring to atmospheric correction. To study the polarimetric atmospheric correction capabilities of PACE-like instruments, we conducted field experiments off the Coast of California to obtain high-altitude (65,000 ft) and ship-based observations of water-leaving radiance. The airborne data sets consist of hyperspectral radiance between 380-2500 nm by the Airborne Visible/Infrared Imaging Spectrometer, and multi-spectral multi-angle polarimetric data between 410-2250 nm by the Research Scanning Polarimeter. We discuss examples of retrieved atmosphere and ocean state vectors, and of corresponding ocean color spectra obtained by subtracting the computed atmospheric scattering contribution from the high-altitude radiance measurements. The ocean color spectra thus obtained are compared with those measured from the ship.

  9. Daily Operational MODIS BRDF, Albedo and Nadir Reflectance Products (V006)

    NASA Astrophysics Data System (ADS)

    Schaaf, C.; Wang, Z.; Shuai, Y.; Strahler, A. H.

    2012-12-01

    The operational surface Bidirectional Reflectance Distribution Function (BRDF) and Albedo product (MCD43) has been produced for more than a decade from the MODerate resolution Imaging Spectroradiometer (MODIS) sensors aboard NASA's Terra and Aqua satellites. The Collection V005 operational product, reprocessed for the entire record, provides BRDF models, surface albedo quantities, and Nadir BRDF-Adjusted Reflectances (NBAR) globally on a 500m grid in a sinusoidal projection every 8 days (based on a 16 day window). As surface albedo is an essential climate variable (ECV), the accurate global estimations of terrestrial albedo provided by this product are used by numerous climate and biogeochemical modeling efforts. Of equal utility, the NBAR values are used as the primary inputs to the MODIS Land Cover product and (in the form of NBAR vegetation indices) are used for a variety of vegetation monitoring and phenological studies. Furthermore, the retrieved BRDF model parameters are increasingly being used to provide estimates of vegetation canopy variability and clumping. In the Collection V006 reprocessing effort, the standard global MODIS BRDF/Albedo product will finally be produced as a daily product (based on a 16 day moving window). The daily algorithm will rely on rolling multi-date directional surface reflectances to establish a general surface reflectance anisotropy model of the surface, while emphasizing the daily observation in an attempt to capture rapidly changing surface conditions. In order to improve retrievals over high latitudes and better capture snow covered and dormant vegetation conditions, more surface reflectances per day will be used in V006. Furthermore, the backup database (used to produce poorer quality magnitude inversions when high quality full retrievals are not possible) will now be continuously updated from the latest high quality full inversion for improved accuracy. The availability of daily V006 BRDF/albedo products will allow more

  10. The effect of data analysis techniques on the interpretation of wide-angle longwave radiation measurements

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    Three different data analysis techniques - shape factor, parameter estimation, and deconvolution - have been applied to the same set of satellite radiation measurements to determine their effect on the estimated radiation field. The measurements are from a wide-angle, horizon-to-horizon, nadir-pointing sensor. The shape factor technique reduces each measurement to a radiant exitance at the top of the atmosphere by simple division by a constant. The parameter estimation technique processes all measurements together as a batch and defines the radiant exitance as a least-squares fit to the data. The deconvolution technique takes advantage of the fact that spherical harmonics are the eigenfunctions of the measurement operator. All three techniques are derived, and their assumptions, advantages and disadvantages are discussed. Their results are compared globally, zonally, regionally and on a spatial spectrum basis. All three techniques give comparable results for global parameters; however, results on a regional scale were quite different. The standard deviations of the regional differences in radiant exitance varied from 7.4 to 13.5 W/sq m. Of the three techniques, the parameter estimation technique produced the best regional results and is the choice of the author.

  11. Ozone assimilation in the UTLS: Value of limb-viewing sounders and resolution-dependent analysis of nadir data

    NASA Astrophysics Data System (ADS)

    Yudin, Valery; Pawson, Steven; Reinecker, Michele; Xu, Philippe; Sienkiewicz, Meta; Gille, John; Kinnison, Douglas; Livesey, Nathaniel

    2010-05-01

    The paper discusses aspects of the resolution-dependent analysis of ozone satellite data in the Upper Troposphere and Lower Stratosphere (UTLS) region. In this region the sharp positive and negative vertical ozone gradients are frequently observed by insitu measurements and simulated by chemistry-climate models, showing so-called ozone laminas. With sufficient vertical resolution of limb-viewing sensors, such as MLS and HIRDLS on Aura/NASA spacecraft, this information on ozone dynamics in thin vertical layers can be accepted by data assimilation systems constraining layered vertical ozone structures across the tropopause. For these scenes, the ozone-sensitive information from the nadir sensors (SBUV, GOME, TES, AIRS, OMI, IASI) characterized by restricted vertical resolution should be properly projected from the data space to the analysis grid preserving the non-observable (but forecasted) ozone vertical structures. Several illustrations for analysis of nadir-only ozone data (SBUV-2) that can "diffuse" ozone laminas in the extra-tropical UTLS are discussed. To overcome this negative impact of analysis of nadir data, the resolution-dependent analysis schemes (RDAS) of retrievals (characterized by kernels) or/and radiances are suggested. The vertical inverse mapping performed by RDAS ensures constraining only scales observable by data preserving the non-observable short-scale vertical structures of ozone. As illustrated by comparisons of MLS and HIRDLS data with analyzed ozone fields (GEOS-5 and ECMWF), the other geophysical scenes influenced by inadequate assimilation of nadir retrievals may include: a) the high-latitude ozone hole and mini-holes; b) seasonal and quasi-biennial ozone oscillations in the tropical stratosphere; c) movements of high and low ozone air masses across the transport barriers. These comparisons demonstrate the value of MLS and HIRDLS limb data in constraining of ozone for monitoring atmospheric composition and climate. The current plans for

  12. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  13. Long-term nadir observations of the O2 dayglow by SPICAM IR

    NASA Astrophysics Data System (ADS)

    Guslyakova, S.; Fedorova, A.; Lefèvre, F.; Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Bertaux, J. L.

    2016-03-01

    The O2(a1Δg) dayglow at the 1.27 μm band on Mars is produced by the solar UV photolysis of ozone and quenched in collisions with CO2. The SPICAM IR instrument onboard the Mars Express orbiter observes the O2(a1Δg) emission in the Martian atmosphere starting from 2004. We present a continuous set of O2(a1Δg) dayglow intensities from nadir measurements for six Martian years from the end of MY26 to MY32. Maximum values of the O2(a1Δg) dayglow reaching 31 MR were observed in early northern and southern springs in both hemispheres. Near the equator a spring maximum of 5-8 MR was observed for all years. The emission intensity is minimum in the Southern hemisphere in summer with values of 1-2 MR. Comparison of the data with GCM simulations and simultaneous ozone measurements by SPICAM UV allows to derive the quenching rate (k) of the excited O2 molecules by CO2, k=0.73×10-20 cm3 molecules-1 s-1. The interannual variation of the O2 emission has been studied after applying correction for the local time. The O2(a1Δg) seasonal pattern is rather stable with average year-to-year relative variation of about 21%, in accord with interannual variations detected from the ground (Krasnopolsky, 2013). The most variable region corresponds to northern and southern spring at middle latitudes, coinciding with sublimation of the polar caps in both hemispheres. Southern latitudes also show a high year-to-year variability in summer (Ls=270-330°) relating to the dust activity in this region. A comparison with simultaneous SPICAM water vapor observations shows that the O2(a1Δg) dayglow depends on the water vapor variations, and clearly confirms their anti-correlation, excepting the case of low and middle latitudes in the aphelion period.

  14. VHF Radar Measurements of Tropical Forests in Panama: Results from the BioSAR Deployment in Central America

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc; Lawrence, William; Condit, Richard; Wright, Joseph; Johnson, Patrick; Holford, Warren; Hyer, Joseph; May, Lisa; Carson, Steven

    2000-01-01

    A synthetic aperture radar sensor operating in 5 bands between 80 and 120 MHz was flown over forested areas in the canal zone of the Republic of Panama in an experiment to measure biomass in heavy tropical forests. The sensor is a pulse coherent SAR flown on a small aircraft and oriented straight down. The doppler history is processed to collect data on the ground in rectangular cells of varying size over a range of incidence angles fore and aft of nadir (+45 to - 45 degrees). Sensor data consists of 5 frequency bands with 20 incidence angles per band. Sensor data for over 12+ sites were collected with forest stands having biomass densities ranging from 50 to 300 tons/ha dry above ground biomass. Results are shown exploring the biomass saturation thresholds using these frequencies, the system design is explained, and preliminary attempts at data visualization using this unique sensor design are described.

  15. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  16. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Robert, Severine; Vandaele, Ann-Carine; Willame, Yannick; Lopez-Moreno, Jose Juan; Patel, Manish; Belluci, Giancarlo; Daerden, Frank; Neefs, Eddy; Rodriguez-Gomez, Julio

    2013-04-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite was selected as part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 µm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but also solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. We will present the instrument and its capabilities in term of detection of a broad suite of species, its possibilities to improve our knowledge on vertical structure of the atmosphere as well as its mapping possibilities. Since last year's abstract, much progress has been made on the instrument design and prototypes have been tested, especially concerning the very challenging thermal needs of the instrument. This paper will concentrate on the developments in the last year that prove NOMAD will be a very powerful, sensitive instrument.

  17. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; López-Moreno, J.-J.; Patel, M. R.; Bellucci, G.; Daerden, F.; Drummond, R.; Neefs, E.; Robert, S.; Rodriguez Gomez, J.

    2012-04-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite has been selected by ESA and NASA to be part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 μm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but also solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. We will present the instrument and its capabilities in term of detection of a broad suite of species, its possibilities to improve our knowledge on vertical structure of the atmosphere as well as its mapping possibilities.

  18. Hysteresis during contact angles measurement.

    PubMed

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle. PMID:20060981

  19. MISR Multi-angle Views of Sunday Morning Fires

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Hot, dry Santa Ana winds began blowing through the Los Angeles and San Diego areas on Sunday October 21, 2007. Wind speeds ranging from 30 to 50 mph were measured in the area, with extremely low relative humidities. These winds, coupled with exceptionally dry conditions due to lack of rainfall resulted in a number of fires in the Los Angeles and San Diego areas, causing the evacuation of more than 250,000 people.

    These two images show the Southern California coast from Los Angeles to San Diego from two of the nine cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the NASA EOS Terra satellite. These images were obtained around 11:35 a.m. PDT on Sunday morning, October 21, 2007 and show a number of plumes extending out over the Pacific ocean. In addition, locations identified as potential hot spots from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the same satellite are outlined in red.

    The left image is from MISR's nadir looking camera and the plumes appear very faint. The image on the right is from MISR's 60o forward looking camera, which accentuates the amount of light scattered by aerosols in the atmosphere, including smoke and dust. Both these images are false color and contain information from MISR's red, green, blue and near-infrared wavelengths, which makes vegetated land appear greener than it would naturally. Notice in the right hand image that the color of the plumes associated with the MODIS hot spots is bluish, while plumes not associated with hot spots appear more yellow. This is because the latter plumes are composed of dust kicked up by the strong Santa Ana winds. In some locations along Interstate 5 on this date, visibility was severely reduced due to blowing dust. MISR's multiangle and multispectral capability give it the ability to distinguish smoke from dust in this situation.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days

  20. Circuitry for Angle Measurements

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.

    1983-01-01

    Angle resolver pulsed and read under microprocessor control. Pulse generator excites resolver windings with dual slope pulse. System sequentially reads sine and cosine windings. Microprocessor determines angle through which resolver shaft turned from reference angle. Suitable applications include rate tables, antenna direction controllers, and machine tools.

  1. Data Plots of Run I - III Results from SLAC E-158: A precision Measurement of the Weak Mixing Angle in Moller Scattering

    DOE Data Explorer

    Three physics runs were made in 2002 and 2003 by E-158. As a result, the E-158 Collaboration announced that it had made "the first observation of Parity Violation in electron-electron (Moller) scattering). This precise Parity Violation measurement gives the best determination of the electron's weak charge at low energy (low momentum transfer between interacting particles). E158's measurement tests the predicted running (or evolution) of this weak charge with energy, and searches for new phenomena at TeV energy scales (one thousand times the proton-mass energy scale).[Copied from the experiment's public home page at http://www-project slac.stanford.edu/3158/Default.htm] See also the E158 page for collaborators at http://www.slac.stanford.edu/exp/e158/. Both websites provide data and detailed information.

  2. The measurement of boundary layers on a compressor blade in cascade at high positive incidence angle. 1: Experimental techniques and results

    NASA Technical Reports Server (NTRS)

    Deutsch, S.; Zierke, W. C.

    1986-01-01

    Measurements of the mean velocity and turbulence intensity were made using a one-component laser Doppler velocimeter in the boundary layer and near wake about a double circular arc, compressor blade in cascade. The measurements were made at a chord Reynolds number of 500,000. Boundary layer measurements on the pressure surface indicate a transition region over the last 40% of the chord. A small separation bubble near the leading edge of the suction surface results in an immediate transition from laminar to turbulent flow. The non-equilibrium turbulent boundary layer separates near the trailing edge of the suction surface. Similarity of the outer region of the turbulent boundary layer ceases to exist in the separated region. Also, similarity does not hold in the near-wake region, a region which includes negative mean velocities because of the separation near the trailing edge on the suction surface.

  3. Effects of skylight polarization, cloudiness, and view angle on the detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1971-01-01

    Three passive radiometric techniques, which use the contrast of sunlight reflected and backscattered from oil and water in specific wavelength regions, have potential application for remote sensing of oil spills. These techniques consist of measuring (1) total radiance, (2) the polarization components (normal and parallel) of radiance, and (3) the difference between the normal and parallel components. In this paper, the best view directions for these techniques are evaluated, conclusions are drawn as to the most promising technique, and explanations are developed to describe why previous total-radiance measurements yielded highest contrast between oil and water under overcast skies. The technique based on measurement of only the normal polorization component appears to be the most promising. The differential technique should be further investigated because of its potential to reduce the component of backscattered light from below the surface of the water. Measurements should be made about 45 deg nadir view angle in the direction opposite the sun. Overcast sky conditions provide a higher intensity of skylight relative to clear sky conditions and a lower intensity of backscatter within the water relative to surface reflectance. These factors result in higher contrast between oil and water under overcast skies.

  4. Wide Angle Imaging Lidar (WAIL): Theory of Operation and Results from Cross-Platform Validation at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Polonsky, I. N.; Davis, A. B.; Love, S. P.

    2004-05-01

    WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.

  5. Off-nadir antenna bias correction using Amazon rain sigma(0) data

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.

    1982-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  6. The topographic effect on spectral response from nadir-pointing sensors

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Justice, C. O.

    1980-01-01

    It is difficult to interpret multispectral Landsat earth resources data in areas of rugged and mountainous terrain because of the topographic effect on the sensor response. The objectives of this study were to examine and quantify the topographic effect on the sensor response from a uniform sand surface, to assess a simple theoretical incidence model for modeling the radiance from the surface, and to simulate Landsat sensor response due to the topographic effect. A field experiment was designed to collect data from a large range of slope angles and aspects at a range of solar elevations, using a hand-held radiometer. Analysis of these data showed that the magnitude of the topographic effect varied as a function of the solar elevation, the azimuthal orientation of the slope, and the slope inclination. The field measured variations in spectral response were found to have generally strong correlations with the theoretical model, and it was shown that the applicability of the Lambertian assumption varied within and between data sets. It is concluded that if slope angle, aspect, and solar zenith angle and azimuth are known, a technique incorporating a model to reduce the topographic effect prior to multispectral classification may be developed.

  7. Off-nadir antenna bias correction using Amazon rain forest sigma deg data. [Brazil

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Bracalente, E. M.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K. (Principal Investigator)

    1981-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  8. From plane to spatial angles: PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Osten, Wolfgang

    2015-10-01

    Electronic autocollimators are utilised versatilely for non-contact angle measurements in applications like straightness measurements and profilometry. Yet, no calibration of the angle measurement of an autocollimator has been available when both its measurement axes are engaged. Additionally, autocollimators have been calibrated at fixed distances to the reflector, although its distance may vary during the use of an autocollimator. To extend the calibration capabilities of the Physikalisch-Technische Bundesanstalt (PTB) regarding spatial angles and variable distances, a novel calibration device has been set up: the spatial angle autocollimator calibrator (SAAC). In this paper, its concept and its mechanical realisation will be presented. The focus will be on the system's mathematical modelling and its application in spatial angle calibrations. The model considers the misalignments of the SAAC's components, including the non-orthogonalities of the measurement axes of the autocollimators and of the rotational axes of the tilting unit. It allows us to derive specific measurement procedures to determine the misalignments in situ and, in turn, to correct the measurements of the autocollimators. Finally, the realisation and the results of a traceable spatial angle calibration of an autocollimator will be presented. This is the first calibration of this type worldwide.

  9. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Lambert, J.-C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J. C. A.; van der A, R. J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; Godin-Beekmann, S.; Kivi, R.; Stubi, R.; Zehner, C.

    2015-05-01

    A methodology for the round-robin evaluation and the geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of data set content studies, information content studies, co-location studies, and comparisons with reference measurements. Within the European Space Agency's Climate Change Initiative on ozone (Ozone_cci project), the proposed round-robin procedure is applied to two nadir ozone profile data sets retrieved at the Royal Netherlands Meteorological Institute (KNMI) and the Rutherford Appleton Laboratory (RAL, United Kingdom), using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 (i.e. the second generation Global Ozone Monitoring Experiment on the first Meteorological Operational Satellite) measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other stations of the World Meteorological Organisation's Global Atmosphere Watch (WMO GAW). This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile data sets with user requirements from the Global Climate Observing System (GCOS) and from climate modellers.

  10. Measures on mixing angles

    SciTech Connect

    Gibbons, Gary W.; Gielen, Steffen; Pope, C. N.; Turok, Neil

    2009-01-01

    We address the problem of the apparently very small magnitude of CP violation in the standard model, measured by the Jarlskog invariant J. In order to make statements about probabilities for certain values of J, we seek to find a natural measure on the space of Kobayashi-Maskawa matrices, the double quotient U(1){sup 2}/SU(3)/U(1){sup 2}. We review several possible, geometrically motivated choices of the measure, and compute expectation values for powers of J for these measures. We find that different choices of the measure generically make the observed magnitude of CP violation appear finely tuned. Since the quark masses and the mixing angles are determined by the same set of Yukawa couplings, we then do a second calculation in which we take the known quark mass hierarchy into account. We construct the simplest measure on the space of 3x3 Hermitian matrices which reproduces this known hierarchy. Calculating expectation values for powers of J in this second approach, we find that values of J close to the observed value are now rather likely, and there does not seem to be any fine-tuning. Our results suggest that the choice of Kobayashi-Maskawa angles is closely linked to the observed mass hierarchy. We close by discussing the corresponding case of neutrinos.

  11. Multi-Angle View of the Canary Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A multi-angle view of the Canary Islands in a dust storm, 29 February 2000. At left is a true-color image taken by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. This image was captured by the MISR camera looking at a 70.5-degree angle to the surface, ahead of the spacecraft. The middle image was taken by the MISR downward-looking (nadir) camera, and the right image is from the aftward 70.5-degree camera. The images are reproduced using the same radiometric scale, so variations in brightness, color, and contrast represent true variations in surface and atmospheric reflectance with angle. Windblown dust from the Sahara Desert is apparent in all three images, and is much brighter in the oblique views. This illustrates how MISR's oblique imaging capability makes the instrument a sensitive detector of dust and other particles in the atmosphere. Data for all channels are presented in a Space Oblique Mercator map projection to facilitate their co-registration. The images are about 400 km (250 miles)wide, with a spatial resolution of about 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. PSA Nadir of <0.5 ng/mL Following Brachytherapy for Early-Stage Prostate Adenocarcinoma is Associated With Freedom From Prostate-Specific Antigen Failure

    SciTech Connect

    Ko, Eric C.; Stone, Nelson N.; Stock, Richard G.

    2012-06-01

    Purpose: Because limited information exists regarding whether the rate or magnitude of PSA decline following brachytherapy predicts long-term clinical outcomes, we evaluated whether achieving a prostate-specific antigen (PSA) nadir (nPSA) <0.5 ng/mL following brachytherapy is associated with decreased PSA failure and/or distant metastasis. Methods and Materials: We retrospectively analyzed our database of early-stage prostate adenocarcinoma patients who underwent brachytherapy, excluding those receiving androgen-deprivation therapy and those with <2 years follow-up. Median and mean pretreatment PSA were 6 ng/mL and 7.16 ng/mL, respectively. By clinical stage, 775 were low risk ({<=}T2a), 126 were intermediate risk (T2b), and 20 were high risk (>T2b). By Gleason score, 840 were low risk ({<=}6), 71 were intermediate risk (7), and 10 were high risk (>7). Patients were treated with brachytherapy only (I-125, n = 779, or Pd-103, n = 47), or brachytherapy + external-beam radiation therapy (n = 95). Median follow-up was 6.3 years. We noted whether nPSA <0.5 ng/mL was achieved and the time to achieve this nadir and tested for associations with pretreatment risk factors. We also determined whether this PSA endpoint was associated with decreased PSA failure or distant metastasis. Results: Absence of high-risk factors in clinical stage ({<=}T2b), Gleason score ({<=}7), and pretreatment PSA ({<=}20 ng/mL) was significantly associated with achieving nPSA <0.5 ng/mL. By Kaplan-Meier analysis, patients achieving nPSA <0.5 ng/mL had significantly higher long-term freedom from biochemical failure (FFBF) than nonresponders (5-year FFBF: 95.2 {+-} 0.8% vs. 71.5 {+-} 6.7%; p < 0.0005). Among responders, those who achieved nPSA <0.5 ng/mL in {<=}5 years had higher FFBF than those requiring >5 years (5-year FFBF: 96.7 {+-} 0.7% vs. 80.8 {+-} 4.6%; p < 0.0005). On multivariate analysis, patients who achieved nPSA <0.5 ng/mL in {<=}5 years had significantly higher FFBF than other

  13. The Feasibility of Tropospheric and Total Ozone Determination Using a Fabry-perot Interferometer as a Satellite-based Nadir-viewing Atmospheric Sensor. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Larar, Allen Maurice

    1993-01-01

    Monitoring of the global distribution of tropospheric ozone (O3) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface, interfering species, and clouds. The Fabry-Perot Interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. Decreasing stratospheric O3 concentrations may lead to an increase in biologically harmful solar ultraviolet radiation reaching the earth's surface, which is detrimental to health. In this research, a conceptual instrument design to achieve the desired measurement has been formulated. This involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). A spectral region of about 1 cm(exp -1) wide centered at 1054.73 cm(exp -1) within the strong 9.6 micron ozone infrared band is sampled with 24 spectral channels. Other design characteristics include operation from a nadir-viewing satellite configuration utilizing a 9 inch (diameter) telescope and achieving horizontal spatial resolution with a 50 km nadir footprint. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis

  14. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  15. The First Eighteen Months of NASA's Orbiting Carbon Observatory-2 (OCO-2): Mission Status, Error Characterization, and Preliminary Results

    NASA Astrophysics Data System (ADS)

    O'Dell, Christopher

    2016-04-01

    OCO-2 began taking science data in September 2014 and continues to operate well, returning nearly 1 million observations per day. Approximately 10% of these are sufficiently free of cloud and aerosol contamination to allow for an accurate determination of the column mean carbon dioxide dry air mole fraction, XCO2. The measurements have relatively low noise, of order 0.5-1.0 ppm for most nadir soundings over land and sun-glint geometry soundings over water surfaces. A number of changes have been made to the observing strategy to maintain performance and enhance the science quality of the data: change in glint yaw angle in October 2014, change in nadir glint cycling in July 2015, change to nadir yaw and glint orbit optimization in late 2015, in addition to periodic instrument cyclings. In this presentation, we will summarize the data quality enabled via comparison to a number of validation metrics, discuss the current health and long-term prospects for the instrument, and give an overview of some early science results from the first 18 months of observations. While XCO2 and other products are still being validated to identify and correct biases, OCO-2's XCO2 observations are starting to reveal the most robust features of the atmospheric carbon cycle. At regional scales, fluxes from the eastern U.S. and China are most clear in the fall, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the some parts of the tropics, in particular central Africa, is also obvious in the fall. The annual growth rate of CO2 was anomalously high in 2015 according to OCO-2, consistent with NOAA surface measurements and in accord with the warmer annual average surface temperature that year. This was also apparent in the decreased northern hemisphere summer uptake, likely due to anomalously warm boreal temperatures in the northern hemisphere summer of 2015.

  16. Solar angle reference manual

    SciTech Connect

    Sibson, R.

    1983-01-01

    The introduction is the only text in the volume; the rest of the book contains easy-to-use graphical methods for building design and construction using solar energy. Isogonic charts and solar angle diagrams are included. Isogonic charts. Solar angle diagrams.

  17. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  18. Multi-Angle Views of the Appalachian Mountains, 6 March 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The true-color image at left is a downward-looking (nadir) view of the eastern United States, stretching from Lake Ontario to northern Georgia, and spanning the Appalachian Mountains. The three images to the right are also in true-color, taken by the forward 45.6-degree, 60.0-degree, and 70.5-degree cameras, respectively, of the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. As the slant angle increases, the line-of-sight through the atmosphere grows longer, and a pall of haze over the Appalachians becomes progressively more apparent. You can see a similar effect by scanning from near-nadir to the horizon when standing on a mountain top or looking out an airplane window. MISR uses this multi-angle technique to monitor particulate pollution and to distinguish different types of haze. These observations reveal how airborne particles are interacting with sunlight, a measure of their impact on Earth's climate system. The images are about 400 km (250 miles) wide, and the spatial resolution is 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  19. Metrology of angles in astronomy

    NASA Astrophysics Data System (ADS)

    Kovalevsky, Jean

    2004-10-01

    In astronomy, measurements of angles play a major role. After defining the units in use in astronomy, three methods of measuring angles are presented, with an application to the transit instrument. The interferometric techniques for measuring large angles are described in optical and radio wavelengths. Due to the atmospheric and mechanical limitation on ground, space astrometry has multiple advantages. The satellite Hipparcos is described and the data reduction procedures and results obtained are sketched. In the future, two new astrometric space missions are approved: GAIA, based on Hipparcos principles and SIM, a space interferometer. They are described and the expected accuracies are presented. To cite this article: J. Kovalevsky, C. R. Physique 5 (2004).

  20. Photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  1. Estimation of Sea Wave Heights by Two-Frequency Cross-Correlation Function of Reflected Signals of a Spaceborne Radar Altimeter with Nadir Synthesis of Antenna Aperture

    NASA Astrophysics Data System (ADS)

    Ka, Min-Ho; Baskakov, Aleksandr I.; Terekhov, Vladimir A.

    In the work we introduce novel approach to remote sensing from space for the estimation of sea wave heights with a spaceborne high precision two-frequency radar altimeter with nadir synthesis antenna aperture. Experiments show considerable reduction of the decorrelation factor of the correlation coefficient and so significant enhancement of the sensitivity of the altimeter for the estimation for the sea wave status.

  2. Reading Angles in Maps

    PubMed Central

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2013-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15–53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare 2D to 3D angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to 2D and 3D displays and that serves to interpret novel spatial symbols. PMID:23647223

  3. Angles, Time, and Proportion

    ERIC Educational Resources Information Center

    Pagni, David L.

    2005-01-01

    This article describes an investigation making connections between the time on an analog clock and the angle between the minute hand and the hour hand. It was posed by a middle school mathematics teacher. (Contains 8 tables and 6 figures.)

  4. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. PMID:23647223

  5. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  6. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: A multi-institutional analysis

    SciTech Connect

    Ray, Michael E. . E-mail: mray@umich.edu; Thames, Howard D.; Levy, Larry B.; Horwitz, Eric M.; Kupelian, Patrick A.; Martinez, Alvaro A.; Michalski, Jeff M.; Pisansky, Thomas M.; Shipley, William U.; Zelefsky, Michael J.; Zietman, Anthony L.; Kuban, Deborah A.

    2006-03-15

    Purpose: To determine the significance of prostate-specific antigen (PSA) nadir (nPSA) and the time to nPSA (T{sub nPSA}) in predicting biochemical or clinical disease-free survival (PSA-DFS) and distant metastasis-free survival (DMFS) in patients treated with definitive external beam radiotherapy (RT) for clinical Stage T1b-T2 prostate cancer. Methods and Materials: Nine participating institutions submitted data on 4839 patients treated between 1986 and 1995 for Stage T1b-T2cN0-NxM0 prostate cancer. All patients were treated definitively with RT alone to doses {>=}60 Gy, without neoadjuvant or planned adjuvant androgen suppression. A total of 4833 patients with a median follow-up of 6.3 years met the criteria for analysis. Two endpoints were considered: (1) PSA-DFS, defined as freedom from PSA failure (American Society for Therapeutic Radiology and Oncology definition), initiation of androgen suppression after completion of RT, or documented local or distant failure; and (2) DMFS, defined as freedom from clinically apparent distant failure. In patients with failure, nPSA was defined as the lowest PSA measurement before any failure. In patients without failure, nPSA was the lowest PSA measurement during the entire follow-up period. T{sub nPSA} was calculated from the completion of RT to the nPSA date. Results: A greater nPSA level and shorter T{sub nPSA} were associated with decreased PSA-DFS and DMFS in all patients and in all risk categories (low [Stage T1b, T1c, or T2a, Gleason score {<=}6, and PSA level {<=}10 ng/mL], intermediate [Stage T1b, T1c, or T2a, Gleason score {<=}6, and PSA level >10 but {<=}20 ng/mL, or Stage T2b or T2c, Gleason score {<=}6, and PSA level {<=}20 ng/mL, or Gleason score 7 and PSA level {<=}20 ng/mL], and high [Gleason score 8-10 or PSA level >20 ng/mL]), regardless of RT dose. The 8-year PSA-DFS and DMFS rate for patients with nPSA <0.5 ng/mL was 75% and 97%; nPSA {>=}0.5 but <1.0 ng/mL, 52% and 96%; nPSA {>=}1.0 but <2.0 ng/mL, 40

  7. External Beam Radiotherapy for Clinically Localized Hormone-Refractory Prostate Cancer: Clinical Significance of Nadir Prostate-Specific Antigen Value Within 12 Months

    SciTech Connect

    Ogawa, Kazuhiko Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Shioyama, Yoshiyuki; Araya, Masayuki; Mukumoto, Nobutaka M.S.; Mitsumori, Michihide; Teshima, Teruki

    2009-07-01

    Purpose: To analyze retrospectively the results of external beam radiotherapy for clinically localized hormone-refractory prostate cancer and investigate the clinical significance of nadir prostate-specific antigen (PSA) value within 12 months (nPSA12) as an early estimate of clinical outcomes after radiotherapy. Methods and Materials: Eighty-four patients with localized hormone-refractory prostate cancer treated with external beam radiotherapy were retrospectively reviewed. The total radiation doses ranged from 30 to 76 Gy (median, 66 Gy), and the median follow-up period for all 84 patients was 26.9 months (range, 2.7-77.3 months). Results: The 3-year actuarial overall survival, progression-free survival (PFS), and local control rates in all 84 patients after radiotherapy were 67%, 61%, and 93%, respectively. Although distant metastases and/or regional lymph node metastases developed in 34 patients (40%) after radiotherapy, local progression was observed in only 5 patients (6%). Of all 84 patients, the median nPSA12 in patients with clinical failure and in patients without clinical failure was 3.1 ng/mL and 0.5 ng/mL, respectively. When dividing patients according to low (<0.5 ng/mL) and high ({>=}0.5 ng/mL) nPSA12 levels, the 3-year PFS rate in patients with low nPSA12 and in those with high nPSA12 was 96% and 44%, respectively (p < 0.0001). In univariate analysis, nPSA12 and pretreatment PSA value had a significant impact on PFS, and in multivariate analysis nPSA12 alone was an independent prognostic factor for PFS after radiotherapy. Conclusions: External beam radiotherapy had an excellent local control rate for clinically localized hormone-refractory prostate cancer, and nPSA12 was predictive of clinical outcomes after radiotherapy.

  8. A Clinical Study of Mandibular Angle Fracture

    PubMed Central

    Yoon, Wook-Jae; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek; Lim, Kyung-Seop; Shin, Seung-Min; Kim, Cheol-Man

    2014-01-01

    Purpose: To establish management protocol for mandibular angle fracture, we describe pertinent factors including cause, impacted third molar and recent treatment tendency. Methods: We examined the records of 62 patients who had unilateral mandibular angle fracture. Sixty patients who had open reduction surgery were examined at postoperative weeks 1, 4, 8, 12, and 28. Results: Left mandibular angle fracture is frequent in younger males. Presence of the mandibular third molar can increase fracture risk. Because of attached muscle, favorable fractures occurred primarily in the mandibular angle area. Conclusion: Extracting the mandibular third molar can prevent angle fractures, and open reduction with only one plate adaptation is generally the proper treatment method for mandibular angle fracture. PMID:27489834

  9. Signature extension for sun angle, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, J. A. (Principal Investigator); Berry, J. K.; Heimes, F.

    1975-01-01

    The author has identified the following significant results. Within a restricted zenith sun angle range of 35 - 50 degrees, it was empirically observed that canopy reflectance is mainly Lambertian. Reflectance changes with crop stage were simple shifts in scale in the sun angle range. It was noted that sun angle variations depend on canopy characteristics. Effects of the vegetative canopy were most pronounced at the larger solar zenith angles (20 %). The linear sun angle correction coefficients demonstrate a dependency on both crop stage (15-20 %) and crop type (10-20 %). The use of canopy reflectance modeling allowed for the generation of a simulated data set over an extremely broad envelope of sun angles.

  10. Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations

    NASA Astrophysics Data System (ADS)

    Hendrick, F.; Mahieu, E.; Bodeker, G. E.; Boersma, K. F.; Chipperfield, M. P.; De Mazière, M.; De Smedt, I.; Demoulin, P.; Fayt, C.; Hermans, C.; Kreher, K.; Lejeune, B.; Pinardi, G.; Servais, C.; Stübi, R.; van der A, R.; Vernier, J.-P.; Van Roozendael, M.

    2012-05-01

    The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5° N, 8.0° E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set constructed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996-2009 period. To calculate the trends, a linear least squares regression model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990-2009 period, statistically indistinguishable trends of -3.7 ± 1.1%/decade and -3.6 ± 0.9%/decade are derived for the SAOZ and FTIR NO2 column time series, respectively. SAOZ, FTIR, and satellite nadir data sets show a similar decrease over the 1996-2009 period, with trends of -2.4 ± 1.1%/decade, -4.3 ± 1.4%/decade, and -3.6 ± 2.2%/decade, respectively. The fact that these declines are opposite in sign to the globally observed +2.5%/decade trend in N2O, suggests that factors other than N2O are driving the evolution of stratospheric NO2 at northern mid-latitudes. Possible causes of the decrease in stratospheric NO2 columns have been investigated. The most likely cause is a change in the NO2/NO partitioning in favor of NO, due to a possible stratospheric cooling and a decrease in stratospheric chlorine content, the latter being further confirmed by the negative trend in the ClONO2 column derived from FTIR observations at Jungfraujoch. Decreasing ClO concentrations slows the NO + ClO → NO2 + Cl reaction and a stratospheric cooling slows the NO + O3 → NO2 + O2 reaction, leaving more NOx in the form of NO. The slightly positive trends in ozone estimated from ground- and satellite-based data sets are also consistent with the decrease of NO2 through the NO2 + O3 → NO3 + O2 reaction. Finally

  11. Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations

    NASA Astrophysics Data System (ADS)

    Hendrick, F.; Mahieu, E.; Bodeker, G. E.; Boersma, K. F.; Chipperfield, M. P.; De Mazière, M.; De Smedt, I.; Demoulin, P.; Fayt, C.; Hermans, C.; Kreher, K.; Lejeune, B.; Pinardi, G.; Servais, C.; Stübi, R.; van der A, R.; Vernier, J.-P.; Van Roozendael, M.

    2012-09-01

    The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5° N, 8.0° E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set constructed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996-2009 period. To calculate the trends, a linear least squares regression model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990-2009 period, statistically indistinguishable trends of -3.7 ± 1.1% decade-1 and -3.6 ± 0.9% decade-1 are derived for the SAOZ and FTIR NO2 column time series, respectively. SAOZ, FTIR, and satellite nadir data sets show a similar decrease over the 1996-2009 period, with trends of -2.4 ± 1.1% decade-1, -4.3 ± 1.4% decade-1, and -3.6 ± 2.2% decade-1, respectively. The fact that these declines are opposite in sign to the globally observed +2.5% decade-1 trend in N2O, suggests that factors other than N2O are driving the evolution of stratospheric NO2 at northern mid-latitudes. Possible causes of the decrease in stratospheric NO2 columns have been investigated. The most likely cause is a change in the NO2/NO partitioning in favor of NO, due to a possible stratospheric cooling and a decrease in stratospheric chlorine content, the latter being further confirmed by the negative trend in the ClONO2 column derived from FTIR observations at Jungfraujoch. Decreasing ClO concentrations slows the NO + ClO → NO2 + Cl reaction and a stratospheric cooling slows the NO + O3 → NO2 + O2 reaction, leaving more NOx in the form of NO. The slightly positive trends in ozone estimated from ground- and satellite-based data sets are also consistent with the decrease of NO2 through the NO2 + O3 → NO3 + O2

  12. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  13. Extreme-Risk Prostate Adenocarcinoma Presenting With Prostate-Specific Antigen (PSA) >40 ng/ml: Prognostic Significance of the Preradiation PSA Nadir

    SciTech Connect

    Alexander, Abraham S.; Mydin, Aminudin; Jones, Stuart O.; Christie, Jennifer; Lim, Jan T.W.; Truong, Pauline T.; Ludgate, Charles M.

    2011-12-01

    Purpose: To examine the impact of patient, disease, and treatment characteristics on survival outcomes in patients treated with neoadjuvant androgen deprivation therapy (ADT) and radical external-beam radiotherapy (RT) for clinically localized, extreme-risk prostate adenocarcinoma with a presenting prostate-specific antigen (PSA) concentration of >40 ng/ml. Methods and Materials: A retrospective chart review was conducted of 64 patients treated at a single institution between 1991 and 2000 with ADT and RT for prostate cancer with a presenting PSA level of >40 ng/ml. The effects of patient age, tumor (presenting PSA level, Gleason score, and T stage), and treatment (total ADT duration and pre-RT PSA level) characteristics on rates of biochemical disease-free survival (bDFS), prostate cancer-specific survival (PCSS), and overall survival (OS) were examined. Results: Median follow-up time was 6.45 years (range, 0.09-15.19 years). Actuarial bDFS, PCSS, and OS rates at 5 years were 39%, 87%, and 78%, respectively, and 17%, 64%, and 45%, respectively, at 10 years. On multivariate analysis, the pre-RT PSA level ({<=}0.1 versus >0.1 ng/ml) was the single most significant prognostic factor for bDFS (p = 0.033) and OS (p = 0.018) rates, whereas age, T stage, Gleason score, and ADT duration ({<=}6 versus >6 months) were not predictive of outcomes. Conclusion: In prostate cancer patients with high presenting PSA levels, >40 ng/ml, treated with combined modality, neoadjuvant ADT, and RT, the pre-RT PSA nadir, rather than ADT duration, was significantly associated with improved survival. This observation supports the use of neoadjuvant ADT to drive PSA levels to below 0.1 ng/ml before initiation of RT, to optimize outcomes for patients with extreme-risk disease.

  14. Influences of twilight on diurnal variation of core temperature, its nadir, and urinary 6-hydroxymelatonin sulfate during nocturnal sleep and morning drowsiness.

    PubMed

    Kondo, Masayuki; Tokura, Hiromi; Wakamura, Tomoko; Hyun, Ki-Ja; Tamotsu, Satoshi; Morita, Takeshi; Oishi, Tadashi

    2009-03-01

    This study aimed at elucidating the physiological significance of dusk and dawn in the circadian rhythm of core temperature (T(core)) and urinary 6-hydroxymelatonin sulfate in humans during sleep and the waking sensation just after rising. Seven female and four male students served as participants. Participants retired at 2300 h and rose at 0700 h. They were requested to sit on a chair and spend time as quietly as possible during wakefulness, reading a book or listening to recorded light music. Two lighting conditions were provided for each participant: 1) Light-Dark (LD)-rectangular light change with abrupt decrease from 3,000 lx to 100 lx at 1800 h, abrupt increase from 0 lx to 3,000 lx at 0700 h. 2) LD-twilight light change with gradual decrease from 3,000 lx to 100 lx starting at 1700 h (twilight period about 2 h), with gradual increase from 0 lx to 3,000 lx starting at 0500 h (twilight period about 2 h). The periods of 0 lx at night were from 2300 h to 0700 h on the first day and from 2300 to 0500 h on the second day. Nadir time advanced significantly under the influence of the LD-twilight condition. The amount of 6-hydroxymelatonin sulfate in urine collected at 0200 h was significantly higher under LD-twilight in comparison with LD-rectangular light. Morning drowsiness tended to be lower under LD-twilight. Our results suggest that in architectural design of indoor illumination it is important to provide LD-twilight in the evening and early morning for sleep promotion in healthy normal people and/or light treatment in elderly patients with advanced dementia. PMID:19408625

  15. Tropical tropospheric ozone columns from nadir retrievals of GOME-1/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A (1996-2012)

    NASA Astrophysics Data System (ADS)

    Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.

    2016-07-01

    Tropical tropospheric ozone columns are retrieved with the convective cloud differential (CCD) technique using total ozone columns and cloud parameters from different European satellite instruments. Monthly-mean tropospheric column amounts [DU] are calculated by subtracting the above-cloud ozone column from the total column. A CCD algorithm (CCD_IUP) has been developed as part of the verification algorithm developed for TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel 5-precursor (S5p) mission, which was applied to GOME/ERS-2 (1995-2003), SCIAMACHY/Envisat (2002-2012), and GOME-2/MetOp-A (2007-2012) measurements. Thus a unique long-term record of monthly-mean tropical tropospheric ozone columns (20° S-20° N) from 1996 to 2012 is now available. An uncertainty estimation has been performed, resulting in a tropospheric ozone column uncertainty less than 2 DU ( < 10 %) for all instruments. The dataset has not been yet harmonised into one consistent; however, comparison between the three separate datasets (GOME/SCIAMACHY/GOME-2) shows that GOME-2 overestimates the tropical tropospheric ozone columns by about 8 DU, while SCIAMACHY and GOME are in good agreement. Validation with Southern Hemisphere ADditional OZonesondes (SHADOZ) data shows that tropospheric ozone columns from the CCD_IUP technique and collocated integrated ozonesonde profiles from the surface up to 200 hPa are in good agreement with respect to range, interannual variations, and variances. Biases within ±5 DU and root-mean-square (RMS) deviation of less than 10 DU are found for all instruments. CCD comparisons using SCIAMACHY data with tropospheric ozone columns derived from limb/nadir matching have shown that the bias and RMS deviation are within the range of the CCD_IUP comparison with the ozonesondes. The 17-year dataset can be helpful for evaluating chemistry models and performing climate change studies.

  16. Tree branch angle: maximizing effective leaf area.

    PubMed

    Honda, H; Fisher, J B

    1978-02-24

    In a computer simulation of branching pattern and leaf cluster in Terminalia catappa, right and left branch angles were varied, and the effective leaf surface areas were calculated. Theoretical branch angles that result in maximum effective leaf area are close to the values observed in nature. PMID:17757590

  17. A Nadir-adjusted Airborne Multi Spectral Imaging System (NAMSIS) for high-resolution remote sensing of carbon fluxes

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Scott, S.; Rahman, A. F.

    2012-12-01

    Satellite remote sensing is widely used in vegetation monitoring, water stress detection and carbon cycle modeling. However, image pixels from high temporal resolution satellite sensors (such as MODIS) have coarse spatial resolution, much larger than the canopies they are supposed to characterize. An alternative solution for on-demand high spatial resolution remote sensing is sensors onboard low-flying aircrafts. Airborne remote sensing has been traditionally used in crop management studies. In this presentation we demonstrate the application of a relatively low-cost airborne sensor system with customized spectral band combinations for studying forest carbon fluxes. Our team has developed an Inertia Measurement Unit (IMU) controlled automated system to detach aircraft movements (pitch and roll) and engine vibration from the six-band programmable imager, in order to maintain the sensor at nadir view at all times during the flight. Flight lines are configured by a GPS-controleld system to simulate MODIS pixels. A feature-based algorithm is used to automatically generate a mosaic of individual images along the flight lines. This algorithm eliminates the need to mosiac and georeference images manually. An empirical line method is used to calculate reflectance from the raw data. Images from this airborne system produce reflectance values that are comparable with MODIS reflectance product. These high spatial resolution (~0.5 m) images deliver detailed information about tree species and phenological conditions within each MODIS pixel, and thus permit a high resolution spatio-temporal assessment of forest carbon fluxes.

  18. Concurrent Measurements of the PMC mass on the Limb and in the Nadir: New Constraints on Hemispheric Asymmetries

    NASA Astrophysics Data System (ADS)

    Stevens, M. H.; Englert, C. R.; Bailey, S. M.; Deland, M. T.

    2006-05-01

    Recent satellite observations suggest that polar mesospheric clouds (PMCs) occur more frequently and are brighter in the north compared to the south. However, a determination of how much more ice is present in the north requires a more direct standard of measurement. The PMC ice mass, calculated using both the PMC occurrence frequency and brightness, is one such standard. The PMC mass is a useful quantity for interpreting observations of solar backscattered light (θ>90°) from PMCs because it is relatively insensitive to variations in characteristics of the ice particle size distribution, used to compute the ice mass column from the cloud brightness. The Student Nitric Oxide Explorer (SNOE) and the Solar Backscatter Ultraviolet (SBUV) instruments simultaneously measured solar backscattered light from PMCs in both hemispheres between 1998-2003. SNOE observed PMCs on the limb while SBUV has observed PMCs in the nadir every year since 1979. Using data from the same latitudes (70±2.5°) and local times, we compare the PMC mass observed by both instruments in both hemispheres. Ice particle radii inferred from simultaneous measurements at three SBUV wavelengths in the mid-UV are greater than 80 nm in both hemispheres. These radii are larger than those typically inferred from more sensitive limb-viewing instruments such as SNOE, providing new constraints for global-scale climate models.

  19. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  20. The Rainbow Angle.

    ERIC Educational Resources Information Center

    Sims, B.

    1978-01-01

    Two articles in the "Scientific American" form the background of this note. The rainbow angle for the primary bow of a monochromatic Cartesian rainbow is calculated. Special projects for senior high school students could be patterned after this quantitative study. (MP)

  1. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  2. Yaw Angle Demonstration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Large Angle Magnetic Suspension Test Fixture (LAMSTF) is a 5 degree-of -freedom repulsive force magnetic suspension system designed to study the control of objects over large magnetic gaps. A digital control algorithm uses 6 sets of laser-sheet sensors and 5 control coils to position a cylinder 3' above the plane of electromagnetics

  3. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  4. Measurements of terrestrial IR radiation by a medium-angle receiver

    NASA Astrophysics Data System (ADS)

    Korneeva, L. V.; Priakhin, E. A.

    Measurements of terrestrial IR radiation by a medium-angle nonscanning single-channel radiometer with spectral sensitivity of 0.3-30 microns, energy band of the measured brightnesses of 63-250 W/sq m sr, accuracy of better than 1 percent, and viewing angle of 45 deg are analyzed. The instrument, based on the Meteor-2 satellite, is nadir-oriented and covers a spot 680 km in diameter. The measurements are divided into three longitudinal regions (145 deg W, 120 deg W, and 90 deg E); a considerable drop in registered radiation is noted in the 30-50 deg N region. It is indicated that the lowest fluxes were registered in both hemispheres, as compared with data available for the longwave region, with the differences not exceeding 2.5 percent in the presence of clouds and 7 percent otherwise.

  5. Detecting blind building façades from highly overlapping wide angle aerial imagery

    NASA Astrophysics Data System (ADS)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  6. Divergent-ray projection method for measuring the flapping angle, lag angle, and torsional angle of a bumblebee wing

    NASA Astrophysics Data System (ADS)

    Zeng, Lijiang; Matsumoto, Hirokazu; Kawachi, Keiji

    1996-11-01

    A divergent-ray projection (DRP) method was developed for measuring the flapping angle, lag angle, and torsional angle of bumblebee wing during beating motion. This new method can measure the spatial coordinates of an insect wing by digitizing the images that are projected by two divergent laser rays from different directions. The advantage of the DRP method is its ability to measure those three angles simultaneously using only one high-speed camera. The resolution of the DRP method can be changed easily by adjusting system parameters to meet the needs of different types of objects. The measurement results for these angles of a bumblebee wing probe the effectiveness of the DRP method in studying the flight performance of insects.

  7. Dose to specific subregions of pelvic bone marrow defined with FDG-PET as a predictor of hematologic nadirs during concomitant chemoradiation in anal cancer patients.

    PubMed

    Franco, Pierfrancesco; Arcadipane, Francesca; Ragona, Riccardo; Lesca, Adriana; Gallio, Elena; Mistrangelo, Massimiliano; Cassoni, Paola; Arena, Vincenzo; Bustreo, Sara; Faletti, Riccardo; Rondi, Nadia; Morino, Mario; Ricardi, Umberto

    2016-07-01

    To test the hypothesis that irradiated volume of specific subregions of pelvic active bone marrow as detected by (18)FDG-PET may be a predictor of decreased blood cells nadirs in anal cancer patients undergoing concurrent chemoradiation, we analyzed 44 patients submitted to IMRT and concurrent chemotherapy. Several bony structures were defined: pelvic and lumbar-sacral (LSBM), lower pelvis (LPBM) and iliac (IBM) bone marrow. Active BM was characterized employing (18)FDG-PET and characterized in all subregions as the volume having standard uptake values (SUVs) higher than SUVmean. All other regions were defined as inactive BM. On dose-volume histograms, dosimetric parameters were taken. Endpoints included white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin (Hb) and platelet (Plt) nadirs. Generalized linear modeling was used to find correlations between dosimetric variables and blood cells nadirs. WBC nadir was significantly correlated with LSBM mean dose (β = -1.852; 95 % CI -3.205/-0.500; p = 0.009), V10 (β = -2.153; 95 % CI -4.263/-0.721; p = 0.002), V20 (β = -2.081; 95 % CI -4.880/-0.112; p = 0.003), V30 (β = -1.971; 95 % CI -4.748/-0.090; p = 0.023) and IBM V10 (β = -0.073; 95 % CI -0.106/-0.023; p = 0.016). ANC nadir found to be significantly associated with LSBM V10 (β = -1.878; 95 % CI -4.799/-0.643; p = 0.025), V20 (β = -1.765; 95 % CI -4.050/-0.613; p = 0.030) and IBM V10 (β = -0.039; 95 % CI -0.066/-0.010; p = 0.027). Borderline significance was found for correlation between Plt nadir and LSBM V30 (β = -0.056; 95 % CI -2.748/-0.187; p = 0.060), V40 (β = -0.059; 95 % CI -3.112/-0.150; p = 0.060) and IBM V30 (β = -0.028; 95 % CI -0.074/-0.023; p = 0.056). No inactive BM subsites were found to be correlated with any blood cell nadir. (18)FDG-PET is able to define active bone marrow within pelvic osseous structures. LSBM is the strongest predictor of decreased blood cells

  8. On the effect of emergence angle on emissivity spectra: application to small bodies

    NASA Astrophysics Data System (ADS)

    Maturilli, Alessandro; Helbert, Jörn; Ferrari, Sabrina; D'Amore, Mario

    2016-05-01

    Dependence of laboratory-measured emissivity spectra from the emergence angle is a subject that still needs a lot of investigations to be fully understood. Most of the previous work is based on reflectance measurements in the VIS-NIR spectral region and on emissivity measurements of flat, solid surfaces (mainly metals), which are not directly applicable to the analysis of remote sensing data. Small bodies in particular (c.f. asteroids Itokawa and 1999JU3, the respective targets of JAXA Hayabusa and Hayabusa 2 missions) have a very irregular surface; hence, the spectra from those rough surfaces are difficult to compare with laboratory spectra, where the observing geometry is always close to "nadir." At the Planetary Emissivity Laboratory of the German Aerospace Center (DLR), we have set up a series of spectral measurements to investigate this problem in the 1- to 16-µm spectral region. We measured the emissivity for two asteroid analogue materials (meteorite Millbillillie and a synthetic enstatite) in vacuum and under purged air, at surface temperature of 100 °C, for emergence angles of 0°, 5°, 10°, 20°, 30°, 40°, 50°, and 60°. Emissivity of a serpentinite slab, already used as calibration target for the MARA instrument on Hayabusa 2 MASCOT lander and for the thermal infrared imager spectrometer on Hayabusa 2 orbiter, was measured under the same conditions. Additionally, a second basalt slab was measured. Both slabs were not measured at 5° inclination. Complementary reflectance measurements of the four samples were taken. For all the samples measured, we found that for calibrated emissivity, significant variations from values obtained at nadir (0° emergence angle) appear only for emergence angles ≥40°. Reflectance measurements confirmed this finding, showing the same trend of variations.

  9. Supercritical Angle Fluorescence Correlation Spectroscopy

    PubMed Central

    Ries, Jonas; Ruckstuhl, Thomas; Verdes, Dorinel; Schwille, Petra

    2008-01-01

    We explore the potential of a supercritical angle (SA) objective for fluorescence correlation spectroscopy (FCS). This novel microscope objective combines tight focusing by an aspheric lens with strong axial confinement of supercritical angle fluorescence collection by a parabolic mirror lens, resulting in a small detection volume. The tiny axial extent of the detection volume features an excellent surface sensitivity, as is demonstrated by diffusion measurements in model membranes with an excess of free dye in solution. All SA-FCS measurements are directly compared to standard confocal FCS, demonstrating a clear advantage of SA-FCS, especially for diffusion measurements in membranes. We present an extensive theoretical framework that allows for accurate and quantitative evaluation of the SA-FCS correlation curves. PMID:17827221

  10. A Different Angle on Perspective

    ERIC Educational Resources Information Center

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  11. A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU

    NASA Astrophysics Data System (ADS)

    McLandress, C.; Shepherd, T. G.; Jonsson, A. I.; von Clarmann, T.; Funke, B.

    2015-08-01

    A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980-2012 are -0.63 ± 0.13, -0.71 ± 0.15 and -0.80 ± 0.17 K decade-1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade-1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere-ocean models over the 1980-2012 period, including the continued cooling over the first decade of the 21st century.

  12. Measurement of Peak Esophageal Luminal Cross Sectional Area Utilizing Nadir Intraluminal Impedance

    PubMed Central

    Zifan, Ali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K

    2015-01-01

    BACKGROUND Multichannel intraluminal impedance (MII) is currently used to monitor gastroesophageal reflux and esophageal bolus clearance. We describe a novel methodology to measure maximal luminal CSA during bolus transport from MII measurements. METHODS Studies were conducted in-vitro (test tubes) and in-vivo (healthy subjects). Concurrent MII, HRM, and intraluminal ultrasound (US) were recorded 7 cm above the lower esophageal sphincter. Swallows with two concentrations of saline, 0.1N and 0.5N, of bolus volumes 5cc, 10cc and 15cc were performed. The CSA was estimated by solving two algebraic Ohm’s law equations, resulting from the two saline solutions. The CSA calculated from impedance method was compared with the CSA measured from the intraluminal US images. KEY RESULTS The CSA measured in duplicate from B-mode US images showed a mean difference between the two manual delineations to be near zero, and the repeatability coefficient was within 7.7% of the mean of the two CSA measurements. The calculated CSA from the impedance measurements strongly correlated with the US measured CSA (R2 ≅ 0.98). A detailed statistical analysis of the impedance and US measured CSA data indicated that the 95% limits of agreement between the two methods ranged from −9.1 to 13mm2. The root mean square error (RMS) of the two measurements was 4.8% of the mean US-measured CSA. CONCLUSIONS We describe a novel methodology to measure peak esophageal luminal CSA during peristalsis. Further studies are needed to determine if it is possible to measure patterns of luminal distension during peristalsis across the entire length of the esophagus. PMID:25930157

  13. Angles in the Sky?

    NASA Astrophysics Data System (ADS)

    Behr, Bradford

    2005-09-01

    Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.

  14. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  15. Angle states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.; Iguain, J. L.

    1998-12-01

    Angle states and angle operators are defined for a system with arbitrary angular momentum. They provide a reasonable formalization of the concept of angle provided that we accept that the angular orientation is quantized. The angle operator is the generator of boosts in angular momentum and is, almost everywhere, linearly related to the logarithm of the shift operator. Angle states for fermions and bosons behave differently under parity transformation.

  16. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  17. Experimental study of crossing angle collision

    SciTech Connect

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-05-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small ({approximately}12mrad) crossing angle is to excite 5Q{sub x}{plus_minus}Q{sub s}=integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle ({approximately}2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured.

  18. Wide Angle Movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  19. Perceptions of tilt angles of an agricultural tractor.

    PubMed

    Görücü, Serap; Cavallo, Eugenio; Murphy, Dennis

    2014-01-01

    A tractor stability simulator has been developed to help study tractor operators' perceptions of angles when the simulator is tilted to the side. The simulator is a trailer-mounted tractor cab equipped with hydraulic lift that can tilt the tractor cabin up to 30 degrees. This paper summarizes data from 82 participants who sat in the simulator while it was tilted. Demographic variables, estimates of tilt angles, and measured tilt angles were collected. The effects of age, gender, tractor driving experience, and frequency of operation on the estimated and measured tilt angles were analyzed. The results showed that about 50% of the participants reported estimations of side tilt angles within ±5 degrees of the actual angles, and nearly the same percentage overestimated the actual side tilt angles. Only a small percentage underestimated the angles. Older, more experienced, and male participants set higher limits on the actual angle at which they felt uncomfortable and would not drive. PMID:24417527

  20. Angle amplifier based on multiplexed volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan

    2008-03-01

    Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.

  1. Study on self-calibration angle encoder using simulation method

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xue, Zi; Huang, Yao; Wang, Xiaona

    2016-01-01

    The angle measurement technology is very important in precision manufacture, optical industry, aerospace, aviation and navigation, etc. Further, the angle encoder, which uses concept `subdivision of full circle (2π rad=360°)' and transforms the angle into number of electronic pulse, is the most common instrument for angle measurement. To improve the accuracy of the angle encoder, a novel self-calibration method was proposed that enables the angle encoder to calibrate itself without angle reference. An angle deviation curve among 0° to 360° was simulated with equal weights Fourier components for the study of the self-calibration method. In addition, a self-calibration algorithm was used in the process of this deviation curve. The simulation result shows the relationship between the arrangement of multi-reading heads and the Fourier components distribution of angle encoder deviation curve. Besides, an actual self-calibration angle encoder was calibrated by polygon angle standard in national institute of metrology, China. The experiment result indicates the actual self-calibration effect on the Fourier components distribution of angle encoder deviation curve. In the end, the comparison, which is between the simulation self-calibration result and the experiment self-calibration result, reflects good consistency and proves the reliability of the self-calibration angle encoder.

  2. Skylab S-193 radar altimeter experiment analyses and results

    NASA Technical Reports Server (NTRS)

    Brown, G. S. (Editor)

    1977-01-01

    The design of optimum filtering procedures for geoid recovery is discussed. Statistical error bounds are obtained for pointing angle estimates using average waveform data. A correlation of tracking loop bandwidth with magnitude of pointing error is established. The impact of ocean currents and precipitation on the received power are shown to be measurable effects. For large sea state conditions, measurements of sigma 0 deg indicate a distinct saturation level of about 8 dB. Near-nadir less than 15 deg values of sigma 0 deg are also presented and compared with theoretical models. Examination of Great Salt Lake Desert scattering data leads to rejection of a previously hypothesized specularly reflecting surface. Pulse-to-pulse correlation results are in agreement with quasi-monochromatic optics theoretical predictions and indicate a means for estimating direction of pointing error. Pulse compression techniques for and results of estimating significant waveheight from waveform data are presented and are also shown to be in good agreement with surface truth data. A number of results pertaining to system performance are presented.

  3. Variable angle correlation spectroscopy

    SciTech Connect

    Lee, Y K

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  4. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    PubMed Central

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (P<0.001 for all variables). Between 2 weeks and 18 months after LPI, a significant decrease in angle width was observed over time in treated eyes (P<0.001 for all variables), although the change over the first 5.5 months was not statistically significant for angle width measured under gonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1

  5. Prostate-specific antigen nadir after high-dose-rate brachytherapy predicts long-term survival outcomes in high-risk prostate cancer

    PubMed Central

    Satoh, Takefumi; Ishiyama, Hiromichi; Tabata, Ken-ichi; Komori, Shouko; Sekiguchi, Akane; Ikeda, Masaomi; Kurosaka, Shinji; Fujita, Tetsuo; Kitano, Masashi; Hayakawa, Kazushige; Iwamura, Masatsugu

    2016-01-01

    Purpose To evaluate the prognostic value of prostate-specific antigen nadir (nPSA) after high-dose-rate (HDR) brachytherapy in clinically non-metastatic high-risk prostate cancer patients. Material and methods Data from 216 patients with high-risk or locally advanced prostate cancer who underwent HDR brachytherapy and external beam radiation therapy with long-term androgen deprivation therapy (ADT) between 2003 and 2008 were analyzed. The median prostate-specific antigen (PSA) level at diagnosis was 24 ng/ml (range: 3-338 ng/ml). The clinical stage was T1c-2a in 55 cases (26%), T2b-2c in 48 (22%), T3a in 75 (35%), and T3b-4 in 38 (17%). The mean dose to 90% of the planning target volume was 6.3 Gy/fraction of HDR brachytherapy. After 5 fractions, external beam radiation therapy with 10 fractions of 3 Gy was administered. All patients initially underwent neoadjuvant ADT for at least 6 months, and adjuvant ADT was continued for 36 months. The median follow-up was 7 years from the start of radiotherapy. Results The 7-year PSA relapse-free rate among patients with a post-radiotherapy nPSA level of ≤ 0.02 ng/ml was 94%, compared with 23% for patients with higher nPSA values (HR = 28.57; 95% CI: 12.04-66.66; p < 0.001). Multivariate analysis revealed that the nPSA value after radiotherapy was a significant independent predictor of biochemical failure, whereas pretreatment predictive values for worse biochemical control including higher level of initial PSA, Gleason score ≥ 8, positive biopsy core rate ≥ 67%, and T3b-T4, failed to reach independent predictor status. The 7-year cancer-specific survival rate among patients with a post-radiotherapy nPSA level of ≤ 0.02 ng/ml was 99%, compared with 82% for patients with higher nPSA values (HR = 32.25; 95% CI: 3.401-333.3; p = 0.002). Conclusions A post-radiotherapy nPSA value of ≤ 0.02 ng/ml was associated with better long-term biochemical tumor control even if patients had pretreatment predictive values for worse

  6. Meridional Distribution of CH3C2H and C4H2 in Saturn's Stratosphere from CIRS/Cassini Limb and Nadir Observations

    NASA Technical Reports Server (NTRS)

    Guerlet, Sandrine; Fouchet, Thierry; Bezard, Bruno; Moses, Julianne I.; Fletcher, Leigh N.; Simon-Miller, Amy A.; Flasar, F. Michael

    2010-01-01

    Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 deg S to 45 deg N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules. Poleward of 60 deg S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes. Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) 10(exp -10) for C4H2 and of (1.1 +/- 0.3) 10(exp -9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. Finally, we provide

  7. A Note on Angle Construction

    ERIC Educational Resources Information Center

    Francis, Richard L.

    1978-01-01

    The author investigates the construction of angles (using Euclidean tools) through a numerical approach. He calls attention to the surprising impossibility of constructing the conventional units of angle measure--the degree, minute, second, radian, and mil. (MN)

  8. Utilizing the US Lab Nadir Research Window for Remote Sensing Operations with The Window Observational Research Facility (WORF)

    NASA Technical Reports Server (NTRS)

    Turner, Richard; Barley, Bryan; Gilbert, Paul A. (Technical Monitor)

    2002-01-01

    The Window Observational Research Facility (WORF) is an ISPR-based rack facility designed to take advantage of the high optical quality US Lab Nadir research window. The WORF is based on the ISS Expedite the Processing of Experiments to Space Station (EXPRESS) rack mechanical structure and electronic systems. The WORF has a unique payload volume located at the center of the rack that provides access to the window. The interior dimensions of the payload volume are 34-in. (86.36 cm) wide by 33-in. (83.82 cm) high by 23-in. (58.42 cm) deep. This facility supports the deployment of payloads such as 9 in. aerial photography cameras and 12 in. diameter optical equipment. The WORF coupled with the optical quality of the United States Lab window support the deployment of various payload disciplines. The WORF provides payloads with power, data command and control, air cooling, water cooling, and video processing. The WORF's payload mounting surfaces and interfaces include the interior payload mounting shelf and the interior and exterior aircraft-like seat tracks. The payload mounting shelf is limited to a maximum mass of 136 kg (299 pounds). The WORF can accommodate large payloads such as the commonly used Leica-Heerbrug RC-30 aerial photography camera (whose dimensions are 53.3 cm (21-in.) wide by 50.8 cm (20-in.) deep by 76.2 cm (30-in.) long). The performance characteristics of the WORF allow it to support an array of payload disciplines. The WORF provides a maximum of 3 Kw at 28 Vdc and has a maximum data rate of 10 Mbps. The WORF's unique payload volume is designed to be light-tight, down to 2.8 x 10(exp -11) Watts/cm2/steradian, and have low-reflective surfaces. This specially designed WORF interior supports payload investigations that observe low-light-level phenomenon such as aurora. Although the WORF rack does not employ any active rack isolation (i.e., vibration dampening) technology, the rack provides a very stable environment for payload operations (on the order

  9. High-resolution solid air gapped etalon in the 9500-nm region: application for nadir remote sounding of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Kumer, John B.; Rairden, Richard L.; Roche, Aidan E.; Mergenthaler, John L.; Naes, Lawrence G., Jr.; Jamieson, Thomas H.; Stephen, Thomas

    2003-03-01

    We present test data for a solid ZnSe air gapped etalon with free spectral range 3 cm-1 and finesse >70 (i.e., spectral resolution <0.043 cm-1). We present an instrument concept, the Tropopsheric Ozone Sounding (TOS) Dual Etalon Cross Tilt Order Sorting Spectrometer (DECTOSS), that would use an etalon like this to acquire nadir data at resolution <0.06 cm-1 and signal to noise the order 1000 on a range from 1036 to 1071 cm-1 in footprints with crosstrack dimension selectable (e.g., the order tens to hundreds of km), and with along track dimension the order 17 km. Instrument accommodation is the order 25 kg, 110 W and 1 mbps. We present linear error analysis for retrieval of tropospheric ozone from the data acquired by the TOS-DECTOSS. Indication is that more than 2.5 vertical layers of information on tropospheric information are retrievable. An example of the deployment of the TOS-DECTOSS would be as an instrument of opportunity (IOO) add on to the US National Polar-orbiting Operational Environmental Satellite System (NPOESS). The huge advantage of the TOS-DECTOSS as compared with UV techniques for tropospheric ozone measurement is that it the can be used both day and night, the latter is not possible in the UV. The considerable advantage in signal to noise compared with a Fourier Transform Spectrometer (FTS) for tropospheric ozone measurement, on considering that for a given footprint the DECTOSS and FTS integration times are comparable, is that the DECTOSS noise per spectral sample is dominated by statistical fluctuations of signal photons that are passed through its narrow 0.06 cm-1 bandpass, while for a similar FTS spectral sample the noise is due to fluctuations of the signal photons through the FTS bandpass of tens of cm-1. The TOS-DECTOSS signal to noise advantage on the FTS is also enhanced in that the spectral sample density of the TOS-DECTOSS data is more than one hundred times larger than for the FTS.

  10. Angle only tracking with particle flow filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.

  11. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  12. Sun angle calculator

    NASA Technical Reports Server (NTRS)

    Flippin, A.; Schmitt, A. L. (Inventor)

    1976-01-01

    A circular computer and system is disclosed for determining the sun angle relative to the horizon from any given place and at any time. The computer includes transparent, rotatably mounted discs on both sides of the circular disc member. Printed on one side of the circular disc member are outer and inner circular sets of indicia respectively representative of site longitude and Greenwich Mean Time. Printed on an associated one of the rotatable discs is a set of indicia representative of Solar Time. Printed on the other side of the circular disc member are parallel lines representative of latitude between diametral representations of North and South poles. Elliptical lines extending between the North and South poles are proportionally disposed on the surface to scale Solar Time in hours.

  13. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  14. No differences in metabolic outcomes between nadir GH 0.4 and 1.0 ng/mL during OGTT in surgically cured acromegalic patients (observational study).

    PubMed

    Ku, Cheol Ryong; Choe, Eun Yeong; Hong, Jae Won; Kim, Eui Hyun; Park, Se Hee; Kim, Sun Ho; Lee, Eun Jig

    2016-06-01

    Metabolic impairment is the common cause for mortality in acromegalic patients. In this study, long-term improvements of metabolic parameters were evaluated according to 2 different remission criteria.This was an observational cohort study before and up to 1 year after transsphenoidal adenomectomy (TSA). Participants were 187 patients with acromegaly. At 6 months after TSA, remitted patients with age- and sex-matched normalized IGF-1 were divided into 2 groups: remission 1 (R1), nadir growth hormone (GH) below 0.4 ng/mL; and remission 2 (R2), nadir GH between 0.4 and 1.0 ng/mL in oral glucose tolerance test (OGTT). Metabolic parameters during serial OGTTs were evaluated for 12 months. Remission was achieved in 157 (R1-136; R2-21) patients. Immediate postoperative metabolic parameters including body weight, body mass index, glucose, insulin, and free fatty acid in OGTT were all significantly improved in R1 and R2. HOMA-%β and HOMA-IR scores also improved in both R1 and R2. These improvements persisted for duration (12 months) of this study. However, no difference was present in metabolic parameters between R1 and R2. Although the patients with preoperative adrenal insufficiency presented significantly increased HOMA scores before TSA, there was no difference between classifications of deficient pituitary axes and changes of metabolic parameters after TSA. Remitted patients exhibited rapid restoration of metabolic parameters immediate postoperative period. Long-term improvements in metabolic parameters were not different between the 2 different nadir GH cut-offs, 0.4 and 1.0 ng/mL. PMID:27310957

  15. Gonioscopy in primary angle closure glaucoma.

    PubMed

    Bruno, Christina A; Alward, Wallace L M

    2002-06-01

    Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae. PMID:15513458

  16. Satellite navigation for meteorological purposes - Inverse referencing for NOAA-N and ERS-1 imagers with a 1 km nadir pixel size

    NASA Astrophysics Data System (ADS)

    Klokocnik, J.; Kostelecky, J.; Grassl, H.; Schluessel, P.; Pospisilova, L.; Gooding, R. H.; Lala, P.

    1992-08-01

    Inverse referencing navigation for meteorological satellites NOAA-N and the remote sensing satellite ERS-1 is studied and the PIXPOS software package has been developed and applied to radiometer observations from NOAA-N satellites. By inverse referencing, the geodetic coordinates of a point on the surface are given, and the corresponding image coordinates are obtained from satellite orbital elements or coordinates. Iterative techniques for inverse referencing from mean orbital elements or osculating position and velocity, accounting for all required orbital perturbations with respect to given nadir pixel size, are presented.

  17. Near-Nadiral Normalized Radar Cross Section of the SEA Surface at Ku, Ka, and W-Bands: Comparison of Measurements and Models

    NASA Technical Reports Server (NTRS)

    Majurec, Ninoslav; Johnson, Joel T.; Tanelli, Simone; Durden, Stephen

    2012-01-01

    Understanding the relationship between wind speed and direction and the near-nadiral normalized radar cross section (NRCS) of the sea surface is important in many oceanographic and atmospheric remote sensing applications: (1) wind speed retrievals in traditional altimeter systems (2) assistance in calibration and path integrated attenuation processing for atmospheric profiling radars The desired wind speed (and direction in some cases) retrieval requires a clear understanding of the relationship between the relevant geophysical quantities and the observed NRCS Such understanding is available from existing electromagnetic models, but the presence of many such models, as well as implicit descriptions of the sea surface, motivates continued evaluation of model performance.

  18. Viewing angle analysis of integral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Xia; Wu, Chun-Hong; Yang, Yang; Zhang, Lan

    2007-12-01

    Integral imaging (II) is a technique capable of displaying 3D images with continuous parallax in full natural color. It is becoming the most perspective technique in developing next generation three-dimensional TV (3DTV) and visualization field due to its outstanding advantages. However, most of conventional integral images are restricted by its narrow viewing angle. One reason is that the range in which a reconstructed integral image can be displayed with consistent parallax is limited. The other is that the aperture of system is finite. By far many methods , an integral imaging method to enhance the viewing angle of integral images has been proposed. Nevertheless, except Ren's MVW (Maximum Viewing Width) most of these methods involve complex hardware and modifications of optical system, which usually bring other disadvantages and make operation more difficult. At the same time the cost of these systems should be higher. In order to simplify optical systems, this paper systematically analyzes the viewing angle of traditional integral images instead of modified ones. Simultaneously for the sake of cost the research was based on computer generated integral images (CGII). With the analysis result we can know clearly how the viewing angle can be enhanced and how the image overlap or image flipping can be avoided. The result also promotes the development of optical instruments. Based on theoretical analysis, preliminary calculation was done to demonstrate how the other viewing properties which are closely related with the viewing angle, such as viewing distance, viewing zone, lens pitch, and etc. affect the viewing angle.

  19. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  20. A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing

    NASA Astrophysics Data System (ADS)

    Zeng, Lijiang; Matsumoto, Hirokazu; Kawachi, Keiji

    1996-05-01

    A fringe shadow (FS) method was developed for measuring the flapping angle and torsional angle of a dragonfly wing during beating motion. This new method involves two sets of fringe patterns projected onto the wing from orthogonal directions. The torsional angle is determined using the length of the shadow of the wing chord that is cast by the two sets of fringe patterns. The flapping angle is determined using the shadowgraph of the wing projected by a laser. The advantages of the FS method are its capability (i) to measure the flapping angle and torsional angle of a dragonfly wing simultaneously using only one high-speed camera and (ii) to recognize the spanwise position of a section from the number of fringes, without having to use diffuse marks that are common in current methods. The resolution of the FS method can be changed easily by adjusting the fringe spacing. The measurement results for the torsional angle and flapping angle of a dragonfly wing prove the effectiveness of the FS method in studying the flight performance of dragonflies.

  1. Angle at the Medial Border: The Spinovertebra Angle and Its Significance

    PubMed Central

    Oladipo, G. S.; Aigbogun, E. O.; Akani, G. L.

    2015-01-01

    Background. The evolution from quadrupedalism to bipedalism has adjusted the balance of the upper limb to extensive movement at the shoulder. The scapular angles provide the point of attachment and control to various muscles and have been associated with the different movements of the shoulder girdle and joint. This has made the morphometric and anthropometric study of scapula a subject of extensive investigation. Aim. In the present study, the angle at the medial border was measured in the South-Southern Nigerian population and an anatomical name was ascribed to the angle. Method. The study was conducted on 173 scapulae (75 right and 98 left) obtained from various Anatomy Department of South-Sothern Nigerian Universities. The angle at medial border was obtained by pinning the edge of the superior and inferior angles, the lined traced out, and the angle measured using a protractor. SPSS version 20 was used to analyse the data. t-test was used to determine mean angular difference in the sides. Result. The mean ± SD of the medial angle was observed to be 136.88 ± 7.70° (R = 138.13 ± 7.06° : L = 135.92 ± 8.05°). Statistical analysis using the Z-test for mean difference showed the medial angle was found to be higher in the right side of the scapula (mean difference of 2.214 ± 1.152°), but the observed difference was not statistically significant (P > 0.05). The above findings have adjusted the scapula from three to four angles (lateral, superior, inferior, and medial) formed from four borders (lateral, superior, inferior, and superomedial and inferomedial). The medial angle because of its anatomical location was named “spinovertebral” angle, owing to its position at the scapulae spine, and located in medial proximity to the vertebra column. Conclusion. The medial angle (now referred to as the spinovertebral angle) of the right side of the scapula is wider than the left. The representation of the spinovertebral angle is very important, as the

  2. Angle at the Medial Border: The Spinovertebra Angle and Its Significance.

    PubMed

    Oladipo, G S; Aigbogun, E O; Akani, G L

    2015-01-01

    Background. The evolution from quadrupedalism to bipedalism has adjusted the balance of the upper limb to extensive movement at the shoulder. The scapular angles provide the point of attachment and control to various muscles and have been associated with the different movements of the shoulder girdle and joint. This has made the morphometric and anthropometric study of scapula a subject of extensive investigation. Aim. In the present study, the angle at the medial border was measured in the South-Southern Nigerian population and an anatomical name was ascribed to the angle. Method. The study was conducted on 173 scapulae (75 right and 98 left) obtained from various Anatomy Department of South-Sothern Nigerian Universities. The angle at medial border was obtained by pinning the edge of the superior and inferior angles, the lined traced out, and the angle measured using a protractor. SPSS version 20 was used to analyse the data. t-test was used to determine mean angular difference in the sides. Result. The mean ± SD of the medial angle was observed to be 136.88 ± 7.70° (R = 138.13 ± 7.06° : L = 135.92 ± 8.05°). Statistical analysis using the Z-test for mean difference showed the medial angle was found to be higher in the right side of the scapula (mean difference of 2.214 ± 1.152°), but the observed difference was not statistically significant (P > 0.05). The above findings have adjusted the scapula from three to four angles (lateral, superior, inferior, and medial) formed from four borders (lateral, superior, inferior, and superomedial and inferomedial). The medial angle because of its anatomical location was named "spinovertebral" angle, owing to its position at the scapulae spine, and located in medial proximity to the vertebra column. Conclusion. The medial angle (now referred to as the spinovertebral angle) of the right side of the scapula is wider than the left. The representation of the spinovertebral angle is very important, as the directional

  3. Global environmental monitoring with the EOS multi-angle imaging spectroradiometer (MISR)

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Bruegge, C. J.; Martonchik, J. V.; Bothwell, G. W.; Hovland, L. E.; Jones, K. L.

    1991-01-01

    The MISR provides a unique opportunity for studying the ecology and climate of the earth through the acquisition of systematic, global multiangle imagery in reflected sunlight. MISR uses nine cameras: a nadir camera and two banks of four cameras each pointed forward and aftward along the spacecraft ground track to image the earth at +/-30.7, +/-45.6, +/-60.0, and +/-72.5 deg. Radiometrically calibrated images at each angle will be obtained in four spectral bands centered at 440, 550, 670, and 860 nm. MISR will take image data in two different spatial resolution modes: local mode, in which selected targets are observed with 240-m spatial sampling, and global mode, where the entire sunlit eEarth is observed continuously with 1.92-km sampling. The instrument is capable of acquiring global coverage every nine days.

  4. {l_angle}110{r_angle} dendrite growth in aluminum feathery grains

    SciTech Connect

    Henry, S.; Rappaz, M.; Jarry, P.

    1998-11-01

    Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of {l_angle}110{r_angle} primary dendrite trunks (e.g., [011{bar 1}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 {micro}m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). The [011{bar 1}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)--a feature probably resulting from a growth competition mechanism similar to that occurring during normal <100> columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along {l_angle}110{r_angle} directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that {l_angle}110{r_angle} branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [{bar 2}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal <100> to a {l_angle}110{r_angle} surface tension/attachment kinetics anisotropy growth mode. Finally, the proposed mechanisms of leathery grain growth are further supported by the observation of {l_angle}110{r_angle} dendrite growth morphologies in thin aluminum-zinc coatings.

  5. Small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice

    2015-10-01

    Small Angle Neutron Scattering (SANS) is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ˜ 1 nm up to ˜ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ˜ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area…) through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer), form factor analysis (I(q→0), Guinier regime, intermediate regime, Porod regime, polydisperse system), structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates), and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast). It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of spectrometer

  6. Characteristics of lightning, sprites, and human-induced emissions observed by nadir-viewing cameras on board the International Space Station

    NASA Astrophysics Data System (ADS)

    Farges, Thomas; Blanc, Elisabeth

    2016-04-01

    The Lightning and Sprites Observation (LSO) experiment was designed to test a new concept of nadir-viewing sprite measurement on board the International Space Station using spectral differentiation methods for lightning and sprite identification. It was composed of two calibrated cameras: one equipped with a narrowband filter at 763 nm to maximize the contrast between sprites and lightning, and the other to monitor lightning. The LSO was operated at night during 15 days from 2001 to 2004 during which 197 lightning flashes, several sprites, hundreds of gas flares, and tens of cities were analyzed. The main strength of this experiment was its high spatial resolution of about 400 m. The structural details of some lightning are thus observed highlighting complex systems. Some features such as the nonlinear increase of the lightning-illuminated cloud top area with the peak radiance and the radial decrease of the lightning flash radiance were quantified. The median area is 129 km2 with median minor and major axes of 12 and 16 km. Two methods of sprite identification are presented and applied to the most intense sprite events observed by LSO. The sprite diameter is 5 km and it is shifted of about 22 km from the center of the parent lightning. A ratio of 1.7% is deduced for lightning flashes between the radiances measured by both cameras. These observations should be useful for the preparation or the analysis of future space missions dedicated to nadir-viewing observations of sprites.

  7. [Angle-closure chronic glaucoma].

    PubMed

    Lachkar, Y

    2003-10-01

    The incidence of chronic angle closure glaucoma is considerably greater than the incidence of the acute type. This type of glaucoma may mimic primary open angle glaucoma with visual field deterioration, optic nerve alteration and intraocular pressure elevation with a quiet painless eye. Its diagnosis is based on indentation gonioscopy showing peripheral anterior synechiae. The mechanisms of angle closure are the pupillary block, the plateau iris configuration and the creeping form. The treatment of chronic angle closure glaucoma is based on laser peripheral iridotomy. PMID:14646832

  8. Evaluation of Terra and Aqua MODIS thermal emissive band response versus scan angle

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Wu, A.; Madhavan, S.; Xiong, X.

    2014-10-01

    Terra and Aqua MODIS have operated near-continuously for over 14 and 12 years, respectively, and are key instruments for NASA's Earth Observing System. Observations from the 16 thermal emissive bands (TEB), covering wavelengths from 3.5 to 14.4 μm with a nadir spatial resolution of 1 km are used to regularly generate a variety of atmosphere, ocean and land science products. The TEB detectors are calibrated using scan-by-scan observations of an on-board blackbody (BB). The current response versus scan angle (RVS) of the scan mirror was derived using a spacecraft deep-space pitch maneuver for Terra MODIS and characterized during prelaunch for Aqua MODIS. Earth view (EV) data over the complete range of angles of incidence (AOI) can be used to evaluate the on-orbit performance of the TEB RVS over the mission lifetime. Three approaches for tracking the TEB RVS on-orbit using EV observations are formulated. The first approach uses the multiple daily observations of Dome C BT at different AOI and their trend relative to coincident measurements from a ground temperature sensor. The second approach uses brightness temperatures (BT) retrieved over the cloud-free ocean to derive the trends at 13 AOI over the mission lifetime. The third approach tracks the dn response (normalized to the BB AOI) across the full swath width for Antarctic granules with the Dome C site at nadir. The viability of the three approaches is assessed and the long-term stability of the TEB RVS for both MODIS instruments is determined.

  9. The Critical Angle Can Override the Brewster Angle

    ERIC Educational Resources Information Center

    Froehle, Peter H.

    2009-01-01

    As a culminating activity in their study of optics, my students investigate polarized light and the Brewster angle. In this exercise they encounter a situation in which it is impossible to measure the Brewster angle for light reflecting from a particular surface. This paper describes the activity and explains the students' observations.

  10. [Chronic closed-angle glaucoma].

    PubMed

    Valtot, F

    2004-06-01

    Five times more frequent than the acute form, chronic closed-angle glaucoma often goes unrecognized for a long time, resulting in considerable visual field deficiencies, even in loss of the eye. It is sometimes confused with chronic glaucoma and treated as such, which is inadequate to halt the progression of the disease. Only gonioscopy can diagnose it. If doubt persists, UBM (ultrasound biomicroscopy) can detect goniosynechiae, a malposition of the ciliary body or of the lens, or the existence of iridociliary cysts. Nine times out of ten, pupillary block initiates the process and an iridotomy should always be done to remediate it, even if this procedure alone does not always suffice to solve the problem. PMID:15319750

  11. Angle Kappa and its importance in refractive surgery

    PubMed Central

    Moshirfar, Majid; Hoggan, Ryan N.; Muthappan, Valliammai

    2013-01-01

    Angle kappa is the difference between the pupillary and visual axis. This measurement is of paramount consideration in refractive surgery, as proper centration is required for optimal results. Angle kappa may contribute to MFIOL decentration and its resultant photic phenomena. Adjusting placement of MFIOLs for angle kappa is not supported by the literature but is likely to help reduce glare and haloes. Centering LASIK in angle kappa patients over the corneal light reflex is safe, efficacious, and recommended. Centering in-between the corneal reflex and the entrance pupil is also safe and efficacious. The literature regarding PRK in patients with an angle kappa is sparse but centering on the corneal reflex is assumed to be similar to centering LASIK on the corneal reflex. Thus, centration of MFIOLs, LASIK, and PRK should be focused on the corneal reflex for patients with a large angle kappa. More research is needed to guide surgeons’ approach to angle kappa. PMID:24379548

  12. Solar cell angle of incidence corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  13. Goniometer-rotation-angle recorder

    SciTech Connect

    Shchagin, A.V.

    1985-12-01

    This paper describes a goniometer-rotation-angle recorder with a discrete drive. The rotation angle in a given plane is recorded by bidirectional sign counter of positive and negative drive-actuation numbers for rotations in positive and negative directions. The maximum capacity of the counter is + or - 9 decimal digits.

  14. Optimal Number of Angle Images for Calculating Anterior Angle Volume and Iris Volume Measurements

    PubMed Central

    Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Fuller, Timothy S.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose. We determined the optimal number of angle images required to obtain reliable measurements of trabecular-iris circumferential volume (TICV) and iris volume (IV) using swept-source Fourier domain anterior segment optical coherence tomography (SSFD-ASOCT) scans in narrow angle eyes. Methods. Scleral spur landmarks (SSL) were manually identified on ASOCT angle images from 128 meridians from each of 24 eyes with chronic primary angle closure (PAC) spectrum of disease. The anterior and posterior corneal curves, and the anterior and posterior iris surfaces were identified automatically by the anterior chamber analysis and interpretation (ACAI) software, then manually examined and edited by the reader if required. Trabecular-iris circumferential volume at 750 μm from SSL (TICV750) and IV were subsequently calculated using varying numbers of angle images. Threshold error was determined to be less than the lower 95% confidence limit of mean absolute percent error (MAPE) of the change in TICV or IV resulting from laser peripheral iridotomy, which would be 17% for TICV and 5% for IV, based on previous studies. The optimal number of angle images was the smallest number of images where MAPE was less than this threshold for TICV and IV. Results. A total of 32 equally-spaced angle images (16 meridians) was required to estimate TICV750 and 16 angle images (8 meridians) to estimate IV. Both were within 4.6% and 1.6% of MAPE, respectively. Conclusions. It is possible to determine TICV and IV parameters reliably in narrow angles without evaluating all 128 meridians obtained with SSFD-ASOCT. PMID:25829412

  15. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  16. Combined effects of the in-plane orientation angle and the loading angle on the dynamic enhancement of honeycombs under mixed shear-compression loading

    NASA Astrophysics Data System (ADS)

    Tounsi, R.; Markiewicz, E.; Haugou, G.; Chaari, F.; Zouari, B.

    2016-05-01

    The combined effect of the loading angle (ψ) and the in-plane orientation angle (β) on the dynamic enhancement of aluminium alloy honeycombs is investigated. Experimental results are analysed on the crushing surfaces (initial peak and average crushing forces). A significant effect of the loading angle is reported. The dynamic enhancement rate depends on the loading angle until a critical loading angle (ψcritical). Beyond, a negative dynamic enhancement rate is observed. Concerning the in-plane orientation angle β effect, it depends on the loading angle ψ under quasi-static conditions. Under dynamic conditions, a significant effect is reported independently of the loading angle ψ. Therefore, the dynamic enhancement rate depends on the combined effects of ψ and β angles. A global analysis of the buckling mechanisms allowed us to explain the combined effect of ψ and β angles on the initial peak force. The collapse mechanisms analysis explain the negative dynamic enhancement rate for large loading angles.

  17. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis.

    PubMed

    Lam, C N C; Wu, R; Li, D; Hair, M L; Neumann, A W

    2002-02-25

    Two types of experiments were used to study the behavior of both advancing and receding contact angles, namely the dynamic one-cycle contact angle (DOCA) and the dynamic cycling contact angle (DCCA) experiments. For the preliminary study, DOCA measurements of different liquids on different solids were performed using an automated axisymmetric drop shape analysis-profile (ADSA-P). From these experimental results, four patterns of receding contact angle were observed: (1) time-dependent receding contact angle; (2) constant receding contact angle; (3) 'stick/slip'; (4) no receding contact angle. For the purpose of illustration, results from four different solid surfaces are shown. These solids are: FC-732-coated surface; poly(methyl methacrylate/n-butyl methacrylate) [P(MMA/nBMA)]; poly(lactic acid) (DL-PLA); and poly(lactic/glycolic acid) 50/50 (DL-PLGA 50/50). Since most of the surfaces in our studies exhibit time dependence in the receding contact angle, a more extended study was conducted using only FC-732-coated surfaces to better understand the possible causes of decreasing receding contact angle and contact angle hysteresis. Contact angle measurements of 21 liquids from two homologous series (i.e. n-alkanes and 1-alcohols) and octamethylcyclotetrasiloxane (OCMTS) on FC-732-coated surfaces were performed. It is apparent that the contact angle hysteresis decreases with the chain length of the liquid. It was found that the receding contact angle equals the advancing angle when the alkane molecules are infinitely large. These results strongly suggest that the chain length and size of the liquid molecule could contribute to contact angle hysteresis phenomena. Furthermore, DCCA measurements of six liquids from the two homologous series on FC-732-coated surfaces were performed. With these experimental results, one can construe that the time dependence of contact angle hysteresis on relatively smooth and homogeneous surfaces is mainly caused by liquid retention

  18. A Viewpoint on the Quantity "Plane Angle"

    NASA Astrophysics Data System (ADS)

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  19. The role of deviation of magnetic field direction on the beaming angle: Extending of beaming angle theory

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-05-01

    In the beaming angle theory, the magnetic field direction is assumed perpendicular to the normal boundary, and the prediction of this theory, from beaming angle is base on the Jones' formula. We investigate the effect of deviation the magnetic field direction respect to normal boundary direction. In this study, we present new conditions that under these conditions two modes, extraordinary and ordinary modes waves can match. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by Jones' formula. This effect on the mode conversion process becomes important in a case where local fluctuations in the direction of the density gradient vector or the magnetic field direction are observed. By comparing the beaming angle from observations with the beaming angles resulting from different ∆ Φ , we showed a ∆ Φ about 3 to 5° are necessary in consistence with observation.

  20. Management of mandibular angle fracture.

    PubMed

    Braasch, Daniel Cameron; Abubaker, A Omar

    2013-11-01

    Fractures through the angle of the mandible are one of the most common facial fractures. The management of such fractures has been controversial, however. This controversy is related to the anatomic relations and complex biomechanical aspects of the mandibular angle. The debate has become even more heated since the evolution of rigid fixation and the ability to provide adequate stability of the fractured segments. This article provides an overview of the special anatomic and biomechanical features of the mandibular angle and their impact on the management of these fractures. PMID:24183373

  1. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  2. Improved Beam Angle Control with SPV Metrology

    NASA Astrophysics Data System (ADS)

    Steeples, K.; Tsidilkovski, E.; Bertuch, A.; Ishida, E.; Agarwal, A.

    2008-11-01

    A method of real-time monitoring of implant angle for state-of-the-art ion implant doping in integrated circuit manufacturing has been developed using Surface Photo Voltage measurements on conventional monitor wafers. Measurement results are analyzed and compared to other techniques.

  3. Numerical aperture characteristics of angle-ended plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Farrell, Gerard

    2003-03-01

    With the increasing information rates demanded in consumer, automotive and aeronautical applications, a low cost and high performance physical transmission medium is required. Compared with Silica Optical Fiber, Plastic Optical Fiber (POF) offers an economic solution for a range of high-capacity, short-haul applications in industrial and military environments. Recently, a new type of POF, the perfluorinated graded-index plastic optical fiber (PF GI-POF), has been introduced that has low losses and high bandwidth at the communication wavelengths 850 nm and 1300nm. POF is normally terminated perpendicular to the fiber axis. We propose an angle-ended POF, which is terminated at non-perpendicular angles to the fiber axis. The aim of the research is to investigate the numerical aperture (NA) characteristics of angle-ended POF along the major axis of the elliptical endface. A theoretical model indicates that the NA of the angle-ended POF will increase nonlinearly with tilt-angle and the acceptance cone will be deflected with the angle of the deflection increasing nonlinearly with tilt-angle. We present results for the measured NA and the measured deflection angle using the far-field radiation method. Results are presented for 13 angle-ended SI-POF tilt-angles. We also present results for theoretical value of NA and deflection angle as a function of tilt-angle. The agreement between the measured and theoretical value is good up to tilt-angles of about 15 degrees, beyond which deviation occurs.

  4. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  5. Taper Angle Evolution in Taiwan Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Chen, L.; Chi, W.; Liu, C.

    2011-12-01

    Liwen Chena,b, Wu-Cheng Chia, Char-Shine Liuc aInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan bInstitute of Geosciences, National Taiwan University, Taipei, Taiwan cInstitute of Oceanography, National Taiwan University, Taipei, Taiwan The critical taper model, originally developed using onland Taiwan as an example, is governed by force balance of a horizontal compressional wedge. This model has been successfully applied to many mountainous regions around the world. Among them, Taiwan is located in an oblique collision between the Luzon Arc and the Chinese Passive margin. Previous critical taper angle studies of Taiwan are mainly focusing on utilizing land data. In this study we want to extend these studies to offshore region from the subduction zone to collision zone. Here we study the varying taper angles of the double-vergent wedge derived from 1,000 km of reflection seismic profiles in both the pro-wedge and retro-wedge locations. These profiles were collected in the last two decades. For the retro-wedge, the topography slope angle changes from 2 to 8.8 degrees; some of the steep slope suggests that some part of the retrowedge is currently in a super-critical angle state. Such dramatic changes in taper angle probably strongly affect regional sedimentary processes, including slumping, in addition to structural deformation. These complex processes might even help develop a mélange or re-open a closed basin. We are currently working on studying the taper angle evolution of the pro-wedge from subduction to arc-continent collision zone in the offshore region. Though further works are needed, our preliminary results show that the evolution of wedge angles and the geometry of the wedge are closely linked and inseparable. The structures of the subducting plate might have strong influence on the deformation style of the over-riding plate. It would be interesting to combine the angle variation with the structure interpretation of the accretionary wedge

  6. Vertical and wide-angle seismic exploration of crustal structure, and the active evolution of the North Aegean Trough between the Sea of Marmara and Gulf of Corinth

    NASA Astrophysics Data System (ADS)

    Sachpazi, M.; Vigner, A.; Laigle, M.; Hirn, A.; Roussos, N.

    2003-04-01

    The North Aegean Trough (NAT), which is the deepest among Aegean marine troughs, is bordered by the termination of the North Anatolian Fault, and thus marks the interaction of this strike-slip fault with mainland Greece and the extensional Aegean domain. In the development of academic exploration of active regions at the scale of the whole crust, with marine multichannel seismics (MCS), the STREAMERS acquisition almost ten years ago provided a first hint of the feasibility there and in other parts of the Aegean and Ionian seas (Sachpazi et al., Tectonophysics 1996), and a template for later MCS and coincident wide-angle reflection surveying. These profiles were acquired by the French N/O Nadir, with an only 96-channel streamer 2.4 km length, and with an only 840 cu. in. generator capacity of a 8 gun array, but for the first time shot in the "single-bubble" mode that was developed in this survey. With respect to the present standard set by 2001 cruises in the Gulf of Corinth (US R/V Maurice Ewing, Taylor et al. this meeting) and in the Sea of Marmara (French N/O Nadir, Hirn et al., EGS 2002 and this meeting) this was a 2 to 3 times shorter streamer cable, a 2 to 4 times smaller number of hydrophone groups, and a 10 to 3 times smaller source. The SEISGREECE survey, with a source 3 times that of STREAMERS but other parameters as modest, explored the Gulf of Corinth and the Cyclades and added profiles in the North Aegean to this early attempt. A first result of merging the two surveys was to lend credence to possible structures detected by the first single profile. This revealed an active, recent normal-fault imaged down to 10 km depth, that cuts at a N 110°E strike the northern side of the NAT (Laigle et al., Geology, 2000). Indeed although processing has been hampered by the modest streamer length and only 16 or 24-fold coverage, the data now resolve clearly the sedimentary structure, image the basement, detect intra-basement faults, an upper crustal reflective zone

  7. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  8. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  9. Unitarity Triangle Angle Measurements at BaBar

    SciTech Connect

    Latham, Thomas E.; /SLAC

    2005-06-30

    We present recent results of measurements of the Unitarity Triangle angles alpha, beta and gamma made with the BaBar detector at the PEP-II asymmetric B factory. We present recent results of measurements of the Unitarity Triangle angles alpha, beta and gamma made with the BaBar detector at the PEP-II asymmetric B factory.

  10. Chronic open-angle glaucoma

    PubMed Central

    Adatia, Feisal A.; Damji, Karim F.

    2005-01-01

    INTRODUCTION Chronic open-angle glaucoma (COAG) is a leading cause of irreversible blindness worldwide, including in Canada. It presents a challenge in diagnosis, as disease often progresses without symptoms; an estimated 50% of cases are undetected. SOURCES OF INFORMATION MEDLINE searches, reference lists of articles, and expert knowledge from one of the authors (K.F.D.), a glaucoma specialist, were used. MAIN MESSAGE A casefinding approach using early referral to optometrists and ophthalmologists for early detection of COAG is helpful for patients with risk factors such as age above 50, a positive family history, black race, and myopia. Moderate evidence for referral also exists for the following risk factors: hypertension, type 2 diabetes mellitus, hypothyroidism, and sleep apnea. Treatment with intraocular pressure–lowering medication can arrest or slow the course of the disease, permitting patients to retain good visual function. Family physicians should be aware that some intraocular pressure–lowering medications, particularly topical beta-blockers, can pose iatrogenic harm to patients and result in or exacerbate such conditions as asthma, cardiovascular disturbances, depression, and sexual dysfunction. CONCLUSION Appropriate referral patterns and an understanding of common as well as serious side effects of glaucoma medications are important in optimizing management of patients at risk of developing, or who have, COAG. PMID:16190176

  11. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.

    PubMed

    Fadnes, Solveig; Ekroll, Ingvild Kinn; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse

    2015-10-01

    Two-dimensional blood velocity estimation has shown potential to solve the angle-dependency of conventional ultrasound flow imaging. Clutter filtering, however, remains a major challenge for large beam-to-flow angles, leading to signal drop-outs and corrupted velocity estimates. This work presents and evaluates a compounding speckle tracking (ST) algorithm to obtain robust angle-independent 2-D blood velocity estimates for all beam-to-flow angles. A dual-angle plane wave imaging setup with full parallel receive beamforming is utilized to achieve high-frame-rate speckle tracking estimates from two scan angles, which may be compounded to obtain velocity estimates of increased robustness. The acquisition also allows direct comparison with vector Doppler (VD) imaging. Absolute velocity bias and root-mean-square (RMS) error of the compounding ST estimations were investigated using simulations of a rotating flow phantom with low velocities ranging from 0 to 20 cm/s. In a challenging region where the estimates were influenced by clutter filtering, the bias and RMS error for the compounding ST estimates were 11% and 2 cm/s, a significant reduction compared with conventional single-angle ST (22% and 4 cm/s) and VD (36% and 6 cm/s). The method was also tested in vivo for vascular and neonatal cardiac imaging. In a carotid artery bifurcation, the obtained blood velocity estimates showed that the compounded ST method was less influenced by clutter filtering than conventional ST and VD methods. In the cardiac case, it was observed that ST velocity estimation is more affected by low signal-to-noise (SNR) than VD. However, with sufficient SNR the in vivo results indicated that a more robust angle-independent blood velocity estimator is obtained using compounded speckle tracking compared with conventional ST and VD methods. PMID:26470038

  12. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.

    1991-01-01

    The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single

  13. Association between Bolton discrepancy and Angle malocclusions.

    PubMed

    Cançado, Rodrigo Hermont; Gonçalves Júnior, Waldir; Valarelli, Fabrício Pinelli; Freitas, Karina Maria Salvatore de; Crêspo, Janaina Aparecida Lima

    2015-01-01

    This study aimed to assess and compare the overall and anterior ratios of tooth size discrepancies in all Angle malocclusion groups. The following null hypothesis (H0) was tested: no difference between tooth size discrepancies (overall and anterior) would be observed among Angle malocclusion groups. The sample comprised of 711 pre-orthodontic treatment study casts of Brazilian patients with a mean age of 17.42 years selected from private practices in Brazil. The casts were divided into 3 groups according to the type of malocclusion: Class I (n = 321), Class II (n = 324), and Class III patients (n = 66). The measurement of the greatest mesiodistal width of the teeth was performed using a centesimal precision digital caliper directly on the study casts, from the distal surface of the left first molar to the distal surface of the right first molar. The overall and anterior ratios between the maxillary and mandibular teeth were evaluated using Bolton's method. The following statistical tests were applied: chi-square, independent t-test, and one-way ANOVA. Results showed that all Angle malocclusions groups exhibited a ratio compatible with those recommended by Bolton. With respect to the overall and anterior ratios among the malocclusion groups, no statistically significant differences were found. The null hypothesis was accepted because the results showed no differences in the overall and anterior ratios of tooth size discrepancies among different Angle malocclusion groups. PMID:26486769

  14. What we Hope to Learn about Global Mineral Dust Aerosols from EOS Multi-Angle Imaging SpectroRadiometer (MISR)

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2000-01-01

    On global scales, just a few broad atmospheric aerosol compositional groups are commonly observed. Of these, "mineral dust" is the only group which both contains non-spherical particles, and typically has size distributions with enough large particles for particle shape to affect its visible-light-scattering properties. The MISR instrument is scheduled for launch into a 10:30 AM sun-synchronous, polar orbit aboard the EOS Terra satellite in 1999. MISR will measure the upwelling visible radiance from Earth in 4 spectral bands centered at 446, 558, 672, and 866 nm, at each of 9 emission angles spread out in the forward and aft directions along the flight path at +/-70.5 deg, +/-60.0 deg, +/-45.6 deg, +/-26.1deg, and nadir. Over a period of 7 minutes, as the spacecraft flies along, a 360 km wide swath of Earth will successively be viewed by each of the cameras, allowing MISR to sample a very large range of scattering angles; in mid latitudes, the instrument will observe scattering angles between about 60 deg and 160 deg. Global coverage will be acquired about once in 9 days at the equator; the nominal mission lifetime is 6 years. The distinction in single scattering phase function between natural distributions of spherical and randomly oriented, non-spherical particles, with a broad range of aspect ratios, shows up strongly for scattering angles ranging from about 90 deg to near 180 deg. For non-spherical particle distributions, single scattering phase functions tend to be much flatter in this region than for spherical particles. Since MISR samples the relevant range of scattering angles very well, we expect to be able to make critical distinctions between natural distributions of spherical and randomly oriented, non-spherical particles with MISR data. We anticipate that the new multiangle, multispectral data from MISR will also contain other information about particle properties, a major step beyond current spacecraft remote sensing retrievals, which obtain aerosol

  15. An Experimental Study on the Iso-Content-Based Angle Similarity Measure.

    ERIC Educational Resources Information Center

    Zhang, Jin; Rasmussen, Edie M.

    2002-01-01

    Retrieval performance of the iso-content-based angle similarity measure within the angle, distance, conjunction, disjunction, and ellipse retrieval models is compared with retrieval performance of the distance similarity measure and the angle similarity measure. Results show the iso-content-based angle similarity measure achieves satisfactory…

  16. Lateral intermetatarsal angle: a useful measurement of metatarsus primus elevatus?

    PubMed

    Bryant, A; Mahoney, B; Tinley, P

    2001-05-01

    The lateral intermetatarsal angle, a measurement of the sagittal plane angular divergence between the dorsal cortices of the first and second metatarsals of lateral weightbearing foot radiographs, was compared in 30 normal and 30 hallux limitus feet. The results suggest that the angle may be measured reliably and that although the measured angles are relatively small, a significant difference exists between the normal and hallux limitus subjects studied. Accordingly, the lateral intermetatarsal angle may prove to be a useful radiographic measurement to assist the podiatric physician in the clinical assessment of hallux limitus. PMID:11359890

  17. Critical rolling angle of microparticles

    NASA Astrophysics Data System (ADS)

    Farzi, Bahman; Vallabh, Chaitanya K. P.; Stephens, James D.; Cetinkaya, Cetin

    2016-03-01

    At the micrometer-scale and below, particle adhesion becomes particularly relevant as van der Waals force often dominates volume and surface proportional forces. The rolling resistance of microparticles and their critical rolling angles prior to the initiation of free-rolling and/or complete detachment are critical in numerous industrial processes and natural phenomenon involving particle adhesion and granular dynamics. The current work describes a non-contact measurement approach for determining the critical rolling angle of a single microparticle under the influence of a contact-point base-excitation generated by a transient displacement field of a prescribed surface acoustic wave pulse and reports the critical rolling angle data for a set of polystyrene latex microparticles.

  18. Systematic variations in divergence angle.

    PubMed

    Okabe, Takuya

    2012-11-21

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance. PMID:22906592

  19. Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure

    PubMed Central

    Li, Shi-Wei; Chen, Yan; Wu, Qiang; Lu, Bin; Wang, Wen-Qing; Fang, Jian

    2015-01-01

    AIM To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC) using ultrasound biomicroscopy (UBM). METHODS Patients (n=23, 31 eyes) were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes). Best-corrected visual acuity (BCVA), intraocular pressure (IOP), the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively. RESULTS The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05). IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05), whereas there was no significant difference between the two groups at the latter follow-up (P>0.05). Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05), whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group. CONCLUSION Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery. PMID:26309873

  20. Methane Cross-Validation Between Spaceborne Solar Occultation Observations from ACE-FTS, Spaceborne Nadir Sounding from Gosat, and Ground-Based Solar Absorption Measurements, at a High Arctic Site.

    NASA Astrophysics Data System (ADS)

    Holl, G.; Walker, K. A.; Conway, S. A.; Saitoh, N.; Boone, C. D.; Strong, K.; Drummond, J. R.

    2014-12-01

    We present cross-validation of remote sensing observations of methane profiles in the Canadian High Arctic. Methane is the third most important greenhouse gas on Earth, and second only to carbon dioxide in its contribution to anthropogenic global warming. Accurate and precise observations of methane are essential to understand quantitatively its role in the climate system and in global change. The Arctic is a particular region of concern, as melting permafrost and disappearing sea ice might lead to accelerated release of methane into the atmosphere. Global observations require spaceborne instruments, in particular in the Arctic, where surface measurements are sparse and expensive to perform. Satellite-based remote sensing is an underconstrained problem, and specific validation under Arctic circumstances is required. Here, we show a cross-validation between two spaceborne instruments and ground-based measurements, all Fourier Transform Spectrometers (FTS). We consider the Canadian SCISAT ACE-FTS, a solar occultation spectrometer operating since 2004, and the Japanese GOSAT TANSO-FTS, a nadir-pointing FTS operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environmental and Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut (80°N, 86°W) since 2006. Measurements are collocated considering temporal, spatial, and geophysical criteria and regridded to a common vertical grid. We perform smoothing on the higher-resolution instrument results to account for different vertical resolutions. Then, profiles of differences for each pair of instruments are examined. Any bias between instruments, or any accuracy that is worse than expected, needs to be understood prior to using the data. The results of the study will serve as a guideline on how to use the vertically resolved methane products from ACE and

  1. Can a surgeon drill accurately at a specified angle?

    PubMed Central

    Brioschi, Valentina; Cook, Jodie; Arthurs, Gareth I

    2016-01-01

    Objectives To investigate whether a surgeon can drill accurately a specified angle and whether surgeon experience, task repetition, drill bit size and perceived difficulty influence drilling angle accuracy. Methods The sample population consisted of final-year students (n=25), non-specialist veterinarians (n=22) and board-certified orthopaedic surgeons (n=8). Each participant drilled a hole twice in a horizontal oak plank at 30°, 45°, 60°, 80°, 85° and 90° angles with either a 2.5  or a 3.5 mm drill bit. Participants then rated the perceived difficulty to drill each angle. The true angle of each hole was measured using a digital goniometer. Results Greater drilling accuracy was achieved at angles closer to 90°. An error of ≤±4° was achieved by 84.5 per cent of participants drilling a 90° angle compared with approximately 20 per cent of participants drilling a 30–45° angle. There was no effect of surgeon experience, task repetition or drill bit size on the mean error for intended versus achieved angle. Increased perception of difficulty was associated with the more acute angles and decreased accuracy, but not experience level. Clinical significance This study shows that surgeon ability to drill accurately (within ±4° error) is limited, particularly at angles ≤60°. In situations where drill angle is critical, use of computer-assisted navigation or custom-made drill guides may be preferable. PMID:27547423

  2. Linkage studies in primary open angle glaucoma

    SciTech Connect

    Avramopoulos, D.; Grigoriadu, M.; Kitsos, G.

    1994-09-01

    Glaucoma is a leading cause of blindness worldwide. The majority of glaucoma is associated with an open, normal appearing anterior chamber angle and is termed primary open angle glaucoma (POAG, MIM 137760). It is characterized by elevated intraocular pressure and onset in middle age or later. A subset of POAG with juvenile onset has recently been linked to chromosome 1q in two families with autosomal dominant inheritance. Eleven pedigrees with autosomal dominant POG (non-juvenile-onset) have been identified in Epirus, Greece. In the present study DNA samples have been collected from 50 individuals from one large pedigree, including 12 affected individuals. Preliminary results of linkage analysis with chromosome 1 microsatellites using the computer program package LINKAGE Version 5.1 showed no linkage with the markers previously linked to juvenile-onset POAG. Further linkage analysis is being pursued, and the results will be presented.

  3. Discovering the Inscribed Angle Theorem

    ERIC Educational Resources Information Center

    Roscoe, Matt B.

    2012-01-01

    Learning to play tennis is difficult. It takes practice, but it also helps to have a coach--someone who gives tips and pointers but allows the freedom to play the game on one's own. Learning to act like a mathematician is a similar process. Students report that the process of proving the inscribed angle theorem is challenging and, at times,…

  4. Angle between principal axis triples

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2012-09-01

    The principal axis angle ξ0, or Kagan angle, is a measure of the difference between the orientations of two seismic moment tensors. It is the smallest angle needed to rotate the principal axes of one moment tensor to the corresponding principal axes of the other. This paper is a conceptual review of the main features of ξ0. We give a concise formula for calculating ξ0, but our main goal is to illustrate the behaviour of ξ0 geometrically. When the first of two moment tensors is fixed, the angle ξ0 between them becomes a function on the unit ball. The level surfaces of ξ0 can then be depicted in the unit ball, and they give insights into ξ0 that are not obvious from calculations alone. We also include a derivation of the known probability density inline image of ξ0. The density inline image is proportional to the area of a certain surface inline image. The easily seen variation of inline image with t then explains the rather peculiar shape of inline image. Because the curve inline image is highly non-uniform, its shape needs to be considered when analysing distributions of empirical ξ0 values. We recall an example of Willemann which shows that ξ0 may not always be the most appropriate measure of separation for moment tensor orientations, and we offer an alternative measure.

  5. The DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-08-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region for the DELPHI experiment at the CERN LEP collider. A veto system composed of two scintillator layers allows to trigger on single photon events and provides e{minus}{gamma} separation. The authors present here some results of extensive measurements performed on part of the calorimeter and the veto system in the CERN test beams prior to installation and report on the performance achieved during the 1994 LEP run.

  6. The Effect of Incidence Angle on Stereo DTM Quality: Simulations in Support of Europa Exploration

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.

    2015-12-01

    Many quality factors for digital topographic models (DTMs) from stereo imaging can be predicted geometrically. For example, pixel scale is related to instantaneous field of view and range, and vertical precision is a known function of the pixel scale and convergence angle if the image quality is high so that automated image matching reaches its optimal precision (~0.2 pixel). The influence of incidence angle is harder to predict. Reduced quality is expected both at low incidence (where topographic shading disappears) and high incidence (where signal/noise ratio is low and shadows occur). This problem is of general interest, but critical for NASA's Europa mission. The REASON instrument will obtain a radar sounding profile on each Europa flyby. Stereo images collected simultaneously by the EIS camera will be used to make DTMs needed to distinguish off-nadir surface echos (clutter) from subsurface features. The question is, how much of this DTM strip will be useful, given that incidence angle will vary substantially? We are using simulations to answer this question. We mosaicked 220 m/pixel Galileo images of the Castalia Macula region of Europa and made a DTM by photoclinometry, using a low-incidence image to correct for albedo variations. With the simulation software OASIS we generated synthetic stereopairs that are realistic in terms of image resolution, noise, photometry (including albedo variations based on the low incidence image), and cast shadows. We then use the commercial stereo software SOCET SET (® BAE Systems), which we have used for a wide variety of planetary mapping projects, to produce DTMs. These are compared to the input DTM as "truth" to quantify the dependence of DTM resolution and vertical precision on illumination, and to document the ways that DTMs degrade at high and low incidence angles. This methodology is immediately applicable to other planetary targets, and in particular can be used to address how much difference in illumination can be

  7. Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures

    SciTech Connect

    Garcia-Martin, J. M.; Cebollada, A.; Alvarez, R.; Romero-Gomez, P.; Palmero, A.

    2010-10-25

    We show that the tilt angle of nanostructures obtained by glancing angle sputtering is finely tuned by selecting the adequate argon pressure. At low pressures, a ballistic deposition regime dominates, yielding high directional atoms that form tilted nanocolumns. High pressures lead to a diffusive regime which gives rise to vertical columnar growth. Monte Carlo simulations reproduce the experimental results indicating that the loss of directionality of the sputtered particles in the gas phase, together with the self-shadowing mechanism at the surface, are the main processes responsible for the development of the columns.

  8. Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space

    NASA Astrophysics Data System (ADS)

    Yokota, Tatsuya; Oguma, Hiroyuki; Morino, Isamu; Higurashi, Akiko; Aoki, Tadao; Inoue, Gen

    2004-12-01

    Greenhouse gases Observing SATellite (GOSAT) is a Japanese satellite to monitor column density of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) globally from space. GOSAT will be launched in 2008. The data measured by a GOSAT sensor and ground-based monitoring station data will be used into an atmospheric transport inverse model to identify source/sink amount of CO2 in a sub-continental scale. One of the main GOSAT sensors is a nadir-looking Fourier Transform Spectrometer (FTS), which covers Short Wavelength Infrared (SWIR) region to measure column density of CO2. National Institute for Environmental Studies (NIES) is promoting researches on CO2 and CH4 sensitivity analysis, error analysis, data retrieval algorithm study, ground-based/air-borne validation strategy, and a plan of inverse model study for the SWIR FTS. A Bread-board model (BBM) of the SWIR FTS was built and tested by ground-based and airborne measurements. Several sets of the CO2 and CH4 radiance spectra over rice fields were obtained by the test measurements, and it was confirmed that the airborne measurements with a vibration insulator are effective for onboard measurements. Moreover, several improvement items of BBM have become clear.

  9. Dancing droplets: Contact angle, drag, and confinement

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  10. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  11. Off-Angle Iris Correction Methods

    SciTech Connect

    Santos-Villalobos, Hector J; Thompson, Joseph T; Karakaya, Mahmut; Boehnen, Chris Bensing

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  12. Effect of impact angle on vaporization

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  13. Recent Flight Results of the TRMM Kalman Filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Bilanow, Stephen; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls the roll and pitch attitude based on the Earth Sensor Assembly (ESA) output. TRMM's nominal orbit altitude was 350 km, until raised to 402 km to prolong mission life. During the boost, the ESA experienced a decreasing signal to noise ratio, until sun interference at 393 km altitude made the ESA data unreliable for attitude determination. At that point, the backup attitude determination algorithm, an extended Kalman filter, was enabled. After the boost finished, TRMM reacquired its nadir-pointing attitude, and continued its mission. This paper will briefly discuss the boost and the decision to turn on the backup attitude determination algorithm. A description of the extended Kalman filter algorithm will be given. In addition, flight results from analyzing attitude data and the results of software changes made onboard TRMM will be discussed. Some lessons learned are presented.

  14. Role of Optical Coherence Tomography in Assessing Anterior Chamber Angles

    PubMed Central

    Kochupurakal, Reema Thomas; Jha, Kirti Nath; Rajalakshmi, A.R.; Nagarajan, Swathi; Ezhumalai, G.

    2016-01-01

    Introduction Gonioscopy is the gold standard in assessing anterior chamber angles. However, interobserver variations are common and there is a need for reliable objective method of assessment. Aim To compare the anterior chamber angle by gonioscopy and Spectral Domain Optical Coherence Tomography (SD-OCT) in individuals with shallow anterior chamber. Materials and Methods This comparative observational study was conducted in a rural tertiary multi-speciality teaching hospital. A total of 101 eyes of 54 patients with shallow anterior chamber on slit lamp evaluation were included. Anterior chamber angle was graded by gonioscopy using the shaffer grading system. Angles were also assessed by SD-OCT with Trabecular Iris Angle (TIA) and Angle Opening Distance (AOD). Chi-square test, sensitivity, specificity, positive and negative predictive value to find correlation between OCT parameters and gonioscopy grading. Results Females represented 72.7%. The mean age was 53.93 ±8.24 years and mean anterior chamber depth was 2.47 ± 0.152 mm. Shaffer grade ≤ 2 were identified in 95(94%) superior, 42(41.5%) inferior, 65(64.3%) nasal and 57(56.4%) temporal quadrants. Cut-off values of TIA ≤ 22° and AOD ≤ 290 μm were taken as narrow angles on SD-OCT. TIA of ≤ 22° were found in 88(92.6%) nasal and 87(87%) temporal angles. AOD of ≤ 290 μm was found in 73(76.8%) nasal and 83(83%) temporal quadrants. Sensitivity in detecting narrow angles was 90.7% and 82.2% for TIA and AOD, while specificity was 11.7% and 23.4%, respectively. Conclusion Individuals were found to have narrow angles more with SD-OCT. Sensitivity was high and specificity was low in detecting narrow angles compared to gonioscopy, making it an unreliable tool for screening. PMID:27190851

  15. Light Scattering at Various Angles

    PubMed Central

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  16. OPENING ANGLES OF COLLAPSAR JETS

    SciTech Connect

    Mizuta, Akira; Ioka, Kunihito

    2013-11-10

    We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by θ{sub j} ∼ 1/5Γ{sub 0} and infer the initial Lorentz factor of the jet at the central engine, Γ{sub 0}, is a few for existing observations of θ{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this new picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle θ{sub j,{sub max}} ∼ 1/5 ∼ 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.

  17. [The sulcus angle of the femoral trochlea: ultrasonographic evaluation].

    PubMed

    Martino, F; De Serio, A; Macarini, L; Colaianni, P; Solarino, M; Fracella, M R

    1995-03-01

    The sulcus angle of femoral trochlea is particularly important to evaluate the femoro-patellar joint. Our study was aimed at studying the normal trochlea, and especially the sulcus angle, with US. The right knees of 11 normal subjects were examined with US and Computed Tomography (CT) on the same section planes. The US measurements of the sulcus angle were correlated with CT results, which were considered the gold standard. The US and CT data were compared and a direct correlation was found (r = 0.832). The intraobserver difference in US measurements was r = 0.943. The mean sulcus angle value was 132 degrees, in agreement with literature data. We conclude that the US measurements of the sulcus angle are reproducible and as sensitive as CT. PMID:7754110

  18. The effect of knee joint angle on torque control.

    PubMed

    Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T

    2010-01-01

    The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque. PMID:19906637

  19. Rotation angle system of bidirectional reflectance distribution function measurement device

    NASA Astrophysics Data System (ADS)

    Wu, Houping; Feng, Guojin; Zheng, Chundi; Li, Ping; Wang, Yu

    2015-10-01

    This article described the rotation angle system of the bidirectional reflectance distribution function (BRDF) measurement device. A high-precision multidimensional angle platform device is built. The rotation angle system uses two scanning rotational mechanical arms and a two-dimensional coaxial turntable mechanical structure, each rotational axis are driven by high-power motor and completed closed-loop control with high-precision encoder. Rotation of the motors can be automatically measured in accordance with point by the control software. The detecting arm can be rotated to measure any point in hemisphere space, the rotary range of light arm is +/- 90 °, the rotary range of sample stage is 360 ° and the angular resolution is 0.01°. The rotation angle system meets the absolute positioning hemisphere space requirements of BRDF device. The experimental result shows that the rotation angle system met the high-precision positioning requirements for the BRDF absolute measurement.

  20. Centric slide in different Angle's classes of occlusion.

    PubMed

    Čimić, Samir; Badel, Tomislav; Šimunković, Sonja Kraljević; Pavičin, Ivana Savić; Ćatić, Amir

    2016-01-01

    The purpose of this study was to test the possible differences in centric slide values between different Angle's classes of occlusion. The study included 98 participants divided into four groups: Angle's class I, Angle's class II, subdivision 1, Angle's class II, subdivision 2 and Angle's class III. All recordings were obtained using an ultrasound jaw tracking device with six degrees of freedom. The distance between the maximum intercuspation (reference position) and the centric occlusion was recorded at the condylar level. Anteroposterior, superoinferior and transversal distance of the centric slide were calculated for each participant, and the data were statistically analyzed (analysis of variance and Newman-Keuls post hoc test). No statistically significant difference was found in the anteroposterior and transversal distance of the centric slide between tested groups, while Angle's class II, subdivision 2 showed smaller vertical amount of the centric slide compared to Angle's class I and class II, subdivision 1. None of the 98 participants showed coincidence of centric occlusion and maximum intercuspation. Our results suggest that coincidence of the maximum intercuspation with the centric occlusion should not be expected. Smaller extent of the vertical distance of the centric slide could be morphological and a functional expression characteristic of the Angle's class II, subdivision 2. PMID:26434757

  1. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars

    PubMed Central

    Zhang, Yi-Xiong; Liu, Qi-Fan; Hong, Ru-Jia; Pan, Ping-Ping; Deng, Zhen-Miao

    2016-01-01

    Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP) of monopulse. In wideband radars, linear frequency modulated (LFM) signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR) conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF). Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars. PMID:27271629

  2. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars.

    PubMed

    Zhang, Yi-Xiong; Liu, Qi-Fan; Hong, Ru-Jia; Pan, Ping-Ping; Deng, Zhen-Miao

    2016-01-01

    Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP) of monopulse. In wideband radars, linear frequency modulated (LFM) signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR) conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF). Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars. PMID:27271629

  3. Multiple incidence angle SIR-B experiment over Argentina

    NASA Technical Reports Server (NTRS)

    Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz

    1986-01-01

    The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.

  4. Estimation of stratospheric NO2 from nadir-viewing satellites: The MPI-C TROPOMI verification algorithm

    NASA Astrophysics Data System (ADS)

    Beirle, Steffen; Wagner, Thomas

    2015-04-01

    The retrieval of tropospheric column densities of NO2 requires the subtraction of the stratospheric fraction from the total columns derived by DOAS. Here we present a modified reference sector method, which estimates the stratosphere over "clean" regions, as well as over clouded scenarios in which the tropospheric column is shielded. The selection of "clean" pixels is realized gradually by assingning weighting factors to the individual ground pixels, instead of applying binary flags. Global stratospheric fields are then compiled by "weighted convolution". In a second iteration, unphysical negative tropospheric residues are suppressed by adjusting the weights respectively. This algorithm is foreseen as "verification algorithm" for the upcoming TROPOMI on S5p. We show the resulting stratospheric estimates and tropospheric residues for a test data set based on OMI observations. The dependencies on the a-priori settings (definition of weighting factors and convolution kernels) are discussed, and the results are compared to other products, in particular to DOMINO v.2 (based on assimilation, similar to the TROPOMI prototype algorithm) and the NASA standard product (based on a similar reference-region-type approach).

  5. Euler angles as torsional flat spaces

    NASA Astrophysics Data System (ADS)

    Trejo-Mandujano, Hector A.

    In this work we use general tensor calculus to compare the geodesic equation of motion and Newton's first law for force-free classical systems that are described by an arbitrary number of generalized coordinates in spaces with and without torsion. We choose as objects of study the flat torsional Euler angle metric spaces for rigid rotators. We tested the equivalence of the two motion equations using computational software that allowed algebraic manipulation. The main result is that the equivalence only holds for torsion-free spaces, and for isotropic force-free rotators. We present analytical calculations for the isotropic case and computational results for the general case.

  6. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators

    PubMed Central

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-01-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300−2500 nm at incidence angles 15–60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0–60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350–1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article “Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators” in Solar Energy Materials and Solar Cells. PMID:26862556

  7. Initial flight results of the TRMM Kalman filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Morgenstern, Wendy M.

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.

  8. Initial Flight Results of the TRMM Kalman Filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Morgenstern, Wendy M.

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.

  9. Operational multi-angle hyperspectral remote sensing for feature detection

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Brooks, Donald K.

    2013-10-01

    Remote sensing results of land and water surfaces from airborne and satellite platforms are dependent upon the illumination geometry and the sensor viewing geometry. Correction of pushbroom hyperspectral imagery can be achieved using bidirectional reflectance factors (BRF's) image features based upon their multi-angle hyperspectral signatures. Ground validation of features and targets utilize non-imaging sensors such as hemispherical goniometers. In this paper, a new linear translation based hyperspectral imaging goniometer system is described. Imagery and hyperspectral signatures obtained from a rotation stage platform and the new linear non-hemispherical goniometer system shows applications and a multi-angle correction approach for multi-angle hyperspectral pushbroom imagery corrections. Results are presented in a manner in order to describe how ground, vessel and airborne based multi-angle hyperspectral signatures can be applied to operational hyperspectral image acquisition by the calculation of hyperspectral anisotropic signature imagery. The results demonstrate the analysis framework from the systems to water and coastal vegetation for exploitation of surface and subsurface feature or target detection based using the multi-angle radiative transfer based BRF's. The hyperspectral pushbroom multi-angle analysis methodology forms a basis for future multi-sensor based multi-angle change detection algorithms.

  10. Determination of an angle of attack sensor correction for a general aviation airplane at large angles of attack as determined from wind tunnel and flight tests

    NASA Technical Reports Server (NTRS)

    Moul, T. M.; Taylor, L. W., Jr.

    1980-01-01

    A comprehensive investigation into the flow correction for an angle of attack sensor mounted ahead of the wing tip of a general aviation research airplane has been conducted at the Langley Research Center. This correction has been determined in wind tunnels using a full-scale model up to angles of attack of 45 deg and a 1/5-scale model up to 80 deg angle of attack. The flow correction has also been obtained in flight by using a standard technique at low angles of attack and in spinning flight at larger angles of attack, by using both a simple approximate technique and a parameter estimation technique. The results show the correction is significant, reaching 10 deg at a measured angle of attack of about 90 deg. The flow correction was sensitive to the angle of sideslip at measured angles of attack greater than 60 deg and was not influenced by wing leading-edge modifications or aileron deflections.

  11. Evaluation of arctic multibeam sonar data quality using nadir crossover error analysis and compilation of a full-resolution data product

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton F.; Mayer, Larry A.; Calder, Brian A.; Armstrong, Andrew A.

    2014-05-01

    We document a new high-resolution multibeam bathymetry compilation for the Canada Basin and Chukchi Borderland in the Arctic Ocean - United States Arctic Multibeam Compilation (USAMBC Version 1.0). The compilation preserves the highest native resolution of the bathymetric data, allowing for more detailed interpretation of seafloor morphology than has been previously possible. The compilation was created from multibeam bathymetry data available through openly accessible government and academic repositories. Much of the new data was collected during dedicated mapping cruises in support of the United States effort to map extended continental shelf regions beyond the 200 nm Exclusive Economic Zone. Data quality was evaluated using nadir-beam crossover-error statistics, making it possible to assess the precision of multibeam depth soundings collected from a wide range of vessels and sonar systems. Data were compiled into a single high-resolution grid through a vertical stacking method, preserving the highest quality data source in any specific grid cell. The crossover-error analysis and method of data compilation can be applied to other multi-source multibeam data sets, and is particularly useful for government agencies targeting extended continental shelf regions but with limited hydrographic capabilities. Both the gridded compilation and an easily distributed geospatial PDF map are freely available through the University of New Hampshire's Center for Coastal and Ocean Mapping (ccom.unh.edu/theme/law-sea). The geospatial pdf is a full resolution, small file-size product that supports interpretation of Arctic seafloor morphology without the need for specialized gridding/visualization software.

  12. LINTRAN v2.0: A linearised vector radiative transfer model for efficient simulation of satellite-born nadir-viewing reflection measurements of cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Schepers, D.; aan de Brugh, J. M. J.; Hahne, Ph.; Butz, A.; Hasekamp, O. P.; Landgraf, J.

    2014-12-01

    Radiance measurements of solar radiation that is backscattered by the Earth's atmosphere or surface contain information about the atmospheric composition and the state of the Earth's surface. Retrieving such information from satellite-based observations in nadir geometry employs a radiative transfer forward model. The forward model simulates the observed quantity, aiming to reproduce the observation. LINTRAN v2.0 is a linearised vector radiative transfer forward model, employing forward-adjoint theory, that is capable of modelling cloud contaminated satellite observations and their derivatives with respect to the state of the atmosphere and the Earth's surface in a numerically efficient manner. A significant gain in efficiency with respect to its predecessor (LINTRAN v1.0) is achieved through a mathematical framework that combines an approximate iterative solving method using the forward-adjoint perturbation theory with separation of the first N orders of scattering from the diffuse intensity vector field. Contributions to the observable up to order of scattering N are recursively solved in an analytical manner. Contributions from higher orders of scattering are subsequently solved in a numerical manner, assuming that the intensity field varies linearly with the vertical coordinate within an optically homogeneous model layer. This method is implemented in LINTRAN v2.0, choosing N=2, within the general framework of forward-adjoint perturbation theory. This new approach allows us to decrease the number of model layers and the degree of angular quadrature within the numerical solver by a factor of 10 and 1.4 respectively, compared to the previous model version, assuming a homogeneous atmosphere loaded with scattering Mie particles (size parameter χ≈35). In this homogeneous atmosphere, the reduced discretisation sampling in turn reduces the numerical effort associated with the numerical matrix solver by a factor of 42 relative to the previous model version, without

  13. The SPARC Data Initiative: Comparison of upper troposphere/lower stratosphere ozone climatologies from limb-viewing instruments and the nadir-viewing Tropospheric Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Hegglin, M. I.; Tegtmeier, S.; Bourassa, A.; Degenstein, D.; Froidevaux, L.; Fuller, R.; Funke, B.; Gille, J.; Jones, A.; Rozanov, A.; Toohey, M.; Clarmann, T.; Walker, K. A.; Worden, J. R.

    2014-06-01

    We present the first comprehensive intercomparison of currently available satellite ozone climatologies in the upper troposphere/lower stratosphere (UTLS) (300-70 hPa) as part of the Stratosphere-troposphere Processes and their Role in Climate (SPARC) Data Initiative. The Tropospheric Emission Spectrometer (TES) instrument is the only nadir-viewing instrument in this initiative, as well as the only instrument with a focus on tropospheric composition. We apply the TES observational operator to ozone climatologies from the more highly vertically resolved limb-viewing instruments. This minimizes the impact of differences in vertical resolution among the instruments and allows identification of systematic differences in the large-scale structure and variability of UTLS ozone. We find that the climatologies from most of the limb-viewing instruments show positive differences (ranging from 5 to 75%) with respect to TES in the tropical UTLS, and comparison to a "zonal mean" ozonesonde climatology indicates that these differences likely represent a positive bias for p ≤ 100 hPa. In the extratropics, there is good agreement among the climatologies regarding the timing and magnitude of the ozone seasonal cycle (differences in the peak-to-peak amplitude of <15%) when the TES observational operator is applied, as well as very consistent midlatitude interannual variability. The discrepancies in ozone temporal variability are larger in the tropics, with differences between the data sets of up to 55% in the seasonal cycle amplitude. However, the differences among the climatologies are everywhere much smaller than the range produced by current chemistry-climate models, indicating that the multiple-instrument ensemble is useful for quantitatively evaluating these models.

  14. Wall Angle Effects on Nozzle Separation Stability

    NASA Astrophysics Data System (ADS)

    Aghababaie, A.; Taylor, N.

    The presence of asymmetric side loads due to unstable separation within over-expanded rocket nozzles is well documented. Although progress has been made in developing understanding of this phenomenon through numerical and experimental means, the causes of these side loads have yet to be fully explained. The hypothesis examined within this paper is that there is a relationship between nozzle wall angle at the point of separation, and the stability of the flow separation. This was achieved through an experimental investigation of a series of subscale over-expanded conical nozzles with half-angles of 8.3°, 10.4°, 12.6° and 14.8°. All had overall area ratios of 16:1, with separation occurring at approximately half the nozzle length (i.e. area ration of 4:1) under an overall pressure ratio of approximately 7:1 using air as the working fluid. The structure of exhaust flow was observed and analysed by use of an optimised Schlieren visualisation system, coupled with a high speed digital camera. The 12.6° and 14.8° nozzles exhaust flow were seen to be stable throughout the recorded test period of 10 seconds. However, a small number of large fluctuations in the jet angle were seen to be present within the flowfield of the 10.4° nozzle, occurring at apparently random intervals through the test period. The flowfield of the 8.3° nozzle demonstrated near continuous, large angle deviations in the jet, with flow patterns containing thickened shear layers and apparent reattachment to the wall, something not previously identified in conical nozzles. These results were used to design a truncated ideal contour with an exit angle of over 10 degrees, in order to assess the possibility of designing conventional nozzles that separate stably over a wide range of pressure ratios. These tests were successful, potentially providing a simpler, cheaper alternative to altitude compensating nozzle devices. However, more work determining the nature of the separation and its causes is

  15. MAGIC SHIMMING: gradient shimming with magic angle sample spinning.

    PubMed

    Nishiyama, Yusuke; Tsutsumi, Yu; Utsumi, Hiroaki

    2012-03-01

    A simple method to automatically shim NMR samples spinning at the magic angle is introduced based on the gradient shimming approach. The field inhomogeneity along the spinning axis is measured and automatically corrected. The combination of a normal magic angle spinning (MAS) probe, a conventional homospoil gradient, and a set of properly chosen standard room-temperature shims are used to perform the gradient shimming of samples spinning at the magic angle. The resulting (13)C NMR adamantane linewidth is less than 1 Hz (0.0078 ppm at 11.7 T). PMID:22370722

  16. MAGIC SHIMMING: Gradient shimming with magic angle sample spinning

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yusuke; Tsutsumi, Yu; Utsumi, Hiroaki

    2012-03-01

    A simple method to automatically shim NMR samples spinning at the magic angle is introduced based on the gradient shimming approach. The field inhomogeneity along the spinning axis is measured and automatically corrected. The combination of a normal magic angle spinning (MAS) probe, a conventional homospoil gradient, and a set of properly chosen standard room-temperature shims are used to perform the gradient shimming of samples spinning at the magic angle. The resulting 13C NMR adamantane linewidth is less than 1 Hz (0.0078 ppm at 11.7 T).

  17. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  18. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USML-2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  19. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, L. D.; Hyer, M. W.; Shuart, M. J.

    1992-01-01

    Test results from the compression loading of (+ or - Theta/ - or + Theta)(sub 6s) angle-ply IM7-8551-7a specimens, 0 less than or = Theta less than or = 90 degs, are presented. The observed failure strengths and modes are discussed, and typical stress-strain relations shown. Using classical lamination theory and the maximum stress criterion, an attempt is made to predict failure stress as a function of Theta. This attempt results in poor correlation with test results and thus a more advanced model is used. The model, which is based on a geometrically nonlinear theory, and which was taken from previous work, includes the influence of observed layer waviness. The waviness is described by the wave length and the wave amplitude. The theory is briefly described and results from the theory are correlated with test results. It is shown that by using levels of waviness observed in the specimens, the correlation between predictions and observations is good.

  20. Optimum projection angle for attaining maximum distance in a soccer punt kick.

    PubMed

    Linthorne, Nicholas P; Patel, Dipesh S

    2011-01-01

    To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player's optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player's preferred projection angles (40° and 44°). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°. Key pointsThe optimum projection angle that maximizes the distance of a punt kick by a soccer goalkeeper is about 45°.The optimum projection angle is close to 45° because the projection velocity of the ball is almost the same at all projection angles.This result is in contrast to throwing and jumping for maximum distance, where the optimum projection angle is well below 45° because the projection velocity the athlete is able to achieve decreases substantially with increasing

  1. Laser interferometric high-precision angle monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2006-06-01

    The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.

  2. The ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron beam energy region. Experimental results

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Antonenko, V. G.; Borzakov, S. B.; Borzunov, Yu. T.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Finger, M.; Finger, M.; Golovanov, L. B.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kovalenko, A. D.; Krasnov, V. A.; Kuzmin, N. A.; Kurilkin, A. K.; Kurilkin, P. K.

    2009-06-15

    New experimental results on ratio R{sub dp} of the quasielastic charge-exchange yield at the outgoing proton angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield, are presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. The intense neutron beam with small momentum spread was produced by breakup of deuterons which were accelerated and extracted to the experimental hall. In both reactions mentioned above the outgoing protons with the momenta p{sub p} approximately equal to the neutron-beam momentum p{sub n,beam} were detected in the directions close to the direction of incident neutrons, i.e., in the vicinity of the scattering angle {theta}{sub p,lab} = 0 deg. Measured in the same data-taking runs, the angular distributions of the charge-exchange-reaction products were corrected for the well-known instrumental effects and averaged in the vicinity of the incident-neutron-beam direction. These corrected angular distributions for every of nd {yields} p(nn) and np {yields} pn charge-exchange processes were proportional to the differential cross sections of the corresponding reactions. The data were accumulated by Delta-Sigma setup magnetic spectrometer with two sets of multiwire proportional chambers located upstream and downstream of the momentum analyzing magnet. Inelastic processes were considerably reduced by the additional detectors surrounding the hydrogen and deuterium targets. The time-of-flight system was applied to identify the detected particles. The accumulated data treatment and analysis, as well as possible sources of the systematic errors are discussed.

  3. 30 CFR 56.19037 - Fleet angles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 56.19037 Section 56.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 56.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  4. 30 CFR 57.19037 - Fleet angles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  5. 30 CFR 57.19037 - Fleet angles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not be greater than one and one-half degrees for smooth drums or two degrees for grooved drums....

  6. Collisionless pitch-angle scattering of runaway electrons

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yulei; Qin, Hong

    2016-06-01

    It is discovered that the tokamak field geometry generates a toroidicity induced broadening of the pitch-angle distribution of runaway electrons. This collisionless pitch-angle scattering is much stronger than the collisional scattering and invalidates the gyro-center model for runaway electrons. As a result, the energy limit of runaway electrons is found to be larger than the prediction of the gyro-center model and to depend heavily on the background magnetic field.

  7. A system concept for wide swath constant incident angle coverage

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Eckerman, J.

    1978-01-01

    Multiple beam approach readily overcomes radar ambiguity constraints associated with orbital systems and therefore permits imagery over swaths much wider than 100 kilometers. Furthermore, the antenna technique permits imagery at nearly constant incident angles. When frequency scanning is employed, the center angle may be programmed. The redundant use of the antenna aperture during reception results in lower transmitted power and in shorter antenna lengths in comparison to conventional designs. Compatibility of the approach with passive imagery is also considered.

  8. Reduction of blade passage tone by angle modulation

    NASA Astrophysics Data System (ADS)

    Fiagbedzi, Y. A.

    1982-05-01

    Blade staggering has been used in both centrifugal and axial flow fans to reduce discrete tones. Impeller hub resilience, causing fan torsional oscillations, appears to be equivalent to blade staggering in that both lead to angle modulation of the blade passage sound. By using Jacobi-Anger expansions, the sound reductions resulting from the angle modulation effects of these two equivalent techniques are predicted. Excellent agreement is found with published data.

  9. SU-E-I-56: Scan Angle Reduction for a Limited-Angle Intrafraction Verification (LIVE) System

    SciTech Connect

    Ren, L; Zhang, Y; Yin, F

    2014-06-01

    Purpose: To develop a novel adaptive reconstruction strategy to further reduce the scanning angle required by the limited-angle intrafraction verification (LIVE) system for intrafraction verification. Methods: LIVE acquires limited angle MV projections from the exit fluence of the arc treatment beam or during gantry rotation between static beams. Orthogonal limited-angle kV projections are also acquired simultaneously to provide additional information. LIVE considers the on-board 4D-CBCT images as a deformation of the prior 4D-CT images, and solves the deformation field based on deformation models and data fidelity constraint. LIVE reaches a checkpoint after a limited-angle scan, and reconstructs 4D-CBCT for intrafraction verification at the checkpoint. In adaptive reconstruction strategy, a larger scanning angle of 30° is used for the first checkpoint, and smaller scanning angles of 15° are used for subsequent checkpoints. The onboard images reconstructed at the previous adjacent checkpoint are used as the prior images for reconstruction at the current checkpoint. As the algorithm only needs to reconstruct the small deformation occurred between adjacent checkpoints, projections from a smaller scan angle provide enough information for the reconstruction. XCAT was used to simulate tumor motion baseline drift of 2mm along sup-inf direction at every subsequent checkpoint, which are 15° apart. Adaptive reconstruction strategy was used to reconstruct the images at each checkpoint using orthogonal 15° kV and MV projections. Results: Results showed that LIVE reconstructed the tumor volumes accurately using orthogonal 15° kV-MV projections. Volume percentage differences (VPDs) were within 5% and center of mass shifts (COMS) were within 1mm for reconstruction at all checkpoints. Conclusion: It's feasible to use an adaptive reconstruction strategy to further reduce the scan angle needed by LIVE to allow faster and more frequent intrafraction verification to minimize the

  10. Comparison of Trajectory Solid Angle with Geometric Solid Angle in Scattering Theory

    NASA Astrophysics Data System (ADS)

    Wong, Po Kee; Wong, Adam; Wong, Anita

    2002-01-01

    The objective of the paper is openly to invite all physicists, mathematicians and engineers in the world to re-examine and to confirm the ultimate truth and the worldwide impacts of two U.S. Basic Patents No.5,084,232 and No. 5,848,377 which can be obtained from: http://164.195.100.11/netahtml/srchnum.htm The application of Trajectory Solid Angle (TSA) to obtain the correct collision cross-sections in Nuclear Physics and in Astronomy by the example of obtaining the correct scattering cross-section of the well- known Alpha Scattering was shown in a paper IAF-00-J.1.10. entitled " Applications of Trajectory Solid Angle (TSA) and Wong's Angles (WA) Solving Fundamental Problems in Physics and Astronomy " presented and published at the 51st. International Astronautical Congress, 2-6 Oct 2000/Rio de Janeiro, Brazil. The Alpha Scattering was done in theory and in experiment by Sir Rutherford. The differential scattering cross section derived from using the geometric solid angle can be seen from all the text books of physics in the world. However, the differential scattering cross section derived from using the TSA has not been known by most of our colleagues in the world and it is different from the previous results. The present and the previous theoretical results converge to be the same only when the Alpha particle is far away from the stationary heavy nucleus. That was where Sir Rutherford made his measurement and therefore the old theory and the experiment were confirmed. The Alpha Scattering is really similar to the scattering of the Comet Halley by our solar system even though they are under the actions of different force fields. In 1976-79, the senior author of this paper communicated with JPL of NASA and urged JPL to conduct an experiment to confirm the curvature effects of the trajectory of the Comet Halley coming closer to our solar system in those years. It is unfortunate that the communications have never been answered even up to now. Without repeating the

  11. Argon-Assisted Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Sorge, Jason Brian

    Glancing angle deposition (GLAD) is a physical vapour deposition (PVD) technique capable of fabricating highly porous thin films with controllable film morphology on the 10 nm length scale. The GLAD process is flexible and may be used on virtually any PVD-compatible material. This makes GLAD a useful technique in many applications including photovoltaics, humidity sensing, and photonic devices. Conventional, dense films grown at normal incidence concurrent with ion or energetic neutral bombardment have been reported to have higher film density than unbombarded films. In a similar sense, highly porous GLAD films grown with concurrent bombardment should generate films with new interesting properties and extend the versatility of the GLAD process. The research presented in this thesis investigates the use of energetic neutral bombardment during GLAD film growth to produce new film morphologies. Here, with increasing bombardment, the column tilt increases, film density increases, and specific surface area decreases. A film simultaneously exhibiting high column tilt angle and film density is enabled by incorporating bombardment concurrent with GLAD film growth. This in turn results in films with larger principal refractive indices, but a smaller normalized in plane birefringence. Bombarded films were also found to be compatible with the phisweep process which helps decouple the column tilt angle from film density. Characterization of the bombardment-assisted growth process indicates that both sputtering and bombardment-induced diffusion play a role in the modification of film morphology. The film property modifications which arise as a result of bombardment-assisted growth lead to device improvements in a number of applications. Bombardment was used to fabricate square spiral photonic crystal structures with increased column tilt which bear a closer resemblance to optimized simulated structures than conventionally-grown GLAD films. The increase in column tilt angle and

  12. The correlation between calcaneal valgus angle and asymmetrical thoracic-lumbar rotation angles in patients with adolescent scoliosis.

    PubMed

    Park, Jaeyong; Lee, Sang Gil; Bae, Jongjin; Lee, Jung Chul

    2015-12-01

    [Purpose] This study aimed to provide a predictable evaluation method for the progression of scoliosis in adolescents based on quick and reliable measurements using the naked eye, such as the calcaneal valgus angle of the foot, which can be performed at public facilities such as schools. [Subjects and Methods] Idiopathic scoliosis patients with a Cobb's angle of 10° or more (96 females, 22 males) were included in this study. To identify relationships between factors, Pearson's product-moment correlation coefficient was computed. The degree of scoliosis was set as a dependent variable to predict thoracic and lumbar scoliosis using ankle angle and physique factors. Height, weight, and left and right calcaneal valgus angles were set as independent variables; thereafter, multiple regression analysis was performed. This study extracted variables at a significance level (α) of 0.05 by applying a stepwise method, and calculated a regression equation. [Results] Negative correlation (R=-0.266) was shown between lumbar lordosis and asymmetrical lumbar rotation angles. A correlation (R=0.281) was also demonstrated between left calcaneal valgus angles and asymmetrical thoracic rotation angles. [Conclusion] Prediction of scoliosis progress was revealed to be possible through ocular inspection of the calcaneus and Adams forward bending test and the use of a scoliometer. PMID:26834376

  13. Amplitude-versus-angle analysis and wide-angle-inversion of crosswell seismic data in a carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed S.

    Crosswell data set contains a range of angles limited only by the geometry of the source and receiver configuration, the separation of the boreholes and the depth to the target. However, the wide angles reflections present in crosswell imaging result in amplitude-versus-angle (AVA) features not usually observed in surface data. These features include reflections from angles that are near critical and beyond critical for many of the interfaces; some of these reflections are visible only for a small range of angles, presumably near their critical angle. High-resolution crosswell seismic surveys were conducted over a Silurian (Niagaran) reef at two fields in northern Michigan, Springdale and Coldspring. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. Combining the results from images obtained from above with those from beneath provides additional information, by exhibiting ranges of angles that are different for the two images, especially for reflectors at shallow depths, and second, by providing additional constraints on the solutions for Zoeppritz equations. Inversion of seismic data for impedance has become a standard part of the workflow for quantitative reservoir characterization. Inversion of crosswell data using either deterministic or geostatistical methods can lead to poor results with phase change beyond the critical angle, however, the simultaneous pre-stack inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Deterministic inversion is designed to yield only a single model of elastic properties (best-fit), while the geostatistical inversion produces multiple models (realizations) of elastic properties, lithology and reservoir properties. Geostatistical inversion produces results with far more detail than deterministic inversion. The magnitude of difference in details between both types of inversion becomes increasingly

  14. Proper Angle of Sono-guided Central Venous Line Insertion

    PubMed Central

    Barzegari, Hassan; Forouzan, Arash; Fahimi, Mohammad Ali; Zohrevandi, Behzad; Ghanavati, Mandana

    2016-01-01

    Introduction: Determining the proper angle for inserting central venous catheter (CV line) is of great importance for decreasing the complications and increasing success rate. The present study was designed to determine the proper angle of needle insertion for internal jugular vein catheterization. Methods: In the present case series study, candidate patients for catheterization of the right internal jugular vein under guidance of ultrasonography were studied. At the time of proper placing of the catheter, photograph was taken and Auto Cad 2014 software was used to measure the angles of the needle in the sagittal and axial planes, as well as patient’s head rotation. Result: 114 patients with the mean age of 56.96 ± 14.71 years were evaluated (68.4% male). The most common indications of catheterization were hemodialysis (55.3%) and shock state (24.6%). The mean angles of needle insertion were 102.15 ± 6.80 for axial plane, 36.21 ± 3.12 for sagittal plane and the mean head rotation angle was 40.49 ± 5.09. Conclusion: Based on the results of the present study it seems that CV line insertion under the angles 102.15 ± 6.80 degrees in the axial plane, 36.21 ± 3.12 in the sagittal plane and 40.49 ± 5.09 head rotation yield satisfactory results. PMID:27299146

  15. Extracting Accurate and Precise Topography from Lroc Narrow Angle Camera Stereo Observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Speyerer, E. J.; Robinson, M. S.; LROC Team

    2016-06-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that acquire meter scale imaging. Stereo observations are acquired by imaging from two or more orbits, including at least one off-nadir slew. Digital terrain models (DTMs) generated from the stereo observations are controlled to Lunar Orbiter Laser Altimeter (LOLA) elevation profiles. With current processing methods, digital terrain models (DTM) have absolute accuracies commensurate than the uncertainties of the LOLA profiles (~10 m horizontally and ~1 m vertically) and relative horizontal and vertical precisions better than the pixel scale of the DTMs (2 to 5 m). The NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics, enabling detailed characterization of large geomorphic features and providing a key resource for future exploration planning. Currently, two percent of the lunar surface is imaged in NAC stereo and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur on all the terrestrial planets.

  16. Multilateration with the wide-angle airborne laser ranging system: positioning precision and atmospheric effects.

    PubMed

    Bock, O

    1999-05-20

    Numerical simulations based on previously validated models for the wide-angle airborne laser ranging system are used here for assessing the precision in coordinate estimates of ground-based cube-corner retroreflectors (CCR's). It is shown that the precision can be optimized to first order as a function of instrument performance, number of laser shots (LS's), and network size. Laser beam divergence, aircraft altitude, and CCR density are only second-order parameters, provided that the number of echoes per LS is greater than 20. Thus precision in the vertical is approximately 1 mm, with a signal-to-noise ratio of 50 at nadir, a 10-km altitude, a 20 degrees beam divergence, and approximately 5 x 10(3) measurements. Scintillation and fair-weather cumulus clouds usually have negligible influence on the estimates. Laser biases and path delay are compensated for by adjustment of aircraft offsets. The predominant atmospheric effect is with mesoscale nonuniform horizontal temperature gradients, which might lead to biases near 0.5 mm. PMID:18319932

  17. Moderate Positive Spin Hall Angle in Uranium

    NASA Astrophysics Data System (ADS)

    Anguera, Marta; Singh, Simran; Del Barco, Enrique; Springell, Ross; Miller, Casey W.

    We will present results on FMR and voltage measurements of magnetic damping and the inverse spin Hall effect, respectively, in Ni80Fe20/Uranium bilayers. A pure spin current is injected into an Uranium film from the ferromagnetic resonance dynamics of the magnetization of an adjacent Ni80Fe20 (permalloy) film. The spin current generated is then converted into an electric field by the inverse spin Hall effect. Our results suggest a spin mixing conductance of order 2x1019 m-2 and a positive spin Hall angle of 0.004, which are both unexpected based on trends in d-electron systems. These results support the idea that materials with unfilled f-electron orbitals may require additional exploration for spin physics. Work at UCF was supported by NSF-ECCS grant # 1402990. Work at RIT was supported by NSF-ECCS Grant 1515677.

  18. Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 μm

    NASA Astrophysics Data System (ADS)

    Peralta, J.; López-Valverde, M. A.; Gilli, G.; Piccialli, A.

    2016-01-01

    In this work, we analysed nadir observations of atmospheric infrared emissions carried out by VIRTIS, a high-resolution spectrometer on board the European spacecraft Venus Express. We focused on the ro-vibrational band of CO2 at 4.3 μm on the dayside, whose fluorescence originates in the Venus upper mesosphere and above. This is the first time that a systematic sounding of these non-local thermodynamic equilibrium (NLTE) emissions has been carried out in Venus using this geometry. As many as 143,218 spectra have been analysed on the dayside during the period 14/05/2006 to 14/09/2009. We designed an inversion method to obtain the atmospheric temperature from these non-thermal observations, including a NLTE line-by-line forward model and a pre-computed set of spectra for a set of thermal structures and illumination conditions. Our measurements sound a broad region of the upper mesosphere and lower thermosphere of Venus ranging from 10-2-10-5 mb (which in the Venus International Reference Atmosphere, VIRA, is approximately 100-150 km during the daytime) and show a maximum around 195 ± 10 K in the subsolar region, decreasing with latitude and local time towards the terminator. This is in qualitative agreement with predictions by a Venus Thermospheric General Circulation Model (VTGCM) after a proper averaging of altitudes for meaningful comparisons, although our temperatures are colder than the model by about 25 K throughout. We estimate a thermal gradient of about 35 K between the subsolar and antisolar points when comparing our data with nightside temperatures measured at similar altitudes by SPICAV, another instrument on Venus Express (VEx). Our data show a stable temperature structure through five years of measurements, but we also found episodes of strong heating/cooling to occur in the subsolar region of less than two days. The table with numerical data and averaged temperatures displayed in Fig. 7A provided as a CSV data file is only available at the CDS via

  19. Multi-angle technique for measurement of ground source emission

    SciTech Connect

    Henderson, J.R.

    1995-04-01

    TAISIR, the Temperature and Imaging System Infrared, is a nominally satellite based platform for remote sensing of the earth. One of its design features is to acquire atmospheric data simultaneous with ground data, resulting in minimal dependence on external atmospheric models for data correction. One technique we employ to acquire atmospheric data is a true multi-angle data acquisition technique. Previous techniques have used only two angles. Here we demonstrate the advantage of using a large number of viewing angles to overconstrain the inversion problem for critical atmospheric and source parameters. For reasonable data acquisition scenarios, simulations show source temperature errors of less than 1K should be possible. Tradeoffs between flight geometry, number of look angles,, and system signal-to-noise are given for typical parameter ranges.

  20. ILC Extraction Line for 14 mrad Crossing Angle

    SciTech Connect

    Nosochkov, Y.; Markiewicz, T.; Maruyama, T.; Seryi, A.; Parker, B.; /Brookhaven

    2005-12-08

    The earlier studies of the ILC extraction line for 20 mrad and 2 mrad crossing angle options [1]-[5] showed that the 20 mrad design has an advantage of a simpler beamline and lower extraction beam loss because of the independent incoming and extraction optics. However, the large 20 mrad crossing angle requires the use of a crab cavity correction, increases synchrotron radiation emittance growth in the solenoid, and increases photon backscattering from the forward calorimeter of the detector. To reduce these effects, an attempt has been made to minimize the crossing angle while keeping the extraction and incoming lines separate. A new quadrupole scheme near the interaction point has been proposed which allows a reduction of the crossing angle to 14 mrad [6]. The optics design and results of tracking and background simulations for the 14 mrad extraction line are presented.

  1. Seismic velocity estimation from wide-angle reflections in sediments

    NASA Astrophysics Data System (ADS)

    Majdanski, Mariusz

    2016-04-01

    Travel time inversion of wide-angle seismic data is well-known technique used in various scales. In specific case of the industrial profiling of a sedimentary layers, where rather flat structures with relatively small velocity differences are observed, we propose an extension of standard reflection tomography to wide-angle observations. In such conditions wide-angle reflections, and especially one observed at large angles, are dominant. They could be easily interpreted, and combined with observed refractions, gives precise estimation of velocities. Such an interpretation is presented based on full spread geometry seismic recording of standard vibroseis sources performing regular reflection seismic works. In the result it was possible to precisely recognize the velocity structure in layered media, and also perform its uncertainty analysis.

  2. Neptune high-latitude emission: Dependence of angle on frequency

    NASA Technical Reports Server (NTRS)

    Sawyer, Constance

    1993-01-01

    Smooth broadband radio emission reached a maximum and then cut off as Voyager approached the north magnetic pole of Neptune. The time of each event depends on frequency, yielding information on radio source location, and emission angle. In a preliminary analysis L-shell and magnetic longitude define radio-source locations in a dipole field. The emission angle at each frequency is identified with the angle between the magnetic-field direction at the source and the line of sight to Voyager 2 at the time of emission maximum. At each value of L in the range 6 less than L less than 9, there is one source longitude for which emission angle varies smoothly from greater or equal to 90 deg at 40 kHz to as low as 20 deg at 462 kHz. A more complex magnetic-field model can give a qualitatively different result.

  3. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  4. Large-scale Molecular Dynamics Simulations of Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Hubartt, Bradley; Liu, Xuejing; Amar, Jacques

    2013-03-01

    While a variety of methods have been developed to carry out atomistic simulations of thin-film growth at small deposition angles with respect to the substrate normal, due to the complex morphology as well as the existence of multiple scattering of depositing atoms by the growing thin-film, realistically modeling the deposition process for large deposition angles can be quite challenging. Accordingly, we have developed a computationally efficient method based on the use of a single graphical processing unit (GPU) to carry out molecular dynamics (MD) simulations of the deposition and growth of thin-films via glancing angle deposition. Using this method we have carried out large-scale MD simulations, based on an embedded-atom-method potential, of Cu/Cu(100) growth up to 20 monolayers for deposition angles ranging from 50° to 85° and for both random and fixed azimuthal angles. Our results for the thin-film porosity, roughness, lateral correlation length, and density vs height will be presented and compared with experiments. Results for the dependence of the microstructure, grain-size distribution, surface texture, and defect concentration on deposition angle will also be presented. Supported by NSF DMR-0907399

  5. Anomalous and resonance small angle scattering: Revision

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

  6. Anomalous and resonance small angle scattering

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

  7. Pumice-pumice collisions and the effect of the impact angle

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Manga, M.

    2003-06-01

    Using a high-speed video camera, we studied oblique collisions of lapilli-size pumice cylinders (with no rotation before impact) on flat pumice targets. Our results show that the rebound angle, the ratios of the components of velocities and the energy loss vary with the impact angle. In particular, in collisions with an average yaw angle approximately equal to zero, we observed relatively larger rebound angles at small and large impact angles and smaller values in between (the angles are measured from the horizontal surfaces of the targets). We observed also that the ratio of the normal components of velocities decreases and the ratio of the horizontal components increases when the impact angle increases. Furthermore, the ratio of the kinetic energy after to that before collisions, in general, decreases when the impact angle increases. Thus, our experiments reveal features that could be useful in modelling pumice-pumice collisions in geophysical flows.

  8. Angled Layers in Super Resolution

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers used a special imaging technique with the panoramic camera on NASA's Mars Exploration Rover Opportunity to get as detailed a look as possible at a target region near eastern foot of 'Burns Cliff.' The intervening terrain was too difficult for driving the rover closer. The target is the boundary between two sections of layered rock. The layers in lower section (left) run at a marked angle to the layers in next higher section (right).

    This view is the product of a technique called super resolution. It was generated from data acquired on sol 288 of Opportunity's mission (Nov. 14, 2004) from a position along the southeast wall of 'Endurance Crater.' Resolution slightly higher than normal for the panoramic camera was synthesized for this view by combining 17 separate images of this scene, each one 'dithered' or pointed slightly differently from the previous one. Computer manipulation of the individual images was then used to generate a new synthetic view of the scene in a process known mathematically as iterative deconvolution, but referred to informally as super resolution. Similar methods have been used to enhance the resolution of images from the Mars Pathfinder mission and the Hubble Space Telescope.

  9. Large Angle Satellite Attitude Maneuvers

    NASA Technical Reports Server (NTRS)

    Cochran, J. E.; Junkins, J. L.

    1975-01-01

    Two methods are proposed for performing large angle reorientation maneuvers. The first method is based upon Euler's rotation theorem; an arbitrary reorientation is ideally accomplished by rotating the spacecraft about a line which is fixed in both the body and in space. This scheme has been found to be best suited for the case in which the initial and desired attitude states have small angular velocities. The second scheme is more general in that a general class of transition trajectories is introduced which, in principle, allows transfer between arbitrary orientation and angular velocity states. The method generates transition maneuvers in which the uncontrolled (free) initial and final states are matched in orientation and angular velocity. The forced transition trajectory is obtained by using a weighted average of the unforced forward integration of the initial state and the unforced backward integration of the desired state. The current effort is centered around practical validation of this second class of maneuvers. Of particular concern is enforcement of given control system constraints and methods for suboptimization by proper selection of maneuver initiation and termination times. Analogous reorientation strategies which force smooth transition in angular momentum and/or rotational energy are under consideration.

  10. [Screening in open angle glaucoma].

    PubMed

    Mocanu, Carmen; Mocanu, Andrei

    2012-01-01

    Primary open angle glaucoma (POAG) represents the second cause of mondial cecity, after retinal diabetes complications, with extremely severe implications in quality of life. Screening testing for glaucoma is justified, because only the diagnosis in very incipient stage will preserve the visual function; any treatment will not assure the reversibility of pre-existent optic nerve lesions. Screening of glaucoma, will take into a consideration the costs, the time of investigation, the adverse effects, and the sensitivity and specificity of tests; the last parameter also will strongly influence the positive predictive value. An ideal screening identifies all subjects that present the disease (sensitivity) and will exclude all healthy subjects (specificity). In this moment, in Dolj district, the diagnosis is based on active diagnosis of new cases of glaucoma on the high risk level population, therefore in a 210000 habitants. 4723 patients with glaucoma are diagnosed, screened and follow-up on medical cabinets and on Center of Glaucoma, which coordinates their activity. To better monitored patients, automatized programs with acquisition and storage for different types of medical imaging facilities had become indispensable to any routine practice. PMID:23755511

  11. Assessment of scan-angle dependent radiometric bias of Suomi-NPP VIIRS day/night band from night light point source observations

    NASA Astrophysics Data System (ADS)

    Bai, Yan; Cao, Changyong; Shao, Xi

    2015-09-01

    The low gain stage of VIIRS Day/Night Band (DNB) on Suomi-NPP is calibrated using onboard solar diffuser. The calibration is then transferred to the high gain stage of DNB based on the gain ratio determined from data collected along solar terminator region. The calibration transfer causes increase of uncertainties and affects the accuracy of the low light radiances observed by DNB at night. Since there are 32 aggregation zones from nadir to the edge of the scan and each zone has its own calibration, the calibration versus scan angle of DNB needs to be independently assessed. This study presents preliminary analysis of the scan-angle dependence of the light intensity from bridge lights, oil platforms, power plants, and flares observed by VIIRS DNB since 2014. Effects of atmospheric path length associated with scan angle are analyzed. In addition, other effects such as light changes at the time of observation are also discussed. The methodology developed will be especially useful for JPSS J1 VIIRS due to the nonlinearity effects at high scan angles, and the modification of geolocation software code for different aggregation modes. It is known that J1 VIIRS DNB has large nonlinearity across aggregation zones, and requires new aggregation modes, as well as more comprehensive validation.

  12. The influence of incident angle on physical properties of a novel back contact prepared by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhao, Yue; Feng, Yue; Shen, Jiesheng; Liang, Xiaoyan; Huang, Jian; Min, Jiahua; Wang, Linjun; Shi, Weimin

    2016-02-01

    In this paper, oblique vacuum thermal evaporation and direct current (DC) magnetron sputtering technique are used to produce a novel back contact electrode (BCE) of CuInS2 solar cell. These novel back contact electrodes (BCEs) are based on a layered structure of Mo/Ag/Mo (MAM). The influence of vapor source incidence angle θ on optical-electrical properties of novel BCE is investigated by X-ray Diffraction (XRD), Surface Profiler, Atomic Force Microscope (AFM), UV-vis-IR Spectrometer, and Four-point Probe Method. According to the analysis of AFM images of BCEs, the variation tendencies of surface roughness and uniformity are closely related to the incidence angle θ. The surface roughness increases with the increase of incidence angle θ, but the uniformity becomes poor at same time. This phenomenon can be attributed to the variation of interlayer Ag films (the density and inclined angle of Ag nanorods). The results of four-point probe test show that the novel BCE deposited by vapor source incidence angle θ equal to 45° owns the lowest resistance value of 3.71 × 10-8 Ω m, which is probably due to a loose and multi-point contact interface between Ag layer and top layer (Mo2). The reflectance of novel BCEs deposited by incident angle less than 45° is higher than that of normal bi-layer Mo (Mo12) BCE. As a result, the efficiency of corresponding solar cell may be upgraded.

  13. Determination of the Contact Angle Based on the Casimir Effect

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2015-01-01

    In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.

  14. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  15. Angle measurements with the laser gyro GG 1342

    NASA Astrophysics Data System (ADS)

    Wetzig, Volker; Luebeck, Egmar; Pahl, Wolfram; Ulrich, Dieter; Wittekopf, Reiner

    1990-11-01

    The characteristics of a ring laser gyro with regard to the accuracy are presented. The suitability of the laser gyro for static and dynamic angle measurements on a standard production Honeywell GG 1342 type with dither bias compensation was studied. The angle reference used for the static measurements was a 12-sided polygonal mirror in conjunction with a photoelectric autocollimation telescope. For the dynamic measurements, the inductosyn angle transducer of a gyro test table calibrated with the above-mentioned device was used. In the process it emerged that the laser gyro can also be used for fine calibration of a precise angle transducer. The influence of the gyro's scale factor and drift variations on the angle measurement deviations was investigated. Quantization noise was reduced in the data processing on the basis of fast sampling. Drift measurements included tests lasting one week. These results are also relevant for precise navigation and stabilization purposes. It transpired that random walk drift was the limiting factor for accuracy of nonrepeatable angle measurements.

  16. Limbus Impact on Off-angle Iris Degradation

    SciTech Connect

    Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J; Thompson, Joseph W; Bolme, David S; Boehnen, Chris Bensing

    2013-01-01

    The accuracy of iris recognition depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. Off-angle iris recognition is a new research focus in biometrics that tries to address several issues including corneal refraction, complex 3D iris texture, and blur. In this paper, we present an additional significant challenge that degrades the performance of the off-angle iris recognition systems, called the limbus effect . The limbus is the region at the border of the cornea where the cornea joins the sclera. The limbus is a semitransparent tissue that occludes a side portion of the iris plane. The amount of occluded iris texture on the side nearest the camera increases as the image acquisition angle increases. Without considering the role of the limbus effect, it is difficult to design an accurate off-angle iris recognition system. To the best of our knowledge, this is the first work that investigates the limbus effect in detail from a biometrics perspective. Based on results from real images and simulated experiments with real iris texture, the limbus effect increases the hamming distance score between frontal and off-angle iris images ranging from 0.05 to 0.2 depending upon the limbus height.

  17. Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone

    NASA Astrophysics Data System (ADS)

    Worden, H. M.; Edwards, D. P.; Deeter, M. N.; Fu, D.; Kulawik, S. S.; Worden, J. R.; Arellano, A.

    2013-07-01

    A current obstacle to the observation system simulation experiments (OSSEs) used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs). We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO) and ozone (O3) based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere) on the Earth Observing System (EOS)-Terra satellite and TES (Tropospheric Emission Spectrometer) and OMI (Ozone Monitoring Instrument) on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs), solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD) for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs performed to date

  18. X-31 at High Angle of Attack

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircraft's unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal

  19. X-31 at High Angle of Attack

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircrafts unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal

  20. X-31 at High Angle of Attack

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircrafts unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal

  1. Ultrasonic anemometer angle of attack errors under turbulent conditions

    NASA Astrophysics Data System (ADS)

    Nakai, T.

    2009-12-01

    Measurements of eddy fluxes are premised on the assumption that wind speeds are measured accurately by an ultrasonic anemometer. Recently, ultrasonic anemometers have been shown to suffer errors depending on the angle of attack, which is the angle between the wind vector and the horizontal. The correction of these errors resulted in general increases in eddy fluxes. However, since the check of the angle of attack dependent error was carried out in the wind tunnel experiment, which would be under the condition of nearly laminar flow, the applicability of this correction to the field data under turbulent conditions has been questioned. In this study, angle of attack dependencies of wind speeds measured by Gill Windmaster ultrasonic anemometers were assessed by field experiment over meadow, considered to be turbulent conditions. By using five identical anemometers, two pairs of systems were prepared: two anemometers for references and one between them for tilt. The dependencies of (co)sine responses of anemometers on angles of attack of 0 to -90 degrees in 10-degree steps and 45 degrees were checked, and clarified that the angle of attack dependent errors occur also under turbulent conditions, with results similar to the wind tunnel experiments. Sine responses of vertical wind speeds depended not only on vertical angle of attack but also on horizontal wind direction, which had not been considered in previous studies. For more robust correction, alternative calibration functions were obtained empirically so as to reasonably explain our field experimental results. Applying this new correction, eddy fluxes increased substantially even over meadow, which is somewhat aerodynamically smooth compared with forests or agricultural fields.

  2. Best Angle to Orient Two Intersecting Lines

    SciTech Connect

    Awwal, A S; Ferguson, S W; Shull, P B

    2006-07-25

    Fiducials in the form of intersecting straight lines are used to align the target in the final target chamber of the National Ignition Facility of Lawrence Livermore National Laboratory. One of the techniques used to locate these lines is the Hough transform. When two lines intersect at a 90 degree angle, it is tempting to orient the lines to horizontal and vertical directions. There are other possible angles at which the lines may be oriented. One question that arises while designing the fiducials is whether there is a preferred angle or range of angles that leads to higher accuracy. This work attempts to answer this question through detailed computer simulation.

  3. High-speed pitch angle sorter

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Torbert, R. B.; Vandiver, James

    1991-01-01

    A high-speed method was developed to compress the two-dimensional angular distribution of space particles gathered by space plasma instrumentation into the angle distribution, where the pitch angle is polar angle with respect to the ambient magnetic field. The pitch angle sorter can handle rates of up to 2 MHz and it is designed to accommodate high angular resolution plasma analyzers that are placed on a rotating spacecraft. This compression is achieved by relying on digitally encoded lookup tables to eliminate all arithmetic operations while applying the high symmetry of this compression to reduce the amount of digital memory.

  4. Pitch angle of galactic spiral arms

    SciTech Connect

    Michikoshi, Shugo; Kokubo, Eiichiro E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fitting formula. This dependence is explained by the swing amplification mechanism.

  5. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  6. Distinguishing features of shallow angle plunging jets

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj S.; Trujillo, Mario F.

    2013-08-01

    Numerical simulations employing an algebraic volume-of-fluid methodology are used to study the air entrainment characteristics of a water jet plunging into a quiescent water pool at angles ranging from θ = 10° to θ = 90° measured from the horizontal. Our previous study of shallow angled jets [S. S. Deshpande, M. F. Trujillo, X. Wu, and G. L. Chahine, "Computational and experimental characterization of a liquid jet plunging into a quiescent pool at shallow inclination," Int. J. Heat Fluid Flow 34, 1-14 (2012)], 10.1016/j.ijheatfluidflow.2012.01.011 revealed the existence of a clearly discernible frequency of ingestion of large air cavities. This is in contrast with chaotic entrainment of small air pockets reported in the literature in case of steeper or vertically plunging jets. In the present work, the differences are addressed by first quantifying the cavity size and entrained air volumes for different impingement angles. The results support the expected trend - reduction in cavity size (D43) as θ is increased. Time histories of cavity volumes in the vicinity of the impingement region confirm the visual observations pertaining to a near-periodic ingestion of large air volumes for shallow jets (10°, 12°), and also show that such cavities are not formed for steep or vertical jets. Each large cavity (defined as Dc/Dj ≳ 3) exists in close association with a stagnation point flow. A local mass and momentum balance shows that the high stagnation pressure causes a radial redirection of the jet, resulting in a flow that resembles the initial impact of a jet on the pool. In fact, for these large cavities, their speed matches closely Uimpact/2, which coincides with initial cavity propagation for sufficiently high Froude numbers. Furthermore, it is shown that the approximate periodicity of air entrainment scales linearly with Froude number. This finding is confirmed by a number of simulations at θ = 12°. Qualitatively, for steeper jets, such large stagnation

  7. A reevaluation of Stogryn's apparent temperature theory over the sea surface

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Eom, H. J.

    1984-01-01

    The emission theory for the sea surface by Stogryn has been reevaluated. Results agree with Stogryn's paper except for small nadir angles where the apparent temperature versus wind speed behavior is in reverse of what was reported by Stogryn. By plotting the change in contributions by the sea surface emission and sky temperature scattered toward the radiometer as a function of nadir angle at two different wind speeds, it is found that the sky temperature effect is dominating at small nadir angles, while the change in surface emission becomes increasingly more important at larger nadir angles. It is also found that at nadir higher emission is associated with the polarization where E(arrow) field is aligned along the upwind direction than the one along the crosswind direction.

  8. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    NASA Astrophysics Data System (ADS)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  9. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    PubMed Central

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-01-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results. PMID:26830146

  10. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy.

    PubMed

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C; Somekh, Michael G

    2016-01-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results. PMID:26830146

  11. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  12. Foreign body embedded in anterior chamber angle.

    PubMed

    Graffi, Shmuel; Tiosano, Beatrice; Ben Cnaan, Ran; Bahir, Jonathan; Naftali, Modi

    2012-01-01

    Introduction. We present a case of a metallic foreign body embedded in the anterior chamber angle. After standing in close proximity to a construction worker breaking a tile, a 26-year-old woman using soft contact lens for the correction of mild myopia presented to emergency department for evaluation of a foreign body sensation of her right eye. Methods and Results. Diagnosis was confirmed by gonioscopic examination and a noncontrast CT scan of head and orbits. The foreign body was removed by an external approach without utilizing a magnet. The patient's final outcome was favorable. Discussion. The above is a rare clinical situation, which is impossible to detect on slit-lamp examination without a gonioscopic view. Proper imaging and a specific management are mandatory in order to achieve favorable outcome. PMID:23091762

  13. Mirtazapine-induced acute angle closure

    PubMed Central

    Kahraman, Nilay; Durmaz, Onur; Durna, Mehmet Murat

    2015-01-01

    Acute angle closure (AAC) is an ocular emergency with symptoms including blurred vision, eye pain, headache, nausea, vomiting and reddening of the eye those results from increased intraocular pressure. This clinical condition can lead to permanent damage in vision, thus causing blindness by generating progressive and irreversible optic neuropathy if left untreated. There are several reasons of AAC, including several types of local and systemic medications; mainly sympathomimetics, cholinergics, anti-cholinergics, mydriatics, anti-histamines, antiepileptics like topiramate, tricyclic and tetracyclic antidepressants, serotonin reuptake inhibitors, antipsychotics, sulfa-based drugs and anticoagulants. Mirtazapine, a noradrenergic and specific serotonergic antidepressant, is an atypical antidepressant with a complex pharmacological profile. This case report describes a patient with major depressive disorder, who experienced AAC after the first dosage of mirtazapine treatment, and highlights the importance of close monitoring of individuals under antidepressant treatment particularly immediately after initiation of the drug. PMID:26265648

  14. Mirtazapine-induced acute angle closure.

    PubMed

    Kahraman, Nilay; Durmaz, Onur; Durna, Mehmet Murat

    2015-06-01

    Acute angle closure (AAC) is an ocular emergency with symptoms including blurred vision, eye pain, headache, nausea, vomiting and reddening of the eye those results from increased intraocular pressure. This clinical condition can lead to permanent damage in vision, thus causing blindness by generating progressive and irreversible optic neuropathy if left untreated. There are several reasons of AAC, including several types of local and systemic medications; mainly sympathomimetics, cholinergics, anti-cholinergics, mydriatics, anti-histamines, antiepileptics like topiramate, tricyclic and tetracyclic antidepressants, serotonin reuptake inhibitors, antipsychotics, sulfa-based drugs and anticoagulants. Mirtazapine, a noradrenergic and specific serotonergic antidepressant, is an atypical antidepressant with a complex pharmacological profile. This case report describes a patient with major depressive disorder, who experienced AAC after the first dosage of mirtazapine treatment, and highlights the importance of close monitoring of individuals under antidepressant treatment particularly immediately after initiation of the drug. PMID:26265648

  15. An optical angle of attack sensor

    NASA Astrophysics Data System (ADS)

    McDevitt, T. Kevin; Owen, F. Kevin

    A major source of transonic and supersonic wind-tunnel test data uncertainty is due to angle of attack (alpha) measurement errors caused by unknown sting and balance deflections under load. A novel laser-based instrument has been developed to enable continuous time-dependent alpha measurements to be made without signal dropout. Detectors capable of 0.01-deg resolution over an 18-deg range and 0.03-deg resolution over a 44-deg range with time-dependent outputs of 60 Hz have been developed. This capability is sufficient to provide accurate real-time alpha information for correlation with model balance measurements during transport and fighter model testing. Proof-of-concept experiments, along with the results of recent measurements conducted at the NASA Ames 9 x 7-ft supersonic wind tunnel, are presented. Experiments were also conducted to determine the reliable range, sensitivity, and long-term stability of the instrument.

  16. Analyzing angle crashes at unsignalized intersections using machine learning techniques.

    PubMed

    Abdel-Aty, Mohamed; Haleem, Kirolos

    2011-01-01

    A recently developed machine learning technique, multivariate adaptive regression splines (MARS), is introduced in this study to predict vehicles' angle crashes. MARS has a promising prediction power, and does not suffer from interpretation complexity. Negative Binomial (NB) and MARS models were fitted and compared using extensive data collected on unsignalized intersections in Florida. Two models were estimated for angle crash frequency at 3- and 4-legged unsignalized intersections. Treating crash frequency as a continuous response variable for fitting a MARS model was also examined by considering the natural logarithm of the crash frequency. Finally, combining MARS with another machine learning technique (random forest) was explored and discussed. The fitted NB angle crash models showed several significant factors that contribute to angle crash occurrence at unsignalized intersections such as, traffic volume on the major road, the upstream distance to the nearest signalized intersection, the distance between successive unsignalized intersections, median type on the major approach, percentage of trucks on the major approach, size of the intersection and the geographic location within the state. Based on the mean square prediction error (MSPE) assessment criterion, MARS outperformed the corresponding NB models. Also, using MARS for predicting continuous response variables yielded more favorable results than predicting discrete response variables. The generated MARS models showed the most promising results after screening the covariates using random forest. Based on the results of this study, MARS is recommended as an efficient technique for predicting crashes at unsignalized intersections (angle crashes in this study). PMID:21094345

  17. Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers.

    PubMed

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Bang, Ole

    2015-02-01

    We report on an incidence angle influence on inscription of the Fiber Bragg Gratings in Polymethyl methacrylate (PMMA) microstructured polymer optical fibers. We have shown experimentally that there is a strong preference of certain angles, labeled ГK, over the other ones. Angles close to ГK showed fast start of inscription, rapid inscription and stronger gratings. We have also shown that gratings can be obtained at almost any angle but their quality will be lower if they are not around ГK angle. Our experimental results verify earlier numerical and experimental predictions of Marshall et al. PMID:25836222

  18. Edge effects in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.

  19. Constant-variable flip angles for hyperpolarized media MRI

    NASA Astrophysics Data System (ADS)

    Deng, He; Zhong, Jianping; Ruan, Weiwei; Chen, Xian; Sun, Xianping; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2016-02-01

    The longitudinal magnetization of hyperpolarized media, such as hyperpolarized 129Xe, 3He, etc., is nonrenewable. When the MRI data acquisition begins at the k-domain center, a constant flip angle (CFA) results in an image of high signal-to-noise ratio (SNR) but sacrifices the accuracy of spatial information. On the other hand, a variable flip angle (VFA) strategy results in high accuracy but suffers from a low SNR. In this paper, we propose a novel scheme to optimize both the SNR and accuracy, called constant-variable flip angles (CVFA). The proposed scheme suggests that hyperpolarized magnetic resonance signals are firstly acquired through a train of n∗ CFA excitation pulses, followed by a train of N-n∗ VFA excitation pulses. We simulate and optimize the flip angle used in the CFA section, the number of CFA excitation pulses, the number of VFA excitation pulses, and the initial and final variable flip angles adopted in the VFA section. Phantom and in vivo experiments demonstrate the good performance of the CVFA designs and their ability to maintain both high SNR and spatial resolution.

  20. Estimation of crank angle for cycling with a powered prosthesis.

    PubMed

    Lawson, B E; Shultz, A; Ledoux, E; Goldfarb, M

    2014-01-01

    In order for a prosthesis to restore power generation during cycling, it must supply torque in a manner that is coordinated with the motion of the bicycle crank. This paper outlines an algorithm for the real time estimation of the angular position of a bicycle crankshaft using only measurements internal to an intelligent knee and ankle prosthesis. The algorithm assumes that the rider/prosthesis/bicycle system can be modeled as a four-bar mechanism. Assuming that a prosthesis can generate two independent angular measurements of the mechanism (in this case the knee angle and the absolute orientation of the shank), Freudenstein's equation can be used to synthesize the mechanism continuously. A recursive least-squares algorithm is implemented to estimate the Freudenstein coefficients, and the resulting link lengths are used to reformulate the equation in terms of input-output relationships mapping both measured angles to the crank angle. Using two independent measurements allows the algorithm to uniquely determine the crank angle from multi-valued functions. In order to validate the algorithm, a bicycle was mounted on a trainer and configured with the prosthesis using an artificial hip joint attached to the seat post. Motion capture was used to monitor the mechanism for forward and backward pedaling and the results are compared to the output of the presented algorithm. Once the parameters have converged, the algorithm is shown to predict the crank angle within 15° of the externally measured value throughout the entire crank cycle during forward rotation. PMID:25571415

  1. Dynamical deformed Airy beams with arbitrary angles between two wings.

    PubMed

    Liang, Yi; Hu, Yi; Ye, Zhuoyi; Song, Daohong; Lou, Cibo; Zhang, Xinzheng; Xu, Jingjun; Morandotti, Roberto; Chen, Zhigang

    2014-07-01

    We study both numerically and experimentally the acceleration and propagation dynamics of 2D Airy beams with arbitrary initial angles between their "two wings." Our results show that the acceleration of these generalized 2D Airy beams strongly depends on the initial angles and cannot be simply described by the vector superposition principle (except for the normal case of a 90° angle). However, as a result of the "Hyperbolic umbilic" catastrophe (a two-layer caustic), the main lobes of these 2D Airy beams still propagate along parabolic trajectories even though they become highly deformed. Under such conditions, the peak intensity (leading energy flow) of the 2D Airy beams cannot be confined along the main lobe, in contrast to the normal 90° case. Instead, it is found that there are two parabolic trajectories describing the beam propagation: one for the main lobe, and the other for the peak intensity. Both trajectories can be readily controlled by varying the initial wing angle. Due to their self-healing property, these beams tend to evolve into the well-known 1D or 2D Airy patterns after a certain propagation distance. The theoretical analysis corroborates our experimental observations, and explains clearly why the acceleration of deformed Airy beams increases with the opening of the initial wing angle. PMID:25121433

  2. Automatic star-horizon angle measurement system

    NASA Technical Reports Server (NTRS)

    Koerber, K.; Koso, D. A.; Nardella, P. C.

    1969-01-01

    Automatic star horizontal angle measuring aid for general navigational use incorporates an Apollo type sextant. The eyepiece of the sextant is replaced with two light detectors and appropriate circuitry. The device automatically determines the angle between a navigational star and a unique point on the earths horizon as seen on a spacecraft.

  3. Exact Interior Reconstruction from Truncated Limited-Angle Projection Data

    PubMed Central

    Ye, Yangbo; Yu, Hengyong; Wang, Ge

    2008-01-01

    Using filtered backprojection (FBP) and an analytic continuation approach, we prove that exact interior reconstruction is possible and unique from truncated limited-angle projection data, if we assume a prior knowledge on a subregion or subvolume within an object to be reconstructed. Our results show that (i) the interior region-of-interest (ROI) problem and interior volume-of-interest (VOI) problem can be exactly reconstructed from a limited-angle scan of the ROI/VOI and a 180 degree PI-scan of the subregion or subvolume and (ii) the whole object function can be exactly reconstructed from nontruncated projections from a limited-angle scan. These results improve the classical theory of Hamaker et al. (1980). PMID:18490957

  4. Specular points and critical gimbal angles of ogival radomes

    NASA Astrophysics Data System (ADS)

    Rengarajan, Sembiam R.

    1988-07-01

    Results on critical gimbal angles of ogival radomes have been presented as a function of fineness ratios and source point locations. It is shown that, for a given source point and reflected ray direction, no more than two specular points generally exist on the radome inner surface. The critical gimbal angle, beyond which reflected rays contribute to geometrical optics fields, is obtained in terms of a turning-point effect. Critical gimbal angles computed are significantly different from previously published results which overlooked the turning-point effect. Special techniques to determine the contribution of specular points near the turning point are briefly discussed. The techniques proposed can be applied to rotationally symmetric geometries other than ogives.

  5. Let's Do It! Using Geostrips and "Angle-Fixers" to Develop Ideas About Shapes and Angles

    ERIC Educational Resources Information Center

    Bruni, James V.; Silverman, Helene

    1975-01-01

    Homemade geostrips, "angle-fixers" (cardboard circular sectors) and brass fasteners can be used by students to explore properties of angles, triangles and other polygons. Several games and other activities are suggested. (SD)

  6. Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00)

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; D'Alimonte, Davide; Maritorena, Stephane; McLean, Scott; Sildam, Juri; McClain, Charles R. (Technical Monitor)

    2001-01-01

    The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the importance of data analysis methods upon derived AOP values, the Second Data Analysis Round Robin (DARR-00) activity was planned during the latter half of 1999 and executed during March 2000. The focus of the study was the intercomparison of several standard AOP parameters: (1) the upwelled radiance immediately below the sea surface, L(sub u)(0(-),lambda); (2) the downward irradiance immediately below the sea surface, E(sub d)(0(-),lambda); (3) the diffuse attenuation coefficients from the upwelling radiance and the downward irradiance profiles, L(sub L)(lambda) and K(sub d)(lambda), respectively; (4) the incident solar irradiance immediately above the sea surface, E(sub d)(0(+),lambda); (5) the remote sensing reflectance, R(sub rs)(lambda); (6) the normalized water-leaving radiance, [L(sub W)(lambda)](sub N); (7) the upward irradiance immediately below the sea surface, E(sub u)(0(-)), which is used with the upwelled radiance to derive the nadir Q-factor immediately below the sea surface, Q(sub n)(0(-),lambda); and (8) ancillary parameters like the solar zenith angle, theta, and the total chlorophyll concentration, C(sub Ta), derived from the optical data through statistical algorithms. In the results reported here, different methodologies from three research groups were applied to an identical set of 40 multispectral casts in order to evaluate the degree to which differences in data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-00 are presented in Chapter 1 and the individual methods used by the three groups and their data processors are presented in Chapters 2-4.

  7. Wind-tunnel calibration and requirements for in-flight use of fixed hemispherical head angle-of-attack and angle-of-sideslip sensors

    NASA Technical Reports Server (NTRS)

    Montoya, E. J.

    1973-01-01

    Wind-tunnel tests were conducted with three different fixed pressure-measuring hemispherical head sensor configurations which were strut-mounted on a nose boom. The tests were performed at free-stream Mach numbers from 0.2 to 3.6. The boom-angle-of-attack range was -6 to 15 deg, and the angle-of-sideslip range was -6 to 6 deg. The test Reynolds numbers were from 3.28 million to 65.6 million per meter. The results were used to obtain angle-of-attack and angle-of-sideslip calibration curves for the configurations. Signal outputs from the hemispherical head sensor had to be specially processed to obtain accurate real-time angle-of-attack and angle-of-sideslip measurements for pilot displays or aircraft systems. Use of the fixed sensors in flight showed them to be rugged and reliable and suitable for use in a high temperature environment.

  8. Supracondylar Osteotomy in Valgus Knee: Angle Blade Plate Versus Locking Compression Plate

    PubMed Central

    Kazemi, Seyyed Morteza; Minaei, Reza; Safdari, Farshad; Keipourfard, Ali; Forghani, Rozhin; Mirzapourshafiei, Alemeh

    2016-01-01

    Background: There are few studies comparing the biomechanical properties of angled blade plate and locking compression plates in supracondylar osteotomy. In the current randomized study, we prospectively compared the clinical and radiological outcomes of supracondylar osteotomy using these two plates. Methods: Forty patients with valgus knee malalignment were randomly assigned to two equal numbered groups: angled blade plate and locking compression plates. All of the patients underwent medial closing wedge supracondylar osteotomy and were followed for one year. Before and after the operation the valgus angle and mechanical lateral distal femoral angle were compared between groups. Also, the rate of complications were compared. Results: After the operation, the mean valgus angle and mechanical lateral distal femoral angle improved significantly in the two groups (P<0.001). Although, the preoperative amount of the valgus angle and mechanical lateral distal femoral angle were the same, at the last visit the valgus angle (5.4±2.1 versus 3.1±1.8; P=0.032) and mechanical lateral distal femoral angle (87.6±2 versus 89.7±3.2; P=0.041) were significantly lower and higher in the angled blade plate group, respectively. Nonunion occurred in four patients (20%) in the locking compression plates group (P=0.35). Conclusion: Based on having a larger valgus angle and mechanical lateral distal femoral angle correction in the angled blade plate group and considerable rate of nonunion in the locking compression plate group, the authors recommend using the angled blade plate for fixation of medial closing wedge supracondylar osteotomy for patients with valgus malalignment. However, more long-term studies are required. PMID:26894215

  9. Physiological response of wild rainbow trout to angling: Impact of angling duration, fish size, body condition, and temperature

    USGS Publications Warehouse

    Meka, J.M.; McCormick, S.D.

    2005-01-01

    This study evaluated the immediate physiological response of wild rainbow trout to catch-and-release angling in the Alagnak River, southwest Alaska. Information was recorded on individual rainbow trout (n = 415) captured by angling including landing time and the time required to remove hooks (angling duration), the time to anesthetize fish in clove oil and withdraw blood, fish length and weight, and water temperature at capture locations. Plasma cortisol, glucose, ions (sodium, potassium, chloride), and lactate were analyzed to determine the effects of angling duration, fish size, body condition, and temperature. Levels of plasma ions did not change significantly during the observed physiological response and levels of plasma glucose were sometimes influenced by length (2000, 2001), body condition (2001), or temperature (2001). Levels of plasma cortisol and lactate in extended capture fish (angling duration greater than 2 min) were significantly higher than levels in rapid capture fish (angling duration less than 2 min). Rapid capture fish were significantly smaller than extended capture fish, reflecting that fish size influenced landing and handling times. Fish size was related to cortisol and lactate in 2002, which corresponded to the year when larger fish were captured and there were longer landing times. Body condition (i.e., weight/length regression residuals index), was significantly related to lactate in 2000 and 2001. Water temperatures were higher in 2001 (mean temperature ± S.E., 13 ± 2oC) than in 2002 (10 ± 2oC), and fish captured in 2001 had significantly higher cortisol and lactate concentrations than fish captured in 2002. The pattern of increase in plasma cortisol and lactate was due to the amount of time fish were angled, and the upper limit of the response was due to water temperature. The results of this study indicate the importance of minimizing the duration of angling in order to reduce the sublethal physiological disturbances in wild

  10. The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses

    NASA Astrophysics Data System (ADS)

    Bottomley, P. A.; Ouwerkerk, R.

    A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (<90°) and a single sequence-repetition period, TR, is presented, The flip angles are chosen to optimize both the signal-to-noise ratio per unit time relative to the best possible Ernst-angle performance and the sensitivity with which a measurement of R can resolve differences in T1. A flip-angle pair at of around (60°, 15°) yields 70-79% of the maximum achievable Ernst-angle signal-to-noise ratio and a near-linear dependence of R on TR/ T1 with gradient of about 2:1 over the range 0.1 ≤ TR/ T1 ≤ 1. Errors in hip-angle and excitation-field ( B1) inhomogeneity result in roughly proportionate errors in the apparent T1. The method is best implemented with adiabatic low-angle pulses such as B1-independent rotation (BIR-4) or BIR-4 phase-cycled (BIRP) pulses, which permit measurements with surface coils. Experimental validation was obtained at 2 T by comparison of unlocalized inversion-recovery and dual-angle proton ( 1H) and phosphorus ( 31P) measurements from vials containing doped water with 0.04 ≤ T1 ≤ 2.8 s and from the metabolites in the calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low

  11. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  12. Analysis of factors affecting angle ANB.

    PubMed

    Hussels, W; Nanda, R S

    1984-05-01

    Cephalometric analyses based on angular and linear measurements have obvious fallacies, which have been discussed in detail by Moyers and Bookstein. However, the clinical application of such an analysis by the orthodontic profession in treatment planning is widely accepted. Variations of angle ANB are commonly used to determine relative jaw relationships in most of the cephalometric evaluations. Several authors, including points A and B influences angle ANB, as does rotational growth of the upper and lower jaws. In addition, the authors point out that growth in a vertical direction (distance N to B) and an increase of the dental height (distance A to B) may contribute to changes in angle ANB. For a Class I relation (Wits = 0 mm), a mathematical formula has been developed which enables the authors to study the geometric influence of angle ANB caused by the following four effects: (1) rotation of the jaws and/or occlusal plane relative to the anterior cranial base; (2) anteroposterior position of N relative to point B, (3) vertical growth (distance N to B); (4) increase in dental height (distance A to B). It was observed that, contrary to the common belief that an ANB angle of 2 +/- 3.0 degrees is considered normal for a skeletal Class I relation, the calculated values of angle ANB will vary widely with changes in these four controlling factors under the same skeletal Class I conditions (Wits = 0 mm). Therefore, in a case under consideration, angle ANB must be corrected for these geometric effects in order to get a proper perspective of the skeletal discrepancy. This is facilitated by comparing the measured ANB angle with the corresponding ANB angle calculated by a formula for a Class I relationship. The corresponding calculated angle ANB can be taken from the tables which are based upon the formula using the same values for SNB, omega (angle between occlusal plane and anterior cranial base), b (which is distance N to B) and a (dental height measured as perpendicular

  13. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  14. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  15. The importance of craniovertebral and cervicomedullary angles in cervicogenic headache

    PubMed Central

    Çoban, Gökçen; Çöven, İlker; Çifçi, Bilal Egemen; Yıldırım, Erkan; Yazıcı, Ayşe Canan; Horasanlı, Bahriye

    2014-01-01

    PURPOSE Many studies have indicated that cervicogenic headache may originate from the cervical structures innervated by the upper cervical spinal nerves. To date, no study has investigated whether narrowing of the craniovertebral angle (CVA) or cervicomedullary angle (CMA) affects the three upper cervical spinal nerves. The aim of this study was to investigate the effect of CVA and/or CMA narrowing on the occurrence of cervicogenic headache. MATERIALS AND METHODS Two hundred and five patients diagnosed with cervicogenic headache were included in the study. The pain scores of patients were determined using a visual analog scale. The nonheadache control group consisted of 40 volunteers. CVA and CMA values were measured on sagittal T2-weighted magnetic resonance imaging (MRI), on two occasions by two radiologists. Angle values and categorized pain scores were compared statistically between the groups. RESULTS Intraobserver and interobserver agreement was over 97% for all measurements. Pain scores increased with decreasing CVA and CMA values. Mean angle values were significantly different among the pain categories (P < 0.001). The pain score was negatively correlated with CMA (Spearman correlation coefficient, rs, −0.676; P < 0.001) and CVA values (rs, −0.725; P < 0.001). CONCLUSION CVA or CMA narrowing affects the occurrence of cervicogenic headache. There is an inverse relationship between the angle values and pain scores. PMID:24317332

  16. Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.

    2015-01-01

    Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840

  17. THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH

    SciTech Connect

    Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A.; González-Lópezlira, Rosa A.; Fuentes-Carrera, Isaura

    2014-09-20

    Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

  18. Demonstration of angle-dependent Casimir force between corrugations.

    PubMed

    Banishev, A A; Wagner, J; Emig, T; Zandi, R; Mohideen, U

    2013-06-21

    The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was measured at various angles between the corrugations using an atomic force microscope. A strong dependence on the orientation angle of the corrugation is found. The measured forces were found to deviate from the proximity force approximation and are in agreement with the theory based on the gradient expansion including correlation effects of geometry and material properties. We analyze the role of temperature. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems. PMID:23829717

  19. Non-uniform projection angle processing in computed tomography

    NASA Astrophysics Data System (ADS)

    Simo, Yanic; Tayag, Tristan J.

    In this paper, we present a novel approach for the collection of computed tomography data. Non-uniform increments in projection angle may be used to reduce data acquisition time with minimal reduction in the accuracy of the reconstructed profile. The key is to exploit those projection angles which correspond to regions where the object contains few high spatial frequency components. This technique is applicable to optical phase computed tomography, as well as X-ray computed tomography. We present simulation results on intraocular lenses used in cataract surgery.

  20. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  1. Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR

    NASA Astrophysics Data System (ADS)

    Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.

    2015-05-01

    Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.

  2. View-angle consistency in reflectance, optical thickness and spherical albedo of marine water-clouds over the northeastern Pacific through MISR-MODIS fusion

    NASA Astrophysics Data System (ADS)

    Liang, Lusheng; Di Girolamo, Larry; Platnick, Steven

    2009-05-01

    View-angle consistency in bidirectional reflectance factor (BRF), optical thickness and spherical albedo is examined for marine water clouds over a region of the northeastern Pacific using six years of fused Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) data. Consistency is quantified by the root-mean-square of relative differences between MISR-measured BRF and their plane-parallel values and variation of plane-parallel retrieved optical thickness and spherical albedo across multiple view-angles. Probability distribution functions of consistency show that, for example, these clouds are angularly consistent within 5% in BRF, optical thickness and spherical albedo 72.2%, 39.0% and 81.1% of the time, respectively. We relate angular consistency to the spatial variability of nadir-BRF, thus allowing us to potentially identify, with a prescribed confidence level, which MODIS microphysical retrievals within the MISR swath meet the plane-parallel assumption to within any desired range in view-angle consistency.

  3. Control of the bias tilt angles in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yablonskii, S. V.; Nakayama, K.; Okazaki, S.; Ozaki, M.; Yoshino, K.; Palto, S. P.; Baranovich, M. Yu.; Michailov, A. S.

    1999-03-01

    The pretilt angle controlled by electric field was studied by the modulation ellipsometry technique. The easy direction of compensated nematic liquid crystals was controlled by surface flexoelectric torque created by the linear coupling of the director deformation and electric field. The weak anchoring energy necessary for the occurrence of flexoelectric distortion was produced by unidirectional rubbing of the clean indium-tin-oxide covered glasses with a cotton cloth. The pretilt angle was measured as a function of electric field. Long relaxation times of the optical response (hundreds of seconds) were observed. The rubbed thin polyvinyl alcohol and polyimide aligning layers were seen to promote strong anchoring energy (>0.5 erg/cm2) preventing any deviation of pretilt angle and, consequently, to suppress the optical response. The probable applications of the obtained results are discussed.

  4. Orientation angle and the adhesion of single gecko setae.

    PubMed

    Hill, Ginel C; Soto, Daniel R; Peattie, Anne M; Full, Robert J; Kenny, T W

    2011-07-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  5. Optimum design of 2D micro-angle sensor

    NASA Astrophysics Data System (ADS)

    Liu, Qinggang; Zhao, Heng; Lou, Xiaona; Jiang, Ningchuan; Hu, Xiaotang

    2008-12-01

    To improve dynamic measurement performance and resolution, an optimum design on two-dimensional (2D) micro-angle sensor based on optical internal-reflection method via critical-angle refractive index measurement is presented in the paper. The noise signals were filtered effectively by modulating laser-driven and demodulating in signal proceeding. The system's accuracy and response speed are improved further by using 16-bit high-precision AD converter and MSP430 CPU which present with a high-speed performance during signals processes such as fitting angle-voltage curve through specific arithmetic, full range and zero point calibration, filter, scaling transformation etc. The experiment results indicated that, dynamic signal measurement range can be up to +/-600arcsec, the measurement resolution can be better than 0.1arcsec, and the repeatability could be better than +/-0.5arcsec.

  6. Corner detection using arc length-based angle estimator

    NASA Astrophysics Data System (ADS)

    Zhang, Shizheng; Yang, Dan; Huang, Sheng; Zhang, Xiaohong; Qu, Ying; Tu, Liyun; Ren, Zemin

    2015-11-01

    We present a corner-detection method named arc length-based angle estimator (AAE). Different from most of the existing approaches, AAE focuses on employing angle detection for finding corners, because angle is an important measure for discrete curvature. AAE provides a new robust solution to the estimation of the K-cosine. In AAE, the K-cosine estimation issue in the x, y space is considered as the problem of the slope estimations in the s, x and s, y spaces, where s is the arc length. Then, weighted least square fitting is employed to address such a slope estimation issue. Experimental results demonstrate that AAE can achieve promising performance in comparison with some recent state-of-the-art approaches under two commonly used evaluation metrics, namely average repeatability and localization error criteria.

  7. Aerodynamics of slender finned bodies at large angles of attack

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.; Zakkay, V.; Tory, E.; Stallings, R.

    1977-01-01

    In certain missions finned missiles perform slewing maneuvers. Here, large angles of attack are attained. Experimental data needed to understand the aerodynamics of such vehicles are presented. The purpose of this investigation was to study the interaction of the body flow field with that produced by the fins and the resulting effects on the aerodynamic forces and moments. The experiments were conducted at a nominal Mach number of 2.7 and angles of attack from 0 to 50 deg, with two different models. The tests were performed in a range of Reynolds number from 1.5 x 10 to the 6th to 4 x 10 to the 7th per foot (to cover both the laminar and fully turbulent regimes.) Several fin roll angles were investigated. Static pressures on both body and fin surfaces are reported.

  8. Correlating lepton mixing angles and mixing maxtrix with Wolfenstein parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyi; Ma, Bo-Qiang

    2012-11-01

    Inspired by a new relation θ13PMNS=θC/2 observed from the relatively large θ13PMNS, we find that the combination of this relation with the quark-lepton complementarity and the self-complementarity results in correlations of the lepton mixing angles with the quark mixing angles. We find that the three mixing angles in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix are all related to the Wolfenstein parameter λ in the quark mixing, so they are also correlated. Consequently, the PMNS matrix can be parameterized by λ, A, and a Dirac CP-violating phase δ. Such parametrizations for the PMNS matrix have the same explicitly hierarchical structure as the Wolfenstein parametrization for the Cabibbo-Kobayashi-Maskawa matrix in the quark mixing, and the bimaximal mixing pattern is deduced at the leading order. We also discuss implications of these phenomenological relations in parametrizations.

  9. Orientation angle and the adhesion of single gecko setae

    PubMed Central

    Hill, Ginel C.; Soto, Daniel R.; Peattie, Anne M.; Full, Robert J.; Kenny, T. W.

    2011-01-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  10. Optic Disc - Fovea Angle: The Beijing Eye Study 2011

    PubMed Central

    Jonas, Rahul A.; Wang, Ya Xing; Yang, Hua; Li, Jian Jun; Xu, Liang; Panda-Jonas, Songhomitra; Jonas, Jost B.

    2015-01-01

    Purpose To determine the optic disc-fovea angle (defined as angle between the horizontal and the line between the optic disc center and the fovea) and to assess its relationships with ocular and systemic parameters. Methods The population-based cross-sectional Beijing Eye Study 2011 included 3468 individuals. A detailed ophthalmic examination was carried out. Using fundus photographs, we measured the disc-fovea angle. Results Readable fundus photographs were available for 6043 eyes of 3052 (88.0%) individuals with a mean age of 63.6±9.3 years (range: 50–91 years) and a mean axial length of 23.2±1.0 mm (range: 18.96–28.87 mm). Mean disc-fovea angle was 7.76 ± 3.63° (median: 7.65°; range: -6.3° to 28.9°). The mean inter-eye difference was 4.01 ± 2.94° (median: 3.49°; range: 0.00–22.3°). In multivariate analysis, larger disc-fovea angle was associated (regression coefficient r2: 0.08) with older age (P = 0.009; standardized regression coefficient beta: 0.05), thinner RNFL in the nasal superior sector (P<0.001; beta: -0.17), superior sector (P<0.001; beta: -0.10) and temporal superior sector (P<0.001; beta: -0.11) and thicker RNFL in the inferior sector (P<001; beta: 0.13), nasal inferior sector (P<001; beta: 0.13) and nasal sector (P = 0.007; beta: 0.06), higher prevalence of retinal vein occlusion (P = 0.02; beta: 0.04), and with larger cylindrical refractive error (P = 0.04; beta: 0.04). Conclusions The optic disc-fovea angle markedly influences the regional distribution of the RNFL thickness pattern. The disc-fovea angle may routinely be taken into account in the morphological glaucoma diagnosis and in the assessment of structure-function relationship in optic nerve diseases. Future studies may address potential associations between a larger disc-fovea angle and retinal vein occlusions and between the disc-fovea angle and the neuroretinal rim shape. PMID:26545259

  11. Branes at angles from worldvolume actions

    NASA Astrophysics Data System (ADS)

    Abbaspur, Reza

    2016-05-01

    We investigate possible stable configurations of two arbitrary branes at general angles using the dynamics of DBI + WZ action. The analysis naturally reveals two types of solutions which we identify as the "marginal" and "non-marginal" configurations. We characterize possible configurations of a pair of identical or non-identical branes in either of these two classes by specifying their proper intersection rules and allowed intersection angles. We also perform a partial analysis of configurations with multiple angles of a system of asymptotically flat curved branes.

  12. Phase-angle controller for Stirling engines

    SciTech Connect

    Frosch, R.A.; McDougal, A.R.

    1980-12-23

    A first embodiment incorporating an actuator including a restraint link adapted to be connected with a pivotal carrier arm for a force transfer gear interposed between the crankshaft for an expander portion of a stirling engine and a crankshaft for the displacer portion of the engine is described. The restraint link is releasably supported against axial displacement by releasably trapped hydraulic fluid for selectively establishing a phase angle relationship between the crankshaft and a second embodiment incorporating a hydraulic coupler for use in varying the phase angle of gear-coupled crankshafts for a Stirling engine whereby phase angle changes are obtainable.

  13. Phase-angle controller for Stirling engines

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R. (Inventor)

    1980-01-01

    An actuator includes a restraint link adapted to be connected with a pivotal carrier arm for a force transfer gear interposed between the crankshaft for an expander portion of a Stirling engine and a crankshaft for the displacer portion of the engine. The restraint link is releasably trapped hydraulic fluid for selectively establishing a phase angle relationship between the crankshaft. A second embodiment incorporates a hydraulic coupler for use in varying the phase angle of gear-coupled crank fpr a Stirling engine whereby phase angle changes are obtainable.

  14. Wide-angle vision for road views

    NASA Astrophysics Data System (ADS)

    Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.

    2013-03-01

    The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.

  15. Wide Angle Mobility Light (WAML) Follow-up.

    ERIC Educational Resources Information Center

    Shull, L. E.; Kuyk, T.

    1990-01-01

    A follow-up study of an earlier report on the Wide Angle Mobility Light (WAML) was conducted to analyze the various applications of the device and its reliability. Results indicate high client satisfaction with WAML among test subjects (26 blind male veterans with night blindness, age 32 to 68). (Author/PB)

  16. Small angle neutron scattering from nanometer grain sized materials

    SciTech Connect

    Epperson, J.E.; Siegel, R.W.

    1991-11-01

    Small angie neutron scattering has been utilized, along with a number of complementary characterization methods suitable to the nanometer size scale, to investigate the structures of cluster-assembled nanophase materials. Results of these investigations are described and problems and opportunities in using small angle scattering for elucidating nanostructures are discussed.

  17. Analysis and design of wide-angle foveated optical systems

    NASA Astrophysics Data System (ADS)

    Curatu, George

    2009-12-01

    The development of compact imaging systems capable of transmitting high-resolution images in real-time while covering a wide field-of-view (FOV) is critical in a variety of military and civilian applications: surveillance, threat detection, target acquisition, tracking, remote operation of unmanned vehicles, etc. Recently, optical foveated imaging using liquid crystal (LC) spatial light modulators (SLM) has received considerable attention as a potential approach to reducing size and complexity in fast wide-angle lenses. The fundamental concept behind optical foveated imaging is reducing the number of elements in a fast wide-angle lens by placing a phase SLM at the pupil stop to dynamically compensate aberrations left uncorrected by the optical design. In the recent years, considerable research and development has been conducted in the field of optical foveated imaging based on the LC SLM technology, and several foveated optical systems (FOS) prototypes have been built. However, most research has been focused so far on the experimental demonstration of the basic concept using off-the-shelf components, without much concern for the practicality or the optical performance of the systems. Published results quantify only the aberration correction capabilities of the FOS, often claiming diffraction-limited performance at the region of interest (ROI). However, these results have continually overlooked diffraction effects on the zero-order efficiency and the image quality. The research work presented in this dissertation covers the methods and results of a detailed theoretical research study on the diffraction analysis, image quality, design, and optimization of fast wide-angle FOSs based on the current transmissive LC SLM technology. The amplitude and phase diffraction effects caused by the pixelated aperture of the SLM are explained and quantified, revealing fundamental limitations imposed by the current transmissive LC SLM technology. As a part of this study, five

  18. Association between choroidal thickness and anterior chamber segment in eyes with narrow or open-angle

    PubMed Central

    Li, Song-Feng; Wu, Ge-Wei; Chen, Chang-Xi; Shen, Ling; Zhang, Zhi-Bao; Gao, Fei; Wang, Ning-Li

    2016-01-01

    AIM To investigate the relationship between choroidal thickness and anterior chamber segment in subjects with eyes with narrow or open-angle. METHODS The subfoveal choroidal thickness was measured with enhanced depth-imaging optical coherence tomography and anterior chamber parameters were measured with ultrasound biomicroscopy in one eye of 23 subjects with open-angle eyes and 38 subjects with narrow-angle eyes. The mean age was 59.52±7.04y for narrow-angle subjects and 60.76±7.23y for open-angle subjects (P=0.514). Multivariate linear regression analysis was performed to assess the association between choroidal thickness and narrow-angle parameters. RESULTS There were no differences in subfoveal choroidal thickness between open- and narrow-angle subjects (P=0.231). Anterior chamber parameters, including central anterior chamber depth, trabecular iris angle, iris thickness 500 µm from the scleral spur (IT500), and ciliary body thickness at 1 mm and 2 mm from the scleral spur (CBT1, CBT2) showed significant differences between the two groups (P<0.05). Subfoveal choroidal thickness showed negative correlation (β=-0.496, P=0.016) only with anterior chamber depth in the open-angle group and with age (β=-0.442, P=0.003) and IT500 (β=-0.399, P=0.008) in the narrow-angle group. However, subfoveal choroidal thickness was not correlated with trabecular iris angle, anterior chamber depth, ciliary body thickness, or central corneal thickness in the narrow-angle group. CONCLUSION Choroidal thickness does not differ in the two groups and has not correlated with anterior chamber parameters in narrow-angle subjects, suggesting a lack of relationship between choroidal thickness and primary angle-closure glaucoma. PMID:27588269

  19. Moderate positive spin Hall angle in uranium

    NASA Astrophysics Data System (ADS)

    Singh, Simranjeet; Anguera, Marta; del Barco, Enrique; Springell, Ross; Miller, Casey W.

    2015-12-01

    We report measurements of spin pumping and the inverse spin Hall effect in Ni80Fe20/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni80Fe20 (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 1019 m-2 and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  20. Moderate positive spin Hall angle in uranium

    SciTech Connect

    Singh, Simranjeet; Anguera, Marta; Barco, Enrique del E-mail: cwmsch@rit.edu; Springell, Ross; Miller, Casey W. E-mail: cwmsch@rit.edu

    2015-12-07

    We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  1. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  2. The solid angle through the isosceles triangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the isosceles triangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux(radiant flux or radiant power) is shown.

  3. The solid angle through the inclined rectangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the inclined rectangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux(radiant flux or radiant power) is shown.

  4. The solid angle through the vertical rectangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the vertical rectangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux (radiant flux or radiant power) is shown.

  5. THE VIEWING ANGLES OF BROAD ABSORPTION LINE VERSUS UNABSORBED QUASARS

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2012-06-10

    It was recently shown that there is a significant difference in the radio spectral index distributions of broad absorption line (BAL) quasars and unabsorbed quasars, with an overabundance of BAL quasars with steeper radio spectra. This result suggests that source orientation does play into the presence or absence of BAL features. In this paper, we provide more quantitative analysis of this result based on Monte Carlo simulations. While the relationship between viewing angle and spectral index does indeed contain a lot of scatter, the spectral index distributions are different enough to overcome that intrinsic variation. Utilizing two different models of the relationship between spectral index and viewing angle, the simulations indicate that the difference in spectral index distributions can be explained by allowing BAL quasar viewing angles to extend about 10 Degree-Sign farther from the radio jet axis than non-BAL sources, though both can be seen at small angles. These results show that orientation cannot be the only factor determining whether BAL features are present, but it does play a role.

  6. X-31 high angle of attack control system performance

    NASA Technical Reports Server (NTRS)

    Huber, Peter; Seamount, Patricia

    1994-01-01

    The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.

  7. View angle dependence of cloud optical thicknesses retrieved by MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  8. Solar Cell Angle of Incidence Corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    The Mars Pathfinder mission has three different solar arrays each of which sees changes in incidence angle during normal operation. When solar array angle of incidence effects was researched little published data was found. The small amount of-published data created a need to obtain and evaluate such data. The donation of the needed data, which was taken in the fall of 1994, was a major factor in the preparation of this paper.

  9. Nucleation of small-angle boundaries

    SciTech Connect

    Nabarro, F.R.N. |; Wilsdorf, D.K.

    1996-12-01

    The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition, the new boundaries having finite misorientations. The calculated misorientations both of the new boundaries and of the existing boundaries which provoke the transition agree well with observations.

  10. The magic angle: a solved mystery.

    PubMed

    Jouffrey, B; Schattschneider, P; Hébert, C

    2004-12-01

    We resolve the long-standing mysterious discrepancy between the experimental magic angle in EELS--approximately 2theta(E)--and the quantum mechanical prediction of approximately 4theta(E). A relativistic approach surpassing the usually applied kinematic correction yields a magic angle close to the experimental value. The reason is that the relativistic correction of the inelastic scattering cross section in anisotropic systems is significantly higher than in isotropic ones. PMID:15556701

  11. CKM angle γ measurements at LHCb

    NASA Astrophysics Data System (ADS)

    Vallier, Alexis

    2014-11-01

    The CKM angle γ remains the least known parameter of the CKM mixing matrix. The precise measurement of this angle, as a Standard Model benchmark, is a key goal of the LHCb experiment. We present four recent CP violation studies related to the measurement of γ, including amplitude analysis of B± → DK± decays, the ADS/GLW analysis of B± → DK*0 decays and the time-dependent analysis of B± → DK±sK± decays.

  12. Automatic learning-based beam angle selection for thoracic IMRT

    SciTech Connect

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G. Jaffray, David A.; Levinshtein, Alex; Hope, Andrew J.; Lindsay, Patricia; Pekar, Vladimir

    2015-04-15

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  13. Farley-Buneman Waves at Large Aspect Angles

    NASA Astrophysics Data System (ADS)

    Perron, P.; St-Maurice, J. P.; Noel, J. M. A.

    2015-12-01

    The FB instability mechanism provides an excellent explanation for the presence of large amplitude plasma waves in the cm to few m wavelength range in the high latitude E region whenever the ambient electric field exceeds 20 mV/m. Observations suggest that the instabilities are moving at their threshold speed when they reach their largest amplitudes. This can be explained in terms of a combination of decreasing electric field and increasing aspect angle inside individual structures. However, another feature of observations is that linear theory predicts instability for aspect angles smaller than 1.5 degree, up to maybe 2 degrees even though there is plenty of evidence to show that large amplitude structures exist at aspect angles well beyond 2 degrees during FB events. We show that this observational feature is caused by the weak altitude dependence of the eigenfrequency, which forces the aspect angle to grow monotonically with time. This means that after the structures have reached their maximum amplitude, they continue to exist, but with the caveat that their aspect angle increases while their amplitude decreases. This allows damped modes at large aspect angles to be observed. However, as the aspect angle increases, the phase velocity will also change, although that change is actually a strong function of the wavelength. This means that we must assess the real and imaginary part of the eigenfrequency to query the Doppler shift of the structures and see how they compare with observations at different radar frequencies. To this goal, we have studied both the fluid isothermal dispersion relation, as well as the full kinetic dispersion. Our results for sub-meter wavelengths show that the phase velocity remains very constant at only slightly less than the ion-acoustic speed as the aspect angle increases. At larger wavelengths, the transition to zero phase velocity proceeds according to V_d/(1+ψ), a result in agreement with simple fluid predictions based on small

  14. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  15. Primary angle-closure glaucoma: an update.

    PubMed

    Wright, Carrie; Tawfik, Mohammed A; Waisbourd, Michael; Katz, Leslie J

    2016-05-01

    Primary angle-closure glaucoma is potentially a devastating disease, responsible for half of glaucoma-related blindness worldwide. Angle closure is characterized by appositional approximation or contact between the iris and trabecular meshwork. It tends to develop in eyes with shallow anterior chambers, anteriorly positioned or pushed lenses, and angle crowding. Risk of primary angle-closure glaucoma is high among women, the elderly and the hyperopic, and it is most prevalent in Asia. Investigation into genetic mechanisms of glaucoma inheritance is underway. Diagnosis relies on gonioscopy and may be aided by anterior segment optical coherence tomography and ultrasound biomicroscopy. Treatment is designed to control intraocular pressure while monitoring changes to the angle and optic nerve head. Treatment typically begins with medical management through pressure-reducing topical medications. Peripheral iridotomy is often performed to alleviate pupillary block, while laser iridoplasty has been found effective for mechanisms of closure other than pupillary block, such as plateau iris syndrome. Phacoemulsification, with or without goniosynechialysis, both in eyes with existing cataracts and in those with clear lenses, is thus far a viable treatment alternative. Long-term research currently underway will examine its efficacy in cases of angle closure in early stages of the disease. Endoscopic cyclophotocoagulation is another treatment option, which can be combined with cataract surgery. Trabeculectomy remains effective therapy for more advanced cases. PMID:26119516

  16. [Determination of contact angle of pharmaceutical excipients and regulating effect of surfactants on their wettability].

    PubMed

    Hua, Dong-dong; Li, He-ran; Yang, Bai-xue; Song, Li-na; Liu, Tiao-tiao; Cong, Yu-tang; Li, San-ming

    2015-10-01

    To study the effects of surfactants on wettability of excipients, the contact angles of six types of surfactants on the surface of two common excipients and mixture of three surfactants with excipients were measured using hypsometry method. The results demonstrated that contact angle of water on the surface of excipients was associated with hydrophilcity of excipients. Contact angle was lowered with increase in hydrophilic groups of excipient molecules. The sequence of contact angle from small to large was starch < sodium benzoate < polyvinylpyrrolidone < sodium carboxymethylcellulose < sodium alginate < chitosan < hydroxypropyl methyl cellulose angle of excipients, and their abilities to lower contact angle varied. The results of the present study offer a guideline in the formulation design of tablets. PMID:26837184

  17. A Unified Low-Elevation-Angle Scintillation Model

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Cheung, K.-M.; Ho, C.

    2011-05-01

    Enabling communications at very low elevation angles can lengthen the duration of a tracking pass between a satellite and a ground station, which in turn can increase the amount of data return and possibly reduce the number of required supporting ground station tracking passes. Link performance, especially at very low angles and high frequencies, depends heavily on terrain, atmosphere, and weather conditions. Among the different contributions to attenuation, scintillation fading plays a very significant role and can impair the performance of the link. It is therefore necessary to accurately model the overall impact to the link due to scintillation fading. The current International Telecommunication Union ITU-R P.618-10 Recommendation describes three scintillation loss models as a function of elevation angle and percentage of time for which the loss exceeds a certain threshold. Implementation of the recommendation resulted in the uncovering of several issues. Particularly, it was identified that (i) iterative solutions to an implicit nonlinear exponential model, in some cases, are not guaranteed to exist, (ii) there is a discontinuity in fading values between models at the cross-over elevation angle, (iii) at certain low elevation angles scintillation from the shallow fade model generates unrealistically small losses, and (iv) for elevation angles lying between 4 and 5 deg, there are two applicable scintillation models that yield conflicting values. In this article, we develop a new approach to unify the different fading models within the current ITU recommendation and fully remove the discrepancies. We further validated our models with ITU-adopted scintillation data measured at Goonhilly, Great Britain, and data from several recent NASA Space Shuttle launches. This improved model was provisionally approved at the ITU International Meeting in Italy, November 2010, and is being evaluated by the ITU members for adoption into the next-version ITU Recommendation.

  18. Autonomous satellite navigation using starlight refraction angle measurements

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng

    2013-05-01

    An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.

  19. Adhesion patterns in the microvasculature are dependent on bifurcation angle.

    PubMed

    Lamberti, Giuseppina; Soroush, Fariborz; Smith, Ashley; Kiani, Mohammad F; Prabhakarpandian, Balabhaskar; Pant, Kapil

    2015-05-01

    Particle adhesion in vivo is highly dependent on the microvascular environment comprising of unique anatomical, geometrical, physiological fluid flow conditions and cell-particle and cell-cell interactions. Hence, proper design of vascular-targeted drug carriers that efficiently deliver therapeutics to the targeted cells or tissue at effective concentrations must account for these complex conditions observed in vivo. In this study, we build upon our previous results with the goal of characterizing the effects of bifurcations and their corresponding angle on adhesion of functionalized particles and neutrophils to activated endothelium. Our hypothesis is that adhesion is significantly affected by the type of biochemical interactions between particles and vessel wall as well as the presence of bifurcations and their corresponding angle. Here, we investigate adhesion of functionalized particles (2 μm and 7 μm microparticles) to protein coated channels as well as adhesion of human neutrophils to human endothelial cells under various physiological flow conditions in microfluidic bifurcating channels comprising of different contained angles (30°, 60°, 90°, or 120°). Our findings indicate that both functionalized particle and neutrophil adhesion propensity increase with a larger bifurcation angle. Moreover, the difference in the adhesion patterns of neutrophils and rigid, similar sized (7 μm) particles is more apparent in the junction regions with a larger contained angle. By selecting the right particle size range, enhanced targeted binding of vascular drug carriers can be achieved along with a higher efficacy at optimal drug dosage. Hence, vascular drug particle design needs to be tailored to account for higher binding propensity at larger bifurcation angles. PMID:25708050

  20. Contact Angles and Surface Tension of Germanium-Silicon Melts

    NASA Technical Reports Server (NTRS)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  1. Multi-angle Imaging SpectroRadiometer

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our

  2. Preliminary Results from the First Year of Operations of the NASA Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Eldering, A.; O'Dell, C.; Fisher, B.; Wunch, D.; Wennberg, P. O.; Osterman, G. B.; Mandrake, L.; Payne, V.; Natraj, V.; Frankenberg, C.; Taylor, T.; Worden, J. R.; Bloom, A. A.; Nelson, R. R.; Schwandner, F. M.; Fu, D.; Braverman, A. J.; Chatterjee, A.; Baker, I. T.; Avis, C.; Livermore, T. R.

    2015-12-01

    On September 6, 2014, OCO-2 began routinely returning almost 106 soundings over the sunlit hemisphere each day. Over 10% of these soundings are sufficiently cloud free to yield full-column estimates of the column-averaged CO2 dry air mole fraction, XCO2. Nadir soundings over land yield XCO2 estimates with single-sounding random errors of 0.5 - 1 ppm at solar zenith angles (SZA) < 60° while ocean glint soundings yield precisions near 0.5 ppm at SZA < 70°. Nadir soundings over the ocean and glint soundings over high-latitude land are less precise. Initially, OCO-2 recorded only nadir soundings or glint soundings on alternate, 16-day ground-track repeat cycles. This provided adequate coverage of the globe each month, but produced 16-day gaps in ocean coverage while observing nadir, and similar gaps over high-latitude land while observing glint. In July 2015, this strategy was modified to alternate between glint and nadir soundings on consecutive orbits to yield more continuous coverage each day. While XCO2 and other products are being validated to identify and correct biases, global XCO2 maps are starting to reveal the most robust features of the atmospheric carbon cycle. XCO2 enhancements co-located with intense fossil fuel emissions in eastern U.S. and eastern China are most obvious in the fall, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesian is also obvious in the fall. In mid spring, when the north-south XCO2 gradient was largest, these sources were less apparent in global maps. From late May to mid-July, OCO-2 maps show a 2-3% reduction in XCO2 across the northern hemisphere, as the land biosphere rapidly absorbs CO2. As the carbon cycle community continues to analyze these OCO-2 data, quantitative estimates of regional-scale emission sources and natural sinks are expected to emerge. This presentation will summarize the OCO-2 mission status, early products, and near

  3. The EUVE Right Angle Program (RAP)

    NASA Astrophysics Data System (ADS)

    Sommers, J.; Christian, D.; Craig, N.; Jessop, H.; Stroozas, B.

    1996-05-01

    The Extreme Ultraviolet Explorer (EUVE ) has three scanning telescopes that observe in a direction perpendicular to that of the primary guest observer (GO) telescope---the Deep Survey/Spectrometer (DS/S). During the first 6 months of the EUVE mission, the scanning telescopes were used to conduct an all-sky survey consisting of short exposures ( ~ 500 s) of the entire sky between 58--740 Angstroms . These telescopes are now being used during GO observations to conduct simultaneous long exposure (typically 40+ ks) observations as part of the very successful---and publicly accessible---EUVE Right Angle Program (RAP). To date, the EUVE RAP has provided photometric and timing data on late-type stars and CVs and has been responsible for detecting dozens of previously unknown extreme ultraviolet sources, including many stars without optical counterparts. This poster presents some of the exciting results found with EUVE RAP data, along with general information about the program and instructions for submitting RAP proposals. This work is supported by NASA contract NAS5-29298.

  4. LDEF yaw and pitch angle estimates

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gebauer, Linda

    1992-01-01

    Quantification of the LDEF yaw and pitch misorientations is crucial to the knowledge of atomic oxygen exposure of samples placed on LDEF. Video camera documentation of the LDEF spacecraft prior to grapple attachment, atomic oxygen shadows on experiment trays and longerons, and a pinhole atomic oxygen camera placed on LDEF provided sources of documentation of the yaw and pitch misorientation. Based on uncertainty-weighted averaging of data, the LDEF yaw offset was found to be 8.1 plus or minus 0.6 degrees, allowing higher atomic oxygen exposure of row 12 than initially anticipated. The LDEF pitch angle offset was found to be 0.8 plus or minus 0.4 degrees, such that the space end was tipped forward toward the direction of travel. The resulting consequences of the yaw and pitch misorientation of LDEF on the atomic oxygen fluence is a factor of 2.16 increase for samples located on row 12, and a factor of 1.18 increase for samples located on the space end compared to that which would be expected for perfect orientation.

  5. Testing cosmic microwave background polarization data using position angles

    NASA Astrophysics Data System (ADS)

    Preece, Michael; Battye, Richard A.

    2014-10-01

    We consider a novel null test for contamination which can be applied to cosmic microwave background (CMB) polarization data that involves analysis of the statistics of the polarization position angles. Specifically, we will concentrate on using histograms of the measured position angles to illustrate the idea. Such a test has been used to identify systematics in the NRAO-VLA Sky Survey point source catalogue with an amplitude well below the noise level. We explore the statistical properties of polarization angles in CMB maps. If the polarization angle is not correlated between pixels, then the errors follow a simple √{N_{pix}} law. However, this is typically not the case for CMB maps since these have correlations which result in an increase in the variance as the effective number of independent pixels is reduced. Then, we illustrate how certain classes of systematic errors can result in very obvious patterns in these histograms, and thus that these errors could possibly be identified using this method. We discuss how this idea might be applied in a realistic context, and make a preliminary analysis of the Wilkinson Microwave Anisotropy Probe 7 data, finding evidence of a systematic error in the Q- and W- band data, consistent with a constant offset in Q and U.

  6. Evaluation of Absorbable Mesh Fixation Devices at Various Deployment Angles

    PubMed Central

    Zihni, Ahmed M.; Cavallo, Jaime A.; Thompson, Dominic M.; Chowdhury, Nabeel H.; Frisella, Margaret M.; Matthews, Brent D.; Deeken, Corey R.

    2014-01-01

    BACKGROUND Hernia repair failure may occur due to suboptimal mesh fixation by mechanical constructs before mesh integration. Construct design and acute penetration angle may alter mesh-tissue fixation strength. We compared acute fixation strengths of absorbable fixation devices at various deployment angles, directions of loading, and construct orientations. METHODS Porcine abdominal walls were sectioned. Constructs were deployed at 30, 45, 60, and 90 degree angles to fix mesh to the tissue specimens. Lap-shear testing was performed in upward, downward, and lateral directions in relation to the abdominal wall cranial-caudal axis to evaluate fixation. Absorbatack™ (AT), SorbaFix™ (SF), and SecureStrap™ in vertical (SSV) and horizontal (SSH) orientations in relation to the abdominal wall cranial-caudal axis were tested. Ten tests were performed for each combination of device, angle, and loading direction. Failure types and strength data were recorded. ANOVA with Tukey-Kramer adjustments for multiple comparisons and chi-square tests were performed as appropriate (p<0.05 considered significant). RESULTS At 30 degrees, SSH and SSV had greater fixation strengths (12.95 N, 12.98 N, respectively) than SF (5.70 N; p=0.0057, p=0.0053, respectively). At 45 degrees, mean fixation strength of SSH was significantly greater than SF (18.14 N, 11.40 N; p=0.0002). No differences in strength were identified at 60 or 90 degrees. No differences in strength were noted between SSV and SSH with different directions of loading. No differences were noted between SS and AT at any angle. Immediate failure was associated with SF (p<0.0001) and the 30 degree tacking angle (p<0.01). CONCLUSIONS Mesh-tissue fixation was stronger at acute deployment angles with SS compared to SF constructs. The 30 degree angle and the SF device were associated with increased immediate failures. Varying construct and loading direction did not generate statistically significant differences in the fixation

  7. Finding a covering triangulation whose maximum angle is provably small

    SciTech Connect

    Mitchell, S.A.; Park, J.K.

    1993-03-03

    Given a planar straight-line graph, we find a covering triangulation whose maximum angle is as small as possible. A covering triangulation is a triangulation whose vertex set contains the input vertex set and whose edge set contains the input edge set. Such a triangulation differs from the usual Steiner triangulation in that we may not add a Steiner vertex on any input edge. Covering triangulations provide a convenient method for triangulating multiple regions sharing a common boundary, as each region can be triangulated independently. As it is possible that no finite covering triangulation is optimal in terms of its maximum angle, we propose an approximation algorithm. Our algorithm produces a covering triangulation whose maximum angle {gamma} is probably close to {gamma}{sub opt}, a lower bound on the maximum angle in any covering triangulation of the input graph. Note that we must have {gamma} {le} 3{gamma}{sub opt}, since we always have {gamma}{sub opt} {ge} {pi}/3 and no triangulation can contain an angle of size greater than {pi}. We prove something significantly stronger. We show that {pi} {minus} {gamma} {ge} ({pi} {minus} {gamma}{sub opt})/6, i.e., our {gamma} is not much closer to {pi} than is {gamma}{sub opt}. This result represents the first nontrivial bound on a covering triangulation`s maximum angle. We require a subroutine for the following problem: Given a polygon with holes, find a Steiner triangulation whose maximum angle is bounded away from {pi}. No angle larger than 8{pi}/9 is sufficient for the bound on {gamma} claimed above. The number of Steiner vertices added by our algorithm and its running time are highly dependent on the corresponding bounds for the subroutine. Given an n-vertex planar straight-line graph, we require O(n + S(n)) Steiner vertices and O(n log n + T(n)) time, where S(n) is the number of Steiner vertices added by the subroutine and T(n) is its running time for an O(n)-vertex polygon with holes.

  8. Finding a covering triangulation whose maximum angle is provably small

    SciTech Connect

    Mitchell, S.A.; Park, J.K.

    1993-03-03

    Given a planar straight-line graph, we find a covering triangulation whose maximum angle is as small as possible. A covering triangulation is a triangulation whose vertex set contains the input vertex set and whose edge set contains the input edge set. Such a triangulation differs from the usual Steiner triangulation in that we may not add a Steiner vertex on any input edge. Covering triangulations provide a convenient method for triangulating multiple regions sharing a common boundary, as each region can be triangulated independently. As it is possible that no finite covering triangulation is optimal in terms of its maximum angle, we propose an approximation algorithm. Our algorithm produces a covering triangulation whose maximum angle [gamma] is probably close to [gamma][sub opt], a lower bound on the maximum angle in any covering triangulation of the input graph. Note that we must have [gamma] [le] 3[gamma][sub opt], since we always have [gamma][sub opt] [ge] [pi]/3 and no triangulation can contain an angle of size greater than [pi]. We prove something significantly stronger. We show that [pi] [minus] [gamma] [ge] ([pi] [minus] [gamma][sub opt])/6, i.e., our [gamma] is not much closer to [pi] than is [gamma][sub opt]. This result represents the first nontrivial bound on a covering triangulation's maximum angle. We require a subroutine for the following problem: Given a polygon with holes, find a Steiner triangulation whose maximum angle is bounded away from [pi]. No angle larger than 8[pi]/9 is sufficient for the bound on [gamma] claimed above. The number of Steiner vertices added by our algorithm and its running time are highly dependent on the corresponding bounds for the subroutine. Given an n-vertex planar straight-line graph, we require O(n + S(n)) Steiner vertices and O(n log n + T(n)) time, where S(n) is the number of Steiner vertices added by the subroutine and T(n) is its running time for an O(n)-vertex polygon with holes.

  9. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration

    PubMed Central

    Rajjoub, Lamise Z; Chadha, Nisha; Belyea, David A

    2014-01-01

    This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. PMID:25114497

  10. Effect of Load Phase Angle on Wind Turbine Blade Fatigue Damage: Preprint

    SciTech Connect

    White, D. L.; Musial, W. D.

    2003-11-01

    This paper examines the importance of phase angle variations with respect to fatigue damage. The operating loads on a generic conventional three-bladed upwind 1.5-MW wind turbine blade were analyzed over a range of operating conditions, and an aggregate probability distribution for the actual phase angles between the in-plane (lead-lag) and out-of-plane (flap) loads was determined. Using a finite element model of a generic blade and Miner's Rule, the accumulated theoretical damage (based on axial strains) resulting from a fatigue test with variable phase angles was compared to the damage resulting from a fatigue test with a constant phase angle. The nodal damage distribution at specific blade cross-sections are compared for the constant and variable phase angle cases. The sequence effects of various phase angle progressions were also considered. For this analysis, the finite element results were processed using the nonlinear Marco-Starkey damage accumulation model. Each phase angle sequence was constrained to have the same overall phase angle distribution and the same total number of cycles but the order in which the phase angles were applied was varied.

  11. Transperineal ultrasonography in stress urinary incontinence: The significance of urethral rotation angles

    PubMed Central

    Al-Saadi, Wasan Ismail

    2015-01-01

    Objective To assess, using transperineal ultrasonography (TPUS), the numerical value of the rotation of the bladder neck [represented by the difference in the anterior (α angle) and posterior urethral anglesangle)] at rest and straining, in continent women and women with stress urinary incontinence (SUI), to ascertain if there are significant differences in the angles of rotation (Rα and Rβ) between the groups. Patients, subjects and methods In all, 30 women with SUI (SUI group) and 30 continent women (control group) were included. TPUS was performed at rest and straining (Valsalva manoeuver), and the threshold value for the urethral angles (α and β angles) for each group were estimated. The degree of rotation for each angle was calculated and was considered as the angle of rotation. Results Both the α and β angles were significantly different between the groups at rest and straining, and there was a significant difference in the mean increment in the value of each angle. Higher values of increment (higher rotation angles) were reported in the SUI group for both the α and β angles compared with those of the control group [mean (SD) Rα SUI group 19.43 (12.76) vs controls 10.53 (2.98) °; Rβ SUI group 28.30 (12.96) vs controls 16.33 (10.8) °; P < 0.001]. Conclusion Urethral rotation angles may assist in the assessment and diagnosis of patients with SUI, which may in turn reduce the need for more sophisticated urodynamic studies. PMID:26966596

  12. Kappa angles in different positions in patients with myopia during LASIK

    PubMed Central

    Qi, Hui; Jiang, Jing-Jing; Jiang, Yan-Ming; Wang, Li-Qiang; Huang, Yi-Fei

    2016-01-01

    AIM To investigate the difference in kappa angle between sitting and supine positions during laser-assisted in situ keratomileusis (LASIK). METHODS A retrospective study was performed on 395 eyes from 215 patients with myopia that received LASIK. Low, moderate, and high myopia groups were assigned according to diopters. The horizontal and vertical components of kappa angle in sitting position were measured before the operation, and in supine position during the operation. The data from the two positions were compared and the relationship between kappa angle and diopters were analyzed. RESULTS Two hundred and twenty-three eyes (56.5%) in sitting position and 343 eyes (86.8%) in supine position had positive kappa angles. There were no significant differences in horizontal and vertical components of kappa angle in the sitting position or horizontal components of kappa angle in the supine position between the three groups (P>0.05). A significant difference in the vertical components of kappa angle in the supine position was seen in the three groups (P<0.01). Differences in both horizontal and vertical components of kappa angles were significant between the sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angles (P<0.05) were found and vertical components of kappa angle in sitting and supine positions were negatively correlated with the degree of myopia (sitting position: r=-0.109; supine position: r=-0.172; P<0.05). CONCLUSION There is a correlation in horizontal and vertical components of kappa angle in sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angle in sitting and supine positions till the end of the results. This result still needs further observation. Clinicians should take into account different postures when excimer laser surgery needs to be performed. PMID:27162734

  13. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    SciTech Connect

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  14. Asymmetric dihedral angle offsets for large-size lunar laser ranging retroreflectors

    NASA Astrophysics Data System (ADS)

    Otsubo, Toshimichi; Kunimori, Hiroo; Noda, Hirotomo; Hanada, Hideo; Araki, Hiroshi; Katayama, Masato

    2011-08-01

    The distribution of two-dimensional velocity aberration is off-centered by 5 to 6 microradians in lunar laser ranging, due to the stable measurement geometry in the motion of the Earth and the Moon. The optical responses of hollow-type retroreflectors are investigated through numerical simulations, especially focusing on large-size, single-reflector targets that can ultimately minimize the systematic error in future lunar laser ranging. An asymmetric dihedral angle offset, i.e. setting unequal angles between the three back faces, is found to be effective for retroreflectors that are larger than 100 mm in diameter. Our numerical simulation results reveal that the optimized return energy increases approximately 3.5 times more than symmetric dihedral angle cases, and the optimized dihedral angle offsets are 0.65-0.8 arcseconds for one angle, and zeroes for the other two angles.

  15. Comparison of femoral inclination angle measurements in dysplastic and nondysplastic dogs of different breeds.

    PubMed

    Sarierler, M

    2004-01-01

    In this study, inclination angle of the femoral head and neck was measured on 484 limbs of 242 dogs belonging to 7 breeds, examined for hip dysplasia. These inclination angles were compared according to age, sex and joint laxity, evaluated with Subluxation Index (SI) and Norberg angle (NA) results. The findings indicate that (a) there was a minimal (nonsignificant) difference in femoral inclination angle between the dysplastic and nondysplastic dogs belonging to 7 breeds; (b) although there was no significant difference in femoral inclination angle between the nondysplastic dogs belonging to 4 breeds (Pointer, Irish Setter, Golden Retriever and German Shepherd), a significant difference was observed between Doberman and Labrador, and between Anatolian Karabash and the other six breeds (p < 0.001). Age and sex did not affect the femoral neck angle. PMID:15168756

  16. Factors influencing the effective spray cone angle of pressure-swirl atomizers

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1992-01-01

    The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.

  17. Estimation of deviation angle for axial-flow compressor blade sections using inviscid-flow solutions

    NASA Technical Reports Server (NTRS)

    Miller, M. J.

    1974-01-01

    Development of a method of estimating deviation angles by analytical procedures was begun. Solutions for inviscid, irrotational flow in the blade-to-blade plane were obtained with a finite-difference calculation method. Deviation angles for a plane cascade with a rounded trailing edge were estimated by using the inviscid-flow solutions and three trailing-edge hypotheses. The estimated deviation angles were compared with existing experimental data over a range of incidence angles at inlet flow angles of 30 deg and 60 deg. The results indicate that deviation angles can be estimated accurately (within 1 deg) by using one of the three trailing-edge hypotheses, but only when pressure losses are low. A new trailing-edge hypotheses is presented which is suitable (for the cascade considered) for both low- and high-loss operating points.

  18. Polar transfer alignment of shipborne SINS with a large misalignment angle

    NASA Astrophysics Data System (ADS)

    Cheng, Jianhua; Wang, Tongda; Guan, Dongxue; Li, Meiling

    2016-03-01

    Existing polar transfer alignment (TA) algorithms are designed based on linear Kalman filters (KF) to estimate misalignment angles. In the case of a large misalignment angle, these algorithms cannot be applied in order to achieve accurate TA. In this paper, a TA algorithm based on an unscented Kalman filter (UKF) is proposed to solve the problem of the large misalignment angle in the polar region. Based on a large misalignment angle, nonlinear navigation error equations, which are the UKF dynamic models, are derived under grid frames. This paper chooses the velocity plus attitude matching method as the TA matching method and errors of velocity and attitude as observations. The misalignment angle can be estimated by the designed UKF. The simulation results have demonstrated that the polar TA algorithm can be effective in improving the TA accuracy, especially when large misalignment angles occur.

  19. The effect of vapor incidence angle upon thin film columnar growth

    SciTech Connect

    Mazor, A.; Bukiet, B.G.; Srolovitz, D.J.

    1988-01-01

    We present a generalized theory for the growth of columnar microstructure in vapor deposited thin films under the joint influence of a constant uniform deposition flux coming down with arbitrarily chosen incidence angle, and surface diffusion. The dependences of the Zone I to Zone II transition temperature, and the characteristic length scales associated with the unstable modes on the deposition angle are predicted. The surface morphology is obtained as a function of vapor incidence angle. For a specific deposition angle, there is a one-parameter family of steady-state surface profiles which corresponds to a range of possible columnar orientation angles, among which only one angle is associated with the tangent rule. These results agree with experimental observations. 10 refs., 6 figs.

  20. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  1. Comparative morphometry of coxal joint angles.

    PubMed

    Sugiyama, S; Fujiwara, K

    1997-10-01

    The angles related to the coxal joints were comparatively studied in four-limbed walking animals and two-limbed ones including man and birds. Between animals with both types of walking, no significant difference was observed in the neck-shaft angles (NSA), which was equivalent to the acetabulum angles (ACA) at the connection of the femoral head with the acetabulum. The anteversion angles (AVA) were equivalent to the horizontal ACA. Canine species showed two different forms of the femoral neck with or without modification by the femoral AVA, probably being breed-specific and nutrition-dependent. In the narrow-striped wallaby as well as avian species, the femoral head showed a postversion with a minus-version angle for lifting the body axis in the frontal and upward direction to hold the whole body weight on the hind-limbs, in particular at the anterior part of the acetabulum. In man, the connection between the femur and acetabulum greatly varied among individuals, possibly according to differences in the life style. PMID:9353634

  2. Moment-angle relations after specific exercise.

    PubMed

    Ullrich, B; Kleinöder, H; Brüggemann, G P

    2009-04-01

    This study examined the amount and time-course of shifts in the moment-knee angle relation of the quadriceps (QF) and hamstring (HAM) muscles in response to different length-restricted strength training regimens. Thirty-two athletes were divided into three different training groups (G1-3): G1 performed isometric training at knee joint angles corresponding to long muscle-tendon unit (MTU) length for QF and HAM; G2 conducted concentric-eccentric contraction cycles that were restricted to a knee joint range of motion corresponding to predominantly long MTU length for QF and HAM; G3 combined the protocols of G1 and G2. Moment-knee angle and EMG-knee angle relations of QF and HAM were measured on five different occasions: two times before, after five and eight weeks of training and four weeks post training. Moments and EMG-data of each subject were normalized to the largest value produced at any knee joint position [% Max.]. Obtained by curve fitting, the optimal knee joint angle for QF moment production was significantly (P<0.05) shifted to longer MTU length in G1 and G3 after 5 weeks of training and in G2 after 8 weeks of training. Contrary, no significant shifts were detected for HAM. Our data suggest that the predominant MTU length during loading is a major trigger for human force-length adaptations. PMID:19199195

  3. NORAD LOOK ANGLES AND PIO SATELLITE PACKAGE

    NASA Technical Reports Server (NTRS)

    ANONYMOUS

    1994-01-01

    This program package consists of two programs. First is the NORAD Look Angles Program, which computes satellite look angles (azimuth, elevation, and range) as well as the subsatellite points (latitude, longitude, and height). The second program in this package is the PIO Satellite Program, which computes sighting directions, visibility times, and the maximum elevation angle attained during each pass of an earth-orbiting satellite. Computations take into consideration the observing location and the effect of the earth's shadow on the satellite visibility. Input consists of a magnetic tape prepared by the NORAD Look Angles Program and punched cards containing reference Julian date, right ascension, declination, mean sidereal time at zero hours universal time of the reference date, and daily changes of these quantities. Output consists of a tabulated listing of the satellite's rise and set times, direction, and the maximum elevation angle visible from each observing location. This program has been implemented on the GE 635. The program Assembler code can easily be replaced by FORTRAN statements.

  4. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  5. Acquisition and analysis of angle-beam wavefield data

    SciTech Connect

    Dawson, Alexander J.; Michaels, Jennifer E.; Levine, Ross M.; Chen, Xin; Michaels, Thomas E.

    2014-02-18

    Angle-beam ultrasonic testing is a common practical technique used for nondestructive evaluation to detect, locate, and characterize a variety of material defects and damage. Greater understanding of the both the incident wavefield produced by an angle-beam transducer and the subsequent scattering from a variety of defects and geometrical features is anticipated to increase the reliability of data interpretation. The focus of this paper is on acquiring and analyzing propagating waves from angle-beam transducers in simple, defect-free plates as a first step in the development of methods for flaw characterization. Unlike guided waves, which excite the plate throughout its thickness, angle-beam bulk waves bounce back and forth between the plate surfaces, resulting in the well-known multiple “skips” or “V-paths.” The experimental setup consists of a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. Although laser vibrometry is now routinely used to record guided waves for which the frequency content is below 1 MHz, it is more challenging to acquire higher frequency bulk waves in the 1–10 MHz range. Signals are recorded on the surface of an aluminum plate that were generated from a 5 MHz, 65° refracted angle, shear wave transducer-wedge combination. Data are analyzed directly in the x-t domain, via a slant stack Radon transform in the τ-p (offset time-slowness) domain, and via a 2-D Fourier transform in the ω-k domain, thereby enabling identification of specific arrivals and modes. Results compare well to those expected from a simple ray tracing analysis except for the unexpected presence of a strong Rayleigh wave.

  6. In situ estimation of sediment sound speed and critical angle

    PubMed

    Maguer; Bovio; Fox; Schmidt

    2000-09-01

    Understanding the basic physics of sound penetration into ocean sediments is essential for the design of sonar systems that can detect, localize, classify, and identify buried objects. In this regard the sound speed of the sediment is a crucial parameter as the ratio of sound speed at the water-sediment interface determines the critical angle. Sediment sound speed is typically measured from core samples using high frequency (100's of kHz) pulsed travel time measurements. Earlier experimental work on subcritical penetration into sandy sediments has suggested that the effective sound speed in the 2-20 kHz range is significantly lower than the core measurement results. Simulations using Biot theory for propagation in porous media confirmed that sandy sediments may be highly dispersive in the range 1-100 kHz for the type of sand in which the experiments were performed. Here it is shown that a direct and robust estimate of the critical angle, and therefore the sediment sound speed, at the lower frequencies can be achieved by analyzing the grazing angle dependence of the phase delays observed on a buried array. A parametric source with secondary frequencies in the 2-16 kHz range was directed toward a sandy bottom similar to the one investigated in the earlier study. An array of 14 hydrophones was used to measure penetrated field. The critical angle was estimated by analyzing the variations of signal arrival times versus frequency, burial depth, and grazing angle. Matching the results with classical transmission theory yielded a sound speed estimate in the sand of 1626 m/s in the frequency range 2-5 kHz, again significantly lower the 1720 m/s estimated from the cores at 200 kHz. However, as described here, this dispersion is consistent with the predictions of the Biot theory for this type of sand. PMID:11008802

  7. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  8. Angle-dependent bandgap engineering in gated graphene superlattices

    NASA Astrophysics Data System (ADS)

    García-Cervantes, H.; Gaggero-Sager, L. M.; Sotolongo-Costa, O.; Naumis, G. G.; Rodríguez-Vargas, I.

    2016-03-01

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  9. Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy

    SciTech Connect

    Hu, Yan-Yan; Levin, E.M; Schmidt-Rohr, Klaus

    2009-06-02

    High-resolution magic-angle spinning NMR of high-Z spin- 1/2 nuclei such as {sup 125}Te, {sup 207}Pb, {sup 119}Sn, {sup 113}Cd, and {sup 195}Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90{sup o} pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for long pulses (comparable to the dwell time in t{sub 1}) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 {gamma}B{sub 1}, due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS.

  10. IMU-Based Joint Angle Measurement for Gait Analysis

    PubMed Central

    Seel, Thomas; Raisch, Jorg; Schauer, Thomas

    2014-01-01

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160

  11. Effects of temperature and conditioning on contact lens wetting angles.

    PubMed

    Knick, P D; Huff, J W

    1991-07-01

    Because wettability is not always examined under standard conditions, we investigated the temperature dependence of saline wettability on unconditioned and conditioned polymethylmethacrylate (PMMA), cellulose acetate butyrate (CAB), and three silicone acrylate lens materials. Sessile drop contact angles were measured in a humidity chamber at 23 degrees C and 34 degrees C using laser-assisted contact angle goniometry. In separate experiments, saline-stored and preconditioned lenses were examined either with or without rinsing. Sessile drop contact angles at 34 degrees C were within 2 degrees to 5 degrees of the room temperature values for both conditioned and unconditioned lenses, demonstrating a negligible temperature dependence. At both temperatures, the conditioned PMMA, CAB, silafocon A, and pasifocon C lenses wet slightly better, by 1 degree to 12 degrees, than unconditioned lenses. However, this increase was only significant with PMMA and silafocon A (P less than 0.05) and reversed when the preconditioned lenses were rinsed repeatedly in saline and reexamined. The results suggest that for these materials: 1) in vitro saline contact angles do not approach those seen on the eye, and this discrepancy can not be explained by temperature or conditioning; and 2) conditioning does not increase material wettability but merely forms a temporary hydrophilic interface that is more wettable than the lens material. PMID:1654228

  12. Oscillations of relative inclination angles in compact extrasolar planetary systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Adams, Fred C.

    2016-01-01

    The Kepler mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. A large fraction of the observational sample contains limited multiplicity, begging the question whether there is a true diversity of multitransiting systems, or if some systems merely possess high mutual inclinations, allowing them to appear as single-transiting systems in a transit-based survey. This paper begins an exploration of the effectiveness of dynamical mechanisms in exciting orbital inclination within exoplanetary systems of this class. For these tightly packed systems, we determine that the orbital inclination angles are not spread out appreciably through self-excitation. In contrast, the two Kepler multiplanet systems with additional non-transiting planets are susceptible to oscillations of their inclination angles, which means their currently observed configurations could be due to planet-planet interactions alone. We also provide constraints and predictions for the expected transit duration variations for each planet. In these multiplanet compact Kepler systems, oscillations of their inclination angles are remarkably hard to excite; as a result, they tend to remain continually mutually transiting (CMT-stable). We study this issue further by augmenting the planet masses and determining the enhancement factor required for oscillations to move the systems out of transit. The oscillations of inclination found here inform the recently suggested dichotomy in the sample of Solar systems observed by Kepler.

  13. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles.

    PubMed

    Cortés, Camilo; Unzueta, Luis; de Los Reyes-Guzmán, Ana; Ruiz, Oscar E; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  14. Method on camouflaged target recognition using the angle of ellipsometry

    NASA Astrophysics Data System (ADS)

    Zhuansun, Xiao-bo; Wu, Wen-Yuan; Huang, Yan-hua; Li, Zhao-zhao

    2015-10-01

    Using polarimetric information of the camouflaged target surface to identify camouflage has been a hot research area in camouflage detecting. The main method is to use the difference in the degree of polarization(DOP) between background and target to add the contrast ratio of them. The measurement of the DOP has some requirements on the intensity of reflected radiation. In case of low reflected radiation intensity, the difference in the DOP for different materials is not so distinguishable. In addition, the linear degree of polarization is largely under the effects of detection angle and surface roughness, so it is hard to differentiate the degree of polarization when the targets with similar surface roughness are detected at the same detection angle. By analyzing the elements affecting the reflected electromagnetic radiation amplitudes and phase on the camouflaged target surface, this article makes a research on the polarization character of reflected radiation A method on camouflaged target recognition directly or indirectly by taking the angle of ellipsometry (AOE) imaging under the linear polarized light. The function model of the angle of incidence, complex refractive index and AOE was modeled, then the model was simulated by MATLAB and the results showed it can describe the distribution properties of AOE. A new thought for the approach of identifying camouflaged target recognition by detecting polarimetric information was proposed, and it has a deep theoretical and practical significance in camouflaged target recognition.

  15. Determination of Load Angle for Salient-pole Synchronous Machine

    NASA Astrophysics Data System (ADS)

    Sumina, D.; Šala, A.; Malarić, R.

    2010-01-01

    This paper presents two methods for load angle determination for salient-pole synchronous generator. The first method uses optical encoder to detect the rotor position. In some cases the end of the rotor shaft is not free to be used and mounting of an encoder is impossible. Therefore, the second method proposes estimation of the load angle based on the measured electrical values that have been already used in excitation control system of the synchronous generator. Estimation method uses corresponding voltage-current vector diagram and parameters of the synchronous generator, transformer and transmission lines. Both methods were experimentally verified on the digital control system and synchronous generator connected to power system. The estimation and measured results were compared. The accuracy of load angle estimation method depends on voltage and current measurement accuracy as well as generator, transformer and transmission line parameter accuracy. The estimation method gives satisfactory accuracy for load angles less than 120° el. Thus, it can be applied in excitation control system to provide stable work of synchronous generator in under-excitation operating area.

  16. MRO Mars Color Imager (MARCI) Investigation Primary Mission Results

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Cantor, B. A.; Malin, M. C.; Science; Operations Teams, M.

    2008-12-01

    The Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) investigation was designed to recover the wide angle camera science objectives of the Mars Climate Orbiter MARCI which was destroyed upon arrival at Mars in 1999 and extend the daily meteorological coverage of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle investigation that was systematically conducted from March 1999 to October 2006. MARCI consists of two wide angle cameras, each with a 180° field of view. The first acquires data in 5 visible wavelength channels (420, 550, 600, 650, 720 nm), the second in 2 UV channels (260, 320 nm). Data have been acquired daily, except during spacecraft upsets, since 24 September 2006. From the MRO 250 to 315 km altitude orbit, inclined 93 degrees, visible wavelength images usually have a pixel scale of about 1 km at nadir and the UV data are at about 8 km per pixel. Data are obtained during every orbit on the day side of the planet from terminator to terminator. These provide a nearly continuous record of meteorological events and changes in surface frost and albedo patterns that span more than 1 martian year and extend the daily global record of such events documented by the MGS MOC. For a few weeks in September and October 2006, both camera systems operated simultaneously, providing views of weather events at about 1400 local time (MOC) and an hour later at about 1500 (MARCI). The continuous meteorological record, now spanning more than 5 Mars years, shows very repeatable weather from year to year with cloud and dust-raising events occurring in the same regions within about 2 weeks of their prior occurrence in previous years. This provides a measure of predictability ideal for assessing future landing sites, orbiter aerobraking plans, and conditions to be encountered by the current landed spacecraft on Mars. However, less predictable are planet-encircling dust events. MOC observed one in 2001, the next was observed by MARCI in 2007. These

  17. High brightness angled cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-01

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm-2 sr-1 is obtained, which marks the brightest QCL to date.

  18. On the dip angle of subducting plates

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Tang, Xiao-Ming; Toksoz, M. Nafi

    1990-01-01

    A new approximate analytic model is developed for the thermal structure of a subducting plate with a finite length. This model provides the capability of easily examining the thermal and mechanical structure of a subducting plate with different lengths and at different angles. Also, the torque balance of a descending plate can be examined, and effects such as the leading edge effect, the adiabatic compression effect, and the phase change effect can be incorporated. A comparison with observed data indicates that short slabs are likely under torque equilibrium at present, while long slabs are probably dominated by their gravitational torques such that their dip angles are transient, moving toward a steeper dip angle similar to that of the Mariana slab.

  19. Data for phase angle shift with frequency.

    PubMed

    Paul, T; Banerjee, D; Kargupta, K

    2016-06-01

    Phase angle shift between the current and voltage with frequency has been reported for a single phosphoric acid fuel cell in the cell temperature from 100 °C to 160 °C and the humidifier temperature from 40 °C to 90 °C. An electrochemical workbench is employed to find the shift. The figure of phase angle shift shows a peak in high humidifier temperatures. The peak in phase angle shift directs to lower frequency side with decreasing humidifier temperature. The estimation of electrochemical reaction time is also evaluated in the humidifier temperature zone from 50 °C to 90 °C. PMID:27158655

  20. Data for phase angle shift with frequency

    PubMed Central

    Paul, T.; Banerjee, D.; Kargupta, K.

    2016-01-01

    Phase angle shift between the current and voltage with frequency has been reported for a single phosphoric acid fuel cell in the cell temperature from 100 °C to 160 °C and the humidifier temperature from 40 °C to 90 °C. An electrochemical workbench is employed to find the shift. The figure of phase angle shift shows a peak in high humidifier temperatures. The peak in phase angle shift directs to lower frequency side with decreasing humidifier temperature. The estimation of electrochemical reaction time is also evaluated in the humidifier temperature zone from 50 °C to 90 °C. PMID:27158655