Science.gov

Sample records for nadph oxidase activity

  1. Regulation of NADPH Oxidase Activity in Phagocytes

    PubMed Central

    Debeurme, Franck; Picciocchi, Antoine; Dagher, Marie-Claire; Grunwald, Didier; Beaumel, Sylvain; Fieschi, Franck; Stasia, Marie-Jos

    2010-01-01

    The X+-linked chronic granulomatous disease (X+-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X+-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X+-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, ?507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2. PMID:20724480

  2. Peroxiredoxin-6 and NADPH oxidase activity.

    PubMed

    Ambruso, Daniel R

    2013-01-01

    Peroxiredoxins (Prdxs) are a family of proteins which catalyze the reduction of H2O2 through the interaction of active site cysteine residues. Conserved within all plant and animal kingdoms, the function of these proteins is related to protection from oxidation or participation of signaling through degradation of H2O2. Peroxiredoxin 6 (Prdx6), a protein belonging to the class of 1-cys Prdxs, was identified in polymorphonuclear leukocytes or neutrophils, defined by amino acid sequence and activity, and found associated with a component of the NADPH oxidase (Nox2), p67(phox). Prdx6 plays an important role in neutrophil function and supports the optimal activity of Nox2. In this chapter, methods are described for determining the Prdx activity of Prdx6. In addition, the approach for assessing the effect of Prdx6 on Nox2 in the SDS-activated, cell-free system of NADPH oxidase activity is presented. Finally, the techniques for suppressing Prdx6 expression in phox-competent K562 cells and cultured myeloid cells with siRNA and shRNA methods are described. With these approaches, the role of Prdx6 in Nox2 activity can be explored with intact cells. The biochemical mechanisms of the Prdx6 effect on the NADPH oxidase can be investigated with the experimental strategies described. PMID:23830630

  3. NADPH oxidase and neurodegeneration.

    PubMed

    Hernandes, Marina S; Britto, Luiz R G

    2012-12-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  4. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  5. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  6. HIF-1? Activation by Intermittent Hypoxia Requires NADPH Oxidase Stimulation by Xanthine Oxidase

    PubMed Central

    Nanduri, Jayasri; Vaddi, Damodara Reddy; Khan, Shakil A.; Wang, Ning; Makarenko, Vladislav; Semenza, Gregg L.; Prabhakar, Nanduri R.

    2015-01-01

    Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1? synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1? demonstrating that HIF-1? activation by IH requires Nox2 activation by XO. PMID:25751622

  7. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

    PubMed Central

    Masoud, Rawand; Bizouarn, Tania; Houe-Levin, Chantal

    2014-01-01

    The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2?, which are transformed into other reactive oxygen species (ROS). In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA). It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA), however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2?. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase. PMID:25462061

  8. Early adventitial activation characterized by NADPH oxidase expression and neovascularization in an aortic transplantation model.

    PubMed

    Sun, Mengyao; Ji, Jian; Guo, Xiaotong; Liu, Wenjun; Wang, Yanyan; Ma, Siqin; Hu, Weicheng; Wang, Jianli; Jiang, Fan

    2016-02-01

    Increasing evidence has suggested that arterial adventitia may contribute to pathological vessel remodeling by producing reactive oxygen species and promoting neovascularization. However, these processes have not been studied yet in transplantation-induced vascular pathologies. We characterized the dynamic changes in NADPH oxidase expression and adventitial angiogenic response in a model of allograft aortic transplantation. The thoracic aorta from Fischer 344 rats were transplanted into the abdominal aorta of Lewis rats. Graft specimens were collected on days 0.5, 3, 7, and 14 for morphometry, immunohistochemistry, immunofluorescence staining, and quantitative PCR tests. Following transplantation, adventitial thickening was found as early as day 3, while neointima was observed from day 7. As compared to normal adventitial tissue, the expression levels of NADPH oxidase subunits gp91phox and p47phox in graft adventitia were elevated from day 3 and further increased up to day 14. Immunohistochemistry staining showed that infiltrating macrophages appeared to be a major source of NADPH oxidase expression. Increases in NADPH oxidase expression were also detected in fibroblasts isolated from the graft adventitia. Gene silencing of p47phox significantly suppressed proliferation and migration of the graft fibroblast cells. We also showed that adventitial thickening was accompanied by increased adventitial neovascularization; at day 14, there was a positive correlation between the density of adventitial microvessels and the neointimal thickness. Transplantation injury induces NADPH oxidase expression and neovascularization in the adventitia, raising the possibility that the activated adventitia may represent a target site for prevention of transplantation-induced transplant vasculopathy. PMID:26655438

  9. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice.

    PubMed

    Nagasu, Hajime; Satoh, Minoru; Kiyokage, Emi; Kidokoro, Kengo; Toida, Kazunori; Channon, Keith M; Kanwar, Yashpal S; Sasaki, Tamaki; Kashihara, Naoki

    2016-01-01

    Increased generation of reactive oxygen species (ROS) is a common denominative pathogenic mechanism underlying vascular and renal complications in diabetes mellitus. Endothelial NAD(P)H oxidase is a major source of vascular ROS, and it has an important role in endothelial dysfunction. We hypothesized that activation of endothelial NAD(P)H oxidase initiates and worsens the progression of diabetic nephropathy, particularly in the development of albuminuria. We used transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NAD(P)H oxidase, Nox2 (NOX2TG). NOX2TG mice were crossed with Akita insulin-dependent diabetic (Akita) mice that develop progressive hyperglycemia. We compared the progression of diabetic nephropathy in Akita versus NOX2TG-Akita mice. NOX2TG-Akita mice and Akita mice developed significant albuminuria above the baseline at 6 and 10 weeks of age, respectively. Compared with Akita mice, NOX2TG-Akita mice exhibited higher levels of NAD(P)H oxidase activity in glomeruli, developed glomerular endothelial perturbations, and attenuated expression of glomerular glycocalyx. Moreover, in contrast to Akita mice, the NOX2TG-Akita mice had numerous endothelial microparticles (blebs), as detected by scanning electron microscopy, and increased glomerular permeability. Furthermore, NOX2TG-Akita mice exhibited distinct phenotypic changes in glomerular mesangial cells expressing ?-smooth muscle actin, and in podocytes expressing increased levels of desmin, whereas the glomeruli generated increased levels of ROS. In conclusion, activation of endothelial NAD(P)H oxidase in the presence of hyperglycemia initiated and exacerbated diabetic nephropathy characterized by the development of albuminuria. Moreover, ROS generated in the endothelium compounded glomerular dysfunctions by altering the phenotypes of mesangial cells and compromising the integrity of the podocytes. PMID:26552047

  10. Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase.

    PubMed Central

    Agwu, D E; McPhail, L C; Sozzani, S; Bass, D A; McCall, C E

    1991-01-01

    Receptor-mediated agonists, such as FMLP, induce an early, phospholipase D (PLD)-mediated accumulation of phosphatidic acid (PA) which may play a role in the activation of NADPH oxidase in human PMN. We have determined the effect of changes in PA production on O2 consumption in intact PMN and the level of NADPH oxidase activity measured in a cell-free assay. Pretreatment of cells with various concentrations of propranolol enhanced (less than or equal to 200 microM) or inhibited (greater than 300 microM) PLD-induced production of PA (mass and radiolabel) in a manner that correlated with enhancement or inhibition of O2 consumption in PMN stimulated with 1 microM FMLP in the absence of cytochalasin B. The concentration-dependent effects of propranolol on FMLP-induced NADPH oxidase activation was confirmed by direct assay of the enzyme in subcellular fractions. In PA extracted from cells pretreated with 200 microM propranolol before stimulation with 1 microM FMLP, phospholipase A1 (PLA1)-digestion for 90 min, followed by quantitation of residual PA, showed that a minimum of 44% of PA in control (undigested) sample was diacyl-PA; alkylacyl-PA remained undigested by PLA1. Propranolol was also observed to have a concentration-dependent enhancement of mass of 1,2-DG formed in PMN stimulated with FMLP. DG levels reached a maximum at 300 microM propranolol and remained unchanged up to 500 microM propranolol. However, in contrast to PA levels, the level of DG produced did not correlate with NADPH oxidase activation. Exogenously added didecanoyl-PA activated NADPH oxidase in a concentration-dependent manner (1-300 microM) in a reconstitution assay using membrane and cytosolic fractions from unstimulated PMN. In addition, PA synergized with SDS for oxidase activation. Taken together, these results indicate that PA plays a second messenger role in the activation of NADPH oxidase in human PMN and that regulation of phospholipase D is a key step in the activation pathway. Images PMID:1864964

  11. Activation of the NADPH oxidase in a cell-free system from human neutrophils stimulated by phorbol myristate acetate

    SciTech Connect

    Umeki, Shigenobu )

    1990-01-01

    Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg{sup 2+} and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase.

  12. Molecular Interface of S100A8 with Cytochrome b558 and NADPH Oxidase Activation

    PubMed Central

    Berthier, Sylvie; Hograindleur, Marc-Andr; Paclet, Marie-Hlne; Polack, Benot; Morel, Franoise

    2012-01-01

    S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b558; and (iii) to determine the S100A8 consensus site involved in cytochrome b558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8 colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8, loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin, induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8 truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b558 suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase activation. PMID:22808130

  13. Inhibition of NAD(P)H Oxidase Activity Blocks Vascular Endothelial Growth Factor Overexpression and Neovascularization during Ischemic Retinopathy

    PubMed Central

    Al-Shabrawey, Mohamed; Bartoli, Manuela; El-Remessy, Azza B.; Platt, Daniel H.; Matragoon, Sue; Behzadian, M. Ali; Caldwell, Robert W.; Caldwell, Ruth B.

    2005-01-01

    Because oxidative stress has been strongly implicated in up-regulation of vascular endothelial growth factor (VEGF) expression in ischemic retinopathy, we evaluated the role of NAD(P)H oxidase in causing VEGF overexpression and retinal neovascularization. Dihydroethidium imaging analyses showed increased superoxide formation in areas of retinal neovascularization associated with relative retinal hypoxia in a mouse model for oxygen-induced retinopathy. The effect of hypoxia in stimulating superoxide formation in retinal vascular endothelial cells was confirmed by in vitro chemiluminescence assays. The superoxide formation was blocked by specific inhibitors of NAD(P)H oxidase activity (apocynin, gp91ds-tat) indicating that NAD(P)H oxidase is a major source of superoxide formation. Western blot and immunolocalization analyses showed that retinal ischemia increased expression of the NAD(P)H oxidase catalytic subunit gp91phox, which localized primarily within vascular endothelial cells. Treatment of mice with apocynin blocked ischemia-induced increases in oxidative stress, normalized VEGF expression, and prevented retinal neovascularization. Apocynin and gp91ds-tat also blocked the action of hypoxia in causing increased VEGF expression in vitro, confirming the specific role of NAD(P)H oxidase in hypoxia-induced increases in VEGF expression. In conclusion, NAD(P)H oxidase activity is required for hypoxia-stimulated increases in VEGF expression and retinal neovascularization. Inhibition of NAD(P)H oxidase offers a new therapeutic target for the treatment of retinopathy. PMID:16049343

  14. Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

    PubMed Central

    Gan, Xiaoliang; Xing, Dandan; Su, Guangjie; Li, Shun; Luo, Chenfang; Irwin, Michael G.; Xia, Zhengyuan; Li, Haobo; Hei, Ziqing

    2015-01-01

    Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation. PMID:26246867

  15. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1?M fMLF and 1?M WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. PMID:24880063

  16. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization

    PubMed Central

    Wang, Haibo; Jiang, Yanchao; Shi, Dallas; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Wittchen, Erika S.; Li, Dean Y.; Hartnett, M. Elizabeth

    2014-01-01

    Activation of Rap1 GTPase can improve the integrity of the barrier of the retina pigment epithelium (RPE) and reduce choroidal neovascularization (CNV). Inhibition of NADPH oxidase activation also reduces CNV. We hypothesize that Rap1 inhibits NADPH oxidase-generated ROS and thereby reduces CNV formation. Using a murine model of laser-induced CNV, we determined that reduced Rap1 activity in RPE/choroid occurred with CNV formation and that activation of Rap1 by 2?-O-Me-cAMP (8CPT)-reduced laser-induced CNV via inhibiting NADPH oxidase-generated ROS. In RPE, inhibition of Rap1 by Rap1 GTPase-activating protein (Rap1GAP) increased ROS generation, whereas activation of Rap1 by 8CPT reduced ROS by interfering with the assembly of NADPH oxidase membrane subunit p22phox with NOX4 or cytoplasmic subunit p47phox. Activation of NADPH oxidase with Rap1GAP reduced RPE barrier integrity via cadherin phosphorylation and facilitated choroidal EC migration across the RPE monolayer. Rap1GAP-induced ROS generation was inhibited by active Rap1a, but not Rap1b, and activation of Rap1a by 8CPT in Rap1b?/? mice reduced laser-induced CNV, in correlation with decreased ROS generation in RPE/choroid. These findings provide evidence that active Rap1 reduces CNV by interfering with the assembly of NADPH oxidase subunits and increasing the integrity of the RPE barrier.Wang, H., Jiang, Y., Shi, D., Quilliam, L. A., Chrzanowska-Wodnicka, M., Wittchen, E. S., Li, D. Y., Hartnett, M. E. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization. PMID:24043260

  17. Phosphatidylinositol 3-Kinase Plays a Vital Role in Regulation of Rice Seed Vigor via Altering NADPH Oxidase Activity

    PubMed Central

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination. PMID:22448275

  18. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    SciTech Connect

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-04-15

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O{sub 2}{sup {center_dot}}{sup -} generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67{sup phox} siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91{sup phox} knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47{sup phox}, p67{sup phox} and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67{sup phox} siRNA. Exposure of MPMVEC obtained from gp91{sup phox} knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to activation of MAPKs through induced phosphorylation of p38 and ERK1/2 MAPKs that may further result in endothelial dysfunction through production of cytokines such as IL-6. Our results suggest that endothelial oxidative stress may be an important mechanism for PM-induced cardiovascular effects.

  19. NADPH oxidase activity and reactive oxygen species production in brain and kidney of adult male hypertensive Ren-2 transgenic rats.

    PubMed

    Vokurkov, M; Rauchov, H; ?ez?ov, L; Van??kov, I; Zicha, J

    2015-12-29

    Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase-mediated superoxide (O(2)(-)) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren-2 renin gene (Ren-2 TGR) and their age-matched normotensive controls - Hannover Sprague Dawley rats (HanSD). We found no difference in the activity of NADPH oxidase measured as a lucigenin-mediated O(2)(-) production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren-2 TGR compared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren-2 TGR+LOS) did not change NADPH oxidase-dependent O(2)(-) production in the kidney. We detected significantly elevated indirect markers of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) in Ren-2 TGR, while they were significantly decreased in Ren-2 TGR+LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions. PMID:26713567

  20. Intermittent Hypoxia-Induced Cognitive Deficits Are Mediated by NADPH Oxidase Activity in a Murine Model of Sleep Apnea

    PubMed Central

    Nair, Deepti; Dayyat, Ehab A.; Zhang, Shelley X.; Wang, Yang; Gozal, David

    2011-01-01

    Background In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction. Methods and Findings The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox_/Y) and wild-type littermates. On a standard place training task, gp91phox_/Y displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA) controls, while no changes emerged in gp91phox_/Y mice. Additionally, wild-type mice, but not gp91phox_/Y mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures. Conclusions The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provide a therapeutic strategy in sleep-disordered breathing. PMID:21625437

  1. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.

    PubMed

    Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan

    2013-05-01

    Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. PMID:23422569

  2. Chloride channels activated by swell can regulate the NADPH oxidase generated membrane depolarisation in activated human neutrophils

    SciTech Connect

    Ahluwalia, Jatinder

    2008-01-11

    Chloride channels activated by swell have important functions in many physiological processes. The phagocyte NADPH oxidase is essential for host defence and it generates superoxide by transferring electrons from the donor NADPH to the acceptor O{sub 2}. This electron current, induces a depolarisation of the plasma membrane. In this study, I report that chloride channels activated by swell can counteract the depolarisation induced by the NADPH oxidase. When a chloride conductance was activated by swelling, its inhibition by either 50 {mu}M NPPB or removing external chloride, depolarised the plasma membrane potential to +26 mV {+-} 3.1 (n = 4) and +40 {+-} 1 mV (n = 4), respectively. These channels were partially inhibited by the NADPH oxidase inhibitor AEBSF (1 mM) and potently inhibited by ZnCl{sub 2} (3 mM). These currents were not activated by a phosphorylation step and elevations in intracellular calcium did not appear to activate chloride currents similar to those activated by swell.

  3. Targeting NADPH oxidases in vascular pharmacology

    PubMed Central

    Schramm, Agata; Matusik, Paweł; Osmenda, Grzegorz; Guzik, Tomasz J

    2012-01-01

    Oxidative stress is a molecular dysregulation in reactive oxygen species (ROS) metabolism, which plays a key role in the pathogenesis of atherosclerosis, vascular inflammation and endothelial dysfunction. It is characterized by a loss of nitric oxide (NO) bioavailability. Large clinical trials such as HOPE and HPS have not shown a clinical benefit of antioxidant vitamin C or vitamin E treatment, putting into question the role of oxidative stress in cardiovascular disease. A change in the understanding of the molecular nature of oxidative stress has been driven by the results of these trials. Oxidative stress is no longer perceived as a simple imbalance between the production and scavenging of ROS, but as a dysfunction of enzymes involved in ROS production. NADPH oxidases are at the center of these events, underlying the dysfunction of other oxidases including eNOS uncoupling, xanthine oxidase and mitochondrial dysfunction. Thus NADPH oxidases are important therapeutic targets. Indeed, HMG-CoA reductase inhibitors (statins) as well as drugs interfering with the renin-angiotensin-aldosterone system inhibit NADPH oxidase activation and expression. Angiotensin-converting enzyme (ACE) inhibitors, AT1 receptor antagonists (sartans) and aliskiren, as well as spironolactone or eplerenone, have been discussed. Molecular aspects of NADPH oxidase regulation must be considered, while thinking about novel pharmacological targeting of this family of enzymes consisting of several homologs Nox1, Nox2, Nox3, Nox4 and Nox5 in humans. In order to properly design trials of antioxidant therapies, we must develop reliable techniques for the assessment of local and systemic oxidative stress. Classical antioxidants could be combined with novel oxidase inhibitors. In this review, we discuss NADPH oxidase inhibitors such as VAS2870, VAS3947, GK-136901, S17834 or plumbagin. Therefore, our efforts must focus on generating small molecular weight inhibitors of NADPH oxidases, allowing the selective inhibition of dysfunctional NADPH oxidase homologs. This appears to be the most reasonable approach, potentially much more efficient than non-selective scavenging of all ROS by the administration of antioxidants. PMID:22405985

  4. NADPH oxidase involvement in cellular integrity.

    PubMed

    Macpherson, Neil; Takeda, Seiji; Shang, Zhonglin; Dark, Adeeba; Mortimer, Jennifer C; Brownlee, Colin; Dolan, Liam; Davies, Julia M

    2008-05-01

    NADPH oxidase activity is involved in plant adaptation and development. The reactive oxygen species sourced by NADPH oxidase activity may contribute to wall strength and protoplast volume adjustment. Root hair bulge apices of the NADPH oxidase mutant rhd2/Atrbohc were more robust than the kjk cellulose synthase mutant, but burst more readily than the wild type (WT). Root epidermal wall appeared impaired in rhd2/Atrbohc, as revealed by the number of protoplasts released by wall-degrading enzymes. Root hair bulges of rhd2/Atrbohc burst more than the WT when challenged in situ with hypo-osmotic low ionic strength medium. Inhibition of NADPH oxidase activity with diphenylene iodonium caused WT to phenocopy the rhd2/Atrbohc bursting in response to hypo-osmotic shock. This implicates RHD2/AtRBOHC in softening the cell wall to permit protoplast expansion. Overall, the results point to a role for RHD2/AtRBOHC in contributing to wall strength. PMID:18317797

  5. Elimination of NADPH Oxidase Activity Promotes Reductive Stress and Sensitizes the Heart to Ischemic Injury

    PubMed Central

    Yu, Qiujun; Lee, Chi Fung; Wang, Wang; Karamanlidis, Georgios; Kuroda, Junya; Matsushima, Shouji; Sadoshima, Junichi; Tian, Rong

    2014-01-01

    Background The NADPH oxidase family (Nox) produces reactive oxygen species by adding the electron donated by NADPH to oxygen. Excessive reactive oxygen species production under a variety of pathological conditions has been attributed to increased Nox activity. Here, we aimed at investigating the role of Nox in cardiac ischemic injury through gain? and loss?of?function approaches. Methods and Results We modulated Nox activity in the heart by cardiac?specific expression of Nox4 and dominant negative Nox4. Modulation of Nox activity drastically changes the cellular redox status. Increasing Nox activity by cardiac?specific overexpression of Nox4 imposed oxidative stress on the myocardium [increased NAD(P)+/NAD(P)H and decreased glutathione/glutathione disulfide ratio] and worsened cardiac energetics and contractile function after ischemia?reperfusion. Overexpression of the dominant negative Nox4 (DN), which abolished the Nox function, led to a markedly reduced state [decreased NAD(P)+/NAD(P)H and increased glutathione/glutathione disulfide ratio] at baseline and paradoxically promoted mitochondrial reactive oxygen species production during ischemia resulting in no recovery of heart function after reperfusion. Limiting the generation of reducing equivalent through modulating carbon substrates availability partially restored the NAD+/NADH ratio and protected dominant negative Nox4 hearts from ischemic injury. Conclusions This study reveals an important role of Nox in cardiac redox regulation and highlights the complexity of developing therapies that affect the intricately connected redox states. PMID:24470522

  6. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity.

    PubMed Central

    Cook-Mills, Joan M; Johnson, Jacob D; Deem, Tracy L; Ochi, Atsuo; Wang, Lei; Zheng, Yi

    2004-01-01

    VCAM-1 (vascular cell adhesion molecule-1) plays an important role in the regulation of inflammation in atherosclerosis, asthma, inflammatory bowel disease and transplantation. VCAM-1 activates endothelial cell NADPH oxidase, and this oxidase activity is required for VCAM-1-dependent lymphocyte migration. We reported previously that a mouse microvascular endothelial cell line promotes lymphocyte migration that is dependent on VCAM-1, but not on other known adhesion molecules. Here we have investigated the signalling mechanisms underlying VCAM-1 function. Lymphocyte binding to VCAM-1 on the endothelial cell surface activated an endothelial cell calcium flux that could be inhibited with anti-alpha4-integrin and mimicked by anti-VCAM-1-coated beads. VCAM-1 stimulation of calcium responses could be blocked by an inhibitor of intracellular calcium mobilization, a calcium channel inhibitor or a calcium chelator, resulting in the inhibition of NADPH oxidase activity. Addition of ionomycin overcame the calcium channel blocker suppression of VCAM-1-stimulated NADPH oxidase activity, but could not reverse the inhibitory effect imposed by intracellular calcium blockage, indicating that both intracellular and extracellular calcium mobilization are required for VCAM-1-mediated activation of NADPH oxidase. Furthermore, VCAM-1 specifically activated the Rho-family GTPase Rac1, and VCAM-1 activation of NADPH oxidase was blocked by a dominant negative Rac1. Thus VCAM-1 stimulates the mobilization of intracellular and extracellular calcium and Rac1 activity that are required for the activation of NADPH oxidase. PMID:14594451

  7. Sphingomyelinase promotes oxidant production and skeletal muscle contractile dysfunction through activation of NADPH oxidase

    PubMed Central

    Loehr, James A.; Abo-Zahrah, Reem; Pal, Rituraj; Rodney, George G.

    2015-01-01

    Elevated concentrations of sphingomyelinase (SMase) have been detected in a variety of diseases. SMase has been shown to increase muscle derived oxidants and decrease skeletal muscle force; however, the sub-cellular site of oxidant production has not been elucidated. Using redox sensitive biosensors targeted to the mitochondria and NADPH oxidase (Nox2), we demonstrate that SMase increased Nox2-dependent ROS and had no effect on mitochondrial ROS in isolated FDB fibers. Pharmacological inhibition and genetic knockdown of Nox2 activity prevented SMase induced ROS production and provided protection against decreased force production in the diaphragm. In contrast, genetic overexpression of superoxide dismutase within the mitochondria did not prevent increased ROS production and offered no protection against decreased diaphragm function in response to SMase. Our study shows that SMase induced ROS production occurs in specific sub-cellular regions of skeletal muscle; however, the increased ROS does not completely account for the decrease in muscle function. PMID:25653619

  8. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  9. Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages.

    PubMed

    Gonzlez-Perilli, Luca; lvarez, Mara Noel; Prolo, Carolina; Radi, Rafael; Rubbo, Homero; Trostchansky, Andrs

    2013-05-01

    Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species under proinflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2(-)) due to the NADPH-dependent univalent reduction of oxygen to O2(-) by the phagocytic NADPH oxidase isoform (NOX2), the activity of NOX2 being the main source of O2(-) in monocytes/macrophages. Because the NOX2 and AA pathways are connected, we propose that AANO2 can modulate macrophage activation by inhibiting O2(-) formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex red fluorescence, and flow cytometry; this process also occurs under physiological mimic conditions within the phagosomes. AANO2 decreased O2(-) production in a dose- (IC50=4.11.8 ?M AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g., p40(phox) and p47(phox)), as analyzed by immunoprecipitation and Western blot. However, a reduction in the migration to the membrane of p47(phox) was obtained, suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, in which subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate-treated mice. PMID:23318789

  10. Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages

    PubMed Central

    González-Perilli, Lucía; Álvarez, María Noel; Prolo, Carolina; Radi, Rafael; Rubbo, Homero; Trostchansky, Andrés

    2013-01-01

    Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species (ROS) under pro-inflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2·−), due to the NADPH dependent univalent reduction of oxygen to O2·− by the phagocytic NADPH-oxidase isoform (NOX2), being the activity of NOX2 the main source of O2·− in monocytes/macrophages. Since NOX2 and AA pathways are connected, we propose that AANO2can modulate macrophage activation by inhibiting O2·− formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex Red fluorescence and flow cytometry; this process also occurs in physiological mimic conditions within the phagosomes. AANO2 decreased O2·− production in a dose-(IC50= 4.1 ± 1.8 μM AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g. p40phox and p47phox), as analyzed by immunoprecipitation and western blot. However, a reduction of the migration to the membrane of p47phox was obtained suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, where subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate treated mice. PMID:23318789

  11. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 ?g/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (P<0.05) reduced VEGF-induced intracellular reactive oxygen species by modulating NADPH oxidase activity, p47phox membrane translocation and the expression of Nox2 and Nox4. Moreover, the treatment of endothelial cells with serum obtained 4 h after acute intake of extra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. PMID:26878779

  12. Unchanged NADPH Oxidase Activity in Nox1-Nox2-Nox4 Triple Knockout Mice: What Do NADPH-Stimulated Chemiluminescence Assays Really Detect?

    PubMed

    Rezende, Flávia; Löwe, Oliver; Helfinger, Valeska; Prior, Kim-Kristin; Walter, Maria; Zukunft, Sven; Fleming, Ingrid; Weissmann, Norbert; Brandes, Ralf P; Schröder, Katrin

    2016-03-01

    NADPH oxidases of the Nox family are considered important sources of cellular reactive oxygen species (ROS) production. This conclusion is, in part, based on the ability of NADPH to elicit a chemiluminescence signal in tissue/cell homogenates or membrane preparations in the presence of enhancers such as lucigenin, luminol, or L012. However, the ability of these particular assays to specifically detect Nox activity and Nox-derived ROS has not been proven. In this study, we demonstrate that combined knockout of the three main Nox enzymes of the mouse (Nox1-Nox2-Nox4 triple knockout) had no impact on NADPH-stimulated chemiluminescence signals in the aorta, heart, and kidney homogenates. In the NADPH-stimulated membrane assays, no effect of in vivo angiotensin II pretreatment or deletion of Nox enzymes was observed. In in vitro studies in HEK293 cells, the overexpression of Nox5 or Nox4 markedly increased ROS production in intact cells, whereas overexpression of Nox5 or Nox4 had no influence on the signal in membrane assays. In contrast, overexpression of nitric oxide synthase or cytochrome P450 enzymes resulted in an increased chemiluminescence signal in isolated membranes. On the basis of these observations, we propose the hypothesis that NADPH-stimulated chemiluminescence-based membrane assays, as currently used, do not reflect Nox activity. Antioxid. Redox Signal. 24, 392-399. PMID:25906178

  13. NADPH Oxidase- and Mitochondria-derived Reactive Oxygen Species in Proinflammatory Microglial Activation: A Bipartisan Affair?

    PubMed Central

    Bordt, Evan A.; Polster, Brian M.

    2014-01-01

    Microglia are the resident immune cells of the brain and play major roles in central nervous system development, maintenance, and disease. Brain insults cause microglia to proliferate, migrate, and transform into one or more activated states. Classical M1 activation triggers the production of proinflammatory factors such as tumor necrosis factor- ? (TNF-?), interleukin-1? (IL-1?), nitric oxide (NO), and reactive oxygen species which, in excess, can exacerbate brain injury. The mechanisms underlying microglial activation are not fully understood, yet reactive oxygen species are increasingly implicated as mediators of microglial activation. In this review, we highlight studies linking reactive oxygen species, in particular hydrogen peroxide derived from NADPH oxidase-generated superoxide, to the classical activation of microglia. In addition, we critically evaluate controversial evidence suggesting a specific role for mitochondrial reactive oxygen species in the activation of the NLRP3 inflammasome, a multiprotein complex that mediates the production of IL-1? and IL-18. Finally, the limitations of common techniques used to implicate mitochondrial ROS in microglial and inflammasome activation, such as the use of the mitochondrially-targeted ROS indicator MitoSOX and the mitochondrially-targeted antioxidant MitoTEMPO, are also discussed. PMID:25091898

  14. Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes.

    PubMed

    Kasi, Viswanath; Bodiga, Sreedhar; Kommuguri, Upendra Nadh; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2011-07-01

    Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47(phox) phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress. PMID:21651898

  15. NMDA Receptor-Mediated Activation of NADPH Oxidase and Glomerulosclerosis in Hyperhomocysteinemic Rats

    PubMed Central

    Zhang, Chun; Yi, Fan; Xia, Min; Boini, Krishna M.; Zhu, Qing; Laperle, Laura A.; Abais, Justine M.; Brimson, Christopher A.

    2010-01-01

    Abstract This study investigated the role of NMDA receptor in hyperhomocyteinemia (hHcys)-induced NADPH oxidase (Nox) activation and glomerulosclerosis. SpragueDawley rats were fed a folate-free (FF) diet to produce hHcys, and a NMDA receptor antagonist, MK-801, was administrated. Rats fed the FF diet exhibited significantly increased plasma homocysteine levels, upregulated NMDA receptor expression, enhanced Nox activity and Nox-dependent O2.? production in the glomeruli, which were accompanied by remarkable glomerulosclerosis. MK-801 treatment significantly inhibited Nox-dependent O2.? production induced by hHcys and reduced glomerular damage index as compared with vehicle-treated hHcys rats. Correspondingly, glomerular deposition of extracellular matrix components in hHcys rats was ameliorated by the administration of MK-801. Additionally, hHcys induced an increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and a decrease in matrix metalloproteinase (MMP)-1 and MMP-9 activities, all of which were abolished by MK-801 treatment. In vitro studies showed that homocysteine increased Nox-dependent O2.? generation in rat mesangial cells, which was blocked by MK-801. Pretreatment with MK-801 also reversed homocysteine-induced decrease in MMP-1 activity and increase in TIMP-1 expression. These results support the view that the NMDA receptor may mediate Nox activation in the kidney during hHcys and thereby play a critical role in the development of hHcys-induced glomerulosclerosis. Antioxid. Redox Signal. 13, 975986. PMID:20406136

  16. Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse.

    PubMed

    Kassan, Modar; Ait-Aissa, Karima; Ali, Maha; Trebak, Mohamed; Matrougui, Khalid

    2015-10-01

    We previously determined that augmented EGFR tyrosine kinase (EGFRtk) impairs vascular function in type 2 diabetic mouse (TD2). Here we determined that EGFRtk causes vascular dysfunction through NADPH oxidase activity in TD2. Mesenteric resistance arteries (MRA) from C57/BL6 and db-/db- mice were mounted in a wired myograph and pre-incubated for 1h with either EGFRtk inhibitor (AG1478) or exogenous EGF. The inhibition of EGFRtk did not affect the contractile response to phenylephrine-(PE) and thromboxane-(U46619) or endothelium-dependent relaxation (EDR) to acetylcholine in MRA from control group. However, in TD2 mice, AG1478 reduced the contractile response to U46619, improved vasodilatation and reduced p22phox-NADPH expression, but had no effect on the contractile response to PE. The incubation of MRA with exogenous EGF potentiated the contractile response to PE in MRA from control and diabetic mice. However, EGF impaired the EDR and potentiated the vasoconstriction to U46619 only in the control group. Interestingly, NADPH oxidase inhibition in the presence of EGF restored the normal contraction to PE and improved the EDR but had no effect on the potentiated contraction to U46619. Vascular function improvement was associated with the rescue of eNOS and Akt and reduction in phosphorylated Rho-kinase, NOX4 mRNA levels, and NADPH oxidase activity. MRA from p47phox-/- mice incubated with EGF potentiated the contraction to U46619 but had no effect to PE or ACh responses. The present study provides evidence that augmented EGFRtk impairs vascular function by NADPH oxidase-dependent mechanism. Therefore, EGFRtk and oxidative stress should be potential targets to treat vascular dysfunction in TD2. PMID:26036345

  17. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  18. Activation of Membrane NADPH Oxidase Associated with Lysosome-Targeted Acid Sphingomyelinase in Coronary Endothelial Cells

    PubMed Central

    Bao, Jun-Xiang; Jin, Si; Zhang, Fan; Wang, Zheng-Chao; Li, Ningjun

    2010-01-01

    Abstract This study explored the mechanism mediating the aggregation of membrane NADPH oxidase (NOX) subunits and subsequent activation of this enzyme in bovine coronary arterial endothelial cells (CAECs). With confocal microscopy, we found that FasL stimulated lipid rafts (LRs) clustering with NOX subunit aggregation and acid sphingomyelinase (ASM) gathering, which was blocked by the siRNA of sortilin, an intracellular protein responsible for the binding and targeting of ASM to lysosomes. Correspondingly, FasL-induced O2? production through NOX in LRs fractions was abolished by sortilin siRNA. Further, with flow-cytometry and fluorescence resonance energy transfer (FRET) analysis, we surprisingly demonstrated that after FasL stimulation, sortilin was exposed to cell membranes from lysosomes together with Lamp-1 and ASM, and these lysosomal components were aggregated and form a signaling complex in cell membranes. With co-immunoprecipitation, lysosomal sortilin and ASM were found to interact more strongly when CAECs were stimulated by FasL. Functionally, inhibition of either sortilin expression, lysosome function, LRs clustering, or NOX activity significantly attenuated FasL-induced decrease in nitric oxide (NO) levels. It is concluded that lysosome-targeted ASM, through sortilin, is able to traffic to and expose to cell-membrane surface, which may lead to LRs clustering and NOX activation in CAECs. Antioxid. Redox Signal. 12, 703712. PMID:19761405

  19. Natural Compounds as Modulators of NADPH Oxidases

    PubMed Central

    2013-01-01

    Reactive oxygen species (ROS) are cellular signals generated ubiquitously by all mammalian cells, but their relative unbalance triggers also diseases through intracellular damage to DNA, RNA, proteins, and lipids. NADPH oxidases (NOX) are the only known enzyme family with the sole function to produce ROS. The NOX physiological functions concern host defence, cellular signaling, regulation of gene expression, and cell differentiation. On the other hand, increased NOX activity contributes to a wide range of pathological processes, including cardiovascular diseases, neurodegeneration, organ failure, and cancer. Therefore targeting these enzymatic ROS sources by natural compounds, without affecting the physiological redox state, may be an important tool. This review summarizes the current state of knowledge of the role of NOX enzymes in physiology and pathology and provides an overview of the currently available NADPH oxidase inhibitors derived from natural extracts such as polyphenols. PMID:24381714

  20. Contribution of NADPH Oxidase to Membrane CD38 Internalization and Activation in Coronary Arterial Myocytes

    PubMed Central

    Xu, Ming; Li, Xiao-Xue; Ritter, Joseph K.; Abais, Justine M.; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    The CD38-ADP-ribosylcyclase-mediated Ca2+ signaling pathway importantly contributes to the vasomotor response in different arteries. Although there is evidence indicating that the activation of CD38-ADP-ribosylcyclase is associated with CD38 internalization, the molecular mechanism mediating CD38 internalization and consequent activation in response to a variety of physiological and pathological stimuli remains poorly understood. Recent studies have shown that CD38 may sense redox signals and is thereby activated to produce cellular response and that the NADPH oxidase isoform, NOX1, is a major resource to produce superoxide (O2?) in coronary arterial myocytes (CAMs) in response to muscarinic receptor agonist, which uses CD38-ADP-ribosylcyclase signaling pathway to exert its action in these CAMs. These findings led us hypothesize that NOX1-derived O2? serves in an autocrine fashion to enhance CD38 internalization, leading to redox activation of CD38-ADP-ribosylcyclase activity in mouse CAMs. To test this hypothesis, confocal microscopy, flow cytometry and a membrane protein biotinylation assay were used in the present study. We first demonstrated that CD38 internalization induced by endothelin-1 (ET-1) was inhibited by silencing of NOX1 gene, but not NOX4 gene. Correspondingly, NOX1 gene silencing abolished ET-1-induced O2? production and increased CD38-ADP-ribosylcyclase activity in CAMs, while activation of NOX1 by overexpression of Rac1 or Vav2 or administration of exogenous O2? significantly increased CD38 internalization in CAMs. Lastly, ET-1 was found to markedly increase membrane raft clustering as shown by increased colocalization of cholera toxin-B with CD38 and NOX1. Taken together, these results provide direct evidence that Rac1-NOX1-dependent O2? production mediates CD38 internalization in CAMs, which may represent an important mechanism linking receptor activation with CD38 activity in these cells. PMID:23940720

  1. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation

    PubMed Central

    Kovac, S; Domijan, A-M; Walker, M C; Abramov, A Y

    2014-01-01

    Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na+] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets. PMID:25275601

  2. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts

    PubMed Central

    Liang, Shuang; Kisseleva, Tatiana; Brenner, David A.

    2016-01-01

    Chronic liver injury, resulted from different etiologies (e.g., virus infection, alcohol abuse, nonalcoholic steatohepatitis (NASH) and cholestasis) can lead to liver fibrosis characterized by the excess accumulation of extracellular matrix (ECM) proteins (e.g., type I collagen). Hepatic myofibroblasts that are activated upon liver injury are the key producers of ECM proteins, contributing to both the initiation and progression of liver fibrosis. Hepatic stellate cells (HSCs) and to a lesser extent, portal fibroblast, are believed to be the precursor cells that give rise to hepatic myofibroblasts in response to liver injury. Although, much progress has been made toward dissecting the lineage origin of myofibroblasts, how these cells are activated and become functional producers of ECM proteins remains incompletely understood. Activation of myofibroblasts is a complex process that involves the interactions between parenchymal and non-parenchymal cells, which drives the phenotypic change of HSCs from a quiescent stage to a myofibroblastic and active phenotype. Accumulating evidence has suggested a critical role of NADPH oxidase (NOX), a multi-component complex that catalyzes reactions from molecular oxygen to reactive oxygen species (ROS), in the activation process of hepatic myofibroblasts. NOX isoforms, including NOX1, NOX2 and NOX4, and NOX-derived ROS, have all been implicated to regulate HSC activation and hepatocyte apoptosis, both of which are essential steps for initiating liver fibrosis. This review highlights the importance of NOX isoforms in hepatic myofibroblast activation and the progression of liver fibrosis, and also discusses the therapeutic potential of targeting NOXs for liver fibrosis and associated hepatic diseases. PMID:26869935

  3. Current status of NADPH oxidase research in cardiovascular pharmacology

    PubMed Central

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Álvarez, Ezequiel

    2013-01-01

    The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years. PMID:23983473

  4. ?-Lipoic Acid Inhibits Helicobacter pylori-Induced Oncogene Expression and Hyperproliferation by Suppressing the Activation of NADPH Oxidase in Gastric Epithelial Cells

    PubMed Central

    Byun, Eunyoung; Lim, Joo Weon; Kim, Jung Mogg; Kim, Hyeyoung

    2014-01-01

    Hyperproliferation and oncogene expression are observed in the mucosa of Helicobacter pylori- (H. pylori-) infected patients with gastritis or adenocarcinoma. Expression of oncogenes such as ?-catenin and c-myc is related to oxidative stress. ?-Lipoic acid (?-LA), a naturally occurring thiol compound, acts as an antioxidant and has an anticancer effect. The aim of this study is to investigate the effect of ?-LA on H. pylori-induced hyperproliferation and oncogene expression in gastric epithelial AGS cells by determining cell proliferation (viable cell numbers, thymidine incorporation), levels of reactive oxygen species (ROS), NADPH oxidase activation (enzyme activity, subcellular levels of NADPH oxidase subunits), activation of redox-sensitive transcription factors (NF-?B, AP-1), expression of oncogenes (?-catenin, c-myc), and nuclear localization of ?-catenin. Furthermore, we examined whether NADPH oxidase mediates oncogene expression and hyperproliferation in H. pylori-infected AGS cells using treatment of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase. As a result, ?-LA inhibited the activation of NADPH oxidase and, thus, reduced ROS production, resulting in inhibition on activation of NF-?B and AP-1, induction of oncogenes, nuclear translocation of ?-catenin, and hyperproliferation in H. pylori-infected AGS cells. DPI inhibited H. pylori-induced activation of NF-?B and AP-1, oncogene expression and hyperproliferation by reducing ROS levels in AGS cells. In conclusion, we propose that inhibiting NADPH oxidase by ?-LA could prevent oncogene expression and hyperproliferation occurring in H. pylori-infected gastric epithelial cells. PMID:25210229

  5. Epithelial-to-Mesenchymal Transition in Podocytes Mediated by Activation of NADPH Oxidase in Hyperhomocysteinemia

    PubMed Central

    Zhang, Chun; Xia, Min; Boini, Krishna M.; Li, Cai-Xia; Abais, Justine M.; Li, Xiao-Xue; Laperle, Laura A.; Li, Pin-Lan

    2012-01-01

    The present study tested the hypothesis that hyperhomocysteinemia (hHcys) induces podocytes to undergo epithelial-to-mesenchymal transition (EMT) through the activation of NADPH oxidase (Nox). It was found that increased homocysteine (Hcys) level suppressed the expression of slit diaphragm-associated proteins, P-cadherin and zonula occludens-1 (ZO-1) in conditionally immortalized mouse podocytes, indicating the loss of their epithelial features. Meanwhile, Hcys remarkably increased the abundance of mesenchymal markers, such as fibroblast specific protein-1 (FSP-1) and ?-smooth muscle actin (?-SMA). These phenotype changes in podocytes induced by Hcys were accompanied by enhanced superoxide (O2.?) production, which was substantially suppressed by inhibition of Nox activity. Functionally, Hcys significantly enhanced the permeability of the podocyte monolayer coupled with increased EMT, and this EMT-related increase in cell permeability could be restored by Nox inhibitors. In mice lacking gp91phox (gp91?/?), an essential Nox subunit gene, hHcys-enhanced podocyte EMT and consequent glomerular injury were examined. In wild-type (gp91+/+) mice, hHcys induced by a folate-free (FF) diet markedly enhanced expression of mesenchymal markers (FSP-1 and ?-SMA) but decreased expression of epithelial markers of podocytes in glomeruli, which were not observed in gp91?/? mouse glomeruli. Podocyte injury, glomerular sclerotic pathology, and marked albuminuria observed in gp91+/+ mice with hHcys were all significantly attenuated in gp91?/? mice. These results suggest that hHcys induces EMT of podocytes through activation of Nox, which represents a novel mechanism of hHcys-associated podocyte injury. PMID:21647593

  6. Effects of IFN-γ on intracellular trafficking and activity of macrophage NADPH oxidase flavocytochrome b558

    PubMed Central

    Casbon, Amy-Jo; Long, Matthew E.; Dunn, Kenneth W.; Allen, Lee-Ann H.; Dinauer, Mary C.

    2012-01-01

    Flavocytochrome b558, the catalytic core of the phagocyte NADPH oxidase (NOX2), mediates electron transfer from NADPH to molecular oxygen to generate superoxide, the precursor of highly ROS for host defense. Flavocytochrome b558 is an integral membrane heterodimer consisting of a large glycosylated subunit, gp91phox, and a smaller subunit, p22phox. We recently showed in murine macrophages that flavocytochrome b558 localizes to the PM and Rab11-positive recycling endosomes, whereas in primary hMDMs, gp91phox and p22phox reside in the PM and the ER. The antimicrobial activity of macrophages, including ROS production, is greatly enhanced by IFN-γ, but how this is achieved is incompletely understood. To further define the mechanisms by which IFN-γ enhances macrophage NADPH oxidase activity, we evaluated changes in flavocytochrome b558 expression and localization, along with NADPH oxidase activity, in IFN-γ stimulated RAW 264.7 cells and primary murine BMDMs and hMDMs. We found that enhanced capacity for ROS production is, in part, a result of increased protein expression of gp91phox and p22phox but also demonstrate that IFN-γ induced a shift in the predominant localization of gp91phox and p22phox from intracellular membrane compartments to the PM. Our results are the first to show that a cytokine can change the distribution of macrophage flavocytochrome b558 and provide a potential, new mechanism by which IFN-γ modulates macrophage antimicrobial activity. Altogether, our data suggest that the mechanisms by which IFN-γ regulates antimicrobial activity of macrophages are more complex than previously appreciated. PMID:22822009

  7. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation

    PubMed Central

    Dubiella, Ullrich; Seybold, Heike; Durian, Guido; Komander, Eileen; Lassig, Roman; Witte, Claus-Peter; Schulze, Waltraud X.; Romeis, Tina

    2013-01-01

    In animals and plants, pathogen recognition triggers the local activation of intracellular signaling that is prerequisite for mounting systemic defenses in the whole organism. We identified that Arabidopsis thaliana isoform CPK5 of the plant calcium-dependent protein kinase family becomes rapidly biochemically activated in response to pathogen-associated molecular pattern (PAMP) stimulation. CPK5 signaling resulted in enhanced salicylic acid–mediated resistance to the bacterial pathogen Pst DC3000, differential plant defense gene expression, and synthesis of reactive oxygen species (ROS). Using selected reaction monitoring MS, we identified the plant NADPH oxidase, respiratory burst oxidase homolog D (RBOHD), as an in vivo phosphorylation target of CPK5. Remarkably, CPK5-dependent in vivo phosphorylation of RBOHD occurs on both PAMP- and ROS stimulation. Furthermore, rapid CPK5-dependent biochemical and transcriptional activation of defense reactions at distal sites is compromised in cpk5 and rbohd mutants. Our data not only identify CPK5 as a key regulator of innate immune responses in plants but also support a model of ROS-mediated cell-to-cell communication, where a self-propagating mutual activation circuit consisting of the protein kinase, CPK5, and the NADPH oxidase RBOHD facilitates rapid signal propagation as a prerequisite for defense response activation at distal sites within the plant. PMID:23650383

  8. NADPH-oxidase 2 activation promotes opioid-induced antinociceptive tolerance in mice

    PubMed Central

    Doyle, Timothy; Esposito, Emanuela; Bryant, Leesa; Cuzzocrea, Salvatore; Salvemini, Daniela

    2013-01-01

    The analgesic effectiveness of long-term opioid therapies is compromised by the development of antinociceptive tolerance linked to the overt production of peroxynitrite (ONOO−, PN), the product of the interaction between superoxide (O2˙−, SO) and nitric oxide (NO), and to neuroinflammatory processes. We have recently reported that in addition to post-translational nitration and inactivation of mitochondrial MnSOD, activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase holoenzyme (NOX) in the spinal cord is a major source for the overt production of superoxide-derived PN during the development of morphine-induced antinociceptive tolerance. However, the NOX complex involved in these processes is not known. The objective of these studies is to identify a potential role for the NOX2 complex, an enzyme involved in inflammation. Mice lacking the catalytic subunit of NOX2 (Nox2−/−) or its regulatory subunit, p47phox (p47phox−/−), developed antinociceptive tolerance similar to wildtype (wt) mice after three days of continuous morphine. However, while wt mice continue to develop tolerance by day six, morphine analgesia was restored in both Nox2−/− and p47phox−/− mice. Moreover, the loss of Nox2 or p47 did not affect acute morphine analgesia in naïve mice. In wt mice, antinociceptive tolerance was associated with increased activation of NOX, nitration of MnSOD, and proinflammatory cytokines production in spinal cord. These events were markedly attenuated in Nox2−/− and p47phox−/− mice and instead, there was enhanced formation of antiinflammatory cytokine (IL4 and IL10) production. These results suggest that NOX2 activity provides a significant source of superoxide-derived PN to undertake post-translational modifications of mitochondrial MnSOD and to engage neuroinflammatory signaling in the spinal cord associated with opioid-induced antinociceptive tolerance. Thus, NOX2 may provide a potential target for adjuvant therapy to protect opioid analgesia. PMID:23454539

  9. The antioxidant activity of soursop decreases the expression of a member of the NADPH oxidase family.

    PubMed

    Zamudio-Cuevas, Y; Daz-Sobac, R; Vzquez-Luna, A; Landa-Sols, C; Cruz-Ramos, M; Santamara-Olmedo, M; Martnez-Flores, K; Fuentes-Gmez, A J; Lpez-Reyes, A

    2014-02-01

    Cellular oxidative stress produced by an increase in free radicals is one of the factors that promote the development of chronic degenerative diseases; therefore, consuming natural antioxidants helps minimize their negative effects. This study evaluated the cytotoxicity of the soursop extract (Annona muricata), its cytoprotective capacity against oxidative stress induced by hydrogen peroxide, the inhibitory potential of reactive oxygen species (ROS), the molecular mechanism of its antioxidant action, and its capacity to repair cellular damage in the fibroblast cell line. The soursop extract proved not to be cytotoxic in fibroblast cultures and showed cytoprotective capacity against hydrogen peroxide-induced stress; in cell culture it reduced the generation of ROS significantly by inhibiting a sub-unit of the NADPH oxidase enzyme (p47phox). The soursop extract can prevent damage caused by cellular oxidants. PMID:24337133

  10. Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity.

    PubMed

    Roca, M Gabriela; Weichert, Martin; Siegmund, Ulrike; Tudzynski, Paul; Fleissner, Andr

    2012-03-01

    In many filamentous ascomycete species, the early steps of colony development include fusion between germinating vegetative spores (conidial germlings). Often these fusion events are mediated by specialized hyphal structures, so-called conidial anastomosis tubes (CATs). Here, we show that germling fusion in the grey mould Botrytis cinerea is mediated by hyphal structures possessing the typical features of CATs. Formation of these structures is delayed when spores are germinating on complex media compared to growth on poor substrates. Fusion frequency is also influenced by the growth conditions of the precultures from which spores were obtained. During germination on hydrophobic plant surfaces, which induce pathogenic development, CAT formation is significantly suppressed. Screening of existing B. cinerea gene knockout mutants identified strains lacking the NADPH oxidase BcNoxA or the potential Nox regulator BcNoxR as fusion deficient, suggesting a potential role of reactive oxygen species (ROS) signalling in CAT formation and fusion. PMID:22385620

  11. ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice.

    PubMed

    Ford, Bridget M; Eid, Assaad A; G?z, Monika; Barnes, Jeffrey L; Gorin, Yves C; Abboud, Hanna E

    2013-08-01

    Matrix protein accumulation is a prominent feature of diabetic nephropathy that contributes to renal fibrosis and decline in renal function. The pathogenic mechanisms of matrix accumulation are incompletely characterized. We investigated if the matrix metalloprotease a disintegrin and metalloprotease1 7 (ADAM17), known to cleave growth factors and cytokines, is activated in the kidney cortex of OVE26 type 1 diabetic mice and the potential mechanisms by which ADAM17 mediates extracellular matrix accumulation. Protein expression and activity of ADAM17 were increased in OVE26 kidney cortex. Using a pharmacological inhibitor to ADAM17, TMI-005, we determined that ADAM17 activation results in increased type IV collagen, Nox4, and NADPH oxidase activity in the kidney cortex of diabetic mice. In cultured mouse proximal tubular epithelial cells (MCTs), high glucose increases ADAM17 activity, Nox4 and fibronectin expression, cellular collagen content, and NADPH oxidase activity. These effects of glucose were inhibited when cells were pretreated with TMI-005 and/or transfected with small interfering ADAM17. Collectively, these data indicate a novel mechanism whereby hyperglycemia in diabetes increases extracellular matrix protein expression in the kidney cortex through activation of ADAM17 and enhanced oxidative stress through Nox enzyme activation. Additionally, our study is the first to provide evidence that Nox4 is downstream of ADAM17. PMID:23678045

  12. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    SciTech Connect

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin; Park, Ji-hoon; Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook; Kim, Soon Ha

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  13. Role of NADPH Oxidase and Xanthine Oxidase in Mediating Inducible VT/VF and Triggered Activity in a Canine Model of Myocardial Ischemia

    PubMed Central

    Martins, James B.; Chaudhary, Ashok K.; Jiang, Shuxia; Kwofie, Michael; Mackie, Prescott; Miller, Francis J.

    2014-01-01

    Background: Ventricular tachycardia or fibrillation (VT/VF) of focal origin due to triggered activity (TA) from delayed afterdepolarizations (DADs) is reproducibly inducible after anterior coronary artery occlusion. Both VT/VF and TA can be blocked by reducing reactive oxygen species (ROS). We tested the hypothesis that inhibition of NADPH oxidase and xanthine oxidase would block VT/VF. Methods: 69 dogs received apocynin (APO), 4 mg/kg intraveneously (IV), oxypurinol (OXY), 4 mg/kg IV, or both APO and OXY (BOTH) agents, or saline 3 h after coronary occlusion. Endocardium from ischemic sites (3-D mapping) was sampled for Rac1 (GTP-binding protein in membrane NADPH oxidase) activation or standard microelectrode techniques. Results (mean SE, * p < 0.05): VT/VF originating from ischemic zones was blocked by APO in 6/10 *, OXY in 4/9 *, BOTH in 5/8 * or saline in 1/27; 11/16 VT/VFs blocked were focal. In isolated myocardium, TA was blocked by APO (10?6 M) or OXY (10?8 M). Rac1 levels in ischemic endocardium were decreased by APO or OXY. Conclusion: APO and OXY suppressed focal VT/VF due to DADs, but the combination of the drugs was not more effective than either alone. Both drugs inhibited ischemic Rac1 with inhibition by OXY suggesting ROS-induced ROS. The inability to totally prevent VT/VF suggests that other mechanisms also contribute to ischemic VT. PMID:25375191

  14. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology. Antioxid. Redox Signal. 20, 2755–2775. PMID:24386930

  15. The ADP-stimulated NADPH oxidase activates the ASK-1/MKK4/JNK pathway in alveolar macrophages

    PubMed Central

    Liu, Honglei; Zhang, Hongqiao; Iles, Karen E.; Rinna, Alessandra; Merrill, Gary; Yodoi, Junji; Torres, Martine; Forman, Henry Jay

    2009-01-01

    The role of H2O2 as a second messenger in signal transduction pathways is well established. We show here that the NADPH oxidase-dependent production of O2? and H2O2 or respiratory burst in alveolar macrophages (AM) (NR8383 cells) is required for ADP-stimulated c-Jun phosphorylation and the activation of JNK1/2, MKK4 (but not MKK7) and apoptosis signal-regulating kinase-1 (ASK1). ASK1 binds only to the reduced form of thioredoxin (Trx). ADP induced the dissociation of ASK1/Trx complex and thus resulted in ASK1 activation, as assessed by phosphorylation at Thr845, which was enhanced after treatment with aurothioglucose (ATG), an inhibitor of Trx reductase. While dissociation of the complex implies Trx oxidation, protein electrophoretic mobility shift assay detected oxidation of Trx only after bolus H2O2 but not after ADP stimulation. These results demonstrate that the ADP-stimulated respiratory burst activated the ASK1-MKK4-JNK1/c-Jun signaling pathway in AM and suggest that transient and localized oxidation of Trx by the NADPH oxidase-mediated generation of H2O2 may play a critical role in ASK1 activation and the inflammatory response. PMID:17015265

  16. New Insights into the Regulation of Neutrophil NADPH Oxidase Activity in the Phagosome: A Focus on the Role of Lipid and Ca2+ Signaling

    PubMed Central

    Brchard, Sabrina; Planon, Sbastien

    2013-01-01

    Abstract Significance: Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. Recent Advances: Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca2+ mobilization. Critical Issues: The potential involvement of Ca2+-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. Future Directions: Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis. Antioxid. Redox Signal. 18, 661676. PMID:22867131

  17. NADPH Oxidases in Chronic Liver Diseases

    PubMed Central

    Jiang, Joy X.; Török, Natalie J.

    2015-01-01

    Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases. PMID:26436133

  18. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase.

    PubMed

    Steffen, Yvonne; Gruber, Claudia; Schewe, Tankred; Sies, Helmut

    2008-01-15

    The dietary flavan-3-ol (-)-epicatechin improves the bioactivity of nitric oxide in arterial vessels in vivo. Moreover, it effectively protects cultured vascular endothelial cells from signs of oxidative stress and elevates intracellular nitric oxide in vitro. We addressed the effects of (-)-epicatechin, its metabolic conversion products and structurally related compounds on NADPH oxidase activity in intact human umbilical vein endothelial cells (HUVEC) and in cell lysates. (-)-Epicatechin proved to be an O2*(-)-scavenger but did not inhibit NADPH oxidase activity, whereas the converse pattern was observed for the metabolites 3'- and 4'-O-methyl epicatechin. The dimer procyanidin B2 and (-)-epicatechin glucuronide were O2*(-)-scavengers and inhibited NADPH oxidase. Analysis of structure-activity relations with 45 compounds suggests an apocynin-like mode of NADPH oxidase inhibition. Notably, HUVEC converted (-)-epicatechin to NADPH oxidase-inhibitory methyl ethers. These data identify endothelial NADPH oxidase as candidate target of dietary flavonoids and particularly of their metabolites. PMID:17996190

  19. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

    PubMed Central

    Sokolovska, Anna; Becker, Christine E.; Eddie Ip, WK; Rathinam, Vijay A.K.; Brudner, Matthew; Paquette, Nicholas; Tanne, Antoine; Vanaja, Sivapriya K.; Moore, Kathryn J.; Fitzgerald, Katherine A.; Lacy-Hulbert, Adam; Stuart, Lynda M.

    2013-01-01

    Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense. PMID:23644505

  20. Dopamine D1 receptor-mediated inhibition of NADPH oxidase activity in human kidney cells occurs via protein kinase A-protein kinase C cross-talk

    PubMed Central

    Yu, Peiying; Han, Weixing; Villar, Van Anthony M.; Li, Hewang; Arnaldo, Francis B.; Concepcion, Gisela P.; Felder, Robin A.; Quinn, Mark T.; Jose, Pedro A.

    2011-01-01

    Dopamine cellular signaling, via the D1 receptor (D1R), involves both protein kinase A (PKA) and protein kinase C (PKC), but the PKC isoform involved has not been determined. Therefore, we tested the hypothesis that the D1R-mediated inhibition of NADPH oxidase activity involves cross-talk between PKA and specific PKC isoform(s). In HEK-293 cells heterologously expressing human D1R (HEK-hD1), fenoldopam, a D1R agonist, and phorbol-12-myristate-13-acetate (PMA), a PKC activator, inhibited oxidase activity in a time- and concentration-dependent manner. The D1R-mediated inhibition of oxidase activity (68.13.6%) was attenuated by two different PKA inhibitors, H89 (10 mol/L) (888.1%) and Rp-cAMP (10 mol/L) (97.76.7%), and two different PKC inhibitors, bisindolylmaleimide I (1 mol/L) (946%) and staurosporine (10 nmol/L) (938%), which by themselves, had no effect (n=48/group). The inhibitory effect of PMA (1 mol/L) on oxidase activity (733.2%) was blocked by H89 (1007.8%) (n=56/group). The PMA-mediated inhibition of NADPH oxidase activity was accompanied by an increase in PKC?S676, an effect that was also blocked by H89. Fenoldopam (1 mol/L) also increased PKC?S676 in HEK-hD1 and human renal proximal tubule (RPT) cells. Knockdown of PKC? with siRNA in RPT cells prevented the inhibitory effect of fenoldopam on NADPH oxidase activity. Our studies demonstrate for the first time that cross-talk between PKA and PKC? plays an important role in the D1R-mediated negative regulation of NADPH oxidase activity in human kidney cells. PMID:21193028

  1. Dopamine D1 receptor-mediated inhibition of NADPH oxidase activity in human kidney cells occurs via protein kinase A-protein kinase C cross talk.

    PubMed

    Yu, Peiying; Han, Weixing; Villar, Van Anthony M; Li, Hewang; Arnaldo, Francis B; Concepcion, Gisela P; Felder, Robin A; Quinn, Mark T; Jose, Pedro A

    2011-04-01

    Dopamine cellular signaling via the D(1) receptor (D(1)R) involves both protein kinase A (PKA) and protein kinase C (PKC), but the PKC isoform involved has not been determined. Therefore, we tested the hypothesis that the D(1)R-mediated inhibition of NADPH oxidase activity involves cross talk between PKA and a specific PKC isoform(s). In HEK-293 cells heterologously expressing human D(1)R (HEK-hD(1)), fenoldopam, a D(1)R agonist, and phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited oxidase activity in a time- and concentration-dependent manner. The D(1)R-mediated inhibition of oxidase activity (68.13.6%) was attenuated by two PKA inhibitors, H89 (10?mol/L; 888.1%) and Rp-cAMP (10?mol/L; 97.76.7%), and two PKC inhibitors, bisindolylmaleimide I (1?mol/L; 946%) and staurosporine (10nmol/L; 938%), which by themselves had no effect (n=4-8/group). The inhibitory effect of PMA (1?mol/L) on oxidase activity (733.2%) was blocked by H89 (1007.8%; n=5 or 6/group). The PMA-mediated inhibition of NADPH oxidase activity was accompanied by an increase in PKC?(S676), an effect that was also blocked by H89. Fenoldopam (1?mol/L) also increased PKC?(S676) in HEK-hD(1) and human renal proximal tubule (RPT) cells. Knockdown of PKC? with siRNA in RPT cells prevented the inhibitory effect of fenoldopam on NADPH oxidase activity. Our studies demonstrate for the first time that cross talk between PKA and PKC? plays an important role in the D(1)R-mediated negative regulation of NADPH oxidase activity in human kidney cells. PMID:21193028

  2. NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia.

    PubMed

    Gao, Pan; He, Fang-Fang; Tang, Hui; Lei, Chun-Tao; Chen, Shan; Meng, Xian-Fang; Su, Hua; Zhang, Chun

    2015-01-01

    Diabetic nephropathy (DN) is one of the major causes of end-stage renal disease, and previously we demonstrated that NALP3 inflammasome was involved in the pathogenesis of DN. Here we investigated the mechanisms of NALP3 inflammasome activation in podocyte injury during DN. We found that, besides the activation of NALP3 inflammasome and upregulated thioredoxin-interacting protein (TXNIP), the glomerular expression of gp91 (phox) , a subunit of NADPH oxidase, was enhanced in DN mice simultaneously. Inhibiting NADPH oxidase abrogated NALP3 inflammasome activation, and IL-1? production and eventually protected podocytes from high glucose- (HG-) induced injury. TXNIP, an inhibitor of thioredoxin, acts as a suppressor for antioxidant defense system. Our observation indicated that in HG-exposed podocytes genetic deletion of TXNIP by shRNA reversed gp91 (phox) overexpression and alleviated the injury of podocyte. Collectively, our findings proposed that HG-induced NADPH oxidase activation was driven by TXNIP which subsequently triggered NALP3 inflammasome activation in podocytes and ultimately led to podocyte injury, and blocking TXNIP/NADPH oxidase signaling may be a promising treatment for DN. PMID:25834832

  3. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus

    PubMed Central

    Tejada-Simon, Maria V.; Serrano, Faridis; Villasana, Laura E.; Kanterewicz, Beatriz I.; Wu, Gang-Yi; Quinn, Mark T.; Klann, Eric

    2007-01-01

    Superoxide has been shown to be critical for hippocampal long-term potentiation (LTP) and hippocampus-dependent memory function. A possible source for the generation of superoxide during these processes is NADPH oxidase. The active oxidase consists of two membrane proteins, gp91phox and p22phox, and four cytosolic proteins, p40phox, p47phox, p67phox, and Rac. Upon stimulation, the cytosolic proteins translocate to the membrane to form a complex with the membrane components, which results in production of superoxide. Here, we determined the presence, localization, and functionality of a NADPH oxidase in mouse hippocampus by examining the NADPH oxidase proteins as well as the production of superoxide. All of the NADPH oxidase proteins were present in hippocampal homogenates and enriched in synaptoneurosome preparations. Immunocytochemical analysis of cultured hippocampal neurons indicated that all NADPH oxidase proteins were localized in neuronal cell bodies as well as dendrites. Furthermore, double labeling analysis using antibodies to p67phox and the presynaptic marker synaptophysin suggest a close association of the NADPH oxidase subunits with synaptic sites. Finally, stimulation of hippocampal slices with phorbol esters triggered translocation of the cytoplasmic NADPH oxidase proteins to the membrane and an increase in superoxide production that was blocked by inhibitors of NADPH oxidase. Taken together, our data suggest that NADPH oxidase is present in mouse hippocampus and might be the source of superoxide production required for LTP and memory function. PMID:15866050

  4. Exposure of Madin-Darby Canine Kidney (MDCK) Cells to Oxalate and Calcium Oxalate Crystals Activates Nicotinamide Adenine Dinucleotide Phosphate (NADPH)-Oxidase

    PubMed Central

    Khan, Aslam; Byer, Karen; Khan, Saeed R.

    2014-01-01

    OBJECTIVE To investigate nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity in Madin-Darby canine kidney (MDCK) cells and the production of reactive oxygen species on exposure to oxalate (Ox) or calcium oxalate (CaOx) crystals. METHODS Monolayers of confluent Madin-Darby canine kidney cells were exposed to 100, 300, 500 μmol, 1 mmol Ox or 33, 66, 132 μg/cm2 CaOx crystals for 15 minutes, 30 minutes, 1 hour, 2 hours, or 3 hours. After specified periods of exposure to Ox and CaOx crystals, lactate dehydrogenase release, trypan blue exclusion, activation of NADPH oxidase, and superoxide production were determined using standard procedures. The production of Nox4, a membrane associated subunit of the NADPH oxidase enzyme, was determined by western blot analysis. RESULTS Exposure to Ox and CaOx crystals leads to time- and concentration-dependent activation of NADPH oxidase. Western blot analysis showed an increase in the production of Nox4. The production of superoxide also changed in a time- and concentration-dependent manner, with maximum increases after 30-minute exposure to the highest concentrations of Ox and CaOx crystals. Longer exposures did not change the results or resulted in decreased activities. Exposure to higher concentrations also caused increased lactate dehydrogenase release and trypan blue exclusion indicating cell damage. CONCLUSION Results indicate that cells of the distal tubular origin are equipped with NADPH oxidase that is activated by exposures to Ox and CaOx crystals. Higher concentrations of both lead to cell injury, most probably through the increased reactive oxygen species production by the exposed cells. PMID:24360063

  5. Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-{beta}/Smad activation

    SciTech Connect

    Pan Xinjuan; Dai Yujie; Li Xing; Niu Nannan; Li Wenjie; Liu Fangli; Zhao Yang; Yu Zengli

    2011-08-01

    Chronic arsenic exposure induces oxidative damage to liver leading to liver fibrosis. We aimed to define the effect of grape seed extract (GSE), an antioxidant dietary supplement, on arsenic-induced liver injury. First, Male Sprague-Dawley rats were exposed to a low level of arsenic in drinking water (30 ppm) with or without GSE (100 mg/kg, every other day by oral gavage) for 12 months and the effect of GSE on arsenic-induced hepatotoxicity was examined. The results from this study revealed that GSE co-treatment significantly attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. Moreover, GSE reduced arsenic-stimulated Smad2/3 phosphorylation and protein levels of NADPH oxidase subunits (Nox2, Nox4 and p47phox). Next, we explored the molecular mechanisms underlying GSE inhibition of arsenic toxicity using cultured rat hepatic stellate cells (HSCs). From the in vitro study, we found that GSE dose-dependently reduced arsenic-stimulated ROS production and NADPH oxidase activities. Both NADPH oxidases flavoprotein inhibitor DPI and Nox4 siRNA blocked arsenic-induced ROS production, whereas Nox4 overexpression suppressed the inhibitory effects of GSE on arsenic-induced ROS production and NADPH oxidase activities, as well as expression of TGF-{beta}1, type I procollagen (Coll-I) and {alpha}-smooth muscle actin ({alpha}-SMA) mRNA. We also observed that GSE dose-dependently inhibited TGF-{beta}1-induced transactivation of the TGF-{beta}-induced smad response element p3TP-Lux, and that forced expression of Smad3 attenuated the inhibitory effects of GSE on TGF-{beta}1-induced mRNA expression of Coll-I and {alpha}-SMA. Collectively, GSE could be a potential dietary therapeutic agent for arsenic-induced liver injury through suppression of NADPH oxidase and TGF-{beta}/Smad activation. - Research Highlights: > GSE attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. > GSE reduced arsenic-mediated Smad2/3 phosphorylation and NADPH oxidase subunits (Nox2, Nox4 and p47phox). > Beneficial effects of GSE on As-induced liver injury was via inhibition of NADPH oxidase and TGF-{beta}/Smad activation.

  6. P2X7 receptor is critical in ?-synuclein--mediated microglial NADPH oxidase activation.

    PubMed

    Jiang, Tianfang; Hoekstra, Jake; Heng, Xin; Kang, Wenyan; Ding, Jianqing; Liu, Jun; Chen, Shengdi; Zhang, Jing

    2015-07-01

    Activated microglia are commonly observed in individuals with neurodegenerative disorders, including Parkinson's disease (PD) and are believed to contribute to neuronal death. This process occurs at least due partially to nicotinamide adenine dinucleotide phosphate oxidase (PHOX) activation, which leads to the production of superoxide and oxidative stress. ?-Synuclein (?-Syn), a key protein implicated in PD pathogenesis, can activate microglia, contributing to death of dopaminergic neurons. Here, microglial cells (BV2) and primary cultured microglia were used to study the role that the purinergic receptor P2X7 plays in recognizing ?-Syn and promoting PHOX activation. We demonstrate that both wild type and A53T mutant ?-Syn readily activate PHOX, with the A53T form producing more rapid and sustained effects,that is, oxidative stress and cellular injuries. Furthermore, this process involves the activation of phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway. Thus, it is concluded that stimulation of the microglial P2X7 receptor by extracellular ?-Syn, with PI3K/AKT activation and increased oxidative stress, could be an important mechanism and a potential therapeutic target for PD. PMID:25983062

  7. Perturbation of actin dynamics induces NF-?B activation in myelomonocytic cells through an NADPH oxidase-dependent pathway

    PubMed Central

    2004-01-01

    Although several reports showed the effect of compounds disrupting microtubules on NF-?B (nuclear factor ?B) activation, nothing is known about agents perturbing actin dynamics. In the present study, we have shown that actin cytoskeleton disruption induced by actin-depolymerizing agents such as cytochalasin D and latrunculin B and actin-polymerizing compounds such as jasplakinolide induced NF-?B activation in myelomonocytic cells. The transduction pathway involved the I?B (inhibitory ?B) kinase complex and a degradation of I?B?. We have shown that NF-?B activation in response to the perturbation of actin dynamics required reactive oxygen species, as demonstrated by the effect of antioxidants. Actin cytoskeleton disruption by cytochalasin D induced O2? release from human monocytes, through the activation of the NADPH oxidase, as confirmed by the phosphorylation and by the membrane translocation of p47phox. NF-?B activation after actin cytoskeleton disruption could be physiologically relevant during monocyte activation and/or recruitment into injured tissues, where cellular attachment, migration and phagocytosis result in cyclic shifts in cytoskeletal organization and disorganization. PMID:15535802

  8. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice.

    PubMed

    Hosseini, Mohsen; Mahfouf, Walid; Serrano-Sanchez, Martin; Raad, Houssam; Harfouche, Ghida; Bonneu, Marc; Claverol, Stephane; Mazurier, Frederic; Rossignol, Rodrigue; Taieb, Alain; Rezvani, Hamid Reza

    2015-04-01

    Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology. PMID:25437426

  9. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity

    PubMed Central

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Dhar, Deepanshi; Panigrahi, Gati K.; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P.; Oberlies, Nicholas H.; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  10. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity.

    PubMed

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Dhar, Deepanshi; Panigrahi, Gati K; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P; Oberlies, Nicholas H; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1-5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47(phox)). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  11. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases.

    PubMed

    Potocký, Martin; Pejchar, Přemysl; Gutkowska, Małgorzata; Jiménez-Quesada, María José; Potocká, Andrea; Alché, Juan de Dios; Kost, Benedikt; Žárský, Viktor

    2012-11-01

    Reactive oxygen species (ROS) generated by NADPH oxidase (NOX) are crucial for tip growth of pollen tubes. However, the regulation of NOX activity in pollen tubes remains unknown. Using purified plasma membrane fractions from tobacco and olive pollen and tobacco BY-2 cells, we demonstrate that pollen NOX is activated by calcium ions and low abundant signaling phospholipids, such as phosphatidic acid and phosphatidylinositol 4,5-bisphosphate in vitro and in vivo. Our data also suggest possible synergism between Ca(2+) and phospholipid-mediated NOX activation in pollen. Rac/Rop small GTPases are also necessary for normal pollen tube growth and have been proposed to regulate ROS production in root hairs. We show here elevated ROS formation in pollen tubes overexpressing wild-type NtRac5 and constitutively active NtRac5, while overexpression of dominant-negative NtRac5 led to a decrease of ROS in pollen tubes. We also show that PA formed by distinct phospholipases D (PLD) is involved in pathways both upstream and downstream of NOX-mediated ROS generation and identify NtPLDδ as a PLD isoform acting in the ROS response pathway. PMID:22762791

  12. Bone Morphogenetic Protein-2 Activates NADPH Oxidase to Increase Endoplasmic Reticulum Stress and Human Coronary Artery Smooth Muscle Cell Calcification

    PubMed Central

    Liberman, Marcel; Johnson, Rebecca C.; Handy, Diane E.; Loscalzo, Joseph; Leopold, Jane A.

    2011-01-01

    Bone morphogenetic protein-2 (BMP-2) increases oxidant stress and endoplasmic reticulum (ER) stress to stimulate differentiation of osteoblasts; however, the role of these signaling pathways in the transition of smooth muscle cells to a calcifying osteoblast-like phenotype remains incompletely characterized. We, therefore, treated human coronary artery smooth muscle cells (HCSMC) with BMP-2 (100 ng/ml) and found an increase in NADPH oxidase activity and oxidant stress that occurred via activation of the bone morphogenetic protein receptor 2 and Smad 1 signaling. BMP-2-mediated oxidant stress also increased endoplasmic reticulum (ER) stress demonstrated by increased expression of GRP78, phospho-IRE1α, and the transcription factor XBP1. Analysis of a 1 kb segment of the Runx2 promoter revealed an XBP1 binding site; electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that XBP1 bound to the Runx2 promoter at this site in BMP-2-treated HCSMC. Inhibition of oxidant stress or ER stress decreased Runx2 expression, intracellular calcium deposition, and mineralization of BMP-2-treated HCSMC. Thus, in HCSMC, BMP-2 increases oxidant stress and ER stress to increase Runx2 expression and promote vascular smooth muscle cell calcification. PMID:21907184

  13. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets

    PubMed Central

    Drummond, Grant R.; Selemidis, Stavros; Griendling, Kathy K.; Sobey, Christopher G.

    2012-01-01

    NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases. PMID:21629295

  14. Cofactor-independent antiphospholipid antibodies activate the NLRP3-inflammasome via endosomal NADPH-oxidase: implications for the antiphospholipid syndrome.

    PubMed

    Mller-Calleja, Nadine; Khler, Antonia; Siebald, Benjamin; Canisius, Antje; Orning, Carolin; Radsak, Markus; Stein, Pamela; Mnnikes, Ren; Lackner, Karl J

    2015-05-01

    The antiphospholipid syndrome (APS) is an autoimmune disease characterised by thromboembolic events and/or pregnancy morbidity in the presence of antiphospholipid antibodies (aPL). Here we show that three cofactor independent human monoclonal aPL can induce transcription of NLRP3 and caspase-1 resulting in inflammasome activation specific for NLRP3. This depends fully on activation of endosomal NADPH-oxidase-2 (NOX2) by aPL. Activation of NOX2 and subsequent inflammasome activation by aPL are independent from TLR2 or TLR4. While endosomal superoxide production induces caspase-1 and NLRP3 transcription, it does not affect prae-IL-1? transcription. Therefore, release of IL-1? occurs only after activation of additional pathways like TLR7/8 or TLR2. All effects exerted by the monoclonal aPL can be reproduced with IgG fractions of APS patients proving that the monoclonal aPL are representative for the APS. IgG fractions of healthy controls or patients suffering from systemic lupus erythematosus have no effect. In a mouse model of the APS we can show inflammasome activation in vivo. Furthermore, mononuclear cells isolated from patients with the APS show an increased expression of caspase-1 and NLRP3 which is accompanied by a three-fold increased serum concentration of IL-1? suggesting chronic inflammasome activation in APS patients. In summary, we provide further evidence that endosomal NOX2 can be activated by cofactor independent aPL. This leads to induction of the NLRP3 inflammasome. Our data indicate that cofactor independent aPL might contribute significantly to the pathogenesis of the APS. PMID:25589411

  15. Impaired Priming and Activation of the Neutrophil NADPH Oxidase in Patients with IRAK4- or NEMO-deficiency *

    PubMed Central

    Singh, Anjali; Zarember, Kol A.; Kuhns, Douglas B.; Gallin, John I.

    2013-01-01

    The NADPH oxidase (NOX), an oligomeric enzyme, plays a key role in polymorphonuclear neutrophil (PMN)-mediated host defense by producing cytotoxic superoxide anion (O2.−). Whereas in vitro and biochemical studies have examined the assembly and activation of this important host immune defense system, few studies have examined the function of NOX in human patients with primary immunodeficiencies other than chronic granulomatous disease. We studied the activation of NOX in PMN from patients with two distinct immunodeficiencies, interleukin-1 receptor associated kinase 4 (IRAK4) deficiency and nuclear factor kappa (NF-κB) essential modulator (NEMO or IKKγ) deficiency. We observed impaired O2.− generation by LPS-treated and fMLP-activated IRAK4-deficient PMN that correlated with decreased phosphorylation of p47phox and subnormal translocation of p47phox, p67phox, Rac2, and gp91phox/Nox2 to the membranes indicating that TLR4 signaling to the NOX activation pathway requires IRAK4. NEMO-deficient PMN generated significantly less O2.− in response to LPS-primed fMLP and translocated less p67phox than normal PMN although p47phox and Rac2 translocation were normal. Generally, responses of NEMO-deficient cells were intermediate between IRAK4-deficient cells and normal cells. Decreased LPS and fMLP induced phosphorylation of p38 MAPK in both IRAK4- and NEMO-deficient PMN implicates additional signal transduction pathways in regulating PMN activation by LPS and fMLP. Decreased activation of NOX may contribute to the increased risk of infection seen in patients with IRAK4- and NEMO-deficiency. PMID:19414794

  16. A Novel Nontoxic Inhibitor of the Activation of NADPH Oxidase Reduces Reactive Oxygen Species Production in Mouse LungS⃞

    PubMed Central

    Lee, Intae; Dodia, Chandra; Chatterjee, Shampa; Zagorski, John; Mesaros, Clementina; Blair, Ian A.; Feinstein, Sheldon I.; Jain, Mahendra

    2013-01-01

    1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02–0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67–87% of the injected dose for i.t. and 23–42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24–72 hours. Mice treated with MJ33 at 12.5–25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation. PMID:23475902

  17. Neuronal NAD(P)H Oxidases Contribute to ROS Production and Mediate RGC Death after Ischemia

    PubMed Central

    Dvoriantchikova, Galina; Grant, Jeff; Santos, Andrea Rachelle C.; Hernandez, Eleut; Ivanov, Dmitry

    2012-01-01

    Purpose. To study the role of neuronal nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidasedependent reactive oxygen species (ROS) production in retinal ganglion cell (RGC) death after ischemia. Methods. Ischemic injury was induced by unilateral elevation of intraocular pressure via direct corneal cannulation. For in vitro experiments, RGCs isolated by immunopanning from retinas were exposed to oxygen and glucose deprivation (OGD). The expression levels of NAD(P)H oxidase subunits were evaluated by quantitative PCR, immunocytochemistry, and immunohistochemistry. The level of ROS generated was assayed by dihydroethidium. The NAD(P)H oxidase inhibitors were then tested to determine if inhibition of NAD(P)H oxidase altered the production of ROS within the RGCs and promoted cell survival. Results. It was reported that RGCs express catalytic Nox1, Nox2, Nox4, Duox1, as well as regulatory Ncf1/p47phox, Ncf2/p67phox, Cyba/p22phox, Noxo1, and Noxa1 subunits of NAD(P)H oxidases under normal conditions and after ischemia. However, whereas RGCs express only low levels of catalytic Nox2, Nox4, and Duox1, and regulatory Ncf1/p47, Ncf2/p67 subunits, they exhibit significantly higher levels of catalytic subunit Nox1 and the subunits required for optimal activity of Nox1. It was observed that the nonselective NAD(P)H oxidase inhibitors VAS-2870, AEBSF, and the Nox1 NAD(P)H oxidasespecific inhibitor ML-090 decreased the ROS burst stimulated by OGD, which was associated with a decreased level of RGC death. Conclusions. The findings suggest that NAD(P)H oxidase activity in RGCs renders them vulnerable to ischemic death. Importantly, high levels of Nox1 NAD(P)H oxidase subunits in RGCs suggest that this enzyme could be a major source of ROS in RGCs produced by NAD(P)H oxidases. PMID:22467573

  18. Khz (Fusion of Ganoderma lucidum and Polyporus umbellatus Mycelia) Induces Apoptosis by Increasing Intracellular Calcium Levels and Activating JNK and NADPH Oxidase-Dependent Generation of Reactive Oxygen Species

    PubMed Central

    Kim, Tae Hwan; Kim, Ju sung; Kim, Zoo haye; Huang, Ren Bin; Wang, Ren Sheng

    2012-01-01

    Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria. PMID:23056263

  19. NADPH Oxidase 4 Induces Cardiac Fibrosis and Hypertrophy through Activating Akt/mTOR and NFκB Signaling Pathways

    PubMed Central

    Zhao, Qingwei David; Viswanadhapalli, Suryavathi; Williams, Paul; Shi, Qian; Tan, Chunyan; Yi, Xiaolan; Bhandari, Basant; Abboud, Hanna E.

    2015-01-01

    Background NADPH oxidase 4 (Nox4) has been implicated in cardiac remodeling, but its precise role in cardiac injury remains controversial. Furthermore, little is known about the downstream effector signaling pathways activated by Nox4-derived ROS in the myocardium. We investigated the role of Nox4 and Nox4 associated signaling pathways in the development of cardiac remodeling. Methods and Results Cardiac-specific human Nox4 transgenic mice (c-hNox4Tg) were generated. Four groups of mice were studied: 1) control mice (CTL): littermates that are negative for hNox4 transgene but Cre positive; 2) c-hNox4 Tg mice; 3) angiotensin II (AngII)-infused CTL mice and 4) c-hNox4Tg mice infused with AngII. The c-hNox4Tg mice exhibited approximately 10-fold increase in Nox4 protein expression and 8-fold increase in the production of reactive oxygen species, and manifested cardiac interstitial fibrosis. AngII-infusion to CTL mice increased cardiac Nox4 expression and induced fibrosis and hypertrophy. The Tg mice receiving AngII exhibited more advanced cardiac remodeling and robust elevation in Nox4 expression, indicating that AngII worsens cardiac injury, at least partially by enhancing Nox4 expression. Moreover, hNox4 transgene and/or AngII-infusion induced the expression of cardiac fetal genes and activated the Akt-mTOR and NFκB signaling pathways. Treatment of AngII-infused c-hNox4Tg mice with GKT137831, a Nox4/Nox1 inhibitor, abolished the increase in oxidative stress, suppressed Akt-mTOR and NFκB signaling pathway and attenuated cardiac remodeling. Conclusion Upregulation of Nox4 in the myocardium causes cardiac remodeling through activating Akt-mTOR and NFκB signaling pathways. Inhibition of Nox4 has therapeutic potential to treat cardiac remodeling. PMID:25589557

  20. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation.

    PubMed

    Awasthi, Deepika; Nagarkoti, Sheela; Kumar, Amit; Dubey, Megha; Singh, Abhishek Kumar; Pathak, Priya; Chandra, Tulika; Barthwal, Manoj Kumar; Dikshit, Madhu

    2016-04-01

    Neutrophil extracellular traps (NETs) formation was initially linked with host defence and extracellular killing of pathogens. However, recent studies have highlighted their inflammatory potential. Oxidized low density lipoprotein (oxLDL) has been implicated as an independent risk factor in various acute or chronic inflammatory diseases including systemic inflammatory response syndrome (SIRS). In the present study we investigated effect of oxLDL on NETs formation and elucidated the underlying signalling mechanism. Treatment of oxLDL to adhered PMNs led to a time and concentration dependent ROS generation and NETs formation. OxLDL induced free radical formation and NETs release were significantly prevented in presence of NADPH oxidase (NOX) inhibitors suggesting role of NOX activation in oxLDL induced NETs release. Blocking of both toll like receptor (TLR)-2 and 6 significantly reduced oxLDL induced NETs formation indicating requirement of both the receptors. We further identified Protein kinase C (PKC), Interleukin-1 receptor associated kinase (IRAKs), mitogen-activated protein kinase (MAPK) pathway as downstream intracellular signalling mediators involved in oxLDL induced NETs formation. OxLDL components such as oxidized phospholipids (lysophosphatidylcholine (LPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC)) were most potent NETs inducers and might be crucial for oxLDL mediating NETs release. Other components like, oxysterols, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were however less potent as compared to oxidized phospholipids. This study thus demonstrates for the first time that treatment of human PMNs with oxLDL or its various oxidized phopholipid component mediated NETs release, implying their role in the pathogenesis of inflammatory diseases such as SIRS. PMID:26774674

  1. Targeting NADPH Oxidases for the Treatment of Cancer and Inflammation

    PubMed Central

    Bonner, Michael Y.; Arbiser, Jack L

    2015-01-01

    NADPH oxidases are a family of oxidases that utilize molecular oxygen to generate hydrogen peroxide and superoxide, thus indicating physiological functions of these Highly reactive and short lived species. The regulation of these NADPH oxidases (nox) enzymes is complex, with many members of this family exhibiting complexity in subunit composition, cellular location, and tissue specific expression. While the complexity of the nox family (Nox1–5, Duox1,2) is daunting, the complexity also allows for targeting of NADPH oxidases in disease states. This review will discuss which inflammatory and malignant disorders can be targeted by nox inhibitors, as well as clinical experience in the use of nox inhibitors. PMID:22581366

  2. NADPH Oxidase-Dependent Mechanism Explains How Arsenic and Other Oxidants Can Activate Aryl Hydrocarbon Receptor Signaling.

    PubMed

    Mohammadi-Bardbori, Afshin; Vikstrm Bergander, Linda; Rannug, Ulf; Rannug, Agneta

    2015-12-21

    The mechanisms explaining arsenic toxicity are not well understood, but physiological consequences of stimulated aryl hydrocarbon receptor (AHR) signaling both directly and through cross-talk with other pathways have been indicated. The aim of this study was to establish how arsenic interacts with AHR-mediated transcription. The human hepatoma cell line (HepG2-XRE-Luc) carrying a luciferase reporter under the control of two AHR response elements (AHREs) and immortalized human keratinocytes (HaCaT) were exposed to sodium arsenite (NaAsO2; As(3+)), alone or in combination with the endogenous high affinity AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Luciferase activity, cytochrome P4501A1 (CYP1A1) activity, oxidative stress-related responses, metabolic clearance of FICZ, and NADPH oxidase (NOX) activity as well as nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent gene expression were measured. Arsenic inhibited CYP1A1 enzyme activity and reduced the metabolic clearance of FICZ. Arsenic also led to activated CYP1A1 transcription but only in cells grown in medium containing trace amounts of the endogenous ligand FICZ, pointing to an indirect mechanism of activation. Initially, arsenic caused dose-dependent inhibition of FICZ-activated AHR signaling, disturbed intracellular GSH status, and increased expression of oxidative stress-related genes. Silencing of NOX4, addition of N-acetylcystein, or pretreatment with arsenic itself attenuated the initial dose-dependent inhibition of AHR signaling. Arsenic pretreatment led to elevated GSH levels and sensitized the cells to ligand-dependent AHR signaling, while silencing of Nrf2 significantly reduced arsenic-mediated activation of the AHR. In addition, influence of NOX on AHR activation was also observed in cells treated with the SH-reactive metals cadmium, mercury, and nickel. Together, the results suggest that SH-reactive agents via a new and possibly general NOX/H2O2-dependent mechanism can interfere with the endogenous regulation of the AHR. PMID:26535918

  3. Farrerol can attenuate the aortic lesion in spontaneously hypertensive rats via the upregulation of eNOS and reduction of NAD(P)H oxidase activity.

    PubMed

    Qin, Xiaojiang; Hou, Xiaomin; Liang, Taigang; Chen, Lijun; Lu, Taotao; Li, Qingshan

    2015-12-15

    Farrerol, a typical natural flavanone, is the major active component of Rhododendron dauricum L. The objective of this study was to evaluate the attenuation effect of farrerol against the aortic lesions in spontaneously hypertensive rats (SHR) for the first time. Twelve-week-old male SHR were orally administered with farrerol (50mg/kg/day), verapamil (50mg/kg/day, positive control), or vehicle for 8 weeks (n=10 in each group). Age-matched Wistar-Kyoto rats (WKY) served as normal controls (n=10). Our results revealed that farrerol significantly reduced the systolic blood pressure in SHR (from 1774mmHg to 1585mmHg) and also dramatically attenuated the aortic lesion, which is characterized by decreased media thickness, wall area, media-lumen ratio, nuclei size and an increased nuclei number (P<0.05). Moreover, the levels of O2(-) along with NAD(P)H oxidase activity were reduced (P<0.05), while the activity of endothelial nitric oxide synthase (eNOS) was elevated (P<0.05) in aortic homogenates after the intervention of farrerol. Furthermore, farrerol upregulated the expression of eNOS in both of mRNA and protein levels, accompanied by the downregulated mRNA and protein expression of p22(phox) (P<0.05), an essential subunit for NADPH oxidase activity. Our findings indicated that farrerol has a significant protective effect against the aortic lesion in SHR, which may be related to the enhanced eNOS activity and reduced NAD(P)H oxidase activity. PMID:26593430

  4. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  5. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone.

    PubMed Central

    Rajagopalan, S; Kurz, S; Mnzel, T; Tarpey, M; Freeman, B A; Griendling, K K; Harrison, D G

    1996-01-01

    We tested the hypothesis that angiotensin II-induced hypertension is associated with an increase in vascular .O2- production, and characterized the oxidase involved in this process. Infusion of angiotensin II (0.7 mg/kg per d) increased systolic blood pressure and doubled vascular .O2- production (assessed by lucigenin chemiluminescence), predominantly from the vascular media. NE infusion (2.75 mg/kg per d) produced a similar degree of hypertension, but did not increase vascular .O2- production. Studies using various enzyme inhibitors and vascular homogenates suggested that the predominant source of .O2- activated by angiotensin II infusion is an NADH/NADPH-dependent, membrane-bound oxidase. Angiotensin II-, but not NE-, induced hypertension was associated with impaired relaxations to acetylcholine, the calcium ionophore A23187, and nitroglycerin. These relaxations were variably corrected by treatment of vessels with liposome-encapsulated superoxide dismutase. When Losartan was administered concomitantly with angiotensin II, vascular .O2- production and relaxations were normalized, demonstrating a role for the angiotensin type-1 receptor in these processes. We conclude that forms of hypertension associated with elevated circulating levels of angiotensin II may have unique vascular effects not shared by other forms of hypertension because they increase vascular smooth muscle .O2- production via NADH/NADPH oxidase activation. PMID:8621776

  6. NADPH-oxidase activity and lipid peroxidation in neutrophils from rats fed fat-rich diets.

    PubMed

    Lopes, L R; Laurindo, F R; Mancini-Filho, J; Curi, R; Sannomiya, P

    1999-03-01

    In order to investigate the effect of fat-rich diets on neutrophil functions, 21 day-aged rats were fed for 6 weeks with a control diet consisting of a regular laboratory rodent chow (4 per cent final fat content), a control diet supplied with soybean oil (15 per cent final fat content), or a control diet supplied with coconut oil (15 per cent final fat content). Glycogen-elicited peritoneal neutrophils from rats fed soybean and coconut oil-enriched diets presented a reduction in spontaneous and PMA-stimulated H2O2 generation relative to neutrophils from rats fed the control diet. The activity of superoxide dismutase, glutathione peroxidase and catalase did not change in animals fed fat-rich diets. In addition, the capacity to generate O2-, spontaneously or in response to PMA, did not change in neutrophils from animals fed fat-rich diets. Values attained matched those observed in animals fed the control diet, regardless of the method used to measure O2-, the superoxide dismutase-inhibitable reduction of cytochrome c or the lucigenin-dependent chemiluminescence. However, the initial rate of O2- generation both in resting neutrophils and in PMA-stimulated cells was significantly reduced when animals were fed with coconut or soybean oil-enriched diets due, at least in part, to a reduction in the activity of glucose-6-phosphate dehydrogenase. The concentration of thiobarbituric acid reactive substances, an index of lipid peroxidation, was increased in animals fed both fat-rich diets. This was accompanied by an increase in arachidonic acid content in these cells. Results presented suggest that lipid peroxidation in neutrophils from animals fed fat-rich diets may be associated with a consumption of H2O2 yielding more reactive oxygen-derived species such as the hydroxyl radical. PMID:10191509

  7. A Nonpolar Blueberry Fraction Blunts NADPH Oxidase Activation in Neuronal Cells Exposed to Tumor Necrosis Factor-α

    PubMed Central

    Gustafson, Sally J.; Dunlap, Kriya L.; McGill, Colin M.; Kuhn, Thomas B.

    2012-01-01

    Inflammation and oxidative stress are key to the progressive neuronal degeneration common to chronic pathologies, traumatic injuries, and aging processes in the CNS. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) orchestrates cellular stress by stimulating the production and release of neurotoxic mediators including reactive oxygen species (ROS). NADPH oxidases (NOX), ubiquitously expressed in all cells, have recently emerged as pivotal ROS sources in aging and disease. We demonstrated the presence of potent NOX inhibitors in wild Alaska bog blueberries partitioning discretely into a nonpolar fraction with minimal antioxidant capacity and largely devoid of polyphenols. Incubation of SH-SY5Y human neuroblastoma cells with nonpolar blueberry fractions obstructed the coalescing of lipid rafts into large domains disrupting NOX assembly therein and abolishing ROS production characteristic for TNF-α exposure. These findings illuminate nutrition-derived lipid raft modulation as a novel therapeutic approach to blunt inflammatory and oxidative stress in the aging or diseased CNS. PMID:22530077

  8. DELETION MUTAGENESIS OF p22phox SUBUNIT OF FLAVOCYTOCHROME b558: IDENTIFICATION OF REGIONS CRITICAL FOR gp91phox MATURATION AND NADPH OXIDASE ACTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phagocyte NADPH oxidase is a multicomponent enzyme that catalyzes the transfer of electrons from NADPH to generate the superoxide radical (O2-). The importance of this enzyme in innate immunity and inflammation is illustrated by chronic granulomatous disease (CGD), a syndrome characterized by ab...

  9. NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through redox regulation of NF-κB activity

    PubMed Central

    Han, Wei; Li, Hui; Cai, Jiyang; Gleaves, Linda A.; Polosukhin, Vasiliy V.; Segal, Brahm H.; Yull, Fiona E.; Blackwell, Timothy S.

    2013-01-01

    Although reactive oxygen species (ROS) produced by NADPH oxidase are known to regulate inflammatory responses, the impact of ROS on intracellular signaling pathways is incompletely understood. In these studies, we treated wild-type and p47phox deficient mice with LPS to investigate mechanisms by which NADPH oxidase regulates signaling through the NF-κB pathway. After intratracheal instillation of LPS, ROS generation was impaired in p47phox-/- mice while these mice had increased neutrophilic alveolitis and greater lung injury compared to wild-type controls. In mice interbred with transgenic NF-κB reporters (HLL), we found exaggerated LPS-induced NF-κB activation and increased expression of pro-inflammatory cytokines in lungs of p47phox-/-/HLL mice compared to controls. Both lung macrophages and bone marrow-derived macrophages (BMDMs) isolated from p47phox-/-/HLL mice showed enhanced LPS-stimulated NF-κB activity compared to controls. While nuclear translocation of NF-κB proteins was similar between genotypes, electrophoretic mobility shift assays under non-reducing conditions showed increased DNA binding in p47phox-/-/HLL BMDMs, suggesting that ROS production reduces NF-κB binding to DNA without affecting nuclear translocation. Increased intracellular GSH/GSSG ratio and greater nuclear redox factor 1 (Ref-1) levels were present in p47phox-/-/HLL compared to wild-type BMDMs, pointing to NADPH oxidase modulating intracellular redox status in macrophages. Treatment with the Ref-1 specific inhibitor E3330 or hydrogen peroxide inhibited LPS-induced NF-κB activation in p47phox-/-/HLL BMDMs but not in wild-type/HLL cells. Consistent with these findings, siRNA against Ref-1 selectively reduced NF-κB activity in LPS-treated p47phox-/-/HLL BMDMs. Together, these results indicate that NADPH oxidase limits LPS-induced NF-κB transcriptional activity through regulation of intracellular redox state. PMID:23530143

  10. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    PubMed Central

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  11. Oxalate-induced activation of PKC-α and -δ regulates NADPH oxidase-mediated oxidative injury in renal tubular epithelial cells

    PubMed Central

    Menon, Mani; Thamilselvan, Sivagnanam

    2009-01-01

    Oxalate-induced oxidative stress contributes to cell injury and promotes renal deposition of calcium oxalate crystals. However, we do not know how oxalate stimulates reactive oxygen species (ROS) in renal tubular epithelial cells. We investigated the signaling mechanism of oxalate-induced ROS formation in these cells and found that oxalate significantly increased membrane-associated protein kinase C (PKC) activity while at the same time lowering cytosolic PKC activity. Oxalate markedly translocated PKC-α and -δ from the cytosol to the cell membrane. Pretreatment of LLC-PK1 cells with specific inhibitors of PKC-α or -δ significantly blocked oxalate-induced generation of superoxide and hydrogen peroxide along with NADPH oxidase activity, LDH release, lipid hydroperoxide formation, and apoptosis. The PKC activator PMA mimicked oxalate's effect on oxidative stress in LLC-PK1 cells as well as cytosol-to-membrane translocation of PKC-α and -δ. Silencing of PKC-α expression by PKC-α-specific small interfering RNA significantly attenuated oxalate-induced cell injury by decreasing hydrogen peroxide generation and LDH release. We believe this is the first demonstration that PKC-α- and -δ-dependent activation of NADPH oxidase is one of the mechanisms responsible for oxalate-induced oxidative injury in renal tubular epithelial cells. The study suggests that the therapeutic approach might be considered toward attenuating oxalate-induced PKC signaling-mediated oxidative injury in recurrent stone formers. PMID:19692488

  12. Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase.

    PubMed

    Gaete, Pablo S; Lillo, Mauricio A; Ardiles, Nicols M; Prez, Francisco R; Figueroa, Xavier F

    2012-03-01

    Ca(2+)-activated K(+) channels (K(Ca)) and NO play a central role in the endothelium-dependent control of vasomotor tone. We evaluated the interaction of K(Ca) with NO production in isolated arterial mesenteric beds of the rat. In phenylephrine-contracted mesenteries, acetylcholine (ACh)-induced vasodilation was reduced by NO synthase (NOS) inhibition with N(?)-nitro-L-arginine (L-NA), but in the presence of tetraethylammonium, L-NA did not further affect the response. In KCl-contracted mesenteries, the relaxation elicited by 100 nM ACh or 1 ?M ionomycin was abolished by L-NA, tetraethylammonium, or simultaneous blockade of small-conductance K(Ca) (SK(Ca)) channels with apamin and intermediate-conductance K(Ca) (IK(Ca)) channels with triarylmethane-34 (TRAM-34). Apamin-TRAM-34 treatment also abolished 100 nM ACh-activated NO production, which was associated with an increase in superoxide formation. Endothelial cell Ca(2+) buffering with BAPTA elicited a similar increment in superoxide. Apamin-TRAM-34 treatment increased endothelial NOS phosphorylation at threonine 495 (P-eNOS(Thr495)). Blockade of NAD(P)H oxidase with apocynin or superoxide dismutation with PEG-SOD prevented the increment in superoxide and changes in P-eNOS(Thr495) observed during apamin and TRAM-34 application. Our results indicate that blockade of SK(Ca) and IK(Ca) activates NAD(P)H oxidase-dependent superoxide formation, which leads to inhibition of NO release through P-eNOS(Thr495). These findings disclose a novel mechanism involved in the control of NO production. PMID:22210378

  13. Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense

    PubMed Central

    Grimm, Melissa J.; Lewandowski, David C.; Pham, Christine T. N.; Blackwell, Timothy S.; Petraitiene, Ruta; Petraitis, Vidmantas; Walsh, Thomas J.; Urban, Constantin F.; Segal, Brahm H.

    2011-01-01

    NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens. PMID:22163282

  14. NADPH Oxidase 4-Derived H2O2 Promotes Aberrant Retinal Neovascularization via Activation of VEGF Receptor 2 Pathway in Oxygen-Induced Retinopathy

    PubMed Central

    Li, Jingming; Wang, Joshua J.; Zhang, Sarah X.

    2015-01-01

    NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidase in retinal endothelial cells. Our previous study suggests that upregulation of Nox4 in retinal endothelial cells contributes to retinal vascular leakage in diabetes. In the current study, we investigated the role and mechanism of Nox4 in regulation of retinal neovascularization (NV), a hallmark of proliferative diabetic retinopathy (PDR), using a mouse model of oxygen-induced retinopathy (OIR). Our results confirmed that Nox4 was expressed predominantly in retinal vasculature of mouse retina. Retinal expression of Nox4 was markedly increased in OIR, in parallel with enhanced phosphorylation of ERK. In human retinal microvascular endothelial cells (HRECs), overexpression of Nox4 by adenovirus significantly increased extracellular H2O2 generation, resulting in intensified VEGFR2 activation and exacerbated angiogenesis upon VEGF stimulation. In contrast, silencing Nox4 expression or scavenging H2O2 by polyethylene glycol- (PEG-) conjugated catalase inhibited endothelial migration, tube formation, and VEGF-induced activation of VEGFR2 signaling. Importantly, knockdown of retinal Nox4 by adenovirus-delivered siRNA significantly reduced ERK activation and attenuated retinal NV formation in OIR. Taken together, our data indicate that Nox4 promotes retinal NV formation through H2O2/VEGFR2/ERK signaling pathway. Reducing retinal Nox4 expression may represent a promising therapeutic approach for neovascular retinal diseases such as PDR. PMID:25866826

  15. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury.

    PubMed

    Fischer, Marie T; Sharma, Rakhi; Lim, Jamie L; Haider, Lukas; Frischer, Josa M; Drexhage, Joost; Mahad, Don; Bradl, Monika; van Horssen, Jack; Lassmann, Hans

    2012-03-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and free radical-mediated tissue injury in the pathogenesis of multiple sclerosis. PMID:22366799

  16. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the Toll-like receptor 4-TRIF pathway

    PubMed Central

    Shalaby, Karim H.; Allard-Coutu, Alexandra; OSullivan, Michael; Nakada, Emily; Qureshi, Salman T.; Day, Brian J.; Martin, James G.

    2013-01-01

    Oxidative stress in allergic asthma may result from oxidase activity or pro-inflammatory molecules in pollens. Signaling via TLR4 and its adaptor TRIF has been implicated in reactive oxygen species (ROS)-mediated acute lung injury and in T helper 2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine (NAC) or dimethylthiourea (DMTU) prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. NAC inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas DMTU was inhibitory even when administered with the sensitization alone. Heat-inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4- and TRIF-independent, however, TLR4 deficiency decreased, while TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation which is restrained by the TRIF-dependent pathway. PMID:23776177

  17. Role of NADPH Oxidases in Liver Fibrosis

    PubMed Central

    Paik, Yong-Han; Kim, Jonghwa; Aoyama, Tomonori; De Minicis, Samuele; Bataller, Ramon

    2014-01-01

    Abstract Significance: Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. Recent Advances: In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. Critical Issues: Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. Future Directions: A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antioxid. Redox Signal. 20, 2854–2872. PMID:24040957

  18. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems.

    PubMed

    Fernandes, Denise C; Wosniak, João; Pescatore, Luciana A; Bertoline, Maria A; Liberman, Marcel; Laurindo, Francisco R M; Santos, Célio X C

    2007-01-01

    Dihydroethidium (DHE) is a widely used sensitive superoxide (O2(*-)) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2(*-), and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations. Studies in vitro showed that xanthine/xanthine oxidase, and to a lesser degree peroxynitrite/carbon dioxide system led to EOH and ethidium formation. Peroxidase/H2O2 but not H2O2 alone yielded ethidium as the main product. In vascular smooth muscle cells incubated with ANG II (100 nM, 4 h), we showed a 60% increase in EOH/DHE ratio, prevented by PEG-SOD or SOD1 overexpression. We further validated a novel DHE-based NADPH oxidase assay in vascular smooth muscle cell membrane fractions, showing that EOH was uniquely increased after ANG II. This assay was also adapted to a fluorescence microplate reader, providing results in line with HPLC results. In injured artery slices, shown to exhibit increased DHE-derived fluorescence at microscopy, there was approximately 1.5- to 2-fold increase in EOH/DHE and ethidium/DHE ratios after injury, and PEG-SOD inhibited only EOH formation. We found that the amount of ethidium product and EOH/ethidium ratios are influenced by factors such as cell density and ambient light. In addition, we indirectly disclosed potential roles of heme groups and peroxidase activity in ethidium generation. Thus HPLC analysis of DHE-derived oxidation products can improve assessment of O2(*-) production or NADPH oxidase activity in many vascular experimental studies. PMID:16971501

  19. Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component.

    PubMed

    Pick, E; Bromberg, Y; Shpungin, S; Gadba, R

    1987-12-01

    Sodium dodecyl sulfate (SDS) was shown to elicit NADPH-dependent superoxide (O2-) production by a cell-free system derived from sonically disrupted resting guinea pig macrophages (Bromberg, Y., and Pick, E. (1985) J. Biol. Chem. 260, 13539-13545). O2- production was absolutely dependent on the cooperation between a membrane-associated component, sedimenting with the 48,000 X g pellet and a cytosolic factor, nonsedimentable at 265,000 X g. The present report describes the solubilization and characterization of the membrane-associated component of the SDS-activable O2(-)-forming NADPH oxidase (operationally termed pi). Treatment of the 48,000 X g pellet with 30 mM octyl glucoside resulted in complete transfer of pi to the soluble fraction. The solubilized pellet produced an average of 0.92 mumol of O2-/mg of protein/min upon reduction of octyl glucoside content below the critical micellar concentration and in the presence of cytosol, 100 microM SDS, and 0.2 mM NADPH. The activity of solubilized pellet-cytosol combinations was also expressed as NADPH-dependent, azide-resistant oxygen consumption and hydrogen peroxide production. pi was inactivated by the sulfhydryl reagent p-chloromercuribenzoate. Solubilized pellet contained spectroscopically detectable cytochrome b559 (225.6 +/- 15.0 pmol/mg mg protein). Both pi and cytochrome b559 were bound by Cibacron Blue Sepharose and could be eluted by a gradient of octyl glucoside (0-30 mM) in the presence of 1 M KCl. On high performance gel filtration on Superose 12, both pi and cytochrome b559 eluted in the excluded volume; when 25 mM octyl glucoside was present in the elution buffer, pi was partially dissociated from cytochrome b559. Sequential purification of pi on Blue Sepharose followed by gel filtration on Superose 12 in the presence of 25 mM octyl glucoside lead to complete resolution of pi from cytochrome b559 (pi was found in the Mr = 28,000 - 11,000 range while the bulk of cytochrome b559 eluted in the Mr = 113,000 - 71,000 range). We propose that pi is distinct from cytochrome b559 and represents a membrane-associated component in an amphiphile-activated electron transport chain from NADPH to oxygen. PMID:2824496

  20. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice.

    PubMed

    Qiu, Li-Li; Ji, Mu-Huo; Zhang, Hui; Yang, Jiao-Jiao; Sun, Xiao-Ru; Tang, Hui; Wang, Jing; Liu, Wen-Xue; Yang, Jian-Jun

    2016-01-01

    Microglial activation plays a key role in the development of postoperative cognitive dysfunction (POCD). Nox2, one of the main isoforms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the central nervous system, is a predominant source of reactive oxygen species (ROS) overproduction in phagocytes including microglia. We therefore hypothesized that Nox2-induced microglial activation is involved in the development of POCD. Sixteen-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. Behavioral tests were performed at 6 and 7 d post-surgery with open field and fear conditioning tests, respectively. The levels of Nox2, 8-hydroxy-2'-deoxyguanosine (8-OH-dG, a marker of DNA oxidation), CD11b (a marker of microglial activation), interleukin-1? (IL-1?), and brain-derived neurotrophic factor (BDNF) were determined in the hippocampus and prefrontal cortex at 1 d and 7 d post-surgery, respectively. For the interventional study, mice were treated with a NADPH oxidase inhibitor apocynin (APO). Our results showed that exploratory laparotomy with isoflurane anesthesia impaired the contextual fear memory, increased expression of Nox2, 8-OH-dG, CD11b, and IL-1?, and down-regulated BDNF expression in the hippocampus at 7 d post-surgery. The surgery-induced microglial activation and neuroinflammation persisted to 7 d after surgery in the hippocampus, but only at 1 d in the prefrontal cortex. Notably, administration with APO could rescue these surgery-induced cognitive impairments and associated brain pathology. Together, our data suggested that Nox2-derived ROS in hippocampal microglia, at least in part, contributes to subsequent neuroinflammation and cognitive impairments induced by surgery in aged mice. PMID:26254234

  1. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells.

    PubMed

    Prasad, Ram; Kappes, John C; Katiyar, Santosh K

    2016-02-16

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  2. NADPH Oxidase Is Internalized by Clathrin-coated Pits and Localizes to a Rab27A/B GTPase-regulated Secretory Compartment in Activated Macrophages*

    PubMed Central

    Ejlerskov, Patrick; Christensen, Dan Ploug; Beyaie, David; Burritt, James B.; Paclet, Marie-Helene; Gorlach, Agnes; van Deurs, Bo; Vilhardt, Frederik

    2012-01-01

    Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b558) from the plasma membrane to an intracellular stimulus-responsive storage compartment. Cryo-immunogold labeling of gp91phox and CeCl3 cytochemistry showed the presence of gp91phox and oxidant production in numerous small (<100 nm) vesicles. Cell homogenization and sucrose gradient centrifugation in combination with transferrin-HRP/DAB ablation showed that more than half of cyt b558 is present in fractions devoid of endosomal markers, which is supported by morphological evidence to show that the cyt b558-containing compartment is distinct from endosomes or biosynthetic organelles. Streptolysin-O-mediated guanosine 5?-3-O-(thio)triphosphate loading of Ra2 microglia caused exocytosis of a major complement of cyt b558 under conditions where lysosomes or endosomes were not mobilized. We establish phagocytic particles and soluble mediators ATP, TNF?, and CD40L as physiological inducers of cyt b558 exocytosis to the cell surface, and by shRNA knockdown, we identify Rab27A/B as positive or negative regulators of vesicular mobilization to the phagosome or the cell surface, respectively. Exocytosis was followed by clathrin-dependent internalization of cyt b558, which could be blocked by a dominant negative mutant of the clathrin-coated pit-associated protein Eps15. Re-internalized cyt b558 did not reach lysosomes but associated with recycling endosomes and undefined vesicular elements. In conclusion, cyt b558 depends on clathrin for internalization, and in activated macrophages NADPH oxidase occupies a Rab27A/B-regulated secretory compartment, which allows rapid agonist-induced redistribution of superoxide production in the cell. PMID:22157766

  3. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase.

    PubMed

    Kitiyakara, Chagriya; Chabrashvili, Tina; Chen, Yifan; Blau, Jonathan; Karber, Alex; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2003-11-01

    The hypothesis that a high salt (HS) intake increases oxidative stress was investigated and was related to renal cortical expression of NAD(P)H oxidase and superoxide dismutase (SOD). 8-Isoprostane PGF(2alpha) and malonyldialdehyde were measured in groups (n = 6 to 8) of conscious rats during low-salt, normal-salt, or HS diets. NADPH- and NADH-stimulated superoxide anion (O(2)(.-)) generation was assessed by chemiluminescence, and expression of NAD(P)H oxidase and SOD were assessed with real-time PCR. Excretion of 8-isoprostane and malonyldialdehyde increased incrementally two- to threefold with salt intake (P < 0.001), whereas prostaglandin E(2) was unchanged. Renal cortical NADH- and NADPH-stimulable O(2)(.-) generation increased (P < 0.05) 30 to 40% with salt intake. Compared with low-salt diet, HS significantly (P < 0.005) increased renal cortical mRNA expression of gp91(phox) and p47(phox) and decreased expression of intracellular CuZn (IC)-SOD and mitochondrial (Mn)-SOD. Despite suppression of the renin-angiotensin system, salt loading enhances oxidative stress. This is accompanied by increased renal cortical NADH and NADPH oxidase activity and increased expression of gp91(phox) and p47(phox) and decreased IC- and Mn-SOD. Thus, salt intake enhances generation of O(2)(.-) accompanied by enhanced renal expression and activity of NAD(P)H oxidase with diminished renal expression of IC- and Mn-SOD. PMID:14569087

  4. Human Recombinant Cytochrome P450 Enzymes Display Distinct Hydrogen Peroxide Generating Activities During Substrate Independent NADPH Oxidase Reactions

    PubMed Central

    Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    Microsomal enzymes generate H2O2 in the presence of NADPH. In this reaction, referred to as “oxidase” activity, H2O2 is generated directly or indirectly via the formation of superoxide anion. In the presence of redox active transition metals, H2O2 can form highly toxic hydroxyl radicals and, depending on the “oxidase” activity of individual cytochrome P450 isoenzymes, this can compromise cellular functioning and contribute to tissue injury. In the present studies, we compared the initial rates of H2O2 generating activity of microsomal preparations containing various human recombinant cytochromes P450s. In the absence of cytochrome P450s the human recombinant NADPH cytochrome P450 reductase (CPR) generated low, but detectable amounts of H2O2 (∼0.04 nmol H2O2/min/100 units of reductase). Significantly greater activity was detected in preparations containing individual cytochrome P450s coexpressed with CPR (from 6.0 nmol H2O2/min/nmol P450 to 0.2 nmol/min/nmol P450); CYP1A1 was the most active, followed by CYP2D6, CYP3A4, CYP2E1, CYP4A11, CYP1A2, and CYP2C subfamily enzymes. H2O2 generating activity of the cytochrome P450s was independent of the ratio of CYP/CPR. Thus, similar H2O2 generating activity was noted with the same cytochrome P450s (CYP3A4, CYP2E1, and CYP2C9) expressed at or near the ratio of CYP/CPR in human liver microsomes (5–7), and when CPR was present in excess (CYP/CPR = 0.2–0.3). Because CYP3A4/5/7 represent up to 40% of total cytochrome P450 in the liver, these data indicate that these enzymes are the major source of H2O2 in human liver microsomes. PMID:25061110

  5. Nicotine- and tar-free cigarette smoke induces cell damage through reactive oxygen species newly generated by PKC-dependent activation of NADPH oxidase.

    PubMed

    Asano, Hiroshi; Horinouchi, Takahiro; Mai, Yosuke; Sawada, Osamu; Fujii, Shunsuke; Nishiya, Tadashi; Minami, Masabumi; Katayama, Takahiro; Iwanaga, Toshihiko; Terada, Koji; Miwa, Soichi

    2012-01-01

    We examined cytotoxic effects of nicotine/tar-free cigarette smoke extract (CSE) on C6 glioma cells. The CSE induced plasma membrane damage (determined by lactate dehydrogenase leakage and propidium iodide uptake) and cell apoptosis {determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction activity and DNA fragmentation}. The cytotoxic activity decayed with a half-life of approximately 2 h at 37C, and it was abolished by N-acetyl-L-cysteine and reduced glutathione. The membrane damage was prevented by catalase and edaravone (a scavenger of ()OH) but not by superoxide dismutase, indicating involvement of ()OH. In contrast, the CSE-induced cell apoptosis was resistant to edaravone and induced by authentic H(2)O(2) or O(2)(-) generated by the xanthine/xanthine oxidase system, indicating involvement of H(2)O(2) or O(2)(-) in cell apoptosis. Diphenyleneiodonium [NADPH oxidase (NOX) inhibitor] and bisindolylmaleimide I [BIS I, protein kinase C (PKC) inhibitor] abolished membrane damage, whereas they partially inhibited apoptosis. These results demonstrate that 1) a stable component(s) in the CSE activates PKC, which stimulates NOX to generate reactive oxygen species (ROS), causing membrane damage and apoptosis; 2) different ROS are responsible for membrane damage and apoptosis; and 3) part of the apoptosis is caused by oxidants independently of PKC and NOX. PMID:22302021

  6. Protein Disulfide Isomerase Is Required for Platelet-derived Growth Factor-induced Vascular Smooth Muscle Cell Migration, Nox1 NADPH Oxidase Expression, and RhoGTPase Activation

    PubMed Central

    Pescatore, Luciana A.; Bonatto, Diego; Forti, Fbio L.; Sadok, Amine; Kovacic, Herv; Laurindo, Francisco R. M.

    2012-01-01

    Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration. PMID:22773830

  7. Trimer hydroxylated quinone (IIIHyQ) derived from apocynin targets cysteine residues of p47phox preventing the activation of human vascular NADPH oxidase

    PubMed Central

    Mora-Pale, Mauricio; Joon-Kwon, Seok; Linhardt, Robert J.; Dordick, Jonathan S.

    2012-01-01

    Enzymatic derived oligophenols from apocynin can be effective inhibitors of human vascular NADPH oxidase. An isolated IIIHyQ has been shown to inhibit endothelial NADPH oxidase with an IC50 ~30 nM. In vitro studies demonstrated that IIIHyQ is capable on disrupting the interaction between p47phox and p22phox, thereby blocking the activation of the Nox2 isoform. Herein, we report the role of key cysteine residues in p47phox as targets for the IIIHyQ. Incubation of p47phox with IIIHyQ results in a decrease of ~80% of the protein free cysteine residues; similar results were observed using 1,2- and 1,4-naphthoquinoes, while apocynin was unreactive. Mutants of p47phox, where each Cys was individually replaced by Ala (at residues 111, 196 and 378) and Gly (at residue 98), were generated to evaluate their individual importance in IIIHyQ-mediated inhibition of p47phox interaction with p22phox. Specific Michael addition on Cys196, within the N-SH3 domain, by the IIIHyQ is critical for disrupting the p47phox-p22phox interaction. When a C196A mutation was tested, the IIIHyQ was unable to disrupt the p47phox-p22phox interaction. However, the IIIHyQ was effective at disrupting this interaction with the other mutants, displaying IC50 values (4.9, 21.0, and 2.3 ?M for the C111A, C378A, and C98G mutants, respectively) comparable to that of wild type p47phox. PMID:22240153

  8. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    SciTech Connect

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-10-15

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47{sup phox}, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces MMP-9 expression via a NADPH oxidase/ROS-dependent NF-κB signaling. • TNF-α activates MAPK phosphorylation through NADPH oxidase/ROS generation.

  9. Role of NADPH Oxidase and Stat3 in Statin-Mediated Protection against Diabetic Retinopathy

    PubMed Central

    Al-Shabrawey, Mohamed; Bartoli, Manuela; El-Remessy, Azza B.; Ma, Guochuan; Matragoon, Suraporn; Lemtalsi, Tahira; Caldwell, R. William; Caldwell, Ruth B.

    2010-01-01

    PURPOSE Inhibitors of 3-hydroxy-3-methylglutaryl CoA reductase (statins) reduce signs of diabetic retinopathy in diabetic patients and animals. Indirect clinical evidence supports the actions of statins in improving cardiovascular function, but the mechanisms of their protective actions in the retina are not understood. Prior studies have implicated oxidative stress and NADPH oxidasemediated activation of signal transducer and activator of transcription 3 (STAT3) in diabetes-induced increases in expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule (ICAM)-1 and breakdown of the bloodretinal barrier (BRB). Because statins are known to be potent antioxidants, the hypothesis for the current study was that the protective effects of statins in preventing diabetic retinopathy involve blockade of diabetes-induced activation of NADPH oxidase and STAT3. METHODS The hypothesis was tested by experiments in which rats with streptozotocin (STZ)-induced diabetes and retinal endothelial cells maintained in high-glucose medium were treated with simvastatin. Bloodretinal barrier (BRB) function was assayed by determining extravasation of albumin. Oxidative stress was assayed by measuring lipid peroxidation, protein nitration of tyrosine, dihydroethidine oxidation, and chemiluminescence. Immunoprobe techniques were used to determine the levels of NADPH oxidase subunit expression and STAT3 activation. RESULTS These studies showed that simvastatin blocks diabetes or high-glucoseinduced increases in VEGF and ICAM-1 and preserves the BRB by a process involving blockade of diabetes/high-glucoseinduced activation of STAT3 and NADPH oxidase. Statin treatment also prevents diabetes-induced increases in expression of the NADPH oxidase catalytic and subunit NOX2. CONCLUSIONS These results suggest that simvastatin protects against the early signs of diabetic retinopathy by preventing NADPH oxidase-mediated activation of STAT3. PMID:18378570

  10. The NADPH Oxidase Nox4 and Aging in the Heart

    PubMed Central

    Ago, Tetsuro; Matsushima, Shouji; Kuroda, Junya; Zablocki, Daniela; Kitazono, Takanari; Sadoshima, Junichi

    2010-01-01

    Oxidative stress in mitochondria is believed to promote aging. Although passive leakage of electron from the mitochondrial electron transport chain has been considered as a major source of oxidative stress in the heart and the cardiomyocytes therein, enzymes actively producing reactive oxygen species may also exist in mitochondria. We have shown recently that Nox4, a member of the NADPH oxidase family, is localized on intracellular membranes, primarily at mitochondria, in cardiomyocytes. Mitochondrial expression of Nox4 is upregulated by cardiac stress and aging in the heart, where Nox4 could become a major source of oxidative stress. This raises an intriguing possibility that Nox4 may play an important role in mediating aging of the heart. Here we discuss the potential involvement of Nox4 in mitochondrial oxidative stress and aging in the heart. PMID:21212466

  11. Thapsigargin Triggers Cardiac Contractile Dysfunction via NADPH Oxidase -Mediated Mitochondrial Dysfunction: Role of Akt Dephosphorylation

    PubMed Central

    Zhang, Yingmei; Ren, Jun

    2011-01-01

    ER stress triggers myocardial contractile dysfunction although the underlying mechanism is still elusive. Given that NADPH oxidase was recently implicated in ER stress-induced tissue injury, this study was designed to examine the role of NADPH oxidase in the ER stress-induced cardiac mechanical defects and the impact of Akt activation on ER stress-induced cardiac anomalies. WT and transgenic mice with cardiac-specific overexpression of active mutant of Akt (MyAkt) were subjected to the ER stress inducer thapsigargin (1 and 3 mg/kg, i.p. for 48 hr). Thapsigargin compromised echocardiographic parameters including elevated LVESD and reduced fractional shortening, suppressed cardiomyocyte contractile function, intracellular Ca2+ handling and cell survival, along with enhanced carbonyl formation, apoptosis, superoxide production, NADPH oxidase expression and mitochondrial damage. Interestingly, these anomalies were attenuated or mitigated by chronic Akt activation. Treatment with thapsigargin also dephosphorylated Akt and its downstream signal GSK3β (leading to activation of GSK3β), the effect of which was abrogated in MyAkt hearts. Knockdown of cytosolic subunit of NADPH oxidase p47phox using siRNA abrogated thapsigargin-induced apoptosis and cell death in H9C2 myoblasts. In vitro exposure of thapsigargin induced murine cardiomyocyte dysfunction reminiscent of the in vivo setting, the effects of which were ablated by the NADPH oxidase inhibitor apocynin and the mitochondrial Ca2+ uptake inhibitor Ru360. In addition, apocynin abrogated thapsigargin-induced loss of mitochondrial membrane potential and permeation pore opening, similar to those induced by chronic Akt activation. In summary, these data suggest that ER stress interrupts cardiac contractile and intracellular Ca2+ homeostasis, cell survival and mitochondrial integrity through an Akt dephosphorylation and NADPH oxidase-dependent mechanism. PMID:21996563

  12. Characterisation of electron currents generated by the human neutrophil NADPH oxidase

    SciTech Connect

    Ahluwalia, Jatinder

    2008-04-11

    Electron transport by the human neutrophil NADPH oxidase is an important microbicidal weapon for phagocytes. The electron current (I{sub e}) generated by the neutrophil NADPH oxidase is poorly characterised due to the lack of appropriate electrophysiological data. In this study, I fully characterise the neutrophil generated I{sub e} when the NADPH oxidase is activated by NADPH and GTP{gamma}S. The neutrophil I{sub e} was markedly voltage-dependent in the entire voltage range in comparison to those electron currents measured after chloride was removed from the external bath solution. The difference in I{sub e} measured in chloride free conditions was not due to a change in the activation kinetics of voltage-gated proton channels. The I{sub e} depolarises the neutrophil plasma membrane at a rate of 2.3 V s{sup -1} and this depolarisation was opposed when voltage-gated proton channels are activated. 3 mM ZnCl{sub 2} depolarised the membrane potential to +97.8 {+-} 2.5 mV (n = 4), and this depolarisation was abolished after NADPH oxidase inhibition.

  13. NOX3 NADPH Oxidase Couples Transient Receptor Potential Vanilloid 1 to Signal Transducer and Activator of Transcription 1-Mediated Inflammation and Hearing Loss

    PubMed Central

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P.

    2011-01-01

    Abstract Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss. Antioxid. Redox Signal. 14, 999–1010. PMID:20712533

  14. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss.

    PubMed

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram

    2011-03-15

    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24?h, which recovered by 72?h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss. PMID:20712533

  15. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2

    PubMed Central

    Cai, Tianchi; Kuang, Yingmin; Zhang, Chunhua; Zhang, Zheng; Chen, Long; Li, Bo; Li, Yuqian; Wang, Yanling; Yang, Huixin; Han, Qiaoqiao; Zhu, Yuechun

    2015-01-01

    Background: Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose utilization by catalysing the first step of the pentose-phosphate pathway in mammalian cells. Previous studies have shown that changes in G6PD levels can promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in a human melanoma xenograft model. G6PD cooperates with NADPH oxidase 4 (NOX4) in the cellular metabolism of reactive oxygen species (ROS) and in maintaining the intracellular redox state. Methods: In this study, the effect of G6PD or NOX4 silencing in the melanoma line A375 was examined in terms of redox state, proto-oncogene tyrosine-protein kinase Src (c-Src) and the tyrosine-specific protein phosphatase SHP2 expression as well as cell cycle progression. Results: The results demonstrate that: (1) Downregulation of cyclin D1 and CDK4 and up-regulation of p53 and p21 occurred in response to silencing of G6PD and NOX4 thus resulting in G1/S cell cycle arrest and inhibition of A375 cell proliferation. (2) The blockade of cell proliferation is primarily due to a reduced DNA-binding activity of STAT3. (3) The DNA-binding activity of STAT3 was regulated by the upstream factors, c-SRC and SHP2. Silencing of NOX4 in A375 cells inhibited c-SRC and SHP2 regulated STAT3 activity. Conclusion: The data are consistent with a novel G6PD-NOX4-NADPH-ROS-c-SRC/SHP2 pathway controlling STAT3 activity in A375 melanoma cells. PMID:26175932

  16. A time course of NADPH-oxidase up-regulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma

    PubMed Central

    Ansari, Mubeen A.; Roberts, Kelly N.; Scheff, Stephen W.

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase; NOX) is a complex enzyme responsible for increased levels of reactive oxygen species (ROS), superoxide (O2.?). NOX derived O2.? is a key player in oxidative stress and inflammation mediated multiple secondary injury cascades (SIC) following traumatic brain injury (TBI). The O2.? reacts with nitric oxide (NO), produces various reactive nitrogen species (RNS), and contributes to apoptotic cell death. Following a unilateral cortical contusion, young adult rats were killed at various times post injury (1, 3, 6, 12, 24, 48, 72, and 96 h). Fresh tissue from the hippocampus was analyzed for NOX activity, and level of O2.?. In addition we evaluated the translocation of cytosolic NOX proteins (p67Phox, p47Phox and p40Phox) to the membrane, along with total NO and the activation (phosphorylation) of endothelial nitric oxide synthase (p-eNOS). Results show that both enzymes and levels of O2.? and NO have time dependent injury effects in the hippocampus. Translocation of cytosolic NOX proteins into membrane, NOX activity and O2.? were also increased in a time dependent fashion. Both, NOX activity and O2.? were increased at 6 h. Levels of p-eNOS increased within 1 h, with significant elevation of NO at 12 h post TBI. Levels of NO failed to show a significant association with p-eNOS, but did associate with O2.?. NOX up-regulation strongly associated with both the levels of O2.? and also total NO. The initial 12 hours post TBI are very important as a possible window of opportunity to interrupt SIC. It may be important to selectively target the translocation of cytosolic subunits for the modulation of NOX function. PMID:25224032

  17. NADPH oxidases as novel pharmacologic targets against influenza A virus infection.

    PubMed

    Vlahos, Ross; Selemidis, Stavros

    2014-12-01

    Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza. PMID:25301784

  18. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase

    PubMed Central

    Trepout, Sylvain; Wien, Frank; Marco, Sergio

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  19. Inhibition of NADPH oxidases prevents chronic ethanol-induced bone loss in female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous in vitro data suggest that ethanol (EtOH) activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption obse...

  20. Functional Analysis of the Trichoderma harzianum nox1 Gene, Encoding an NADPH Oxidase, Relates Production of Reactive Oxygen Species to Specific Biocontrol Activity against Pythium ultimum?

    PubMed Central

    Montero-Barrientos, M.; Hermosa, R.; Cardoza, R. E.; Gutirrez, S.; Monte, E.

    2011-01-01

    The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum. PMID:21421791

  1. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  2. NADPH Oxidase 4 Induces Cardiac Arrhythmic Phenotype in Zebrafish*

    PubMed Central

    Zhang, Yixuan; Shimizu, Hirohito; Siu, Kin Lung; Mahajan, Aman; Chen, Jau-Nian; Cai, Hua

    2014-01-01

    Oxidative stress has been implicated in cardiac arrhythmia, although a causal relationship remains undefined. We have recently demonstrated a marked up-regulation of NADPH oxidase isoform 4 (NOX4) in patients with atrial fibrillation, which is accompanied by overproduction of reactive oxygen species (ROS). In this study, we investigated the impact on the cardiac phenotype of NOX4 overexpression in zebrafish. One-cell stage embryos were injected with NOX4 RNA prior to video recording of a GFP-labeled (myl7:GFP zebrafish line) beating heart in real time at 2431 h post-fertilization. Intriguingly, NOX4 embryos developed cardiac arrhythmia that is characterized by irregular heartbeats. When quantitatively analyzed by an established LQ-1 program, the NOX4 embryos displayed much more variable beat-to-beat intervals (mean S.D. of beat-to-beat intervals was 0.027 s/beat in control embryos versus 0.038 s/beat in NOX4 embryos). Both the phenotype and the increased ROS in NOX4 embryos were attenuated by NOX4 morpholino co-injection, treatments of the embryos with polyethylene glycol-conjugated superoxide dismutase, or NOX4 inhibitors fulvene-5, 6-dimethylamino-fulvene, and proton sponge blue. Injection of NOX4-P437H mutant RNA had no effect on the cardiac phenotype or ROS production. In addition, phosphorylation of calcium/calmodulin-dependent protein kinase II was increased in NOX4 embryos but diminished by polyethylene glycol-conjugated superoxide dismutase, whereas its inhibitor KN93 or AIP abolished the arrhythmic phenotype. Taken together, our data for the first time uncover a novel pathway that underlies the development of cardiac arrhythmia, namely NOX4 activation, subsequent NOX4-specific NADPH-driven ROS production, and redox-sensitive CaMKII activation. These findings may ultimately lead to novel therapeutics targeting cardiac arrhythmia. PMID:24962575

  3. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems

    PubMed Central

    Song, Ping; Zou, Ming-Hui

    2012-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases due to increased production or decreased scavenging, which have been considered as common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase. PMID:22357101

  4. NADPH Oxidase-2: Linking Glucose, Acidosis, and Excitotoxicity in Stroke

    PubMed Central

    Brennan-Minnella, Angela M.; Won, Seok Joon

    2015-01-01

    Abstract Significance: Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. Recent Advances: Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. Critical Issues: Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. Future Directions: It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade. Antioxid. Redox Signal. 22, 161–174. PMID:24628477

  5. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity

    PubMed Central

    Matute, Juan D.; Arias, Andres A.; Wright, Nicola A. M.; Wrobel, Iwona; Waterhouse, Christopher C. M.; Li, Xing Jun; Marchal, Christophe C.; Stull, Natalie D.; Lewis, David B.; Steele, MacGregor; Kellner, James D.; Yu, Weiming; Meroueh, Samy O.; Nauseef, William M.

    2009-01-01

    Chronic granulomatous disease (CGD), an immunodeficiency with recurrent pyogenic infections and granulomatous inflammation, results from loss of phagocyte superoxide production by recessive mutations in any 1 of 4 genes encoding subunits of the phagocyte NADPH oxidase. These include gp91phox and p22phox, which form the membrane-integrated flavocytochrome b, and cytosolic subunits p47phox and p67phox. A fifth subunit, p40phox, plays an important role in phagocytosis-induced superoxide production via a phox homology (PX) domain that binds to phosphatidylinositol 3-phosphate (PtdIns(3)P). We report the first case of autosomal recessive mutations in NCF4, the gene encoding p40phox, in a boy who presented with granulomatous colitis. His neutrophils showed a substantial defect in intracellular superoxide production during phagocytosis, whereas extracellular release of superoxide elicited by phorbol ester or formyl-methionyl-leucyl-phenylalanine (fMLF) was unaffected. Genetic analysis of NCF4 showed compound heterozygosity for a frameshift mutation with premature stop codon and a missense mutation predicting a R105Q substitution in the PX domain. Parents and a sibling were healthy heterozygous carriers. p40phoxR105Q lacked binding to PtdIns(3)P and failed to reconstitute phagocytosis-induced oxidase activity in p40phox-deficient granulocytes, with premature loss of p40phoxR105Q from phagosomes. Thus, p40phox binding to PtdIns(3)P is essential for phagocytosis-induced oxidant production in human neutrophils and its absence can be associated with disease. PMID:19692703

  6. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities.

    PubMed

    Benedyk, Malgorzata; Sopalla, Claudia; Nacken, Wolfgang; Bode, Gnther; Melkonyan, Harut; Banfi, Botond; Kerkhoff, Claus

    2007-08-01

    The calcium- and arachidonic acid (AA)-binding proteins S100A8 and S100A9 are involved in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in phagocytes. They are specifically expressed in myeloid cells, and are also found in epithelial cells in various (patho)physiological conditions. We have investigated the consequences of S100A8/A9 overexpression in epithelial cell lines on reactive oxygen species (ROS) generation and downstream signaling. Epithelial carcinoma HeLa cells, which exclusively express Nox2, showed dramatically increased activation of NADPH oxidase by phorbol 12-myristate 13-acetate after S100A8/A9 gene transfection. HaCaT keratinocytes overexpressing S100A8/A9 showed enhanced, transient ROS generation in response to the calcium ionophore A23187 compared to mock-transfected cells. Polymerase chain reaction analysis revealed mRNA transcripts for Nox1, Nox2, and Nox5 in HaCaT keratinocytes. Detailed transfection studies confirmed that NADPH oxidase activities in Nox1- and Nox5-transfected HeLa cells were enhanced after S100A8/A9 gene complementation. Furthermore, mutational analysis revealed that AA binding and Thr113 phosphorylation are important for S100A8/A9-enhanced activation of NADPH oxidase. Nuclear factor-kappaB (NF-kappaB) activation and interleukin-8 mRNA levels were increased in S100A8/A9-HaCaT keratinocytes, consistent with the view that NF-kappaB is a redox-sensitive transcription factor. Because they are expressed in epithelia under specific conditions, S100A8 and S100A9 might be involved in skin pathogenesis by modulating aspects of downstream signaling. PMID:17429438

  7. Targeting NADPH Oxidase and Phospholipases A2 in Alzheimer’s Disease

    PubMed Central

    Simonyi, Agnes; He, Yan; Sheng, Wenwen; Sun, Albert Y.; Wood, W. Gibson; Weisman, Gary A.

    2011-01-01

    Alzheimer’s disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Aβ) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Aβ. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Aβ in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A2 (PLA2) and secretory PLA2. In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Aβ NADPH oxidase and PLA2 can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease. PMID:20195796

  8. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    PubMed Central

    Andronis, Efthimios A.; Moschou, Panagiotis N.; Toumi, Imene; Roubelakis-Angelakis, Kalliopi A.

    2014-01-01

    Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2? ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2? . These results suggest that the ratio of O2? /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2? by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed. PMID:24765099

  9. Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis

    PubMed Central

    McCaffrey, Ramona L.; Schwartz, Justin T.; Lindemann, Stephen R.; Moreland, Jessica G.; Buchan, Blake W.; Jones, Bradley D.; Allen, Lee-Ann H.

    2010-01-01

    Ft is a facultative intracellular pathogen that infects many cell types, including neutrophils. In previous work, we demonstrated that the type B Ft strain LVS disrupts NADPH oxidase activity throughout human neutrophils, but how this is achieved is incompletely defined. Here, we used several type A and type B strains to demonstrate that Ft-mediated NADPH oxidase inhibition is more complex than appreciated previously. We confirm that phagosomes containing Ft opsonized with AS exclude flavocytochrome b558 and extend previous results to show that soluble phox proteins were also affected, as indicated by diminished phosphorylation of p47phox and other PKC substrates. However, a different mechanism accounts for the ability of Ft to inhibit neutrophil activation by formyl peptides, Staphylococcus aureus, OpZ, and phorbol esters. In this case, enzyme targeting and assembly were normal, and impaired superoxide production was characterized by sustained membrane accumulation of dysfunctional NADPH oxidase complexes. A similar post-assembly inhibition mechanism also diminished the ability of anti-Ft IS to confer neutrophil activation and bacterial killing, consistent with the limited role for antibodies in host defense during tularemia. Studies of mutants that we generated in the type A Ft strain Schu S4 demonstrate that the regulatory factor fevR is essential for NADPH oxidase inhibition, whereas iglI and iglJ, candidate secretion system effectors, and the acid phosphatase acpA are not. As Ft uses multiple mechanisms to block neutrophil NADPH oxidase activity, our data strongly suggest that this is a central aspect of virulence. PMID:20610796

  10. NADPH Oxidase 1 Activity and ROS Generation Are Regulated by Grb2/Cbl-Mediated Proteasomal Degradation of NoxO1 in Colon Cancer Cells.

    PubMed

    Joo, Jung Hee; Oh, Hyunjin; Kim, Myungjin; An, Eun Jung; Kim, Rae-Kwon; Lee, So-Young; Kang, Dong Hoon; Kang, Sang Won; Keun Park, Cheol; Kim, Hoguen; Lee, Su-Jae; Lee, Daekee; Seol, Jae Hong; Bae, Yun Soo

    2016-02-15

    The generation of reactive oxygen species (ROS) is required for proper cell signaling, but must be tightly regulated to minimize deleterious oxidizing effects. Activation of the NADPH oxidases (Nox) triggers ROS production and, thus, regulatory mechanisms exist to properly control Nox activity. In this study, we report a novel mechanism in which Nox1 activity is regulated through the proteasomal degradation of Nox organizer 1 (NoxO1). We found that through the interaction between NoxO1 and growth receptor-bound protein 2 (Grb2), the Casitas B-lineage lymphoma (Cbl) E3 ligase was recruited, leading to decreased NoxO1 stability and a subsequent reduction in ROS generation upon epidermal growth factor (EGF) stimulation. Additionally, we show that EGF-mediated phosphorylation of NoxO1 induced its release from Grb2 and facilitated its association with Nox activator 1 (NoxA1) to stimulate ROS production. Consistently, overexpression of Grb2 resulted in decreased Nox1 activity, whereas knockdown of Grb2 led to increased Nox1 activity in response to EGF. CRISPR/Cas9-mediated NoxO1 knockout in human colon cancer cells abrogated anchorage-independent growth on soft agar and tumor-forming ability in athymic nude mice. Moreover, the expression and stability of NoxO1 were significantly increased in human colon cancer tissues compared with normal colon. Taken together, these results support a model whereby Nox1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteolysis of NoxO1 in response to EGF, providing new insight into the processes by which excessive ROS production may promote oncogenic signaling to drive colorectal tumorigenesis. Cancer Res; 76(4); 855-65. 2016 AACR. PMID:26781991

  11. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe.

    PubMed

    Sedeek, Mona; Nasrallah, Rania; Touyz, Rhian M; Hébert, Richard L

    2013-10-01

    Reactive oxygen species (ROS) play an important role in normal cellular physiology. They regulate different biologic processes such as cell defense, hormone synthesis and signaling, activation of G protein-coupled receptors, and ion channels and kinases/phosphatases. ROS are also important regulators of transcription factors and gene expression. On the other hand, in pathologic conditions, a surplus of ROS in tissue results in oxidative stress with various injurious consequences such as inflammation and fibrosis. NADPH oxidases are one of the many sources of ROS in biologic systems, and there are seven isoforms (Nox1-5, Duox1, Duox2). Nox4 is the predominant form in the kidney, although Nox2 is also expressed. Nox4 has been implicated in the basal production of ROS in the kidney and in pathologic conditions such as diabetic nephropathy and CKD; upregulation of Nox4 may be important in renal oxidative stress and kidney injury. Although there is growing evidence indicating the involvement of NADPH oxidase in renal pathology, there is a paucity of information on the role of NADPH oxidase in the regulation of normal renal function. Here we provide an update on the role of NADPH oxidases and ROS in renal physiology and pathology. PMID:23970124

  12. Nonhematopoietic NADPH oxidase regulation of lung eosinophilia and airway hyperresponsiveness in experimentally induced asthma

    PubMed Central

    Abdala-Valencia, Hiam; Earwood, Julie; Bansal, Shelly; Jansen, Michael; Babcock, George; Garvy, Beth; Wills-Karp, Marsha; Cook-Mills, Joan M.

    2009-01-01

    Pulmonary eosinophilia is one of the most consistent hallmarks of asthma. Infiltration of eosinophils into the lung in experimental asthma is dependent on the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells. Ligation of VCAM-1 activates endothelial cell NADPH oxidase, which is required for VCAM-1-dependent leukocyte migration in vitro. To examine whether endothelial-derived NADPH oxidase modulates eosinophil recruitment in vivo, mice deficient in NADPH oxidase (CYBB mice) were irradiated and received wild-type hematopoietic cells to generate chimeric CYBB mice. In response to ovalbumin (OVA) challenge, the chimeric CYBB mice had increased numbers of eosinophils bound to the endothelium as well as reduced eosinophilia in the lung tissue and bronchoalveolar lavage. This occurred independent of changes in VCAM-1 expression, cytokine/chemokine levels (IL-5, IL-10, IL-13, IFN?, or eotaxin), or numbers of T cells, neutrophils, or mononuclear cells in the lavage fluids or lung tissue of OVA-challenged mice. Importantly, the OVA-challenged chimeric CYBB mice had reduced airway hyperresponsiveness (AHR). The AHR in OVA-challenged chimeric CYBB mice was restored by bypassing the endothelium with intratracheal administration of eosinophils. These data suggest that VCAM-1 induction of NADPH oxidase in the endothelium is necessary for the eosinophil recruitment during allergic inflammation. Moreover, these studies provide a basis for targeting VCAM-1-dependent signaling pathways in asthma therapies. PMID:17293377

  13. Nonhematopoietic NADPH oxidase regulation of lung eosinophilia and airway hyperresponsiveness in experimentally induced asthma.

    PubMed

    Abdala-Valencia, Hiam; Earwood, Julie; Bansal, Shelly; Jansen, Michael; Babcock, George; Garvy, Beth; Wills-Karp, Marsha; Cook-Mills, Joan M

    2007-05-01

    Pulmonary eosinophilia is one of the most consistent hallmarks of asthma. Infiltration of eosinophils into the lung in experimental asthma is dependent on the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells. Ligation of VCAM-1 activates endothelial cell NADPH oxidase, which is required for VCAM-1-dependent leukocyte migration in vitro. To examine whether endothelial-derived NADPH oxidase modulates eosinophil recruitment in vivo, mice deficient in NADPH oxidase (CYBB mice) were irradiated and received wild-type hematopoietic cells to generate chimeric CYBB mice. In response to ovalbumin (OVA) challenge, the chimeric CYBB mice had increased numbers of eosinophils bound to the endothelium as well as reduced eosinophilia in the lung tissue and bronchoalveolar lavage. This occurred independent of changes in VCAM-1 expression, cytokine/chemokine levels (IL-5, IL-10, IL-13, IFNgamma, or eotaxin), or numbers of T cells, neutrophils, or mononuclear cells in the lavage fluids or lung tissue of OVA-challenged mice. Importantly, the OVA-challenged chimeric CYBB mice had reduced airway hyperresponsiveness (AHR). The AHR in OVA-challenged chimeric CYBB mice was restored by bypassing the endothelium with intratracheal administration of eosinophils. These data suggest that VCAM-1 induction of NADPH oxidase in the endothelium is necessary for the eosinophil recruitment during allergic inflammation. Moreover, these studies provide a basis for targeting VCAM-1-dependent signaling pathways in asthma therapies. PMID:17293377

  14. Endothelial actin depolymerization mediates NADPH oxidase-superoxide production during flow reversal.

    PubMed

    Choy, Jenny S; Lu, Xiao; Yang, Junrong; Zhang, Zhen-Du; Kassab, Ghassan S

    2014-01-01

    Slow moving blood flow and changes in flow direction, e.g., negative wall shear stress, can cause increased superoxide (O2(-)) production in vascular endothelial cells. The mechanism by which shear stress increases O2(-) production, however, is not well established. We tested the hypothesis that actin depolymerization, which occurs during flow reversal, mediates O2(-) production in vascular endothelial cells via NADPH oxidase, and more specifically, the subunit p47(phox). Using a swine model, we created complete blood flow reversal in one carotid artery, while the contralateral vessel maintained forward blood flow as control. We measured actin depolymerization, NADPH oxidase activity, and reactive oxygen species (ROS) production in the presence of various inhibitors. Flow reversal was found to induce actin depolymerization and a 3.9 1.0-fold increase in ROS production as compared with forward flow. NADPH oxidase activity was 1.4 0.2 times higher in vessel segments subjected to reversed blood flow when measured by a direct enzyme assay. The NADPH oxidase subunits gp91(phox) (Nox2) and p47(phox) content in the vessels remained unchanged after 4 h of flow reversal. In contrast, p47(phox) phosphorylation was increased in vessels with reversed flow. The response caused by reversed flow was reduced by in vivo treatment with jasplakinolide, an actin stabilizer (only a 1.7 0.3-fold increase). Apocynin (an antioxidant) prevented reversed flow-induced ROS production when the animals were treated in vivo. Cytochalasin D mimicked actin depolymerization in vitro and caused a 5.2 3.0-fold increase in ROS production. These findings suggest that actin filaments play an important role in negative shear stress-induced ROS production by potentiating NADPH oxidase activity, and more specifically, the p47(phox) subunit in vascular endothelium. PMID:24186098

  15. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections.

    PubMed

    Deffert, Christine; Cachat, Julien; Krause, Karl-Heinz

    2014-08-01

    Infection of humans with Mycobacterium tuberculosis remains frequent and may still lead to death. After primary infection, the immune system is often able to control M. tuberculosis infection over a prolonged latency period, but a decrease in immune function (from HIV to immunosenescence) leads to active disease. Available vaccines against tuberculosis are restricted to BCG, a live vaccine with an attenuated strain of M. bovis. Immunodeficiency may not only be associated with an increased risk of tuberculosis, but also with local or disseminated BCG infection. Genetic deficiency in the reactive oxygen species (ROS)-producing phagocyte NADPH oxidase NOX2 is called chronic granulomatous disease (CGD). CGD is among the most common primary immune deficiencies. Here we review our knowledge on the importance of NOX2-derived ROS in mycobacterial infection. A literature review suggests that human CGD patient frequently have an increased susceptibility to BCG and to M. tuberculosis. In vitro studies and experiments with CGD mice are incomplete and yielded - at least in part - contradictory results. Thus, although observations in human CGD patients leave little doubt about the role of NOX2 in the control of mycobacteria, further studies will be necessary to unequivocally define and understand the role of ROS. PMID:24916152

  16. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  17. The PPARgamma ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice.

    PubMed

    Hwang, Jinah; Kleinhenz, Dean J; Rupnow, Heidi L; Campbell, Adam G; Thul, Peter M; Sutliff, Roy L; Hart, C Michael

    2007-06-01

    Oxidative stress plays an important role in diabetic vascular dysfunction. The sources and regulation of reactive oxygen species production in diabetic vasculature continue to be defined. Because peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reduced superoxide anion (O(2)(-.)) generation in vascular endothelial cells in vitro by reducing NADPH oxidase and increasing Cu/Zn superoxide dismutase (SOD) expression, the current study examined the effect of PPARgamma ligands on vascular NADPH oxidase and O(2)(-.) generation in vivo. Lean control (db(+)/db(-)) and obese, diabetic, leptin receptor-deficient (db(-)/db(-)) mice were treated with either vehicle or rosiglitazone (3 mg/kg/day) by gavage for 7-days. Compared to controls, db(-)/db(-) mice weighed more and had metabolic derangements that were not corrected by treatment with rosiglitazone for 1-week. Aortic O(2)(-.) generation and mRNA levels of the NADPH oxidase subunits, Nox-1, Nox-2, and Nox-4 as well as Nox-4 protein expression were elevated in db(-)/db(-) compared to db(+)/db(-) mice, whereas aortic Cu/Zn SOD protein and PPARgamma mRNA levels were reduced in db(-)/db(-) mice. Treatment with rosiglitazone for 1-week significantly reduced aortic O(2)(-.) production and the expression of Nox-1, 2, and 4 but failed to increase Cu/Zn SOD or PPARgamma in aortic tissue from db(-)/db(-) mice. These data demonstrate that the vascular expression of Nox-1, 2, and 4 subunits of NADPH oxidase is increased in db(-)/db(-) mice and that short-term treatment with the PPARgamma agonist, rosiglitazone, has the potential to rapidly suppress vascular NADPH oxidase expression and O(2)(-.) production through mechanisms that do not appear to depend on correction of diabetic metabolic derangements. PMID:17337254

  18. Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension.

    PubMed

    Lob, Heinrich E; Schultz, David; Marvar, Paul J; Davisson, Robin L; Harrison, David G

    2013-02-01

    Reactive oxygen species and the NADPH oxidases contribute to hypertension via mechanisms that remain undefined. Reactive oxygen species produced in the central nervous system have been proposed to promote sympathetic outflow, inflammation, and hypertension, but the contribution of the NADPH oxidases to these processes in chronic hypertension is uncertain. We therefore sought to identify how NADPH oxidases in the subfornical organ (SFO) of the brain regulate blood pressure and vascular inflammation during sustained hypertension. We produced mice with loxP sites flanking the coding region of the NADPH oxidase docking subunit p22(phox). SFO-targeted injections of an adenovirus encoding cre-recombinase markedly diminished p22(phox), Nox2, and Nox4 mRNA in the SFO, as compared with a control adenovirus encoding red-fluorescent protein injection. Increased superoxide production in the SFO by chronic angiotensin II infusion (490 ng/kg min(-1) × 2 weeks) was blunted in adenovirus encoding cre-recombinase-treated mice, as detected by dihydroethidium fluorescence. Deletion of p22(phox) in the SFO eliminated the hypertensive response observed at 2 weeks of angiotensin II infusion compared with control adenovirus encoding red-fluorescent protein-treated mice (mean arterial pressures=97 ± 15 versus 154 ± 6 mm Hg, respectively; P=0.0001). Angiotensin II infusion also promoted marked vascular inflammation, as characterized by accumulation of activated T-cells and other leukocytes, and this was prevented by deletion of the SFO p22(phox). These experiments definitively identify the NADPH oxidases in the SFO as a critical determinant of the blood pressure and vascular inflammatory responses to chronic angiotensin II, and further support a role of reactive oxygen species in central nervous system signaling in hypertension. PMID:23248154

  19. Amyloid-? and Proinflammatory Cytokines Utilize a Prion Protein-Dependent Pathway to Activate NADPH Oxidase and Induce Cofilin-Actin Rods in Hippocampal Neurons

    PubMed Central

    Kane, Sarah J.; Shaw, Alisa E.; Brown, David R.; Pulford, Bruce; Zabel, Mark D.; Lambeth, J. David; Bamburg, James R.

    2014-01-01

    Neurites of neurons under acute or chronic stress form bundles of filaments (rods) containing 1?1 cofilin?actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (530 min) in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors). In contrast, slow rod formation (50% of maximum response in ?6 h) occurs in a subpopulation (?20%) of hippocampal neurons upon exposure to soluble human amyloid-? dimer/trimer (A?d/t) at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNF?, IL-1?, IL-6) also induce rods at the same rate and within the same neuronal population as A?d/t. Neurons from prion (PrPC)-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or A?d/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX) activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrPC is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrPC-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrPC-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse A?-binding membrane proteins induce synaptic dysfunction. PMID:24760020

  20. Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury

    PubMed Central

    Thamilselvan, Vijayalakshmi; Menon, Mani

    2013-01-01

    Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence. PMID:21814770

  1. Subtractive screening reveals up-regulation of NADPH oxidase expression in Crohn's disease intestinal macrophages

    PubMed Central

    Hausmann, M; Spttl, T; Andus, T; Rothe, G; Falk, W; Schlmerich, J; Herfarth, H; Rogler, G

    2001-01-01

    Macrophages play a central role during the pathogenesis of inflammation. In normal intestinal mucosa surface expression of typical macrophage markers such as CD14, CD16, CD11b or T-cell co-stimulatory molecules such as CD80 or CD86 is low indicating anergy and low pro-inflammatory activity of these cells. During inflammatory bowel disease (IBD) the mucosa is invaded by a population of macrophages displaying these markers, secreting higher cytokine levels and representing an activated cell population. CD33+ cells (macrophages) were isolated from normal and Crohn's disease mucosa and mRNA was isolated by polyT magnetic beads. A subtractive screening was performed subtracting mRNA from normal macrophages from those of Crohn's disease macrophages. Oxidative burst activity was determined by flow cytometry. Seventy clones were obtained by the subtractive mRNA screening. Sequencing showed >99% homology to mRNA of monocyte chemoattractant protein-1 (MCP-1) for three clones. Five clones obtained by subtraction revealed >99% homology to mRNA of cytochrome b (subunit gp91). Differential expression of the cytochrome b subunit gp91 and the cytosolic NADPH oxidase subunit p67 was confirmed by RT-PCR and virtual Northern blots. The fluorescence ratio of stimulated versus unstimulated cells was 09 016 in control macrophages indicating a lack of oxidative burst activity. In Crohn's disease this ratio was significantly increased to 180 08 (P = 0004) confirming the molecular data. In conclusion NADPH oxidase mRNA is down-regulated or absent in macrophages from normal mucosa correlating with a lack of oxidative burst activity. In IBD macrophage-oxidative burst activity is increased and NADPH oxidase mRNA induced. Inhibition of NADPH oxidase could be a new therapeutical target in IBD and reduce mucosal tissue damage in active IBD. PMID:11472425

  2. [The Nox/Duox family of ROS-generating NADPH oxidases].

    PubMed

    Guichard, Cécile; Pedruzzi, Eric; Fay, Michèle; Ben Mkaddem, Sanae; Coant, Nicolas; Daniel, Fanny; Ogier-Denis, Eric

    2006-11-01

    Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes. PMID:17101097

  3. NADPH Oxidase-Derived Peroxynitrite Drives Inflammation in Mice and Human Nonalcoholic Steatohepatitis via TLR4-Lipid Raft Recruitment.

    PubMed

    Das, Suvarthi; Alhasson, Firas; Dattaroy, Diptadip; Pourhoseini, Sahar; Seth, Ratanesh Kumar; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Michelotti, Gregory A; Diehl, Anna Mae; Kalyanaraman, Balaraman; Chatterjee, Saurabh

    2015-07-01

    The molecular events that link NADPH oxidase activation and the induction of Toll-like receptor (TLR)-4 recruitment into hepatic lipid rafts in nonalcoholic steatohepatitis (NASH) are unclear. We hypothesized that in liver, NADPH oxidase activation is key in TLR4 recruitment into lipid rafts, which in turn up-regulates NF-?B translocation to the nucleus and subsequent DNA binding, leading to NASH progression. Results from confocal microscopy showed that liver from murine and human NASH had NADPH oxidase activation, which led to the formation of highly reactive peroxynitrite, as shown by 3-nitrotyrosine formation in diseased liver. Expression and recruitment of TLR4 into the lipid rafts were significantly greater in rodent and human NASH. The described phenomenon was NADPH oxidase, p47phox, and peroxynitrite dependent, as liver from p47phox-deficient mice and from mice treated with a peroxynitrite decomposition catalyst [iron(III) tetrakis(p-sulfonatophenyl)porphyrin] or a peroxynitrite scavenger (phenylboronic acid) had markedly less Tlr4 recruitment into lipid rafts. Mechanistically, peroxynitrite-induced TLR4 recruitment was linked to increased IL-1?, sinusoidal injury, and Kupffer cell activation while blocking peroxynitrite-attenuated NASH symptoms. The results strongly suggest that NADPH oxidase-mediated peroxynitrite drove TLR4 recruitment into hepatic lipid rafts and inflammation, whereas the invivo use of the peroxynitrite scavenger phenylboronic acid, a novel synthetic molecule having high reactivity with peroxynitrite, attenuates inflammatory pathogenesis in NASH. PMID:25989356

  4. Fibroblast-to-myofibroblast switch is mediated by NAD(P)H oxidase generated reactive oxygen species

    PubMed Central

    Alili, Lirija; Sack, Maren; Puschmann, Katharina; Brenneisen, Peter

    2013-01-01

    Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier. PMID:24299025

  5. Reactive Oxygen Species and Angiogenesis: NADPH Oxidase as Target for Cancer Therapy

    PubMed Central

    Ushio-Fukai, Masuko; Nakamura, Yoshimasa

    2009-01-01

    Angiogenesis is essential for tumor growth, metastasis, arteriosclerosis as well as embryonic development and wound healing. Its process is dependent on cell proliferation, migration and capillary tube formation in endothelia cells (ECs). High levels of reactive oxygen species (ROS) such as superoxide and H2O2 are observed in various cancer cells. Accumulating evidence suggests that ROS function as signaling molecules to mediate various growth-related responses including angiogenesis. ROS-dependent angiogenesis can be regulated by endogenous antioxidant enzymes such as SOD and thioredoxin. Vascular endothelial growth factor (VEGF), one of the major angiogenesis factor, is induced in growing tumors and stimulates EC proliferation and migration primarily through the VEGF receptor type2 (VEGFR2, Flk1/KDR). Major source of ROS in ECs is a NADPH oxidase which consists of Nox1, Nox2, Nox4, Nox5, p22phox, p47phox and the small G protein Rac1. NADPH oxidase is activated by various growth factors including VEGF and angiopoietin-1 as well as hypoxia and ischemia, and ROS derived from this oxidase are involved in VEGFR2 autophosphorylation, and diverse redox signaling pathways leading to induction of transcription factors and genes involved in angiogenesis. Dietary antioxidants appear to be effective for treatment of tumor angiogenesis. The aim of this review is to provide an overview of the recent progress on role of ROS derived from NADPH oxidase and redox signaling events involved in angiogenesis. Understanding these mechanisms may provide insight into the NADPH oxidase and redox signaling components as potential therapeutic targets for tumor angiogenesis. PMID:18406051

  6. Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice

    PubMed Central

    Zheng, Jiamao; Almendros, Isaac; Wang, Yang; Zhang, Shelley X; Carreras, Alba; Qiao, Zhuanhong; Gozal, David

    2015-01-01

    The molecular mechanisms underlying how sleep fragmentation (SF) influences cancer growth and progression remain largely elusive. Here, we present evidence that SF reduced ROS production by downregulating gp91phox expression and activity in TC1 cell tumor associated macrophages (TAMs), while genetic ablation of phagocytic Nox2 activity increased tumor cell proliferation, motility, invasion, and extravasation in vitro. Importantly, the in vivo studies using immunocompetent syngeneic murine tumor models suggested that Nox2 deficiency mimics SF-induced TAMs infiltration and subsequent tumor growth and invasion. Taken together, these studies reveal that perturbed sleep could adversely affect innate immunity within the tumor by altering Nox2 expression and activity, and indicate that selective potentiation of Nox2 activity may present a novel therapeutic strategy in the treatment of cancer. PMID:25949873

  7. Nrf2 regulates ROS production by mitochondria and NADPH oxidase

    PubMed Central

    Kovac, Stjepana; Angelova, Plamena R.; Holmstrm, Kira M.; Zhang, Ying; Dinkova-Kostova, Albena T.; Abramov, Andrey Y.

    2015-01-01

    Background Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain. Methods Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD). Results We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production. Conclusions These observations suggest that the Keap1Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase. General significance Findings supports a key role of the Keap1Nrf2 pathway in redox homeostasis within the cell. PMID:25484314

  8. Enhanced ROS production and redox signaling with combined arsenite and UVA exposure: contribution of NADPH oxidase.

    PubMed

    Cooper, Karen L; Liu, Ke Jian; Hudson, Laurie G

    2009-08-15

    Solar ultraviolet radiation (UVR) is the major etiological factor in skin carcinogenesis. However, in vivo studies demonstrate that mice exposed to arsenic and UVR exhibit significantly more tumors and oxidative DNA damage than animals treated with either agent alone. Interactions between arsenite and UVR in the production of reactive oxygen species (ROS) and stress-associated signaling may provide a basis for the enhanced carcinogenicity. In this study keratinocytes were pretreated with arsenite (3 microM) and then exposed to UVA (10 kJ/m(2)). We report that exposure to UVA after arsenite pretreatment enhanced ROS production, p38 MAP kinase activation, and induction of a redox-sensitive gene product, heme oxygenase-1, compared to either stimulus alone. UVR exposure resulted in rapid and transient NADPH oxidase activation, whereas the response to arsenite was more pronounced and persistent. Inhibition of NADPH oxidase decreased ROS production in arsenite-treated cells but had little impact on UVA-exposed cells. Furthermore, arsenite-induced, but not UVA-induced, p38 activation and HO-1 expression were dependent upon NADPH oxidase activity. These findings indicate differences in the mechanisms of ROS production by arsenite and UVA that may provide an underlying basis for the observed enhancement of redox-related cellular responses upon combined UVA and arsenite exposure. PMID:19414066

  9. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    PubMed Central

    Natarajan, Sathish Kumar; Becker, Donald F

    2012-01-01

    Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted. PMID:22593641

  10. NADPH OXIDASES IN LUNG BIOLOGY AND PATHOLOGY. HOST DEFENSE ENZYMES, AND MORE

    PubMed Central

    van der Vliet, Albert

    2008-01-01

    The deliberate production of reactive oxygen species (ROS) by phagocyte NADPH oxidase is widely appreciated as a critical component of antimicrobial host defense. Recently, additional homologs of NADPH oxidase (NOX) have been discovered throughout the animal and plant kingdoms, which appear to possess diverse functions in addition to host defense, including cell proliferation, differentiation, and regulation of gene expression. Several of these NOX homologs are also expressed within the respiratory tract, where they participate in innate host defense as well as in epithelial and inflammatory cell signaling and gene expression, and fibroblast and smooth muscle cell proliferation, in response to bacterial or viral infection and environmental stress. Inappropriate expression or activation of NOX/DUOX during various lung pathologies suggests their specific involvement in respiratory disease. This review summarizes the current state of knowledge regarding the general functional properties of mammalian NOX enzymes, and their specific importance in respiratory tract physiology and pathology. PMID:18164271

  11. NADPH oxidases in lung biology and pathology: host defense enzymes, and more.

    PubMed

    van der Vliet, Albert

    2008-03-15

    The deliberate production of reactive oxygen species (ROS) by phagocyte NADPH oxidase is widely appreciated as a critical component of antimicrobial host defense. Recently, additional homologs of NADPH oxidase (NOX) have been discovered throughout the animal and plant kingdoms, which appear to possess diverse functions in addition to host defense, in cell proliferation, differentiation, and in regulation of gene expression. Several of these NOX homologs are also expressed within the respiratory tract, where they participate in innate host defense as well as in epithelial and inflammatory cell signaling and gene expression, and fibroblast and smooth muscle cell proliferation, in response to bacterial or viral infection and environmental stress. Inappropriate expression or activation of NOX/DUOX during various lung pathologies suggests their specific involvement in respiratory disease. This review summarizes the current state of knowledge regarding the general functional properties of mammalian NOX enzymes, and their specific importance in respiratory tract physiology and pathology. PMID:18164271

  12. Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase.

    TOXLINE Toxicology Bibliographic Information

    Jimnez R; Lpez-Seplveda R; Kadmiri M; Romero M; Vera R; Snchez M; Vargas F; O'Valle F; Zarzuelo A; Dueas M; Santos-Buelga C; Duarte J

    2007-08-01

    Red wine polyphenols (RWPs) have been reported to exert beneficial effects in preventing cardiovascular diseases, such as hypertension. We studied the effects of chronic treatment with RWPs and apocynin, an inhibitor of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, on blood pressure, endothelial function, and oxidative status in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Rats were administered RWPs (40 mg/kg) or apocynin (33 microg/kg) daily by gavage for 5 weeks. Plasma catechin levels were detected only after RWP treatment. RWPs and apocynin prevented both the increase in systolic blood pressure and the proteinuria induced by DOCA-salt. Plasma malonyldialdehyde levels, urinary iso-prostaglandin F(2alpha) excretion, aortic superoxide production, and aortic NADPH oxidase activity were found to be increased in animals of the DOCA group. RWP and apocynin treatments reduced these parameters in DOCA-salt rats, having no effect on control rats. However, only RWPs reduced the increase in plasma endothelin-1 (ET-1) levels and aortic p22(phox) gene overexpression found in DOCA-salt animals. RWPs and apocynin also improved the blunted endothelium-dependent relaxation response to acetylcholine in noradrenaline-precontracted aortic rings. All these results suggest that chronic treatment with RWPs prevents hypertension and vascular dysfunction. RWPs prevent vascular oxidative stress by inhibiting NADPH oxidase activity and/or by reducing ET-1 release.

  13. NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension.

    PubMed

    Zalba, Guillermo; San Jos, Gorka; Moreno, Mara U; Fortuo, Ana; Dez, Javier

    2005-01-01

    Increased vascular production of reactive oxygen species, especially superoxide anion, significantly contributes to the oxidative stress associated with hypertension. An enhanced superoxide production causes an increased inactivation of nitric oxide that diminishes nitric oxide bioavailability, thus contributing to endothelial dysfunction and hypertrophy of vascular cells. It has been shown that NADPH oxidases play a major role as the most important sources of superoxide anion in phagocytic and vascular cells. Several experimental observations have described an enhanced superoxide generation as a result of NADPH oxidase activation in hypertension. Although these enzymes respond to stimuli such as vasoactive factors, growth factors, and cytokines, recent data suggest a significant role of the genetic background in the modulation of the expression of its different components. Several polymorphisms have been identified in the promoter and in the coding region of CYBA, the gene that encodes the essential subunit of the NADPH oxidase p22phox, some of which seem to influence significantly the activity of these enzymes in the context of cardiovascular diseases. Among CYBA polymorphisms, genetic investigations have provided a novel marker, the -930(A/G) polymorphism, which determines the genetic susceptibility of hypertensive patients to oxidative stress. PMID:16115038

  14. Broad Suppression of NADPH Oxidase Activity Exacerbates Ischemia/Reperfusion Injury Through Inadvertent Downregulation of HIF-1? and Upregulation of PPAR?

    PubMed Central

    Matsushima, Shouji; Kuroda, Junya; Ago, Tetsuro; Zhai, Peiyong; Ikeda, Yoshiyuki; Oka, Shinichi; Fong, Guo-Hua; Tian, Rong; Sadoshima, Junichi

    2013-01-01

    Rationale Nox2 and Nox4 are major components of the NADPH oxidase (Nox) family, which purposefully produce reactive oxidative species (ROS), namely O2? and H2O2, in the heart. The isoform-specific contribution of Nox2 and Nox4 to ischemia/reperfusion (I/R) injury is poorly understood. Objective We investigated the role of Nox2 and Nox4 in mediating oxidative stress and myocardial injury during I/R using loss of function mouse models. Methods and Results Systemic (s) Nox2 KO, sNox4 KO, and cardiac-specific (c) Nox4 KO mice were subjected to I (30 min)/R (24 h). Both myocardial infarct size/area at risk (MI/AAR) and O2? production were lower in sNox2 KO, sNox4 KO, and cNox4 KO than in wild-type (WT) mice. Unexpectedly, however, the MI/AAR was greater, despite less O2? production, in sNox2 KO+cNox4 KO (DKO) mice and transgenic mice with cardiac-specific expression of dominant-negative Nox (Tg-DN-Nox), which suppresses both Nox2 and Nox4, than in WT or single KO mice. Hypoxia-inducible factor-1? (HIF-1?) was downregulated while peroxisome proliferator-activated receptor-alpha (PPAR?) was upregulated in Tg-DN-Nox mice. A cross with mice deficient in prolyl hydroxylase 2, which hydroxylates HIF-1?, rescued the I/R injury and prevented upregulation of PPAR? in Tg-DN-Nox mice. A cross with PPAR? KO mice also attenuated the injury in Tg-DN-Nox mice. Conclusions nBoth Nox2 and Nox4 contribute to the increase in ROS and injury by I/R. However, low levels of ROS produced by either Nox2 or Nox4 regulate HIF-1? and PPAR?, thereby protecting the heart against I/R, suggesting that Noxs also act as a physiological sensor for myocardial adaptation. PMID:23476056

  15. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Nisbet, Rachel E; Graves, Anitra S; Kleinhenz, Dean J; Rupnow, Heidi L; Reed, Alana L; Fan, Tai-Hwang M; Mitchell, Patrick O; Sutliff, Roy L; Hart, C Michael

    2009-05-01

    Obstructive sleep apnea, characterized by intermittent periods of hypoxemia, is an independent risk factor for the development of pulmonary hypertension. However, the exact mechanisms of this disorder remain to be defined. Enhanced NADPH oxidase expression and superoxide (O2(-).) generation in the pulmonary vasculature play a critical role in hypoxia-induced pulmonary hypertension. Therefore, the current study explores the hypothesis that chronic intermittent hypoxia (CIH) causes pulmonary hypertension, in part, by increasing NADPH oxidase-derived reactive oxygen species (ROS) that contribute to pulmonary vascular remodeling and hypertension. To test this hypothesis, male C57Bl/6 mice and gp91phox knockout mice were exposed to CIH for 8 hours per day, 5 days per week for 8 weeks. CIH mice were placed in a chamber where the oxygen concentration was cycled between 21% and 10% O2 45 times per hour. Exposure to CIH for 8 weeks increased right ventricular systolic pressure (RVSP), right ventricle (RV):left ventricle (LV) + septum (S) weight ratio, an index of RV hypertrophy, and thickness of the right ventricular anterior wall as measured by echocardiography. CIH exposure also caused pulmonary vascular remodeling as demonstrated by increased muscularization of the distal pulmonary vasculature. CIH-induced pulmonary hypertension was associated with increased lung levels of the NADPH oxidase subunits, Nox4 and p22phox, as well as increased activity of platelet-derived growth factor receptor beta and its associated downstream effector, Akt kinase. These CIH-induced derangements were attenuated in similarly treated gp91phox knockout mice. These findings demonstrate that NADPH oxidase-derived ROS contribute to the development of pulmonary vascular remodeling and hypertension caused by CIH. PMID:18952568

  16. The Role of NADPH Oxidase in Chronic Intermittent Hypoxia-Induced Pulmonary Hypertension in Mice

    PubMed Central

    Nisbet, Rachel E.; Graves, Anitra S.; Kleinhenz, Dean J.; Rupnow, Heidi L.; Reed, Alana L.; Fan, Tai-Hwang M.; Mitchell, Patrick O.; Sutliff, Roy L.; Hart, C. Michael

    2009-01-01

    Obstructive sleep apnea, characterized by intermittent periods of hypoxemia, is an independent risk factor for the development of pulmonary hypertension. However, the exact mechanisms of this disorder remain to be defined. Enhanced NADPH oxidase expression and superoxide (O2?) generation in the pulmonary vasculature play a critical role in hypoxia-induced pulmonary hypertension. Therefore, the current study explores the hypothesis that chronic intermittent hypoxia (CIH) causes pulmonary hypertension, in part, by increasing NADPH oxidasederived reactive oxygen species (ROS) that contribute to pulmonary vascular remodeling and hypertension. To test this hypothesis, male C57Bl/6 mice and gp91phox knockout mice were exposed to CIH for 8 hours per day, 5 days per week for 8 weeks. CIH mice were placed in a chamber where the oxygen concentration was cycled between 21% and 10% O2 45 times per hour. Exposure to CIH for 8 weeks increased right ventricular systolic pressure (RVSP), right ventricle (RV):left ventricle (LV) + septum (S) weight ratio, an index of RV hypertrophy, and thickness of the right ventricular anterior wall as measured by echocardiography. CIH exposure also caused pulmonary vascular remodeling as demonstrated by increased muscularization of the distal pulmonary vasculature. CIH-induced pulmonary hypertension was associated with increased lung levels of the NADPH oxidase subunits, Nox4 and p22phox, as well as increased activity of platelet-derived growth factor receptor ? and its associated downstream effector, Akt kinase. These CIH-induced derangements were attenuated in similarly treated gp91phox knockout mice. These findings demonstrate that NADPH oxidasederived ROS contribute to the development of pulmonary vascular remodeling and hypertension caused by CIH. PMID:18952568

  17. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    PubMed Central

    Prata, Cecilia; Vieceli Dalla Sega, Francesco; Piperno, Roberto; Hrelia, Silvana

    2015-01-01

    Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI. PMID:25918580

  18. NADPH Oxidase: A Potential Target for Treatment of Stroke

    PubMed Central

    Zhang, Li; Wu, Jie; Duan, Xiaochun; Tian, Xiaodi; Shen, Haitao; Sun, Qing; Chen, Gang

    2016-01-01

    Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke. However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well. In this review, we provide a comprehensive summary of our current understanding about expression and physiological function of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. PMID:26941888

  19. NADPH oxidase 2 plays a role in experimental corneal neovascularization.

    PubMed

    Chan, Elsa C; van Wijngaarden, Peter; Chan, Elsie; Ngo, Darleen; Wang, Jiang-Hui; Peshavariya, Hitesh M; Dusting, Gregory J; Liu, Guei-Sheung

    2016-05-01

    Corneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied. We have now analysed the role of the Nox2 isoform of NADPH oxidase in corneal neovascularization in mice following chemical injury. C57BL/6 mice aged 8-14 weeks were cauterized with an applicator coated with 75% silver nitrate and 25% potassium nitrate for 8 s. Neovascularization extending radially from limbal vessels was observed in corneal whole-mounts from cauterized wild type mice and CD31+ vessels were identified in cauterized corneal sections at day 7. In contrast, in Nox2 knockout (Nox2 KO) mice vascular endothelial growth factor-A (Vegf-A), Flt1 mRNA expression, and the extent of corneal neovascularization were all markedly reduced compared with their wild type controls. The accumulation of Iba-1+ microglia and macrophages in the cornea was significantly less in Nox2 KO than in wild type mice. In conclusion, we have demonstrated that Nox2 is implicated in the inflammatory and neovascular response to corneal chemical injury in mice and clearly VEGF is a mediator of this effect. This work raises the possibility that therapies targeting Nox2 may have potential for suppressing corneal neovascularization and inflammation in humans. PMID:26814205

  20. Regulation of myocardial growth and death by NADPH oxidase

    PubMed Central

    Maejima, Yasuhiro; Kuroda, Junya; Matsushima, Shouji; Ago, Tetsuro; Sadoshima, Junichi

    2011-01-01

    The NADPH oxidases (Nox) are transmembrane proteins dedicated to producing reactive oxygen species (ROS), including superoxide and hydrogen peroxide, by transferring electrons from NAD(P)H to molecular oxygen. Nox2 and Nox4 are expressed in the heart and play an important role in mediating oxidative stress at baseline and under stress. Nox2 is primarily localized on the plasma membrane, whereas Nox4 is found primarily on intracellular membranes, on mitochondria, the endoplasmic reticulum or the nucleus. Although Nox2 plays an important role in mediating angiotensin II-induced cardiac hypertrophy, Nox4 mediates cardiac hypertrophy and heart failure in response to pressure overload. Expression of Nox4 is upregulated by hypertrophic stimuli, and Nox4 in mitochondria plays an essential role in mediating oxidative stress during pressure overload-induced cardiac hypertrophy. Upregulation of Nox4 induces oxidation of mitochondrial proteins, including aconitase, thereby causing mitochondrial dysfunction and myocardial cell death. On the other hand, Noxs also appear to mediate physiological functions, such as erythropoiesis and angiogenesis. In this review, we discuss the role of Noxs in mediating oxidative stress and both pathological and physiological functions of Noxs in the heart. PMID:21215757

  1. Subcellular Localization of NADPH Oxidase Subunits in Neurons and Astroglia of the Rat medial Nucleus Tractus Solitarius: Relationship with Tyrosine Hydroxylase Immunoreactive Neurons

    PubMed Central

    Glass, Michael J.; Huang, Jie; Oselkin, Martin; Tarsitano, M. Jacqueline; Wang, Gang; Iadecola, Costantino; Pickel, Virginia M.

    2007-01-01

    Superoxide produced by the enzyme NADPH oxidase mediates crucial intracellular signaling cascades in the mNTS, a brain region populated by catecholaminergic neurons, as well as astroglia that play an important role in autonomic function. The mechanisms mediating NADPH oxidase (phox) activity in the neural regulation of cardiovascular processes are incompletely understood, however the subcellular localization of superoxide produced by the enzyme is likely to be an important regulatory factor. We used immunogold electron microscopy to determine the phenotypic and subcellular localization of the NADPH oxidase subunits p47phox, gp91phox, and p22phox in the mNTS. The mNTS contains a large population of neurons that synthesize catecholamines. Significantly, catecholaminergic signaling can be modulated by redox reactions. Therefore, the relationship of NADPH oxidase subunit labeled neurons or glia with respect to catecholaminergic neurons was also determined by dual labeling for the superoxide producing enzyme and tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. In the mNTS, NADPH oxidase subunits were present primarily in somatodendritic processes and astrocytes, some of which also contained TH, or were contacted by TH labeled axons, respectively. Immunogold quantification of NADPH oxidase subunit localization showed that p47phox and gp91phox were present on the surface membrane, as well as vesicular organelles characteristic of calcium storing smooth endoplasmic reticula in dendritic and astroglial processes. These results indicate that NADPH oxidase assembly and consequent superoxide formation are likely to occur near the plasmalemma, as well as on vesicular organelles associated with intracellular calcium storage within mNTS neurons and glia. Thus, NADPH oxidase-derived superoxide may participate in intracellular signaling pathways linked to calcium regulation in diverse mNTS cell types. Moreover, NADPH oxidase-derived superoxide in neurons and glia may directly or indirectly modulate catecholaminergic neuron activity in the mNTS. PMID:17027166

  2. NADPH Oxidase-Dependent Production of Reactive Oxygen Species Induces Endoplasmatic Reticulum Stress in Neutrophil-Like HL60 Cells

    PubMed Central

    Kuwabara, Wilson Mitsuo Tatagiba; Zhang, Liling; Schuiki, Irmgard; Curi, Rui; Volchuk, Allen; Alba-Loureiro, Tatiana Carolina

    2015-01-01

    Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells. PMID:25668518

  3. Fibroblast-to-myofibroblast switch is mediated by NAD(P)H oxidase generated reactive oxygen species.

    PubMed

    Alili, Lirija; Sack, Maren; Puschmann, Katharina; Brenneisen, Peter

    2013-12-01

    Tumor-stroma interaction is a prerequisite for tumor progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumor-associated fibroblasts to myofibroblasts by growth factors, for example transforming growth factor beta (TGFβ). In this study, the question was addressed of whether fibroblast associated NAD(P)H oxidase, known to be activated by TGFβ1, is involved in the fibroblast-to-myofibroblast switch. The up regulation of alpha smooth muscle actin (αSMA), a biomarker for myofibroblasts, is mediated by a TGFβ1-dependent increase in the intracellular level of reactive oxygen species (ROS). The source of these ROS was identified to be NAD(P)H oxidase, showing two activity peaks over time with an early and late activity peak after treatment with the growth factor. The late (second) activity peak of NAD(P)H oxidase was identified to be responsible for the downstream signaling resulting in reactive oxygen species triggered activation of the stress kinase p38 and expression of αSMA. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-myofibroblast switch and may be important for chemoprevention. PMID:24299025

  4. Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin.

    PubMed

    Winiarska, Katarzyna; Grabowski, Michal; Rogacki, Maciej K

    2011-01-15

    NADPH oxidase, catalysing superoxide radical (O?(.-)) formation, is considered as a main source of reactive oxygen species in kidneys and its increased activity is supposed to be involved in the development of diabetic nephropathy. The aim of this study was to investigate the effect of NADPH oxidase inhibitor, apocynin, on renal gluconeogenesis, which is an important source of endogenous glucose under diabetic conditions. The following observations were made during the experiments performed on isolated renal proximal tubules of control and alloxan diabetic rabbits: (1) apocynin (200 ?M) inhibited the rate of glucose synthesis by 45-80%, depending on the substrate applied; (2) the rate of glucose production was also significantly diminished in the presence of TEMPOL (5mM), a superoxide radical scavenger, suggesting that the decrease in O?(.-) formation might be involved in apocynin-evoked gluconeogenesis inhibition; (3) the activities of phosphoenolpyruvate carboxykinase (PEPCK) and/or aldolase were lowered in the presence of either apocynin or TEMPOL, as concluded from the intracellular levels of gluconeogenic intermediates. The data from in vivo experiments indicated that apocynin treatment (2g/l of drinking water): (1) significantly (by about 30%) attenuated serum glucose concentration in diabetic rabbits and did not affect glycaemia in control animals; (2) normalized diabetes-stimulated rate of glucose synthesis and slightly inhibited gluconeogenesis in control rabbits; (3) normalized diabetes-increased activity of mitochondrial PEPCK and lowered cytosolic PEPCK activity by about 20% below the value for untreated control animals; (4) slightly decreased the activity of mitochondrial PEPCK and did not change the activity of cytosolic one in control rabbits. Thus, it is concluded that: (1) the inhibition of NADPH oxidase might contribute to lowered rate of renal gluconeogenesis, probably due to decreasing PEPCK activity; (2) inhibition of renal gluconeogenesis is involved in apocynin hypoglycaemic action in vivo; (3) apocynin might be beneficial for diabetes treatment. PMID:20934416

  5. NOX family NADPH oxidases: not just in mammals.

    PubMed

    Bedard, Karen; Lardy, Bernard; Krause, Karl-Heinz

    2007-09-01

    NOX family NADPH oxidases are enzymes whose biological function is electron transport and the generation of reactive oxygen species (ROS). NOX enzymes in mammalian organisms have received most attention. However, NOX enzymes are widely distributed in different kingdoms of life. While they are not found in prokaryotes and most unicellular eukaryotes, they are present in fungi, plants, and animals. The identity of the ancestral NOX is not known, but most likely it: (i) possessed the basic NOX structure consisting of 6 transmembrane domains (containing two assymmetrical hemes) and a long cytoplasmic C-terminal (containing the FAD and NADPH binding sites); and (ii) emerged before the divergence of life into fungi, plants, and animals. During evolution, acquisition of a Ca(2+)-binding EF hand domain by an ancestral NOX, led to NOX5-like isoforms. DUOX isoforms presumably developed from a NOX5-like isoform through the additional acquisition of a peroxidase homology domain. The expression pattern of NOX enzymes is specific to each kingdom of life. Fungi express only ancestral-type isoforms, and plants only NOX5-like isoforms. NOX expression patterns in animals are complex and ancestral NOXes, NOX5-like isoforms and DUOXes are generally found. But there are exceptions; for example rodents lack NOX5 and Caenorhabditis elegans expresses only DUOXes. Biological functions of NOX enzymes include, among others, host defense, post-translational modification of proteins, and regulation cell growth and differentiation. In summary, the invention of NOX enzymes early in the development of life was a success story: there is no evidence of multicellular life without NOX enzymes. PMID:17400358

  6. Loss of functional NADPH oxidase-2 protects against alcohol-induced bone resorption in female p47phox-/- mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In bone, oxidant signaling through NADPH oxidase (NOX)-derived reactive oxygen species (ROS) is an important stimulus for osteoclast differentiation and activity. We have previously demonstrated that chronic alcohol abuse produces bone loss through NOX-dependent mechanisms. In the current study, s...

  7. Polymorphisms in NADPH oxidase CYBA gene modify the risk of ESRD in patients with chronic glomerulonephritis.

    PubMed

    Zhou, Hui; Chen, Min; Zhu, Ying; Wang, Bing; Liu, Xiao-Ning; Zuo, Zhi; Tang, Feng-Ying

    2016-03-01

    End-stage renal disease (ESRD) was defined as start of renal replacement therapy or death due to kidney disease. However, death due to acute kidney injury was not included. It typically occurs when chronic renal failure progresses to a point where the kidneys are permanently functioning at less than 10% of their capacity. Oxidative stress (OS) plays a crucial role in ESRD. Nicotinamide adenine dinucleotide phosphate (NADPH) is one of the most important enzymes during oxidative stress. Cytochrome b light chain (CYBA), encoded by a polymorphic gene, which is a critical component of the nicotinamide adenine dinucleotide (NADH)/NADPH oxidase system and plays an important role in electron transport and superoxide anion production, is located on chromosome band 16q24 and has six exons spanning almost 7.76kb of genomic DNA. CYBA gene polymorphisms can influence the activity of NADPH oxidase. To evaluate the association between CYBA gene polymorphisms and ESRD, we genotyped five CYBA polymorphisms using TaqMan allelic discrimination assay on DNA samples from 306 healthy controls and 332 patients with ESRD. Our results suggested that rs1049255 polymorphism of CYBA modified the risk of ESRD (p ?=??0.019; OR ?=??0.625; 95%CI ?=??0.424-0.921). GG genotype and G allele might be a protective factor against the risk of ESRD, especially in patients with chronic glomerulonephritis. PMID:26627442

  8. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    PubMed Central

    Hidalgo, Mara A.; Carretta, Mara D.; Teuber, Stefanie E.; Zrate, Cristian; Crcamo, Leonardo; Concha, Ilona I.; Burgos, Rafael A.

    2015-01-01

    N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF) induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8) release and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-?B pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-?B was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP), diphenyleneiodonium (DPI), and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor) inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-?B translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-?B pathways in neutrophils. PMID:26634216

  9. INCREASED NADPH OXIDASE DERIVED SUPEROXIDE IS INVOLVED IN THE NEURONAL CELL DEATH INDUCED BY HYPOXIA ISCHEMIA IN NEONATAL HIPPOCAMPAL SLICE CULTURES

    PubMed Central

    Lu, Qing; Wainwright, Mark S.; Harris, Valerie A.; Aggarwal, Saurabh; Hou, Yali; Rau, Thomas; Poulsen, David J.; Black, Stephen M

    2012-01-01

    Neonatal brain hypoxia ischemia (HI) results in neuronal cell death. Previous studies indicate that reactive oxygen species (ROS) such as superoxide, play a key role in this process. However, the cellular sources have not been established. In this study we examined the role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in neonatal HI brain injury and elucidated its mechanism of activation. Rat hippocampal slices were exposed to oxygen glucose deprivation (OGD) to mimic the conditions seen in HI. Initial studies confirmed an important role for NADPH oxidase derived superoxide in the oxidative stress associated with OGD. Further, the OGD-mediated increase in apoptotic cell death was inhibited by the NADPH oxidase inhibitor, apocynin. The activation of NADPH oxidase was found to be dependent on the p38 mitogen-activated protein kinase mediated phosphorylation and activation of the p47phox subunit. Using an adeno-associated virus antisense construct to selectively decrease p47phox expression in neurons, and showed that this lead to inhibition both of the increase in superoxide and neuronal cell death associated with OGD. We also found that NADPH oxidase inhibition in a neonatal rat model of HI or scavenging hydrogen peroxide (H2O2) reduced brain injury. Thus, we conclude that activation of the NADPH oxidase complex contributes to the oxidative stress during HI and that therapies targeted against this complex could exhibit neuroprotection against the brain injury associated with neonatal HI. PMID:22728269

  10. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives

    PubMed Central

    McCann, Sarah K.; Roulston, Carli L.

    2013-01-01

    Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation. PMID:24961415

  11. NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes.

    PubMed

    Villmow, Marten; Klöckner, Udo; Heymes, Christophe; Gekle, Michael; Rueckschloss, Uwe

    2015-09-01

    Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of β-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of β-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes. PMID:26173391

  12. Urotensin-II-Mediated Reactive Oxygen Species Generation via NADPH Oxidase Pathway Contributes to Hepatic Oval Cell Proliferation

    PubMed Central

    Yu, XiaoTong; Wang, PengYan; Shi, ZhengMing; Dong, Kun; Feng, Ping; Wang, HongXia; Wang, XueJiang

    2015-01-01

    Urotensin II (UII), a somatostatin-like cyclic peptide, is involved in tumor progression due to its mitogenic effect. Our previous study demonstrated that UII and its receptor UT were up-regulated in human hepatocellular carcinoma (HCC), and exogenous UII promoted proliferation of human hepatoma cell line BEL-7402. Hepatic progenitor cell (HPCs) are considered to be one of the origins of liver cancer cells, but their relationship with UII remains unclear. In this work, we aimed to investigate the effect of UII on ROS generation in HPCs and the mechanisms of UII-induced ROS in promoting cell proliferation. Human HCC samples were used to examine ROS level and expression of NADPH oxidase. Hepatic oval cell line WB-F344 was utilized to investigate the underlying mechanisms. ROS level was detected by dihydroethidium (DHE) or 2, 7-dichlorofluorescein diacetate (DCF-DA) fluorescent probe. For HCC samples, ROS level and expression of NADPH oxidase were significantly up-regulated. In vitro, UII also increased ROS generation and expression of NADPH oxidase in WB-F344 cells. NADPH oxidase inhibitor apocynin pretreatment partially abolished UII-increased phosphorylation of PI3K/Akt and ERK, expression of cyclin E/cyclin-dependent kinase 2. Cell cycle was then analyzed by flow cytometry and UII-elevated S phase proportion was inhibited by apocynin pretreatment. Finally, bromodeoxyuridine (Brdu) incorporation assay showed that apocynin partially abolished UII induced cell proliferation. In conclusion, this study indicates that UII-increased ROS production via the NADPH oxidase pathway is partially associated with activation of the PI3K/Akt and ERK cascades, accelerates G1/S transition, and contributes to cell proliferation. These results showed that UII plays an important role in growth of HPCs, which provides novel evidence for the involvement of HPCs in the formation and pathogenesis of HCC. PMID:26658815

  13. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade

    PubMed Central

    2011-01-01

    Background Reactive oxygen species (ROS), superoxide and hydrogen peroxide (H2O2), are necessary for appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss, suggesting that Parkinson's disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons, suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons themselves, thus providing an early therapeutic target. Methods NADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-PCR. Superoxide was measured by flow cytometric detection of H2O2-induced carboxy-H2-DCFDA fluorescence. Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22phox, or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II type 1 receptor-induced NADPH oxidase activation. Results Nigral dopaminergic neurons in situ expressed three subunits necessary for NADPH oxidase activation, and these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22phox, or losartan. A two-wave ROS cascade was identified: 1) as a first wave, mitochondrial H2O2 production was first noted at three hours of MPP+ treatment; and 2) as a second wave, H2O2 levels were further increased by 24 hours. This second wave was eliminated by pharmacological inhibitors and a blocker of protein synthesis. Conclusions A two-wave cascade of ROS production is active in nigral dopaminergic neurons in response to neurotoxicity-induced superoxide. Our findings allow us to conclude that superoxide generated by NADPH oxidase present in nigral neurons contributes to the loss of such neurons in PD. Losartan suppression of nigral-cell superoxide production suggests that angiotensin receptor blockers have potential as PD preventatives. PMID:21975039

  14. NADPH oxidases: an overview from structure to innate immunity-associated pathologies

    PubMed Central

    Panday, Arvind; Sahoo, Malaya K; Osorio, Diana; Batra, Sanjay

    2015-01-01

    Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner. PMID:25263488

  15. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals

    PubMed Central

    Khan, Saeed R.; Khan, Aslam; Byer, Karen J.

    2011-01-01

    Background. Exposure of renal epithelial cells to oxalate (Ox) or calcium oxalate (CaOx) crystals leads to the production of reactive oxygen species and cell injury. We have hypothesized that Ox and CaOx crystals activate NADPH oxidase through upregulation of its various subunits. Methods. Human renal epithelial-derived cell line, HK-2, was exposed to 100 μmol Ox or 66.7 μg/cm2 CaOx monohydrate crystals for 6, 12, 24 or 48 h. After exposure, the cells and media were processed to determine activation of NADPH oxidase, production of superoxide and 8-isoprostane (8IP), and release of lactate dehydrogenase (LDH). RT-PCR was performed to determine mRNA expression of NADPH subunits p22phox, p40phox, p47phox, p67phox and gp91phox as well as Rac-GTPase. Results. Exposure to Ox and CaOx crystals resulted in increase in LDH release, production of 8-IP, NADPH oxidase activity and production of superoxide. Exposure to CaOx crystals resulted in significantly higher NADPH oxidase activity, production of superoxide and LDH release than Ox exposure. Exposure to Ox and CaOx crystals altered the expression of various subunits of NADPH oxidase. More consistent were increases in the expression of membrane-bound p22phox and cytosolic p47phox. Significant and strong correlations were seen between NADPH oxidase activity, the expression of p22phox and p47phox, production of superoxide and release of LDH when cells were exposed to CaOx crystals. The expressions of neither p22phox nor p47phox were significantly correlated with increased NADPH oxidase activity after the Ox exposure. Conclusions. As hypothesized, exposure to Ox or CaOx crystals leads to significant increases in the expression of p22phox and p47phox, leading to activation of NADPH oxidase. Increased NADPH oxidase activity is associated with increased superoxide production and lipid peroxidation. Different pathways appear to be involved in the stimulation of renal epithelial cells by exposure to Ox and CaOx crystals. PMID:21079197

  16. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor

    PubMed Central

    Hirano, Kazufumi; Chen, Woei Shin; Chueng, Adeline L.W.; Dunne, Angela A.; Seredenina, Tamara; Filippova, Aleksandra; Ramachandran, Sumitra; Bridges, Angela; Chaudry, Laiq; Pettman, Gary; Allan, Craig; Duncan, Sarah; Lee, Kiew Ching; Lim, Jean; Ma, May Thu; Ong, Agnes B.; Ye, Nicole Y.; Nasir, Shabina; Mulyanidewi, Sri; Aw, Chiu Cheong; Oon, Pamela P.; Liao, Shihua; Li, Dizheng; Johns, Douglas G.; Miller, Neil D.; Davies, Ceri H.; Browne, Edward R.; Matsuoka, Yasuji; Chen, Deborah W.; Jaquet, Vincent

    2015-01-01

    Abstract Aims: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. Results: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. Innovation and Conclusions: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo. Antioxid. Redox Signal. 23, 358–374. PMID:26135714

  17. Intensification of Doxorubicin-Related Oxidative Stress in the Heart by Hypothyroidism Is Not Related to the Expression of Cytochrome P450 NADPH-Reductase and Inducible Nitric Oxide Synthase, As Well As Activity of Xanthine Oxidase

    PubMed Central

    Dudka, Jaroslaw; Burdan, Franciszek; Korga, Agnieszka; Iwan, Magdalena; Madej-Czerwonka, Barbara; Cendrowska-Pinkosz, Monika; Korobowicz-Markiewicz, Agnieszka; Jodlowska-Jedrych, Barbara; Matysiak, Wlodzimierz

    2012-01-01

    Cytochrome P450 NADPH-reductase (P450R), inducible synthase (iNOS) and xanthine oxidase play an important role in the antracycline-related cardiotoxicity. The expression of P450R and iNOS is regulated by triiodothyronine. The aim of this study was to evaluate the effect of methimazole-induced hypothyreosis on oxidative stress secondary to doxorubicin administration. 48 hours after methimazole giving cessation, rats were exposed to doxorubicin (2.0, 5.0 and 15?mg/kg). Blood and heart were collected 4, 48 and 96?h after the drug administration. Animals exposed exclusively to doxorubicin or untreated ones were also assessed. The hypothyreosis (0.025% of methimazole) significantly increased the doxorubicin effect on the cardiac carbonyl group and they may increase the glutathione level. An insignificant effect of methimazole was noticed in case of the cardiac lipid peroxidation product, the amount of DNA oxidative damages, iNOS and xanthine oxidase-enzymes responsible for red-ox activation of doxorubicin. However, the concentration of P450R was affected by a lower dose of methimazole in rats administered with doxorubicin. Since in rats receiving doxorubicin changes in oxidative stress caused by methimazole were not accompanied by elevation of bioreductive enzymes, it may be concluded that these changes in the oxidative stress were not related to the tested enzymes. PMID:22966413

  18. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  19. NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality.

    PubMed

    Brothers, Kimberly M; Gratacap, Remi L; Barker, Sarah E; Newman, Zachary R; Norum, Ashley; Wheeler, Robert T

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  20. Non-steroidal anti-inflammatory drugs activate NADPH oxidase in adipocytes and raise the H2O2 pool to prevent cAMP-stimulated protein kinase a activation and inhibit lipolysis

    PubMed Central

    2013-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) aspirin, naproxen, nimesulide, and piroxicam lowered activation of type II cAMP-dependent protein kinase A (PKA-II) in isolated rat adipocytes, decreasing adrenaline- and dibutyryl cAMP (Bt2cAMP)-stimulated lipolysis. The molecular bases of insulin-like actions of NSAID were studied. Results Based on the reported inhibition of lipolysis by H2O2, catalase was successfully used to block NSAID inhibitory action on Bt2cAMP-stimulated lipolysis. NSAID, at (sub)micromolar range, induced an H2O2 burst in rat adipocyte plasma membranes and in whole adipocytes. NSAID-mediated rise of H2O2 was abrogated in adipocyte plasma membranes by: diphenyleneiodonium, an inhibitor of NADPH oxidase (NOX); the NOX4 antibody; and cytochrome c, trapping the NOX-formed superoxide. These three compounds prevented the inhibition of Bt2cAMP-stimulated lipolysis by NSAIDs. Inhibition of aquaporin-mediated H2O2 transport with AgNO3 in adipocytes allowed NOX activation but prevented the lipolysis inhibition promoted by NSAID: i.e., once synthesized, H2O2 must reach the lipolytic machinery. Since insulin inhibits adrenaline-stimulated lipolysis, the effect of aspirin on isoproterenol-stimulated lipolysis in rat adipocytes was studied. As expected, isoproterenol-mediated lipolysis was blunted by both insulin and aspirin. Conclusions NSAIDs activate NOX4 in adipocytes to produce H2O2, which impairs cAMP-dependent PKA-II activation, thus preventing isoproterenol-activated lipolysis. H2O2 signaling in adipocytes is a novel and important cyclooxygenase-independent effect of NSAID. PMID:23718778

  1. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection.

    PubMed

    Siddique, Shahid; Matera, Christiane; Radakovic, Zoran S; Hasan, M Shamim; Gutbrod, Philipp; Rozanska, Elzbieta; Sobczak, Miroslaw; Torres, Miguel Angel; Grundler, Florian M W

    2014-04-01

    Plants and animals produce reactive oxygen species (ROS) in response to infection. In plants, ROS not only activate defense responses and promote cell death to limit the spread of pathogens but also restrict the amount of cell death in response to pathogen recognition. Plants also use hormones, such as salicylic acid, to mediate immune responses to infection. However, there are long-lasting biotrophic plant-pathogen interactions, such as the interaction between parasitic nematodes and plant roots during which defense responses are suppressed and root cells are reorganized to specific nurse cell systems. In plants, ROS are primarily generated by plasma membrane-localized NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidases, and loss of NADPH oxidase activity compromises immune responses and cell death. We found that infection of Arabidopsis thaliana by the parasitic nematode Heterodera schachtii activated the NADPH oxidases RbohD and RbohF to produce ROS, which was necessary to restrict infected plant cell death and promote nurse cell formation. RbohD- and RbohF-deficient plants exhibited larger regions of cell death in response to nematode infection, and nurse cell formation was greatly reduced. Genetic disruption of SID2, which is required for salicylic acid accumulation and immune activation in nematode-infected plants, led to the increased size of nematodes in RbohD- and RbohF-deficient plants, but did not decrease plant cell death. Thus, by stimulating NADPH oxidase-generated ROS, parasitic nematodes fine-tune the pattern of plant cell death during the destructive root invasion and may antagonize salicylic acid-induced defense responses during biotrophic life stages. PMID:24714570

  2. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells

    PubMed Central

    2014-01-01

    Background Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Methods Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. Results In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. Conclusions In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an increase in [Ca2+]i, P38 activation, and ROS generation via NADPH oxidase and mitochondria. PMID:25012725

  3. NADPH Oxidase 4 Deficiency Reduces Aquaporin-2 mRNA Expression in Cultured Renal Collecting Duct Principal Cells via Increased PDE3 and PDE4 Activity

    PubMed Central

    Fraille, Eric; Dizin, Eva; Roth, Isabelle; Derouette, Jean-Paul; Szanto, Ildiko; Martin, Pierre-Yves; de Seigneux, Sophie; Hasler, Udo

    2014-01-01

    The final control of renal water reabsorption occurs in the collecting duct (CD) and relies on regulated expression of aquaporin-2 (AQP2) in principal CD cells. AQP2 transcription is primarily induced by type 2 vasopressin receptor (V2R)-cAMP-protein kinase A (PKA) signaling but also by other factors, including TonEBP and NF-?B. NAPDH oxidase 4 (NOX4) represents a major source of reactive oxygen species (ROS) in the kidney. Because NOX-derived ROS may alter PKA, TonEBP and NF-?B activity, we examined the effects of NOX4 depletion on AQP2 expression. Depleted NOX4 expression by siRNA (siNOX4) in mpkCCDcl4 cells attenuated increased AQP2 mRNA expression by arginine vasopressin (AVP) but not by hypertonicity, which induces both TonEBP and NF-?B activity. AVP-induced AQP2 expression was similarly decreased by the flavoprotein inhibitor diphenyleneiodonium. siNOX4 altered neither TonEBP nor NF-?B activity but attenuated AVP-inducible cellular cAMP concentration, PKA activity and CREB phosphorylation as well as AQP2 mRNA expression induced by forskolin, a potent activator of adenylate cyclase. The repressive effect of siNOX4 on AVP-induced AQP2 mRNA expression was abolished by the non-selective phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and was significantly decreased by selective PDE antagonists cilostamide and rolipram, but not vinpocetine, which respectively target PDE3, PDE4 and PDE1. Thus, by inhibiting PDE3 and PDE4 activity NOX4-derived ROS may contribute to V2R-cAMP-PKA signaling and enhance AQP2 transcription. PMID:24466344

  4. NADPH oxidase 4 deficiency reduces aquaporin-2 mRNA expression in cultured renal collecting duct principal cells via increased PDE3 and PDE4 activity.

    PubMed

    Fraille, Eric; Dizin, Eva; Roth, Isabelle; Derouette, Jean-Paul; Szanto, Ildiko; Martin, Pierre-Yves; de Seigneux, Sophie; Hasler, Udo

    2014-01-01

    The final control of renal water reabsorption occurs in the collecting duct (CD) and relies on regulated expression of aquaporin-2 (AQP2) in principal CD cells. AQP2 transcription is primarily induced by type 2 vasopressin receptor (V2R)-cAMP-protein kinase A (PKA) signaling but also by other factors, including TonEBP and NF-?B. NAPDH oxidase 4 (NOX4) represents a major source of reactive oxygen species (ROS) in the kidney. Because NOX-derived ROS may alter PKA, TonEBP and NF-?B activity, we examined the effects of NOX4 depletion on AQP2 expression. Depleted NOX4 expression by siRNA (siNOX4) in mpkCCDcl4 cells attenuated increased AQP2 mRNA expression by arginine vasopressin (AVP) but not by hypertonicity, which induces both TonEBP and NF-?B activity. AVP-induced AQP2 expression was similarly decreased by the flavoprotein inhibitor diphenyleneiodonium. siNOX4 altered neither TonEBP nor NF-?B activity but attenuated AVP-inducible cellular cAMP concentration, PKA activity and CREB phosphorylation as well as AQP2 mRNA expression induced by forskolin, a potent activator of adenylate cyclase. The repressive effect of siNOX4 on AVP-induced AQP2 mRNA expression was abolished by the non-selective phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and was significantly decreased by selective PDE antagonists cilostamide and rolipram, but not vinpocetine, which respectively target PDE3, PDE4 and PDE1. Thus, by inhibiting PDE3 and PDE4 activity NOX4-derived ROS may contribute to V2R-cAMP-PKA signaling and enhance AQP2 transcription. PMID:24466344

  5. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress.

    PubMed

    Pereira, Sandra; Park, Edward; Mori, Yusaku; Haber, C Andrew; Han, Ping; Uchida, Toyoyoshi; Stavar, Laura; Oprescu, Andrei I; Koulajian, Khajag; Ivovic, Alexander; Yu, Zhiwen; Li, Deling; Bowman, Thomas A; Dewald, Jay; El-Benna, Jamel; Brindley, David N; Gutierrez-Juarez, Roger; Lam, Tony K T; Najjar, Sonia M; McKay, Robert A; Bhanot, Sanjay; Fantus, I George; Giacca, Adria

    2014-07-01

    Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling. PMID:24824652

  6. Inhibition of NADPH Oxidase Mediates Protective Effect of Cardiotonic Pills against Rat Heart Ischemia/Reperfusion Injury

    PubMed Central

    Yang, Xiao-Yuan; Zhao, Na; Liu, Yu-Ying; Hu, Bai-He; Sun, Kai; Chang, Xin; Wei, Xiao-Hong; Fan, Jing-Yu; Han, Jing-Yan

    2013-01-01

    Cardiotonic pill (CP) is a compound Chinese medicine currently used in China for treatment of ischemic angina pectoris. Our previous results indicated that a single dosing of CP pretreatment at 0.8?g/kg attenuates ischemia/reperfusion- (I/R-) induced myocardial injury and cardiac microcirculatory disturbance. The present study aimed to investigate the effect of CP at low dosage in a multiple dosing manner and to uncover the mechanism of antioxidative activity of CP. Male Sprague-Dawley rats were subjected to left anterior descending artery occlusion for 30?min followed by 60?min reperfusion. CP was administrated daily by gavage for six days at 0.1, 0.4, and 0.8?g/kg/day before I/R. Results showed that multiple dosing of CP at three doses significantly reduced I/R-induced myocardial injury, microcirculatory disturbance, and oxidative stress. CP dramatically inhibited I/R-induced nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase subunit gp91phox expression and p67phox and p47phox translocation from cytosol to cell membrane. Translocation of cytosolic subunits to membrane is required for the activation of NADPH oxidase. These data suggested that multiple dosing of CP at doses ranging from 0.1 to 0.8?g/kg/day reduced I/R-induced rat myocardial injury and microcirculatory disturbance, which was mediated by inhibition of NADPH oxidase activation. PMID:23840265

  7. NOX2 NADPH OXIDASE PROMOTES PATHOLOGIC CARDIAC REMODELING ASSOCIATED WITH DOXORUBICIN CHEMOTHERAPY

    PubMed Central

    Zhao, Youyou; McLaughlin, Declan; Robinson, Emma; Harvey, Adam P.; Hookham, Michelle B.; Shah, Ajay M.; McDermott, Barbara J.; Grieve, David J.

    2010-01-01

    Doxorubicin is a highly effective cancer treatment whose use is severely limited by dose-dependent cardiotoxicity. It is well established that doxorubicin increases reactive oxygen species (ROS) production. In this study, we investigated contributions to doxorubicin cardiotoxicity from Nox2 NADPH oxidase, an important ROS source in cardiac cells, which is known to modulate several key processes underlying the myocardial response to injury. Nox2-deficient mice (Nox2−/−) and wild-type (WT) controls were injected with doxorubicin (12 mg/kg) or vehicle and studied 8 weeks later. Echocardiography indicated that doxorubicin-induced contractile dysfunction was attenuated in Nox2−/− versus WT mice (fractional shortening: 29.5±1.4 vs 25.7±1.0 %; P<0.05). Similarly, in vivo pressure-volume analysis revealed that systolic and diastolic function was preserved in doxorubicin-treated Nox2−/− versus WT mice (ejection fraction: 52.6±2.5 vs 28.5±2.3 %, LVdPdtmin: −8379±416 vs −5198±527 mmHg s−1, EDPVR: 0.051±0.009 vs 0.114±0.012; P<0.001). Furthermore, in response to doxorubicin, Nox2−/− mice exhibited less myocardial atrophy, cardiomyocyte apoptosis and interstitial fibrosis, together with reduced increases in profibrotic gene expression (procollagen IIIαI, TGF-β3, connective tissue growth factor) and matrix metalloproteinase-9 activity, versus WT controls. These alterations were associated with beneficial changes in NADPH oxidase activity, oxidative/nitrosative stress and inflammatory cell infiltration. We found that adverse effects of doxorubicin were attenuated by acute or chronic treatment with the AT1 receptor antagonist, losartan, which is commonly used to reduce blood pressure. Our findings suggest that ROS specifically-derived from Nox2 NADPH oxidase make a substantial contribution to several key processes underlying development of cardiac contractile dysfunction and remodeling associated with doxorubicin chemotherapy. PMID:20884632

  8. Endotoxin-induced vascular endothelial cell migration is dependent on TLR4/NF-?B pathway, NAD(P)H oxidase activation, and transient receptor potential melastatin 7 calcium channel activity.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cceres, Mnica; Echeverra, Csar; Fernndez, Ricardo; Cabello-Verrugio, Claudio; Cerda, Oscar; Tapia, Pablo; Simon, Felipe

    2014-10-01

    Endothelial dysfunction is decisive and leads to the development of several inflammatory diseases. Endotoxemia-derived sepsis syndrome exhibits a broad inflammation-induced endothelial dysfunction. We reported previously that the endotoxin, lipopolysaccharide (LPS), induces the conversion of endothelial cells (ECs) into activated fibroblasts, showing a myofibroblast-like protein expression profile. Enhanced migration is a hallmark of myofibroblast function. However, the mechanism involved in LPS-induced EC migration is no totally understood. Some studies have shown that the transient receptor potential melastatin 7 (TRPM7) ion channel is involved in fibroblast and tumor cell migration through the regulation of calcium influx. Furthermore, LPS modulates TRPM7 expression. However, whether TRPM7 is involved in LPS-induced EC migration remains unknown. Here, we study the participation of LPS as an inducer of EC migration and study the mechanism underlying evaluating the participation of the TRPM7 ion channel. Our results demonstrate that LPS induced EC migration in a dose-dependent manner. Furthermore, this migratory process was mediated by the TLR-4/NF-?B pathway and the generation of ROS through the PKC-activated NAD(P)H oxidase. In addition, LPS increased the intracellular calcium level and the number of focal adhesion kinase (FAK)-positive focal adhesions in EC. Finally, we demonstrate that using TRPM7 blockers or suppressing TRPM7 expression through siRNA successfully inhibits the calcium influx and the LPS-induced EC migration. These results point out TRPM7 as a new target in the drug design for several inflammatory diseases that impair vascular endothelium function. PMID:25130439

  9. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol-induced MMP-12 expression. • p38 MAPK/NF-κB signaling pathway modulates ethanol-induced Nox2 expression.

  10. Localization of the Dual Oxidase BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of Caenorhabditis elegans.

    PubMed

    van der Hoeven, Ransome; Cruz, Melissa R; Chávez, Violeta; Garsin, Danielle A

    2015-01-01

    Dual oxidases (DUOX) are enzymes that contain an NADPH oxidase domain that produces hydrogen peroxide (H2O2) and a peroxidase domain that can utilize H2O2 to carry out a variety of reactions. The model organism Caenorhabditis elegans produces the DUOX, BLI-3, which has roles in both cuticle development and in protection against infection. In previous work, we demonstrated that while certain peroxidases were protective against the human bacterial pathogen Enterococcus faecalis, the peroxidase domain of BLI-3 was not, leading to the postulate that the NADPH oxidase domain is the basis for BLI-3's protective effects. In this work, we show that a strain carrying a mutation in the NADPH oxidase domain of BLI-3, bli-3(im10), is more susceptible to E. faecalis and the human fungal pathogen Candida albicans. Additionally, less H2O2 is produced in response to pathogen using both an established Amplex Red assay and a strain of C. albicans, WT-OXYellow, which acts as a biosensor of reactive oxygen species (ROS). Finally, a C. elegans line containing a BLI-3::mCherry transgene was generated. Previous work suggested that BLI-3 is produced in the hypodermis and the intestine. Expression of the transgene was observed in both these tissues, and additionally in the pharynx. The amount and pattern of localization of BLI-3 did not change in response to pathogen exposure. PMID:25909649

  11. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    PubMed Central

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Federman Gross, Aya; Rafalowski, Meirav; Pick, Edgar

    2015-01-01

    The superoxide (O?2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O?2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components. PMID:25699251

  12. The senescence-accelerated mouse prone-8 (SAM-P8) oxidative stress is associated with upregulation of renal NADPH oxidase system.

    PubMed

    Baltans, Ana; Solesio, Maria E; Zalba, Guillermo; Galindo, Mara F; Fortuo, Ana; Jordn, Joaqun

    2013-12-01

    Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r?=?0.382, P?NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice. PMID:23839498

  13. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  14. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress.

    PubMed

    Carvalho, Denise P; Dupuy, Corinne

    2013-09-01

    Somatic mutations are present at high levels in the rat thyroid gland, indicating that the thyrocyte is under oxidative stress, a state in which cellular oxidant levels are high. The most important class of free radicals, or reactive metabolites, is reactive oxygen species (ROS), such as superoxide anion (O2 (-)), hydroxyl radical (OH) and hydrogen peroxide (H2O2). The main source of ROS in every cell type seems to be mitochondrial respiration; however, recent data support the idea that NADPH:O(2) oxidoreductase flavoproteins or simply NADPH oxidases (NOX) are enzymes specialized in controlled ROS generation at the subcellular level. Several decades ago, high concentrations of H2O2 were detected at the apical surface of thyrocytes, where thyroid hormone biosynthesis takes place. Only in the last decade has the enzymatic source of H2O2 involved in thyroid hormone biosynthesis been well characterized. The cloning of two thyroid genes encoding NADPH oxidases dual oxidases 1 and 2 (DUOX1 and DUOX2) revealed that DUOX2 mutations lead to hereditary hypothyroidism in humans. Recent reports have also described the presence of NOX4 in the thyroid gland and have suggested a pathophysiological role of this member of the NOX family. In the present review, we describe the participation of NADPH oxidases not only in thyroid physiology but also in gland pathophysiology, particularly the involvement of these enzymes in the regulation of thyroid oxidative stress. PMID:24847449

  15. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species.

    PubMed

    Cho, Kyung-Jin; Seo, Ji-Min; Kim, Jae-Hong

    2011-07-01

    In mammalian cells, reactive oxygen species (ROS) are produced via a variety of cellular oxidative processes, including the activity of NADPH oxidases (NOX), the activity of xanthine oxidases, the metabolism of arachidonic acid (AA) by lipoxygenases (LOX) and cyclooxygenases (COX), and the mitochondrial respiratory chain. Although NOX-generated ROS are the best characterized examples of ROS in mammalian cells, ROS are also generated by the oxidative metabolism (e.g., via LOX and COX) of AA that is released from the membrane phospholipids via the activity of cytosolic phospholipase A(2) (cPLA(2)). Recently, growing evidence suggests that LOX- and COX-generated AA metabolites can induce ROS generation by stimulating NOX and that a potential signaling connection exits between the LOX/COX metabolites and NOX. In this review, we discuss the results of recent studies that report the generation of ROS by LOX metabolites, especially 5-LOX metabolites, via NOX stimulation. In particular, we have focused on the contribution of leukotriene B(4) (LTB(4)), a potent bioactive eicosanoid that is derived from 5-LOX, and its receptors, BLT1 and BLT2, to NOX stimulation through a signaling mechanism that leads to ROS generation. PMID:21424583

  16. Bacillus Calmette-Guerin Infection in NADPH Oxidase Deficiency: Defective Mycobacterial Sequestration and Granuloma Formation

    PubMed Central

    Deffert, Christine; Schppi, Michela G.; Pache, Jean-Claude; Cachat, Julien; Vesin, Dominique; Bisig, Ruth; Ma Mulone, Xiaojuan; Kelkka, Tiina; Holmdahl, Rikard

    2014-01-01

    Patients with chronic granulomatous disease (CGD) lack generation of reactive oxygen species (ROS) through the phagocyte NADPH oxidase NOX2. CGD is an immune deficiency that leads to frequent infections with certain pathogens; this is well documented for S. aureus and A. fumigatus, but less clear for mycobacteria. We therefore performed an extensive literature search which yielded 297 cases of CGD patients with mycobacterial infections; M. bovis BCG was most commonly described (74%). The relationship between NOX2 deficiency and BCG infection however has never been studied in a mouse model. We therefore investigated BCG infection in three different mouse models of CGD: Ncf1 mutants in two different genetic backgrounds and Cybb knock-out mice. In addition, we investigated a macrophage-specific rescue (transgenic expression of Ncf1 under the control of the CD68 promoter). Wild-type mice did not develop severe disease upon BCG injection. In contrast, all three types of CGD mice were highly susceptible to BCG, as witnessed by a severe weight loss, development of hemorrhagic pneumonia, and a high mortality (?50%). Rescue of NOX2 activity in macrophages restored BCG resistance, similar as seen in wild-type mice. Granulomas from mycobacteria-infected wild-type mice generated ROS, while granulomas from CGD mice did not. Bacterial load in CGD mice was only moderately increased, suggesting that it was not crucial for the observed phenotype. CGD mice responded with massively enhanced cytokine release (TNF-?, IFN-?, IL-17 and IL-12) early after BCG infection, which might account for severity of the disease. Finally, in wild-type mice, macrophages formed clusters and restricted mycobacteria to granulomas, while macrophages and mycobacteria were diffusely distributed in lung tissue from CGD mice. Our results demonstrate that lack of the NADPH oxidase leads to a markedly increased severity of BCG infection through mechanisms including increased cytokine production and impaired granuloma formation. PMID:25188296

  17. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice.

    PubMed

    Murray, Thomas V A; Dong, Xuebin; Sawyer, Greta J; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K; Martin, Daniel; Schrder, Katrin; Brandes, Ralf P; Hughes, Robin D; Shah, Ajay M; Brewer, Alison C

    2015-12-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. PMID:26472193

  18. Effects of aortic coarctation on aortic antioxidant enzymes and NADPH oxidase protein expression.

    PubMed

    Sindhu, Ram K; Roberts, Christian K; Ehdaie, Ashkan; Zhan, Chang-De; Vaziri, Nosratola D

    2005-01-01

    Abdominal aortic coarctation above the renal arteries leads to severe hypertension above the stenotic site and provides a model for simultaneous testing of the effects of increased and decreased pressure and consequently shear stress in the same animal. The effects of increased pressure, per se, on oxidative stress and antioxidant enzyme expression is unknown. We studied the protein expressions of antioxidant enzymes and NADPH oxidase (gp91phox subunit) in the aortic segments above and below the stenosis site in sham-operated control and aortic-banded rats at four weeks postoperatively. Compared with the control group, the banded group showed significant up-regulation of NADPH oxidase, catalase (CAT), Cu/Zn superoxide dismutase (SOD) and Mn SOD protein content in the thoracic aorta. In contrast, Mn SOD, Cu/Zn SOD and NADPH oxidase protein abundance were unchanged in the abdominal aortic segment below the stricture where blood pressure is not elevated, whereas CAT protein abundance was also elevated in the abdominal aorta. No changes were noted for glutathione peroxidase (GPX) protein content either in the thoracic or abdominal aortic segments. Coarctation-induced hypertension is associated with increased aortic CAT, Cu/Zn SOD, Mn SOD and NADPH oxidase protein expression. The up-regulation of NADPH oxidase increases reactive oxygen species (ROS) generation noted in the present study and contributes to inactivation of nitric oxide (NO) as shown previously in this model. Upregulation of antioxidant enzymes may be a compensatory response in the face of elevated pressure and oxidative stress. The normality of protein abundance in the abdominal aorta wherein blood pressure is not elevated points to the role of baromechanical factors, as opposed to circulating humoral factors that were similar in both segments, as a mechanism responsible for increased antioxidant enzyme expression. PMID:15589970

  19. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice

    PubMed Central

    Murray, Thomas V.A.; Dong, Xuebin; Sawyer, Greta J.; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K.; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P.; Hughes, Robin D.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. PMID:26472193

  20. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  1. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-?B-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1?-exposed Caco-2 cells.

    PubMed

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1?, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1? brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-?B, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 ?M), and IL-1? prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1? also prevented the IL-1?-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-?B was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level. PMID:23931157

  2. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.

    PubMed

    Ben Rejeb, Kilani; Benzarti, Maâli; Debez, Ahmed; Bailly, Christophe; Savouré, Arnould; Abdelly, Chedly

    2015-02-01

    The involvement of hydrogen peroxide (H2O2) generated by nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) in the antioxidant defense system was assessed in salt-challenged Arabidopsis thaliana seedlings. In the wild-type, short-term salt exposure led to a transient and significant increase of H2O2 concentration, followed by a marked increase in catalase (CAT, EC 1.11.16), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) activities. Pre-treatment with either a chemical trap for H2O2 (dimethylthiourea) or two widely used NADPH oxidase inhibitors (imidazol and diphenylene iodonium) significantly decreased the above-mentioned enzyme activities under salinity. Double mutant atrbohd/f plants failed to induce the antioxidant response under the culture conditions. Under long-term salinity, the wild-type was more salt-tolerant than the mutant based on the plant biomass production. The better performance of the wild-type was related to a significantly higher photosynthetic activity, a more efficient K(+) selective uptake, and to the plants' ability to deal with the salt-induced oxidative stress as compared to atrbohd/f. Altogether, these data suggest that the early H2O2 generation by NADPH oxidase under salt stress could be the beginning of a reaction cascade that triggers the antioxidant response in A. thaliana in order to overcome the subsequent reactive oxygen species (ROS) production, thereby mitigating the salt stress-derived injuries. PMID:25462961

  3. Microphthalmia-associated transcription factor modulates expression of NADPH oxidase type 4: a negative regulator of melanogenesis.

    PubMed

    Liu, Guei-Sheung; Peshavariya, Hitesh; Higuchi, Masayoshi; Brewer, Alison C; Chang, Catherine W T; Chan, Elsa C; Dusting, Gregory J

    2012-05-01

    How signaling via reactive oxygen species (ROS) influences skin pigmentation is unclear. We have investigated how NADPH oxidase-derived ROS modulates the expression of the key pigment "melanin" synthesizing enzymes in B16 mouse melanoma cells. A melanin inducer ?-melanocyte-stimulating hormone (?-MSH) caused ROS generation that was inhibited by the NADPH oxidase inhibitor Diphenyleneiodonium (DPI) and was insensitive to antagonists of other ROS-producing enzyme systems including mitochondrial enzymes, cycloxygenase, and xanthine oxidase. NADPH oxidase 4 (Nox4) was found to be the most abundant isoform expressed in B16 cells, and its gene levels, as well as ROS generation, were enhanced by ?-MSH. Interestingly, silencing Nox4 gene expression with Nox4 siRNA augmented melanin formation under basal conditions and after ?-MSH stimulation, demonstrating that constitutive or stimulated Nox4-dependent ROS inhibits melanin formation. This process may be mediated by targeting the promoter region of a melanin synthesizing enzyme tyrosinase, because Nox4 siRNA enhanced tyrosinase promoter activity. Moreover, inhibition of tyrosinase mRNA expression in Nox4 siRNA-treated cells by blocking de novo mRNA and protein synthesis with actinomycin D and cycloheximide respectively indicates that Nox4 repression induces melanogenesis by increasing tyrosinase gene expression. We also found that ?-MSH activated its downstream signal transducer microphthalmia-associated transcription factor (MITF) to stimulate Nox4 gene expression. We thus identified a novel mechanism by MITF signaling that in turn stimulates Nox4 to drive ROS generation, thereby repressing melanin synthesis. Such sequence of actions appears to act as an internal feedback mechanism to fine-tune melanin synthesis in response to exogenous challenges such as UV radiation. PMID:22401855

  4. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  5. Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase.

    PubMed

    Thengchaisri, Naris; Hein, Travis W; Ren, Yi; Kuo, Lih

    2015-09-01

    Elevated levels of endothelin-1 (ET-1), a potent vasoactive peptide, are implicated as a risk factor for cardiovascular diseases by exerting vasoconstriction. The aim of this study was to address whether ET-1, at sub-vasomotor concentrations, elicits adverse effects on coronary microvascular function. Porcine coronary arterioles (50-100μm) were isolated, cannulated and pressurized without flow for in vitro study. Diameter changes were recorded using a videomicrometer. Arterioles developed basal tone (60±3μm) and dilated to the endothelium-dependent nitric oxide (NO)-mediated vasodilators serotonin (1nmol/L to 0.1μmol/L) and adenosine (1nmol/L to 10μmol/L). Treating the vessels with a clinically relevant sub-vasomotor concentration of ET-1 (10pmol/L, 60min) significantly attenuated arteriolar dilations to adenosine and serotonin but not to endothelium-independent vasodilator sodium nitroprusside. The arteriolar wall contains ETA receptors and the adverse effect of ET-1 was prevented by ETA receptor antagonist BQ123, the superoxide scavenger Tempol, the NADPH oxidase inhibitors apocynin and VAS2870, the NOX2-based NADPH oxidase inhibitor gp91 ds-tat, or the p38 kinase inhibitor SB203580. However, ETB receptor antagonist BQ788, H2O2 scavenger catalase, scrambled gp91 ds-tat, or inhibitors of xanthine oxidase (allopurinol), PKC (Gö 6983), Rho kinase (Y27632), and c-Jun N-terminal kinase (SP600125) did not protect the vessel. Immunohistochemical staining showed that ET-1 elicited Tempol-, apocynin- and SB203580-sensitive superoxide productions in the arteriolar wall. Our results indicate that exposure of coronary arterioles to a pathophysiological, sub-vasomotor concentration of ET-1 leads to vascular dysfunction by impairing endothelium-dependent NO-mediated dilation via p38 kinase-mediated production of superoxide from NADPH oxidase following ETA receptor activation. PMID:26211713

  6. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase

    PubMed Central

    Joo, Jung Hee; Huh, Jeong-Eun; Lee, Jee Hyun; Park, Doo Ri; Lee, Yoonji; Lee, Seul Gee; Choi, Sun; Lee, Hwa Jeong; Song, Seong-Won; Jeong, Yongmi; Goo, Ja-Il; Choi, Yongseok; Baek, Hye Kyung; Yi, Sun Shin; Park, Soo Jin; Lee, Ji Eun; Ku, Sae Kwang; Lee, Won Jae; Lee, Kee-In; Lee, Soo Young; Bae, Yun Soo

    2016-01-01

    Osteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes. Blocking the activity of Nox with Ewha-18278 inhibited the responses of BMMs to RANKL, including reactive oxygen species (ROS) generation, activation of mitogen-activated protein (MAP) kinases and NF-κB, and OC differentiation. To evaluate the anti-osteoporotic function of Ewha-18278, the derivative was applied to estrogen-deficient ovariectomized (OVX) ddY mice. Oral administration of Ewha-18278 (10 mg/kg/daily, 4 weeks) into the mice recovered bone mineral density, trabecular bone volume, trabecular bone length, number and thickness, compared to control OVX ddY mice. Moreover, treatment of OVX ddY mice with Ewha-18278 increased bone strength by increasing cortical bone thickness. We provide that Ewha-18278 displayed Nox inhibition and blocked the RANKL-dependent cell signaling cascade leading to reduced differentiation of OCs. Our results implicate Ewha-18278 as a novel therapeutic agent for the treatment of osteoporosis. PMID:26975635

  7. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase.

    PubMed

    Joo, Jung Hee; Huh, Jeong-Eun; Lee, Jee Hyun; Park, Doo Ri; Lee, Yoonji; Lee, Seul Gee; Choi, Sun; Lee, Hwa Jeong; Song, Seong-Won; Jeong, Yongmi; Goo, Ja-Il; Choi, Yongseok; Baek, Hye Kyung; Yi, Sun Shin; Park, Soo Jin; Lee, Ji Eun; Ku, Sae Kwang; Lee, Won Jae; Lee, Kee-In; Lee, Soo Young; Bae, Yun Soo

    2016-01-01

    Osteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes. Blocking the activity of Nox with Ewha-18278 inhibited the responses of BMMs to RANKL, including reactive oxygen species (ROS) generation, activation of mitogen-activated protein (MAP) kinases and NF-κB, and OC differentiation. To evaluate the anti-osteoporotic function of Ewha-18278, the derivative was applied to estrogen-deficient ovariectomized (OVX) ddY mice. Oral administration of Ewha-18278 (10 mg/kg/daily, 4 weeks) into the mice recovered bone mineral density, trabecular bone volume, trabecular bone length, number and thickness, compared to control OVX ddY mice. Moreover, treatment of OVX ddY mice with Ewha-18278 increased bone strength by increasing cortical bone thickness. We provide that Ewha-18278 displayed Nox inhibition and blocked the RANKL-dependent cell signaling cascade leading to reduced differentiation of OCs. Our results implicate Ewha-18278 as a novel therapeutic agent for the treatment of osteoporosis. PMID:26975635

  8. The NADPH oxidase inhibitor diphenyleneiodonium is also a potent inhibitor of cholinesterases and the internal Ca2+ pump

    PubMed Central

    Tazzeo, T; Worek, F; Janssen, LJ

    2009-01-01

    Background and purpose: Diphenyleneiodonium (DPI) is often used as an NADPH oxidase inhibitor, but is increasingly being found to have unrelated side effects. We investigated its effects on smooth muscle contractions and the related mechanisms. Experimental approach: We studied isometric contractions in smooth muscle strips from bovine trachea. Cholinesterase activity was measured using a spectrophotometric assay; internal Ca2+ pump activity was assessed by Ca2+ uptake into smooth muscle microsomes. Key results: Contractions to acetylcholine were markedly enhanced by DPI (10−4 M), whereas those to carbachol (CCh) were not, suggesting a possible inhibition of cholinesterase. DPI markedly suppressed contractions evoked by CCh, KCl and 5-HT, and also unmasked phasic activity in otherwise sustained responses. Direct biochemical assays confirmed that DPI was a potent inhibitor of acetylcholinesterase and butyrylcholinesterase (IC50∼8 × 10−6 M and 6 × 10−7 M, respectively), following a readily reversible, mixed non-competitive type of inhibition. The inhibitory effects of DPI on CCh contractions were not mimicked by another NADPH oxidase inhibitor (apocynin), nor the Src inhibitors PP1 or PP2, ruling out an action through the NADPH oxidase signalling pathway. Several features of the DPI-mediated suppression of agonist-evoked responses (i.e. suppression of peak magnitudes and unmasking of phasic activity) are similar to those of cyclopiazonic acid, an inhibitor of the internal Ca2+ pump. Direct measurement of microsomal Ca2+ uptake revealed that DPI modestly inhibits the internal Ca2+ pump. Conclusions and implications: DPI inhibits cholinesterase activity and the internal Ca2+ pump in tracheal smooth muscle. PMID:19788497

  9. Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease

    PubMed Central

    Gorin, Yves; Wauquier, Fabien

    2015-01-01

    Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-?. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted. PMID:25824546

  10. Expression of NADPH Oxidase (NOX) 5 in Rabbit Corneal Stromal Cells

    PubMed Central

    Rizvi, Farhan; Heimann, Tom; O'Brien, William J.

    2012-01-01

    Purpose To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC). NADPH oxidases (NOXes) are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands. Methods Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5. Results NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus) NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region. Conclusions The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification. PMID:22511941

  11. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  12. Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways.

    PubMed

    Cui, Yanji; Park, Jee-Yun; Wu, Jinji; Lee, Ji Hyung; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Joo Min; Yoo, Eun-Sook; Kim, Seong-Ho; Ahn Jo, Sangmee; Suk, Kyoungho; Eun, Su-Yong

    2015-05-01

    Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 g/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91 (phox) , which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways. PMID:25954126

  13. Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

    PubMed Central

    Cui, Yanji; Park, Jee-Yun; Wu, Jinji; Lee, Ji Hyung; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Joo Min; Yoo, Eun-Sook; Kim, Seong-Ho; Ahn Jo, Sangmee; Suk, Kyoungho

    2015-01-01

    Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 g/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91phox, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways. PMID:25954126

  14. Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway.

    PubMed

    Dong, Feng; Zhang, Xiaochun; Ren, Jun

    2006-02-01

    Leptin, the obese gene product, plays an important role in the regulation of cardiac function. However, the mechanism behind leptin-induced cardiomyocyte contractile response is poorly understood. This study was designed to examine whether endothelin-1 receptor and NADPH oxidase play any role in leptin-induced cardiac contractile response. Isolated murine cardiomyocytes were exposed to leptin (5, 50, and 100 nmol/L) for 60 minutes in the absence or presence of the ETA receptor antagonist BQ123 (1 micromol/L), the ETB receptor antagonist BQ788 (1 micromol/L), or the NADPH oxidase inhibitor apocynin (100 micromol/L) before mechanical function was studied. Superoxide levels were measured by dihydroethidium fluorescent dye and the superoxide dismutase-inhibitable reduction of cytochrome c. NADPH oxidase subunit expression (p22phox, p47phox, p67phox, and gp91phox) was evaluated with Western blot. Leptin depressed peak shortening and maximal velocity of shortening/relengthening (+/-dL/dt), prolonged the duration of relengthening (TR90) without affecting the time-to-peak cell shortening. Consistent with the mechanical characteristics, myocytes treated with leptin displayed a reduced electrically stimulated rise in intracellular Ca2+ (change in fura-2 fluorescence intensity) associated with a prolonged intracellular Ca2+ decay rate. All of the abnormalities were significantly attenuated by apocynin, BQ123, or BQ788. Intracellular superoxide generation was enhanced after leptin treatment, which was partially blocked by apocynin, BQ123, or BQ788. Leptin had no effect on p22phox and gp91phox but upregulated protein expression of p67phox and p47phox, both of which were inhibited by apocynin, BQ123, or BQ788. These results suggest that leptin suppresses cardiac contractile function in ventricular myocytes through the endothelin-1 receptor and NADPH oxidase-mediated pathway. PMID:16380530

  15. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement

    PubMed Central

    Altenhöfer, Sebastian; Radermacher, Kim A.; Kleikers, Pamela W.M.; Wingler, Kirstin

    2015-01-01

    Abstract Significance: Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Recent Advances: Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Critical Issues: Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. Future Directions: The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition. Antioxid. Redox Signal. 23, 406–427. PMID:24383718

  16. NADPH Oxidase 4 Mediates TGF?1-induced CCN2 in Gingival Fibroblasts.

    PubMed

    Yang, W H; Deng, Y T; Hsieh, Y P; Wu, K J; Kuo, M Y P

    2015-07-01

    Transforming growth factor ? (TGF?) plays a central role in the pathogenesis of gingival overgrowth (GO). Connective tissue growth factor (CTGF; or CCN2) is induced by TGF? in human gingival fibroblasts (HGFs) and is overexpressed in GO tissues. CCN2 creates an environment favorable for fibrogenesis and is required for the maximal profibrotic effects of TGF?. We previously showed that Src, JNK, and Smad3 mediate TGF?1-induced CCN2 protein expression in HGFs. Moreover, Src is an upstream signaling transducer of JNK and Smad3. Recent studies suggested that NADPH oxidase (NOX)-dependent redox mechanisms are involved in mediating the profibrotic effects of TGF?. In this study, we demonstrated that TGF?1 upregulated NOX4 protein expression and increased reactive oxygen species (ROS) production in HGFs. Genetic or pharmacologic targeting of NOX4 abrogated TGF?1-induced ROS production; Src, JNK, and Smad3 activation; and CCN2 and type I collagen protein expression in HGFs. Our results indicated that NOX4-derived ROS play pivotal roles in activating Src kinase activity leading to the activation of canonical (Smad3) and noncanonical (JNK) cascades that cooperate to attain maximum CCN2 expression. Furthermore, we demonstrated that curcumin significantly inhibited the TGF?1-induced NOX4 protein expression in HGFs. Curcumin potentially qualifies as an agent to control GO by suppressing TGF?1-induced NOX4 expression in HGFs. PMID:25858818

  17. Fetalmaternal interface impedance parallels local NADPH oxidase related superoxide production

    PubMed Central

    Guedes-Martins, L.; Silva, E.; Gaio, A.R.; Saraiva, J.; Soares, A.I.; Afonso, J.; Macedo, F.; Almeida, H.

    2015-01-01

    Blood flow assessment employing Doppler techniques is a useful procedure in pregnancy evaluation, as it may predict pregnancy disorders coursing with increased uterine vascular impedance, as pre-eclampsia. While the local causes are unknown, emphasis has been put on reactive oxygen species (ROS) excessive production. As NADPH oxidase (NOX) is a ROS generator, it is hypothesized that combining Doppler assessment with NOX activity might provide useful knowledge on placental bed disorders underlying mechanisms. A prospective longitudinal study was performed in 19 normal course, singleton pregnancies. Fetal aortic isthmus (AoI) and maternal uterine arteries (UtA) pulsatility index (PI) were recorded at two time points: 2022 and 4041 weeks, just before elective Cesarean section. In addition, placenta and placental bed biopsies were performed immediately after fetal extraction. NOX activity was evaluated using a dihydroethidium-based fluorescence method and associations to PI values were studied with Spearman correlations. A clustering of pregnancies coursing with higher and lower PI values was shown, which correlated strongly with placental bed NOX activity, but less consistently with placental tissue. The study provides evidence favoring that placental bed NOX activity parallels UtA PI enhancement and suggests that an excess in oxidation underlies the development of pregnancy disorders coursing with enhanced UtA impedance. PMID:25912167

  18. Methamphetamine alters occludin expression via NADPH oxidase-induced oxidative insult and intact caveolae

    PubMed Central

    Park, Minseon; Hennig, Bernhard; Toborek, Michal

    2012-01-01

    Abstract Methamphetamine (METH) is a drug of abuse with neurotoxic and vascular effects that may be mediated by reactive oxygen species (ROS). However, potential sources of METH-induced generation of ROS are not fully understood. This study is focused on the role of NAD(P)H oxidase (NOX) in METH-induced dysfunction of brain endothelial cells. Treatment with METH induced a time-dependent increase in phosphorylation of NOX subunit p47, followed by its binding with gp91 and p22, and the formation of an active NOX complex. An increase in NOX activity was associated with elevated production of ROS, alterations of occludin levels and increased transendothelial migration of monocytes. Inhibition of NOX by NSC 23766 attenuated METH-induced ROS generation, changes in occludin protein levels and monocyte migration. Because an active NOX complex is localized to caveolae, we next evaluated the role of caveolae in METH-mediated toxicity to brain endothelial cells. Treatment with METH induced phosphorylation of ERK1/2 and caveolin-1 protein. Inhibition of ERK1/2 activity or caveolin-1 silencing protected against METH-induced alterations of occludin levels. These findings indicate an important role of NOX and functional caveolae in METH-induced oxidative stress in brain endothelial cells that contribute to the subsequent alterations of occludin levels and transendothelial migration of inflammatory cells. PMID:21435178

  19. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells

    PubMed Central

    Mantegazza, Adriana R.; Savina, Ariel; Vermeulen, Mnica; Prez, Laura; Geffner, Jorge; Hermine, Olivier; Rosenzweig, Sergio D.; Faure, Florence

    2008-01-01

    The phagocyte NADPH oxidase (NOX2) is critical for the bactericidal activity of phagocytic cells and plays a major role in innate immunity. We showed recently that NOX2 activity in mouse dendritic cells (DCs) prevents acidification of phagosomes, promoting antigen cross-presentation. Inorder to investigate the role of NOX2 in the regulation of the phagosomal pH in human DCs, we analyzed the production of reactive oxygen species (ROS) and the phagosomal/endosomal pH in monocyte-derived DCs and macrophages (Ms) from healthy donors or patients with chronic granulomatous disease (CGD). As expected, we found that human Ms acidify their phagosomes more efficiently than human DCs. Accordingly, the expression of the vacuolar proton ATPase (V-H+-ATPase) was higher in Ms than in DCs. Phagosomal ROS production, however, was also higher in Ms than in DCs, due to higher levels of gp91phox expression and recruitment to phagosomes. In contrast, in the absence of active NOX2, the phagosomal and endosomal pH decreased. Both in the presence of a NOX2 inhibitor and in DCs derived from patients with CGD, the cross-presentation of 2 model tumor antigens was impaired. We conclude that NOX2 activity participates in the regulation of the phagosomal and endosomal pH in human DCs, and is required for efficient antigen cross-presentation. PMID:18682599

  20. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus

    PubMed Central

    Ryder, Lauren S.; Dagdas, Yasin F.; Mentlak, Thomas A.; Kershaw, Michael J.; Thornton, Christopher R.; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J.

    2013-01-01

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  1. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection.

    PubMed

    Sun, Keer; Metzger, Dennis W

    2014-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a leading contributor to mortality during recent influenza pandemics. The mechanism for this influenza-induced susceptibility to secondary S. aureus infection is poorly understood. In this study, we show that innate antibacterial immunity was significantly suppressed during the recovery stage of influenza infection, even though MRSA superinfection had no significant effect on viral burdens. Compared with mice infected with bacteria alone, postinfluenza MRSA-infected mice exhibited impaired bacterial clearance, which was not due to defective phagocyte recruitment, but rather coincided with reduced intracellular reactive oxygen species levels in alveolar macrophages and neutrophils. NADPH oxidase is responsible for reactive oxygen species production during phagocytic bacterial killing, a process also known as oxidative burst. We found that gp91(phox)-containing NADPH oxidase activity in macrophages and neutrophils was essential for optimal bacterial clearance during respiratory MRSA infections. In contrast to wild-type animals, gp91(phox-/-) mice exhibited similar defects in MRSA clearance before and after influenza infection. Using gp91(phox+/-) mosaic mice, we further demonstrate that influenza infection inhibits a cell-intrinsic contribution of NADPH oxidase to phagocyte bactericidal activity. Taken together, our results establish that influenza infection suppresses NADPH oxidase-dependent bacterial clearance and leads to susceptibility to secondary MRSA infection. PMID:24563256

  2. Oxidative Stress in Atrial Fibrillation: An Emerging Role of NADPH Oxidase

    PubMed Central

    Youn, Ji-Youn; Zhang, Jun; Zhang, Yixuan; Chen, Houzao; Liu, Depei; Ping, Peipei; Weiss, James N.; Cai, Hua

    2013-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. Patients with AF have up to seven-fold higher risk of suffering from ischemic stroke. Better understanding of etiologies of AF and its thromboembolic complications are required for improved patient care, as current anti-arrhythmic therapies have limited efficacy and off target effects. Accumulating evidence has implicated a potential role of oxidative stress in the pathogenesis of AF. Excessive production of reactive oxygen species (ROS) is likely involved in the structural and electrical remodeling of the heart, contributing to fibrosis and thrombosis. In particular, NADPH oxidase (NOX) has emerged as a potential enzymatic source for ROS production in AF based on growing evidence from clinical and animal studies. Indeed, NOX can be activated by known upstream triggers of AF such as angiotensin II and atrial stretch. In addition, treatments such as Statins, antioxidants, ACEI or AT1RB have been shown to prevent post-operative AF; among which ACEI/AT1RB and Statins can attenuate NOX activity. On the other hand, detailed molecular mechanisms by which specific NOX isoform(s) are involved in the pathogenesis of AF and the extent to which activation of NOX plays a causal role in AF development remains to be determined. The current review discusses causes and consequences of oxidative stress in AF with a special focus on the emerging role of NOX pathways. PMID:23643589

  3. Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes.

    PubMed

    Sciarretta, Sebastiano; Yee, Derek; Ammann, Paul; Nagarajan, Narayani; Volpe, Massimo; Frati, Giacomo; Sadoshima, Junichi

    2015-04-01

    In the past several years, it has been demonstrated that the reactive oxygen species (ROS) may act as intracellular signalling molecules to activate or inhibit specific signalling pathways and regulate physiological cellular functions. It is now well-established that ROS regulate autophagy, an intracellular degradation process. However, the signalling mechanisms through which ROS modulate autophagy in a regulated manner have only been minimally clarified. NADPH oxidase (Nox) enzymes are membrane-bound enzymatic complexes responsible for the dedicated generation of ROS. Different isoforms of Nox exist with different functions. Recent studies demonstrated that Nox-derived ROS can promote autophagy, with Nox2 and Nox4 representing the isoforms of Nox implicated thus far. Nox2- and Nox4-dependent autophagy plays an important role in the elimination of pathogens by phagocytes and in the regulation of vascular- and cancer-cell survival. Interestingly, we recently found that Nox is also important for autophagy regulation in cardiomyocytes. We found that Nox4, but not Nox2, promotes the activation of autophagy and survival in cardiomyocytes in response to nutrient deprivation and ischaemia through activation of the PERK (protein kinase RNA-like endoplasmic reticulum kinase) signalling pathway. In the present paper, we discuss the importance of Nox family proteins and ROS in the regulation of autophagy, with a particular focus on the role of Nox4 in the regulation of autophagy in the heart. PMID:25515000

  4. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease

    PubMed Central

    Vendrov, Aleksandr E.; Vendrov, Kimberly C.; Smith, Alberto; Yuan, Jinling; Sumida, Arihiro; Robidoux, Jacques; Madamanchi, Nageswara R.

    2015-01-01

    Abstract Aims: Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe−/− mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. Results: Both aged (16 months) Apoe−/− and Apoe−/−/p47phox−/− mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox−/− mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe−/− mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. Innovation and Conclusion: These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are potential approaches to reducing aging-associated CVD. Antioxid. Redox Signal. 23, 1389–1409. PMID:26054376

  5. Endothelin-1 Regulates Cardiac L-Type Calcium Channels via NAD(P)H Oxidase-Derived Superoxide

    PubMed Central

    Zeng, Qinghua; Zhou, Qingwei; Yao, Fanrong; ORourke, Stephen T.; Sun, Chengwen

    2015-01-01

    It has been shown that reactive oxygen species (ROS) are involved in the intracellular signaling response to G-protein coupled receptor stimuli in vascular smooth muscle cells and in neurons. In the present study, we tested the hypothesis that NAD(P)H oxidase-derived ROS are involved endothelin-1 (ET-1)-induced L-type calcium channel activation in isolated cardiac myocytes. ET-1 (10 nM) induced a 2-fold increase in L-type calcium channel open-state probability (NPo). This effect of ET-1 was abolished by the ETA receptor antagonist cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) [BQ-123 (1 ?M)] but was not altered in the presence of an ETB receptor antagonist N-cis-2,6-dimethylpiperidinocarbonyl-b-tBu-Ala-D-Trp(1-methoxycarbonyl)-D-Nle-OH [BQ-788 (1 ?M)]. Pre-treatment of cells with the ROS scavenger tempol (100 ?M), polyethylene glycol-superoxide dismutase (SOD, 25 U/ml), or the NAD(P)H-oxidase inhibitor gp91ds-tat ([H]RKKRRQRRR-CSTRIRRQL[NH3]) (5 ?M) significantly attenuated ET-1-induced increases in calcium channel NPo. Tempol, SOD, and gp91ds-tat alone had no effect on basal calcium channel activity. In addition, ET-1 significantly increased NAD(P)H oxidase activity and elevated intracellular superoxide levels in cultured cardiac myocytes. The superoxide generator, xanthine-xanthine oxidase (10 mM, 20 mU/ ml), also increased calcium channel NPo in cardiac myocytes, mimicking the effect of ET-1. These observations provide the first evidence that ET-1 induces the activation of L-type Ca2+ channels via stimulation of NAD(P)H-derived superoxide production in cardiac myocytes. PMID:18539650

  6. Nox Family NADPH Oxidases in Mechano-Transduction: Mechanisms and Consequences

    PubMed Central

    Weissmann, Norbert; Schröder, Katrin

    2014-01-01

    Abstract Significance: The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. Recent Advances: Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. Critical Issues: Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. Future Directions: Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli. Antioxid. Redox Signal. 20, 887–898. PMID:23682993

  7. Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase

    PubMed Central

    Kim, Gab Seok; Jung, Joo Eun; Narasimhan, Purnima; Sakata, Hiroyuki; Yoshioka, Hideyuki; Song, Yun Seon; Okami, Nobuya; Chan, Pak H

    2012-01-01

    Activation of the NADPH oxidase subunit, NOX2, and increased oxidative stress are associated with neuronal death after cerebral ischemia and reperfusion. Inhibition of NOX2 by casein kinase 2 (CK2) leads to neuronal survival, but the mechanism is unknown. In this study, we show that in copper/zinc-superoxide dismutase transgenic (SOD1 Tg) mice, degradation of CK2α and CK2α′ and dephosphorylation of CK2β against oxidative stress were markedly reduced compared with wild-type (WT) mice that underwent middle cerebral artery occlusion. Inhibition of CK2 pharmacologically or by ischemic reperfusion facilitated accumulation of poly(ADP-ribose) polymers, the translocation of apoptosis-inducing factor (AIF), and cytochrome c release from mitochondria after ischemic injury. The eventual enhancement of CK2 inhibition under ischemic injury strongly increased 8-hydroxy-2′-deoxyguanosine and phosphorylation of H2A.X. Furthermore, CK2 inhibition by tetrabromocinnamic acid (TBCA) in SOD1 Tg and gp91 knockout (KO) mice after ischemia reperfusion induced less release of AIF and cytochrome c than in TBCA-treated WT mice. Inhibition of CK2 in gp91 KO mice subjected to ischemia reperfusion did not increase brain infarction compared with TBCA-treated WT mice. These results strongly suggest that NOX2 activation releases reactive oxygen species after CK2 inhibition, triggering release of apoptogenic factors from mitochondria and inducing DNA damage after ischemic brain injury. PMID:22146192

  8. Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase.

    PubMed

    Kim, Gab Seok; Jung, Joo Eun; Narasimhan, Purnima; Sakata, Hiroyuki; Yoshioka, Hideyuki; Song, Yun Seon; Okami, Nobuya; Chan, Pak H

    2012-04-01

    Activation of the NADPH oxidase subunit, NOX2, and increased oxidative stress are associated with neuronal death after cerebral ischemia and reperfusion. Inhibition of NOX2 by casein kinase 2 (CK2) leads to neuronal survival, but the mechanism is unknown. In this study, we show that in copper/zinc-superoxide dismutase transgenic (SOD1 Tg) mice, degradation of CK2α and CK2α' and dephosphorylation of CK2β against oxidative stress were markedly reduced compared with wild-type (WT) mice that underwent middle cerebral artery occlusion. Inhibition of CK2 pharmacologically or by ischemic reperfusion facilitated accumulation of poly(ADP-ribose) polymers, the translocation of apoptosis-inducing factor (AIF), and cytochrome c release from mitochondria after ischemic injury. The eventual enhancement of CK2 inhibition under ischemic injury strongly increased 8-hydroxy-2'-deoxyguanosine and phosphorylation of H2A.X. Furthermore, CK2 inhibition by tetrabromocinnamic acid (TBCA) in SOD1 Tg and gp91 knockout (KO) mice after ischemia reperfusion induced less release of AIF and cytochrome c than in TBCA-treated WT mice. Inhibition of CK2 in gp91 KO mice subjected to ischemia reperfusion did not increase brain infarction compared with TBCA-treated WT mice. These results strongly suggest that NOX2 activation releases reactive oxygen species after CK2 inhibition, triggering release of apoptogenic factors from mitochondria and inducing DNA damage after ischemic brain injury. PMID:22146192

  9. Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase.

    TOXLINE Toxicology Bibliographic Information

    Kim GS; Jung JE; Narasimhan P; Sakata H; Yoshioka H; Song YS; Okami N; Chan PH

    2012-04-01

    Activation of the NADPH oxidase subunit, NOX2, and increased oxidative stress are associated with neuronal death after cerebral ischemia and reperfusion. Inhibition of NOX2 by casein kinase 2 (CK2) leads to neuronal survival, but the mechanism is unknown. In this study, we show that in copper/zinc-superoxide dismutase transgenic (SOD1 Tg) mice, degradation of CK2α and CK2α' and dephosphorylation of CK2β against oxidative stress were markedly reduced compared with wild-type (WT) mice that underwent middle cerebral artery occlusion. Inhibition of CK2 pharmacologically or by ischemic reperfusion facilitated accumulation of poly(ADP-ribose) polymers, the translocation of apoptosis-inducing factor (AIF), and cytochrome c release from mitochondria after ischemic injury. The eventual enhancement of CK2 inhibition under ischemic injury strongly increased 8-hydroxy-2'-deoxyguanosine and phosphorylation of H2A.X. Furthermore, CK2 inhibition by tetrabromocinnamic acid (TBCA) in SOD1 Tg and gp91 knockout (KO) mice after ischemia reperfusion induced less release of AIF and cytochrome c than in TBCA-treated WT mice. Inhibition of CK2 in gp91 KO mice subjected to ischemia reperfusion did not increase brain infarction compared with TBCA-treated WT mice. These results strongly suggest that NOX2 activation releases reactive oxygen species after CK2 inhibition, triggering release of apoptogenic factors from mitochondria and inducing DNA damage after ischemic brain injury.

  10. Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelialmesenchymal transition

    PubMed Central

    Lee, KangAe; Chen, Qike K.; Lui, Cecillia; Cichon, Magdalena A.; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Epithelialmesenchymal transition (EMT) is a form of epithelial plasticity implicated in fibrosis and tumor metastasis. Here we show that the mechanical rigidity of the microenvironment plays a pivotal role in the promotion of EMT by controlling the subcellular localization and downstream signaling of Rac GTPases. Soft substrata, with compliances comparable to that of normal mammary tissue, are protective against EMT, whereas stiffer substrata, with compliances characteristic of breast tumors, promote EMT. Rac1b, a highly activated splice variant of Rac1 found in tumors, localizes to the plasma membrane in cells cultured on stiff substrata or in collagen-rich regions of human breast tumors. At the membrane, Rac1b forms a complex with NADPH oxidase and promotes the production of reactive oxygen species, expression of Snail, and activation of the EMT program. In contrast, soft microenvironments inhibit the membrane localization of Rac1b and subsequent redox changes. These results reveal a novel mechanotransduction pathway in the regulation of epithelial plasticity via EMT. PMID:22918955

  11. Hydrogen peroxide generated by NADPH oxidase is involved in high blue-light-induced chloroplast avoidance movements in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xing, Da; Zhang, Lingrui

    2009-08-01

    One of the most important functions of blue light is to induce chloroplast movements by reducing the damage to photosynthetic machinery under excess light. Hydrogen peroxide (H2O2), generated by various environmental stimuli, can act as a signaling molecule that regulates a number of developmental processes and environmental responses. To investigate whether H2O2 is involved in high blue light-induced chloroplast avoidance movements, we use luminescence spectrometer to observe H2O2 generation with the assistance of the fluorescence probe dichlorofluorescin diacetate (H2DCF-DA). After treatment with high blue light, a large quantity of H2O2 indicated by the fluorescence intensity of DCF is produced in a dose-dependent manner in leaf strip of Arabidopsis. Enzymatic assay shows that the activity of NADPH oxidase, which is a major site for H2O2 generation, also rapidly increases in treated strips. Exogenously applied H2O2 can promote the high blue light-induced chloroplast movements. Moreover, high blue light-induced H2O2 generation can be abolished completely by addition of exogenous catalase (CAT), and partly by diphenylene iodonium (DPI) and dichlorophenyl dimethylurea (DCMU), which are an NADPH oxidase inhibitor and a blocker of electron transport chain. And subsequent chloroplast movements can be abolished by CAT and DPI, but not by DCMU. These results presented here suggested that high blue light can induce oxidative burst, and NADPH oxidase as a major producer for H2O2 is involved in blue light-induced chloroplast avoidance movements.

  12. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora.

    PubMed

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domnguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kck, Ulrich

    2014-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein ?-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi. PMID:24407906

  13. New Insights Into the Roles of NADPH Oxidases in Sexual Development and Ascospore Germination in Sordaria macrospora

    PubMed Central

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-01-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by ∆nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in ∆nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and ∆nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of ∆nox2, lacking the NADPH oxidase 2 gene, ∆nor1, and transcription factor deletion mutant ∆ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi. PMID:24407906

  14. NADPH oxidase 2-derived superoxide downregulates endothelial KCa3.1 in preeclampsia.

    PubMed

    Choi, Shinkyu; Kim, Ji Aee; Na, Hye-Young; Kim, Ji-Eun; Park, Seonghee; Han, Ki-Hwan; Kim, Young Ju; Suh, Suk Hyo

    2013-04-01

    Endothelial dysfunction is associated with KCa3.1 dysfunction and contributes to the development of hypertension in preeclampsia. However, evidence of endothelial KCa3.1 dysfunction in the vascular system from women with preeclampsia is still lacking. Therefore, we examined whether endothelial KCa3.1 dysfunction occurs in vessels from women with preeclampsia. We compared KCa3.1 and NADPH oxidase (NOX) expression in umbilical vessels and primary cultured human umbilical vein endothelial cells (HUVECs) from normal (NP; n=17) and preeclamptic pregnancy (PE; n=19) and examined the effects of plasma from NP or PE on KCa3.1 and NOX2 expression in primary cultured HUVECs from NP or human uterine microvascular endothelial cells. The endothelial KCa3.1 was downregulated, and NOX2 was upregulated, in umbilical vessels and HUVECs from PE, compared with those from NP. In addition, HUVECs from PE showed a significant decrease in KCa3.1 current. Plasma from PE induced KCa3.1 down regulation, NOX2 upregulation, phosphorylated-p38 mitogen-activated protein kinase downregulation, and superoxide generation, and these effects were prevented by antioxidants (tempol or tiron), NOX2 inhibition, or anti-lectin-like oxidized low-density lipoprotein (LDL) receptor 1 (LOX1) antibody. Oxidized LDL and the superoxide donor xanthine/xanthine oxidase mixture induced KCa3.1 downregulation. In contrast, plasma from PE did not generate hydrogen peroxide, and the hydrogen peroxide donor tert-butylhydroperoxide induced KCa3.1 upregulation. These results provide the first evidence that plasma from PE generates superoxide via a LOX1-NOX2-mediated pathway and downregulates endothelial KCa3.1, which may contribute to endothelial dysfunction and vasculopathy in preeclampsia. This suggests KCa3.1as a novel target for patients with preeclampsia. PMID:23261940

  15. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx

    PubMed Central

    Douda, David Nobuhiro; Khan, Meraj A.; Grasemann, Hartmut; Palaniyar, Nades

    2015-01-01

    Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed NETosis is important for treating these diseases. Although two major types of NETosis have been described to date, mechanisms regulating these forms of cell death are not clearly established. NADPH oxidase 2 (NOX2) generates large amounts of reactive oxygen species (ROS), which is essential for NOX-dependent NETosis. However, major regulators of NOX-independent NETosis are largely unknown. Here we show that calcium activated NOX-independent NETosis is fast and mediated by a calcium-activated small conductance potassium (SK) channel member SK3 and mitochondrial ROS. Although mitochondrial ROS is needed for NOX-independent NETosis, it is not important for NOX-dependent NETosis. We further demonstrate that the activation of the calcium-activated potassium channel is sufficient to induce NOX-independent NETosis. Unlike NOX-dependent NETosis, NOX-independent NETosis is accompanied by a substantially lower level of activation of ERK and moderate level of activation of Akt, whereas the activation of p38 is similar in both pathways. ERK activation is essential for the NOX-dependent pathway, whereas its activation is not essential for the NOX-independent pathway. Despite the differential activation, both NOX-dependent and -independent NETosis require Akt activity. Collectively, this study highlights key differences in these two major NETosis pathways and provides an insight into previously unknown mechanisms for NOX-independent NETosis. PMID:25730848

  16. Activation of NADPH oxidase by transforming growth factor-β in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-κB-dependent mechanism

    PubMed Central

    Murillo, Miguel M.; Carmona-Cuenca, Irene; del Castillo, Gaelle; Ortiz, Conrad; Roncero, César; Sánchez, Aránzazu; Fernández, Margarita; Fabregat, Isabel

    2007-01-01

    The TGF-β (transforming growth factor-β) induces survival signals in foetal rat hepatocytes through transactivation of EGFR (epidermal growth factor receptor). The molecular mechanism is not completely understood, but both activation of the TACE (tumour necrosis factor α-converting enzyme)/ADAM17 (a disintegrin and metalloproteinase 17; one of the metalloproteases involved in shedding of the EGFR ligands) and up-regulation of TGF-α and HB-EGF (heparin-binding epidermal growth factor-like growth factor) appear to be involved. In the present study, we have analysed the molecular mechanisms that mediate up-regulation of the EGFR ligands by TGF-β in foetal rat hepatocytes. The potential involvement of ROS (reactive oxygen species), an early signal induced by TGF-β, and the existence of an amplification loop triggered by initial activation of the EGFR, have been studied. Results indicate that DPI (diphenyleneiodonium) and apocynin, two NOX (NADPH oxidase) inhibitors, and SB431542, an inhibitor of the TβR-I (TGF-β receptor I), block up-regulation of EGFR ligands and Akt activation. Different members of the NOX family of genes are expressed in hepatocytes, included nox1, nox2 and nox4. TGF-β up-regulates nox4 and increases the levels of Rac1 protein, a known regulator of both Nox1 and Nox2, in a TβR-I-dependent manner. TGF-β mediates activation of the nuclear factor-κB pathway, which is inhibited by DPI and is required for up-regulation of TGF-α and HB-EGF. In contrast, EGFR activation is not required for TGF-β-induced up-regulation of those ligands. Considering previous work that has established the role of ROS in apoptosis induced by TGF-β in hepatocytes, the results of the present study indicate that ROS might mediate both pro- and anti-apoptotic signals in TGF-β-treated cells. PMID:17407446

  17. Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues

    PubMed Central

    JUHASZ, AGNES; GE, YUN; MARKEL, SUSAN; CHIU, ALICE; MATSUMOTO, LINDA; VAN BALGOOY, JOSEPHUS; ROY, KRISHNENDU; DOROSHOW, JAMES H

    2010-01-01

    The family of NADPH oxidase (NOX) genes produces reactive oxygen species (ROS) pivotal for both cell signalling and host defense. To investigate whether NOX and NOX accessory gene expression might be a factor common to specific human tumour types, this study measured the expression levels of NOX genes 1–5, dual oxidase 1 and 2, as well as those of NOX accessory genes NoxO1, NoxA1, p47phox, p67phox and p22phox in human cancer cell lines and in tumour and adjacent normal tissue pairs by quantitative, real-time RT-PCR. The results demonstrate tumour-specific patterns of NOX gene expression that will inform further studies of the role of NOX activity in tumour cell invasion, growth factor response and proliferative potential. PMID:19431059

  18. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein*

    PubMed Central

    Prior, Kim-Kristin; Wittig, Ilka; Leisegang, Matthias S.; Groenendyk, Jody; Weissmann, Norbert; Michalak, Marek; Jansen-Dürr, Pidder; Shah, Ajay M.; Brandes, Ralf P.

    2016-01-01

    Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum. PMID:26861875

  19. NADPH oxidases-do they play a role in TRPC regulation under hypoxia?

    PubMed

    Malczyk, Monika; Veith, Christine; Schermuly, Ralph T; Gudermann, Thomas; Dietrich, Alexander; Sommer, Natascha; Weissmann, Norbert; Pak, Oleg

    2016-01-01

    In the lung, acute alveolar hypoxia causes hypoxic pulmonary vasoconstriction (HPV) to maintain ventilation perfusion matching and thus optimal oxygenation of blood. In contrast, global chronic hypoxia triggers a pathological thickening of pulmonary arterial walls, called pulmonary vascular remodelling, leading to persistence of pulmonary hypertension (PH). Moreover, ischaemia or hypoxia can lead to a damage of pulmonary endothelial cells with subsequent oedema formation. Alterations in reactive oxygen species (ROS) have been suggested as a crucial mediator of such responses. Among the various sources of cellular ROS production, NADPH oxidases (NOXs) have been found to contribute to these physiological and pathophysiological signalling processes. NOXs are the only known examples that generate ROS as the primary function of the enzyme system. However, the downstream targets of NOX-derived ROS signalling in hypoxia are still not known. Canonical transient receptor potential (TRPC) channels recently have been recognised as directly or indirectly ROS-activated channels and have been shown to be essential for hypoxia-dependent vascular regulatory processes in the lung. Against this background, we here summarise the current knowledge on NOX-mediated TRPC channel signalling during hypoxia in the pulmonary circulation. PMID:26424109

  20. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice

    PubMed Central

    Bhandarkar, Sulochana S.; Jaconi, Marisa; Fried, Levi E.; Bonner, Michael Y.; Lefkove, Benjamin; Govindarajan, Baskaran; Perry, Betsy N.; Parhar, Ravi; Mackelfresh, Jamie; Sohn, Allie; Stouffs, Michael; Knaus, Ulla; Yancopoulos, George; Reiss, Yvonne; Benest, Andrew V.; Augustin, Hellmut G.; Arbiser, Jack L.

    2009-01-01

    Hemangiomas are the most common type of tumor in infants. As they are endothelial cellderived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle Ttransformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/, and Ang2/ mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/ cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/ cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function. PMID:19620773

  1. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart

    PubMed Central

    Kuroda, Junya; Ago, Tetsuro; Matsushima, Shouji; Zhai, Peiyong; Schneider, Michael D.; Sadoshima, Junichi

    2010-01-01

    NAD(P)H oxidases (Noxs) produce O2? and play an important role in cardiovascular pathophysiology. The Nox4 isoform is expressed primarily in the mitochondria in cardiac myocytes. To elucidate the function of endogenous Nox4 in the heart, we generated cardiac-specific Nox4?/? (c-Nox4?/?) mice. Nox4 expression was inhibited in c-Nox4?/? mice in a heart-specific manner, and there was no compensatory up-regulation in other Nox enzymes. These mice exhibited reduced levels of O2? in the heart, indicating that Nox4 is a significant source of O2? in cardiac myocytes. The baseline cardiac phenotype was normal in young c-Nox4?/? mice. In response to pressure overload (PO), however, increases in Nox4 expression and O2? production in mitochondria were abolished in c-Nox4?/? mice, and c-Nox4?/? mice exhibited significantly attenuated cardiac hypertrophy, interstitial fibrosis and apoptosis, and better cardiac function compared with WT mice. Mitochondrial swelling, cytochrome c release, and decreases in both mitochondrial DNA and aconitase activity in response to PO were attenuated in c-Nox4?/? mice. On the other hand, overexpression of Nox4 in mouse hearts exacerbated cardiac dysfunction, fibrosis, and apoptosis in response to PO. These results suggest that Nox4 in cardiac myocytes is a major source of mitochondrial oxidative stress, thereby mediating mitochondrial and cardiac dysfunction during PO. PMID:20713697

  2. NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology

    PubMed Central

    Schiavone, S; Jaquet, V; Sorce, S; Dubois-Dauphin, M; Hultqvist, M; Bäckdahl, L; Holmdahl, R; Colaianna, M; Cuomo, V; Trabace, L; Krause, K-H

    2012-01-01

    Oxidative stress is thought to be involved in the development of behavioral and histopathological alterations in animal models of psychosis. Here we investigate the causal contribution of reactive oxygen species generation by the phagocyte NADPH oxidase NOX2 to neuropathological alterations in a rat model of chronic psychosocial stress. In rats exposed to social isolation, the earliest neuropathological alterations were signs of oxidative stress and appearance of NOX2. Alterations in behavior, increase in glutamate levels and loss of parvalbumin were detectable after 4 weeks of social isolation. The expression of the NOX2 subunit p47phox was markedly increased in pyramidal neurons of isolated rats, but below detection threshold in GABAergic neurons, astrocytes and microglia. Rats with a loss of function mutation in the NOX2 subunit p47phox were protected from behavioral and neuropathological alterations induced by social isolation. To test reversibility, we applied the antioxidant/NOX inhibitor apocynin after initiation of social isolation for a time period of 3 weeks. Apocynin reversed behavioral alterations fully when applied after 4 weeks of social isolation, but only partially after 7 weeks. Our results demonstrate that social isolation induces rapid elevations of the NOX2 complex in the brain. Expression of the enzyme complex was strongest in pyramidal neurons and a loss of function mutation prevented neuropathology induced by social isolation. Finally, at least at early stages, pharmacological targeting of NOX2 activity might reverse behavioral alterations. PMID:22832955

  3. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity.

    PubMed

    Morales, Jorge; Kadota, Yasuhiro; Zipfel, Cyril; Molina, Antonio; Torres, Miguel-Angel

    2016-04-01

    Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) that perform a wide range of functions. RbohD and RbohF, two of the 10 Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes including the response to pathogens. We hypothesized that the spatio-temporal control of RbohD and RbohF gene expression might be critical in determining their multiplicity of functions. Transgenic Arabidopsis plants with RbohD and RbohF promoter fusions to β-glucuronidase and Luciferase reporter genes were generated. Analysis of these plants revealed a differential expression pattern for RbohD and RbohF throughout plant development and during immune responses. RbohD and RbohF gene expression was differentially modulated by pathogen-associated molecular patterns. Histochemical stains and in vivo expression analysis showed a correlation between the level of RbohD and RbohF promoter activity, H2O2 accumulation and the amount of cell death in response to the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungus Plectosphaerella cucumerina. A promoter-swap strategy revealed that the promoter region of RbohD was required to drive production of ROS by this gene in response to pathogens. Moreover, RbohD promoter was activated during Arabidopsis interaction with a non-virulent P. cucumerina isolate, and susceptibility tests with the double mutant rbohD rbohF uncovered a new function for these oxidases in basal resistance. Altogether, our results suggest that differential spatio-temporal expression of the Rboh genes contributes to fine-tune RBOH/NADPH oxidase-dependent ROS production and signaling in Arabidopsis immunity. PMID:26798024

  4. Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands

    PubMed Central

    Seil, Michle; Fontanils, Unai; Etxebarria, Irantzu Gorrono; Pochet, Stphanie; Garcia-Marcos, Mikel; Marino, Aida

    2008-01-01

    ATP in the 100?M-1mM concentration range provoked a calcium-independent increase of the oxidation of dichlorodihydrofluorescein (DCFH) to dichlorofluorescein (DCF) by mouse submandibular cells. 3?-O-(4-benzoyl)benzoyl adenosine 5?-triphosphate (BzATP), a P2X7 agonist, but not a muscarinic or an adrenergic agonist, reproduced the effect of ATP. The inhibition of phospholipase C by U73122 or the potentiation of P2X4 receptor activation with ivermectin did not modify the response to ATP. ATP did not increase the oxidation of DCFH in cells isolated from submandibular glands of P2X7 knockout mice or in cells pretreated with a P2X7 antagonist. The inhibition of protein kinase C or of mitogen-activated protein kinase (MAP kinase) or of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase blocked the oxidation of DCFH without affecting the increase of the intracellular concentration of calcium or the uptake of ethidium bromide in response to extracellular ATP. From these results it is concluded that the activation of the P2X7 receptors from submandibular glands triggers an intracellular signalling cascade involving protein kinase C and MAP kinase leading to the stimulation of NADPH oxidase and the subsequent generation of reactive oxygen species. PMID:18581262

  5. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice

    PubMed Central

    Hofstetter, Amelia R.; De La Cruz, Juan A.; Cao, Weiping; Patel, Jenish; Belser, Jessica A.; McCoy, James; Liepkalns, Justine S.; Amoah, Samuel; Cheng, Guangjie; Ranjan, Priya; Diebold, Becky A.; Shieh, Wun-Ju; Zaki, Sherif; Katz, Jacqueline M.; Sambhara, Suryaprakash; Lambeth, J. David; Gangappa, Shivaprakash

    2016-01-01

    The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection. PMID:26910342

  6. Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress

    PubMed Central

    Williams, Robert; Lemaire, Paul; Lewis, Philip; McDonald, Fiona B.; Lucking, Eric; Hogan, Sean; Sheehan, David; Healy, Vincent; O'Halloran, Ken D.

    2015-01-01

    Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1? content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1? content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1?-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling. PMID:25688214

  7. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    PubMed

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this population is not a classical DC population. The cells might earlier be related to the veiled macrophage-like cells also earlier described in afferent lymph. PMID:12182452

  8. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase.

    PubMed

    Winiarska, Katarzyna; Dzik, Jolanta M; Labudda, Mateusz; Focht, Dorota; Sierakowski, Bartosz; Owczarek, Aleksandra; Komorowski, Lukasz; Bielecki, Wojciech

    2016-01-01

    Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47(phox) subunits, elevated level of p47(phox) phosphorylation, and enlarged phospho-p47(phox) and p67(phox) content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho-p47(phox) and p67(phox) . Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits. PMID:26514550

  9. Andrographolide inhibits TNF?-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells.

    PubMed

    Lu, Chia-Yang; Yang, Ya-Chen; Li, Chien-Chun; Liu, Kai-Li; Lii, Chong-Kuei; Chen, Haw-Wen

    2014-09-01

    Andrographolide, the major bioactive component of Andrographis paniculata, has been demonstrated to have various biological properties including anti-inflammation, antioxidation, and anti-hepatotoxicity. Oxidative stress is considered a major risk factor in aging, inflammation, cancer, atherosclerosis, and diabetes mellitus. NADPH oxidase is a major source of endogenous reactive oxygen species (ROS). In this study, we used EA.hy926 endothelial-like cells to explore the anti-inflammatory activity of andrographolide. Andrographolide attenuated TNF?-induced ROS generation, Src phosphorylation, membrane translocation of the NADPH oxidase subunits p47(phox) and p67(phox), and ICAM-1 gene expression. In the small hairpin RNA interference assay, shp47(phox) abolished TNF?-induced p65 nuclear translocation, ICAM-1 gene expression, and adhesion of HL-60 cells. Andrographolide induced the gene expression of heme oxygenase 1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) in a time-dependent manner. Cellular glutathione (GSH) content was increased by andrographolide. shGCLM attenuated the andrographolide-induced increase in GSH content and reversed the andrographolide inhibition of HL-60 adhesion. shHO-1 showed a similar effect on andrographolide inhibition of HL-60 adhesion to shGCLM. The mechanism underlying the up-regulation of HO-1 and GCLM by andrographolide was dependent on the PI3K/Akt pathway, and both the Nrf2 and AP-1 transcriptional factors were involved. Our results suggest that andrographolide attenuates TNF?-induced ICAM-1 expression at least partially through suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression, which is PI3K/Akt pathway-dependent. PMID:24998495

  10. The Effect of Orexin-A on Cardiac Dysfunction Mediated by NADPH Oxidase-Derived Superoxide Anion in Ventrolateral Medulla

    PubMed Central

    Chen, Jun; Xia, Chunmei; Wang, Jin; Jiang, Meiyan; Zhang, Huanhuan; Zhang, Chengrong; Zhu, Minxia; Shen, Linlin; Zhu, Danian

    2013-01-01

    Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA) and projecting to the brain sites of rostral ventrolateral medulla (RVLM), involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA) could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI) by releasing NAD(P)H oxidase-derived superoxide anion (O2?) generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD) coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR), heart rate variability (HRV), mean arterial pressure (MAP) and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R) increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(P)H oxidative subunit gp91phox or p47phox-immunoreactive (IR) cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2? production and mRNA expression of NAD(P)H oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively) or apocynin (APO), an inhibitor of NAD(P)H oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(P)H-derived O2? in RVLM mediates OXA-induced cardiovascular responses. PMID:23922819

  11. Evolutionary Dynamics of the Human NADPH Oxidase Genes CYBB, CYBA, NCF2, and NCF4: Functional Implications

    PubMed Central

    Tarazona-Santos, Eduardo; Magalhes, Wagner C.S.; Chen, Renee; Lyon, Fernanda; Burdett, Laurie; Crenshaw, Andrew; Fabbri, Cristina; Pereira, Latife; Pinto, Laelia; Redondo, Rodrigo A.F.; Sestanovich, Ben; Yeager, Meredith; Chanock, Stephen J.

    2013-01-01

    The phagocyte NADPH oxidase catalyzes the reduction of O2 to reactive oxygen species with microbicidal activity. It is composed of two membrane-spanning subunits, gp91-phox and p22-phox (encoded by CYBB and CYBA, respectively), and three cytoplasmic subunits, p40-phox, p47-phox, and p67-phox (encoded by NCF4, NCF1, and NCF2, respectively). Mutations in any of these genes can result in chronic granulomatous disease, a primary immunodeficiency characterized by recurrent infections. Using evolutionary mapping, we determined that episodes of adaptive natural selection have shaped the extracellular portion of gp91-phox during the evolution of mammals, which suggests that this region may have a function in host-pathogen interactions. On the basis of a resequencing analysis of approximately 35 kb of CYBB, CYBA, NCF2, and NCF4 in 102 ethnically diverse individuals (24 of African ancestry, 31 of European ancestry, 24 of Asian/Oceanians, and 23 US Hispanics), we show that the pattern of CYBA diversity is compatible with balancing natural selection, perhaps mediated by catalase-positive pathogens. NCF2 in Asian populations shows a pattern of diversity characterized by a differentiated haplotype structure. Our study provides insight into the role of pathogen-driven natural selection in an innate immune pathway and sheds light on the role of CYBA in endothelial, nonphagocytic NADPH oxidases, which are relevant in the pathogenesis of cardiovascular and other complex diseases. PMID:23821607

  12. Lysine triggers apoptosis through a NADPH oxidase-dependent mechanism in human renal tubular cells.

    PubMed

    Verzola, Daniela; Famà, Annamaria; Villaggio, Barbara; Di Rocco, Maia; Simonato, Alchiede; D'Amato, Elena; Gianiorio, Fabio; Garibotto, Giacomo

    2012-11-01

    Progressive chronic kidney disease (CKD) is common in lysinuric protein intolerance (LPI), a primary inherited aminoaciduria characterized by massive Lysine excretion in urine. However, by which mechanisms Lysine may cause kidney damage to tubule cells is still not understood. This study determined whether Lysine overloading of human proximal tubular cells (HK-2) in culture enhances apoptotic cell loss and its associated mechanisms. Overloading HK-2 with Lysine levels reproducing those observed in urine of patients affected by LPI (10 mM) increased apoptosis (+30%; p < 0.01 vs.C), as well as Bax and Apaf-1 expressions (+30-50% p < 0.05), while downregulated Bcl-2 (-40% p < 0.05). Apoptosis induced by high Lysine was no longer observed after addition of caspase-9 and caspase-3 inhibitors while caspase-8 inhibitor had no protective effect. High Lysine induced elevations in ROS generation and NADPH oxidase subunits mRNAs (p22 (phox) +106 ± 23%, p67 (phox) +108 ± 22% and gp91 (phox) +75 ± 4% p < 0.05-0.01). In addition, the NADPH oxidase inhibitor DPI prevented both ROS production and apoptosis. Treating HK-2 with antioxidants, such as Cysteine and its analog, N-acetyl-L-cysteine (NAC), rescued the HK-2 from apoptosis induced by Lysine. In summary, our data show that high Lysine in vitro increases the permissiveness of proximal tubule kidney cells to apoptosis by triggering a pathway involving NADPH oxidase signaling. This event may represent a key cellular effect in the increasing the susceptibility of human tubular cells to apoptosis when the tubules cope with a high Lysine load. This effect is instrumental to renal damage and disease progression in patients with LPI. PMID:22403019

  13. Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase

    PubMed Central

    Lu, J P; Monardo, L; Bryskin, I; Hou, Z F; Trachtenberg, J; Wilson, B C; Pinthus, J H

    2009-01-01

    Androgen deprivation therapy (ADT) facilitates the response of prostate cancer (PC) to radiation. Androgens have been shown to induce elevated basal levels of reactive oxygen species (ROS) in PC, leading to adaptation to radiation-induced cytotoxic oxidative stress. Here, we show that androgens increase the expression of p22phox and gp91phox subunits of NADPH oxidase (NOX) and ROS production by NOX2 and NOX4 in PC. Pre-radiation treatment of 22Rv1 human PC cells with NOX inhibitors sensitize the cells to radiation similarly to ADT, suggesting that their future usage may spare the need for adjuvant ADT in PC patients undergoing radiation. PMID:19546883

  14. Inhibition of NADPH oxidase prevents acute lung injury in obese rats following severe trauma.

    PubMed

    Xiang, Lusha; Lu, Silu; Mittwede, Peter N; Clemmer, John S; Hester, Robert L

    2014-03-01

    Lung capillary filtration coefficient (Kf) and impacts of oxidative stress have not been determined in the setting of severe trauma, especially in obese patients who exhibit increased lung injury. We hypothesized that severe trauma leads to a greater increase in lung Kf in obesity due to exacerbated production of and/or vulnerability to oxidative stress. Severe trauma was induced in lean and obese Zucker rats by muscle injury, fibula fracture, and bone component injection to both hindlimbs, with or without 24-h treatments of apocynin, a NADPH oxidase (NOX) inhibitor. Lung wet/dry weight ratios, lung vascular Kf, lung neutrophil counts, lung NOX and myeloperoxidase (MPO) activity, and plasma IL-6 levels were measured 24 h after trauma. In an additional study, lungs were isolated from nontrauma lean and obese rats to determine the acute effect of phenazime methosulfate, a superoxide donor, on pulmonary vascular Kf. After trauma, compared with lean rats, obese rats exhibited greater increases in lung capillary Kf, neutrophil accumulation, NOX and MPO activity, and plasma IL-6. The lung wet/dry weight ratio was increased in obese rats but not in lean rats. Apocynin treatment decreased lung Kf, neutrophil counts, NOX and MPO activities, wet/dry weight ratio, and plasma IL-6 in obese rats. Phenazime methosulfate treatment resulted in a greater increase in lung Kf in nontrauma obese rats compared with nontrauma lean rats. These results suggest that obese rats are susceptible to lung injury following severe trauma due to increased production of and responsiveness to pulmonary oxidative stress. PMID:24414071

  15. Testosterone induces leucocyte migration by NADPH oxidase-driven ROS- and COX2-dependent mechanisms.

    PubMed

    Chignalia, Andreia Z; Oliveira, Maria Aparecida; Debbas, Victor; Dull, Randal O; Laurindo, Francisco R M; Touyz, Rhian M; Carvalho, Maria Helena C; Fortes, Zuleica B; Tostes, Rita C

    2015-07-01

    The mechanisms whereby testosterone increases cardiovascular risk are not clarified. However, oxidative stress and inflammation seem to be determinants. Herein, we sought to determine whether exogenous testosterone, at physiological levels, induces leucocyte migration, a central feature in immune and inflammatory responses and the mediating mechanisms. We hypothesized that testosterone induces leucocyte migration via NADPH oxidase (NADPHox)-driven reactive oxygen species (ROS) and cyclooxygenase (COX)-dependent mechanisms. Sixteen-week-old Wistar rats received an intraperitoneal injection (5 ml) of either testosterone (10(-7) mol/l) or saline. Rats were pre-treated with 5 ml of sodium salicylate (SS, non-selective COX inhibitor, 1.25 10(-3) mol/l, 1 h prior to testosterone or saline), flutamide (androgen receptor antagonist, 10(-5) mol/l), apocynin (NADPHox inhibitor, 3 10(-4) mol/l), N-[2-Cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS398, COX2 inhibitor, 10(-4) mol/l) or saline, 4 h before testosterone or saline administration. Leucocyte migration was assessed 24 h after testosterone administration by intravital microscopy of the mesenteric bed. Serum levels of testosterone were measured by radioimmunoassay. NADPHox activity was assessed in membrane fractions of the mesenteric bed by dihydroethidium (DHE) fluorescence and in isolated vascular smooth muscle cells (VSMC) by HPLC. NADPHox subunits and VCAM (vascular cell adhesion molecule) expression were determined by immunoblotting. Testosterone administration did not change serum levels of endogenous testosterone, but increased venular leucocyte migration to the adventia, NADPHox activity and expression (P < 0.05). These effects were blocked by flutamide. SS inhibited testosterone-induced leucocyte migration (P<0.05). Apocynin and NS398 abolished testosterone-induced leucocyte migration and NADPHox activity (P<0.05). Testosterone induces leucocyte migration via NADPHox- and COX2-dependent mechanisms and may contribute to inflammatory processes and oxidative stress in the vasculature potentially increasing cardiovascular risk. PMID:25700020

  16. Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes

    PubMed Central

    Kawahara, Tsukasa; Lambeth, J David

    2007-01-01

    Background The reactive oxygen-generating NADPH oxidases (Noxes) function in a variety of biological roles, and can be broadly classified into those that are regulated by subunit interactions and those that are regulated by calcium. The prototypical subunit-regulated Nox, Nox2, is the membrane-associated catalytic subunit of the phagocyte NADPH-oxidase. Nox2 forms a heterodimer with the integral membrane protein, p22phox, and this heterodimer binds to the regulatory subunits p47phox, p67phox, p40phox and the small GTPase Rac, triggering superoxide generation. Nox-organizer protein 1 (NOXO1) and Nox-activator 1 (NOXA1), respective homologs of p47phox and p67phox, together with p22phox and Rac, activate Nox1, a non-phagocytic homolog of Nox2. NOXO1 and p22phox also regulate Nox3, whereas Nox4 requires only p22phox. In this study, we have assembled and analyzed amino acid sequences of Nox regulatory subunit orthologs from vertebrates, a urochordate, an echinoderm, a mollusc, a cnidarian, a choanoflagellate, fungi and a slime mold amoeba to investigate the evolutionary history of these subunits. Results Ancestral p47phox, p67phox, and p22phox genes are broadly seen in the metazoa, except for the ecdysozoans. The choanoflagellate Monosiga brevicollis, the unicellular organism that is the closest relatives of multicellular animals, encodes early prototypes of p22phox, p47phox as well as the earliest known Nox2-like ancestor of the Nox1-3 subfamily. p67phox- and p47phox-like genes are seen in the sea urchin Strongylocentrotus purpuratus and the limpet Lottia gigantea that also possess Nox2-like co-orthologs of vertebrate Nox1-3. Duplication of primordial p47phox and p67phox genes occurred in vertebrates, with the duplicated branches evolving into NOXO1 and NOXA1. Analysis of characteristic domains of regulatory subunits suggests a novel view of the evolution of Nox: in fish, p40phox participated in regulating both Nox1 and Nox2, but after the appearance of mammals, Nox1 (but not Nox2) became independent of p40phox. In the fish Oryzias latipes, a NOXO1 ortholog retains an autoinhibitory region that is characteristic of mammalian p47phox, and this was subsequently lost from NOXO1 in later vertebrates. Detailed amino acid sequence comparisons identified both putative key residues conserved in characteristic domains and previously unidentified conserved regions. Also, candidate organizer/activator proteins in fungi and amoeba are identified and hypothetical activation models are suggested. Conclusion This is the first report to provide the comprehensive view of the molecular evolution of regulatory subunits for Nox enzymes. This approach provides clues for understanding the evolution of biochemical and physiological functions for regulatory-subunit-dependent Nox enzymes. PMID:17900370

  17. NADPH Oxidase 1-Mediated Oxidative Stress Leads to Dopamine Neuron Death in Parkinson's Disease

    PubMed Central

    Choi, Dong-Hee; Cristvo, Ana Clara; Guhathakurta, Subhrangshu; Lee, Jongmin; Joh, Tong H.; Beal, M. Flint

    2012-01-01

    Abstract Aim: Oxidative stress has long been considered as a major contributing factor in the pathogenesis of Parkinson's disease. However, molecular sources for reactive oxygen species in Parkinson's disease have not been clearly elucidated. Herein, we sought to investigate whether a superoxide-producing NADPH oxidases (NOXs) are implicated in oxidative stress-mediated dopaminergic neuronal degeneration. Results: Expression of various Nox isoforms and cytoplasmic components were investigated in N27, rat dopaminergic cells. While most of Nox isoforms were constitutively expressed, Nox1 expression was significantly increased after treatment with 6-hydroxydopamine. Rac1, a key regulator in the Nox1 system, was also activated. Striatal injection of 6-hydroxydopamine increased Nox1 expression in dopaminergic neurons in the rat substantia nigra. Interestingly, it was localized into the nucleus, and immunostaining for DNA oxidative stress marker, 8-oxo-dG, was increased. Nox1expression was also found in the nucleus of dopaminergic neurons in the substantia nigra of Parkinson's disease patients. Adeno-associated virus-mediated Nox1 knockdown or Rac1 inhibition reduced 6-hydroxydopamine-induced oxidative DNA damage and dopaminergic neuronal degeneration significantly. Innovation: Nox1/Rac1 could serve as a potential therapeutic target for Parkinson's disease. Conclusion: We provide evidence that dopaminergic neurons are equipped with the Nox1/Rac1 superoxide-generating system. Stress-induced Nox1/Rac1 activation causes oxidative DNA damage and neurodegeneration. Reduced dopaminergic neuronal death achieved by targeting Nox1/Rac1, emphasizes the impact of oxidative stress caused by this system on the pathogenesis and therapy in Parkinson's disease. Antioxid. Redox Signal. 16, 10331045. PMID:22098189

  18. Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions.

    PubMed

    Craige, Siobhan M; Kant, Shashi; Reif, Michaella; Chen, Kai; Pei, Yongmei; Angoff, Rebecca; Sugamura, Koichi; Fitzgibbons, Timothy; Keaney, John F

    2015-12-01

    Vascular reactive oxygen species (ROS) are known to be involved in atherosclerosis development and progression. NADPH oxidase 4 (Nox4) is a constitutively active ROS-producing enzyme that is highly expressed in the vascular endothelium. Nox4 is unique in its biology and has been implicated in vascular repair, however, the role of Nox4 in atherosclerosis is unknown. Therefore, to determine the effect of endothelial Nox4 on development of atherosclerosis, Apoe E-/- mice +/- endothelial Nox4 (ApoE-/- + EC Nox4) were fed a high cholesterol/high fat (Western) diet for 24 weeks. Significantly fewer atherosclerotic lesions were observed in the ApoE-/- + EC Nox4 mice as compared to the ApoE-/- littermates, which was most striking in the abdominal region of the aorta. In addition, markers of T cell populations were markedly different between the groups; T regulatory cell marker (FoxP3) was increased whereas T effector cell marker (T-bet) was decreased in aorta from ApoE-/- + EC Nox4 mice compared to ApoE-/- alone. We also observed decreased monokine induced by gamma interferon (MIG; CXCL9), a cytokine known to recruit and activate T cells, in plasma and tissue from ApoE-/- + EC Nox4 mice. To further investigate the link between endothelial Nox4 and MIG expression, we utilized cultured endothelial cells from our EC Nox4 transgenic mice and human cells with adenoviral overexpression of Nox4. In these cultured cells, upregulation of Nox4 attenuated endothelial cell MIG expression in response to interferon-gamma. Together these data suggest that endothelial Nox4 expression reduces MIG production and promotes a T cell distribution that favors repair over inflammation, leading to protection from atherosclerosis. PMID:26169727

  19. NADPH oxidase 4 is a critical mediator in Ataxia telangiectasia disease

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Ataxia telangiectasia (A-T), a rare autosomal recessive disorder characterized by progressive cerebellar degeneration and a greatly increased incidence of cancer among other symptoms, is caused by a defective or missing ataxia telangiectasia mutated (ATM) gene. The ATM protein has roles in DNA repair and in the regulation of reactive oxygen species (ROS). Here, we provide, to our knowledge, the first evidence that NADPH oxidase 4 (NOX4) is involved in manifesting A-T disease. We showed that NOX4 expression levels are higher in A-T cells, and that ATM inhibition leads to increased NOX4 expression in normal cells. A-T cells exhibit elevated levels of oxidative DNA damage, DNA double-strand breaks and replicative senescence, all of which are partially abrogated by down-regulation of NOX4 with siRNA. Sections of degenerating cerebelli from A-T patients revealed elevated NOX4 levels. ATM-null mice exhibit A-T disease but they die from cancer before the neurological symptoms are manifested. Injecting Atm-null mice with fulvene-5, a specific inhibitor of NOX4 and NADPH oxidase 2 (NOX2), decreased their elevated cancer incidence to that of the controls. We conclude that, in A-T disease in humans and mice, NOX4 may be critical mediator and targeting it will open up new avenues for therapeutic intervention in neurodegeneration. PMID:25646414

  20. NADPH Oxidase 1, a Novel Molecular Source of ROS in Hippocampal Neuronal Death in Vascular Dementia

    PubMed Central

    Choi, Dong-Hee; Lee, Kyoung-Hee; Kim, Ji-Hye; Seo, Ju-Ha; Kim, Hahn Young; Shin, Chan Young; Han, Jung-Soo; Han, Seol-Heui; Kim, Yoon-Seong

    2014-01-01

    Abstract Aims: Chronic cerebral hypoperfusion (CCH) is a common pathological factor that contributes to neurodegenerative diseases such as vascular dementia (VaD). Although oxidative stress has been strongly implicated in the pathogenesis of VaD, the molecular mechanism underlying the selective vulnerability of hippocampal neurons to oxidative damage remains unknown. We assessed whether the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) complex, a specialized superoxide generation system, plays a role in VaD by permanent ligation of bilateral common carotid arteries in rats. Results: Male Wistar rats (10 weeks of age) were subjected to bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]). Nox1 expression gradually increased in hippocampal neurons, starting at 1 week after 2VO and for approximately 15 weeks after 2VO. The levels of superoxide, DNA oxidation, and neuronal death in the CA1 subfield of the hippocampus, as well as consequential cognitive impairment, were increased in 2VO rats. Both inhibition of Nox by apocynin, a putative Nox inhibitor, and adeno-associated virus-mediated Nox1 knockdown significantly reduced 2VO-induced reactive oxygen species generation, oxidative DNA damage, hippocampal neuronal degeneration, and cognitive impairment. Innovation and Conclusion: We provided evidence that neuronal Nox1 is activated in the hippocampus under CCH, causing oxidative stress and consequential hippocampal neuronal death and cognitive impairment. This evidence implies that Nox1-mediated oxidative stress plays an important role in neuronal cell death and cognitive dysfunction in VaD. Nox1 may serve as a potential therapeutic target for VaD. Antioxid. Redox Signal. 21, 533–550. PMID:24294978

  1. Glutathione attenuates ethanol-induced alveolar macrophage oxidative stress and dysfunction by downregulating NADPH oxidases

    PubMed Central

    Yeligar, Samantha M.; Harris, Frank L.; Hart, C. Michael

    2014-01-01

    Chronic alcohol abuse increases lung oxidative stress and susceptibility to respiratory infections by impairing alveolar macrophage (AM) function. NADPH oxidases (Nox) are major sources of reactive oxygen species in AMs. We hypothesized that treatment with the critical antioxidant glutathione (GSH) attenuates chronic alcohol-induced oxidative stress by downregulating Noxes and restores AM phagocytic function. Bronchoalveolar lavage (BAL) fluid and AMs were isolated from male C57BL/6J mice (810 wk) treated ethanol in drinking water (20% wt/vol, 12 wk) orally gavaged GSH in methylcellulose vehicle (300 mgkg?1day?1, during week 12). MH-S cells, a mouse AM cell line, were treated ethanol (0.08%, 3 days) GSH (500 ?M, 3 days or last 1 day of ethanol). BAL and AMs were also isolated from ethanol-fed and control mice inoculated airway Klebsiella pneumoniae (200 colony-forming units, 28 h) orally gavaged GSH (300 mg/kg, 24 h). GSH levels (HPLC), Nox mRNA (quantitative RT-PCR) and protein levels (Western blot and immunostaining), oxidative stress (2?,7?-dichlorofluorescein-diacetate and Amplex Red), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol decreased GSH levels, increased Nox expression and activity, enhanced oxidative stress, impaired phagocytic function in AMs in vivo and in vitro, and exacerbated K. pneumonia-induced oxidative stress. Although how oral GSH restored GSH pools in ethanol-fed mice is unknown, oral GSH treatments abrogated the detrimental effects of chronic alcohol exposure and improved AM function. These studies provide GSH as a novel therapeutic approach for attenuating alcohol-induced derangements in AM Nox expression, oxidative stress, dysfunction, and risk for pneumonia. PMID:24441868

  2. Glutathione attenuates ethanol-induced alveolar macrophage oxidative stress and dysfunction by downregulating NADPH oxidases.

    PubMed

    Yeligar, Samantha M; Harris, Frank L; Hart, C Michael; Brown, Lou Ann S

    2014-03-01

    Chronic alcohol abuse increases lung oxidative stress and susceptibility to respiratory infections by impairing alveolar macrophage (AM) function. NADPH oxidases (Nox) are major sources of reactive oxygen species in AMs. We hypothesized that treatment with the critical antioxidant glutathione (GSH) attenuates chronic alcohol-induced oxidative stress by downregulating Noxes and restores AM phagocytic function. Bronchoalveolar lavage (BAL) fluid and AMs were isolated from male C57BL/6J mice (8-10 wk) treated ± ethanol in drinking water (20% wt/vol, 12 wk) ± orally gavaged GSH in methylcellulose vehicle (300 mg x kg(-1) x day(-1), during week 12). MH-S cells, a mouse AM cell line, were treated ± ethanol (0.08%, 3 days) ± GSH (500 μM, 3 days or last 1 day of ethanol). BAL and AMs were also isolated from ethanol-fed and control mice ± inoculated airway Klebsiella pneumoniae (200 colony-forming units, 28 h) ± orally gavaged GSH (300 mg/kg, 24 h). GSH levels (HPLC), Nox mRNA (quantitative RT-PCR) and protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol decreased GSH levels, increased Nox expression and activity, enhanced oxidative stress, impaired phagocytic function in AMs in vivo and in vitro, and exacerbated K. pneumonia-induced oxidative stress. Although how oral GSH restored GSH pools in ethanol-fed mice is unknown, oral GSH treatments abrogated the detrimental effects of chronic alcohol exposure and improved AM function. These studies provide GSH as a novel therapeutic approach for attenuating alcohol-induced derangements in AM Nox expression, oxidative stress, dysfunction, and risk for pneumonia. PMID:24441868

  3. Selective inhibition of NADPH oxidase reverses the over contraction of diabetic rat aorta?

    PubMed Central

    Rehman, Atif ur; Dugic, Elma; Benham, Chris; Lione, Lisa; Mackenzie, Louise S.

    2013-01-01

    Abnormal vascular responsiveness in diabetes has been attributed to a number of changes in contractile pathways, affected in part by the overproduction of reactive oxygen species (ROS). It has been reported that NADPH oxidase (NOX) is increased in diabetic (streptozotocin treated; STZ) rat arteries; however the pharmacological agents used to inhibit NOX activity are known to be unsuitable for in vitro studies and have a high level of non-selectivity. Here we have used the highly selective NOX inhibitor VAS2870 in diabetic rat aorta and compared its effects with apocynin, SOD, and allopurinol on phenylephrine and U46619 induced contraction. Male Wistar rats were injected intraperitoneally with 65mg/kg STZ and development of diabetes was confirmed by testing blood glucose levels. Rats were killed by CO2 asphyxiation, and the thoracic aorta removed and mounted in an organ bath under a tension of 1g. Diabetic rat aortas exhibit a greatly increased response to phenylephrine, which was reduced to a level consistent with control rat aorta by 10?5M VAS2870 and 150U/ml SOD. Incubation with VAS2870 led to an increase in normal rat aorta contraction, but led to a significant reduction in phenylephrine and U46619 induced tone in diabetic rat aorta, which indicates that ROS in diabetic rats directly contributes to these contractile responses. Apocynin and allopurinol had no effect on contraction in diabetic or normal rat aorta. This data is the first to show that selective inhibition of NOX reduces diabetic arterial contraction in direct comparison with inhibition of other known contributors of ROS. PMID:25460721

  4. Selective inhibition of NADPH oxidase reverses the over contraction of diabetic rat aorta.

    PubMed

    Rehman, Atif Ur; Dugic, Elma; Benham, Chris; Lione, Lisa; Mackenzie, Louise S

    2013-12-11

    Abnormal vascular responsiveness in diabetes has been attributed to a number of changes in contractile pathways, affected in part by the overproduction of reactive oxygen species (ROS). It has been reported that NADPH oxidase (NOX) is increased in diabetic (streptozotocin treated; STZ) rat arteries; however the pharmacological agents used to inhibit NOX activity are known to be unsuitable for in vitro studies and have a high level of non-selectivity. Here we have used the highly selective NOX inhibitor VAS2870 in diabetic rat aorta and compared its effects with apocynin, SOD, and allopurinol on phenylephrine and U46619 induced contraction. Male Wistar rats were injected intraperitoneally with 65mg/kg STZ and development of diabetes was confirmed by testing blood glucose levels. Rats were killed by CO2 asphyxiation, and the thoracic aorta removed and mounted in an organ bath under a tension of 1g. Diabetic rat aortas exhibit a greatly increased response to phenylephrine, which was reduced to a level consistent with control rat aorta by 10(-5)M VAS2870 and 150U/ml SOD. Incubation with VAS2870 led to an increase in normal rat aorta contraction, but led to a significant reduction in phenylephrine and U46619 induced tone in diabetic rat aorta, which indicates that ROS in diabetic rats directly contributes to these contractile responses. Apocynin and allopurinol had no effect on contraction in diabetic or normal rat aorta. This data is the first to show that selective inhibition of NOX reduces diabetic arterial contraction in direct comparison with inhibition of other known contributors of ROS. PMID:25460721

  5. Antimutagenic activity of oxidase enzymes

    SciTech Connect

    Agabeili, R.A.

    1986-11-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity.

  6. 20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt

    PubMed Central

    Gruenloh, Stephanie K.; Gao, Ying; Manthati, Vijay L.; Dubasi, Narsimhaswamy; Falck, John R.; Medhora, Meetha; Jacobs, Elizabeth R.

    2010-01-01

    We have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) increases both superoxide and nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs). The current study was designed to determine mechanisms underlying 20-HETE-stimulated NO release, and particularly the role of NADPH oxidase, reactive oxygen species, and PI3-kinase in stimulated NO release. Intracellular hydrogen peroxide (H2O2) and NO production were detected by dichlorofluorescein or dihydrorhodamine and diaminofluorescein fluorescence, respectively. Activation of endothelial nitric oxide synthase (eNOS) (Ser1179) and Akt (Ser473) was assessed by comparing the ratio of phosphorylated to total protein expression by Western blotting. Addition of 20-HETE to BPAECs caused an increase in superoxide and hydrogen peroxide, but not peroxynitrite. 20-HETE-evoked activation of Akt and eNOS, as well as enhanced NO release, are dependent on H2O2 as opposed to superoxide in that these endpoints are blocked by PEG-catalase and not PEG-superoxide dismutase. Similarly, 20-HETE-stimulated NO production in BPAECs is blocked by NADPH oxidase inhibitors apocynin or gp91 blocking peptide, and by PI3-kinase/Akt blockers wortmannin, LY-294002, or Akt inhibitor, implicating NADPH oxidase, PI3-kinase, and Akt signaling pathways, respectively, in this process. Together, these data suggest the following scheme: 20-HETE stimulates NADPH oxidase-dependent formation of superoxide. Superoxide is rapidly dismutated to hydrogen peroxide, which then mediates activation of PI3-kinase/Akt, phosphorylation of eNOS, and enhanced release of NO from eNOS in response to 20-HETE in BPAECs. PMID:20061439

  7. Thioredoxin-interacting Protein Mediates High Glucose-induced Reactive Oxygen Species Generation by Mitochondria and the NADPH Oxidase, Nox4, in Mesangial Cells*

    PubMed Central

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W.; Quaggin, Susan E.; Fantus, I. George

    2013-01-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced ?-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  8. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin.

    PubMed

    Sharma, Minu; Kaur, Tanzeer; Singla, S K

    2016-03-01

    The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidase, are known to play an imperative role in the pathogenesis of hyperoxaluria-induced nephrolithiasis. The present study was designed to investigate the protective effect of a combinatorial therapy based on the attenuation of oxidative stress with antioxidant (N-acetyl cysteine), and NADPH oxidase inhibitor (apocynin), that might be required to effectively eliminate hyperoxaluric manifestations. Hyperoxaluria was induced in male Wistar rats by administering 0.4% ethylene glycol with 1% ammonium chloride in drinking water for 9days. Hyperoxaluria accentuated renal oxidative stress in terms of increased ROS production and lipid peroxidation. Mitochondrial dysfunction, a central deleterious event in renal stone crystallization, was evident by decreased activities of electron transport chain complex I, II and IV, augmented mitochondrial ROS, reduced GSH/GSSG ratio, which resulted in the mitochondrial permeability transition pore (mPTP) opening as indicated by increased mitochondrial swelling in hyperoxaluric rats. Furthermore, NADPH oxidase activity was significantly increased, with raised expression of NOX1, NOX2, NOX4, p38MAPK and MnSOD, in the renal tissue of hyperoxaluric rats compared to control. However, combinatorial therapy with N-acetyl cysteine (50mg/kg/day) and apocynin (200mg/kg/day), intraperitoneally, significantly improved renal functions in hyperoxaluric rats and considerably ameliorated mitochondrial dysfunction. NAC with apocynin was also found to be effective in reducing the redundant activity of NADPH oxidase in renal tissue of hyperoxaluric rats. Hence, our investigation provides novel mechanistic insights that combinatorial approaches using targeted modulators of ROS offer therapeutic benefits in hyperoxaluria-induced nephrolithiasis. PMID:26779823

  9. Nitroglycerine-Induced Nitrate Tolerance Compromises Propofol Protection of the Endothelial Cells against TNF-?: The Role of PKC-?2 and NADPH Oxidase

    PubMed Central

    Su, Wating; Liu, Huimin; Xia, Zhong-yuan; Yang, Qing-jun; Qiao, Xin; Du, Yun; Zhang, Liangqing; Xia, Zhengyuan

    2013-01-01

    Continuous treatment with organic nitrates causes nitrate tolerance and endothelial dysfunction, which is involved with protein kinase C (PKC) signal pathway and NADPH oxidase activation. We determined whether chronic administration with nitroglycerine compromises the protective effects of propofol against tumor necrosis factor (TNF-) induced toxicity in endothelial cells by PKC-?2 dependent NADPH oxidase activation. Primary cultured human umbilical vein endothelial cells were either treated or untreated with TNF-? (40?ng/mL) alone or in the presence of the specific PKC-?2 inhibitor CGP53353 (1??M)), nitroglycerine (10??M), propofol (100??M), propofol plus nitroglycerin, or CGP53353 plus nitroglycerine, respectively, for 24 hours. TNF-? increased the levels of superoxide, Nox (nitrate and nitrite), malondialdehyde, and nitrotyrosine production, accompanied by increased protein expression of p-PKC-?2, gP91phox, and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine. CGP53353 and propofol, respectively, reduced TNF-? induced oxidative stress and cell toxicity. CGP53353 completely prevented TNF-? induced oxidative stress and cell toxicity in the presence or absence of nitroglycerine, while the protective effects of propofol were neutralized by nitroglycerine. It is concluded that nitroglycerine comprises the protective effects of propofol against TNF-? stimulation in endothelial cells, primarily through PKC-?2 dependent NADPH oxidase activation. PMID:24396568

  10. Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF-?: the role of PKC-?2 and NADPH oxidase.

    PubMed

    Lei, Shaoqing; Su, Wating; Liu, Huimin; Xu, Jinjin; Xia, Zhong-yuan; Yang, Qing-jun; Qiao, Xin; Du, Yun; Zhang, Liangqing; Xia, Zhengyuan

    2013-01-01

    Continuous treatment with organic nitrates causes nitrate tolerance and endothelial dysfunction, which is involved with protein kinase C (PKC) signal pathway and NADPH oxidase activation. We determined whether chronic administration with nitroglycerine compromises the protective effects of propofol against tumor necrosis factor (TNF-) induced toxicity in endothelial cells by PKC- ?2 dependent NADPH oxidase activation. Primary cultured human umbilical vein endothelial cells were either treated or untreated with TNF- ? (40 ng/mL) alone or in the presence of the specific PKC- ?2 inhibitor CGP53353 (1 ?M)), nitroglycerine (10 ?M), propofol (100 ?M), propofol plus nitroglycerin, or CGP53353 plus nitroglycerine, respectively, for 24 hours. TNF-? increased the levels of superoxide, Nox (nitrate and nitrite), malondialdehyde, and nitrotyrosine production, accompanied by increased protein expression of p-PKC-?2, gP91phox, and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine. CGP53353 and propofol, respectively, reduced TNF-? induced oxidative stress and cell toxicity. CGP53353 completely prevented TNF- ? induced oxidative stress and cell toxicity in the presence or absence of nitroglycerine, while the protective effects of propofol were neutralized by nitroglycerine. It is concluded that nitroglycerine comprises the protective effects of propofol against TNF-? stimulation in endothelial cells, primarily through PKC-?2 dependent NADPH oxidase activation. PMID:24396568

  11. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis.

    PubMed

    Song, Charlotte J; Steinebrunner, Iris; Wang, Xuanzhi; Stout, Stephen C; Roux, Stanley J

    2006-04-01

    Extracellular ATP can serve as a signaling agent in animal cells, and, as suggested by recent reports, may also do so in plant cells. In animal cells it induces the production of reactive oxygen species through the mediation of NADPH oxidase. Similarly, here we report that in leaves of Arabidopsis (Arabidopsis thaliana), applied ATP, but not AMP or phosphate, induces the accumulation of superoxide (O2-) in a biphasic, dose-dependent manner, with a threshold at 500 nm ATP. This effect did not require ATP hydrolysis for it was mimicked by ATPgammaS. ATP also induced increased levels of Arabidopsis respiratory burst oxidase homolog D (AtrbohD) mRNA, but ATP-treated plants that had disrupted AtrbohD and AtrbohF genes did not accumulate O2-, indicating that NADPH oxidases are responsible for the induced O2- accumulation. Inhibitors of mammalian P2-type ATP receptors abolished ATP-induced O2- production, suggesting that the ATP effects may be mediated through P2-like receptors in plants. Cytosolic Ca2+ and calmodulin are likely to help transduce the ATP responses, as they do in animal cells, because a Ca2+ channel blocker, a Ca2+ chelator, and calmodulin antagonist all reduced ATP-induced O2- accumulation. Furthermore, ATP treatment enhanced the expression of genes that are induced by wounds and other stresses. The ATP measured at wound sites averaged 40 microm, well above the level needed to induce O2- accumulation and gene expression changes. Transgenic plants overexpressing an apyrase gene had reduced O2- production in response to applied ATP and wounding. Together, these data suggest a possible role for extracellular ATP as a signal potentially in wound and stress responses. PMID:16428598

  12. Extracellular ATP Induces the Accumulation of Superoxide via NADPH Oxidases in Arabidopsis1

    PubMed Central

    Song, Charlotte J.; Steinebrunner, Iris; Wang, Xuanzhi; Stout, Stephen C.; Roux, Stanley J.

    2006-01-01

    Extracellular ATP can serve as a signaling agent in animal cells, and, as suggested by recent reports, may also do so in plant cells. In animal cells it induces the production of reactive oxygen species through the mediation of NADPH oxidase. Similarly, here we report that in leaves of Arabidopsis (Arabidopsis thaliana), applied ATP, but not AMP or phosphate, induces the accumulation of superoxide (O2−) in a biphasic, dose-dependent manner, with a threshold at 500 nm ATP. This effect did not require ATP hydrolysis for it was mimicked by ATPγS. ATP also induced increased levels of Arabidopsis respiratory burst oxidase homolog D (AtrbohD) mRNA, but ATP-treated plants that had disrupted AtrbohD and AtrbohF genes did not accumulate O2−, indicating that NADPH oxidases are responsible for the induced O2− accumulation. Inhibitors of mammalian P2-type ATP receptors abolished ATP-induced O2− production, suggesting that the ATP effects may be mediated through P2-like receptors in plants. Cytosolic Ca2+ and calmodulin are likely to help transduce the ATP responses, as they do in animal cells, because a Ca2+ channel blocker, a Ca2+ chelator, and calmodulin antagonist all reduced ATP-induced O2− accumulation. Furthermore, ATP treatment enhanced the expression of genes that are induced by wounds and other stresses. The ATP measured at wound sites averaged 40 μm, well above the level needed to induce O2− accumulation and gene expression changes. Transgenic plants overexpressing an apyrase gene had reduced O2− production in response to applied ATP and wounding. Together, these data suggest a possible role for extracellular ATP as a signal potentially in wound and stress responses. PMID:16428598

  13. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.

    PubMed Central

    Xing, T; Higgins, V J; Blumwald, E

    1997-01-01

    The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount of p67-phox, p47-phox, and rac2 in the plasma membrane. Comparison of these three components in the cytosol and plasma membrane indicated that elicitors promoted the translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells carrying the appropriate resistance gene. Protein kinase C activators and inhibitors did not affect enzyme activity or the binding of these three components to the plasma membrane. In contrast, staurosporine, calmodulin antagonists, and EGTA inhibited elicitor-induced oxidase activity and the translocation of the cytosolic components. The assembly process involves a Ca(2+)-dependent protein kinase that catalyzes the phosphorylation of p67-phox and p47-phox, facilitating their translocation to the plasma membrane. Our data suggest that although both plants and animals share common elements in eukaryotic signal transduction, the involvement of different protein kinases mediating the activation of phosphorylation of p67-phox and p47-phox may reflect the unique spatial and temporal distribution of signal transduction pathways in plants. PMID:9061955

  14. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    PubMed

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Whlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlstrm, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 3 vs. 87 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 2 vs. 5 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 3 mmHg) and salt sensitivity (5 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function. PMID:26538440

  15. The effect of NADPH-oxidase inhibitor apocynin on cognitive impairment induced by moderate lateral fluid percussion injury: role of inflammatory and oxidative brain damage.

    PubMed

    Ferreira, Ana Paula Oliveira; Rodrigues, Fernanda Silva; Della-Pace, Iuri Domingues; Mota, Bibiana Castagna; Oliveira, Sara Marchesan; Velho Gewehr, Camila de Campos; Bobinski, Franciane; de Oliveira, Clarissa Vasconcelos; Brum, Juliana Sperotto; Oliveira, Mauro Schneider; Furian, Ana Flavia; de Barros, Claudio Severo Lombardo; Ferreira, Juliano; Santos, Adair Roberto Soares Dos; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2013-11-01

    Traumatic brain injury (TBI) is a devastating disease that commonly causes persistent mental disturbances and cognitive deficits. Although studies have indicated that overproduction of free radicals, especially superoxide (O2(-)) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common underlying mechanism of pathophysiology of TBI, little information is available regarding the role of apocynin, an NADPH oxidase inhibitor, in neurological consequences of TBI. Therefore, the present study evaluated the therapeutic potential of apocynin for treatment of inflammatory and oxidative damage, in addition to determining its action on neuromotor and memory impairments caused by moderate fluid percussion injury in mice (mLFPI). Statistical analysis revealed that apocynin (5mg/kg), when injected subcutaneously (s.c.) 30min and 24h after injury, had no effect on neuromotor deficit and brain edema, however it provided protection against mLFPI-induced object recognition memory impairment 7days after neuronal injury. The same treatment protected against mLFPI-induced IL-1?, TNF-?, nitric oxide metabolite content (NOx) 3 and 24h after neuronal injury. Moreover, apocynin treatment reduced oxidative damage (protein carbonyl, lipoperoxidation) and was effective against mLFPI-induced Na(+), K(+)-ATPase activity inhibition. The present results were accompanied by effective reduction in lesion volume when analyzed 7days after neuronal injury. These data suggest that superoxide (O2(-)) derived from NADPH oxidase can contribute significantly to cognitive impairment, and that the post injury treatment with specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by TBI. PMID:24076474

  16. Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner

    PubMed Central

    Rybicka, Joanna M; Balce, Dale R; Chaudhuri, Sibapriya; Allan, Euan R O; Yates, Robin M

    2012-01-01

    The level of proteolysis within phagosomes of dendritic cells (DCs) is thought to be tightly regulated, as it directly impacts the cell's efficiency to process antigen. Activity of the antimicrobial effector NADPH oxidase (NOX2) has been shown to reduce levels of proteolysis within phagosomes of both macrophages and DCs. However, the proposed mechanisms underlying these observations in these two myeloid cell lineages are dissimilar. Using real-time analysis of lumenal microenvironmental parameters within phagosomes in live bone marrow-derived DCs, we show that the levels of phagosomal proteolysis are diminished in the presence of NOX2 activity, but in contrast to previous reports, the acidification of the phagosome is largely unaffected. As found in macrophages, we show that NOX2 controls phagosomal proteolysis in DCs through redox modulation of local cysteine cathepsins. Aspartic cathepsins were unaffected by redox conditions, indicating that NOX2 skews the relative protease activities in these antigen processing compartments. The ability of DC phagosomes to reduce disulphides was also compromised by NOX2 activity, implicating this oxidase in the control of an additional antigen processing chemistry of DCs. PMID:22157818

  17. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  18. Effect of NADPH-oxidase inhibitors in the experimental model of zymosan-induced shock in mice.

    PubMed

    Impellizzeri, Daniela; Mazzon, Emanuela; Di Paola, Rosanna; Paterniti, Irene; Bramanti, Placido; Cuzzocrea, Salvatore

    2011-07-01

    The aim of this study was to investigate the effects of NADPH-oxidase inhibitors, in a mouse model of zymosan. Zymosan-induced shock was induced in mice by administration of zymosan (500 mg/kg, i.p.). The pharmacological treatment was the administration of apocynin (5 mg/kg 10% DMSO i.p.) and diphenylene iodonium chloride (DPI) (1 mg/kg i.v.) 1 h and 6 h after zymosan administration. MOF and systemic inflammation in mice was assessed 18 h after administration of zymosan. NADPH-oxidase inhibitors caused a significant reduction of the (1) peritoneal exudate formation, (2) neutrophil infiltration, (3) multiple organ dysfunction syndrome, (4) nitrotyrosine, (5) poly (ADP-ribose) (PAR), (6) cytokine formation, (7) adhesion molecule expression, (8) nuclear factor (NF-?B) expression and (9) apoptosis induced by zymosan. Moreover, NADPH-oxidase inhibitors treatment significantly reduced the systemic toxicity, the loss in body weight and the mortality caused by zymosan. This study has shown that NADPH-oxidase inhibitors attenuate the degree of zymosan-induced non-septic shock in mice. PMID:21623687

  19. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1?/G-CSF axis.

    PubMed

    Bagaitkar, Juhi; Pech, Nancy K; Ivanov, Stoyan; Austin, Anthony; Zeng, Melody Yue; Pallat, Sabine; Huang, Guangming; Randolph, Gwendalyn J; Dinauer, Mary C

    2015-12-17

    The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1? (IL-1?) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1? and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1?, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1? played little role. Thus, we identified an excessive IL-1?/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response. PMID:26443623

  20. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase.

    PubMed

    Touyz, Rhian M; Mercure, Chantel; He, Ying; Javeshghani, Danesh; Yao, Guoying; Callera, Glaucia E; Yogi, Alvaro; Lochard, Nadheige; Reudelhuber, Timothy L

    2005-04-01

    The gp91phox-containing NADPH oxidase is the major source of reactive oxygen species (ROS) in the cardiovascular system and inactivation of gp91phox has been reported to blunt hypertension and cardiac hypertrophy seen in angiotensin (Ang) II-infused animals. In the current study, we sought to determine the role of gp91phox-derived ROS on cardiovascular outcomes of chronic exposure to Ang II. The gp91phox-deficient mice were crossed with transgenic mice expressing active human renin in the liver (TTRhRen). TTRhRen mice exhibit chronic Ang II-dependent hypertension and frank cardiac hypertrophy by age 10 to 12 weeks. Four genotypes of mice were generated: control, TTRhRen trangenics (TTRhRen), gp91phox-deficient (gp91-), and TTRhRen transgenic gp91phox-deficient (TTRhRen/gp91-). Eight to 10 mice/group were studied. ROS levels were significantly reduced (P<0.05) in the heart and aorta of TTRhRen/gp91- and gp91-mice compared with control counterparts, and this was associated with reduced cardiac, aortic, and renal NADPH oxidase activity (P<0.05). Systolic blood pressure (SBP), cardiac mass, and cardiac fibrosis were increased in TTRhRen versus controls. In contrast to its action on ROS generation, gp91phox inactivation had no effect on development of hypertension or cardiac hypertrophy in TTRhRen mice, although interstitial fibrosis was reduced. Cardiac and renal expression of gp91phox homologues, Nox1 and Nox4, was not different between groups. Thus, although eliminating gp91phox-associated ROS production may be important in cardiovascular consequences in acute insult models, it does not prevent the development of hypertension and cardiac hypertrophy in a model in which the endogenous renin-angiotensin system is chronically upregulated. PMID:15753233

  1. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease

    PubMed Central

    Egan, Martin J.; Wang, Zheng-Yi; Jones, Mark A.; Smirnoff, Nicholas; Talbot, Nicholas J.

    2007-01-01

    One of the first responses of plants to microbial attack is the production of extracellular superoxide surrounding infection sites. Here, we report that Magnaporthe grisea, the causal agent of rice blast disease, undergoes an oxidative burst of its own during plant infection, which is associated with its development of specialized infection structures called appressoria. Scavenging of these oxygen radicals significantly delayed the development of appressoria and altered their morphology. We targeted two superoxide-generating NADPH oxidase-encoding genes, Nox1 and Nox2, and demonstrated genetically, that each is independently required for pathogenicity of M. grisea. ?nox1 and ?nox2 mutants are incapable of causing plant disease because of an inability to bring about appressorium-mediated cuticle penetration. The initiation of rice blast disease therefore requires production of superoxide by the invading pathogen. PMID:17600089

  2. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?

    PubMed

    Sahoo, Sanghamitra; Meijles, Daniel N; Pagano, Patrick J

    2016-03-01

    Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of 'longevity genes' and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population. PMID:26814203

  3. Biochemistry, Physiology and Pathophysiology of NADPH Oxidases in the Cardiovascular System

    PubMed Central

    Lassègue, Bernard; San Martín, Alejandra; Griendling, Kathy K.

    2012-01-01

    The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4 and 5), their roles in cardiovascular cell biology, and their contributions to disease development. PMID:22581922

  4. In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes

    PubMed Central

    Détry, Nicolas; Choi, Jaeyoung; Kuo, Hsiao-Che; Asiegbu, Fred O.

    2014-01-01

    NADPH oxidases (Noxes), transmembrane proteins found in most eukaryotic species, generate reactive oxygen species and are thereby involved in essential biological processes. However, the fact that genes encoding ferric reductases and ferric-chelate reductases share high sequence similarities and domains with Nox genes represents a challenge for bioinformatic approaches used to identify Nox-encoding genes. Further, most studies on fungal Nox genes have focused mainly on functionality, rather than sequence properties, and consequently clear differentiation among the various Nox isoforms has not been achieved. We conducted an extensive sequence analysis to identify putative Nox genes among 34 eukaryotes, including 28 fungal genomes and one Oomycota genome. Analyses were performed with respect to phylogeny, transmembrane helices, di-histidine distance and glycosylation. Our analyses indicate that the sequence properties of fungal Nox genes are different from those of human and plant Nox genes, thus providing novel insight that will enable more accurate identification and characterization of fungal Nox genes. PMID:25346600

  5. The effect of inorganic arsenic on endothelium-dependent relaxation: Role of NADPH oxidase and hydrogen peroxide

    PubMed Central

    Edwards, David H.; Li, Yiwen; Ellinsworth, David C.; Griffith, Tudor M.

    2013-01-01

    Chronic arsenic ingestion predisposes to vascular disease, but underlying mechanisms are poorly understood. In the present study we have analyzed the effects of short-term arsenite exposure on vascular function and endothelium-dependent relaxation. Endothelium-dependent relaxations, nitric oxide (NO) and endothelium derived hyperpolarizing factor (EDHF)-type, were studied in rabbit iliac artery and aortic rings using the G protein-coupled receptor agonist acetylcholine (ACh) and by cyclopiazonic acid (CPA), which promotes store-operated Ca2+ entry by inhibiting the endothelial SERCA pump. Production of reactive oxygen species (ROS) in the endothelium of rabbit aortic valve leaflets and endothelium-denuded RIA and aortic rings was assessed by imaging of dihydroethidium. In the iliac artery, exposure to 100?M arsenite for 30min potentiated EDHF-type relaxations evoked by both CPA and ACh. Potentiation was prevented by catalase, the catalase/superoxide dismutase mimetic manganese porphyrin and the NADPH oxidase inhibitor apocynin. By contrast in aortic rings, that exhibited negligible EDHF-type responses, endothelium-dependent NO-mediated relaxations evoked by CPA and ACh were unaffected by arsenite. Arsenite induced apocynin-sensitive increases in ROS production in the aortic valve endothelium, but not in the media and adventitia of the iliac artery and aorta. Our results suggest that arsenite can potentiate EDHF-type relaxations via a mechanism that is dependent on hydrogen peroxide, thus demonstrating that dismutation of the superoxide anion generated by NADPH oxidase can potentially offset loss of NO bioavailability under conditions of reduced eNOS activity. By contrast, selective increases in endothelial ROS production following exposure to arsenite failed to modify relaxations mediated by endogenous NO. PMID:23384446

  6. The effect of inorganic arsenic on endothelium-dependent relaxation: role of NADPH oxidase and hydrogen peroxide.

    PubMed

    Edwards, David H; Li, Yiwen; Ellinsworth, David C; Griffith, Tudor M

    2013-04-01

    Chronic arsenic ingestion predisposes to vascular disease, but underlying mechanisms are poorly understood. In the present study we have analyzed the effects of short-term arsenite exposure on vascular function and endothelium-dependent relaxation. Endothelium-dependent relaxations, nitric oxide (NO) and endothelium derived hyperpolarizing factor (EDHF)-type, were studied in rabbit iliac artery and aortic rings using the G protein-coupled receptor agonist acetylcholine (ACh) and by cyclopiazonic acid (CPA), which promotes store-operated Ca(2+) entry by inhibiting the endothelial SERCA pump. Production of reactive oxygen species (ROS) in the endothelium of rabbit aortic valve leaflets and endothelium-denuded RIA and aortic rings was assessed by imaging of dihydroethidium. In the iliac artery, exposure to 100 ?M arsenite for 30 min potentiated EDHF-type relaxations evoked by both CPA and ACh. Potentiation was prevented by catalase, the catalase/superoxide dismutase mimetic manganese porphyrin and the NADPH oxidase inhibitor apocynin. By contrast in aortic rings, that exhibited negligible EDHF-type responses, endothelium-dependent NO-mediated relaxations evoked by CPA and ACh were unaffected by arsenite. Arsenite induced apocynin-sensitive increases in ROS production in the aortic valve endothelium, but not in the media and adventitia of the iliac artery and aorta. Our results suggest that arsenite can potentiate EDHF-type relaxations via a mechanism that is dependent on hydrogen peroxide, thus demonstrating that dismutation of the superoxide anion generated by NADPH oxidase can potentially offset loss of NO bioavailability under conditions of reduced eNOS activity. By contrast, selective increases in endothelial ROS production following exposure to arsenite failed to modify relaxations mediated by endogenous NO. PMID:23384446

  7. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation

    PubMed Central

    Ameziane-El-Hassani, Rabii; Talbot, Monique; de Souza Dos Santos, Maria Carolina; Al Ghuzlan, Abir; Hartl, Dana; Bidart, Jean-Michel; De Deken, Xavier; Miot, Franoise; Diallo, Ibrahima; de Vathaire, Florent; Schlumberger, Martin; Dupuy, Corinne

    2015-01-01

    Ionizing radiation (IR) causes not only acute tissue damage, but also late effects in several cell generations after the initial exposure. The thyroid gland is one of the most sensitive organs to the carcinogenic effects of IR, and we have recently highlighted that an oxidative stress is responsible for the chromosomal rearrangements found in radio-induced papillary thyroid carcinoma. Using both a human thyroid cell line and primary thyrocytes, we investigated the mechanism by which IR induces the generation of reactive oxygen species (ROS) several days after irradiation. We focused on NADPH oxidases, which are specialized ROS-generating enzymes known as NOX/DUOX. Our results show that IR induces delayed NADPH oxidase DUOX1-dependent H2O2 production in a dose-dependent manner, which is sustained for several days. We report that p38 MAPK, activated after IR, increased DUOX1 via IL-13 expression, leading to persistent DNA damage and growth arrest. Pretreatment of cells with catalase, a scavenger of H2O2, or DUOX1 down-regulation by siRNA abrogated IR-induced DNA damage. Analysis of human thyroid tissues showed that DUOX1 is elevated not only in human radio-induced thyroid tumors, but also in sporadic thyroid tumors. Taken together, our data reveal a key role of DUOX1-dependent H2O2 production in long-term persistent radio-induced DNA damage. Our data also show that DUOX1-dependent H2O2 production, which induces DNA double-strand breaks, can cause genomic instability and promote the generation of neoplastic cells through its mutagenic effect. PMID:25848056

  8. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation.

    PubMed

    Ameziane-El-Hassani, Rabii; Talbot, Monique; de Souza Dos Santos, Maria Carolina; Al Ghuzlan, Abir; Hartl, Dana; Bidart, Jean-Michel; De Deken, Xavier; Miot, Françoise; Diallo, Ibrahima; de Vathaire, Florent; Schlumberger, Martin; Dupuy, Corinne

    2015-04-21

    Ionizing radiation (IR) causes not only acute tissue damage, but also late effects in several cell generations after the initial exposure. The thyroid gland is one of the most sensitive organs to the carcinogenic effects of IR, and we have recently highlighted that an oxidative stress is responsible for the chromosomal rearrangements found in radio-induced papillary thyroid carcinoma. Using both a human thyroid cell line and primary thyrocytes, we investigated the mechanism by which IR induces the generation of reactive oxygen species (ROS) several days after irradiation. We focused on NADPH oxidases, which are specialized ROS-generating enzymes known as NOX/DUOX. Our results show that IR induces delayed NADPH oxidase DUOX1-dependent H2O2 production in a dose-dependent manner, which is sustained for several days. We report that p38 MAPK, activated after IR, increased DUOX1 via IL-13 expression, leading to persistent DNA damage and growth arrest. Pretreatment of cells with catalase, a scavenger of H2O2, or DUOX1 down-regulation by siRNA abrogated IR-induced DNA damage. Analysis of human thyroid tissues showed that DUOX1 is elevated not only in human radio-induced thyroid tumors, but also in sporadic thyroid tumors. Taken together, our data reveal a key role of DUOX1-dependent H2O2 production in long-term persistent radio-induced DNA damage. Our data also show that DUOX1-dependent H2O2 production, which induces DNA double-strand breaks, can cause genomic instability and promote the generation of neoplastic cells through its mutagenic effect. PMID:25848056

  9. Protein disulfide isomerase expression increases in resistance arteries during hypertension development. Effects on Nox1 NADPH oxidase signaling

    PubMed Central

    Androwiki, Aline C. D.; Camargo, Lvia de Lucca; Sartoretto, Simone; Couto, Gisele K.; Ribeiro, Izabela M. R.; Verssimo-Filho, Sidney; Rossoni, Luciana V.; Lopes, Lucia R.

    2015-01-01

    NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hypertension development remains unknown. The aim of the present study was to investigate PDI expression and NADPH oxidase dependent ROS generation during hypertension development. Mesenteric resistance arteries (MRA) and thoracic aorta were isolated from 6, 8, and 12 week-old spontaneously hypertensive (SHR) and Wistar rats. ROS production (dihydroethidium fluorescence), PDI (WB, imunofluorescence), Nox1 and NOX4 (RT-PCR) expression were evaluated. Results show a progressive increase in ROS generation in MRA and aorta from 8 to 12 week-old SHR. This effect was associated with a concomitant increase in PDI and Nox1 expression only in MRA. Therefore, suggesting a positive correlation between PDI and Nox1 expression during the development of hypertension in MRA. In order to investigate if this effect was due to an increase in arterial blood pressure, pre hypertensive SHR were treated with losartan (20 mg/kg/day for 30 days), an AT1 receptor antagonist. Losartan decreased blood pressure and ROS generation in both vascular beds. However, only in SHR MRA losartan treatment lowered PDI and Nox1 expression to control levels. In MRA PDI inhibition (bacitracin, 0.5 mM) decreased Ang II redox signaling (p-ERK 1/2). Altogether, our results suggest that PDI plays a role in triggering oxidative stress and vascular dysfunction in resistance but not in conductance arteries, increasing Nox1 expression and activity. Therefore, PDI could be a new player in oxidative stress and functional alterations in resistance arteries during the establishment of hypertension. PMID:25870854

  10. Which NADPH Oxidase Isoform Is Relevant for Ischemic Stroke? The Case for Nox 2

    PubMed Central

    Kahles, Timo

    2013-01-01

    Abstract Significance and Recent Advances: Ischemic stroke is the leading cause of disability and third in mortality in industrialized nations. Immediate restoration of cerebral blood flow is crucial to salvage brain tissue, but only few patients are eligible for recanalization therapy. Thus, the need for alternative neuroprotective strategies is huge, and antioxidant interventions have long been studied in this context. Reactive oxygen species (ROS) physiologically serve as signaling molecules, but excessive amounts of ROS, as generated during ischemia/reperfusion (I/R), contribute to tissue injury. Critical Issues: Nevertheless and despite a strong rational of ROS being a pharmacological target, all antioxidant interventions failed to improve functional outcome in human clinical trials. Antioxidants may interfere with physiological functions of ROS or do not reach the crucial target structures of ROS-induced injury effectively. Future Directions: Thus, a potentially more promising approach is the inhibition of the source of disease-promoting ROS. Within recent years, NADPH oxidases (Nox) of the Nox family have been identified as mediators of neuronal pathology. As, however, several Nox homologs are expressed in neuronal tissue, and as many of the pharmacological inhibitors employed are rather unspecific, the concept of Nox as mediators of brain damage is far from being settled. In this review, we will discuss the contribution of Nox homologs to I/R injury at large as well as to neuronal damage in particular. We will illustrate that the current data provide evidence for Nox2 as the most important NADPH oxidase mediating cerebral injury. Antioxid. Redox Signal. 18, 14001417. PMID:22746273

  11. Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata.

    PubMed

    Yang, Siwy Ling; Chung, Kuang-Ren

    2013-08-01

    The fungal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) complex, which has been implicated in the production of low-level reactive oxygen species (ROS), contains mainly NoxA, NoxB (gp91(phox) homologues) and NoxR (p67(phox) homologue). Here, we report the developmental and pathological functions of NoxB and NoxR in the tangerine pathotype of Alternaria alternata. Loss-of-function genetics revealed that all three Nox components are required for the accumulation of cellular hydrogen peroxide (H₂O₂). Alternaria alternata strains lacking NoxA, NoxB or NoxR also displayed an increased sensitivity to H₂O₂ and many ROS-generating oxidants. These phenotypes are highly similar to those previously seen for the Δyap1 mutant lacking a YAP1 transcriptional regulator and for the Δhog1 mutant lacking a HOG1 mitogen-activated protein (MAP) kinase, implicating a possible link among them. A fungal strain carrying a NoxA NoxB or NoxA NoxR double mutation was more sensitive to the test compounds than the strain mutated at a single gene, implicating a synergistic function among Nox components. The ΔnoxB mutant strain failed to produce any conidia; both ΔnoxA and ΔnoxR mutant strains showed a severe reduction in sporulation. Mutant strains carrying defective NoxB had higher chitin content than the wild-type and were insensitive to calcofluor white, Congo red and the fungicides vinclozolin and fludioxonil. Virulence assays revealed that all three Nox components are required for the elaboration of the penetration process. The inability to penetrate the citrus host, observed for Δnox mutants, could be overcome by wounding and by reacquiring a dominant Nox gene. The A. alternata NoxR did not influence the expression of NoxB, but negatively regulated NoxA. Importantly, the expression of both YAP1 and HOG1 genes, whose products are involved in resistance to ROS, was down-regulated in fungi carrying defective NoxA, NoxB or NoxR. Our results highlight the requirement of Nox in ROS resistance and provide insights into its critical role in regulating both YAP1 and HOG1 in A. alternata. PMID:23527595

  12. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis

    PubMed Central

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-01-01

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636

  13. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis.

    PubMed

    Di Filippo, Massimiliano; de Iure, Antonio; Giamp, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-01-01

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636

  14. Riboflavin (vitamin B2 ) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes.

    PubMed

    Schramm, Michael; Wiegmann, Katja; Schramm, Sandra; Gluschko, Alexander; Herb, Marc; Utermhlen, Olaf; Krnke, Martin

    2014-03-01

    Riboflavin, also known as vitamin B2 , is converted by riboflavin kinase (RFK) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential cofactors of dehydrogenases, reductases, and oxidases including the phagocytic NADPH oxidase 2 (Nox2). Riboflavin deficiency is common in young adults and elderly individuals, who are at the coincidental risk for listeriosis. To address the impact of acute riboflavin deficiency on host defense against Listeria monocytogenes (L.m.), we generated conditional RFK knockout (KO) strains of mice. Phagocyte-specific RFK KO impaired the capability of phagocytes to control intracellular L.m., which corresponded to a greater susceptibility of mice to in vivo challenge with L.m. The oxidative burst of RFK-deficient phagocytes in response to L.m. infection was significantly reduced. Mechanistically, TNF-induced priming of Nox2, which is needed for oxidative burst, was defective in RFK-deficient phagocytes. Lack of riboflavin in wild-type macrophages for only 6 h shut down TNF-induced, RFK-mediated de novo FMN/FAD generation, which was accompanied by diminished ROS production and impaired anti-listerial activity. Vice versa, ROS production by riboflavin-deprived macrophages was rapidly restored by riboflavin supplementation. Our results suggest that acute riboflavin deficiency immediately impairs priming of Nox2, which is of crucial relevance for an effective phagocytic immune response in vivo. PMID:24272050

  15. Autosomal recessive chronic granulomatous disease with absence of the 67-kD cytosolic NADPH oxidase component: identification of mutation and detection of carriers.

    PubMed

    de Boer, M; Hilarius-Stokman, P M; Hossle, J P; Verhoeven, A J; Graf, N; Kenney, R T; Seger, R; Roos, D

    1994-01-15

    Chronic granulomatous disease (CGD) is characterized by the failure of phagocytic leukocytes to kill certain bacteria and fungi. This is caused by deficiencies in one of the components of NADPH oxidase, the enzyme in phagocytic leukocytes that generates superoxide. In a rare, autosomal recessive form of CGD, a 67-kD cytosolic component of NADPH oxidase (p67-phox) is missing. Until now, mutations in the gene coding for this protein have not been identified. We now report on a 10-year-old girl with lymph node and liver abscesses who was recognized as an A67(0) CGD patient by lack of NADPH oxidase activity in her granulocytes, a cytosolic defect in a cell-free oxidase system, and lack of immunoreactive material with an antiserum against the p67-phox protein. mRNA for this protein was present in normal amounts in her monocytes. This p67-phox mRNA was reverse-transcribed, and the coding region was amplified by polymerase chain reaction in six overlapping fragments and was sequenced. The patient appeared to be homozygous for a G-233-->A mutation, resulting in a nonconservative amino acid change (78Gly-->Glu). This mutation was also found in the genomic DNA of this patient but not in that of 38 normal donors. Both parents and a sister proved to be carriers of the disease, as deduced from the mutation in only one allele. The carrier state was also manifested by intermediate superoxide production by their intact granulocytes and in the cell-free system. PMID:8286749

  16. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice.

    PubMed

    Wang, Xiang; Zhang, Mao-Mao; Wang, Ya-Jing; Gao, Yin-Tao; Li, Ri; Wang, Gang-Feng; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming

    2016-04-01

    Plasma membrane NADPH oxidases are major producers of reactive oxygen species (ROS) in plant cells under normal growth and stress conditions. In the present study the total activity of rice NADPH oxidases and the transcription of OsRbohA, which encodes an Oryza sativa plasma membrane NADPH oxidase, were stimulated by drought. OsRbohA was expressed in all tissues examined throughout development. Its mRNA was upregulated by a number of factors, including heat, drought, salt, oxidative stress and methyl jasmonate treatment. Compared with wild-type (WT), the OsRbohA-knockout mutant osrbohA exhibited upregulated expression of other respiratory burst oxidase homolog genes and multiple abnormal agronomic traits, including reduced biomass, low germination rate and decreased pollen viability and seed fertility. However, OsRbohA-overexpressing transgenic plants showed no differences in these traits compared with WT. Although osrbohA leaves and roots produced more ROS than WT, the mutant had lesser intracellular ROS. In contrast, OsRbohA-overexpressing transgenic plants exhibited higher ROS production at the intracellular level and in tissues. Ablation of OsRbohA impaired the tolerance of plants to various water stresses, whereas its overexpression enhanced the tolerance. In addition, a number of genes related to energy supply, substrate transport, stress response and transcriptional regulation were differentially expressed in osrbohA plants even under normal growth conditions, suggesting that OsRbohA has fundamental and broad functions in rice. These results indicate that OsRbohA-mediated processes are governed by complex signaling pathways that function during the developmental regulation and drought-stress response in rice. PMID:26400148

  17. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    SciTech Connect

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-12-19

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91{sup phox} was dose-dependent. Meanwhile, the cytoplasmic subunit p47{sup phox} was translocated to the cell membrane and localized with p22{sup phox} and gp91{sup phox} to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  18. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension

    PubMed Central

    Du, Jianhai; Welak, Scott; Guan, Tongju; Eis, Annie; Shi, Yang; Konduri, Girija G.

    2012-01-01

    Autophagy is a process for cells to degrade proteins or entire organelles to maintain a balance in the synthesis, degradation, and subsequent recycling of cellular products. Increased reactive oxygen species formation is known to induce autophagy. We previously reported that increased NADPH oxidase (NOX) activity in pulmonary artery endothelial cells (PAEC) from fetal lambs with persistent pulmonary hypertension (PPHN) contributes to impaired angiogenesis in PPHN-PAEC compared with normal PAEC. We hypothesized that increased NOX activity in PPHN-PAEC is associated with increased autophagy, which, in turn, contributes to impaired angiogenesis in PPHN-PAEC. In the present study, we detected increased autophagy in PPHN-PAEC as shown by increased ratio of the microtubule-associated protein 1 light chain (LC3)-II to LC3-I and increased percentage of green fluorescent protein-LC3 punctate positive cells. Inhibiting autophagy by 3-methyladenine, chloroquine, and beclin-1 knockdown in PPHN-PAEC has led to decreased autophagy and increased in vitro angiogenesis. Inhibition of autophagy also decreased the association between gp91phox and p47phox, NOX activity, and superoxide generation. A nonspecific antioxidant N-acetylcysteine and a NOX inhibitor apocynin decreased autophagy in PPHN-PAEC. In conclusion, autophagy may contribute to impaired angiogenesis in PPHN-PAEC through increasing NOX activity. Our results suggest that, in PPHN-PAEC, a positive feedback relationship between autophagy and NOX activity may regulate angiogenesis. PMID:22245997

  19. Anandamide Protects HT22 Cells Exposed to Hydrogen Peroxide by Inhibiting CB1 Receptor-Mediated Type 2 NADPH Oxidase

    PubMed Central

    Jia, Ji; Wu, Mingchun; Zhang, Lei; Zhang, Xiajing; Zhai, Qian; Jiang, Tao; Xiong, Lize

    2014-01-01

    Background. Endogenous cannabinoid anandamide (AEA) protects neurons from oxidative injury in rodent models; however the mechanism of AEA-induced neuroprotection remains to be determined. Activation of neuronal NADPH oxidase 2 (Nox2) contributes to oxidative damage of the brain, and inhibition of Nox2 can attenuate cerebral oxidative stress. We aimed to determine whether the neuronal Nox2 was involved in protection mediated by AEA. Methods. The mouse hippocampal neuron cell line HT22 was exposed to hydrogen peroxide (H2O2) to mimic oxidative injury of neurons. The protective effect of AEA was assessed by measuring cell metabolic activity, apoptosis, lactate dehydrogenase (LDH) release, cellular morphology, intracellular reactive oxygen species (ROS), and antioxidant and oxidant levels and Nox2 expression. Results. HT22 cells exposed to H2O2 demonstrated morphological changes, decreased LDH release, reduced metabolic activity, increased levels of intracellular ROS and oxidized glutathione (GSSG), reduced levels of superoxide dismutase (SOD), and reduced glutathione (GSH) and increased expression of Nox2. AEA prevented these effects, a property abolished by simultaneous administration of CB1 antagonist AM251 or CB1-siRNA. Conclusion. Nox2 inhibition is involved in AEA-induced cytoprotection against oxidative stress through CB1 activation in HT22 cells. PMID:25136404

  20. Intermittent High Glucose Implements Stress-Induced Senescence in Human Vascular Endothelial Cells: Role of Superoxide Production by NADPH Oxidase

    PubMed Central

    Maeda, Morihiko; Hayashi, Toshio; Mizuno, Natsumi; Hattori, Yuichi; Kuzuya, Masafumi

    2015-01-01

    Impaired glucose tolerance characterized by postprandial hyperglycemia, which occurs frequently in elderly persons and represents an important preliminary step in diabetes mellitus, poses an independent risk factor for the development of atherosclerosis. Endothelial cellular senescence is reported to precede atherosclerosis. We reported that continuous high glucose stimulus causes endothelial senescence more markedly than hypertension or dyslipidemia stimulus. In the present study, we evaluated the effect of fluctuating glucose levels on human endothelial senescence. Constant high glucose increased senescence-associated-?-galactosidase(SA-?-gal) activity, a widely used marker for cellular senescence. Interestingly, in intermittent high glucose, this effect was more pronounced as well as increase of p21 and p16INK4a , senescence related proteins with DNA damage. However, telomerase was not activated and telomere length was not shortened, thus stress-induced senescence was shown. However, constant high glucose activated telomerase and shortened telomere length, which suggested replicative senescence. Intermittent but not constant high glucose strikingly up-regulated the expression of p22phox, an NADPH oxidase component, increasing superoxide. The small interfering RNA of p22phox undermined the increase in SA-?-gal activity induced by intermittent high glucose. Conclusively, intermittent high glucose can promote vascular endothelial senescence more than constant high glucose, which is in partially dependent on superoxide overproduction. PMID:25879533

  1. Histamine Promotes the Development of Monocyte-Derived Dendritic Cells and Reduces Tumor Growth by Targeting the Myeloid NADPH Oxidase

    PubMed Central

    Wiktorin, Hanna G.; Lenox, Brianna; Ewald Sander, Frida; Aydin, Ebru; Aurelius, Johan; Thorn, Fredrik B.; Sthlberg, Anders; Hermodsson, Svante; Hellstrand, Kristoffer

    2015-01-01

    The efficiency of immune-mediated clearance of cancer cells is hampered by immunosuppressive mediators in the malignant microenvironment, including NADPH oxidasederived reactive oxygen species. We aimed at defining the effects of histamine, an inhibitor of the myeloid NADPH oxidase/NOX2, on the development of Ag-presenting dendritic cells (DCs) from myeloid precursors and the impact of these mechanisms for tumor growth. Histamine was found to promote the maturation of human DCs from monocytes by increasing the expression of HLA-DR and costimulatory molecules, which resulted in improved induction of Th cells with Th0 polarity. Experiments using wild-type and NOX2-deficient myelomonoblastic cells showed that histamine facilitated myeloid cell maturation only in cells capable of generating reactive oxygen species. Treatment of mice with histamine reduced the growth of murine EL-4 lymphomas in parallel with an increment of tumor-infiltrating DCs in NOX2-sufficient mice but not in NOX2-deficient (gp91phox?/?) mice. We propose that strategies to target the myeloid NADPH oxidase may facilitate the development of endogenous DCs in cancer. PMID:25870245

  2. Amyloid ?25-35 induced ROS-burst through NADPH oxidase is sensitive to iron chelation in microglial Bv2 cells.

    PubMed

    Part, Kristin; Knnis-Beres, Kai; Poska, Helen; Land, Tiit; Shimmo, Ruth; Zetterstrm Fernaeus, Sandra

    2015-12-10

    Iron chelation therapy and inhibition of glial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can both represent possible routes for Alzheimer's disease modifying therapies. The metal hypothesis is largely focused on direct binding of metals to the N-terminal hydrophilic 1-16 domain peptides of Amyloid beta (A?) and how they jointly give rise to reactive oxygen species (ROS) production. The cytotoxic effects of A? through ROS and metals are mainly studied in neuronal cells using full-length A?1-40/42 peptides. Here we study cellularly-derived ROS during 2-60min in response to non-metal associated mid domain A?25-35 in microglial Bv2 cells by fluorescence based spectroscopy. We analyze if A?25-35 induce ROS production through NADPH oxidase and if the production is sensitive to iron chelation. NADPH oxidase inhibitor diphenyliodonium (DPI) is used to confirm the production of ROS through NADPH oxidase. We modulate cellular iron homeostasis by applying cell permeable iron chelators desferrioxamine (DFO) and deferiprone (DFP). NADPH oxidase subunit gp91-phox level was analyzed by Western blotting. Our results show that A?25-35 induces strong ROS production through NADPH oxidase in Bv2 microglial cells. Intracellular iron depletion resulted in restrained A?25-35 induced ROS. PMID:26505916

  3. The Role of the NADPH Oxidase NOX2 in Prion Pathogenesis

    PubMed Central

    Sorce, Silvia; Nuvolone, Mario; Keller, Annika; Falsig, Jeppe; Varol, Ahmet; Schwarz, Petra; Bieri, Monika; Budka, Herbert; Aguzzi, Adriano

    2014-01-01

    Prion infections cause neurodegeneration, which often goes along with oxidative stress. However, the cellular source of reactive oxygen species (ROS) and their pathogenetic significance are unclear. Here we analyzed the contribution of NOX2, a prominent NADPH oxidase, to prion diseases. We found that NOX2 is markedly upregulated in microglia within affected brain regions of patients with Creutzfeldt-Jakob disease (CJD). Similarly, NOX2 expression was upregulated in prion-inoculated mouse brains and in murine cerebellar organotypic cultured slices (COCS). We then removed microglia from COCS using a ganciclovir-dependent lineage ablation strategy. NOX2 became undetectable in ganciclovir-treated COCS, confirming its microglial origin. Upon challenge with prions, NOX2-deficient mice showed delayed onset of motor deficits and a modest, but significant prolongation of survival. Dihydroethidium assays demonstrated a conspicuous ROS burst at the terminal stage of disease in wild-type mice, but not in NOX2-ablated mice. Interestingly, the improved motor performance in NOX2 deficient mice was already measurable at earlier stages of the disease, between 13 and 16 weeks post-inoculation. We conclude that NOX2 is a major source of ROS in prion diseases and can affect prion pathogenesis. PMID:25502554

  4. Role of Neuronal NADPH Oxidase 1 in the Peri-Infarct Regions after Stroke

    PubMed Central

    Choi, Dong-Hee; Kim, Ji-Hye; Lee, Kyoung-Hee; Kim, Hahn-Young; Kim, Yoon-Seong; Choi, Wahn Soo; Lee, Jongmin

    2015-01-01

    The molecular mechanism underlying the selective vulnerability of neurons to oxidative damage caused by ischemiareperfusion (I/R) injury remains unknown. We sought to determine the role of NADPH oxidase 1 (Nox1) in cerebral I/R-induced brain injury and survival of newborn cells in the ischemic injured region. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion. After reperfusion, infarction size, level of superoxide and 8-hydroxy-2?-deoxyguanosine (8-oxo-2dG), and Nox1 immunoreactivity were determined. RNAi-mediated knockdown of Nox1 was used to investigate the role of Nox1 in I/R-induced oxidative damage, neuronal death, motor function recovery, and ischemic neurogenesis. After I/R, Nox1 expression and 8-oxo-2dG immunoreactivity was increased in cortical neurons of the peri-infarct regions. Both infarction size and neuronal death in I/R injury were significantly reduced by adeno-associated virus (AAV)-mediated transduction of Nox1 short hairpin RNA (shRNA). AAV-mediated Nox1 knockdown enhanced functional recovery after MCAO. The level of survival and differentiation of newborn cells in the peri-infarct regions were increased by Nox1 inhibition. Our data suggest that Nox-1 may be responsible for oxidative damage to DNA, subsequent cortical neuronal degeneration, functional recovery, and regulation of ischemic neurogenesis in the peri-infarct regions after stroke. PMID:25617620

  5. Nephropathy and Elevated BP in Mice with Podocyte-Specific NADPH Oxidase 5 Expression

    PubMed Central

    Holterman, Chet E.; Thibodeau, Jean-Franois; Towaij, Chelsea; Gutsol, Alex; Montezano, Augusto C.; Parks, Robin J.; Cooper, Mark E.; Touyz, Rhian M.

    2014-01-01

    NADPH oxidase (Nox) enzymes are a significant source of reactive oxygen species, which contribute to glomerular podocyte dysfunction. Although studies have implicated Nox1, -2, and -4 in several glomerulopathies, including diabetic nephropathy, little is known regarding the role of Nox5 in this context. We examined Nox5 expression and regulation in kidney biopsies from diabetic patients, cultured human podocytes, and a novel mouse model. Nox5 expression increased in human diabetic glomeruli compared with nondiabetic glomeruli. Stimulation with angiotensin II upregulated Nox5 expression in human podocyte cultures and increased reactive oxygen species generation. siRNA-mediated Nox5 knockdown inhibited angiotensin IIstimulated production of reactive oxygen species and altered podocyte cytoskeletal dynamics, resulting in an Rac-mediated motile phenotype. Because the Nox5 gene is absent in rodents, we generated transgenic mice expressing human Nox5 in a podocyte-specific manner (Nox5pod+). Nox5pod+ mice exhibited early onset albuminuria, podocyte foot process effacement, and elevated systolic BP. Subjecting Nox5pod+ mice to streptozotocin-induced diabetes further exacerbated these changes. Our data show that renal Nox5 is upregulated in human diabetic nephropathy and may alter filtration barrier function and systolic BP through the production of reactive oxygen species. These findings provide the first evidence that podocyte Nox5 has an important role in impaired renal function and hypertension. PMID:24262797

  6. NADPH Oxidase Enzymes in Skin Fibrosis: Molecular Targets and Therapeutic Agents

    PubMed Central

    Lev-Tov, Hadar; Jagdeo, Jared

    2013-01-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft versus host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms that Nox enzymes influence specific skin fibrotic disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  7. Salviaolate Protects Rat Brain from Ischemia-Reperfusion Injury through Inhibition of NADPH Oxidase.

    PubMed

    Lou, Zheng; Ren, Kai-Di; Tan, Bin; Peng, Jing-Jie; Ren, Xian; Yang, Zhong-Bao; Liu, Bin; Yang, Jie; Ma, Qi-Lin; Luo, Xiu-Ju; Peng, Jun

    2015-10-01

    Salviaolate is a group of depside salts isolated from Danshen (a traditional Chinese herbal medicine), with ≥ 85 % of magnesium lithospermate B. This study aims to investigate whether salviaolate is able to protect the rat brain from ischemia/reperfusion injury and the underlying mechanisms. Rats were subjected to 2 h of cerebral ischemia and 24 h of reperfusion to establish an ischemia/reperfusion injury model. The neuroprotective effects of salviaolate at different dosages were evaluated. A dosage (25 mg/kg) was chosen to explore the neuroprotective mechanisms of salviaolate. Neurological function, infarct volume, cellular apoptosis, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were measured. In a nerve cell model of hypoxia/reoxygenation injury, magnesium lithospermate B was applied. Cellular apoptosis, lactate dehydrogenase, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were examined. Ischemia/reperfusion treatment significantly increased the neurological deficit score, infarct volume, and cellular apoptosis accompanied by the elevated nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content in the rat brains. Administration of salviaolate reduced ischemia/reperfusion-induced cerebral injury in a dose-dependent manner concomitant with a decrease in nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 production. Magnesium lithospermate B (20 mg/kg) and edaravone (6 mg/kg, the positive control) achieved the same beneficial effects as salviaolate did. In the cell experiments, the injury (indicated by apoptosis ratio and lactate dehydrogenase release), nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content were dramatically increased following hypoxia/reoxygenation, which were attenuated in the presence of magnesium lithospermate B (10(-5) M), VAS2870 (nicotinamide adenine dinucleotide phosphate-oxidase inhibitor), or edaravone (10(-5) M). The results suggest that salviaolate is able to protect the brain from ischemia/reperfusion oxidative injury, which is related to the inhibition of nicotinamide adenine dinucleotide phosphate-oxidase and a reduction of reactive oxygen species production. PMID:26252829

  8. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation.

    PubMed

    Culcasi, Marcel; Benameur, Laila; Mercier, Anne; Lucchesi, Cline; Rahmouni, Hidayat; Asteian, Alice; Casano, Gilles; Botta, Alain; Kovacic, Herv; Pietri, Sylvia

    2012-09-30

    To better understand the antioxidant (enzyme mimetic, free radical scavenger) versus oxidant and cytotoxic properties of the industrially used cerium oxide nanoparticles (nano-CeO(2)), we investigated their effects on reactive oxygen species formation and changes in the antioxidant pool of human dermal and murine 3T3 fibroblasts at doses relevant to chronic inhalation or contact with skin. Electron paramagnetic resonance (EPR) spin trapping with the nitrone DEPMPO showed that pretreatment of the cells with the nanoparticles dose-dependently triggered the release in the culture medium of superoxide dismutase- and catalase-inhibitable DEPMPO/hydroxyl radical adducts (DEPMPO-OH) and ascorbyl radical, a marker of ascorbate depletion. This DEPMPO-OH formation occurred 2 to 24 h following removal of the particles from the medium and paralleled with an increase of cell lipid peroxidation. These effects of internalized nano-CeO(2) on spin adduct formation were then investigated at the cellular level by using specific NADPH oxidase inhibitors, transfection techniques and a mitochondria-targeted antioxidant. When micromolar doses of nano-CeO(2) were used, weak DEPMPO-OH levels but no loss of cell viability were observed, suggesting that cell signaling mechanisms through protein synthesis and membrane NADPH oxidase activation occurred. Incubation of the cells with higher millimolar doses provoked a 25-60-fold higher DEPMPO-OH formation together with a decrease in cell viability, early apoptosis induction and antioxidant depletion. These cytotoxic effects could be due to activation of both the mitochondrial source and Nox2 and Nox4 dependent NADPH oxidase complex. Regarding possible mechanisms of nano-CeO(2)-induced free radical formation in cells, in vitro EPR and spectrophotometric studies suggest that, contrary to Fe(2+) ions, the Ce(3+) redox state at the surface of the particles is probably not an efficient catalyst of hydroxyl radical formation by a Fenton-like reaction in vivo. PMID:22940227

  9. Role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in Barrett's cells and Barrett's esophageal adenocarcinoma cells

    PubMed Central

    Li, Dan

    2014-01-01

    Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. Acid and reactive oxygen species (ROS) have been reported to cause DNA damage in Barrett's cells. We have previously shown that NADPH oxidase NOX5-S is responsible for acid-induced H2O2 production in Barrett's cells and in EA cells. In this study we examined the role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in a Barrett's EA cell line FLO and a Barrett's cell line CP-A. We found that pulsed acid treatment significantly increased tail moment in FLO and CP-A cells and histone H2AX phosphorylation in FLO cells. In addition, acid treatment significantly increased intracellular Ca2+ in FLO cells, an increase that is blocked by Ca2+-free medium with EGTA and thapsigargin. Acid-induced increase in tail moment was significantly decreased by NADPH oxidase inhibitor diphenylene iodonium in FLO cells, and by blockade of intracellular Ca2+ increase or knockdown of NOX5-S with NOX5 small-interfering RNA (siRNA) in FLO and CP-A cells. Acid-induced increase in histone H2AX phosphorylation was significantly decreased by NOX5 siRNA in FLO cells. Conversely, overexpression of NOX5-S significantly increased tail moment and histone H2AX phosphorylation in FLO cells. We conclude that pulsed acid treatment causes DNA damage via increase of intracellular calcium and activation of NOX5-S. It is possible that in BE acid reflux increases intracellular calcium, activates NOX5-S, and increases ROS production, which causes DNA damage, thereby contributing to the progression from BE to EA. PMID:24699332

  10. NAD(P)H oxidase-dependent intracellular and extracellular O2- production in coronary arterial myocytes from CD38 knockout mice

    PubMed Central

    Xu, Ming; Zhang, Yang; Xia, Min; Li, Xiao-Xue; Ritter, Joseph K; Zhang, Fan; Li, Pin-Lan

    2011-01-01

    Activation of NAD(P)H oxidase has been reported to produce superoxide (O2 -) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use NAD(P)H oxidase product, NAD+ or NADP+ to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), which mediates intracellular Ca2+ signaling. The present study was designed to test a hypothesis that CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O2 -in mouse coronary arterial myocytes (CAMs). By fluorescent microscopic imaging, we simultaneously monitored extra- and intracellular O2 -production in wild-type (CD38+/+) and CD38 knockout (CD38-/-) CAMs in response to oxotremorine (OXO), a muscarinic type 1 (M1) receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O2 -production in CAMs. Consistently, the OXO-induced intracellular O2 -production was markedly inhibited by CD38 shRNA or CD38 inhibitor nicotinamide in CD38+/+ CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O2 - production, whereas Nox1 siRNA attenuated both intracellular and extracellular O2 -production in CD38+/+ CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca2+ concentration and restored intracellular O2 -production in CD38-/- CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that CD38/cADPR pathway importantly controls Nox4-mediated intracellular O2 -production and that CD38-dependent intracellular O2 -production is augmented via an autocrine manner of CD38-independent Nox1-derived extracellular O2 -production in CAMs. PMID:22100343

  11. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction.

    PubMed

    Giniatullin, A; Petrov, A; Giniatullin, R

    2015-01-29

    Adenosine 5'-triphosphate (ATP) is the main co-transmitter accompanying the release of acetylcholine from motor nerve terminals. Previously, we revealed the direct inhibitory action of extracellular ATP on transmitter release via redox-dependent mechanism. However, the receptor mechanism of ATP action and ATP-induced sources of reactive oxygen sources (ROS) remained not fully understood. In the current study, using microelectrode recordings of synaptic currents from the frog neuromuscular junction, we analyzed the receptor subtype involved in synaptic action of ATP, receptor coupling to NADPH oxidase and potential location of ATP receptors within the lipid rafts. Using subtype-specific antagonists, we found that the P2Y13 blocker 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde did not prevent the depressant action of ATP. In contrast, the P2Y12 antagonist 2-methylthioadenosine 5'-monophosphate abolished the inhibitory action of ATP, suggesting the key role of P2Y12 receptors in ATP action. As the action of ATP is redox-dependent, we also tested potential involvement of the NADPH oxidase, known as a common inducer of ROS. The depressant action of extracellular ATP was significantly reduced by diphenyleneiodonium chloride and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, two structurally different inhibitors of NADPH oxidase, indicating that this enzyme indeed mediates the action of ATP. Since the location and activity of various receptors are often associated with lipid rafts, we next tested whether ATP-driven inhibition depends on lipid rafts. We found that the disruption of lipid rafts with methyl-beta-cyclodextrin reduced and largely delayed the action of ATP. Taken together, these data revealed key steps in the purinergic control of synaptic transmission via P2Y12 receptors associated with lipid rafts, and identified NADPH oxidase as the main source of ATP-induced inhibitory ROS at the neuromuscular junction. Our data suggest that the location of P2Y receptors in lipid rafts speeds up the modulatory effect of ATP. Uncovered mechanisms may contribute to motor dysfunctions and neuromuscular diseases associated with oxidative stress. PMID:25463521

  12. Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Nox1 in rat renal mesangial cells.

    PubMed

    Pleskov, Miriam; Beck, Karl-Friedrich; Behrens, Meik Helmut; Huwiler, Andrea; Fichtlscherer, Birgit; Wingerter, Oliver; Brandes, Ralf P; Mlsch, Alexander; Pfeilschifter, Josef

    2006-01-01

    Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion. By altering the cGMP signaling system with different inhibitors or activators, we revealed that the effect of NO on Nox1 expression is at least in part mediated by cGMP. Analysis of a reporter construct comprising the 2547 bp of the nox1 promoter region revealed that a stimulatory effect of IL-1beta on nox1 transcription is counteracted by an inhibitory effect of IL-1beta-evoked endogenous NO formation. Moreover, pretreatment of mesangial cells with DETA-NO attenuated platelet-derived growth factor (PDGF)-BB or serum stimulated production of superoxide as assessed by real-time EPR spectroscopy and dichlorofluorescein formation. Transfection of mesangial cells with siRNAs directed against Nox1 and Nox4 revealed that inhibition of Nox1, but not Nox4 expression, is responsible for the reduced ROS formation by NO. Obviously, there exists a fine-tuned crosstalk between NO and ROS generating systems in the course of inflammatory diseases. PMID:16254042

  13. Alpha-Lipoic Acid Attenuates Cerebral Ischemia and Reperfusion Injury via Insulin Receptor and PI3K/Akt-Dependent Inhibition of NADPH Oxidase

    PubMed Central

    Dong, Yinhua; Wang, Hongxin; Chen, Zefeng

    2015-01-01

    Alpha-lipoic acid (ALA) has various pharmacological effects such as antioxidative, anti-inflammatory, and antiapoptotic properties. In the present study, administration of ALA (40?mg/kg, i.p.) for 3 days resulted in a significant decrease in neuronal deficit score and infarct volume and a significant increase in grip time and latency time in Morris water maze at 48?h after middle cerebral artery occlusion and reperfusion (MCAO/R) in rats. ALA also reduced the increased TUNEL-positive cells rate and the enhanced caspase-3 activity induced by MCAO/R. However, the underlying mechanisms remain poorly understood. In this study, we found that ALA could activate insulin receptor and PI3K/Akt signaling pathways, inhibit the expression and activity of NADPH oxidase, and subsequently suppress the generation of superoxide and the augment of oxidative stress indicators including MDA, protein carbonylation, and 8-OHdG. In conclusion, ALA attenuates cerebral ischemia and reperfusion injury via insulin receptor and PI3K/Akt-dependent inhibition of NADPH oxidase. PMID:26294909

  14. Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases.

    PubMed

    Yeligar, Samantha M; Harris, Frank L; Hart, C Michael; Brown, Lou Ann S

    2012-04-15

    Chronic alcohol abuse is a comorbid variable of acute respiratory distress syndrome. Previous studies showed that, in the lung, chronic alcohol consumption increased oxidative stress and impaired alveolar macrophage (AM) function. NADPH oxidases (Noxes) are the main source of reactive oxygen species in AMs. Therefore, we hypothesized that chronic alcohol consumption increases AM oxidant stress through modulation of Nox1, Nox2, and Nox4 expression. AMs were isolated from male C57BL/6J mice, aged 8-10 wk, which were treated with or without ethanol in drinking water (20% w/v, 12 wk). MH-S cells, a mouse AM cell line, were treated with or without ethanol (0.08%, 3 d) for in vitro studies. Selected cells were treated with apocynin (300 μM), a Nox1 and Nox2 complex formation inhibitor, or were transfected with Nox small interfering RNAs (20-35 nM), before ethanol exposure. Human AMs were isolated from alcoholic and control patients' bronchoalveolar lavage fluid. Nox mRNA levels (quantitative RT-PCR), protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red analysis), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol increased Nox expression and oxidative stress in mouse AMs in vivo and in vitro. Experiments using apocynin and Nox small interfering RNAs demonstrated that ethanol-induced Nox4 expression, oxidative stress, and AM dysfunction were modulated through Nox1 and Nox2 upregulation. Further, Nox1, Nox2, and Nox4 protein levels were augmented in human AMs from alcoholic patients compared with control subjects. Ethanol induces AM oxidative stress initially through upregulation of Nox1 and Nox2 with downstream Nox4 upregulation and subsequent impairment of AM function. PMID:22412195

  15. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells.

    PubMed

    Hll, Monika; Koziel, Rafal; Schfer, Georg; Pircher, Haymo; Pauck, Alexander; Hermann, Martin; Klocker, Helmut; Jansen-Drr, Pidder; Sampson, Natalie

    2016-01-01

    Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of male cancer death in Western nations. Thus, new treatment modalities are urgently needed. Elevated production of reactive oxygen species (ROS) by NADPH oxidase (Nox) enzymes is implicated in tumorigenesis of the prostate and other tissues. However, the identity of the Nox enzyme(s) involved in prostate carcinogenesis remains largely unknown. Analysis of radical prostatectomy tissue samples and benign and malignant prostate epithelial cell lines identified Nox5 as an abundantly expressed Nox isoform. Consistently, immunohistochemical staining of a human PCa tissue microarray revealed distinct Nox5 expression in epithelial cells of benign and malignant prostatic glands. shRNA-mediated knockdown of Nox5 impaired proliferation of Nox5-expressing (PC-3, LNCaP) but not Nox5-negative (DU145) PCa cell lines. Similar effects were observed upon ROS ablation via the antioxidant N-acetylcysteine confirming ROS as the mediators. In addition, Nox5 silencing increased apoptosis of PC-3 cells. Concomitantly, protein kinase C zeta (PKC?) protein levels and c-Jun N-terminal kinase (JNK) phosphorylation were reduced. Moreover, the effect of Nox5 knockdown on PC-3 cell proliferation could be mimicked by pharmacological inhibition of JNK. Collectively, these data indicate that Nox5 is expressed at functionally relevant levels in the human prostate and clinical PCa. Moreover, findings herein suggest that Nox5-derived ROS and subsequent depletion of PKC? and JNK inactivation play a critical role in modulating intracellular signaling cascades involved in the proliferation and survival of PCa cells. 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc. PMID:25559363

  16. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells.

    PubMed

    Stanicka, Joanna; Russell, Eileen G; Woolley, John F; Cotter, Thomas G

    2015-04-10

    Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22(phox), a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22(phox) and p22(phox)-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22(phox), and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22(phox) localize to the nuclear membrane in MV4-11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22(phox) mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability. PMID:25697362

  17. NADPH oxidase-2 inhibition restores contractility and intracellular calcium handling and reduces arrhythmogenicity in dystrophic cardiomyopathy

    PubMed Central

    Gonzalez, Daniel R.; Treuer, Adriana V.; Lamirault, Guillaume; Mayo, Vera; Cao, Yenong; Dulce, Raul A.

    2014-01-01

    Duchenne muscular dystrophy may affect cardiac muscle, producing a dystrophic cardiomyopathy in humans and the mdx mouse. We tested the hypothesis that oxidative stress participates in disrupting calcium handling and contractility in the mdx mouse with established cardiomyopathy. We found increased expression (fivefold) of the NADPH oxidase (NOX) 2 in the mdx hearts compared with wild type, along with increased superoxide production. Next, we tested the impact of NOX2 inhibition on contractility and calcium handling in isolated cardiomyocytes. Contractility was decreased in mdx myocytes compared with wild type, and this was restored toward normal by pretreating with apocynin. In addition, the amplitude of evoked intracellular Ca2+ concentration transients that was diminished in mdx myocytes was also restored with NOX2 inhibition. Total sarcoplasmic reticulum (SR) Ca2+ content was reduced in mdx hearts and normalized by apocynin treatment. Additionally, NOX2 inhibition decreased the production of spontaneous diastolic calcium release events and decreased the SR calcium leak in mdx myocytes. In addition, nitric oxide (NO) synthase 1 (NOS-1) expression was increased eightfold in mdx hearts compared with wild type. Nevertheless, cardiac NO production was reduced. To test whether this paradox implied NOS-1 uncoupling, we treated cardiac myocytes with exogenous tetrahydrobioterin, along with the NOX inhibitor VAS2870. These agents restored NO production and phospholamban phosphorylation in mdx toward normal. Together, these results demonstrate that, in mdx hearts, NOX2 inhibition improves the SR calcium handling and contractility, partially by recoupling NOS-1. These findings reveal a new layer of nitroso-redox imbalance in dystrophic cardiomyopathy. PMID:25015966

  18. NADPH Oxidase-Mediated Superoxide Production by Intermediary Bacterial Metabolites of Dibenzofuran: A Potential Cause for Trans-Mitochondrial Membrane Potential (??m) Collapse in Human Hepatoma Cells.

    PubMed

    Jaiswal, Prashant Kumar; Gupta, Jyotsana; Shahni, Shweta; Thakur, Indu Shekhar

    2015-09-01

    Dibenzofuran is a direct precursor of extremely toxic compounds such as dioxins. It is widely distributed persistent organic pollutant in environment that potentiate oxidative stress, apoptosis, and necrosis through bioactivation in HepG2 cells. An alkalotolerent Pseudomonas strain ISTDF1 can metabolize dibenzofuran as a sole source of carbon and energy through diverse dioxygenation. However, there is a paucity of information about the potential toxic effects of the intermediary metabolites that are formed during treatment with dibenzofuran. We have assessed and discovered the potential mechanism of toxicity induced by metabolites of dibenzofuran that were formed at 18 and 36?h. Cell viability, CYP1A2 induction, ROS activity, Superoxide production, mitochondrial NADPH oxidase activity, and mitochondrial trans-membrane potential were studied using different assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), confocal laser scanning microscopy, and flow cytometry. Analysis revealed formation of 2-(1-carbonyl methylidine)-2,3-dihydrobenzofuranlidene after 18?h of bacterial treatment due to oxygenation at carbon (C3-C4). This compound induces higher mitochondrial NADPH oxidase-dependent superoxide production that makes it more toxic than the parent compound. It was evident that after 36?h of bacterial treatment, toxicity induced by dibenzofuran and its metabolites was completely removed. This study highlights the fact that despite of efficient biodegradation of toxicants, bioactive toxic intermediates can be formed. Therefore, it is necessary to assess the toxicity of each intermediary for complete mitigation of associated risk. PMID:26032510

  19. Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana.

    PubMed

    Ben Rejeb, Kilani; Lefebvre-De Vos, Delphine; Le Disquet, Isabel; Leprince, Anne-Sophie; Bordenave, Marianne; Maldiney, Régis; Jdey, Asma; Abdelly, Chedly; Savouré, Arnould

    2015-12-01

    Many plants accumulate proline, a compatible osmolyte, in response to various environmental stresses such as water deficit and salinity. In some stress responses, plants generate hydrogen peroxide (H2 O2 ) that mediates numerous physiological and biochemical processes. The aim was to study the relationship between stress-induced proline accumulation and H2 O2 production. Using pharmacological and reverse genetic approaches in Arabidopsis thaliana, we investigated the role of NADPH oxidases, Respiratory burst oxidase homologues (Rboh), in the induction of proline accumulation was investigated in response to stress induced by either 200 mM NaCl or 400 mM mannitol. Stress from NaCl or mannitol resulted in a transient increase in H2 O2 content accompanied by accumulation of proline. Dimethylthiourea, a scavenger of H2 O2 , and diphenylene iodonium (DPI), an inhibitor of H2 O2 production by NADPH oxidase, were found to significantly inhibit proline accumulation in these stress conditions. DPI also reduced the expression level of Δ(1) -pyrroline-5-carboxylate synthetase, the key enzyme involved in the biosynthesis of proline. Similarly, less proline accumulated in knockout mutants lacking either AtRbohD or AtRbohF than in wild-type plants in response to the same stresses. Our data demonstrate that AtRbohs (A. thaliana Rbohs) contribute to H2 O2 production in response to NaCl or mannitol stress to increase proline accumulation in this plant. PMID:26180024

  20. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  1. Absence of phagocyte NADPH oxidase 2 leads to severe inflammatory response in lungs of mice infected with Coccidioides

    PubMed Central

    Gonzalez, Angel; Hung, Chiung-Yu; Cole, Garry T.

    2011-01-01

    Production of reactive oxygen species (ROS) resulting from phagocytic NADPH oxidase (NOX2) activity has been reported to contribute to host defense against numerous microbial pathogens. In this study we explored the role of NOX2 production in experimental coccidioidomycosis, a human respiratory disease caused by a soil-borne fungal pathogen. Activated and non-activated macrophages isolated from either NOX2-/- knock-out or wild type (WT) mice showed comparable ROS production and killing efficiency in vitro when infected with parasitic cells of Coccidioides. Both mouse strains also revealed similar fungal burden in their lungs and spleen at 7 and 11 days after intranasal challenge with Coccidioides spores, although the NOX2-/- mice died earlier than the WT strain. Immunization of the NOX2-/- and WT mice with a live, attenuated vaccine strain of Coccidioides also resulted in comparable reduction of the fungal burden in both lungs and spleen. These combined results initially suggested that NOX2 activity and ROS production are not essential for protection against Coccidioides infection. However, the reduced survival of non-vaccinated NOX2-/- mice correlated with high, sustained numbers of lung-infiltrated neutrophils on days 7 and 11 postchallenge, an expansion of the regulatory T cell population in infected lungs in the knock-out mice, and elevated concentrations of pro-inflammatory cytokines and chemokines in lung homogenates compared to infected WT mice. Although NOX2-derived ROS appeared to be dispensable for both innate and acquired immunity to pulmonary Coccidioides infection, evidence is presented that NOX2 production plays a role in limiting pathogenic inflammation in this murine model of coccidioidomycosis. PMID:21896326

  2. Hypoxia-Inducible Factor 1 Mediates Increased Expression of NADPH Oxidase-2 in Response to Intermittent Hypoxia

    PubMed Central

    Yuan, Guoxiang; Khan, Shakil A.; Luo, Weibo; Nanduri, Jayasri; Semenza, Gregg L.; Prabhakar, Nanduri R.

    2015-01-01

    Sleep-disordered breathing with recurrent apnea is associated with intermittent hypoxia (IH). Cardiovascular morbidities caused by IH are triggered by increased generation of reactive oxygen species (ROS) by pro-oxidant enzymes, especially NADPH oxidase-2 (Nox2). Previous studies showed that (i) IH activates hypoxia-inducible factor 1 (HIF-1) in a ROS-dependent manner and (ii) HIF-1 is required for IH-induced ROS generation, indicating the existence of a feed-forward mechanism. In the present study, using multiple pharmacological and genetic approaches, we investigated whether IH-induced expression of Nox2 is mediated by HIF-1 in the central and peripheral nervous system of mice as well as in cultured cells. IH increased Nox2 mRNA, protein, and enzyme activity in PC12 pheochromocytoma cells as well as in wild-type mouse embryonic fibroblasts (MEFs). This effect was abolished or attenuated by blocking HIF-1 activity through RNA interference or pharmacologic inhibition (digoxin or YC-1) or by genetic knockout of HIF-1? in MEFs. Increasing HIF-1? expression by treating PC 12 cells with the iron chelator deferoxamine for 20 h or by transfecting them with HIF-1alpha expression vector increased Nox2 expression and enzyme activity. Exposure of wild-type mice to IH (8 h/day for 10 days) up-regulated Nox2 mRNA expression in brain cortex, brain stem, and carotid body but not in cerebellum. IH did not induce Nox2 expression in cortex, brainstem, carotid body, or cerebellum of Hif1a+/? mice, which do not manifest increased ROS or cardiovascular morbidities in response to IH. These results establish a pathogenic mechanism linking HIF-1, ROS generation, and cardiovascular pathology in response to IH. PMID:21302291

  3. Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium.

    PubMed

    Suzuki, Shugo; Arnold, Lora L; Pennington, Karen L; Kakiuchi-Kiyota, Satoko; Cohen, Samuel M

    2009-06-30

    Arsenite (As(III)), an inorganic arsenical, is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. Oxidative stress has been suggested as a mechanism for arsenic-induced carcinogenesis. Reactive oxygen species (ROS) can be important factors for carcinogenesis and tumor progression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is known to produce intracellular ROS, therefore, we investigated the ability of apocynin (acetovanillone), an NADPH oxidase inhibitor, to inhibit the cytotoxicity and regenerative cell proliferation of arsenic in vitro and in vivo. Apocynin had similar effects in reducing the cytotoxicity of As(III) and dimethylarsinous acid (DMA(III)) in rat urothelial cells in vitro. When tested at the same concentrations as apocynin, other antioxidants, such as l-ascorbate and N-acetylcysteine, did not inhibit As(III)-induced cytotoxicity but they were more effective at inhibiting DMA(III)-induced cytotoxicity compared with apocynin. In vivo, female rats were treated for 3 weeks with 100ppm As(III). Immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that apocynin reduced oxidative stress partially induced by As(III) treatment on rat urothelium, and significantly reduced the cytotoxicity of superficial cells detected by scanning electron microscopy (SEM). However, based on the incidence of simple hyperplasia and the bromodeoxyuridine (BrdU) labeling index, apocynin did not inhibit As(III)-induced urothelial cell proliferation. These data suggest that the NADPH oxidase inhibitor, apocynin, may have the ability to partially inhibit arsenic-induced oxidative stress and cytotoxicity of the rat bladder epithelium in vitro and in vivo. However, apocynin did not inhibit the regenerative cell proliferation induced by arsenite in a short-term study. PMID:19397947

  4. Involvement of NADPH oxidase and iNOS in rodent pulmonary cytokine responses to urban air and mineral particles.

    PubMed

    Becher, Rune; Bucht, Anders; vrevik, Johan; Hongslo, Jan K; Dahlman, Hans Jrgen; Samuelsen, Jan Tore; Schwarze, Per E

    2007-06-01

    We have investigated the potential of two complex mineral particles (feldspar and mylonite), quartz (Min-U-Sil), and suspended particulate matter (SRM-1648) (SPM) from urban air to induce inflammatory cytokine responses in primary rat alveolar type 2 cells and alveolar macrophages, and the involvement of cellular formation of free radicals in these responses. All particle types induced an increased release of interleukin (IL)-6 and macrophage inflammatory protein (MIP)-2 from type 2 cells. Diphenyleneiodonium chloride (DPI), a selective inhibitor of NADPH-oxidase, reduced the IL-6 and MIP-2 responses to quartz, SPM and mylonite. N-(3-[Aminomethyl] benzyl) acetamidine (1400W), a selective inhibitor of inducible nitric oxide synthase (iNOS), significantly reduced the Il-6 response to SPM and feldspar in the type 2 cells. The macrophages displayed significantly increased TNF-alpha and MIP-2 release upon exposure to quartz or SPM. Here, DPI significantly reduced the tumor necrosis factor (TNF)-alpha and MIP-2 responses to quartz, and the MIP-2 response to SPM. No significant effect of 1400 W was detected in the alveolar macrophages. The role of particle-induced cellular generation of free radicals in lung cytokine responses was further elucidated in mice that lacked either NADPH-oxidase or iNOS as well as in wild-type (wt) mice. All particles were able to elicit increased cytokine levels in the bronchoalveolar lavage (BAL) fluid of the mice, although the levels depended on particle type. The NADPH-oxidase knockout (KO) mice demonstrated a significantly lower IL-6 and MIP-2 responses to SPM compared to their respective wt mice. The iNOS KO mice displayed significantly reduced IL-6, TNF-alpha, and MIP-2 responses to SPM. The overall results indicate the involvement of cellular free-radical formation in the pulmonary cytokine responses to particles of varying composition. PMID:17510837

  5. NADPH Oxidase/ROS-Dependent VCAM-1 Induction on TNF-α-Challenged Human Cardiac Fibroblasts Enhances Monocyte Adhesion

    PubMed Central

    Lin, Chih-Chung; Yang, Chien-Chung; Wang, Chen-Yu; Tseng, Hui-Ching; Pan, Chih-Shuo; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The inflammation-dependent adhesion molecule expressions are characterized in cardiovascular diseases and myocardial tissue infiltrations. Several pro-inflammatory cytokines are elevated in the acute myocardial injury and infarction. Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, is raised in the injury tissues and inflammatory regions and involved in the pathogenesis of cardiac injury, inflammation, and apoptosis. In fibroblasts, TNF-α-triggered expression of vascular cell adhesion molecule (VCAM)-1 aggravated the heart inflammation. However, the mechanisms underlying TNF-α-mediated VCAM-1 expression in cardiac fibroblasts remain unclear. Here, the primary cultured human cardiac fibroblasts (HCFs) were used to investigate the effects of TNF-α on VCAM-1 expression. The molecular evidence, including protein, mRNA, and promoter analyses, indicated that TNF-α-induced VCAM-1 gene expression is mediated through the TNFR-dependent manner. Activation of TNF-α/TNFR system triggered PKCα-dependent NADPH oxidase (Nox)/reactive oxygen species (ROS) signal linking to MAPK cascades, and then led to activation of the transcription factor, AP-1. Moreover, the results of mRNA and promoter assay demonstrated that c-Jun/AP-1 phosphorylated by TNF-α turns on VCAM-1 gene expression. Subsequently, up-regulated VCAM-1 on the cell surface of TNF-α-challenged HCFs increased the number of monocytes adhering to these cells. These results indicated that in HCFs, activation of AP-1 by PKCα-dependent Nox/ROS/MAPKs cascades is required for TNF-α-induced VCAM-1 expression. To clarify the mechanisms of TNF-α-induced VCAM-1 expression in HCFs may provide therapeutic strategies for heart injury and inflammatory diseases. PMID:26858641

  6. The Crystal Structure of the Plant Small GTPase OsRac1 Reveals Its Mode of Binding to NADPH Oxidase*

    PubMed Central

    Kosami, Ken-ichi; Ohki, Izuru; Nagano, Minoru; Furuita, Kyoko; Sugiki, Toshihiko; Kawano, Yoji; Kawasaki, Tsutomu; Fujiwara, Toshimichi; Nakagawa, Atsushi; Shimamoto, Ko; Kojima, Chojiro

    2014-01-01

    Rac/Rop proteins are Rho-type small GTPases that act as molecular switches in plants. Recent studies have identified these proteins as key components in many major plant signaling pathways, such as innate immunity, pollen tube growth, and root hair formation. In rice, the Rac/Rop protein OsRac1 plays an important role in regulating the production of reactive oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity. However, the molecular mechanism by which OsRac1 regulates OsRbohB remains unknown. Here, we report the crystal structure of OsRac1 complexed with the non-hydrolyzable GTP analog guanosine 5′-(β,γ-imido)triphosphate at 1.9 Å resolution; this represents the first active-form structure of a plant small GTPase. To elucidate the ROS production in rice cells, structural information was used to design OsRac1 mutants that displayed reduced binding to OsRbohB. Only mutations in the OsRac1 Switch I region showed attenuated interactions with OsRbohB in vitro. In particular, Tyr39 and Asp45 substitutions suppressed ROS production in rice cells, indicating that these residues are critical for interaction with and activation of OsRbohB. Structural comparison of active-form OsRac1 with AtRop9 in its GDP-bound inactive form showed a large conformational difference in the vicinity of these residues. Our results provide new insights into the molecular mechanism of the immune response through OsRac1 and the various cellular responses associated with plant Rac/Rop proteins. PMID:25128531

  7. The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase.

    PubMed

    Kosami, Ken-ichi; Ohki, Izuru; Nagano, Minoru; Furuita, Kyoko; Sugiki, Toshihiko; Kawano, Yoji; Kawasaki, Tsutomu; Fujiwara, Toshimichi; Nakagawa, Atsushi; Shimamoto, Ko; Kojima, Chojiro

    2014-10-10

    Rac/Rop proteins are Rho-type small GTPases that act as molecular switches in plants. Recent studies have identified these proteins as key components in many major plant signaling pathways, such as innate immunity, pollen tube growth, and root hair formation. In rice, the Rac/Rop protein OsRac1 plays an important role in regulating the production of reactive oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity. However, the molecular mechanism by which OsRac1 regulates OsRbohB remains unknown. Here, we report the crystal structure of OsRac1 complexed with the non-hydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate at 1.9 Å resolution; this represents the first active-form structure of a plant small GTPase. To elucidate the ROS production in rice cells, structural information was used to design OsRac1 mutants that displayed reduced binding to OsRbohB. Only mutations in the OsRac1 Switch I region showed attenuated interactions with OsRbohB in vitro. In particular, Tyr(39) and Asp(45) substitutions suppressed ROS production in rice cells, indicating that these residues are critical for interaction with and activation of OsRbohB. Structural comparison of active-form OsRac1 with AtRop9 in its GDP-bound inactive form showed a large conformational difference in the vicinity of these residues. Our results provide new insights into the molecular mechanism of the immune response through OsRac1 and the various cellular responses associated with plant Rac/Rop proteins. PMID:25128531

  8. Involvement of NADPH oxidases and non-muscle myosin light chain in senescence of endothelial progenitor cells in hyperlipidemia.

    PubMed

    Li, Ting-Bo; Zhang, Jie-Jie; Liu, Bin; Liu, Wei-Qi; Wu, Yan; Xiong, Xiao-Ming; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun

    2016-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) is involved in endothelial dysfunction of hyperlipidemia, and non-muscle myosin regulatory light chain (nmMLC20) is reported to have a transcriptional function in regulation of gene expression. The purposes of this study are to determine whether NOX-derived ROS can promote endothelial progenitor cell (EPC) senescence and whether nmMLC20 can regulate NOX expression through a phosphorylation-dependent manner. The rats were subjected to 8weeks of high-fat diet feeding to establish a hyperlipidemic model, which showed an increase in plasma lipids and the accelerated senescence and reduced number of circulating EPCs, accompanied by an increase in myosin light chain kinase (MLCK) and NOX activities, p-nmMLC20 level, NOX (NOX2, NOX4) expression, and H2O2 content. Next, EPCs isolated from normal rats were incubated with ox-LDL (100?g/mL) for 24h to establish a senescent model in vitro. Consistent with our in vivo findings, ox-LDL treatment increased the senescence of EPCs concomitant with an increase in MLCK and NOX activities, p-nmMLC20 level (in total or nuclear proteins), NOX expression, and H2O2 content; these phenomena were reversed by MLCK inhibitor. NOX inhibitor achieved similar results to that of MLCK inhibitor except that there is no effect on MLCK activity and p-nmMLC20 level. Furthermore, knockdown of nmMLC20, NOX2, or NOX4 led to a down-regulation in NOX and a reduction in ox-LDL-induced EPC senescence. These results suggest that NOX-derived ROS promotes the senescence of circulating EPCs in hyperlipidemia and nmMLC20 may play a transcriptional role in the upregulation of NOX through a phosphorylation-dependent manner. PMID:26685858

  9. Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases

    PubMed Central

    Wang, Qingshan; Chu, Chun-Hsien; Oyarzabal, Esteban; Jiang, Lulu; Chen, Shih-Heng; Wilson, Belinda; Qian, Li; Hong, Jau-Shyong

    2014-01-01

    Activation of microglial NADPH oxidase (NOX2) plays a critical role in mediating neuroinflammation, which is closely linked with the pathogenesis of a variety of neurodegenerative diseases, including Parkinson’s disease (PD). The inhibition of NOX2-generated superoxide has become an effective strategy for developing disease-modifying therapies for PD. However, the lack of specific and potent NOX2 inhibitors has hampered the progress of this approach. Diphenyleneiodonium (DPI) is a widely used, long-acting NOX2 inhibitor. However, due to its non-specificity for NOX2 and high cytotoxicity at standard doses (μM), DPI has been precluded from human studies. In this study, using ultra-low doses of DPI, we aimed to: 1) investigate whether these problems could be circumvented and 2) determine whether ultra-low doses of DPI were able to preserve its utility as a potent NOX2 inhibitor. We found that DPI at subpicomolar concentrations (10−14 and 10−13 M) displays no toxicity in primary midbrain neuron-glia cultures. More importantly, we observed that subpicomolar DPI inhibited phorbol myristate acetate (PMA)-induced activation of NOX2. The same concentrations of DPI did not inhibit the activities of a series of flavoprotein-containing enzymes. Furthermore, potent neuroprotective efficacy was demonstrated in a post-treatment study. When subpicomolar DPI was added to neuron-glia cultures pretreated with lipopolysaccharide (LPS), 1-methyl-4-phenylpyridinium or rotenone, it potently protected the dopaminergic neurons. In summary, DPI’s unique combination of high specificity towards NOX2, low cytotoxicity and potent neuroprotective efficacy in post-treatment regimens suggests that subpicomolar DPI may be an ideal candidate for further animal studies and potential clinical trials. PMID:25043383

  10. Alzheimer's disease: a gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery.

    PubMed

    Denis, Pierre A

    2013-12-01

    Alzheimer's disease (AD) is a neurodegenerative disease of unknown origin. The pathological lesions that define AD would be linked to the insidious accumulation of nitrogen, having invaded the brain interstitial fluid (ISF) from the blood via the physiological cycling pool of vascular glucose transporters (GLUT-1). According to this hypothesis, the nitrogen nanobubbles, being chemically inert and actually indestructible for human beings, can not escape from the ISF anymore. They would exert a huge and deleterious pressure against cellular components, especially in microglia and in astrocytes. They could enhance the existing cell oxygen anisotropy, which might enhance the natural bubble nucleation of O2-2O2 in cells or in mitochondria. Indeed, with the help of a new symbolic representation for gas nuclei in chemical reactions, the NADPH oxidase-NO system is identified for the first time, as an antibubble biomachinery, able to break O2-2O2 bubbles up as it releases superoxide O2-. Superoxide is considered as a quantum bubble, which collapses through the reactivity of the gaseous NO radical. Their combination in soluble peroxinitrite provides the change from one state of matter to another, avoiding any risk of a bubble enlargement, and finally avoiding the risk of enzyme crowding or of a bulk pressure variation. However, a bubble is expected to entrap Nitric Oxide (NO), which leads theoretically to a decrease in its bioavailability, and is expected to trigger a guanylyl-cyclase-mediated inflammatory cascade, that could explain the inflammation in AD. In vitro, any increase in the hydrostatic pressure has already been linked to the microtubule disorganization. The amyloid deposits, also known as senile plaques, would behave as a sponge toward ISF nitrogen; A? is considered as a foam-stabilizing agent. By taking the shape of cerebral amyloid angiopathy, the amyloid could confine the nitrogen leak from the blood, and progressively insulate the Blood-Brain Barrier against the pollutant. All these theoretical features finally lead to the death of the neurons. The comprehensive statement of the theoretical pro-inflammatory action of inert gases is a real upheaval for the whole medicine. PMID:24119763

  11. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis.

    PubMed

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-06-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system (CNS) is unclear. This article aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. It was found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron/glia cultures. Results showed that submicromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from ?2-adrenergic receptor (?2-AR)-deficient mice, suggesting that novel pathways other than ?2-AR are involved. To this end, It was found that submicromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (-) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism. PMID:25740080

  12. Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease

    SciTech Connect

    Dinauer, M.C. ); Pierce, E.A. ); Erickson, R.W.; Curnutte, J.T. ); Muhlbeach, T.J.; Seger, R.A. ); Messner, H. ); Orkin, S.H. Howard Hughes Medical Inst., Boston, MA )

    1991-12-15

    Chronic granulomatous disease (CGD) is a congenital disorder in which phagocytes cannot generate superoxide (O{sub 2}{sup {minus}}) and other microbial oxidants due to mutations in any one of four components of the O{sub 2}{sup {minus}}-generating complex, NADPH oxidase. The authors report here a female CGD patient in whom a missense mutation in one of these components, the p22-phox subunit of the neutrophil membrane cytochrome b results in a nonfunctional oxidase and failure of neutrophils to produce O{sub 2}{sup {minus}} in response to phorbol 12-myristrate 13-acetate. Cytochrome b in the patient's neutrophils was normal in appearance and abundance as determined by visible spectroscopy and by immunoblots of the gp91 and p22 subunits. However, the neutrophil plasma membranes were devoid of activity in the cell-free oxidase activation system, whereas the cytosol functioned normally. They postulated that the patient was homozygous for a mutation in p22 that results in the synthesis of normal levels of nonfunctional cytochrome b. A single-base substitution (C {yields} A) was found in the patient's mononuclear cell p22-phox cDNA that predicts a nonconservative Pro {yields} Gln substitution at residue 156. These studies establish that this domain of p22-phox is cytoplasmic and that mutations in this region can have profound effects on cytochrome b function.

  13. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    PubMed

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway. PMID:26565538

  14. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass

    PubMed Central

    Sun, Jinlong; Ming, Leiguo; Shang, Fengqing; Shen, Lijuan; Chen, Jihua; Jin, Yan

    2015-01-01

    Because of the reduced potential for osteogenesis in aging bone marrow stromal cells, the balance of bone metabolism becomes disrupted, leading to various bone diseases. An increase in reactive oxygen species has been determined to be one of the key factors that accelerates the aging process in BMSCs. In these cells, increased expression of NADPH oxidases is the major source of ROS. In the current study, we suppressed the expression of NOX using apocynin, an effective antioxidant and free radical scavenger, and the results showed that aging BMSCs exhibited an enhanced potential for osteogenesis. The expression of potential key targets influencing this reversal was evaluated using qRT-PCR, and the expression of p53 was shown to be reduced with the suppression of NOX. We speculate that this may be one of the major reasons for the reversal of the aging process. We also examined the effect of apocynin in vivo, and the results showed that in SAMP6 mice, bone mineral density and total bone volume were increased after 3 months of apocynin treatment. In conclusion, our results demonstrate that in aging BMSCs, suppression of NADPH oxidase by apocynin partially reverses the aging process and enhances osteogenic potential. PMID:26686764

  15. Spontaneous Staphylococcus xylosus Infection in Mice Deficient in NADPH Oxidase and Comparison with Other Laboratory Mouse Strains

    PubMed Central

    Gozalo, Alfonso S; Hoffmann, Victoria J; Brinster, Lauren R; Elkins, William R; Ding, Li; Holland, Steven M

    2010-01-01

    Staphylococcus xylosus typically is described as a nonpathogenic common inhabitant of rodent skin. Reports of S. xylosus as a primary pathogen in human and veterinary medicine are scarce. Here we report 37 cases, affecting 12 strains of laboratory mice, of spontaneous infections in which S. xylosus was isolated and considered to be the primary pathogen contributing to the death or need for euthanasia of the animal. Infection with S. xylosus was the major cause of death or euthanasia in 3 strains of mice deficient in the production of phagocyte superoxide due to defects in NADPH oxidase. NADPH-oxidasedeficient mice (n = 21) were most susceptible to spontaneous S. xylosus infections. The infections were characterized by abscesses and granulomas in soft tissues, with bacterial migration to internal organs (primarily regional lymph nodes and lungs and, to a lesser degree, muscle, bone, and meninges). In contrast, 9 strains of phagocyte-superoxideproducing mice (n = 16) also had S. xylosus infections, but these were largely confined to eyelids, ocular conjunctiva, and skin and rarely involved other tissues or organs. Because exhaustive bacterial culture and isolation may not be performed routinely from mouse abscesses, S. xylosus infections may be underdiagnosed. S. xylosus should be considered in the differential diagnosis in laboratory mice with abscesses and other skin lesions. This report expands the range of mouse strains and tissues and organs susceptible to spontaneous S. xylosus infection and compares the pathology among various mice strains. PMID:20819397

  16. Spontaneous Staphylococcus xylosus infection in mice deficient in NADPH oxidase and comparison with other laboratory mouse strains.

    PubMed

    Gozalo, Alfonso S; Hoffmann, Victoria J; Brinster, Lauren R; Elkins, William R; Ding, Li; Holland, Steven M

    2010-07-01

    Staphylococcus xylosus typically is described as a nonpathogenic common inhabitant of rodent skin. Reports of S. xylosus as a primary pathogen in human and veterinary medicine are scarce. Here we report 37 cases, affecting 12 strains of laboratory mice, of spontaneous infections in which S. xylosus was isolated and considered to be the primary pathogen contributing to the death or need for euthanasia of the animal. Infection with S. xylosus was the major cause of death or euthanasia in 3 strains of mice deficient in the production of phagocyte superoxide due to defects in NADPH oxidase. NADPH-oxidase-deficient mice (n = 21) were most susceptible to spontaneous S. xylosus infections. The infections were characterized by abscesses and granulomas in soft tissues, with bacterial migration to internal organs (primarily regional lymph nodes and lungs and, to a lesser degree, muscle, bone, and meninges). In contrast, 9 strains of phagocyte-superoxide-producing mice (n = 16) also had S. xylosus infections, but these were largely confined to eyelids, ocular conjunctiva, and skin and rarely involved other tissues or organs. Because exhaustive bacterial culture and isolation may not be performed routinely from mouse abscesses, S. xylosus infections may be underdiagnosed. S. xylosus should be considered in the differential diagnosis in laboratory mice with abscesses and other skin lesions. This report expands the range of mouse strains and tissues and organs susceptible to spontaneous S. xylosus infection and compares the pathology among various mice strains. PMID:20819397

  17. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats.

    PubMed

    Liu, Ying; Wang, Guoyuan; Yang, Mingguang; Chen, Haining; Zhao, Yan; Yang, Shucai; Sun, Changhao

    2015-12-25

    Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation. PMID:26585490

  18. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass.

    PubMed

    Sun, Jinlong; Ming, Leiguo; Shang, Fengqing; Shen, Lijuan; Chen, Jihua; Jin, Yan

    2015-01-01

    Because of the reduced potential for osteogenesis in aging bone marrow stromal cells, the balance of bone metabolism becomes disrupted, leading to various bone diseases. An increase in reactive oxygen species has been determined to be one of the key factors that accelerates the aging process in BMSCs. In these cells, increased expression of NADPH oxidases is the major source of ROS. In the current study, we suppressed the expression of NOX using apocynin, an effective antioxidant and free radical scavenger, and the results showed that aging BMSCs exhibited an enhanced potential for osteogenesis. The expression of potential key targets influencing this reversal was evaluated using qRT-PCR, and the expression of p53 was shown to be reduced with the suppression of NOX. We speculate that this may be one of the major reasons for the reversal of the aging process. We also examined the effect of apocynin in vivo, and the results showed that in SAMP6 mice, bone mineral density and total bone volume were increased after 3 months of apocynin treatment. In conclusion, our results demonstrate that in aging BMSCs, suppression of NADPH oxidase by apocynin partially reverses the aging process and enhances osteogenic potential. PMID:26686764

  19. Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy

    PubMed Central

    Jha, Jay C.; Gray, Stephen P.; Barit, David; Okabe, Jun; El-Osta, Assam; Namikoshi, Tamehachi; Thallas-Bonke, Vicki; Wingler, Kirstin; Szyndralewiez, Cedric; Heitz, Freddy; Touyz, Rhian M.; Cooper, Mark E.; Schmidt, Harald H.H.W.

    2014-01-01

    Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE?/? mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-?B in streptozotocin-induced diabetic ApoE?/? mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure. PMID:24511132

  20. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy.

    PubMed

    Jha, Jay C; Gray, Stephen P; Barit, David; Okabe, Jun; El-Osta, Assam; Namikoshi, Tamehachi; Thallas-Bonke, Vicki; Wingler, Kirstin; Szyndralewiez, Cedric; Heitz, Freddy; Touyz, Rhian M; Cooper, Mark E; Schmidt, Harald H H W; Jandeleit-Dahm, Karin A

    2014-06-01

    Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)-forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE(-/-) mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-?B in streptozotocin-induced diabetic ApoE(-/-) mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure. PMID:24511132

  1. Metabolomics Reveals a Key Role for Fumarate in Mediating the Effects of NADPH Oxidase 4 in Diabetic Kidney Disease.

    PubMed

    You, Young-Hyun; Quach, Tammy; Saito, Rintaro; Pham, Jessica; Sharma, Kumar

    2016-02-01

    The NADPH oxidase (NOX) isoform NOX4 has been linked with diabetic kidney disease (DKD). However, a mechanistic understanding of the downstream effects of NOX4 remains to be established. We report that podocyte-specific induction of NOX4 in vivo was sufficient to recapitulate the characteristic glomerular changes noted with DKD, including glomerular hypertrophy, mesangial matrix accumulation, glomerular basement membrane thickening, albuminuria, and podocyte dropout. Intervention with a NOX1/NOX4 inhibitor reduced albuminuria, glomerular hypertrophy, and mesangial matrix accumulation in the F1 Akita model of DKD. Metabolomic analyses from these mouse studies revealed that tricarboxylic acid (TCA) cycle-related urinary metabolites were increased in DKD, but fumarate levels were uniquely reduced by the NOX1/NOX4 inhibitor. Expression of fumarate hydratase (FH), which regulates urine fumarate accumulation, was reduced in the diabetic kidney (in mouse and human tissue), and administration of the NOX1/NOX4 inhibitor increased glomerular FH levels in diabetic mice. Induction of Nox4 in vitro and in the podocyte-specific NOX4 transgenic mouse led to reduced FH levels. In vitro, fumarate stimulated endoplasmic reticulum stress, matrix gene expression, and expression of hypoxia-inducible factor-1? (HIF-1?) and TGF-?. Similar upregulation of renal HIF-1? and TGF-? expression was observed in NOX4 transgenic mice and diabetic mice and was attenuated by NOX1/NOX4 inhibition in diabetic mice. In conclusion, NOX4 is a major mediator of diabetes-associated glomerular dysfunction through targeting of renal FH, which increases fumarate levels. Fumarate is therefore a key link connecting metabolic pathways to DKD pathogenesis, and measuring urinary fumarate levels may have application for monitoring renal NOX4 activity. PMID:26203118

  2. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    SciTech Connect

    Tateishi, Yoshihisa Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-08

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by {gamma}-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  3. Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen SpeciesStudies in White Blood Cells and in Animal Models

    PubMed Central

    Krller-Schn, Swenja; Steven, Sebastian; Kossmann, Sabine; Scholz, Alexander; Daub, Steffen; Oelze, Matthias; Xia, Ning; Hausding, Michael; Mikhed, Yuliya; Zinius, Elena; Mader, Michael; Stamm, Paul; Treiber, Nicolai; Scharffetter-Kochanek, Karin; Li, Huige; Schulz, Eberhard; Wenzel, Philip; Mnzel, Thomas

    2014-01-01

    Abstract Aims: Oxidative stress is involved in the development of cardiovascular disease. There is a growing body of evidence for a crosstalk between different enzymatic sources of oxidative stress. With the present study, we sought to determine the underlying crosstalk mechanisms, the role of the mitochondrial permeability transition pore (mPTP), and its link to endothelial dysfunction. Results: NADPH oxidase (Nox) activation (oxidative burst and translocation of cytosolic Nox subunits) was observed in response to mitochondrial reactive oxygen species (mtROS) formation in human leukocytes. In vitro, mtROS-induced Nox activation was prevented by inhibitors of the mPTP, protein kinase C, tyrosine kinase cSrc, Nox itself, or an intracellular calcium chelator and was absent in leukocytes with p47phox deficiency (regulates Nox2) or with cyclophilin D deficiency (regulates mPTP). In contrast, the crosstalk in leukocytes was amplified by mitochondrial superoxide dismutase (type 2) (MnSOD+/?) deficiency. In vivo, increases in blood pressure, degree of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) dysregulation/uncoupling (e.g., eNOS S-glutathionylation) or Nox activity, p47phox phosphorylation in response to angiotensin-II (AT-II) in vivo treatment, or the aging process were more pronounced in MnSOD+/? mice as compared with untreated controls and improved by mPTP inhibition by cyclophilin D deficiency or sanglifehrin A therapy. Innovation: These results provide new mechanistic insights into what extent mtROS trigger Nox activation in phagocytes and cardiovascular tissue, leading to endothelial dysfunction. Conclusions: Our data show that mtROS trigger the activation of phagocytic and cardiovascular NADPH oxidases, which may have fundamental implications for immune cell activation and development of AT-II-induced hypertension. Antioxid. Redox Signal. 20, 247266. PMID:23845067

  4. Cigarette smoke and LDL cooperate in reducing nitric oxide bioavailability in endothelial cells via effects on both eNOS and NADPH oxidase.

    PubMed

    Steffen, Yvonne; Vuillaume, Gregory; Stolle, Katrin; Roewer, Karin; Lietz, Michael; Schueller, Jutta; Lebrun, Stefan; Wallerath, Thomas

    2012-10-15

    The ubiquitous free radical nitric oxide (NO) plays an important role in many biological processes, including the regulation of both vascular tone and inflammatory response; however, its role in the effects of cigarette smoke exposure on atherosclerosis remains unclear. Our aim was to study the mechanisms of NO regulation in endothelial cells in response to cigarette smoke exposure in vitro. Using human umbilical vein endothelial cells (HUVEC), we have demonstrated that combining non-toxic concentrations of cigarette smoke bubbled through PBS (smoke-bubbled PBS [sbPBS]) with native LDL (nLDL) significantly reduces the amount of bioavailable NO. The effect is comparable to that seen with oxidized LDL (oxLDL), but has not been seen with sbPBS or nLDL alone. Mechanistic investigations showed that the combination of sbPBS+nLDL did not reduce the amount of endothelial nitric oxide synthase (eNOS), but did inhibit its enzymatic activity. Concomitantly, both sbPBS+nLDL and oxLDL significantly increased the production of reactive oxygen species (ROS) in the form of superoxide anions (()O(2)(-)) and peroxynitrite (ONOO(-)) in HUVEC. Selective inhibition of NADPH oxidase prevented this response. Incubation of sbPBS+nLDL revealed the formation of 7-ketocholesterol (7-KC) and 7-hydroxycholesterol, which are indicators for oxidative modification of LDL. This could explain the reported increase in circulatory levels of oxLDL in smokers. Our results suggest that reduction of functional NO in response to a combination of sbPBS+nLDL is secondary to both reduction of eNOS activity and stimulation of NADPH oxidase activity. Because sbPBS alone showed no effect on eNOS activity or ROS formation, nLDL should be included in cigarette-smoke-related mechanistic in vitro experiments on endothelial cells to be more reflective of the clinical situation. PMID:22766265

  5. Curcuminoids Modulate the PKCδ/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte-Macrophage Differentiation.

    PubMed

    Huang, Shao-Lan; Chen, Pei-Yi; Wu, Ming-Jiuan; Tai, Mi-Hsueh; Ho, Chi-Tang; Yen, Jui-Hung

    2015-10-14

    Monocyte recruitment and invasion play critical roles in the initiation and progression of atherosclerosis. The reduction in monocyte adhesion and infiltration is thought to exert antiatherosclerotic effects. Curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are the major active components of curcuminoids and exhibit several biological activities, including anti-inflammatory, anticarcinogenic, and hypocholesterolemic activities. The aim of this study was to investigate the antiatherogenic effects and mechanisms of curcuminoids during monocyte to macrophage differentiation. The results showed that curcumin, DMC, and BDMC (20 μM) suppressed matrix invasion from 100.0 ± 5.0% to 24.8 ± 1.4%, 26.6 ± 2.9%, and 33.7 ± 1.7%, respectively, during PMA-induced THP-1 differentiation. We found that curcuminoids significantly reduced PMA-induced CD11b and MMP-9 expression by THP-1 cells. Production of reactive oxygen species (ROS) induced by PMA (126.7 ± 2.1%) was markedly attenuated by curcumin, DMC, and BDMC to 99.5 ± 7.8%, 87.8 ± 8.2%, and 89.8 ± 7.6%, respectively, resulting in the down-regulation of CD11b and MMP-9 expression. We demonstrated that curcuminoids inhibited NADPH oxidase through the down-regulation of NOX2 expression and the reduction of p47phox membrane translocation. Moreover, we found involvement of PKCδ in the PMA-induced NOX2, CD11b, and MMP-9 mRNA expression. Curcumin, DMC, and BDMC decreased the active form of PKCδ protein stimulated by PMA in THP-1 cells. Overall, our results reveal that curcuminoids suppress matrix invasion through the inhibition of the PKCδ/NADPH oxidase/ROS signaling pathway during monocyte-macrophage differentiation. PMID:26414495

  6. Genipin induces cyclooxygenase-2 expression via NADPH oxidase, MAPKs, AP-1, and NF-κB in RAW 264.7 cells.

    PubMed

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Chung, Young Chul; Kim, Hee Suk; Park, Youn-Joon; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-02-01

    Genipin is a compound found in gardenia fruit extract with diverse pharmacological activities. However, the mechanism underlying genipin-induced cyclooxygenase-2 (COX-2) expression remains unknown. In this study, we investigated the effects of genipin on COX-2 expression and determined that exposure to genipin dose-dependently enhanced the production of prostaglandin E2 (PGE2), a major COX-2 metabolite, in RAW 264.7 cells. These effects were mediated by genipin-induced activation of the COX-2 promoter, as well as AP-1 and NF-κB luciferase constructs. Phosphatidylinositol-3-kinase/Akt and MAPKs were also significantly activated by genipin, and Akt and MAPKs inhibitors (PD98059, SB20358, SP600125, and LY294002) inhibited genipin-induced COX-2 expression. Moreover, genipin increased production of the ROS and the ROS-producing NAPDH-oxidase (NOX) family oxidases, NOX2 and NOX3. Inhibition of NADPH with diphenyleneiodonium attenuated ROS production, COX-2 expression and NF-κB and AP-1 activation. These results suggest that the molecular mechanism mediating ROS-dependent COX-2 up-regulation and PGE2 production by genipin involves activation of Akt, MAPKs and AP-1/NF-κB. PMID:24296130

  7. Glucose oxidase activity of actinomycetes.

    PubMed

    St Vlahov, S

    1978-01-01

    The ability of 311 actiomycete, belonging to 12 species to produce glucose oxidase was studied. It was found that 174 of them formed exoenzymes on solid medium and 133 in liquid medium. The composition of the nutrient medium has an essential effect on the amount of enzyme formed. Strains with considerably higher activity form a greater amount of exoenzymes on soya meal medium and on synthetic medium with KNO2. The highest activity of the culture liquid of some strains was observed between the 6th and 7th day of cultivation. During this phase of growth the highest productivity of the biomas was established. PMID:76424

  8. High Expression Levels of NADPH Oxidase 3 in the Cerebrum of Ten-Week-Old Stroke-Prone Spontaneously Hypertensive Rats.

    PubMed

    Michihara, Akihiro; Oda, Asaki; Mido, Mayuko

    2016-01-01

    We previously demonstrated that the high levels of oxidative stress in the brains of ten-week-old stroke-prone hypertensive rats (SHRSP) were attributable to intrinsic, not extrinsic factors (Biol. Pharm. Bull., 33, 2010, Michihara et al.). The aim of the present study was to determine whether increases in the enzymes producing reactive oxygen species (ROS), reductions in the enzymes and proteins removing ROS, or increases in an enzyme and transporter removing antioxidants promoted oxidative stress in the SHRSP cerebrum. No significant decreases were observed in the mRNA levels of enzymes that remove ROS between SHRSP and normotensive Wistar Kyoto rats. The activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and the protein and mRNA levels of NOX3, an enzyme that produces ROS, were significantly increased in the SHRSP cerebrum. These results suggested that the high expression levels of NOX3 increased oxidative stress in the SHRSP cerebrum. PMID:26830484

  9. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    PubMed

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muoz, Nama; Driss, Fathi; Sanchez, Manuel; Fumeron, Frdric; Roussel, Ronan; Hadjadj, Samy; Corra-Giannella, Maria Lcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with a role for NADPH oxidase in the pathophysiology of kidney complications of diabetes. PMID:25862415

  10. NAD(P)H oxidase and pro-inflammatory response during maximal exercise: role of C242T polymorphism of the P22PHOX subunit.

    PubMed

    Izzicupo, P; Di Valerio, V; D' Amico, M A; Di Mauro, M; Pennelli, A; Falone, S; Alberti, G; Amicarelli, F; Miscia, S; Gallina, S; Di Baldassarre, A

    2010-01-01

    Intense exercise induces a pro-inflammatory status through a mechanism involving the NAD(P)H oxidase system. We focused our attention on p22phox, a subunit of the NAD(P)H oxidase, and on its allelic polymorphism C242T, which is known to affect the functional activity of the enzyme. We investigated whether the p22phox C242T variants exhibit systemic effects in healthy subjects by analyzing the proinflammatory and cardiocirculatory responses to physical exercise in endurance athletes. The group of study consisted of 97 long distance runners, 37 +/- 4.4 yrs of age, with similar training history. The subjects underwent a maximal stress test during which both inflammatory and cardiopulmonary parameters were monitored. Our results demonstrate that T allele deeply influences the neutrophil activation in response to intense exercise, since T carriers were characterized by significantly lower release of myeloperoxidase (MPO), a classical leukocyte derived pro-inflammatory cytokine. In addition, the presence of T allele was associated with a higher cardiopulmonary efficiency as evidenced by a significantly lower Heart Rate (HR) at the peak of exercise and, when a dominant model was assumed, by a higher maximal oxygen uptake (VO2 max). On the other hand, no effects of 242T mutation on the plasmatic total antioxidant capacity (TAC) and on the cortisol responses to the physical exercise were detected. In conclusion, our data support a systemic role for p22phox C242T polymorphism that, modifying the intensity of the inflammatory response, can influence the cardiovascular adaptations elicited by aerobic training. These results contribute to support the hypothesis of a systemic effect for the C242T polymorphism and of its possible functional rebound in healthy subjects. PMID:20378006

  11. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    SciTech Connect

    Manea, Adrian; Tanase, Laurentia I.; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  12. Persistence of the bacterial pathogen Granulibacter bethesdensis in Chronic Granulomatous Disease monocytes and macrophages lacking a functional NADPH oxidase1

    PubMed Central

    Chu, Jessica; Song, Helen H.; Zarember, Kol A.; Mills, Teresa A.; Gallin, John I.

    2013-01-01

    Granulibacter bethesdensis is a Gram-negative pathogen in patients with Chronic Granulomatous Disease (CGD), a deficiency in the phagocyte NADPH oxidase. Repeated isolation of genetically identical strains from the same patient over years, and prolonged waxing and waning seropositivity in some subjects, raises the possibility of long-term persistence. G. bethesdensis resists killing by serum, CGD polymorphonuclear leukocytes (PMN), and antimicrobial peptides, indicating resistance to non-oxidative killing mechanisms. While G. bethesdensis extends the survival of PMN, persistent intracellular bacterial survival might rely on longer-lived macrophages and their precursor monocytes. Therefore, we examined phagocytic killing by primary human monocytes and monocyte-derived macrophages (MDM). Cells from both normal and CGD subjects internalized G. bethesdensis similarly. G. bethesdensis stimulated superoxide production in normal monocytes, but to a lesser degree than in normal PMN. Normal but not CGD monocytes and MDM killed G. bethesdensis and required in vitro treatment with interferon-γ (IFN-γ) to maintain this killing effect. Although in vitro IFN-γ did not enhance G. bethesdensis killing in CGD monocytes, it restricted growth in proportion to CGD PMN residual superoxide production, providing a potential method to identify patients responsive to IFN-γ therapy. In IFN-γ-treated CGD MDM, G. bethesdensis persisted for the duration of the study (7 days) without decreasing viability of the host cells. These results indicate that G. bethesdensis is highly resistant to oxygen-independent microbicides of myeloid cells, requires an intact NADPH oxidase for clearance, and can persist long-term in CGD mononuclear phagocytes, likely relating to the persistence of this microorganism in infected CGD patients. PMID:23956436

  13. Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons.

    PubMed

    Case, Adam J; Li, Shumin; Basu, Urmi; Tian, Jun; Zimmerman, Matthew C

    2013-07-01

    Angiotensin II (ANG II) plays an important role in the central regulation of systemic cardiovascular function. ANG II-mediated intraneuronal signaling has been shown to be predicated by an increase in mitochondrial superoxide (O₂∙-), yet the source of this reactive oxygen species (ROS) production remains unclear. NADPH oxidase 4 (Nox4), a member of the NADPH oxidase family, has been reported to be localized in mitochondria of various cell types and has been implicated in brain angiotensinergic signaling. However, the subcellular localization and function of Nox4 in neurons has not been fully elucidated. In this study, we hypothesized that Nox4 is expressed in neuron mitochondria and is involved in ANG II-dependent O₂∙--mediated intraneuronal signaling. To query this, Nox4 immunofluorescent staining and mitochondrial enrichment were performed in a mouse catecholaminergic neuronal cell model (CATH.a). Nox4 was shown to be present in neuron mitochondria as evidenced by colocalization with both the mitochondrial-localized protein manganese superoxide dismutase (MnSOD) and dye MitoTracker Red. Moreover, Nox4 expression was significantly increased in enriched mitochondrial fractions compared with whole cell lysates. Additionally, adenoviral-encoded small interfering RNA for Nox4 (AdsiNox4) caused a robust knockdown in Nox4 mRNA and protein levels, which led to the attenuation of ANG II-induced mitochondrial O₂∙- production. Finally, in the subfornical organ (SFO) of the brain, Nox4 not only demonstrated mitochondrial localization but was induced by chronic, peripheral infusion of ANG II. Collectively, these data suggest that Nox4 is a source of O₂∙- in neuron mitochondria that contributes to ANG II intraneuronal signaling. PMID:23624625

  14. NADPH oxidase mediates synergistic effects of IL-17 and TNF-? on CXCL1 expression by epithelial cells after lung ischemia-reperfusion

    PubMed Central

    Sharma, Ashish K.; Mulloy, Daniel P.; Le, Lamvy T.

    2013-01-01

    Ischemia-reperfusion (I/R) injury leads to increased mortality and morbidity in lung transplant patients. Lung I/R injury involves inflammation contributed by innate immune responses. IL-17 and TNF-?, from iNKT cells and alveolar macrophages, respectively, contribute importantly to lung I/R injury. This study tests the hypothesis that IL-17 and TNF-? synergistically mediate CXCL1 (a potent neutrophil chemokine) production by alveolar type II epithelial (ATII) cells via an NADPH oxidase-dependent mechanism during lung I/R. Using a hilar clamp model, wild-type and p47phox?/? (NADPH oxidase-deficient) mice underwent left lung I/R, with or without recombinant IL-17 and/or TNF-? treatment. Wild-type mice undergoing I/R treated with combined IL-17 and TNF-? had significantly enhanced lung dysfunction, edema, CXCL1 production, and neutrophil infiltration compared with treatment with IL-17 or TNF-? alone. However, p47phox?/? mice had significantly less pulmonary dysfunction, CXCL1 production, and lung injury after I/R that was not enhanced by combined IL-17-TNF-? treatment. Moreover, in an acute in vitro hypoxia-reoxygenation model, murine ATII cells showed a multifold synergistic increase in CXCL1 expression after combined IL-17-TNF-? treatment compared with treatment with either cytokine alone, which was significantly attenuated by an NADPH oxidase inhibitor. Conditioned media transfer from hypoxia-reoxygenation-exposed iNKT cells and macrophages, major sources of IL-17 and TNF-?, respectively, to ATII cells significantly enhanced CXCL1 production, which was blocked by NADPH oxidase inhibitor. These results demonstrate that IL-17 and TNF-? synergistically mediate CXCL1 production by ATII cells after I/R, via an NADPH oxidase-dependent mechanism, to induce neutrophil infiltration and lung I/R injury. PMID:24186876

  15. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes

    SciTech Connect

    Shvedova, A.A. Kisin, E.R.; Murray, A.R.; Kommineni, C.; Castranova, V.; Fadeel, B.; Kagan, V.E.

    2008-09-01

    Single-walled carbon nanotubes (SWCNT) have been introduced into a large number of new technologies and consumer products. The combination of their exceptional features with very broad applications raised concerns regarding their potential health effects. The prime target for SWCNT toxicity is believed to be the lung where exposure may occur through inhalation, particularly in occupational settings. Our previous work has demonstrated that SWCNT cause robust inflammatory responses in rodents with very early termination of the acute phase and rapid onset of chronic fibrosis. Timely elimination of polymorphonuclear neutrophils (PMNs) through apoptosis and their subsequent clearance by macrophages is a necessary stage in the resolution of pulmonary inflammation whereby NADPH oxidase contributes to control of apoptotic cell death and clearance of PMNs. Thus, we hypothesized that NADPH oxidase may be an important regulator of the transition from the acute inflammation to the chronic fibrotic stage in response to SWCNT. To experimentally address the hypothesis, we employed NADPH oxidase-deficient mice which lack the gp91{sup phox} subunit of the enzymatic complex. We found that NADPH oxidase null mice responded to SWCNT exposure with a marked accumulation of PMNs and elevated levels of apoptotic cells in the lungs, production of pro-inflammatory cytokines, decreased production of the anti-inflammatory and pro-fibrotic cytokine, TGF-{beta}, and significantly lower levels of collagen deposition, as compared to C57BL/6 control mice. These results demonstrate a role for NADPH oxidase-derived reactive oxygen species in determining course of pulmonary response to SWCNT.

  16. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.

    PubMed

    Mangum, Lee C; Borazjani, Abdolsamad; Stokes, John V; Matthews, Anberitha T; Lee, Jung Hwa; Chambers, Janice E; Ross, Matthew K

    2015-04-20

    Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 ?M in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation. PMID:25633958

  17. NADPH Oxidase Deficient Mice Develop Colitis and Bacteremia upon Infection with Normally Avirulent, TTSS-1- and TTSS-2-Deficient Salmonella Typhimurium

    PubMed Central

    Slack, Emma Marie Caroline; Müller, Andreas J.; Kremer, Marcus; Van Maele, Laurye; Cayet, Delphine; Heikenwalder, Mathias; Sirard, Jean-Claude; Hardt, Wolf-Dietrich

    2013-01-01

    Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn’s disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb−/−) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tmavir; invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb−/− mice are efficiently infected by S.Tmavir and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb−/−Myd88−/− mice indicated that the S.Tmavir-inflicted disease in Cybb−/− mice hinges on CD11c+CX3CR1+ monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tmavir in the mucosal lamina propria. This provides important insights into microbe handling by the large intestinal mucosa and the role of NADPH oxidase in maintaining microbe-host mutualism at this exposed body surface. PMID:24143212

  18. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  19. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines

    PubMed Central

    Wang, Dashou; Youngson, Charlotte; Wong, Veronica; Yeger, Herman; Dinauer, Mary C.; de Miera, Eleazar Vega-Saenz; Rudy, Bernardo; Cutz, Ernest

    1996-01-01

    Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms. PMID:8917565

  20. The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H2O2 and Plays an Integral Role in Insulin Signal Transduction

    PubMed Central

    Mahadev, Kalyankar; Motoshima, Hiroyuki; Wu, Xiangdong; Ruddy, Jean Marie; Arnold, Rebecca S.; Cheng, Guangjie; Lambeth, J. David; Goldstein, Barry J.

    2004-01-01

    Insulin stimulation of target cells elicits a burst of H2O2 that enhances tyrosine phosphorylation of the insulin receptor and its cellular substrate proteins as well as distal signaling events in the insulin action cascade. The molecular mechanism coupling the insulin receptor with the cellular oxidant-generating apparatus has not been elucidated. Using reverse transcription-PCR and Northern blot analyses, we found that Nox4, a homolog of gp91phox, the phagocytic NAD(P)H oxidase catalytic subunit, is prominently expressed in insulin-sensitive adipose cells. Adenovirus-mediated expression of Nox4 deletion constructs lacking NAD(P)H or FAD/NAD(P)H cofactor binding domains acted in a dominant-negative fashion in differentiated 3T3-L1 adipocytes and attenuated insulin-stimulated H2O2 generation, insulin receptor (IR) and IRS-1 tyrosine phosphorylation, activation of downstream serine kinases, and glucose uptake. Transfection of specific small interfering RNA oligonucleotides reduced Nox4 protein abundance and also inhibited the insulin signaling cascade. Overexpression of Nox4 also significantly reversed the inhibition of insulin-stimulated IR tyrosine phosphorylation induced by coexpression of PTP1B by inhibiting PTP1B catalytic activity. These data suggest that Nox4 provides a novel link between the IR and the generation of cellular reactive oxygen species that enhance insulin signal transduction, at least in part via the oxidative inhibition of cellular protein-tyrosine phosphatases (PTPases), including PTP1B, a PTPase that has been previously implicated in the regulation of insulin action. PMID:14966267

  1. NDS27 combines the effect of curcumin lysinate and hydroxypropyl-?-cyclodextrin to inhibit equine PKC? and NADPH oxidase involved in the oxidative burst of neutrophils

    PubMed Central

    Derochette, Sandrine; Mouithys-Mickalad, Ange; Franck, Thierry; Collienne, Simon; Ceusters, Justine; Deby-Dupont, Ginette; Neven, Philippe; Serteyn, Didier

    2014-01-01

    Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of inflammatory diseases. After appropriate stimuli, protein kinase C (PKC) triggers the assembly of NADPH oxidase (Nox2) which produces superoxide anion (O2?), from which ROS derive. The therapeutic use of polyphenols is proposed to lower ROS production by limiting Nox2 and PKC activities. The purpose of this study was to compare the antioxidant effect of NDS27 and NDS28, two water-soluble forms of curcumin lysinate respectively complexed with hydroxypropyl-?-cyclodextrin (HP?CD) and ?-cyclodextrin (?-CD), on the activity of Nox2 and PKC?, involved in the Nox2 activation pathway. Our results, showed that NDS27 is the best inhibitor for Nox2 and PKC?. This was illustrated by the combined effect of HP?CD and curcumin lysinate: HP?CD, but not ?-CD, improved the release of curcumin lysinate and its exchange against lipid or cholesterol as demonstrated by the lipid colouration with Oil Red O, the extraction of radical lipophilic probes recorded by ESR and the HPLC measurements of curcumin. HP?CD not only solubilised and transported curcumin, but also indirectly enhanced its action on both PKC and Nox2 activities. The modulatory effect of NDS27 on the Nox2 activation pathway of neutrophils may open therapeutic perspectives for the control of pathologies with excessive inflammatory reactions. PMID:25493216

  2. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson's disease.

    PubMed

    Pal, Rituraj; Bajaj, Lakshya; Sharma, Jaiprakash; Palmieri, Michela; Di Ronza, Alberto; Lotfi, Parisa; Chaudhury, Arindam; Neilson, Joel; Sardiello, Marco; Rodney, George G

    2016-01-01

    Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson's disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD. PMID:26960433

  3. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson’s disease

    PubMed Central

    Pal, Rituraj; Bajaj, Lakshya; Sharma, Jaiprakash; Palmieri, Michela; Di Ronza, Alberto; Lotfi, Parisa; Chaudhury, Arindam; Neilson, Joel; Sardiello, Marco; Rodney, George G.

    2016-01-01

    Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson’s disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD. PMID:26960433

  4. Super oxide from NADPH oxidase as second messenger for expression of osteopontin and monocyte chemoattractant-1 in renal epithelial cells exposed to calcium oxalate crystals

    PubMed Central

    Umekawa, Tohru; Uemura, Hirotsugu; Khan, Saeed R.

    2013-01-01

    Objective Calcium oxalate monohydrate crystals (COM) stimulate OPN and MCP-1 expression in renal tubular cells. Reactive oxygen species (ROS) play an important but not yet fully defined role in expression of inflammatory genes such as MCP-1 and OPN. Recently, it has been proposed that ROS serve as intracellular signals. NADPH oxidase is the major source of superoxide in many tissues including kidney. We tested the hypothesis that COM exposure of a renal epithelial cell line, NRK 52E, will upregulate NADPH oxidase subunit p47phox, enhance superoxide production and increase MCP-1 and OPN mRNA levels. The latter will be attenuated by diphenileneiodium chloride (DPI), an inhibitor for NADPH Oxidase. Materials and Methods Confluent cultures of NRK52E cells were exposed to COM (66.7μg/cm2) with or without pre treatment with DPI (10×10−6M) under serum free conditions. The conditioned medium was collected and total cellular RNA isolated from the cells, and subjected to enzyme-linked immunosorbent assay (ELISA) and real time PCR. Production of ROS was estimated by dihydroethidium (DHE) staining using fluorescence microscope. Immunohistochemistry and real time PCR were used to analyze p47phox in NRK52E cells. Results COM treated NRK52E cells showed enhanced expression of p47phox and production of superoxide. COM-induced production of MCP-1 and OPN was significantly reduced following treatment with DPI. Conclusions While the generation of a large amount of ROS may play a major role in tissue injury or death, the regulated generation of low concentration of ROS, possibly by NADPH oxidase, may represent a second messenger system for generation of COM induced MCP-1 and OPN in the renal tubules. PMID:19220254

  5. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent ?1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.

    PubMed

    Liu, Chia-Chi; Karimi Galougahi, Keyvan; Weisbrod, Robert M; Hansen, Thomas; Ravaie, Ramtin; Nunez, Andrea; Liu, Yi B; Fry, Natasha; Garcia, Alvaro; Hamilton, Elisha J; Sweadner, Kathleen J; Cohen, Richard A; Figtree, Gemma A

    2013-12-01

    Glutathionylation of the Na(+)-K(+) pump's ?1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na(+)-K(+) pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific ?-subunit isoform expression and receptor-coupled pathways. As Na(+)-K(+) pump activity is an important determinant of vascular tone through effects on [Ca(2+)]i, we have examined the role of oxidative regulation of the Na(+)-K(+) pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. ?1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na(+)-K(+)ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K(+)-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na(+)-K(+) ATPase and decrease in K(+)-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of ?1-subunit. Knock-out of FXYD1 dramatically decreased K(+)-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased ?1-subunit glutathionylation, and enhanced K(+)-induced vasorelaxation. Ang II inhibits the Na(+)-K(+) pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump's ?1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na(+)-K(+) pump and may have an important protective role in the vasculature under conditions of oxidative stress. PMID:23816524

  6. Diapocynin, a Dimer of the NADPH Oxidase Inhibitor Apocynin, Reduces ROS Production and Prevents Force Loss in Eccentrically Contracting Dystrophic Muscle

    PubMed Central

    Ismail, Hesham M.; Scapozza, Leonardo; Ruegg, Urs T.; Dorchies, Olivier M.

    2014-01-01

    Elevation of intracellular Ca2+, excessive ROS production and increased phospholipase A2 activity contribute to the pathology in dystrophin-deficient muscle. Moreover, Ca2+, ROS and phospholipase A2, in particular iPLA2, are thought to potentiate each other in positive feedback loops. NADPH oxidases (NOX) have been considered as a major source of ROS in muscle and have been reported to be overexpressed in muscles of mdx mice. We report here on our investigations regarding the effect of diapocynin, a dimer of the commonly used NOX inhibitor apocynin, on the activity of iPLA2, Ca2+ handling and ROS generation in dystrophic myotubes. We also examined the effects of diapocynin on force production and recovery ability of isolated EDL muscles exposed to eccentric contractions in vitro, a damaging procedure to which dystrophic muscle is extremely sensitive. In dystrophic myotubes, diapocynin inhibited ROS production, abolished iPLA2 activity and reduced Ca2+ influx through stretch-activated and store-operated channels, two major pathways responsible for excessive Ca2+ entry in dystrophic muscle. Diapocynin also prevented force loss induced by eccentric contractions of mdx muscle close to the value of wild-type muscle and reduced membrane damage as seen by Procion orange dye uptake. These findings support the central role played by NOX-ROS in the pathogenic cascade leading to muscular dystrophy and suggest diapocynin as an effective NOX inhibitor that might be helpful for future therapeutic approaches. PMID:25329652

  7. Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba

    PubMed Central

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels. PMID:24687099

  8. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum.

    PubMed

    Zhang, Chengkang; Lin, Yahong; Wang, Jianqiang; Wang, Yang; Chen, Miaoping; Norvienyeku, Justice; Li, Guangpu; Yu, Wenying; Wang, Zonghua

    2016-01-01

    Fusarium graminearum is a filamentous fungal pathogen that causes wheat Fusarium head blight. In this study, we identified FgNoxR, a regulatory subunit of NADPH oxidases (Nox) in F. graminearum, and found that it plays an important role in the pathogenicity of F. graminearum. FgNoxR is localized on punctate structures throughout the cytoplasm in aerial hyphae while these structures tend to accumulate at or near the plasma membrane, septa and hyphal tips in germinated conidia. Deletion of the FgNOXR gene results in reduced conidiation and germination. Importantly, sexual development is totally abolished in the FgNOXR deletion mutant. In addition, the disease lesion of FgNOXR deletion mutant is limited to the inoculated spikelets of wheat heads. Finally, FgNoxR interacts with FgRac1 and FgNoxA, and all three proteins are required for female fertility. Taken together, our data indicate that FgNoxR contributes to conidiation, sexual reproduction and pathogenesis in F. graminearum. PMID:26607286

  9. NADPH Phagocyte Oxidase Knockout Mice Control Trypanosoma cruzi Proliferation, but Develop Circulatory Collapse and Succumb to Infection

    PubMed Central

    Macedo, Juan P.; Utsch, Lara; Tafuri, Wagner L.; Campagnole-Santos, Maria José; Alves, Rosana O.; Alves-Filho, José C. F.; Romanha, Alvaro J.; Cunha, Fernando Queiroz; Teixeira, Mauro M.; Radi, Rafael; Vieira, Leda Q.

    2012-01-01

    •NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91phox−/− or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with •NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi. PMID:22348160

  10. NADPH oxidase-mediated reactive oxygen species production: subcellular localization and reassessment of its role in plant defense.

    PubMed

    Lherminier, Jeannine; Elmayan, Taline; Fromentin, Jrme; Elaraqui, Khadija Tantaoui; Vesa, Simona; Morel, Johanne; Verrier, Jean-Louis; Cailleteau, Bernard; Blein, Jean-Pierre; Simon-Plas, Franoise

    2009-07-01

    Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membrane. Comparison of the subcellular localization of ROS in wild-type tobacco and in plants transformed with antisense constructs of NtrbohD revealed that this enzyme is also responsible for the hydrogen peroxide production occurring at the plasma membrane after infiltration of tobacco leaves with cryptogein. Finally, the reactivity of wild-type and transformed plants to the elicitor and their resistance against the pathogenic oomycete Phytophthora parasitica were examined. NtrbohD-mediated hydrogen peroxide production does not seem determinant for either hypersensitive response development or the establishment of acquired resistance but it is most likely involved in the signaling pathways associated with the protection of the plant cell. PMID:19522569

  11. Activation of Polyphenol Oxidase of Chloroplasts 1

    PubMed Central

    Tolbert, N. E.

    1973-01-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or 18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density. Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles mg?1 chlorophyll hr?1. Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes. Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30 minutes. No single peptide from the digested trypsin was found to be the sole activating factor. About 0.25 ?g of trypsin activated 50% the polyphenol oxidase activity in a standard chloroplast assay containing 2.1 ?g of chlorophyll. Treatment of spinach chloroplasts with tris buffer or ethylenediamine tetraacetate extracted the ATPase activity, but the polyphenol oxidase activity remained with the broken plastids. However these treatments increased the latent polyphenol oxidase activity 50- to 100-fold. Chloroplasts from a second group of plants, including alfalfa, wheat, oats, peas, and sugarcane leaves, oxidized dihydroxyphenylalanine at a rate of 11 to 120 ?moles mg?1 chlorophyll hr?1. Polyphenol oxidase in these chloroplasts required a low intensity of red light for activity. Fifty or 75% activation of the oxidase in wheat chloroplasts required 4 to 6 foot candles of light and more light was required for alfalfa chloroplasts. Blue or far red light were ineffective. Trypsin was inhibitory. Upon aging chloroplasts from wheat leaves, but not alfalfa or peas, for 5 to 7 days at 4 C the total polyphenol oxidase activity did not increase, but the activation characteristics changed to those of chloroplasts from the spinach group. Chloroplasts from a third group of plants, including bean, tomato, and corn leaves, slowly oxidized dihydroxyphenylalanine in the dark and exhibited no latency. PMID:16658308

  12. NAD(P)H Oxidase Nox-4 Mediates 7-Ketocholesterol-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Aortic Smooth Muscle Cells

    PubMed Central

    Pedruzzi, Eric; Guichard, Cécile; Ollivier, Véronique; Driss, Fathi; Fay, Michèle; Prunet, Céline; Marie, Jean-Claude; Pouzet, Cécile; Samadi, Mohammad; Elbim, Carole; O'Dowd, Yvonne; Bens, Marcelle; Vandewalle, Alain; Gougerot-Pocidalo, Marie-Anne; Lizard, Gérard; Ogier-Denis, Eric

    2004-01-01

    The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca2+ oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH2-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis. PMID:15572675

  13. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2.

    PubMed

    Jang, Ji Yong; Min, Ji Hyun; Wang, Su Bin; Chae, Yun Hee; Baek, Jin Young; Kim, Myunghee; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-12-01

    Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase C?2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-?IIb?3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases. PMID:26482867

  14. Non-muscle myosin light chain promotes endothelial progenitor cells senescence and dysfunction in pulmonary hypertensive rats through up-regulation of NADPH oxidase.

    PubMed

    Liu, Bin; Li, Tao; Peng, Jing-Jie; Zhang, Jie-Jie; Liu, Wei-Qi; Luo, Xiu-Ju; Ma, Qi-Lin; Gong, Zhi-Cheng; Peng, Jun

    2016-03-15

    Non-muscle myosin regulatory light chain (nmMLC20) is reported to exert transcriptional function in regulation of gene expression, and NADPH oxidase (NOX)-derived reactive oxygen species contribute to vascular remodeling of pulmonary artery hypertension (PAH). This study aims to determine if nmMLC20 can promote endothelial progenitor cells (EPCs) senescence and dysfunction through up-regulation of NOX in PAH rats. The rats were exposed to10% hypoxia for 3 weeks to establish a PAH model, which showed an increase in right ventricle systolic pressure, right ventricular and pulmonary vascular remodeling, and the accelerated senescence and impaired functions in EPCs, accompanied by an increase in Rho-kinase (ROCK) and NOX activities, p-nmMLC20 level, NOX expression and H2O2 content; these phenomena were reversed by fasudil, a selective inhibitor of ROCK. Next, normal EPCs were cultured under hypoxia to induce senescence in vitro. Consistent with the in vivo findings, hypoxia increased the senescence and dysfunction of EPCs concomitant with an increase in ROCK and NOX activities, p-nmMLC20 level, NOX expression and H2O2 content; these phenomena were reversed by fasudil. Knockdown of nmMLC20 showed similar results to that of fasudil except no effect on ROCK activity. Based on these observations, we conclude that nmMLC20 could promote the senescence and dysfunctions of EPCs in PAH through up-regulation of NOX in a phosphorylation-dependent manner. PMID:26872992

  15. Sanguisorbae radix protects against 6-hydroxydopamine-induced neurotoxicity by regulating NADPH oxidase and NF-E2-related factor-2/heme oxygenase-1 expressions.

    PubMed

    Oh, Hyein; Hur, Jinyoung; Park, Gunhyuk; Kim, Hyo Geun; Kim, Young Ock; Oh, Myung Sook

    2013-07-01

    6-Hydroxydopamine (6-OHDA) produces neuronal cell damage by generating reactive oxygen species (ROS). The major mechanisms of protection against ROS-induced stress are inhibiting expression of ROS generating genes such as NADPH oxidase (NOX) and increasing expression of endogenous antioxidant genes such as heme oxygenase-1 (HO-1). This study investigated whether a standardized Sanguisorbae Radix extract (SRE), a medical herb commonly used in Asian traditional medicine, has a protective effect on 6-OHDA-induced cell toxicity by regulating ROS in SH-SY5Y cells. SRE at 10 and 50 µg/mL significantly reduced 6-OHDA-induced cell damage dose dependently in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and by Hoechst 33342 staining. SRE increased the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X ratio and decreased cytochrome C release and caspase-3 activity. SRE also abolished 6-OHDA-induced ROS by inhibiting NOX expression and by inducing HO-1 expression via NF-E2-related factor-2 activation. Taken together, these results demonstrate that SRE has protective effects against 6-OHDA-induced cell death by regulating ROS in SH-SY5Y cells. PMID:22933385

  16. Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer

    PubMed Central

    Wang, Peng; Shi, Qiao; Deng, Wen-Hong; Yu, Jia; Zuo, Teng; Mei, Fang-Chao; Wang, Wei-Xing

    2015-01-01

    AIM: To assess the expression and prognostic value of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) in gastric cancer, and its correlation with vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). METHODS: Tumor and adjacent tissues were obtained from 123 patients who underwent radical surgery for gastric cancer at Renmin Hospital of Wuhan University from 2008-2009. The expression of NOX2, VEGF, EGFR and CD68 in tumor tissues was detected by immunohistochemistry. The expression of NOX2 in gastric cancer and adjacent tissues was detected by Western blot analysis. Spearmans correlation was performed to elucidate the relationship of NOX2 with VEGF and EGFR. The Kaplan-Meier method was used to calculate survival time, and the log-rank test was used to evaluate differences in survival. Coxs proportional hazards regression model was applied in a stepwise manner to analyze the independent prognostic factors. RESULTS: NOX2 exhibited positive expression in 47.2% (58/123) of the gastric cancer tissues. Western blot analysis revealed that NOX2 was up-regulated in tumor tissues compared to the adjacent tissue [39.0% (48/123)]. Immunohistochemistry staining revealed that CD68, which is a specific marker of macrophages, and NOX expression presented a similar localization and staining intensity. The expression of NOX2 was positively correlated with that of VEGF and EGFR. Comparison of the 5-year survival rates of the NOX2 positive and NOX2 negative groups showed that the NOX2 positive group presented a poor prognosis. CONCLUSION: NOX2 positively correlates with the levels of VEGF and EGFR. NOX2 may be used as a new biomarker and a potential therapeutic target for gastric cancer. PMID:26034362

  17. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague–Dawley rats

    PubMed Central

    Zuo, Jian; Khan, Aslam; Glenton, Patricia A.; Khan, Saeed R.

    2011-01-01

    Background. Renal calcium oxalate (CaOx) crystal deposition is associated with epithelial injury and movement of inflammatory cells into the interstitium. We have proposed that oxalate (Ox)- and CaOx crystal-induced injury is most likely caused by reactive oxygen species (ROS) produced by activation of membrane nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Methods. Present study was undertaken to determine the effect of NADPH oxidase inhibitor apocynin on the expression of kidney injury molecule-1 (KIM-1) and renal CaOx crystal deposition in rats with hyperoxaluria. We also investigated the urinary excretion of KIM-1, osteopontin (OPN) and monocyte chemoattractant protein-1 (MCP-1) and renal expression of OPN and ED-1. Male Sprague–Dawley rats were fed a diet containing 5% hydroxyl-L-proline (HLP) and 4 mmol apocynin to drink for 28 days. Urine was collected on Days 7, 14, 21 and 28. After that, rats were sacrificed and their kidneys processed for various microscopic and molecular investigations. Results. HLP consumption produced heavy deposits of CaOx crystals. Renal expression of KIM-1 and OPN and urinary excretion of KIM-1, OPN, H2O2 and MCP-1 was significantly increased. ED-1-positive cells migrated into renal interstitium. Apocynin treatment caused significant reduction of crystal deposits, injured and dilated tubules; renal expression of KIM-1, OPN and ED-1 and urinary excretion of KIM-1, OPN, MCP-1 and H2O2. Apocynin had no effect on the urinary excretion of Ox. Conclusions. This is the first study of urinary excretion and renal expression of KIM-1 in association with renal CaOx crystal deposition, experimental or clinical. The results indicate that NADPH oxidase inhibition leads to reduction in KIM-1 expression and urinary excretion as well as renal CaOx crystal deposition. KIM-1 is an important marker of renal epithelial injury. The results provide further support to our proposal that renal epithelial injury is critical for crystal retention and that injury is in part caused by the production of ROS with the involvement of NADPH oxidase. PMID:21378157

  18. Retinol-Binding Protein 4 Induces Inflammation in Human Endothelial Cells by an NADPH Oxidase- and Nuclear Factor Kappa B-Dependent and Retinol-Independent Mechanism

    PubMed Central

    Farjo, Rafal A.; Halsey, Stacey; Moiseyev, Gennadiy; Ma, Jian-xing

    2012-01-01

    Serum retinol-binding protein 4 (RBP4) is the sole specific vitamin A (retinol) transporter in blood. Elevation of serum RBP4 in patients has been linked to cardiovascular disease and diabetic retinopathy. However, the significance of RBP4 elevation in the pathogenesis of these vascular diseases is unknown. Here we show that RBP4 induces inflammation in primary human retinal capillary endothelial cells (HRCEC) and human umbilical vein endothelial cells (HUVEC) by stimulating expression of proinflammatory molecules involved in leukocyte recruitment and adherence to endothelium, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). We demonstrate that these novel effects of RBP4 are independent of retinol and the RBP4 membrane receptor STRA6 and occur in part via activation of NADPH oxidase and NF-?B. Importantly, retinol-free RBP4 (apo-RBP4) was as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory molecules in both HRCEC and HUVEC. These studies reveal that RBP4 elevation can directly contribute to endothelial inflammation and therefore may play a causative role in the development or progression of vascular inflammation during cardiovascular disease and microvascular complications of diabetes. PMID:23071093

  19. NADPH oxidase 3-associated oxidative stress and caspase 3-dependent apoptosis in the cochleae of D-galactose-induced aged rats

    PubMed Central

    DU, ZHENGDE; LI, SHUO; LIU, LIN; YANG, QIONG; ZHANG, HONGWEI; GAO, CHUNSHENG

    2015-01-01

    Oxidative damage to mitochondrial DNA (mtDNA) and cell apoptosis are heavily implicated in aging. Our previous study established a mimetic rat model of aging in the cochleae using D-galactose (D-gal), and revealed that chronic injection of D-gal can increase oxidative stress and mtDNA common deletions (CD). The aim of the present study was to investigate the sources of reactive oxygen species and the occurrence of apoptosis in the cochleae of rats following 8 weeks of D-gal exposure. The results of the present study indicated that an elevated accumulation of the mtDNA CD and mitochondrial ultrastructural damage occurred in the cochleae of rats injected with D-gal for 8 weeks. In addition, the levels of 8-hydroxy-2-deoxyguanosine, NADPH oxidase (NOX) 3, P22phox and cleaved caspase 3, and the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end-labelling-positive cells were increased in the cochleae of D-gal-treated rats, compared with the controls. These findings suggested that nitric oxide synthase NOX3-associated oxidative stress may contribute to the accumulation of mtDNA mutations and activate a caspase 3-dependent apoptotic signalling pathway in the cochleae during aging. The present study also provided novel insights into the development of age-associated hearing loss, also termed presbycusis. PMID:26498835

  20. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase.

    PubMed

    Shi, Liang; Gong, Li; Zhang, Xiangyang; Ren, Ang; Gao, Tan; Zhao, Mingwen

    2015-08-01

    Ganoderma lucidum is one of the best known medicinal basidiomycetes because it produces many pharmacologically active compounds, and methyl jasmonate (MeJA) was previously reported to induce the biosynthesis of ganoderic acids (GA) in G. lucidum. In this study, we found that MeJA not only increased the amount of GA but also increased the distance between hyphal branches by approximately 1.2-fold. Further analysis showed that MeJA could increase the intracellular ROS (reactive oxygen species) content by approximately 2.2-2.7-fold. Furthermore, the hyphal branching and GA biosynthesis regulated by MeJA treatment could be abolished by ROS scavengers to a level similar to or lower than that of the control group. These results indicated that the regulation of hyphal branching and GA biosynthesis by MeJA might occur via a ROS signaling pathway. Further analysis revealed that NADPH oxidase (NOX) plays an important role in MeJA-regulated ROS generation. Importantly, our results highlight that NOX functions in signaling cross-talk between ROS and MeJA. In addition, these findings provide an excellent opportunity to identify potential pathways linking ROS networks to MeJA signaling in fungi and suggest that plants and fungi share a conserved signaling-crosstalk mechanism. PMID:25512263

  1. Puerarin Improves Diabetic Aorta Injury by Inhibiting NADPH Oxidase-Derived Oxidative Stress in STZ-Induced Diabetic Rats

    PubMed Central

    Li, Wenping; Zhao, Wenwen; Wu, Qin; Lu, Yuanfu; Shi, Jingshan; Chen, Xiuping

    2016-01-01

    Objective. Puerarin is a natural flavonoid isolated from the TCM lobed kudzuvine root. This study investigated the effect and mechanisms of puerarin on diabetic aorta in rats. Methods. Streptozotocin- (STZ-) induced diabetic rats were administered with puerarin for 3 weeks. Levels of serum insulin (INS), PGE2, endothelin (ET), glycated hemoglobin (GHb), H2O2, and nitric oxide (NO) in rats were measured by ELISA and colorimetric assay kits. The aortas were stained with H&E. Moreover, the mRNA expression of ICAM-1, LOX-1, NADPH oxidase 2 (NOX2), and NOX4 and the protein expression of ICAM-1, LOX-1, NF-κB p65, E-selectin, NOX2, and NOX4 in aorta tissues were measured by real-time PCR and Western blot, respectively. The localization of ICAM-1, NF-κB p65, NOX2, and NOX4 in the aorta tissues was also determined through immunohistochemistry. Results. Puerarin treatment exerted no effect on fasting blood glucose levels but significantly reduced the serum levels of INS, GHb, PGE2, ET, H2O2, and NO. In addition, puerarin improved the pathological alterations and inhibited the expression of ICAM-1, LOX-1, NOX2, and NOX4 at both mRNA and protein levels. Puerarin also significantly reduced the number of cells showing positive staining for ICAM-1, NOX2, NOX4, and NF-κB p65. Conclusion. Puerarin demonstrated protective effect on the STZ-induced diabetic rat aorta. The protective mechanisms may include regulation of NF-κB and inhibition of NOX2 and NOX4 followed by inhibition of cell adhesion molecule expression. PMID:26881260

  2. Apocynin protects against ethanol-induced gastric ulcer in rats by attenuating the upregulation of NADPH oxidases 1 and 4.

    PubMed

    El-Naga, Reem N

    2015-12-01

    Gastric ulcer is a common gastrointestinal disorder affecting many people all over the world. Absolute ethanol (5ml/kg) was used to induce gastric ulceration in rats. Apocynin (50mg/kg) was given orally one hour before the administration of absolute ethanol. Omeprazole (20mg/kg) was used as a standard. Interestingly, apocynin pre-treatment provided 93.5% gastroprotection against ethanol-induced ulceration. Biochemically, gastric mucin content was significantly increased with apocynin pre-treatment. This finding was further supported by alcian blue staining of stomach sections obtained from the different treated groups. Also, gastric juice volume and acidity were significantly reduced. Apocynin significantly ameliorated ethanol-induced oxidative stress by replenishing reduced glutathione and superoxide dismutase levels as well as reducing elevated malondialdehyde levels in gastric tissues. Besides, ethanol-induced pro-inflammatory response was significantly decreased by apocynin pre-treatment via reducing elevated levels of pro-inflammatory markers; interleukin-1?, tumor necrosis factor-?, cyclooxygenase-2 and inducible nitric oxide synthase. Additionally, caspase-3 tissue level was significantly reduced in apocynin pre-treated group. Interestingly, NADPH oxidase-1 (NOX-1) and NOX-4 up-regulation was shown to be partially involved in the pathogenesis of ethanol-induced gastric ulceration and was significantly reversed by apocynin pre-treatment. Gastroprotective properties of apocynin were confirmed by histopathological examination. It is worth mentioning that apocynin was superior in all aspects except gastric mucin content parameter where it was significantly increased by 13.5 folds in the omeprazole pre-treated group. This study was the first to show that apocynin is a promising gastroprotective agent against ethanol-induced gastric ulceration, partially via its anti-oxidant, anti-inflammatory, anti-apoptotic effects as well as down-regulating NOX-1 and NOX-4 expression. PMID:26522475

  3. NADPH oxidase DUOX1 and DUOX2 but not NOX4 are independent predictors in hepatocellular carcinoma after hepatectomy.

    PubMed

    Lu, Can-Liang; Qiu, Ji-Liang; Huang, Pin-Zhu; Zou, Ru-Hai; Hong, Jian; Li, Bin-Kui; Chen, Gui-Hua; Yuan, Yun-Fei

    2011-12-01

    NADPH oxidase DUOX1, DUOX2, and NOX4 have recently been gained considerable concerns, owing to the fact that they involve in reactive oxygen species-induced genetic and epigenetic alternations of human carcinogenesis and serve as biomarkers in several cancers. Whether they predict survival in hepatocellular carcinoma (HCC) is still uncertain. Here, we detected the expressions of DUOX1, DUOX2, and NOX4 in one normal liver cell line, seven HCC cell lines, 30 non-cirrhotic normal liver tissues, and 107 paired HCC tissues using reverse transcription-polymerase chain reaction. The correlations of genes expression with prognoses were analyzed. DUOX1 was expressed at high levels in MHCC-97H and MHCC-97L, but at low levels in Bel-7402. In contrast to low expression level at SMMC-7721, DUOX2 was expressed at considerably high levels in MHCC-97H and MHCC-97L. The transcript of NOX4 was only detected in SMMC-7721. All the 30 normal liver tissues failed to express the three candidate markers. Compared with adjacent non-neoplastic tissues, DUOX1, DUOX2, and NOX4 were expressed at higher frequencies in tumor specimens. Both univariate and multivariate analyses revealed that elevated expression of DUOX1 or DUOX2 predicted poorer recurrence-free survival and overall survival. No such significance trend regarding NOX4 predictive value in survival, however, was seen in univariate analysis. These results suggested DUOX1 and DUOX2, but not NOX4, could predict HCC prognoses after hepatectomy. PMID:21915726

  4. The NADPH oxidase NOX5 protects against apoptosis in ALK-positive anaplastic large-cell lymphoma cell lines.

    PubMed

    Carnesecchi, S; Rougemont, A-L; Doroshow, J H; Nagy, M; Mouche, S; Gumy-Pause, F; Szanto, I

    2015-07-01

    Reactive oxygen species (ROS) are key modulators of apoptosis and carcinogenesis. One of the important sources of ROS is NADPH oxidases (NOXs). The isoform NOX5 is highly expressed in lymphoid tissues, but it has not been detected in any common Hodgkin or non-Hodgkin lymphoma cell lines. In diverse, nonlymphoid malignant cells NOX5 exerts an antiapoptotic effect. Apoptosis suppression is the hallmark feature of a rare type of lymphoma, termed anaplastic lymphoma kinase-positive (ALK(+)) anaplastic large-cell lymphoma (ALCL), and a major factor in the therapy resistance and relapse of ALK(+) ALCL tumors. We applied RT-PCR and Western blot analysis to detect NOX5 expression in three ALK(+) ALCL cell lines (Karpas-299, SR-786, SUP-M2). We investigated the role of NOX5 in apoptosis by small-interfering RNA (siRNA)-mediated gene silencing and chemical inhibition of NOX5 using FACS analysis and examining caspase 3 cleavage in Karpas-299 cells. We used immunohistochemistry to detect NOX5 in ALK(+) ALCL pediatric tumors. NOX5 mRNA was uniquely detected in ALK(+) ALCL cells, whereas cell lines of other lymphoma classes were devoid of NOX5. Transfection of NOX5-specific siRNA and chemical inhibition of NOX5 abrogated calcium-induced superoxide production and increased caspase 3-mediated apoptosis in Karpas-299 cells. Immunohistochemistry revealed focal NOX5 reactivity in pediatric ALK(+) ALCL tumor cells. These results indicate that NOX5-derived ROS contribute to apoptosis blockage in ALK(+) ALCL cell lines and suggest NOX5 as a potential pharmaceutical target to enhance apoptosis and thus to suppress tumor progression and prevent relapse in pediatric ALK(+) ALCL patients that resist classical therapeutic approaches. PMID:25797883

  5. NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression.

    PubMed

    Yamaura, Maki; Mitsushita, Junji; Furuta, Shuichi; Kiniwa, Yukiko; Ashida, Atsuko; Goto, Yasuhumi; Shang, Wei H; Kubodera, Makoto; Kato, Masayoshi; Takata, Minoru; Saida, Toshiaki; Kamata, Tohru

    2009-03-15

    Generation of reactive oxygen species (ROS) has been implicated in carcinogenic development of melanoma, but the underlying molecular mechanism has not been fully elucidated. We studied the expression and function of the superoxide-generating NADPH oxidase (Nox)4 in human melanoma cells. Nox4 was up-regulated in 13 of 20 melanoma cell lines tested. Silencing of Nox4 expression in melanoma MM-BP cells by small interfering RNAs decreased ROS production and thereby inhibited anchorage-independent cell growth and tumorigenecity in nude mice. Consistently, a general Nox inhibitor, diphenylene iodonium, and antioxidants vitamine E and pyrrolidine dithiocarbamate blocked cell proliferation of MM-BP cells. Flow cytometric analysis indicated that Nox4 small interfering RNAs and diphenylene iodonium induced G(2)-M cell cycle arrest, which was also observed with another melanoma cell line, 928mel. This was accompanied by induction of the Tyr-15 phosphorylated, inactive form of cyclin-dependent kinase 1 (a hallmark of G(2)-M checkpoint) and hyperphosphorylation of cdc25c leading to its increased binding to 14-3-3 proteins. Ectopic expression of catalase, a scavenger of ROS, also caused accumulation of cells in G(2)-M phase. Immunohistochemistry revealed that expression of Nox4 was detected in 31.0% of 13 melanoma patients samples, suggesting the association of Nox4 expression with some steps of melanoma development. The findings suggest that Nox4-generated ROS are required for transformation phenotype of melanoma cells and contribute to melanoma growth through regulation of G(2)-M cell cycle progression. PMID:19276355

  6. The NADPH Oxidase Complexes in Botrytis cinerea: Evidence for a Close Association with the ER and the Tetraspanin Pls1

    PubMed Central

    Siegmund, Ulrike; Heller, Jens; van Kann, Jan A. L.; Tudzynski, Paul

    2013-01-01

    NADPH oxidases (Nox) are major enzymatic systems that generate reactive-oxygen species (ROS) in multicellular eukaryotes. In several fungi they have been shown to be involved in sexual differentiation and pathogenicity. However, in contrast to the well characterized mammalian systems, basic information on the composition, recruitment, and localization of fungal Nox complexes and on the molecular mechanisms of their cellular effects are still lacking. Here we give a detailed analysis of components of the Nox complexes in the gray mold fungus Botrytis cinerea. It had previously been shown that the two catalytic transmembrane subunits BcNoxA and B are important for development of sclerotia and for full virulence, with BcNoxA being involved in spreading of lesions and BcNoxB in penetration; BcNoxR functions as a regulator of both subunits. Here we present evidence (using for the first time a functional GFP fusion able to complement the ΔbcnoxA mutant) that BcNoxA localizes mainly to the ER and at the plasma membrane; BcNoxB shows a similar localization pattern, while the regulator BcNoxR is found in vesicles throughout the hyphae and at the hyphal tip. To identify possible interaction partners, which could be involved in the localization or recruitment of the Nox complexes, we functionally characterized the tetraspanin Pls1, a transmembrane protein, which had been suggested to be a NoxB-interacting partner in the saprophyte Podospora anserina. Knock-out experiments and GFP fusions substantiate a link between BcNoxB and BcPls1 because both deletion mutants have overlapping phenotypes (especially a defect in penetration), and the proteins show a similar localization pattern (ER). However, in contrast to the corresponding protein in P. anserina BcPls1 is important for female fertility, but not for ascospore germination. PMID:23418468

  7. The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1.

    PubMed

    Siegmund, Ulrike; Heller, Jens; van Kan, Jan A L; van Kann, Jan A L; Tudzynski, Paul

    2013-01-01

    NADPH oxidases (Nox) are major enzymatic systems that generate reactive-oxygen species (ROS) in multicellular eukaryotes. In several fungi they have been shown to be involved in sexual differentiation and pathogenicity. However, in contrast to the well characterized mammalian systems, basic information on the composition, recruitment, and localization of fungal Nox complexes and on the molecular mechanisms of their cellular effects are still lacking. Here we give a detailed analysis of components of the Nox complexes in the gray mold fungus Botrytis cinerea. It had previously been shown that the two catalytic transmembrane subunits BcNoxA and B are important for development of sclerotia and for full virulence, with BcNoxA being involved in spreading of lesions and BcNoxB in penetration; BcNoxR functions as a regulator of both subunits. Here we present evidence (using for the first time a functional GFP fusion able to complement the ?bcnoxA mutant) that BcNoxA localizes mainly to the ER and at the plasma membrane; BcNoxB shows a similar localization pattern, while the regulator BcNoxR is found in vesicles throughout the hyphae and at the hyphal tip. To identify possible interaction partners, which could be involved in the localization or recruitment of the Nox complexes, we functionally characterized the tetraspanin Pls1, a transmembrane protein, which had been suggested to be a NoxB-interacting partner in the saprophyte Podospora anserina. Knock-out experiments and GFP fusions substantiate a link between BcNoxB and BcPls1 because both deletion mutants have overlapping phenotypes (especially a defect in penetration), and the proteins show a similar localization pattern (ER). However, in contrast to the corresponding protein in P. anserina BcPls1 is important for female fertility, but not for ascospore germination. PMID:23418468

  8. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression.

    PubMed

    Chabrashvili, Tina; Kitiyakara, Chagriya; Blau, Jonathan; Karber, Alex; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2003-07-01

    Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox. PMID:12609817

  9. H2O2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney.

    PubMed

    Lin, Chian-Shiung; Lee, Shang-Hsing; Huang, Ho-Shiang; Chen, Yih-Sharng; Ma, Ming-Chieh

    2015-08-15

    The presence of NADPH oxidase (Nox) in the kidney, especially Nox4, results in H2O2 production, which regulates Na(+) excretion and urine formation. Redox-sensitive transient receptor potential vanilloid 1 channels (TRPV1s) are distributed in mechanosensory fibers of the renal pelvis and monitor changes in intrapelvic pressure (IPP) during urine formation. The present study tested whether H2O2 derived from Nox4 affects TRPV1 function in renal sensory responses. Perfusion of H2O2 into the renal pelvis dose dependently increased afferent renal nerve activity and substance P (SP) release. These responses were attenuated by cotreatment with catalase or TRPV1 blockers. In single unit recordings, H2O2 activated afferent renal nerve activity in response to rising IPP but not high salt. Western blots revealed that Nox2 (gp91(phox)) and Nox4 are both present in the rat kidney, but Nox4 is abundant in the renal pelvis and originates from dorsal root ganglia. This distribution was associated with expression of the Nox4 regulators p22(phox) and polymerase ?-interacting protein 2. Coimmunoprecipitation experiments showed that IPP increases polymerase ?-interacting protein 2 association with Nox4 or p22(phox) in the renal pelvis. Interestingly, immunofluorescence labeling demonstrated that Nox4 colocalizes with TRPV1 in sensory fibers of the renal pelvis, indicating that H2O2 generated from Nox4 may affect TRPV1 activity. Stepwise increases in IPP and saline loading resulted in H2O2 and SP release, sensory activation, diuresis, and natriuresis. These effects, however, were remarkably attenuated by Nox inhibition. Overall, these results suggest that Nox4-positive fibers liberate H2O2 after mechanostimulation, thereby contributing to a renal sensory nerve-mediated diuretic/natriuretic response. PMID:26136558

  10. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo.

    PubMed

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-02-12

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte's functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye's anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer. PMID:26683660

  11. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  12. The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis.

    PubMed

    Apolloni, Savina; Parisi, Chiara; Pesaresi, Maria Grazia; Rossi, Simona; Carr, Maria Teresa; Cozzolino, Mauro; Volont, Cinzia; D'Ambrosi, Nadia

    2013-05-15

    Inflammation and oxidative stress are thought to play determinant roles in the pathogenesis of amyotrophic lateral sclerosis (ALS). Degenerating motor neurons produce signals that activate microglia to release reactive oxygen species (ROS) and proinflammatory cytokines, resulting in a vicious cycle of neurodegeneration. The ALS-causing mutant protein Cu(+)/Zn(+) superoxide dismutase SOD1-G93A directly enhances the activity of the main ROS-producing enzyme in microglia, NADPH oxidase 2 (NOX2), a well-known player in the pathogenesis of ALS. Considering that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS pathology, we used primary microglial cells derived from transgenic SOD1-G93A mice and SOD1-G93A mice lacking the P2X7 receptor to investigate the effects of both pharmacological induction and genetic ablation of receptor activity on the NOX2 pathway. We observed that, in SOD1-G93A microglia, the stimulation of P2X7 receptor by 2'-3'-O-(benzoyl-benzoyl) ATP enhanced NOX2 activity in terms of translocation of p67(phox) to the membrane and ROS production; this effect was totally dependent on Rac1. We also found that, following P2X7 receptor stimulation, the phosphorylation of ERK1/2 was augmented in ALS microglia, and there was a mutual dependency between the NOX2 and ERK1/2 pathways. All of these microglia-mediated damaging mechanisms were prevented by knocking out P2X7 receptor and by the use of specific antagonists. These findings suggest a noxious mechanism by which P2X7 receptor leads to enhanced oxidative stress in ALS microglia and identify the P2X7 receptor as a promising target for the development of therapeutic strategies to slow down the progression of ALS. PMID:23589615

  13. Apocyanin, NADPH oxidase inhibitor prevents lipopolysaccharide induced ?-synuclein aggregation and ameliorates motor function deficits in rats: Possible role of biochemical and inflammatory alterations.

    PubMed

    Sharma, Neha; Kapoor, Monika; Nehru, Bimla

    2016-01-01

    Parkinson's disease (PD), is an age-related, progressive neurodegenerative disorder that affects movement and is characterized by the loss of dopaminergic neurons in the nigrostriatal region. Although the clinical and pathological features of PD are complex, recent studies have indicated that microglial NADPH oxidase play a key role in its pathology. A little information is available regarding the role of apocyanin, an NADPH oxidase inhibitor, in ameliorating ?-synuclein aggregation and neurobehavioral consequences of PD. Therefore, the present study evaluated its therapeutic potentials for the treatment of neurobehavioral consequences in lipolysaccharide (LPS) induced PD model. For the establishment of PD model LPS (5?g/5?l PBS) was injected into the Substantia nigra (SN) of rats. Apocyanin (10mg/kgb.wt) was injected intraperitoneal. Statistical analysis revealed that apocynin significantly ameliorated LPS induced inflammatory response characterized by NFkB, TNF-? and IL-1? upregulation as assessed by ELISA. It also prevented dopaminergic neurons from toxic insult of LPS as indicated by inhibition of apoptotic markers i.e., caspase 3 and caspase 9 as depicted from RT-PCR and ELISA studies. This was further supported by TUNEL assay for DNA fragmentation. Effectiveness of apocyanin in protecting dopaminergic neuronal degeneration was further confirmed by assessment of ?-synuclein deposition as depicted by IHC analysis. Consequently, an improvement in the behavioral outcome was observed following apocyanin treatment as depicted from various behavioral tests performed. Hence the data suggests that specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by LPS induced PD. PMID:26367469

  14. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion

    NASA Technical Reports Server (NTRS)

    Hwang, Jinah; Saha, Aniket; Boo, Yong Chool; Sorescu, George P.; McNally, J. Scott; Holland, Steven M.; Dikalov, Sergei; Giddens, Don P.; Griendling, Kathy K.; Harrison, David G.; Jo, Hanjoong

    2003-01-01

    Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.

  15. Effect of antibiotics and sedatives on normal neutrophil nicotinamide-adenine dinucleotide phosphate-reduced oxidase activity.

    PubMed

    Moon, B C; Girotti, M J; Wren, S F; Dawson, R; Brar, D

    1986-01-01

    The effects of antibiotics and other commonly used medications on the human polymorphonuclear neutrophil leukocytes' (PMNs) nicotinamide-adenine dinucleotide phosphate-reduced (NADPH) oxidase activity have been investigated in vitro. Five antibiotics (penicillin G sodium, cefamandole nafate, metronidazole hydrochloride, clindamycin phosphate, and tobramycin sulfate, and a triple combination of penicillin G sodium-metronidazole hydrochloride-tobramycin sulfate) and two sedatives (morphine sulfate and diazepam) were incubated with normal human PMNs at therapeutic, infratherapeutic, and supratherapeutic drug levels. The superoxide dismutase-inhibitable, NADPH-dependent reduction of cytochrome C in the PMNs was studied after stimulation with formyl-methionyl-leucine-phenylalanine. Tobramycin sulfate and the triple combination of penicillin G sodium-metronidazole hydrochloride-tobramycin sulfate significantly reduced the NADPH oxidase activity at all dosages studied. Clindamycin phosphate, morphine sulfate, and diazepam also showed significant reduction at therapeutic and supratherapeutic concentrations. Penicillin G sodium, cefamandole nafate, and metronidazole hydrochloride did not cause a decrease in enzyme activity at any levels tested. We conclude that NADPH oxidase activity can be adversely affected by the circulating levels of common antibiotics and sedatives. PMID:3942501

  16. Effect of naphthalene on cytochrome oxidase activity

    SciTech Connect

    Harmon, H.J.

    1988-01-01

    Previous reports have demonstrated that naphthalene inhibits oxygen consumption in Daphnia magna tissue culture cells, and intact mitochondria and submitochondrial particles. These studies were extended to algal mitochondrial respiration as well as photosynthetic activity. The authors were able to demonstrate the specific site of apparent respiratory inhibition to be coenzyme Q (ubiquinone, UQ) and later to demonstrate the molecular basis of this inhibition at ubiquinone. The authors previously could not demonstrate an effect of naphthalene on cytochrome oxidase activity. However, the observation that naphthalene can stimulate respiration in algae prompted the reinvestigation of the effect of naphthalene on the kinetics of cytochrome oxidase. Cytochrome oxidase is a multi-subunit membranous protein responsible for the oxidation of cytochrome c and the reduction of molecular oxygen to water. Because of the complicated nature and mechanism of this enzyme, the potential exists for multiple and possibly opposite effects of naphthalene on its function.

  17. Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation invitro and in silico

    PubMed Central

    Macas-Prez, MarthaEdith; Martnez-Ramos, Federico; Padilla-Martnez, ItziaIrene; Correa-Basurto, Jos; Kispert, Lowell; Mendieta-Wejebe, JessicaElena; Rosales-Hernndez, MarthaCecilia

    2013-01-01

    NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2?), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2? production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2?s p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin. PMID:23802190

  18. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling.

    PubMed

    Mistry, Rajesh K; Murray, Thomas V A; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R; Santos, Celio; Eaton, Philip; Shah, Ajay M; Brewer, Alison C

    2016-01-22

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production. PMID:26620565

  19. Transcriptional Regulation of Cystathionine-?-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling*

    PubMed Central

    Mistry, Rajesh K.; Murray, Thomas V. A.; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R.; Santos, Celio; Eaton, Philip; Shah, Ajay M.; Brewer, Alison C.

    2016-01-01

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-?-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2?/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production. PMID:26620565

  20. Antimicrobial Actions of the Nadph Phagocyte Oxidase and Inducible Nitric Oxide Synthase in Experimental Salmonellosis. II. Effects on Microbial Proliferation and Host Survival in Vivo

    PubMed Central

    Mastroeni, Pietro; Vazquez-Torres, Andrés; Fang, Ferric C.; Xu, Yisheng; Khan, Shahid; Hormaeche, Carlos E.; Dougan, Gordon

    2000-01-01

    The roles of the NADPH phagocyte oxidase (phox) and inducible nitric oxide synthase (iNOS) in host resistance to virulent Salmonella typhimurium were investigated in gp91phox−/−, iNOS−/−, and congenic wild-type mice. Although both gp91phox−/− and iNOS−/− mice demonstrated increased susceptibility to infection with S. typhimurium compared with wild-type mice, the kinetics of bacterial replication were dramatically different in the gp91phox−/− and iNOS−/− mouse strains. Greater bacterial numbers were present in the spleens and livers of gp91phox−/− mice compared with C57BL/6 controls as early as day 1 of infection, and all of the gp91phox−/− mice succumbed to infection within 5 d. In contrast, an increased bacterial burden was detected within reticuloendothelial organs of iNOS−/− mice only beyond the first week of infection. Influx of inflammatory CD11b+ cells, granuloma formation, and serum interferon γ levels were unimpaired in iNOS−/− mice, but the iNOS-deficient granulomas were unable to limit bacterial replication. The NADPH phagocye oxidase and iNOS are both required for host resistance to wild-type Salmonella, but appear to operate principally at different stages of infection. PMID:10899910

  1. A lipidomic screen of hyperglycemia-treated HRECs links 12/15-Lipoxygenase to microvascular dysfunction during diabetic retinopathy via NADPH oxidase

    PubMed Central

    Ibrahim, Ahmed S.; Elshafey, Sally; Sellak, Hassan; Hussein, Khaled A.; El-Sherbiny, Mohamed; Abdelsaid, Mohammed; Rizk, Nasser; Beasley, Selina; Tawfik, Amany M.; Smith, Sylvia B.; Al-Shabrawey, Mohamed

    2015-01-01

    Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2−/− mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism. PMID:25598081

  2. NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure.

    PubMed

    Ahn, Bumsoo; Beharry, Adam W; Frye, Gregory S; Judge, Andrew R; Ferreira, Leonardo F

    2015-09-01

    Patients with chronic heart failure (CHF) have dyspnea and exercise intolerance, which are caused in part by diaphragm abnormalities. Oxidants impair diaphragm contractile function, and CHF increases diaphragm oxidants. However, the specific source of oxidants and its relevance to diaphragm abnormalities in CHF is unclear. The p47(phox)-dependent Nox2 isoform of NAD(P)H oxidase is a putative source of diaphragm oxidants. Thus, we conducted our study with the goal of determining the effects of CHF on the diaphragm levels of Nox2 complex subunits and test the hypothesis that p47(phox) knockout prevents diaphragm contractile dysfunction elicited by CHF. CHF caused a two- to sixfold increase (P < 0.05) in diaphragm mRNA and protein levels of several Nox2 subunits, with p47(phox) being upregulated and hyperphosphorylated. CHF increased diaphragm extracellular oxidant emission in wild-type but not p47(phox) knockout mice. Diaphragm isometric force, shortening velocity, and peak power were decreased by 20-50% in CHF wild-type mice (P < 0.05), whereas p47(phox) knockout mice were protected from impairments in diaphragm contractile function elicited by CHF. Our experiments show that p47(phox) is upregulated and involved in the increased oxidants and contractile dysfunction in CHF diaphragm. These findings suggest that a p47(phox)-dependent NAD(P)H oxidase mediates the increase in diaphragm oxidants and contractile dysfunction in CHF. PMID:26209274

  3. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II.

    PubMed

    Peterson, Jeffrey R; Burmeister, Melissa A; Tian, Xin; Zhou, Yi; Guruju, Mallikarjuna R; Stupinski, John A; Sharma, Ram V; Davisson, Robin L

    2009-11-01

    The renin-angiotensin system exerts a tremendous influence over fluid balance and arterial pressure. Angiotensin II (Ang-II), the effector peptide of the renin-angiotensin system, acts in the central nervous system to regulate neurohumoral outflow and thirst. Dysregulation of Ang-II signaling in the central nervous system is implicated in cardiovascular diseases; however, the mechanisms remain poorly understood. Recently we established that NADPH oxidase (Nox)-derived superoxide acting in the forebrain subfornical organ is critical in the physiological responses to central Ang-II. In addition, we have found that Nox2 and Nox4 are the most abundantly expressed Nox homologues within Ang-II-sensitive sites in the forebrain. To dissect out the functional importance and unique roles of these Nox enzymes in the pressor and dipsogenic effects of central Ang-II, we developed adenoviral vectors expressing small interfering RNA to selectively silence Nox2 or Nox4 expression in the subfornical organ. Our results demonstrate that both Nox2 and Nox4 are required for the full vasopressor effects of brain Ang-II but that only Nox2 is coupled to the Ang-II-induced water intake response. These studies establish the importance of both Nox2- and Nox4-containing NADPH oxidases in the actions of Ang-II in the central nervous system and are the first to reveal differential involvement of these Nox enzymes in the various physiological effects of central Ang-II. PMID:19805637

  4. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin-II

    PubMed Central

    Peterson, Jeffrey R.; Burmeister, Melissa A.; Tian, Xin; Zhou, Yi; Guruju, Mallikarjuna R.; Stupinski, John A.; Sharma, Ram V.; Davisson, Robin L.

    2009-01-01

    The renin angiotensin system (RAS) exerts a tremendous influence over fluid balance and arterial pressure. Angiotensin II (Ang-II), the effector peptide of the RAS, acts in the CNS to regulate neurohumoral outflow and thirst. Dysregulation of Ang-II signaling in the CNS is implicated in cardiovascular diseases, however the mechanisms remain poorly understood. Recently we established that NADPH oxidase (Nox)-derived superoxide acting in the forebrain subfornical organ (SFO) is critical in the physiologic responses to central Ang-II. In addition, we have found that Nox2 and Nox4 are the most abundantly expressed Nox homologues within Ang-II-sensitive sites in the forebrain. To dissect out the functional importance and unique roles of these Nox enzymes in the pressor and dipsogenic effects of central Ang-II, we developed adenoviral vectors expressing siRNA to selectively silence Nox2 or Nox4 expression in the SFO. Our results demonstrate that both Nox2 and Nox4 are required for the full vasopressor effects of brain Ang-II, but that only Nox2 is coupled to the Ang-II-induced water intake response. These studies establish the importance of both Nox2- and Nox4-containing NADPH oxidases in the actions of Ang-II in the CNS, and are the first to reveal differential involvement of these Nox enzymes in the various physiologic effects of central Ang-II. PMID:19805637

  5. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: the role of reducing oxidative stress in its protective property.

    PubMed

    Nam, Soo Min; Lee, Mi Young; Koh, Jang Hyun; Park, Jun Ho; Shin, Jang Yel; Shin, Young Goo; Koh, Sang Baek; Lee, Eun Young; Chung, Choon Hee

    2009-02-01

    Diabetic nephropathy is the most serious complication in diabetes mellitus. Oxidative stress via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and vascular endothelial growth factor (VEGF) pathway play critical roles in the development of diabetic nephropathy. We evaluated the effects of apocynin, NADPH oxidase inhibitor on diabetic nephropathy in a type 2 diabetic rat model. Sixteen Otsuka Long Evans Tokushima Fatty (OLETF) rats and 9 Long Evans Tokushima Otsuka (LETO) were divided into the following three groups: LETO rats (n=9), control OLETF rats (n=7) and apocynin-treated OLETF