These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Two atypical L-cysteine-regulated NADPH-dependent oxidoreductases involved in redox maintenance, L-cystine and iron reduction, and metronidazole activation in the enteric protozoan Entamoeba histolytica.  

PubMed

We discovered novel catalytic activities of two atypical NADPH-dependent oxidoreductases (EhNO1/2) from the enteric protozoan parasite Entamoeba histolytica. EhNO1/2 were previously annotated as the small subunit of glutamate synthase (glutamine:2-oxoglutarate amidotransferase) based on similarity to authentic bacterial homologs. As E. histolytica lacks the large subunit of glutamate synthase, EhNO1/2 were presumed to play an unknown role other than glutamine/glutamate conversion. Transcriptomic and quantitative reverse PCR analyses revealed that supplementation or deprivation of extracellular L-cysteine caused dramatic up- or down-regulation, respectively, of EhNO2, but not EhNO1 expression. Biochemical analysis showed that these FAD- and 2[4Fe-4S]-containing enzymes do not act as glutamate synthases, a conclusion which was supported by phylogenetic analyses. Rather, they catalyze the NADPH-dependent reduction of oxygen to hydrogen peroxide and L-cystine to L-cysteine and also function as ferric and ferredoxin-NADP(+) reductases. EhNO1/2 showed notable differences in substrate specificity and catalytic efficiency; EhNO1 had lower K(m) and higher k(cat)/K(m) values for ferric ion and ferredoxin than EhNO2, whereas EhNO2 preferred L-cystine as a substrate. In accordance with these properties, only EhNO1 was observed to physically interact with intrinsic ferredoxin. Interestingly, EhNO1/2 also reduced metronidazole, and E. histolytica transformants overexpressing either of these proteins were more sensitive to metronidazole, suggesting that EhNO1/2 are targets of this anti-amebic drug. To date, this is the first report to demonstrate that small subunit-like proteins of glutamate synthase could play an important role in redox maintenance, L-cysteine/L-cystine homeostasis, iron reduction, and the activation of metronidazole. PMID:20592025

Jeelani, Ghulam; Husain, Afzal; Sato, Dan; Ali, Vahab; Suematsu, Makoto; Soga, Tomoyoshi; Nozaki, Tomoyoshi

2010-08-27

2

NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply.  

PubMed

An Escherichia coli ?pfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ?pfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4?±?0.2?mmolMHB ?h(-1) ?gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8?mmol?h(-1) ?gcdw (-1) ) and of the ?pfkA mutant (11.0?mmol?h(-1) ?gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ?pfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol dehydrogenase. The differences in respiration rates can explain the suggested higher ArcAB activity in the reference strain. PMID:24771245

Siedler, Solvej; Bringer, Stephanie; Polen, Tino; Bott, Michael

2014-10-01

3

Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b5 gene from Plutella xylostella: Possible involvement in resistance to beta-cypermethrin.  

PubMed

NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12mgL(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. PMID:25550052

Chen, Xi'en; Zhang, Yalin

2015-03-10

4

Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis.  

PubMed Central

The hyperthermophilic archaea Pyrococcus furiosus and Thermococcus litoralis contain the tungstoenzymes aldehyde ferredoxin oxidoreductase, a homodimer, and formaldehyde ferredoxin oxidoreductase, a homotetramer. herein we report the cloning and sequencing of the P. furiosus gene aor (605 residues; M(r), 66,630) and the T. litoralis gene for (621 residues; M(r), 68,941). PMID:7642512

Kletzin, A; Mukund, S; Kelley-Crouse, T L; Chan, M K; Rees, D C; Adams, M W

1995-01-01

5

ISOLATION AND CHARACTERIZATION OF THE ALKANE-INDUCIBLE NADPH-CYTOCHROME P-450 OXIDOREDUCTASE GENE FROM CANDIDA TROPICALIS  

EPA Science Inventory

The gene coding for the Candida tropicalis NADPH-cytochrome P-450 oxidoreductase (CPR, NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was isolated by immunoscreening of a C. tropicalis gtll expression library and colony hybridization of a C. tropicalis genomic library. he C. ...

6

The roles of the three gene copies encoding hydroxylamine oxidoreductase in Nitrosomonas europaea.  

PubMed

The nitrifying bacterium Nitrosomonas europaea contains three copies of the gene (hao) encoding hydroxylamine oxidoreductase (HAO), the second enzyme in the nitrification pathway which oxidizes NH(2)OH to NO(2)(-). The nucleotide sequences of the hao genes differ by only one nucleotide. Two of the three gene copies have identical promoter sequences, while the third promoter has a different nucleotide sequence. Mutant strains with two of the three copies of hao inactivated were created by insertional inactivation, using DNA cassettes containing kanamycin- and gentamycin-resistance genes. All three double-mutant combinations were obtained. These double mutants were phenotypically identical under the conditions tested. Two of these double mutants were similar to wild-type cells or cells having a single hao copy inactivated regarding growth rates or hydroxylamine-dependent O(2) uptake activity, but had only about 50% of the wild-type level of in vitro HAO activity and hao mRNA. The third hao double mutant had an unstable genotype, resulting in recombination of the gentamycin marker into another copy of hao. The N. europaea genomic sequence was recently completed, revealing the locations of the copies of hao and other nitrification genes. Comparison with the arrangement of hao genes in the closely related strain, Nitrosomonas sp. strain ENI-11, showed a similar organization. PMID:12420168

Hommes, Norman G; Sayavedra-Soto, Luis A; Arp, Daniel J

2002-12-01

7

Characterization of aldehyde ferredoxin oxidoreductase gene defective mutant in Magnetospirillum magneticum AMB-1.  

PubMed

A non-magnetic mutant of Magnetospirillum magneticum AMB-1, designated as NMA21, was generated by mini-Tn5 transposon mutagenesis to identify genes involved in bacterial magnetic particle (BMP) synthesis. Alignment of the DNA sequences flanking the transposon allowed the isolation of an open reading frame (ORF2) within an operon consisting of five genes. The amino acid sequence of ORF2 showed homology with tungsten-containing aldehyde ferredoxin oxidoreductase (AOR) from Pyrococcus furiosus (48% identity and 64% similarity), which functions for aldehyde oxidation. AOR was found to be expressed under microaerobic conditions and localized in the cytoplasm of AMB-1. Iron uptake and growth of NMA21 were lower than wild type. Transmission electron microscopy (TEM) of NMA21 revealed that no BMPs were completely synthesized, but polyhydroxybutyrate (PHB)-like granules were persistently produced. These results indicate that AOR may contribute to ferric iron reduction during BMP synthesis in M. magneticum AMB-1 under microaerobic respiration. PMID:12646191

Wahyudi, Aris Tri; Takeyama, Haruko; Okamura, Yoshiko; Fukuda, Yorikane; Matsunaga, Tadashi

2003-03-28

8

Disruption of the NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Gene in Mice Causes Myelogenous Hyperplasia1  

Microsoft Academic Search

NAD(P)H:quinone oxidoreductase1 (NQO1) is a cytosolic protein that reduces and detoxifies quinones and their derivatives, thus protecting cells against redox cycling and oxidative stress. Disruption of the NQO1 gene in mice caused myeloid hyperplasia of bone marrow and highly significant increases in blood neutrophils, eosinophils, and basophils. NQO1-null mice also showed a decrease in lymphocytes and WBCs as compared with

Delwin J. Long II; Amos Gaikwad; Asha Multani; Sen Pathak; Charles A. Montgomery; Frank J. Gonzalez; Anil K. Jaiswal

2002-01-01

9

Fur Activates Expression of the 2-Oxoglutarate Oxidoreductase Genes (oorDABC) in Helicobacter pylori  

PubMed Central

Helicobacter pylori is a highly successful pathogen that colonizes the gastric mucosa of ?50% of the world's population. Within this colonization niche, the bacteria encounter large fluctuations in nutrient availability. As such, it is critical that this organism regulate expression of key metabolic enzymes so that they are present when environmental conditions are optimal for growth. One such enzyme is the 2-oxoglutarate (?-ketoglutarate) oxidoreductase (OOR), which catalyzes the conversion of ?-ketoglutarate to succinyl coenzyme A (succinyl-CoA) and CO2. Previous studies from our group suggested that the genes that encode the OOR are activated by iron-bound Fur (Fe-Fur); microarray analysis showed that expression of oorD, oorA, and oorC was altered in a fur mutant strain of H. pylori. The goal of the present work was to more thoroughly characterize expression of the oorDABC genes in H. pylori as well as to define the role of Fe-Fur in this process. Here we show that these four genes are cotranscribed as an operon and that expression of the operon is decreased in a fur mutant strain. Transcriptional start site mapping and promoter analysis revealed the presence of a canonical extended ?10 element but a poorly conserved ?35 element upstream of the +1. Additionally, we identified a conserved Fur binding sequence ?130 bp upstream of the transcriptional start site. Transcriptional analysis using promoter fusions revealed that this binding sequence was required for Fe-Fur-mediated activation. Finally, fluorescence anisotropy assays indicate that Fe-Fur specifically bound this Fur box with a relatively high affinity (dissociation constant [Kd] = 200 nM). These findings provide novel insight into the genetic regulation of a key metabolic enzyme and add to our understanding of the diverse roles Fur plays in gene regulation in H. pylori. PMID:23002221

Gilbreath, Jeremy J.; West, Abby L.; Pich, Oscar Q.; Carpenter, Beth M.; Michel, Sarah

2012-01-01

10

Dramatic down-regulation of oxidoreductases in human hepatocellular carcinoma hepG2 cells: proteomics and gene ontology unveiling new frontiers in cancer enzymology  

PubMed Central

Background Oxidoreductases are enzymes that catalyze many redox reactions in normal and neoplastic cells. Their actions include catalysis of the transformation of free, neutral oxygen gas into oxygen free radicals, superoxide, hydroperoxide, singlet oxygen and hydrogen peroxide. These activated forms of oxygen contribute to oxidative stress that modifies lipids, proteins, DNA and carbohydrates. On the other hand, oxidoreductases constitute one of the most important free radical scavenger systems typified by catalase, superoxide dismutase and glutathione peroxidase. In this work, proteomics, Gene Ontology mapping and Directed Acyclic Graphs (DAG) are employed to detect and quantify differential oxidoreductase enzyme expressions between HepG2 cells and normal human liver tissues. Results For the set of bioinformatics calculations whose BLAST searches are performed using the BLAST program BLASTP 2.2.13 [Nov-27-2005], DAG of the Gene Ontology's Molecular Function annotations show that oxidoreductase activity parent node of the liver proteome contains 331 annotated protein sequences, 7 child nodes and an annotation score of 188.9, whereas that of HepG2 cells has 188 annotated protein sequences, 3 child nodes and an annotation score of only 91.9. Overwhelming preponderance of oxidoreductases in the liver is additionally supported by the isomerase DAGs: nearly all the reactions described in the normal liver isomerase DAG are oxidoreductase isomerization reactions, whereas only one of the three child nodes in the HepG2 isomerase DAG is oxidoreductase. Upon normalization of the annotation scores to the parent Molecular Function nodes, oxidoreductases are down-regulated in HepG2 cells by 58%. Similarly, for the set of bioinformatics calculations whose BLAST searches are carried out using BLASTP 2.2.15 [Oct-15-2006], oxidoreductases are down-regulated in HepG2 cells by 56%. Conclusion Proteomics and Gene Ontology reveal, for the first time, differential enzyme activities between HepG2 cells and normal human liver tissues, which may be a promising new prognostic marker of Hepatocellular carcinoma. Two independent sets of bioinformatics calculations that employ two BLAST program versions, and searched different databases, arrived at essentially the same conclusion: oxidoreductases are down-regulated in HepG2 cells by approximately 57%, when compared to normal human liver tissues. Down-regulation of oxidoreductases in hepatoma is additionally supported by Gene Ontology analysis of isomerises. PMID:18950483

Ngoka, Lambert CM

2008-01-01

11

NADPH-dependent reductases and polyol formation in human leukemia cell lines  

Microsoft Academic Search

Because of the limited availability of human tissues, leukemia cell lines are often utilized as the models for human leukocytes. In this study, we investigated the NADPH-dependent reductases and polyol pathway in commonly utilized human leukemia cell lines. The relative amounts of aldose and aldehyde reductases were estimated by separating two enzymes with chromatofocusing. The flux of glucose through the

Sanai Sato; E. Filippo Secchi; Shinichi Sakurai; Nobuo Ohta; Shigeru Fukase; Martin J Lizak

2003-01-01

12

Transcriptional Regulation of the Human P450 Oxidoreductase Gene: Hormonal Regulation and Influence of Promoter Polymorphisms  

PubMed Central

P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at ?325/?1 bp from the untranslated exon. Common human POR polymorphisms at ?208 and ?173 had little influence on transcription, but the polymorphism at ?152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between ?249 and ?261 and binding of thyroid hormone receptor-? (TR?) at ?240/?245. Chromatin immunoprecipitation showed that Smad3, Smad4, TR?, TR?, and estrogen receptor-? were bound between ?374 and ?149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T3 exerts major tropic effects via TR?, with TR?, estrogen receptor-?, Smad3, and Smad4 exerting lesser, modulatory effects. T3 also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TR? and Smad3/4 in its expression and indicating that the common polymorphism at ?152 may play a role in genetic variation in steroid biosynthesis and drug metabolism. PMID:21393444

Tee, Meng Kian; Huang, Ningwu; Damm, Izabella

2011-01-01

13

Mutational analysis of the multicopy hao gene coding for hydroxylamine oxidoreductase in Nitrosomonas sp. strain ENI-11.  

PubMed

The ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 contains three copies of the hao gene (hao1, hao2, and hao3) coding for hydroxylamine oxidoreductase (HAO). Three single mutants (hao1::kan, hao2::kan, or hao3::kan) had 68 to 75% of the wild-type growth rate and 58 to 89% of the wild-type HAO activity when grown under the same conditions. A double mutant (hao1::kan and hao3::amp) also had 68% of the wild-type growth and 37% of the wild-type HAO activity. PMID:10993170

Yamagata, A; Hirota, R; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

2000-08-01

14

Transcriptional analysis of the multicopy hao gene coding for hydroxylamine oxidoreductase in Nitrosomonas sp. strain ENI-11.  

PubMed

The nitrifying bacterium Nitrosomonas sp. strain ENI-11 has three copies of the gene encoding hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)) on its genome. Broad-host-range reporter plasmids containing transcriptional fusion genes between hao copies and lacZ were constructed to analyze the expression of each hydroxylamine oxidoreductase gene (hao) copy individually and quantitatively. beta-Galactosidase assays of ENI-11 harboring reporter plasmids revealed that all hao copies were transcribed in the wild-type strain. Promoter analysis of hao copies revealed that transcription of hao(3) was highest among the hao copies. Expression levels of hao(1) and hao(2) were 40% and 62% of that of hao(3) respectively. Transcription of hao(1) was negatively regulated, whereas a portion of hao(3) transcription was read through transcription from the rpsT promoter. When energy-depleted cells were incubated in the growth medium, only hao(3) expression increased. This result suggests that it is hao(3) that is responsible for recovery from energy-depleted conditions in Nitrosomonas sp. strain ENI-11. PMID:16926500

Hirota, Ryuichi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao; Kato, Junichi

2006-08-01

15

Clostridium scindens baiCD and baiH genes encode stereo-specific 7?/7?-hydroxy-3-oxo-?4-cholenoic acid oxidoreductases *  

PubMed Central

Secondary bile acids, formed by intestinal bacteria, are suggested to play a significant role in cancers of the gastrointestinal tract in humans. Bile acid 7?/?-dehydroxylation is carried out by a few species of intestinal clostridia which harbor a multi-gene bile acid inducible (bai) operon. Several genes encoding enzymes in this pathway have been cloned and characterized. However, no gene product(s) has yet been assigned to the production of 3-oxo-?4-cholenoic acid intermediates of cholic acid (CA), chenodeoxycholic acid (CDCA) or ursodeoxycholic acid (UDCA). We previously reported the baiH gene encodes an NADH:flavin oxidoreductase (NADH:FOR); however, the role of this protein in bile acid 7-dehydroxylation is unclear. Homology searches and secondary structural alignments suggest this protein to be similar to flavoproteins which reduce ?/?-unsaturated carbonyl compounds. The baiH gene product was expressed in E. coli, purified and discovered to be a stereospecific NAD(H)-dependent 7?-hydroxy-3-oxo-?4-cholenoic acid oxidoreductase. Additionally, high sequence similarity between the baiH and baiCD gene products suggests the baiCD gene may encode a 3-oxo-?4-cholenoic acid oxidoreductase specific for CDCA and CA. We tested this hypothesis using cell extracts prepared from E. coli overexpressing the baiCD gene and discovered that it encodes a stereo-specific NAD(H)-dependent 7?-hydroxy-3-oxo-?4-cholenoic acid oxidoreductase. PMID:18047844

Kang, Dae-Joong; Ridlon, Jason M.; Moore, Doyle Ray; Barnes, Stephen; Hylemon, Phillip B.

2008-01-01

16

Diversity and Spatial Distribution of Hydrazine Oxidoreductase (hzo) Gene in the Oxygen Minimum Zone Off Costa Rica  

PubMed Central

Anaerobic ammonia oxidation (anammox) as an important nitrogen loss pathway has been reported in marine oxygen minimum zones (OMZs), but the community composition and spatial distribution of anammox bacteria in the eastern tropical North Pacific (ETNP) OMZ are poorly determined. In this study, anammox bacterial communities in the OMZ off Costa Rica (CRD-OMZ) were analyzed based on both hydrazine oxidoreductase (hzo) genes and their transcripts assigned to cluster 1 and 2. The anammox communities revealed by hzo genes and proteins in CRD-OMZ showed a low diversity. Gene quantification results showed that hzo gene abundances peaked in the upper OMZs, associated with the peaks of nitrite concentration. Nitrite and oxygen concentrations may therefore colimit the distribution of anammox bacteria in this area. Furthermore, transcriptional activity of anammox bacteria was confirmed by obtaining abundant hzo mRNA transcripts through qRT-PCR. A novel hzo cluster 2x clade was identified by the phylogenetic analysis and these novel sequences were abundant and widely distributed in this environment. Our study demonstrated that both cluster 1 and 2 anammox bacteria play an active role in the CRD-OMZ, and the cluster 1 abundance and transcriptional activity were higher than cluster 2 in both free-living and particle-attached fractions at both gene and transcriptional levels. PMID:24205176

Kong, Liangliang; Jing, Hongmei; Kataoka, Takafumi; Buchwald, Carolyn; Liu, Hongbin

2013-01-01

17

Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases.  

PubMed

Secondary bile acids, formed by intestinal bacteria, are suggested to play a significant role in cancers of the gastrointestinal tract in humans. Bile acid 7alpha/beta-dehydroxylation is carried out by a few species of intestinal clostridia which harbor a multi-gene bile acid inducible (bai) operon. Several genes encoding enzymes in this pathway have been cloned and characterized. However, no gene product(s) has yet been assigned to the production of 3-oxo-Delta4-cholenoic acid intermediates of cholic acid (CA), chenodeoxycholic acid (CDCA) or ursodeoxycholic acid (UDCA). We previously reported that the baiH gene encodes an NADH:flavin oxidoreductase (NADH:FOR); however, the role of this protein in bile acid 7-dehydroxylation is unclear. Homology searches and secondary structural alignments suggest this protein to be similar to flavoproteins which reduce alpha/beta-unsaturated carbonyl compounds. The baiH gene product was expressed in Escherichia coli, purified and discovered to be a stereo-specific NAD(H)-dependent 7beta-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase. Additionally, high sequence similarity between the baiH and baiCD gene products suggests the baiCD gene may encode a 3-oxo-Delta4-cholenoic acid oxidoreductase specific for CDCA and CA. We tested this hypothesis using cell extracts prepared from E. coli overexpressing the baiCD gene and discovered that it encodes a stereo-specific NAD(H)-dependent 7alpha-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase. PMID:18047844

Kang, Dae-Joong; Ridlon, Jason M; Moore, Doyle Ray; Barnes, Stephen; Hylemon, Phillip B

2008-01-01

18

Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4.  

PubMed

Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth requiring atmospheric CO? without any additional carbon or energy source. We performed a gene expression analysis of the oxidoreductases, which are involved in methanol metabolism, under various growth and induction conditions in N9T-4. A real-time PCR analysis revealed that the genes encoding NAD-dependent formaldehyde dehydrogenase (nFADH) and N,N'-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase (MDH) were strongly expressed under the oligotrophic conditions at levels of 20-100 fold those under heterotrophic conditions, in which n-tetradecane was used as the sole carbon source, while glucose did not affect the gene expression pattern in a minimum medium. The genes encoding mycothiol-dependent formaldehyde dehydrogenase (mFADH) and formate dehydrogenase were not induced under oligotrophic conditions, although mFADH expression was observed when formaldehyde was added to the induction medium. These results suggest that N9T-4 had three distinct formaldehyde oxidation systems, and that MDH and nFADH were the key enzymes in its oligotrophic growth. PMID:21228466

Yoshida, Nobuyuki; Hayasaki, Takuya; Takagi, Hiroshi

2011-01-01

19

Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7?-hydroxysteroid dehydrogenase from Collinsella aerofaciens.  

PubMed

A gene encoding an NADPH-dependent 7?-hydroxysteroid dehydrogenase (7?-HSDH) from Collinsella aerofaciens DSM 3979 (ATCC 25986, formerly Eubacterium aerofaciens) was identified and cloned in this study. Sequence comparison of the translated amino acid sequence suggests that the enzyme belongs to the short-chain dehydrogenase superfamily. This enzyme was expressed in Escherichia coli with a yield of 330 mg (5,828 U) per liter of culture. The enzyme catalyzes both the oxidation of ursodeoxycholic acid (UDA) forming 7-keto-lithocholic acid (KLA) and the reduction of KLA forming UDA acid in the presence of NADP(+) or NADPH, respectively. In the presence of NADPH, 7?-HSDH can also reduce dehydrocholic acid. SDS-PAGE and gel filtration of the expressed and purified enzyme revealed a dimeric nature of 7?-HSDH with a size of 30 kDa for each subunit. If used for the oxidation of UDA, its pH optimum is between 9 and 10 whereas for the reduction of KLA and dehydrocholic acid it shows an optimum between pH 4 to 6. Usage of the enzyme for the biotransformation of KLA in a 0.5-g scale showed that this 7?-HSDH is a useful biocatalyst for producing UDA from suitable precursors in a preparative scale. PMID:21181147

Liu, Luo; Aigner, Arno; Schmid, Rolf D

2011-04-01

20

Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases ? †  

PubMed Central

Biofuels derived from lignocellulosic biomass hold promises for a sustainable fuel economy, but several problems hamper their economical feasibility. One important problem is the presence of toxic compounds in processed lignocellulosic hydrolysates, with furfural as a key toxin. While Saccharomyces cerevisiae has some intrinsic ability to reduce furfural to the less-toxic furfuryl alcohol, higher resistance is necessary for process conditions. By comparing an evolved, furfural-resistant strain and its parent in microaerobic, glucose-limited chemostats at increasing furfural challenge, we elucidate key mechanism and the molecular basis of both natural and high-level furfural resistance. At lower concentrations of furfural, NADH-dependent oxireductases are the main defense mechanism. At furfural concentrations above 15 mM, however, 13C-flux and global array-based transcript analysis demonstrated that the NADPH-generating flux through the pentose phosphate pathway increases and that NADPH-dependent oxireductases become the major resistance mechanism. The transcript analysis further revealed that iron transmembrane transport is upregulated in response to furfural. While these responses occur in both strains, high-level resistance in the evolved strain was based on strong induction of ADH7, the uncharacterized open reading frame (ORF) YKL071W, and four further, likely NADPH-dependent, oxireductases. By overexpressing the ADH7 gene and the ORF YKL071W, we inversely engineered significantly increased furfural resistance in the parent strain, thereby demonstrating that these two enzymes are key elements of the resistance phenotype. PMID:19854918

Heer, Dominik; Heine, Daniel; Sauer, Uwe

2009-01-01

21

Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase.  

PubMed

Nitrilotriacetate (NTA) is an important chelating agent in detergents and has also been used extensively in processing radionuclides. In Chelatobacter heintzii ATCC 29600, biodegradation of NTA is initiated by NTA monooxygenase that oxidizes NTA to iminodiacetate and glyoxylate. The NTA monooxygenase activity requires two component proteins, component A and component B, but the function of each component is unclear. We have cloned and sequenced a gene cluster encoding components A and B (nmoA and nmoB) and two additional open reading frames, nmoR and nmoT, downstream of nmoA. Based on sequence similarities, nmoR and nmoT probably encode a regulatory protein and a transposase, respectively. The NmoA sequence was similar to a monooxygenase that uses reduced flavin mononucleotide (FMNH2) as reductant; NmoB was similar to an NADH:flavin mononucleotide (FMN) oxidoreductase. On the basis of this information, we tested the function of each component. Purified component B was shown to be an NADH:FMN oxidoreductase, and its activity could be separated from that of component A. When the Photobacterium fischeri NADH:FMN oxidoreductase was substituted for component B in the complete reaction, NTA was oxidized, showing that the substrate specificity of the reaction resides in component A. Component A is therefore an NTA monooxygenase that uses FMNH2 and O2 to oxidize NTA, and component B is an NADH:FMN oxidoreductase that provides FMNH2 for NTA oxidation. PMID:9023192

Xu, Y; Mortimer, M W; Fisher, T S; Kahn, M L; Brockman, F J; Xun, L

1997-02-01

22

The bile acid synthetic gene 3?-hydroxy-?5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis  

PubMed Central

We used expression cloning to isolate cDNAs encoding a microsomal 3?-hydroxy-?5-C27-steroid oxidoreductase (C27 3?-HSD) that is expressed predominantly in the liver. The predicted product shares 34% sequence identity with the C19 and C21 3?-HSD enzymes, which participate in steroid hormone metabolism. When transfected into cultured cells, the cloned C27 3?-HSD cDNA encodes an enzyme that is active against four 7?-hydroxylated sterols, indicating that a single C27 3?-HSD enzyme can participate in all known pathways of bile acid synthesis. The expressed enzyme did not metabolize several different C19/21 steroids as substrates. The levels of hepatic C27 3?-HSD mRNA in the mouse are not sexually dimorphic and do not change in response to dietary cholesterol or to changes in bile acid pool size. The corresponding human gene on chromosome 16p11.2-12 contains six exons and spans 3 kb of DNA, and we identified a 2-bp deletion in the C27 3?-HSD gene of a patient with neonatal progressive intrahepatic cholestasis. This mutation eliminates the activity of the enzyme in transfected cells. These findings establish the central role of C27 3?-HSD in the biosynthesis of bile acids and provide molecular tools for the diagnosis of a third type of neonatal progressive intrahepatic cholestasis associated with impaired bile acid synthesis. PMID:11067870

Schwarz, Margrit; Wright, Angelique C.; Davis, Daphne L.; Nazer, Hisham; Björkhem, Ingemar; Russell, David W.

2000-01-01

23

Isolation and characterization of the human aldehyde oxidase gene: conservation of intron/exon boundaries with the xanthine oxidoreductase gene indicates a common origin.  

PubMed Central

Aldehyde oxidase (AO) is a molybdo-flavo enzyme involved in the metabolism of various endogenous and exogenous N-heterocyclic compounds of pharmacological and toxicological importance. The enzyme is the product of a gene which is implicated in the aetio-pathogenesis of familial recessive amyotrophic lateral sclerosis. Here, we report the cloning and structural characterization of the human AO gene. AO is a single copy gene approximately 85 kb long with 35 transcribed exons. The transcription-initiation site and the sequence of the 5'-flanking region, containing several putative regulatory elements, were determined. The 5'-flanking region contains a functional promoter, as assessed by appropriate reporter constructs in transient transfection experiments. Comparison of the AO gene structure shows conservation of the position and type of exon/intron junctions relative to those observed in the gene coding for another molybdo-flavoprotein, i.e. xanthine oxidoreductase (XOR). As the two genes code for proteins with a high level of amino acid identity, our results strongly suggest that the AO and XOR genetic loci arose as the consequence of a duplication event. Southern blot analysis conducted on genomic DNA from various animal species with specific cDNA probes indicates that the AO gene is less conserved than the XOR gene during evolution. PMID:9601067

Terao, M; Kurosaki, M; Demontis, S; Zanotta, S; Garattini, E

1998-01-01

24

Molecular and structural characterization of NADPH-dependent d-glycerate dehydrogenase from the enteric parasitic protist Entamoeba histolytica.  

PubMed

Putative NADPH-dependent GDH (L-glycerate dehydrogenase) of the protozoan parasite Entamoeba histolytica (EhGDH) has been characterized. The EhGDH gene encodes a protein of 318 amino acids with a calculated isoelectric point of 6.29 and a molecular mass of 35.8 kDa. EhGDH showed highest identities with GDH from epsilon-proteobacteria. This close kinship was also supported by phylogenetic analyses, suggesting possible lateral transfer of the gene from epsilon-proteobacteria to E. histolytica. In contrast with the implications from protein alignment and phylogenetic analysis, kinetic studies revealed that the amoebic GDH showed biochemical properties similar to those of mammalian GDH, i.e. a preference for NADPH as cofactor and higher affinities towards NADPH and beta-hydroxypyruvate than towards NADP+ and L-glycerate. Whereas the amino acids involved in nucleotide binding and catalysis are totally conserved in EhGDH, substitution of a negatively charged amino acid with a non-charged hydroxy-group-containing amino acid is probably responsible for the observed high affinity of EhGDH for NADP+/NADPH. In addition, the amoebic GDH, dissimilar to the bacterial and mammalian GDHs, lacks glyoxylate reductase activity. Native and recombinant EhGDH showed comparable subunit structure, kinetic parameters and elution profiles on anion-exchange chromatography. We propose that the GDH enzyme is likely to be involved in regulation of the intracellular concentration of serine, and, thus, also in controlling cysteine biosynthesis located downstream of serine metabolic pathways in this protist. PMID:12877657

Ali, Vahab; Shigeta, Yasuo; Nozaki, Tomoyoshi

2003-11-01

25

Helicobacter pylori porCDAB and oorDABC Genes Encode Distinct Pyruvate:Flavodoxin and 2-Oxoglutarate:Acceptor Oxidoreductases Which Mediate Electron Transport to NADP  

PubMed Central

Helicobacter pylori, a major cause of human gastric disease, is a microaerophilic bacterium that contains neither pyruvate nor 2-oxoglutarate dehydrogenase activity. Previous studies (N. J. Hughes, P. A. Chalk, C. L. Clayton, and D. J. Kelly, J. Bacteriol. 177:3953–3959, 1995) have indicated that the major routes for the generation of acetyl coenzyme A (acetyl-CoA) and succinyl-CoA are via pyruvate:flavodoxin oxidoreductase (POR) and 2-oxoglutarate:acceptor oxidoreductase (OOR), respectively. The purified POR is a heterotetrameric protein, with subunits of 48 (PorA), 36 (PorB), 24 (PorC), and 14 (PorD) kDa. In this study OOR has been purified, and it is similarly composed of polypeptides of 43 (OorA), 33 (OorB), 24 (OorC), and 10 (OorD) kDa. Both POR and OOR are oxygen labile and are likely to be major contributors to the microaerophilic phenotype of H. pylori. Unlike POR, OOR was unable to use a previously identified flavodoxin (FldA) as an electron acceptor. Although the purified enzymes were unable to reduce NAD(P), electrons from both pyruvate and 2-oxoglutarate could reduce NADP in cell extracts, consistent with a role for these oxidoreductases in the provision of NADPH as a respiratory electron donor. The H. pylori por, oor, and fldA genes were cloned and sequenced. The deduced por gene products showed significant sequence similarity to archaeal four-subunit 2-oxoacid:acceptor oxidoreductases. However, the amino acid sequences of OorA and -B were more closely related to that of the two-subunit POR of the aerobic halophile Halobacterium halobium. Both porD and oorD encode integral ferredoxin-like subunits. POR and OOR are probably essential enzymes in H. pylori, as insertion inactivation of porB and oorA appeared to be lethal. PMID:9495749

Hughes, Nicky J.; Clayton, Chris L.; Chalk, Peter A.; Kelly, David J.

1998-01-01

26

Randomly selected suppressor mutations in genes for NADH?:?quinone oxidoreductase-1, which rescue motility of a Salmonella ubiquinone-biosynthesis mutant strain.  

PubMed

The primary mobile electron-carrier in the aerobic respiratory chain of Salmonella is ubiquinone. Demethylmenaquinone and menaquinone are alternative electron-carriers involved in anaerobic respiration. Ubiquinone biosynthesis was disrupted in strains bearing deletions of the ubiA or ubiE genes. In soft tryptone agar both mutant strains swam poorly. However, the ubiA deletion mutant strain produced suppressor mutant strains with somewhat rescued motility and growth. Six independent suppressor mutants were purified and comparative genome sequence analysis revealed that they each bore a single new missense mutation, which localized to genes for subunits of NADH?:?quinone oxidoreductase-1. Four mutants bore an identical nuoG(Q297K) mutation, one mutant bore a nuoM(A254S) mutation and one mutant bore a nuoN(A444E) mutation. The NuoG subunit is part of the hydrophilic domain of NADH?:?quinone oxidoreductase-1 and the NuoM and NuoN subunits are part of the hydrophobic membrane-embedded domain. Respiration was rescued and the suppressed mutant strains grew better in Luria-Bertani broth medium and could use l-malate as a sole carbon source. The quinone pool of the cytoplasmic membrane was characterized by reversed-phase HPLC. Wild-type cells made ubiquinone and menaquinone. Strains with a ubiA deletion mutation made demethylmenaquinone and menaquinone and the ubiE deletion mutant strain made demethylmenaquinone and 2-octaprenyl-6-methoxy-1,4-benzoquinone; the total quinone pool was reduced. Immunoblotting found increased NADH?:?quinone oxidoreductase-1 levels for ubiquinone-biosynthesis mutant strains and enzyme assays measured electron transfer from NADH to demethylmenaquinone or menaquinone. Under certain growth conditions the suppressor mutations improved electron flow activity of NADH?:?quinone oxidoreductase-1 for cells bearing a ubiA deletion mutation. PMID:24692644

Barker, Clive S; Meshcheryakova, Irina V; Sasaki, Toshio; Roy, Michael C; Sinha, Prem Kumar; Yagi, Takao; Samatey, Fadel A

2014-06-01

27

Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.  

PubMed

Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 ?M h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

Köpke, Michael; Gerth, Monica L; Maddock, Danielle J; Mueller, Alexander P; Liew, FungMin; Simpson, Séan D; Patrick, Wayne M

2014-06-01

28

Posttranslational Influence of NADPH-Dependent Thioredoxin Reductase C on Enzymes in Tetrapyrrole Synthesis[W][OA  

PubMed Central

The NADPH-dependent thioredoxin reductase C (NTRC) is involved in redox-related regulatory processes in chloroplasts and nonphotosynthetic active plastids. Together with 2-cysteine peroxiredoxin, it forms a two-component peroxide-detoxifying system that acts as a reductant under stress conditions. NTRC stimulates in vitro activity of magnesium protoporphyrin IX monomethylester (MgPMME) cyclase, most likely by scavenging peroxides. Reexamination of tetrapyrrole intermediate levels of the Arabidopsis (Arabidopsis thaliana) knockout ntrc reveals lower magnesium protoporphyrin IX (MgP) and MgPMME steady-state levels, the substrate and the product of MgP methyltransferase (CHLM) preceding MgPMME cyclase, while MgP strongly accumulates in mutant leaves after 5-aminolevulinic acid feeding. The ntrc mutant has a reduced capacity to synthesize 5-aminolevulinic acid and reduced CHLM activity compared with the wild type. Although transcript levels of genes involved in chlorophyll biosynthesis are not significantly altered in 2-week-old ntrc seedlings, the contents of glutamyl-transfer RNA reductase1 (GluTR1) and CHLM are reduced. Bimolecular fluorescence complementation assay confirms a physical interaction of NTRC with GluTR1 and CHLM. While ntrc contains partly oxidized CHLM, the wild type has only reduced CHLM. As NTRC also stimulates CHLM activity in vitro, it is proposed that NTRC has a regulatory impact on the redox status of conserved cysteine residues of CHLM. It is hypothesized that a deficiency of NTRC leads to a lower capacity to reduce cysteine residues of GluTR1 and CHLM, affecting the stability and, thereby, altering the activity in the entire tetrapyrrole synthesis pathway. PMID:23569108

Richter, Andreas S.; Peter, Enrico; Rothbart, Maxi; Schlicke, Hagen; Toivola, Jouni; Rintamäki, Eevi; Grimm, Bernhard

2013-01-01

29

Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase  

PubMed Central

Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 ?M h?1 optical density unit?1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

2014-01-01

30

Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.  

PubMed

2-Cys peroxiredoxins (Prxs) play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC) was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C) of thioredoxin reductase (TrxR) in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx) domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D)), which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD) simulations on AtNTRC and AtNTRA-(Trx-D) proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD) for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D) cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D) because of following reasons: i) unstable and unfavorable interaction of the linker region, ii) shifted Trx domain, and iii) different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins. PMID:23029461

Lee, Yuno; Kim, Songmi; Lazar, Prettina; Moon, Jeong Chan; Hwang, Swan; Thangapandian, Sundarapandian; Shon, Youngsik; Lee, Kyun Oh; Lee, Sang Yeol; Lee, Keun Woo

2012-01-01

31

Light Driven CO2 Fixation by Using Cyanobacterial Photosystem I and NADPH-Dependent Formate Dehydrogenase  

PubMed Central

The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation. PMID:23936519

Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako

2013-01-01

32

NAD(P)H:Quinone Oxidoreductase Gene Expression in Human Colon Carcinoma Cells: Characterization of a Mutation Which Modulates DT-Diaphorase Activity and Mitomycin Sensitivity1  

Microsoft Academic Search

NAD(P)H:quinone oxidoreductase (DT-diaphorase; DTD) is an obli gate two-electron reducíase which may play a role in the bioactivation of antitumor quiñones such as mitomycin C (MMC). We studied 10 colon carcinoma cell lines showing different levels of DTD activity (range, 0-3447 nmol\\/min\\/mg protein), as measured by the reduction of dichlo- rophenolindophenol. Expression of the NAD(P)H:quinone reducíase gene (NQO1 ), which

Robert D. Traver; Tetsuro Horikoshi; Kathleen D. Danenberg; Thomas H. W. Stadibauer; Peter V. Danenberg; David Ross; Neil W. Gibson

1992-01-01

33

Derailment product in NADPH-dependent synthesis of a dihydroisocoumarin 6-hydroxymellein by elicitor-treated carrot cell extracts.  

PubMed

Synthetic activity of 6-hydroxymellein, the immediate precursor of carrot phytoalexin 6-methoxymellein, from acetyl-CoA and malonyl-CoA was induced in carrot cell extracts when the root disks were treated with CuCl2 or oligogalacturonide elicitor. These elicitors showed specific inducing activity of phytoalexin production and did not affect fatty acid synthesis in carrot tissues which may share some common properties with 6-hydroxymellein biosynthesis. 6-Hydroxymellein production was an NADPH-dependent process and, in the absence of the reagent, triacetic acid lactone was produced as a derailment product of the reaction process. This finding suggested that the reduction of the double bond at the 3,4-position of the phytoalexin takes place during the elongation of the poly(oxomethylene) chain. This NADPH-dependent reduction seems to occur at the triacetate stage before the condensation of the third malonyl-CoA as the conversion of carbonyl to hydroxyl group. PMID:2806265

Kurosaki, F; Kizawa, Y; Nishi, A

1989-10-20

34

Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3*  

PubMed Central

Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of ?-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in ?-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis. PMID:19349281

Porté, Sergio; Valencia, Eva; Yakovtseva, Evgenia A.; Borràs, Emma; Shafqat, Naeem; Debreczeny, Judit É.; Pike, Ashley C. W.; Oppermann, Udo; Farrés, Jaume; Fita, Ignacio; Parés, Xavier

2009-01-01

35

Five-Gene Cluster in Clostridium thermoaceticum Consisting of Two Divergent Operons Encoding Rubredoxin Oxidoreductase- Rubredoxin and Rubrerythrin–Type A Flavoprotein– High-Molecular-Weight Rubredoxin  

PubMed Central

A five-gene cluster encoding four nonheme iron proteins and a flavoprotein from the thermophilic anaerobic bacterium Clostridium thermoaceticum (Moorella thermoacetica) was cloned and sequenced. Based on analysis of deduced amino acid sequences, the genes were identified as rub (rubredoxin), rbo (rubredoxin oxidoreductase), rbr (rubrerythrin), fprA (type A flavoprotein), and a gene referred to as hrb (high-molecular-weight rubredoxin). Northern blot analysis demonstrated that the five-gene cluster is organized as two subclusters, consisting of two divergently transcribed operons, rbr-fprA-hrb and rbo-rub. The rbr, fprA, and rub genes were expressed in Escherichia coli, and their encoded recombinant proteins were purified. The molecular masses, UV-visible absorption spectra, and cofactor contents of the recombinant rubrerythrin, rubredoxin, and type A flavoprotein were similar to those of respective homologs from other microorganisms. Antibodies raised against Desulfovibrio vulgaris Rbr reacted with both native and recombinant Rbr from C. thermoaceticum, indicating that this protein was expressed in the native organism. Since Rbr and Rbo have been recently implicated in oxidative stress protection in several anaerobic bacteria and archaea, we suggest a similar function of these proteins in oxygen tolerance of C. thermoaceticum. PMID:11160086

Das, Amaresh; Coulter, Eric D.; Kurtz, Donald M.; Ljungdahl, Lars G.

2001-01-01

36

Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.  

PubMed

The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3?M, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the ?,?-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. PMID:25152451

Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

2014-11-01

37

Toxic-Selenium and Low-Selenium Transcriptomes in Caenorhabditis elegans: Toxic Selenium Up-Regulates Oxidoreductase and Down-Regulates Cuticle-Associated Genes  

PubMed Central

Selenium (Se) is an element that in trace quantities is both essential in mammals but also toxic to bacteria, yeast, plants and animals, including C. elegans. Our previous studies showed that selenite was four times as toxic as selenate to C. elegans, but that deletion of thioredoxin reductase did not modulate Se toxicity. To characterize Se regulation of the full transcriptome, we conducted a microarray study in C. elegans cultured in axenic media supplemented with 0, 0.05, 0.1, 0.2, and 0.4 mM Se as selenite. C. elegans cultured in 0.2 and 0.4 mM Se displayed a significant delay in growth as compared to 0, 0.05, or 0.1 mM Se, indicating Se-induced toxicity, so worms were staged to mid-L4 larval stage for these studies. Relative to 0.1 mM Se treatment, culturing C. elegans at these Se concentrations resulted in 1.9, 9.7, 5.5, and 2.3%, respectively, of the transcriptome being altered by at least 2-fold. This toxicity altered the expression of 295 overlapping transcripts, which when filtered against gene sets for sulfur and cadmium toxicity, identified a dataset of 182 toxic-Se specific genes that were significantly enriched in functions related to oxidoreductase activity, and significantly depleted in genes related to structural components of collagen and the cuticle. Worms cultured in low Se (0 mM Se) exhibited no signs of deficiency, but low Se was accompanied by a transcriptional response of 59 genes changed ?2-fold when compared to all other Se concentrations, perhaps due to decreases in Se-dependent TRXR-1 activity. Overall, these results suggest that Se toxicity in C. elegans causes an increase in ROS and stress responses, marked by increased expression of oxidoreductases and reduced expression of cuticle-associated genes, which together underlie the impaired growth observed in these studies. PMID:24971995

Boehler, Christopher J.; Raines, Anna M.; Sunde, Roger A.

2014-01-01

38

Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains  

PubMed Central

Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive TRXd, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modeling of the three-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protective pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioenergy production. PMID:24115951

Toivola, Jouni; Nikkanen, Lauri; Dahlström, Käthe M.; Salminen, Tiina A.; Lepistö, Anna; Vignols, hb Florence; Rintamäki, Eevi

2013-01-01

39

Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.  

PubMed

Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region. PMID:10633121

Hirota, R; Yamagata, A; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

2000-02-01

40

Beta Hydroxylation of Glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-Dependent ?-Hydroxylase?  

PubMed Central

Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the ? position but differ in the long fatty acid, which is hydroxylated at the ? position in UA and at the ? position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the ?-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis ?uhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for ? hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis ?ahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis ?ahd1 phenotype nor resulted in the production of ?-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation. PMID:21926207

Teichmann, Beate; Lefebvre, François; Labbé, Caroline; Bölker, Michael; Linne, Uwe; Bélanger, Richard R.

2011-01-01

41

Beta hydroxylation of glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-dependent ?-hydroxylase.  

PubMed

Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the ? position but differ in the long fatty acid, which is hydroxylated at the ? position in UA and at the ? position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the ?-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis ?uhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for ? hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis ?ahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis ?ahd1 phenotype nor resulted in the production of ?-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation. PMID:21926207

Teichmann, Beate; Lefebvre, François; Labbé, Caroline; Bölker, Michael; Linne, Uwe; Bélanger, Richard R

2011-11-01

42

Disruption of individual nuo-genes leads to the formation of partially assembled NADH:ubiquinone oxidoreductase (complex I) in Escherichia coli.  

PubMed

The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ?NuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. PMID:22063474

Erhardt, Heiko; Steimle, Stefan; Muders, Vera; Pohl, Thomas; Walter, Julia; Friedrich, Thorsten

2012-06-01

43

Homozygous Mutation G539R in the Gene for P450 Oxidoreductase in a Family Previously Diagnosed as Having 17,20-Lyase Deficiency  

PubMed Central

Context: Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17?-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Objective: Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Patients: Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Methods: Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Results: Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17?-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. Conclusion: POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency. PMID:18559916

Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A.; Hartmann, Michaela F.; Gomes, Larissa G.; Loewental, Neta; Miller, Walter L.

2008-01-01

44

The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.  

PubMed Central

An NADPH-dependent O2.- -generating oxidase was solubilized from phorbol 12-myristate 13-acetate-activated pig neutrophils by using a mixture of detergents. Recovery of oxidase was approx. 40%. The extract contained cytochrome b-245 (331 pmol/mg of protein) and FAD (421 pmol/mg of protein); approx. 30% of each was reduced within 60s when NADPH was added to anaerobic incubations. Three different additives, quinacrine, p-chloromercuribenzoate and cetyltrimethylammonium bromide, strongly inhibited O2.- generation; they also inhibited the reduction by NADPH of cytochrome b at the same low concentrations. In the presence of p-chloromercuribenzoate cytochrome b reduction was strongly inhibited and flavin reduction was less inhibited. A detergent extract prepared from non-stimulated neutrophils also contained flavin and cytochrome b, but its rate of O2.- production was less than 1% of that from activated cells; its initial rate of cytochrome b and flavin reduction was low, although the state of reduction at equilibrium was similar to that of extracts of activated cells. Even in the non-activated cell extract the reduction of flavin and cytochrome was made fast and complete when Methyl Viologen was added to the anaerobic incubations. The oxidase was temperature-sensitive, with a sharp maximum at 25 degrees C; temperatures above this caused loss of O2.- generation, and this coincided with loss of the characteristic cytochrome b spectrum, indicate of denaturation of the cytochrome. The cytochrome b formed a complex with butyl isocyanide (close to 100% binding at 10mM); butyl isocyanide also inhibited the oxidase activity of stimulated whole neutrophils (22.5% inhibition at 10mM). Photoreduced FMN stimulated O2 uptake by the oxidase. The results support a scheme of electron transport within the oxidase complex involving NADPH, FAD, cytochrome b-245 and O2 in that sequence. PMID:6497852

Cross, A R; Parkinson, J F; Jones, O T

1984-01-01

45

Induction, isolation, and some properties of the NADPH-dependent glutamate dehydrogenase from the nonheterocystous cyanobacterium Phormidium laminosum.  

PubMed Central

The level of the NADPH-dependent glutamate dehydrogenase activity (EC 1.4.1.4) from nitrate-grown cells of the thermophilic non-N2-fixing cyanobacterium Phormidium laminosum OH-1-p.Cl1 could be significantly enhanced by the presence of ammonium or nitrite, as well as by L-methionine-DL-sulfoximine and other sources of organic nitrogen (L-Glu, L-Gln, and methylamine). The enzyme was purified more than 4,400-fold by ultracentrifugation, ion-exchange chromatography, and affinity chromatography, and at 30 degrees C it showed a specific activity of 32.9 mumol of NADPH oxidized per min per mg of protein. The purified enzyme showed no aminotransferase activity and catalyzed the amination of 2-oxoglutarate preferentially to the reverse catabolic reaction. The enzyme was very specific for its substrates 2-oxoglutarate (Km = 1.25 mM) and NADPH (Km = 64 microM), for which hyperbolic kinetics were obtained. However, negative cooperativity (Hill coefficient h = 0.89) and [S]0.5 of 18.2 mM were observed for ammonium. The mechanism of the aminating reaction was of a random type with independent sites. The purified enzyme showed its maximal activity at 60 degrees C (Ea = 5.1 kcal/mol [21.3 kJ/mol]) and optimal pH values of 8.0 and 7.5 when assayed in Tris hydrochloride and potassium phosphate buffers, respectively. The native molecular mass of the enzyme was about 280 kilodaltons. The possible physiological role of the enzyme in ammonia assimilation is discussed. PMID:3139639

Martinez-Bilbao, M; Martinez, A; Urkijo, I; Llama, M J; Serra, J L

1988-01-01

46

Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses  

Microsoft Academic Search

Anaerobic ammonium oxidizing (anammox) bacterial community structures were investigated in surface (1–2 cm) and lower (20–21 cm)\\u000a layers of mangrove sediments at sites located immediately to the mangrove trees (S0), 10 m (S1) and 1000 m (S2) away from\\u000a mangrove trees in a polluted area of the Pearl River Delta. At S0, both 16S rRNA and hydrazine oxidoreductase (HZO) encoding\\u000a genes of anammox

Meng Li; Yi-Guo Hong; Hui-Luo Cao; Ji-Dong Gu

47

In vitro activation of NADPH-dependent O 2 - generating system in a plasma membrane-rich fraction of potato tuber tissues by treatment with an elicitor from Phytophthora infestans or with digitonin  

Microsoft Academic Search

NADPH-dependent O2- generating activity of a plasma membrane-rich (PM) fraction from potato tuber tissue was measured in vitro using polarographic measurements of superoxide dismutase (SOD) and catalase-sensitive O2 consumption and\\/or spectrophotometric measurements of SOD-sensitive cytochrome c (acetylated) reduction.The enhanced NADPH-dependent O2- generating activity was found predominantly in the plasma membrane fraction isolated from the potato tuber slices which had been

N. Doke; Y. Miura

1995-01-01

48

Interaction of selenoprotein PA and the thioredoxin system, components of the NADPH-dependent reduction of glycine in Eubacterium acidaminophilum and Clostridium litorale [corrected  

PubMed Central

Purification of protein PA of the glycine reductase complex from Eubacterium acidaminophilum and Clostridium litorale [corrected] was monitored by a new spectrophotometric assay. The procedure depended on a specific two- to threefold stimulation of a dihydrolipoamide dehydrogenase activity that is elicited by the interaction of a thioredoxin reductase-like flavoprotein and thioredoxin from both organisms. Protein PA isolated from E. acidaminophilum by 75Se labeling and monitoring of the dithioerythritol-dependent glycine reductase activity was identical in its biochemical, structural, and immunological properties to the protein isolated by using the stimulation assay. Proteins PA from both organisms were glycoproteins of Mr about 18,500 and exhibited very similar N-terminal amino acid sequences. Depletion of thioredoxin from crude extracts of E. acidaminophilum totally diminished the NADPH-dependent but not the dithioerythritol-dependent glycine reduction. The former activity could be fully restored by adding thioredoxin. Antibodies raised against the thioredoxin reductase-like flavoprotein or thioredoxin inhibited to a high extent NADPH-dependent but not dithioerythritol-dependent glycine reductase activity. These results indicate the involvement of the thioredoxin system in the electron flow from reduced pyridine nucleotides to glycine reductase. PMID:1917832

Dietrichs, D; Meyer, M; Rieth, M; Andreesen, J R

1991-01-01

49

Soil oxidoreductases and FDA hydrolysis  

Technology Transfer Automated Retrieval System (TEKTRAN)

The oxidoreductases (E.C. 1.) comprise the largest enzyme group and consist of enzymes that catalyze reactions between two compounds, one of which is oxidized (the donor) while reducing the other (the acceptor) (Dixon and Webb, 1979). In common with all redox reactions, the reaction mechanism involv...

50

Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus1[W][OA  

PubMed Central

Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules. PMID:21562331

Tovar-Méndez, Alejandro; Matamoros, Manuel A.; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel

2011-01-01

51

Pharmacogenomics of human P450 oxidoreductase  

PubMed Central

Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley–Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399–401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups. PMID:24847272

Pandey, Amit V.; Sproll, Patrick

2014-01-01

52

Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene.  

PubMed

The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency. PMID:11479321

Bai, Y; Hájek, P; Chomyn, A; Chan, E; Seo, B B; Matsuno-Yagi, A; Yagi, T; Attardi, G

2001-10-19

53

Meta-analyses of Dehalococcoides mccartyi strain 195 transcriptomic profiles identify a respiration rate-related gene expression transition point and interoperon recruitment of a key oxidoreductase subunit.  

PubMed

A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6±0.6 ?M Cl-/h)- and fast (22.9±9.6 ?M Cl-/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n=53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112). PMID:25063656

Mansfeldt, Cresten B; Rowe, Annette R; Heavner, Gretchen L W; Zinder, Stephen H; Richardson, Ruth E

2014-10-01

54

The formate:oxygen oxidoreductase supercomplex of Escherichia coli aerobic respiratory chain.  

PubMed

The Escherichia coli formate:oxygen oxidoreductase supercomplex (FdOx) was investigated with respect to function and composition. Formate oxidoreductase activity was detected in blue native polyacrylamide gel electrophoresis (BN-PAGE) resolved membranes of E. coli, which were also capable of cyanide sensitive formate:oxygen oxidoreductase activity. The latter was compromised in strains devoid of specific oxygen reductases, particularly, in those devoid of cytochrome bo3 or bdI. A principal component analysis (PCA) integrating E. coli aerobic respiratory chain gene transcription, enzyme activity and growth dynamics was performed, correlating formate:oxygen oxidoreductase activity and the transcription of the genes encoding cytochromes bo3 and bdI, and corroborating previous evidence that associated these complexes in FdOx. PMID:23827816

Sousa, Pedro M F; Videira, Marco A M; Melo, Ana M P

2013-08-19

55

Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I.  

PubMed

Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I. PMID:20118373

Lorenz, Nicole; Olsovská, Jana; Sulc, Miroslav; Tudzynski, Paul

2010-03-01

56

A novel cytosolic NADH:quinone oxidoreductase from Methanothermobacter marburgensis  

PubMed Central

Methanothermobacter marburgensis is a strictly anaerobic, thermophilic methanogenic archaeon that uses methanogenesis to convert H2 and CO2 to energy. M. marburgensis is one of the best-studied methanogens, and all genes required for methanogenic metabolism have been identified. Nonetheless, the present study describes a gene (Gene ID 9704440) coding for a putative NAD(P)H:quinone oxidoreductase that has not yet been identified as part of the metabolic machinery. The gene product, MmNQO, was successfully expressed, purified and characterized biochemically, as well as structurally. MmNQO was identified as a flavin-dependent NADH:quinone oxidoreductase with the capacity to oxidize NADH in the presence of a wide range of electron acceptors, whereas NADPH was oxidized with only three acceptors. The 1.50 Å crystal structure of MmNQO features a homodimeric enzyme where each monomer comprises 196 residues folding into flavodoxin-like ?/? domains with non-covalently bound FMN (flavin mononucleotide). The closest structural homologue is the modulator of drug activity B from Streptococcus mutans with 1.6 Å root-mean-square deviation on 161 C? atoms and 28% amino-acid sequence identity. The low similarity at sequence and structural level suggests that MmNQO is unique among NADH:quinone oxidoreductases characterized to date. Based on preliminary bioreactor experiments, MmNQO could provide a useful tool to prevent overflow metabolism in applications that require cells with high energy demand. PMID:25372605

Ullmann, Eva; Tan, Tien Chye; Gundinger, Thomas; Herwig, Christoph; Divne, Christina; Spadiut, Oliver

2014-01-01

57

Tungsten-containing aldehyde oxidoreductase of Eubacterium acidaminophilum.  

PubMed

Aldehyde oxidoreductase of Eubacterium acidaminophilum was purified to homogeneity under strict anaerobic conditions using a four-step procedure. The purified enzyme was present as a monomer with an apparent molecular mass of 67 kDa and contained 6.0 +/- 0.1 iron, 1.1 +/- 0.2 tungsten, about 0.6 mol pterin cofactor and zinc, but no molybdenum. The enzyme activity was induced if a molar excess of electron donors, such as serine and/or formate, were supplied in the growth medium compared to readily available electron acceptors such as glycine betaine. Many aldehydes served as good substrates, thus enzyme activity obtained with acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde and benzaldehyde differed by a factor of less than two. Kinetic parameters were determined for all substrates tested. Oligonucleotides deduced from the N-terminal amino acid sequence were used to isolate the encoding aorA gene and adjacent DNA regions. The deduced amino acid sequence of the aldehyde oxidoreductase exhibited high similarities to other tungsten-containing aldehyde oxidoreductases from archaea. Transcription of the aorA gene was monocistronic and started from a sigma 54-dependent promoter. Upstream of aorA, the gene aorR is localized whose product is similar to sigma 54-dependent transcriptional activator proteins and, thus, AorR is probably involved in the regulation of aorA expression. PMID:14686934

Rauh, David; Graentzdoerffer, Andrea; Granderath, Katrin; Andreesen, Jan R; Pich, Andreas

2004-01-01

58

Exposure to low- vs iso-osmolar contrast agents reduces NADPH-dependent reactive oxygen species generation in a cellular model of renal injury.  

PubMed

Contrast-induced nephropathy represents the third cause of hospital-acquired acute renal failure. This study investigated the effects of low- vs iso-osmolar contrast medium (CM) exposure on NADPH-dependent reactive oxygen species (ROS) generation by tubular cells. X-ray attenuation of iohexol, iopamidol, and iodixanol was assessed at equimolar iodine concentrations and their effects on human renal proximal tubular cells (PTCs) were evaluated with equally attenuating solutions of each CM. Cytotoxicity, apoptosis, and necrosis were investigated by trypan blue exclusion, MTT assay, and annexin V/propidium iodide assay, respectively. ROS production was assessed by DCF assay, NADPH oxidase activity by the lucigenin-enhanced chemiluminescence method, and Nox4 expression by immunoblot. Yielding the same X-ray attenuation, CM cytotoxicity was assessed in PTCs at equimolar iodine concentrations. More necrosis was present after incubation with iohexol and iopamidol than after incubation with equal concentrations of iodixanol. Iohexol and iodixanol at low iodine concentrations induced less cytotoxicity than iopamidol. Moreover, both iohexol and iopamidol induced more apoptosis than iodixanol, with a dose-dependent effect. ROS generation was significantly higher with iopamidol and iohexol compared to iodixanol. NADPH oxidase activity and Nox4 protein expression significantly increased after exposure to iopamidol and iohexol, with a dose-dependent effect, compared with iodixanol. CM-induced Nox4 expression and activity depended upon Src activation. In conclusion, at angiographic concentrations, iodixanol induces fewer cytotoxic effects on cultured tubular cells than iohexol and iopamidol along with a lower induction of Nox4-dependent ROS generation. This enzyme may, thus, represent a potential therapeutic target to prevent iodinated CM-related oxidative stress. PMID:24300339

Netti, Giuseppe Stefano; Prattichizzo, Clelia; Montemurno, Eustacchio; Simone, Simona; Cafiero, Cesira; Rascio, Federica; Stallone, Giovanni; Ranieri, Elena; Grandaliano, Giuseppe; Gesualdo, Loreto

2014-03-01

59

Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity.  

PubMed

Drugs currently used for treatment of Trypanosoma cruzi infection, the ethiological agent of Chagas' disease, have shown side effects and variable efficiency. With the aim to describe parasite enzymes involved in the mechanisms of action of trypanocidal drugs and since it has been reported that reductases are crucial in their metabolism, we attempted to identify novel NADPH-dependent oxido-reductases from T. cruzi. The percolation of a soluble fraction of epimastigote lysates through a Cibacron Blue-Sepharose column followed by elution by NADPH yielded a predominant protein with an apparent molecular weight of 32 kDa. This protein was identified by MALDI-TOF as an aldo-keto reductase (AKR) and hence denominated TcAKR. TcAKR was mainly localized in the cytosol and was also present in trypomastigote and amastigote lysates. The recombinant TcAKR (recTcAKR) showed NADPH-dependent reductase activity with the AKR substrates 4-nitrobenzaldehyde and 2-dihydroxyacetone. The saturation curves for both substrates were consistent with the Michaelis-Menten model. We also tested whether recTcAKR may reduce naphthoquinones (NQ), since many of these compounds have displayed important trypanocidal activity. recTcAKR reduced o-NQ (1,2-naphthoquinone, 9,10-phenanthrenquinone and beta-lapachone) with concomitant generation of free radicals but did not exhibit affinity for p-NQ (5-hydroxy-1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, alpha-lapachone and menadione). The substrate saturation curve with o-NQ fitted to a sigmoidal curve, suggesting that recTcAKR presents a cooperative behavior. In addition, three peaks assigned to monomers, dimers and tetramers were obtained when recTcAKR was submitted to a Superose 12 gel chromatography column. TcAKR is the first member of the AKR family described in T. cruzi. Our results indicate that this enzyme may participate in the mechanisms of action of trypanocidal drugs. PMID:20595031

Garavaglia, Patricia A; Cannata, Joaquín J B; Ruiz, Andrés M; Maugeri, Dante; Duran, Rosario; Galleano, Mónica; García, Gabriela A

2010-10-01

60

Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability.  

PubMed Central

Previous studies have shown that the pyruvate-ferredoxin oxidoreductase (POR) of the sulfate-reducing bacterium Desulfovibrio africanus is a homodimer that contains one thiamine pyrophosphate and three [4Fe-4S]2+/1+ centers/subunit. Interestingly, the enzyme isolated from a strictly anaerobic bacterium is highly stable in the presence of oxygen, in contrast to the other PORs characterized in anaerobic organisms (L. Pieulle, B. Guigliarelli, M. Asso, F. Dole, A. Bernadac, and E. C. Hatchikian, Biochim. Biophys. Acta 1250:49-59, 1995). We report here the determination of the nucleotide sequence of the por gene encoding the D. africanus POR. The amino acid sequence deduced from this nucleotide sequence corresponds to the first primary structure of a homodimeric POR from strictly anaerobic bacteria. The subunit of the D. africanus POR contains two ferredoxin-type [4Fe-4S] cluster binding motifs (CX2CX2CX3CP) and four additional highly conserved cysteines belonging to a nontypical motif. These 12 cysteine residues may coordinate the three Fe-S centers present in D. africanus POR. The thiamine pyrophosphate binding domain is located in the C-terminal part of the protein close to the four conserved cysteine residues. The D. africanus enzyme sequence appears homologous to the other POR sequences. However, the enzyme differs from all other PORs by a C-terminal extension of about 60 residues of its polypeptide chain. The two cysteine residues located in this additional region may be involved in the formation of a disulfide bridge associated with the activation process of the catalytic activity. The por gene has been expressed, for the first time, in anaerobically grown Escherichia coli behind the isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter, resulting in the production of POR in its active form. The recombinant enzyme is stable toward oxygen during several days, and initial characterization of the recombinant POR showed that its activity increased in the presence of dithioerythritol. These properties indicate that the recombinant POR behaves like the native D. africanus enzyme. The study of carboxy-terminal deletion mutants strongly suggests that deletions in the C-terminal region of D. africanus enzyme can have dramatic effects on the stability of the enzyme toward oxygen. PMID:9294422

Pieulle, L; Magro, V; Hatchikian, E C

1997-01-01

61

Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells  

DOEpatents

Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

Miller, Matthew (Boston, MA); Suominen, Pirkko (Maple Grove, MN); Aristidou, Aristos (Highland Ranch, CO); Hause, Benjamin Matthew (Currie, MN); Van Hoek, Pim (Camarillo, CA); Dundon, Catherine Asleson (Minneapolis, MN)

2012-03-20

62

Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases  

PubMed Central

Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by ?-helices and the second by ?-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity. PMID:23754810

Kim, J. Dongun; Senn, Stefan; Harel, Arye; Jelen, Benjamin I.; Falkowski, Paul G.

2013-01-01

63

The Study of NADPH-Dependent Flavoenzyme-Catalyzed Reduction of Benzo[1,2-c]1,2,5-oxadiazole N-Oxides (Benzofuroxans)  

PubMed Central

The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs) towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and two-electron (hydride) transferring NAD(P)H:quinone oxidoreductase (NQO1) was examined in this work. Since the =N+ (?O)O? moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs) whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs) of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an “outer sphere” electron transfer mechanism. In NQO1-catalyzed two-electron (hydride) transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary reductive intermediate, which undergoes a further reduction process. Overall, the data obtained show that by contrast to NACs, the flavoenzyme-catalyzed reduction of BFXs is unlikely to initiate their redox-cycling, which may argue for a minor role of the redox-cycling-type action in the cytotoxicity of BFXs. PMID:25517035

Šarlauskas, Jonas; Misevi?ien?, Lina; Marozien?, Audron?; Karvelis, Laimonas; Stankevi?i?t?, Jonita; Krikštopaitis, Kastis; ??nas, Narimantas; Yantsevich, Aleksey; Lauryn?nas, Audrius; Anusevi?ius, Žilvinas

2014-01-01

64

Oxidoreductases that Act as Conditional Virulence Suppressors in Salmonella enterica Serovar Typhimurium  

PubMed Central

In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium. PMID:23750221

Anwar, Naeem; Sem, Xiao Hui; Rhen, Mikael

2013-01-01

65

Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Streptococcus gordonii*  

PubMed Central

Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria. PMID:23615907

Davey, Lauren; Ng, Crystal K. W.; Halperin, Scott A.; Lee, Song F.

2013-01-01

66

Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii.  

PubMed

Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria. PMID:23615907

Davey, Lauren; Ng, Crystal K W; Halperin, Scott A; Lee, Song F

2013-06-01

67

An Oxidoreductase Is Involved in Cercosporin Degradation by the Bacterium Xanthomonas campestris pv. zinniae  

PubMed Central

The polyketide toxin cercosporin plays a key role in pathogenesis by fungal species of the genus Cercospora. The bacterium Xanthomonas campestris pv. zinniae is able to rapidly degrade this toxin. Growth of X. campestris pv. zinniae strains in cercosporin-containing medium leads to the breakdown of cercosporin and to the formation of xanosporic acid, a nontoxic breakdown product. Five non-cercosporin-degrading mutants of a strain that rapidly degrades cercosporin (XCZ-3) were generated by ethyl methanesulfonate mutagenesis and were then transformed with a genomic library from the wild-type strain. All five mutants were complemented with the same genomic clone, which encoded a putative transcriptional regulator and an oxidoreductase. Simultaneous expression of these two genes was necessary to complement the mutant phenotype. Sequence analysis of the mutants showed that all five mutants had point mutations in the oxidoreductase gene and no mutations in the regulator. Quantitative reverse transcription-PCR (RT-PCR) showed that the expression of both of these genes in the wild-type strain is upregulated after exposure to cercosporin. Both the oxidoreductase and transcriptional regulator genes were transformed into three non-cercosporin-degrading bacteria to determine if they are sufficient for cercosporin degradation. Quantitative RT-PCR analysis confirmed that the oxidoreductase was expressed in all transconjugants. However, none of the transconjugants were able to degrade cercosporin, suggesting that additional factors are required for cercosporin degradation. Further study of cercosporin degradation in X. campestris pv. zinniae may allow for the engineering of Cercospora-resistant plants by using a suite of genes. PMID:16957231

Taylor, Tanya V.; Mitchell, Thomas K.; Daub, Margaret E.

2006-01-01

68

Protein Method for Investigating Mercuric Reductase Gene Expression in Aquatic Environments  

PubMed Central

A colorimetric assay for NADPH-dependent, mercuric ion-specific oxidoreductase activity was developed to facilitate the investigation of mercuric reductase gene expression in polluted aquatic ecosystems. Protein molecules extracted directly from unseeded freshwater and samples seeded with Pseudomonas aeruginosa PU21(Rip64) were quantitatively assayed for mercuric reductase activity in microtiter plates by stoichiometric coupling of mercuric ion reduction to a colorimetric redox chain through NADPH oxidation. Residual NADPH was determined by titration with phenazine methosulfate-catalyzed reduction of methyl thiazolyl tetrazolium to produce visible formazan. Spectrophotometric determination of formazan concentration showed a positive correlation with the amount of NADPH remaining in the reaction mixture (r2 = 0.99). Mercuric reductase activity in the protein extracts was inversely related to the amount of NADPH remaining and to the amount of formazan produced. A qualitative nitrocellulose membrane-based version of the method was also developed, where regions of mercuric reductase activity remained colorless against a stained-membrane background. The assay detected induced mercuric reductase activity from 102 CFU, and up to threefold signal intensity was detected in seeded freshwater samples amended with mercury compared to that in mercury-free samples. The efficiency of extraction of bacterial proteins from the freshwater samples was (97 ± 2)% over the range of population densities investigated (102 to 108 CFU/ml). The method was validated by detection of enzyme activity in protein extracts of water samples from a polluted site harboring naturally occurring mercury-resistant bacteria. The new method is proposed as a supplement to the repertoire of molecular techniques available for assessing specific gene expression in heterogeneous microbial communities impacted by mercury pollution. PMID:9464410

Ogunseitan, O. A.

1998-01-01

69

NAD(P)H:Quinone oxidoreductase 1 (DT-diaphorase) expression in normal and tumor tissues  

Microsoft Academic Search

NAD(P)H:Quinone Oxidoreductase1 (NQO1) also known as DT-diaphorase is a flavoprotein that catalyzes the two-electron reduction of quinones, quinone imines and azo-dyes and thereby protects cells against mutagenicity and carcinogenicity resulting from free radicals and toxic oxygen metabolites generated by the oneelectron reductions catalyzed by cytochromes P450 and other enzymes. High levels of NQO1 gene expression have been observed in liver,

Martin Belinsky; Anil K. Jaiswal

1993-01-01

70

Epimerization at C-3'' in Butirosin Biosynthesis by an NAD(+) -Dependent Dehydrogenase BtrE and an NADPH-Dependent Reductase BtrF.  

PubMed

Butirosin is an aminoglycoside antibiotic consisting two epimers at C-3'' of ribostamycin/xylostasin with a unique 4-amino-2-hydroxybutyrate moiety at C-1 of the aminocyclitol 2-deoxystreptamine (2DOS). To date, most of the enzymes encoded in the biosynthetic gene cluster for butirosin, from the producing strain Bacillus circulans, have been characterized. A few unknown functional proteins, including nicotinamide adenine dinucleotide cofactor-dependent dehydrogenase/reductase (BtrE and BtrF), are supposed to be involved in the epimerization at C-3'' of butirosin B/ribostamycin but remain to be characterized. Herein, the conversion of ribostamycin to xylsostasin by BtrE and BtrF in the presence of NAD(+) and NADPH was demonstrated. BtrE oxidized the C-3'' of ribostamycin with NAD(+) to yield 3''-oxoribostamycin. BtrF then reduced the generated 3''-oxoribostamycin with NADPH to produce xylostasin. This reaction step was the last piece of butirosin biosynthesis to be described. PMID:25600434

Takeishi, Ryohei; Kudo, Fumitaka; Numakura, Mario; Eguchi, Tadashi

2015-02-01

71

Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene  

SciTech Connect

Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell death and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.

Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

2011-01-15

72

Lack of Complex I Activity in Human Cells Carrying a Mutation in MtDNA-encoded ND4 Subunit Is Corrected by the Saccharomyces cerevisiae NADH-Quinone Oxidoreductase (NDI1) Gene  

Microsoft Academic Search

The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxido- reductase of Saccharomyces cerevisiae (NDI1) can com- pletely restore the NADH dehydrogenase activity in mu- tant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK cell line derivative C4T, which car-

Yidong Bai; Petr Hajek; Anne Chomyn; Elisa Chan; Byoung Boo Seo; Akemi Matsuno-Yagi; Takao Yagi; Giuseppe Attardi

2001-01-01

73

Characterization of Apoptosis-Related Oxidoreductases from Neurospora crassa  

PubMed Central

The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins. PMID:22470547

Carneiro, Patrícia; Duarte, Margarida; Videira, Arnaldo

2012-01-01

74

Origin and Evolution of the Sodium -Pumping NADH: Ubiquinone Oxidoreductase  

PubMed Central

The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and ?, ?, ? and ? -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase. PMID:24809444

Reyes-Prieto, Adrian; Barquera, Blanca; Juárez, Oscar

2014-01-01

75

Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.  

PubMed

The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and ?, ?, ? and ? -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase. PMID:24809444

Reyes-Prieto, Adrian; Barquera, Blanca; Juárez, Oscar

2014-01-01

76

Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis  

PubMed Central

Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen (1O2). As there is no enzymatic detoxification mechanism available in plants to destroy 1O2, its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the 1O2 generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of 1O2 and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to 1O2-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5-aminolevulinicacid and tetrapyrrole biosynthesis. PMID:22031838

Pattanayak, Gopal K.; Tripathy, Baishnab C.

2011-01-01

77

The in vitro NADPH-dependent inhibition by CCl sub 4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl sub 3 radical  

SciTech Connect

The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3 radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals and are toxic to cultured hepatocytes. The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4.

Srivastava, S.P.; Chen, N.Q.; Holtzman, J.L. (Univ. of Minnesota, Minneapolis (USA))

1990-05-25

78

Tungsten-dependent formaldehyde ferredoxin oxidoreductase: Reaction mechanism from quantum chemical calculations  

E-print Network

redox reactions, while the latter catalyzes a non-redox hydration of acetylene. In Pyrococcus furiosusTungsten-dependent formaldehyde ferredoxin oxidoreductase: Reaction mechanism from quantum chemical April 2011 Keywords: Tungstoenzyme Formaldehyde oxidoreductase Reaction mechanism Density functional

Liao, Rongzhen

79

Quaternary structure of the hydroxylamine oxidoreductase from Nitrosomonas europaea  

Microsoft Academic Search

The hydroxylamine oxidoreductase from Nitrosomonas europaea was prepared to apparent electrophoretic homogeneity. Electron microscopy of negatively stained preparations of the sample revealed an overall diameter of about 8.8 nm of the enzyme particle. The native structure was determined as a tetrahedron-like assembly of identical subunits exhibiting four protein masses.

Michael Hoppert; Timothy J. Mahony; Frank Mayer; David J. Miller

1995-01-01

80

The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis  

PubMed Central

The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22?U?mg?1 and 20.2 ± 1.8?U?mg?1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic ?-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding ?-keto acids. PMID:24982594

2014-01-01

81

The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association.  

PubMed Central

1. The NADH-ubiquinone oxidoreductase complex (Complex I) and the ubiquinol-cytochrome c oxidoreductase complex (Complex III) combine in a 1:1 molar ratio to give NADH-cytochrome c oxidoreductase (Complex I-Complex III). 2. Experiments on the inhibition of the NADH-cytochrome c oxidoreductase activity of mixtures of Complexes I and III by rotenone and antimycin indicate that electron transfer between a unit of Complex I-Complex III and extra molecules of Complexes I or III does not contribute to the overall rate of cytochrome c reduction. 3. The reduction by NADH of the cytochrome b of mixtures of Complexes I and III is biphasic. The extents of the fast and slow phases of reduction are determined by the proportion of the total Complex III specifically associated with Complex I. 4. Activation-energy measurements suggest that the structural features of the Complex I-Complex III unit promote oxidoreduction of endogenous ubiquinone-10. PMID:215122

Ragan, C I; Heron, C

1978-01-01

82

Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans.  

PubMed

The gene product of open reading frame AFE_1293 from Acidithiobacillus ferrooxidans ATCC 23270 is annotated as encoding a sulfide:quinone oxidoreductase, an enzyme that catalyses electron transfer from sulfide to quinone. Following overexpression in Escherichia coli, the enzyme was purified and crystallized using the hanging-drop vapour-diffusion method. The native crystals belonged to the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 131.7, c = 208.8 A, and diffracted to 2.3 A resolution. Preliminary crystallographic analysis indicated the presence of a dimer in the asymmetric unit, with an extreme value of the Matthews coefficient (V(M)) of 4.53 A(3) Da(-1) and a solvent content of 72.9%. PMID:19652354

Zhang, Yanfei; Cherney, Maia M; Solomonson, Matthew; Liu, Jianshe; James, Michael N G; Weiner, Joel H

2009-08-01

83

Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase.  

PubMed

The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is driven by oscillations in metabolism that are influenced by the circadian phases of feeding and fasting. To determine the relative contributions of the central clock and the hepatocyte circadian clock in modulating the chronotoxicity of APAP, we used a conditional null allele of brain and muscle Arnt-like 1 (Bmal1, aka Mop3 or Arntl) allowing deletion of the clock from hepatocytes while keeping the central and other peripheral clocks (e.g., the clocks controlling food intake) intact. We show that deletion of the hepatocyte clock dramatically reduces APAP bioactivation and toxicity in vivo and in vitro because of a reduction in NADPH-cytochrome P450 oxidoreductase gene expression, protein, and activity. PMID:25512522

Johnson, Brian P; Walisser, Jacqueline A; Liu, Yan; Shen, Anna L; McDearmon, Erin L; Moran, Susan M; McIntosh, Brian E; Vollrath, Aaron L; Schook, Andrew C; Takahashi, Joseph S; Bradfield, Christopher A

2014-12-30

84

Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase  

PubMed Central

The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is driven by oscillations in metabolism that are influenced by the circadian phases of feeding and fasting. To determine the relative contributions of the central clock and the hepatocyte circadian clock in modulating the chronotoxicity of APAP, we used a conditional null allele of brain and muscle Arnt-like 1 (Bmal1, aka Mop3 or Arntl) allowing deletion of the clock from hepatocytes while keeping the central and other peripheral clocks (e.g., the clocks controlling food intake) intact. We show that deletion of the hepatocyte clock dramatically reduces APAP bioactivation and toxicity in vivo and in vitro because of a reduction in NADPH-cytochrome P450 oxidoreductase gene expression, protein, and activity. PMID:25512522

Johnson, Brian P.; Walisser, Jacqueline A.; Liu, Yan; Shen, Anna L.; McDearmon, Erin L.; Moran, Susan M.; McIntosh, Brian E.; Vollrath, Aaron L.; Schook, Andrew C.; Takahashi, Joseph S.; Bradfield, Christopher A.

2014-01-01

85

A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions  

PubMed Central

Motivation: Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation–reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus important, current models suffer from limitations to the steady-state domain, lack empirical validation or are too specialized to a single system or set of conditions. Results: To address these limitations, we introduce a novel unifying modeling framework for kinetic descriptions of oxidoreductases. The framework is based on a set of seven elementary reactions that (i) form the basis for 69 pairs of enzyme state transitions for encoding various specific microscopic intra-enzyme reaction networks (micro-models), and (ii) lead to various specific macroscopic steady-state kinetic equations (macro-models) via thermodynamic assumptions. Thus, a synergistic bridge between the micro and macro kinetics can be achieved, enabling us to extract unitary rate constants, simulate reaction variance and validate the micro-models using steady-state empirical data. To help facilitate the application of this framework, we make available RedoxMech: a Mathematica™ software package that automates the generation and customization of micro-models. Availability: The Mathematica™ source code for RedoxMech, the documentation and the experimental datasets are all available from: http://www.igb.uci.edu/tools/sb/metabolic-modeling. Contact: pfbaldi@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23613486

Chang, Ivan; Baldi, Pierre

2013-01-01

86

Genetic and Clinical Features of P450 Oxidoreductase Deficiency  

Microsoft Academic Search

P450 oxidoreductase (POR) deficiency is an autosomal recessive disorder of steroidogenesis with multiple clinical manifestations. POR is the electron donor for all microsomal P450 enzymes, including the three steroidogenic enzymes P450c17 (17?-hydroxylase\\/17,20-lyase), P450c21 (21-hydroxylase), and P450aro (aromatase). Since the first description of POR mutations in 2004, about 50 patients have been reported. Serum steroid profiles indicate partial deficiencies in 21-hydroxylase,

Rachel R. Scott; Walter L. Miller

2008-01-01

87

Structure of a Hyperthermophilic Tungstopterin Enzyme, Aldehyde Ferredoxin Oxidoreductase  

Microsoft Academic Search

The crystal structure of the tungsten-containing aldehyde ferredoxin oxidoreductase (AOR) from Pyrococcus funosus, a hyperthermophilic archaeon (formerly archaebacterium) that grows optimally at 100^circC, has been determined at 2.3 angstrom resolution by means of multiple isomorphous replacement and multiple crystal form averaging. AOR consists of two identical subunits, each containing an Fe_4S_4 cluster and a molybdopterin-based tungsten cofactor that is analogous

Michael K. Chan; Swarnalatha Mukund; Arnulf Kletzin; Michael W. W. Adams; Douglas C. Rees

1995-01-01

88

Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus? †  

PubMed Central

The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope 99Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs. PMID:20562313

Sevcenco, Ana-Maria; Bevers, Loes E.; Pinkse, Martijn W. H.; Krijger, Gerard C.; Wolterbeek, Hubert T.; Verhaert, Peter D. E. M.; Hagen, Wilfred R.; Hagedoorn, Peter-Leon

2010-01-01

89

Ero1-? and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases  

PubMed Central

Ero1-? and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-?–associated oxidoreductases were identified by proteomic analysis and further confirmed by surface plasmon resonance. Ero1-? and PDI were found to constitute a regulatory hub, whereby PDI induced conformational flexibility in an Ero1-? shuttle cysteine (Cys99) facilitated intramolecular electron transfer to the active site. In isolation, Ero1-? also oxidized ERp46, ERp57, and P5; however, kinetic measurements and redox equilibrium analysis revealed that PDI preferentially oxidized other oxidoreductases. PDI accepted electrons from the other oxidoreductases via its a? domain, bypassing the a domain, which serves as the electron acceptor from reduced glutathione. These observations provide an integrated picture of the hierarchy of cooperative redox interactions among ER oxidoreductases in mammalian cells. PMID:24043701

Araki, Kazutaka; Iemura, Shun-ichiro; Kamiya, Yukiko; Ron, David; Kato, Koichi; Natsume, Tohru

2013-01-01

90

Oxidoreductase Regulation of Kv Currents in Rat Ventricle  

PubMed Central

Oxidative stress contributes to the arrhythmogenic substrate created by myocardial ischemia-reperfusion partly through a shift in cell redox state, a key modulator of protein function. The activity of many oxidation-sensitive proteins is controlled by oxidoreductase systems that regulate the redox state of cysteine thiol groups, but the impact of these systems on ion channel function is not well defined. Thus, we examined the roles of the thioredoxin and glutaredoxin systems in controlling K+ channels in the ventricle. An oxidative shift in redox state was elicited in isolated rat ventricular myocytes by brief exposure to diamide, a thiol-specific, membrane-permeable oxidant. Voltage-clamp studies showed that diamide decreased peak outward K+ current (Ipeak) evoked by depolarizing test pulses by 41% (+60 mV; p<0.05) while steady-state outward current (Iss) measured at the end of the test pulse was decreased by 45% (p<0.05). These electrophysiological effects were not prevented by protein kinase C blockers, but the tyrosine kinase inhibitors genistein or lavendustin A blocked the suppression of both K+ currents by diamide. Moreover, inhibition of Ipeak and Iss by diamide was reversed by dichloroacetate and an insulin-mimetic. The effect of dichloroacetate to normalize Ipeak after diamide was blocked by the thioredoxin system inhibitors auranofin or 13-cis-retinoic acid, but Iss was not affected by either compound. A pan-specific inhibitor of glutaredoxin and thioredoxin systems, 1,3-bis-(2-chloroethyl)-1-nitrosourea, also blocked the dichloroacetate effect on Ipeak but only partially inhibited the recovery of Iss. These data suggest that acute regulation of cardiac K+ channels by oxidoreductase systems is mediated by redox-sensitive tyrosine kinase/phosphatase pathways. The pathways controlling Ipeak channels are targets of the thioredoxin system whereas those regulating Iss channels are likely controlled by the glutaredoxin system. Thus, cardiac oxidoreductase systems may be important regulators of ion channels affected by pathogenic oxidative stress. PMID:18455732

Liang, Huixu; Li, Xun; Li, Shumin; Zheng, Ming-Qi; Rozanski, George J.

2008-01-01

91

WW domain-containing oxidoreductase in neuronal injury and neurological diseases  

PubMed Central

The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-?, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration. PMID:25537520

Chang, Hsin-Tzu; Liu, Chan-Chuan; Chen, Shur-Tzu; Yap, Ye Vone; Chang, Nan-Shang; Sze, Chun-I

2014-01-01

92

A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd.  

PubMed Central

The mutated gene in JG16, a Haemophilus influenzae strain deficient in competence-induced DNA binding and uptake, was cloned and the wild-type allele was sequenced. The gene was shown by Northern analysis to be constitutively expressed on a 1.7-kilobase transcript. The gene product was identified as a 20.6-kDa protein targeted to the periplasm. The protein contains the sequence Cys-Pro-His-Cys (CPHC) and is highly similar to two other periplasmic CPHC motif-containing proteins: DsbA, an Escherichia coli protein (45% identity, 87% homology) and TcpG, a Vibrio cholerae protein (32% identity, 74% homology). Both DsbA and TcpG promote disulfide bond formation in periplasmic proteins, are required for pilus biogenesis, and, like thioredoxin, are capable of reducing insulin in vitro. The Haemophilus protein was shown to complement an E. coli mutation in DsbA and was named Por (periplasmic oxidoreductase). In JG16 the competence-dependent redistribution of inner membrane proteins did not occur. These findings suggest that Por is required for the correct assembly and/or folding of one or more disulfide-containing cell envelope protein involved either in competence development or in the DNA-binding and -uptake machinery. Images PMID:1438213

Tomb, J F

1992-01-01

93

WW domain-containing oxidoreductase in neuronal injury and neurological diseases.  

PubMed

The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-?, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration. PMID:25537520

Chang, Hsin-Tzu; Liu, Chan-Chuan; Chen, Shur-Tzu; Yap, Ye Vone; Chang, Nan-Shang; Sze, Chun-I

2014-12-15

94

Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481.  

PubMed

The cyanobacterium Fremyella diplosiphon can alternate its light-harvesting pigments, a process called comple-mentary chromatic adaptation (CCA), allowing it to photosynthesize in green light (GL) and in fluctuating light conditions. Nevertheless, F. diplosiphon requires chlorophylls for photosynthesis under all light conditions. Two alternative enzymes catalyze the penultimate step of chlorophyll synthesis, light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlo-rophyllide oxidoreductase (DPOR). DPOR enzymatic activity is light independent, while LPOR requires light. Therefore, we hypothesize that F. diplosiphon up-regulates DPOR gene expression in GL, so that DPOR is more abundant when LPOR is less functional. We cloned the genes encoding the three subunits of DPOR, chlL, chlN and chlB, and the LPOR gene, por, to determine the abundance of the transcripts under red light (RL), GL and dark conditions. We found that F. diplosiphon chlL and chlN genes are transcribed as parts of a single operon, a gene structure that is conserved within cyanobacteria. Tran-scripts levels of all DPOR genes are up-regulated approximately 2-fold in GL relative to levels in RL, whereas LPOR transcript levels are reduced in GL. Moreover, mutations in CCA regulators, RcaE and CpeR, modify DPOR and LPOR transcript levels under specific light conditions. Finally, both DPOR and LPOR transcripts are down-regulated 2- to 5-fold in the dark. These results provide the first evidence that light quality and CCA affect the genetic regulation of chlorophyll biosynthesis in freshwater cyanobacteria, ecologically important photosynthetic organisms. PMID:19561333

Shui, Jessica; Saunders, Eileen; Needleman, Robert; Nappi, Michelle; Cooper, Joseph; Hall, Lauren; Kehoe, David; Stowe-Evans, Emily

2009-08-01

95

Carbon monoxide:methylene blue oxidoreductase from Pseudomonas carboxydovorans.  

PubMed Central

The enzyme carbon monoxide:methylene blue oxidoreductase from CO autotrophically grown cells of Pseudomonas carboxydovorans strain OM5, was purified to homogeneity. The enzyme was obtained in 26% yield and was purified 36-fold. The enzyme was stable for at least 6 days, had a molecular weight of 230,000, gave a single protein and activity band on polyacrylamide gel electrophoresis, and was homogeneous by the criterion of sedimentation equilibrium. Sodium dodecyl sulfate gel electrophoresis revealed a single band of molecular weight 107,000. Carbon monoxide:methylene blue oxidoreductase did not catalyze reduction of pyridine or flavin nucleotides but catalyzed the oxidation of CO to CO2 in the presence of methylene blue, thionine, toluylene blue, dichlorophenolindophenol, or pyocyanine under strictly anaerobic conditions. The visible spectrum revealed maxima at 405 and 470 nm. The millimolar extinction coefficients were 43.9 (405 nm) and 395.5 (275 nm), respectively. Absorption at 470 nm decreased in the presence of dithionite, and the spectrum was not affected by the substrate CO. Maximum reaction rates were found at pH 7.0 and 63 degrees C; temperature dependence followed the Arrhenius equation, with an activation energy (delta H degree) of 36.8 kJ/mol (8.8 kcal/mol). The apparent Km was 53 microM for CO. The purified enzyme was incapable of oxidizing methane, methanol, or formaldehyde in the presence of methylene blue as electron acceptor. Images PMID:7354006

Meyer, O; Schlegel, H G

1980-01-01

96

Structural Basis of Biological NO Generation by Octaheme Oxidoreductases*  

PubMed Central

Nitric oxide is an important molecule in all domains of life with significant biological functions in both pro- and eukaryotes. Anaerobic ammonium-oxidizing (anammox) bacteria that contribute substantially to the release of fixed nitrogen into the atmosphere use the oxidizing power of NO to activate inert ammonium into hydrazine (N2H4). Here, we describe an enzyme from the anammox bacterium Kuenenia stuttgartiensis that uses a novel pathway to make NO from hydroxylamine. This new enzyme is related to octaheme hydroxylamine oxidoreductase, a key protein in aerobic ammonium-oxidizing bacteria. By a multiphasic approach including the determination of the crystal structure of the K. stuttgartiensis enzyme at 1.8 ? resolution and refinement and reassessment of the hydroxylamine oxidoreductase structure from Nitrosomonas europaea, both in the presence and absence of their substrates, we propose a model for NO formation by the K. stuttgartiensis enzyme. Our results expand the understanding of the functions that the widespread family of octaheme proteins have. PMID:24302732

Maalcke, Wouter J.; Dietl, Andreas; Marritt, Sophie J.; Butt, Julea N.; Jetten, Mike S. M.; Keltjens, Jan T.; Barends, Thomas R. M.; Kartal, Boran

2014-01-01

97

CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE  

SciTech Connect

Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

2009-01-01

98

Radical reactions of thiamin pyrophosphate in 2-oxoacid oxidoreductases?  

PubMed Central

Thiamin pyrophosphate (TPP) is essential in carbohydrate metabolism in all forms of life. TPP-dependent decarboxylation reactions of 2-oxo-acid substrates result in enamine adducts between the thiazolium moiety of the coenzyme and decarboxylated substrate. These central enamine intermediates experience different fates from protonation in pyruvate decarboxylase to oxidation by the 2-oxoacid dehydrogenase complexes, the pyruvate oxidases, and 2-oxoacid oxidoreductases. Virtually all of the TPP-dependent enzymes, including pyruvate decarboxylase, can be assayed by 1-electron redox reactions linked to ferricyanide. Oxidation of the enamines is thought to occur via a 2-electron process in the 2-oxoacid dehydrogenase complexes, wherein acyl group transfer is associated with reduction of the disulfide of the lipoamide moiety. However, discrete 1-electron steps occur in the oxidoreductases, where one or more [4Fe-4S] clusters mediate the electron transfer reactions to external electron acceptors. These radical intermediates can be detected in the absence of the acyl-group acceptor, coenzyme A (CoASH). The ?-electron system of the thiazolium ring stabilizes the radical. The extensively delocalized character of the radical is evidenced by quantitative analysis of nuclear hyperfine splitting tensors as detected by electron paramagnetic resonance (EPR) spectroscopy and by electronic structure calculations. The second electron transfer step is markedly accelerated by the presence of CoASH. While details of the second electron transfer step and its facilitation by CoASH remain elusive, expected redox properties of potential intermediates limit possible scenarios. PMID:22178227

Reed, George H.; Ragsdale, Stephen W.; Mansoorabadi, Steven O.

2011-01-01

99

Untargeted Plasma Metabolite Profiling Reveals the Broad Systemic Consequences of Xanthine Oxidoreductase Inactivation in Mice  

PubMed Central

A major challenge in systems biology is integration of molecular findings for individual enzyme activities into a cohesive high-level understanding of cellular metabolism and physiology/pathophysiology. However, meaningful prediction for how a perturbed enzyme activity will globally impact metabolism in a cell, tissue or intact organisms is precluded by multiple unknowns, including in vivo enzymatic rates, subcellular distribution and pathway interactions. To address this challenge, metabolomics offers the potential to simultaneously survey changes in thousands of structurally diverse metabolites within complex biological matrices. The present study assessed the capability of untargeted plasma metabolite profiling to discover systemic changes arising from inactivation of xanthine oxidoreductase (XOR), an enzyme that catalyzes the final steps in purine degradation. Using LC-MS coupled with a multivariate statistical data analysis platform, we confidently surveyed >3,700 plasma metabolites (50–1,000 Da) for differential expression in XOR wildtype vs. mice with inactivated XOR, arising from gene deletion or pharmacological inhibition. Results confirmed the predicted derangements in purine metabolism, but also revealed unanticipated perturbations in metabolism of pyrimidines, nicotinamides, tryptophan, phospholipids, Krebs and urea cycles, and revealed kidney dysfunction biomarkers. Histochemical studies confirmed and characterized kidney failure in xor-nullizygous mice. These findings provide new insight into XOR functions and demonstrate the power of untargeted metabolite profiling for systemic discovery of direct and indirect consequences of gene mutations and drug treatments. PMID:22723833

Chen, Qiuying; Park, Hyeong-Cheon; Goligorsky, Michael S.; Chander, Praveen; Fischer, Steven M.; Gross, Steven S.

2012-01-01

100

Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.  

PubMed

Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

2007-11-01

101

Structural and Mechanistic Insights into Unusual Thiol Disulfide Oxidoreductase  

PubMed Central

Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (?181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pKa of all protonable residues, including the cysteine and histidine residues. Thus, the pKa values for the thiol group of Cys31 and Cys34 are 4.8 and 11.3, respectively. The His33 pKa value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His33 in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism. PMID:22128175

Garcin, Edwige B.; Bornet, Olivier; Elantak, Latifa; Vita, Nicolas; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

2012-01-01

102

New Insights into Type II NAD(P)H:Quinone Oxidoreductases  

PubMed Central

Type II NAD(P)H:quinone oxidoreductases (NDH-2) catalyze the two-electron transfer from NAD(P)H to quinones, without any energy-transducing site. NDH-2 accomplish the turnover of NAD(P)H, regenerating the NAD(P)+ pool, and may contribute to the generation of a membrane potential through complexes III and IV. These enzymes are usually constituted by a nontransmembrane polypeptide chain of ?50 kDa, containing a flavin moiety. There are a few compounds that can prevent their activity, but so far no general specific inhibitor has been assigned to these enzymes. However, they have the common feature of being resistant to the complex I classical inhibitors rotenone, capsaicin, and piericidin A. NDH-2 have particular relevance in yeasts like Saccharomyces cerevisiae and in several prokaryotes, whose respiratory chains are devoid of complex I, in which NDH-2 keep the [NADH]/[NAD+] balance and are the main entry point of electrons into the respiratory chains. Our knowledge of these proteins has expanded in the past decade, as a result of contributions at the biochemical level and the sequencing of the genomes from several organisms. The latter showed that most organisms contain genes that potentially encode NDH-2. An overview of this development is presented, with special emphasis on microbial enzymes and on the identification of three subfamilies of NDH-2. PMID:15590775

Melo, Ana M. P.; Bandeiras, Tiago M.; Teixeira, Miguel

2004-01-01

103

Disarming Burkholderia pseudomallei: Structural and Functional Characterization of a Disulfide Oxidoreductase (DsbA) Required for Virulence In Vivo  

PubMed Central

Abstract Aims: The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed. Results: Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB. Innovation: This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei. Conclusion: These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism. Antioxid. Redox Signal. 20, 606–617. PMID:23901809

McMahon, Róisín M.; Marshall, Laura E.; Halili, Maria; Furlong, Emily; Tay, Stephanie; Sarkar-Tyson, Mitali

2014-01-01

104

Photoprotective role of NADPH:protochlorophyllide oxidoreductase A  

PubMed Central

A homology model of NADPH:protochlorophyllide (Pchlide) oxidoreductase A (POR; E.C. 1.3.33.1) of barley is developed and verified by site-directed mutagenesis. PORA is considered a globular protein consisting of nine ?-helices and seven ?-strands. The model predicts the presence of two functionally distinctive Pchlide binding sites where the pigment is coordinated by cystein residues. The pigment bound to the first, high-affinity Pchlide binding site is used for the formation of the photoactive state of the enzyme. The pigment bound to the second, low-affinity Pchlide binding site is involved in the PORA:PORB interaction, allowing for resonance energy transfer between the neighboring PORs in the complex. In the in vitro reconstituted light-harvesting POR:Pchlide complex (LHPP), light absorbed by PORA-bound Pchlide b is transferred to PORB-bound Pchlide a. That induces the conversion of Pchlide a to chlorophyllide (Chlide) a. This energy transfer eliminates the possibility of Pchlide b photoreduction and prevents that excited triplet states of either Pchlides a or b accumulate and provoke singlet oxygen production. Together, our results provide a photoprotective role of PORA during greening. PMID:18723681

Buhr, Frank; El Bakkouri, Majida; Valdez, Oscar; Pollmann, Stephan; Lebedev, Nikolai; Reinbothe, Steffen; Reinbothe, Christiane

2008-01-01

105

Elementary tetrahelical protein design for diverse oxidoreductase functions  

PubMed Central

Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-?-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications. PMID:24121554

Lichtenstein, Bruce R; Sheehan, Molly M; Fry, Bryan A; Bialas, Chris; Ennist, Nathan M; Siedlecki, Jessica A; Zhao, Zhenyu; Stetz, Matthew A; Valentine, Kathleen G; Anderson, J L Ross; Wand, A Joshua; Discher, Bohdana M; Moser, Christopher C; Dutton, P Leslie

2014-01-01

106

Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase  

SciTech Connect

In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.

Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F. (Toronto); (Kyoto)

2012-05-24

107

Protein conformational gating of enzymatic activity in xanthine oxidoreductase  

PubMed Central

In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semi-quinone/hydroquinone pair (Esq/hq) is ~170 mV, a striking difference. The former greatly prefers NAD+ as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD+), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. Based on new 1.65, 2.3, 1.9 and 2.2 Å resolution crystal structures for XDH, XO, the NAD+- and NADH- complexed XDH, Esq/hq were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the Esq/hq difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD+ binding at XDH. Instead, the positive charge of NAD+ ring, deprotonation of Asp429 and the capping of the bulk surface of the flavin by the NAD+ molecule all contribute to alter Esq/hq upon NAD+ binding to XDH. PMID:22145797

Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F.

2011-01-01

108

Ferredoxin:NADP+ Oxidoreductase Association with Phycocyanin Modulates Its Properties*  

PubMed Central

In photosynthetic organisms, ferredoxin:NADP+ oxidoreductase (FNR) is known to provide NADPH for CO2 assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNRS) similar to the one found in plant plastids and a large one (FNRL) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNRL exhibits a higher NADP+/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNRL, named FNRL-PC. The enzymatic activities of FNRL-PC were compared with those of FNRS. During NADPH oxidation, FNRL-PC exhibits a 30% decrease in the Michaelis constant Km(NADPH), and a 70% increase in Km(ferredoxin), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP+ reduction, the FNRL-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP+. The increase in Km(ferredoxin) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNRL-PC. Both isoforms are capable of catalyzing the NADP+ reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo. PMID:19759024

Korn, Anja; Ajlani, Ghada; Lagoutte, Bernard; Gall, Andrew; Sétif, Pierre

2009-01-01

109

Clinical, Genetic, and Enzymatic Characterization of P450 Oxidoreductase Deficiency in Four Patients  

PubMed Central

Context: P450 oxidoreductase (POR) deficiency causes disordered steroidogenesis; severe mutations cause genital ambiguity in both sexes plus the Antley-Bixler skeletal malformation syndrome, whereas mild mutations can cause adult infertility. Objective: We describe four patients with POR deficiency and identify and characterize the activities of their mutations. A 46,XY male with micropenis and two 46,XX female infants with genital ambiguity presented with skeletal malformations, and a 46,XX adolescent presented with primary amenorrhea, elevated 17?-hydroxyprogesterone, and low sex steroids. Methods: The coding regions of the POR gene were sequenced, and the identified mutations were recreated in human POR cDNA expression vectors lacking 27 N-terminal residues. POR and human P450c17 were expressed in bacteria. POR activity was measured by four assays: reduction of cytochrome c, oxidation of reduced nicotinamide adenine dinucleotide phosphate, and support of the 17?-hydroxylase and 17,20 lyase activities of P450c17. Results: All four patients were compound heterozygotes for POR mutations, including five novel mutations: L577R, N185K, delE217, and frameshift mutations 1363delC and 697–698insGAAC. N185K and delE217 lacked measurable activity in the assays based on P450c17 but retained partial activity in the assays based on cytochrome c. As assessed by Vmax/Km, L577R supported 46% of 17?-hydroxylase activity but only 27% of 17,20 lyase activity. Computational modeling of these novel mutants revealed the structural basis for their reduced or absent activities. Conclusion: These patients illustrate the broad clinical spectrum of POR deficiency, including amenorrhea and infertility as the sole manifestation. POR assays based on P450c17 correlate well with hormonal and clinical phenotypes. PMID:19837910

Sahakitrungruang, Taninee; Huang, Ningwu; Tee, Meng Kian; Agrawal, Vishal; Russell, William E.; Crock, Patricia; Murphy, Nuala; Migeon, Claude J.; Miller, Walter L.

2009-01-01

110

Homologous Expression of a Subcomplex of Pyrococcus furiosus Hydrogenase that Interacts with Pyruvate Ferredoxin Oxidoreductase  

PubMed Central

Hydrogen gas is an attractive alternative fuel as it is carbon neutral and has higher energy content per unit mass than fossil fuels. The biological enzyme responsible for utilizing molecular hydrogen is hydrogenase, a heteromeric metalloenzyme requiring a complex maturation process to assemble its O2-sensitive dinuclear-catalytic site containing nickel and iron atoms. To facilitate their utility in applied processes, it is essential that tools are available to engineer hydrogenases to tailor catalytic activity and electron carrier specificity, and decrease oxygen sensitivity using standard molecular biology techniques. As a model system we are using hydrogen-producing Pyrococcus furiosus, which grows optimally at 100°C. We have taken advantage of a recently developed genetic system that allows markerless chromosomal integrations via homologous recombination. We have combined a new gene marker system with a highly-expressed constitutive promoter to enable high-level homologous expression of an engineered form of the cytoplasmic NADP-dependent hydrogenase (SHI) of P. furiosus. In a step towards obtaining ‘minimal’ hydrogenases, we have successfully produced the heterodimeric form of SHI that contains only two of the four subunits found in the native heterotetrameric enzyme. The heterodimeric form is highly active (150 units mg?1 in H2 production using the artificial electron donor methyl viologen) and thermostable (t1/2 ?0.5 hour at 90°C). Moreover, the heterodimer does not use NADPH and instead can directly utilize reductant supplied by pyruvate ferredoxin oxidoreductase from P. furiosus. The SHI heterodimer and POR therefore represent a two-enzyme system that oxidizes pyruvate and produces H2 in vitro without the need for an intermediate electron carrier. PMID:22039508

Jenney, Francis E.; Chandrayan, Sanjeev K.; McTernan, Patrick M.; Adams, Michael W. W.

2011-01-01

111

P450 Oxidoreductase Deficiency: A Disorder of Steroidogenesis with Multiple Clinical Manifestations  

NSDL National Science Digital Library

Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

Walter L. Miller (San Francisco;University of California REV)

2012-10-23

112

Specificity of Human Aldo-Keto Reductases, NAD(P)H: Quinone Oxidoreductase and Carbonyl Reductases to Redox-Cycle Polycyclic Aromatic Hydrocarbon Diones and 4-Hydroxyequilenin-o-Quinone  

PubMed Central

Polycyclic aromatic hydrocarbons (PAH) are suspect human lung carcinogens and can be metabolically activated to remote quinones, e.g. benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases and to non-K region o-quinones by aldo-keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS) and produce the mutagenic lesion 8-oxo-dGuo, and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1,000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion and hydrogen peroxide formation established that ROS were produced as a result of the redox-cycling. When compared with human recombinant NAD(P)H: quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and lastly CBR1 and CBR3. In A549 cells two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones. PMID:21910479

Shultz, Carol A.; Quinn, Amy M.; Park, Jong-Heum; Harvey, Ronald G.; Bolton, Judy L; Maser, Edmund; Penning, Trevor M.

2011-01-01

113

40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...  

Code of Federal Regulations, 2011 CFR

...Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of...

2011-07-01

114

40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...  

Code of Federal Regulations, 2010 CFR

...Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of...

2010-07-01

115

40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...  

...Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of...

2014-07-01

116

Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve.  

PubMed

Larvae of the leaf beetle subtribe Chrysomelina sensu stricto repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors (e.g. salicylaldehyde). The autonomous production of iridoids, as in Phaedon cochleariae, is the ancestral chrysomeline chemical defence and predates the evolution of salicylaldehyde-based defence. Both biosynthesis strategies include an oxidative step of an alcohol intermediate. In salicylaldehyde-producing species, this step is catalysed by salicyl alcohol oxidases (SAOs) of the glucose-methanol-choline (GMC) oxidoreductase superfamily, but the enzyme oxidizing the iridoid precursor is unknown. Here, we show by in vitro as well as in vivo experiments that P. cochleariae also uses an oxidase from the GMC superfamily for defensive purposes. However, our phylogenetic analysis of chrysomeline GMC oxidoreductases revealed that the oxidase of the iridoid pathway originated from a GMC clade different from that of the SAOs. Thus, the evolution of a host-independent chemical defence followed by a shift to a host-dependent chemical defence in chrysomeline beetles coincided with the utilization of genes from different GMC subfamilies. These findings illustrate the importance of the GMC multi-gene family for adaptive processes in plant-insect interactions. PMID:24943369

Rahfeld, Peter; Kirsch, Roy; Kugel, Susann; Wielsch, Natalie; Stock, Magdalena; Groth, Marco; Boland, Wilhelm; Burse, Antje

2014-08-01

117

Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae.  

PubMed Central

The gene that encodes 1,2-propanediol oxidoreductase (fucO) from Escherichia coli was sequenced. The reading frame specified a protein of 383 amino acids (including the N-terminal methionine), with an aggregate molecular weight of 40,642. The induction of fucO transcription, which occurred in the presence of fucose, was confirmed by Northern blot analysis. In E. coli, the primary fucO transcript was approximately 2.1 kilobases in length. The 5' end of the transcript began more than 0.7 kilobase upstream of the fucO start codon within or beyond the fucA gene. Propanediol oxidoreductase exhibited 41.7% identity with the iron-containing alcohol dehydrogenase II from Zymomonas mobilis and 39.5% identity with ADH4 from Saccharomyces cerevisiae. These three proteins did not share homology with either short-chain or long-chain zinc-containing alcohol dehydrogenase enzymes. We propose that these three unusual alcohol dehydrogenases define a new family of enzymes. Images PMID:2661535

Conway, T; Ingram, L O

1989-01-01

118

A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation  

PubMed Central

Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyze the exchange of reducing equivalents between one-electron carriers and the two-electron-carrying NADP(H). The main role of FNRs in cyanobacteria and leaf plastids is to provide the NADPH for photoautotrophic metabolism. In root plastids, a distinct FNR isoform is found that has been postulated to function in the opposite direction, providing electrons for nitrogen assimilation at the expense of NADPH generated by heterotrophic metabolism. A multiple gene family encodes FNR isoenzymes in plants, whereas there is only one FNR gene (petH) in cyanobacteria. Nevertheless, we detected two FNR isoforms in the cyanobacterium Synechocystis sp. strain PCC6803. One of them (FNRS ?34 kDa) is similar in size to the plastid FNR and specifically accumulates under heterotrophic conditions, whereas the other one (FNRL ?46 kDa) contains an extra N-terminal domain that allows its association with the phycobilisome. Site-directed mutants allowed us to conclude that the smaller isoform, FNRS, is produced from an internal ribosome entry site within the petH ORF. Thus we have uncovered a mechanism by which two isoforms are produced from a single gene, which is, to our knowledge, novel in photosynthetic bacteria. Our results strongly suggest that FNRL is an NADP+ reductase, whereas FNRS is an NADPH oxidase. PMID:17116880

Thomas, Jean-Claude; Ughy, Bettina; Lagoutte, Bernard; Ajlani, Ghada

2006-01-01

119

Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance  

PubMed Central

The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

2014-01-01

120

Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.  

PubMed

The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

2014-01-01

121

Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices.  

PubMed

Although oxidoreductases are widely used in many applications, such as biosensors and biofuel cells, improvements in the function of existing oxidoreductases or the discovery of novel oxidoreductases with greater activities is desired. To increase the activity of oxidoreductases by directed evolution, a powerful screening technique for oxidoreductases is required. In this study, we demonstrate the utility of boron-doped diamond (BDD) microelectrodes for quantitative and potentially high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. We first confirmed that BDD microelectrodes can quantify the activity of low concentrations (10-100 pM) of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase with a measuring time of 1 ms per sample. In addition, we found that poisoning of BDD microelectrodes can be repressed by optimizing the pH and by adding l-arginine to the enzyme solution as an antiaggregation agent. Finally, we fabricated a microfluidic device containing a BDD electrode for the first time and observed the elevation of the oxidation current of NADH with increasing flow rate. These results imply that the combination of a BDD microelectrode and microfluidics can be used for high-throughput screening of an oxidoreductase library containing a large number (>10(6)) of samples, each with a small (nanoliter) sample volume. PMID:25211652

Oyobiki, Ryo; Kato, Taisuke; Katayama, Michinobu; Sugitani, Ai; Watanabe, Takeshi; Einaga, Yasuaki; Matsumoto, Yoshinori; Horisawa, Kenichi; Doi, Nobuhide

2014-10-01

122

Purification and Molecular Characterization of the Tungsten-Containing Formaldehyde Ferredoxin Oxidoreductase from the Hyperthermophilic Archaeon Pyrococcus furiosus: the Third of a Putative Five-Member Tungstoenzyme Family  

PubMed Central

Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100°C by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS?) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 ?M) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and one [4Fe-4S] cluster per subunit. PMID:9973343

Roy, Roopali; Mukund, Swarnalatha; Schut, Gerrit J.; Dunn, Dianne M.; Weiss, Robert; Adams, Michael W. W.

1999-01-01

123

NAD(P)H Cytochrome b5 Oxidoreductase Deficiency in Leishmania major Results in Impaired Linoleate Synthesis Followed by Increased Oxidative Stress and Cell Death*  

PubMed Central

NAD(P)H cytochrome b5 oxidoreductase (Ncb5or), comprising cytochrome b5 and cytochrome b5 reductase domains, is widely distributed in eukaryotic organisms. Although Ncb5or plays a crucial role in lipid metabolism of mice, so far no Ncb5or gene has been reported in the unicellular parasitic protozoa Leishmania species. We have cloned, expressed, and characterized Ncb5or gene from Leishmania major. Steady state catalysis and spectral studies show that NADH can quickly reduce the ferric state of the enzyme to the ferrous state and is able to donate an electron(s) to external acceptors. To elucidate its exact physiological role in Leishmania, we attempted to create NAD(P)H cytochrome b5 oxidoreductase from L. major (LmNcb5or) knock-out mutants by targeted gene replacement technique. A free fatty acid profile in knock-out (KO) cells reveals marked deficiency in linoleate and linolenate when compared with wild type (WT) or overexpressing cells. KO culture has a higher percentage of dead cells compared with both WT and overexpressing cells. Increased O2 uptake, uncoupling and ATP synthesis, and loss of mitochondrial membrane potential are evident in KO cells. Flow cytometric analysis reveals the presence of a higher concentration of intracellular H2O2, indicative of increased oxidative stress in parasites lacking LmNcb5or. Cell death is significantly reduced when the KO cells are pretreated with BSA bound linoleate. Real time PCR studies demonstrate a higher ?12 desaturase, superoxide dismutase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA with a concomitant fall in ?9 desaturase mRNA expression in LmNcb5or null cell line. Together these findings suggest that decreased linoleate synthesis, and increased oxidative stress and apoptosis are the major consequences of LmNcb5or deficiency in Leishmania. PMID:22923617

Mukherjee, Supratim; Sen Santara, Sumit; Das, Shantanabha; Bose, Moumita; Roy, Jayasree; Adak, Subrata

2012-01-01

124

ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases  

USGS Publications Warehouse

Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

2012-01-01

125

Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential  

SciTech Connect

Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K{sup +}-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.

Fernandes, Andreia S. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal); Konstantinov, Alexander A. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal); A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow (Russian Federation); Teixeira, Miguel [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal); Pereira, Manuela M. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal)]. E-mail: mpereira@itqb.unl.pt

2005-05-06

126

NAD(P)H-utilizing oxidoreductases of the plasma membrane An overview of presently purified proteins  

Microsoft Academic Search

Summary A considerable number of studies have demonstrated the presence of NAD(P)-oxidoreductases in the plant and animal cell plasma membranes. Recently several attempts on the isolation and purification of these proteins have been presented. The results indicate the presence of distinct NAD(P)H-utilizing enzymes in the plasma membrane of several species. Proteins with molecular masses of 27 kDa, 31 kDa, 36–39

A. Bérczi; H. Asard

1995-01-01

127

Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase  

Microsoft Academic Search

In mammals, xanthine oxidoreductase is synthesized as a dehydrogenase (XDH) but can be readily converted to its oxidase form (XO) either by proteolysis or modification of cysteine residues. The crystal structures of bovine milk XDH and XO demonstrated that atoms in the highly charged active-site loop (Gln-423-Lys-433) around the FAD cofactor underwent large dislocations during the conversion, blocking the approach

Yoshimitsu Kuwabara; Tomoko Nishino; Ken Okamoto; Tomohiro Matsumura; Bryan T. Eger; Emil F. Pai; Takeshi Nishino

2003-01-01

128

Apparent Manifesting Heterozygosity in P450 Oxidoreductase Deficiency and Its Effect on Coexisting 21Hydroxylase Deficiency  

Microsoft Academic Search

Context: P450 oxidoreductase (POR) deficiency is a disorder of ste- roidogenesis affecting the microsomal P450 enzymes that use POR as an electron donor. The clinical presentation is variable; patients can be asymptomatic or can present with genital anomalies and the Ant- ley-Bixler syndrome, characterized by craniosynostosis and other bony anomalies. Obligately heterozygous parents are normal. Com- bined POR and 21-hydroxylase

Rachel R. Scott; Larissa G. Gomes; Ningwu Huang; Guy Van Vliet; Walter L. Miller

129

Spectroscopic characterization of the tungsten and iron centers in aldehyde ferredoxin oxidoreductases from two hyperthermophilic Archaea  

Microsoft Academic Search

The electronic and redox properties of iron and tungsten centers in the aldehyde ferredoxin oxidoreductases (AORs) from Pyrococcus furiosus (Pf) and pyrococcus strain ES-4 (ES-4) have been investigated by the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. Parallel- and perpendicular-mode EPR studies of ES-4 AOR reveal a redox inactive `g = 16` resonance from an integer spin

Brian P. Koehler; Swarnalatha Mukund; Richard C. Conover; Ish K. Dhawan; Roopali Roy; Michael W. W. Adams; Michael K. Johnson

1996-01-01

130

Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate*  

PubMed Central

Moorella thermoacetica is an anaerobic acetogen, a class of bacteria that is found in the soil, the animal gastrointestinal tract, and the rumen. This organism engages the Wood-Ljungdahl pathway of anaerobic CO2 fixation for heterotrophic or autotrophic growth. This paper describes a novel enzyme, oxalate oxidoreductase (OOR), that enables M. thermoacetica to grow on oxalate, which is produced in soil and is a common component of kidney stones. Exposure to oxalate leads to the induction of three proteins that are subunits of OOR, which oxidizes oxalate coupled to the production of two electrons and CO2 or bicarbonate. Like other members of the 2-oxoacid:ferredoxin oxidoreductase family, OOR contains thiamine pyrophosphate and three [Fe4S4] clusters. However, unlike previously characterized members of this family, OOR does not use coenzyme A as a substrate. Oxalate is oxidized with a kcat of 0.09 s?1 and a Km of 58 ?m at pH 8. OOR also oxidizes a few other 2-oxoacids (which do not induce OOR) also without any requirement for CoA. The enzyme transfers its reducing equivalents to a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. In conjunction with the well characterized Wood-Ljungdahl pathway, OOR should be sufficient for oxalate metabolism by M. thermoacetica, and it constitutes a novel pathway for oxalate metabolism. PMID:20956531

Pierce, Elizabeth; Becker, Donald F.; Ragsdale, Stephen W.

2010-01-01

131

Bioelectrocatalysts: engineered oxidoreductase system for utilization of fumarate reductase in chemical synthesis, detection, and fuel cells.  

PubMed

Fumarate reductase was used as a model oxidoreductase to demonstrate continuous electrical cofactor reduction-oxidation during the bioelectrochemical synthesis and detection of chemicals. The enzyme preparation was immobilized onto a graphite felt electrode that was modified with carboxymethylcellulose (CMC). Nicotinamide adenine dinucleotide (NAD), neutral red, and fumarate reductase (which contained menaquinone) were covalently linked by peptide bonds to the CMC. The electron mediator neutral red allowed NAD and menaquinone to be recycled electrically during enzymatic chemical synthesis. Succinate detection by the bioelectrocatalyst was linear from 5 microM to 10 mM succinate. Fumarate synthesis using this bioelectrode was dependent on succinate utilization and resulted in proportional production of electricity and fumarate. Succinate synthesis using this bioelectrocatalyst was dependent on current and fumarate concentration. This bioelectrocatalyst system may enhance the utility of menaquinone- and/or pyridine nucleotide-linked oxidoreductases in diverse enzymatic fuel cells and sensors. It may also enhance the utility of oxidoreductase-based chemical synthesis systems because it eliminates the problem of cofactor recycling. PMID:14566068

Park, Doo Hyun; Vieille, C; Zeikus, J G

2003-10-01

132

Xanthine Oxidoreductase Reference Values in Platelet-Poor Plasma and Platelets in Healthy Volunteers  

PubMed Central

Introduction. Xanthine oxidoreductase (XOR) is an enzyme belonging to the class of hydroxylases. XOR is stated, inter alia, in the kidneys, liver, and small intestine as well as in leukocytes and platelets and endothelial cells of capillaries. Its main role is to participate in the conversion of hypoxanthine to xanthine and the uric acid. It occurs in two isoforms: dehydrogenase (XD) and oxidase (XO), which is considered one of the sources of reactive oxygen species. Aim of the Study. Determination of reference values of xanthine oxidoreductase activity in PPP and platelets. Materials and Methods. Study group consisted of 70 healthy volunteers. The isoform activities of xanthine oxidoreductase were determined by kinetic spectrophotometry. Results. A statistically significant difference between the activity of the XOR in PPP and platelets (P < 0.001). The highest activity of XO was found in both PPP and blood platelets. Significant differences between the activity of the various isoforms in PPP (P = 0.0032) and platelets (P < 0.001) were also found. Conclusions. The healthy volunteers showed the highest activity XO (prooxidant) and the lowest XD (antioxidant), which indicates a slight oxidative stress and confirmed physiological effects of XOR.

Cecerska-Hery?, El?bieta; Klaudyna, Szupiluk; Dominika, M?czka; Dominika, Pawlak; Marta, Urba?ska; Do??gowska, Barbara

2015-01-01

133

Diversity and Function of Mutations in P450 Oxidoreductase in Patients with Antley-Bixler Syndrome and Disordered Steroidogenesis  

PubMed Central

P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 “private” mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17?-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR’s support of catalysis by P450c17—the enzyme most closely associated with the hormonal phenotype—provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency. PMID:15793702

Huang, Ningwu; Pandey, Amit V.; Agrawal, Vishal; Reardon, William; Lapunzina, Pablo D.; Mowat, David; Jabs, Ethylin Wang; Vliet, Guy Van; Sack, Joseph; Flück, Christa E.; Miller, Walter L.

2005-01-01

134

Comparative Genomics of Thiol Oxidoreductases Reveals Widespread and Essential Functions of Thiol-based Redox Control of Cellular Processes  

PubMed Central

Abstract Aims: Redox regulation of cellular processes is an important mechanism that operates in organisms from bacteria to mammals. Much of the redox control is provided by thiol oxidoreductases: proteins that employ cysteine residues for redox catalysis. We wanted to identify thiol oxidoreductases on a genome-wide scale and use this information to obtain insights into the general principles of thiol-based redox control. Results: Thiol oxidoreductases were identified by three independent methods that took advantage of the occurrence of selenocysteine homologs of these proteins and functional linkages among thiol oxidoreductases revealed by comparative genomics. Based on these searches, we describe thioredoxomes, which are sets of thiol oxidoreductases in organisms. Their analyses revealed that these proteins are present in all living organisms, generally account for 0.5%–1% of the proteome and that their use correlates with proteome size, distinguishing these proteins from those involved in core metabolic functions. We further describe thioredoxomes of Saccharomyces cerevisiae and humans, including proteins which have not been characterized previously. Thiol oxidoreductases occur in various cellular compartments and are enriched in the endoplasmic reticulum and cytosol. Innovation: We developed bioinformatics methods and used them to characterize thioredoxomes on a genome-wide scale, which in turn revealed properties of thioredoxomes. Conclusion: These data provide information about organization and properties of thiol-based redox control, whose use is increased with the increase in complexity of organisms. Our data also show an essential combined function of a set of thiol oxidoreductases, and of thiol-based redox regulation in general, in all living organisms. Antioxid. Redox Signal. 16, 193–201. PMID:21902454

2012-01-01

135

The effects of lipid phase transitions on the interaction of mitochondrial NADH--ubiquinone oxidoreductase with ubiquinol--cytochrome c oxidoreductase.  

PubMed Central

1. The endogenous phosphatidylcholine and phosphatidylethanolamine of Complexes I and III from bovine heart mitochondria may be completely replaced with 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine with at least partial retention of activity. 2. The lipid-replaced enzymes associate in 1:1 molar ratio to give a Complex I--III unit catalysing NADH-cytochrome c oxidoreductase activity. 3. On increasing the concentration of ubiquinone-10 and the synthetic phospholipid, the lipid-replaced Complexes appear to operate independently of each other as in the natural membrane. Thus the lipid-replaced enzymes associate in exactly the same ways as the enzymes containing natural phospholipids. 4. Arrhenius plots of NADH--cytochrome c oxidoreductase activity reconstituted from lipid-replaced Complexes I and III exhibit changes in slope at 24 degrees C. When the concentrations of phospholipid and ubiquinone-10 are increased, the Arrhenius plots show discontinuities at 24 degrees C as well as changes in slope. 5. The kinetics of cytochrome b reduction by NADH were measured in mixtures containing 2 mol of Complex III/mol of Complex I. When the enzymes contained natural phospholipids. the reduction kinetics were biphasic. When the enzymes had been supplemented with further phospholipid and ubiquinone-10 the kinetics were monophasic. When lipid-replaced enzymes were supplemented with 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine and ubiquinone-10, reduction of cytochrome b was monophasic above the phase-transition temperature of the lipid but biphasic below it. 6. These findings are interpreted in terms of the model for the interaction of Complexes in the natural membrane proposed by Heron, Ragan & Trum-power [(1978) Biochem. J. 174, 791--800]. PMID:220964

Heron, C; Gore, M G; Ragan, C I

1979-01-01

136

Allosteric nucleotide-binding site in the mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I)  

PubMed Central

The rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase reactions catalyzed by bovine heart and Yarrowia lipolytica submitochondrial particles or purified bovine complex I are stimulated by ATP and other purine nucleotides. The soluble fraction of mammalian complex I (FP) and prokaryotic complex I homolog NDH-1 in Paracoccus denitrificans plasma membrane lack stimulation of their activities by ATP. The stimulation appears as a decrease in apparent Km values for NADH and HAR. Thus, the “accessory” subunits of eukaryotic complex I bear an allosteric ATP-binding site. PMID:21624365

Grivennikova, Vera G.; Gladyshev, Grigory V.; Vinogradov, Andrei D.

2011-01-01

137

Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states.  

PubMed

Electron transfer between membrane spanning oxidoreductase enzymes controls vital metabolic processes. Here we studied for the first time with single molecule resolution the function of P450 oxidoreductase (POR), the canonical membrane spanning activator of all microsomal cytochrome P450 enzymes. Measurements and statistical analysis of individual catalytic turnover cycles shows POR to sample at least two major functional states. This phenotype may underlie regulatory interactions with different cytochromes P450 but to date has remained masked in bulk kinetics. To ensure that we measured the inherent behavior of POR, we reconstituted the full length POR in "native like" membrane patches, nanodiscs. Nanodisc reconstitution increased stability by ?2-fold as compared to detergent solubilized POR and showed significantly increased activity at biologically relevant ionic strength conditions, highlighting the importance of studying POR function in a membrane environment. This assay paves the way for studying the function of additional membrane spanning oxidoreductases with single molecule resolution. PMID:24359083

Laursen, Tomas; Singha, Aparajita; Rantzau, Nicolai; Tutkus, Marijonas; Borch, Jonas; Hedegård, Per; Stamou, Dimitrios; Møller, Birger Lindberg; Hatzakis, Nikos S

2014-03-21

138

Simultaneous Involvement of a Tungsten-Containing Aldehyde:Ferredoxin Oxidoreductase and a Phenylacetaldehyde Dehydrogenase in Anaerobic Phenylalanine Metabolism  

PubMed Central

Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH. PMID:24214948

Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg

2014-01-01

139

The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?  

PubMed Central

At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems. PMID:24678667

Goss, Tatjana; Hanke, Guy

2014-01-01

140

Genes  

NSDL National Science Digital Library

Illustration of the placement of genes in a chromosome. A gene can be defined as a region of DNA that controls a hereditary characteristic. It usually corresponds to a sequence used in the production of a specific protein or RNA. A gene carries biological information in a form that must be copied and transmitted from each cell to all its progeny. This includes the entire functional unit: coding DNA sequences, non-coding regulatory DNA sequences, and introns. Genes can be as short as 1000 base pairs or as long as several hundred thousand base pairs. It can even be carried by more than one chromosome. The estimate for the number of genes in humans has decreased as our knowledge has increased. As of 2001, humans are thought to have between 30,000 and 40,000 genes.

Access Excellence

2005-03-12

141

The Saccharomyces cerevisiae quinone oxidoreductase Lot6p: stability, inhibition and cooperativity.  

PubMed

Lot6p (EC 1.5.1.39; Ylr011wp) is the sole quinone oxidoreductase in the budding yeast, Saccharomyces cerevisiae. Using hexahistidine tagged, recombinant Lot6p, we determined the steady-state enzyme kinetic parameters with both NADH and NADPH as electron donors; no cooperativity was observed with these substrates. The NQO1 inhibitor curcumin, the NQO2 inhibitor resveratrol, the bacterial nitroreductase inhibitor nicotinamide and the phosphate mimic vanadate all stabilise the enzyme towards thermal denaturation as judged by differential scanning fluorimetry. All except vanadate have no observable effect on the chemical cross-linking of the two subunits of the Lot6p dimer. These compounds all inhibit Lot6p's oxidoreductase activity, and all except nicotinamide exhibit negative cooperativity. Molecular modelling suggests that curcumin, resveratrol and nicotinamide all bind over the isoalloxazine ring of the FMN cofactor in Lot6p. Resveratrol was predicted to contact an ?-helix that links the two active sites. Mutation of Gly-142 (which forms part of this helix) to serine does not greatly affect the thermal stability of the enzyme. However, this variant shows less cooperativity towards resveratrol than the wild type. This suggests a plausible hypothesis for the transmission of information between the subunits and, thus, the molecular mechanism of negative cooperativity in Lot6p. PMID:24866129

Megarity, Clare F; Looi, Hong Keat; Timson, David J

2014-08-01

142

Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH  

SciTech Connect

Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

Pan, Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China) [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Hongmei; Gao, Yu; Li, Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)] [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chang, Wenrui, E-mail: wrchang@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)] [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

2009-12-18

143

Glucagon activation of the thiol:protein disulfide oxidoreductase in isolated, rat, hepatic microsomes  

SciTech Connect

Thiol:protein disulfide oxidoreductase catalyzes the GSH reduction of protein disulfides to sulfhydryl groups. The authors determined this activity in washed rat hepatic microsomes (1) by a coupled reaction in which GSSG is reduced by GSH reductase and NADPH is oxidized and (2) by the cleavage of (/sup 125/I)-insulin (insulinase). Physiological concentrations of glucagon (GLU)(1 nM) with GSH (1 mM) increased both activities (NADPH oxidae - 1.1 nmol/min-mg prot (control)(C) to 4.3 (GLU); insulinase - 36 (C) to 83 (GLU)). For both assays stimulation was only seen with low protein concentrations (< 100 ..mu..g/ml), probably due to nonspecific GLU binding rather than proteolysis of the GLU since both reactions were linear for at least 30 min. The stimulation of NADPH oxidase had a P50 for GLU of 0.78 nM. GLU stimulation of insulinase was only observed in the presence of a GSH reducing system. Basal insulinase activity was unaffected by GSH reductase. These two observation suggest that the stimulation may be inhibited by the presence of GSSG. This effect was not due to depletion of GSH since the same effect was observed with higher GSH (5 mM). Although the effect on NADPH oxidase could represent activation of a GSH peroxidase, the insulinase data support the hypothesis that GLU may act by stimulating the thiol:protein disulfide oxidoreductase catalyzed reduction of protein disulfides.

McConkey, D.J.; Crankshaw, D.L.; Holtzman, J.L.

1986-05-01

144

Benzofuran-, benzothiophene-, indazole- and benzisoxazole-quinones: excellent substrates for NAD(P)H:quinone oxidoreductase 1.  

PubMed

A series of heterocyclic quinones based on benzofuran, benzothiophene, indazole and benzisoxazole has been synthesized, and evaluated for their ability to function as substrates for recombinant human NAD(P)H:quinone oxidoreductase (NQO1), a two-electron reductase upregulated in tumor cells. Overall, the quinones are excellent substrates for NQO1, approaching the reduction rates observed for menadione. PMID:23635904

Newsome, Jeffery J; Hassani, Mary; Swann, Elizabeth; Bibby, Jane M; Beall, Howard D; Moody, Christopher J

2013-06-01

145

Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja.  

PubMed

The light-independent protochlorophyllide oxidoreductase (DPOR) plays a key role in the ability of nonflowering plants and algae to synthesize chlorophyll in darkness. This enzyme consists of three subunits encoded by the chlB, chlL, and chlN genes in the plastid genome. Previously, we found a high nonsynonymous substitution rate (dN) of the chlL gene in the lineage of Thuja standishii, a conifer belonging to the Cupressaceae. Here we revealed that the acceleration of dN in the chlL occurred as well in other species of Thuja, Thuja occidentalis and Thuja plicata. In addition, dark-grown seedlings of T. occidentalis were found to exhibit a pale yellowish color, and their chlorophyll concentration was much lower than that of other species of Cupressaceae. The results suggested that the species of Thuja have lost the ability to synthesize chlorophyll in darkness, and the functional constraint on the DPOR would thus be expected to be relaxed in this genus. Therefore, we expected to find that the evolutionary rates of all subunits of DPOR would in this case be accelerated. Sequence analyses of the chlN and chlB (encoding the other subunits of DPOR) in 18 species of Cupressaceae revealed that the dN of the chlN gene was accelerated in Thuja as was the dN of the chlL gene, but the dN of the chlB gene did not appear to differ significantly among the species of Cupressaceae. Sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products of these genes showed that RNA editing was rare and unlikely to have contributed to the acceleration. Moreover, the RT-PCR analysis indicated that all chl genes were still transcriptionally active in T. occidentalis. Based on these results, it appears that species of Thuja still bear the DPOR protein, although the enzyme has lost its activity because of nonsynonymous mutations of some of the chl genes. The lack of acceleration of the dN of the chlB gene might be accounted for by various unknown functions of its gene product. PMID:16428257

Kusumi, Junko; Sato, Aya; Tachida, Hidenori

2006-05-01

146

Alcohol Dehydrogenase Genes & Proteins In Grapevine  

Microsoft Academic Search

Alcohol dehydrogenase (ADH; alcohol: NAD oxidoreductase; EC 1.1.1.1) is a dimeric-zinc enzyme which catalyses the inter-conversion\\u000a of acetaldehyde to ethanol, using NAD\\/NADH as a cofactor. This is the terminal step of glycolysis, leading to fermentative\\u000a metabolism in anaerobic conditions. In this context, the evolution of this enzyme’s activity, and gene expression have been\\u000a widely investigated in response to anaerobiosis in

C. Tesniere; P. Abbal

147

Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Chemicals.  

PubMed

Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in metabolism of all chemicals (general chemicals, natural and physiological compounds, and drugs) are rather consistent in the findings that > 90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

Rendic, Slobodan Petar; Guengerich, F Peter

2014-12-01

148

Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1.  

PubMed

Quinone oxidoreductase (QOR EC1.6.5.5) catalyzes the reduction of quinone to hydroxyquinone using NADPH as a cofactor. Here we present the crystal structure of the ?-crystallin-like QOR Zta1 from Saccharomycescerevisiae in apo-form at 2.00 Å and complexed with NADPH at 1.59 Å resolution. Zta1 forms a homodimer, with each subunit containing a catalytic and a cofactor-binding domain. Upon NADPH binding to the interdomain cleft, the two domains shift towards each other, producing a better fit for NADPH, and tightening substrate binding. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis defined a potential quinone-binding site that determines the stringent substrate specificity. Moreover, multiple-sequence alignment and kinetics assays implied that a single-residue change from Arg in lower organisms to Gly in vertebrates possibly resulted in elevation of enzymatic activity of ?-crystallin-like QORs throughout evolution. PMID:21820057

Guo, Peng-Chao; Ma, Xiao-Xiao; Bao, Zhang-Zhi; Ma, Jin-Di; Chen, Yuxing; Zhou, Cong-Zhao

2011-10-01

149

NADPH quinone oxidoreductase 1 mediates breast cancer cell resistance to thymoquinone-induced apoptosis.  

PubMed

Thymoquinone (TQ), a bioactive component of black caraway seed (Nigella sativa) oil, is reported to have antineoplastic properties. In this study we investigated the effect of TQ on a panel of human breast cancer cell lines. Cell viability assays showed that TQ killed T-47D, MDA-MB-231, and MDA-MB-468 cells via p53-independent induction of apoptosis; however, MCF-7 cells were refractory to the cytotoxic action of TQ. Western Blot analysis showed that MCF-7 cells expressed high levels of cytoprotective NADPH quinone oxidoreductase 1 (NQO1), which was responsible for TQ-resistance since inhibition of NQO1 with dicoumarol rendered MCF-7 cells TQ-sensitive. These findings may be clinically important when considering TQ as a possible adjunct treatment for breast cancer since a high percentage of breast tumors express NQO1. PMID:22960073

Sutton, Kimberly M; Doucette, Carolyn D; Hoskin, David W

2012-09-28

150

Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase  

PubMed Central

Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

2013-01-01

151

Differentially regulated NADPH:cytochrome P450 oxidoreductases in?parsley  

PubMed Central

Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

Koopmann, Edda; Hahlbrock, Klaus

1997-01-01

152

Tethering of ferredoxin:NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL.  

PubMed

Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H(2)O to NADP(+). Final electron transfer from ferredoxin to NADP(+) is accomplished by a flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR). Here we describe TROL (thylakoid rhodanese-like protein), a nuclear-encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese-like domain and a C-terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high-light intensities are severely lowered accompanied with significant increase in non-photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP(+). Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ. PMID:19682289

Juri?, Snjezana; Hazler-Pilepi?, Kroata; Tomasi?, Ana; Lepedus, Hrvoje; Jelici?, Branka; Puthiyaveetil, Sujith; Bionda, Tihana; Vojta, Lea; Allen, John F; Schleiff, Enrico; Fulgosi, Hrvoje

2009-12-01

153

Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)  

SciTech Connect

Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States)] [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States); Panda, Satya P., E-mail: panda@uthscsa.edu [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States)

2011-08-05

154

Iron-Sulfur Cluster-dependent Catalysis of Chlorophyllide a Oxidoreductase from Roseobacter denitrificans.  

PubMed

Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4 (-). Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system. PMID:25422320

Kiesel, Svenja; Wätzlich, Denise; Lange, Christiane; Reijerse, Edward; Bröcker, Markus J; Rüdiger, Wolfhart; Lubitz, Wolfgang; Scheer, Hugo; Moser, Jürgen; Jahn, Dieter

2015-01-01

155

Prenatal Diagnosis of Congenital Adrenal Hyperplasia Caused by P450 Oxidoreductase Deficiency  

PubMed Central

Context: Mutations in the electron donor enzyme P450 oxidoreductase (POR) result in congenital adrenal hyperplasia with apparent combined 17?-hydroxylase/17,20 lyase and 21-hydroxylase deficiencies, also termed P450 oxidoreductase deficiency (PORD). Major clinical features present in PORD are disordered sex development in affected individuals of both sexes, glucocorticoid deficiency, and multiple skeletal malformations. Objective: The objective of the study was to establish a noninvasive approach to prenatal diagnosis of PORD including assessment of malformation severity to facilitate optimized prenatal diagnosis and timely treatment. Design: We analyzed 20 pregnancies with children homozygous or compound heterozygous for disease-causing POR mutations and 1 pregnancy with a child carrying a heterozygous POR mutation by recording clinical and biochemical presentations and fetal ultrasound findings. In 4 of the pregnancies (3 homozygous and 1 heterozygous for disease-causing POR mutations), prenatal analysis of steroid metabolite excretion in maternal urine was carried out by gas chromatography/mass spectrometry during gestational weeks 11–23. Results: Pregnancy complications in our cohort included maternal virilization (6 of 20) with onset in the second trimester. Seven pregnant women presented with low unconjugated estriol at prenatal screening (triple or quadruple antenatal screening test). Overt dysmorphic features were noted in 19 of the 20 babies at birth but observed in only 5 by prenatal ultrasound. These 5 had the most severe malformation phenotypes and poor outcome, whereas the other babies showed normal development. Steroid profiling of maternal urine revealed significantly increased steroids of fetal origin, namely the pregnenolone metabolite epiallopregnanediol and the androgen metabolite androsterone, with concomitant low values for estriol. Diagnostic steroid ratios conclusively indicated PORD as early as gestational week 12. In the heterozygous pregnancy, steroid ratios were only slightly elevated and estriol excretion was normal. Conclusion: Prenatal diagnosis in PORD is readily established via urinary steroid metabolite analysis of maternal urine. Visible malformations at prenatal ultrasound predict a severe malformation phenotype. PMID:23365120

Reisch, Nicole; Idkowiak, Jan; Hughes, Beverly A.; Ivison, Hannah E.; Abdul-Rahman, Omar A.; Hendon, Laura G.; Olney, Ann Haskins; Nielsen, Shelly; Harrison, Rachel; Blair, Edward M.; Dhir, Vivek; Krone, Nils; Shackleton, Cedric H. L.

2013-01-01

156

Genotype-Phenotype Analysis in Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency  

PubMed Central

Context: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available. Objective: The objective of the study was to establish genotype-phenotype correlations in a large PORD cohort. Design: The design of the study was the clinical, biochemical, and genetic assessment including multiplex ligation-dependent probe amplification (MLPA) in 30 PORD patients from 11 countries. Results: We identified 23 P450 oxidoreductase (POR) mutations (14 novel) including an exonic deletion and a partial duplication detected by MLPA. Only 22% of unrelated patients carried homozygous POR mutations. p.A287P was the most common mutation (43% of unrelated alleles); no other hot spot was identified. Urinary steroid profiling showed characteristic PORD metabolomes with variable impairment of 17?-hydroxylase and 21-hydroxylase. Short cosyntropin testing revealed adrenal insufficiency in 89%. DSD was present in 15 of 18 46,XX and seven of 12 46,XY individuals. Homozygosity for p.A287P was invariably associated with 46,XX DSD but normal genitalia in 46,XY individuals. The majority of patients with mild to moderate skeletal malformations, assessed by a novel scoring system, were compound heterozygous for missense mutations, whereas nearly all patients with severe malformations carried a major loss-of-function defect on one of the affected alleles. Conclusions: We report clinical, biochemical, and genetic findings in a large PORD cohort and show that MLPA is a useful addition to POR mutation analysis. Homozygosity for the most frequent mutation in Caucasians, p.A287P, allows for prediction of genital phenotype and moderate malformations. Adrenal insufficiency is frequent, easily overlooked, but readily detected by cosyntropin testing. PMID:22162478

Krone, Nils; Reisch, Nicole; Idkowiak, Jan; Dhir, Vivek; Ivison, Hannah E.; Hughes, Beverly A.; Rose, Ian T.; O'Neil, Donna M.; Vijzelaar, Raymon; Smith, Matthew J.; MacDonald, Fiona; Cole, Trevor R.; Adolphs, Nicolai; Barton, John S.; Blair, Edward M.; Braddock, Stephen R.; Collins, Felicity; Cragun, Deborah L.; Dattani, Mehul T.; Day, Ruth; Dougan, Shelley; Feist, Miriam; Gottschalk, Michael E.; Gregory, John W.; Haim, Michaela; Harrison, Rachel; Haskins Olney, Ann; Hauffa, Berthold P.; Hindmarsh, Peter C.; Hopkin, Robert J.; Jira, Petr E.; Kempers, Marlies; Kerstens, Michiel N.; Khalifa, Mohamed M.; Köhler, Birgit; Maiter, Dominique; Nielsen, Shelly; O'Riordan, Stephen M.; Roth, Christian L.; Shane, Kate P.; Silink, Martin; Stikkelbroeck, Nike M. M. L.; Sweeney, Elizabeth; Szarras-Czapnik, Maria; Waterson, John R.; Williamson, Lori; Hartmann, Michaela F.; Taylor, Norman F.; Wudy, Stefan A.; Malunowicz, Ewa M.; Shackleton, Cedric H. L.

2012-01-01

157

Pubertal Presentation in Seven Patients with Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency  

PubMed Central

Context: P450 oxidoreductase (POR) is a crucial electron donor to all microsomal P450 cytochrome (CYP) enzymes including 17?-hydroxylase (CYP17A1), 21-hydroxylase (CYP21A2) and P450 aromatase. Mutant POR causes congenital adrenal hyperplasia with combined glucocorticoid and sex steroid deficiency. P450 oxidoreductase deficiency (ORD) commonly presents neonatally, with disordered sex development in both sexes, skeletal malformations, and glucocorticoid deficiency. Objective: The aim of the study was to describe the clinical and biochemical characteristics of ORD during puberty. Design: Clinical, biochemical, and genetic assessment of seven ORD patients (five females, two males) presenting during puberty was conducted. Results: Predominant findings in females were incomplete pubertal development (four of five) and large ovarian cysts (five of five) prone to spontaneous rupture, in some only resolving after combined treatment with estrogen/progestin, GnRH superagonists, and glucocorticoids. Pubertal development in the two boys was more mildly affected, with some spontaneous progression. Urinary steroid profiling revealed combined CYP17A1 and CYP21A2 deficiencies indicative of ORD in all patients; all but one failed to mount an appropriate cortisol response to ACTH stimulation indicative of adrenal insufficiency. Diagnosis of ORD was confirmed by direct sequencing, demonstrating disease-causing POR mutations. Conclusion: Delayed and disordered puberty can be the first sign leading to a diagnosis of ORD. Appropriate testosterone production during puberty in affected boys but manifest primary hypogonadism in girls with ORD may indicate that testicular steroidogenesis is less dependent on POR than adrenal and ovarian steroidogenesis. Ovarian cysts in pubertal girls may be driven not only by high gonadotropins but possibly also by impaired CYP51A1-mediated production of meiosis-activating sterols due to mutant POR. PMID:21190981

Idkowiak, Jan; O'Riordan, Stephen; Reisch, Nicole; Malunowicz, Ewa M.; Collins, Felicity; Kerstens, Michiel N.; Köhler, Birgit; Graul-Neumann, Luitgard Margarete; Szarras-Czapnik, Maria; Dattani, Mehul; Silink, Martin; Shackleton, Cedric H. L.; Maiter, Dominique; Krone, Nils

2011-01-01

158

Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas.  

PubMed Central

Desulfovibrio gigas NCIMB 9332 cells grown in ethanol-containing medium with 0.1 microM tungstate contained a benzylviologen-linked aldehyde oxidoreductase. The enzyme was purified to electrophoretic homogeneity and found to be a homodimer with a subunit M(r) of 62,000. It contained 0.68 +/- 0.08 W, 4.8 Fe, and 3.2 +/- 0.2 labile S per subunit. After acid iodine oxidation of the purified enzyme, a fluorescence spectrum typical for form A of molybdopterin was obtained. Acetaldehyde, propionaldehyde, and benzaldehyde were excellent substrates, with apparent Km values of 12.5, 10.8, and 20 microM, respectively. The natural electron acceptor is not yet known; benzylviologen was used as an artificial electron acceptor (apparent Km, 0.55 mM). The enzyme was activated by potassium ions and strongly inhibited by cyanide, arsenite, and iodoacetate. In the as-isolated enzyme, electron paramagnetic resonance studies readily detected W(V) as a complex signal with g values in the range of 1.84 to 1.97. The dithionite-reduced enzyme exhibited a broad signal at low temperature with g = 2.04 and 1.92; this is indicative of a [4Fe-4S]1+ cluster interacting with a second paramagnet, possibly the S = 1 system of W(IV). Until now W-containing aldehyde oxidoreductases had only been found in two Clostridium strains and two hyperthermophilic archaea. The D. gigas enzyme is the first example of such an enzyme in a gram-negative bacterium. PMID:7592385

Hensgens, C M; Hagen, W R; Hansen, T A

1995-01-01

159

Evolution of redoxin genes in the green lineage  

Microsoft Academic Search

The availability of the Arabidopsis genome revealed the complexity of the gene families implicated in dithiol disulfide exchanges.\\u000a Most non-green organisms present less dithiol oxidoreductase genes. The availability of the almost complete genome sequence\\u000a of rice now allows a systematic search for thioredoxins, glutaredoxins and their reducers. This shows that all redoxin families\\u000a previously defined for Arabidopsis have members in

Yves Meyer; Christophe Riondet; Laure Constans; Mohamed Ragab Abdelgawwad; Jean Philippe Reichheld; Florence Vignols

2006-01-01

160

Purification and Molecular Characterization of the Tungsten Containing Formaldehyde Ferredoxin Oxidoreductase from the Hyperthermophilic Archaeon Pyrococcus furiosus: the Third of a Putative Five-Member Tungstoenzyme Family  

Microsoft Academic Search

Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100°C by fermenting pep- tides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tung- sten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferre- doxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the

ROOPALI ROY; SWARNALATHA MUKUND; GERRIT J. SCHUT; DIANNE M. DUNN; ROBERT WEISS; MICHAEL W. W. ADAMS

1999-01-01

161

Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate?decarboxylase  

PubMed Central

Pyruvate ferredoxin oxidoreductase (POR) has been previously purified from the hyperthermophilic archaeon, Pyrococcus furiosus, an organism that grows optimally at 100°C by fermenting carbohydrates and peptides. The enzyme contains thiamine pyrophosphate and catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2 and reduces P. furiosus ferredoxin. Here we show that this enzyme also catalyzes the formation of acetaldehyde from pyruvate in a CoA-dependent reaction. Desulfocoenzyme A substituted for CoA showing that the cofactor plays a structural rather than a catalytic role. Ferredoxin was not necessary for the pyruvate decarboxylase activity of POR, nor did it inhibit acetaldehyde production. The apparent Km values for CoA and pyruvate were 0.11 mM and 1.1 mM, respectively, and the optimal temperature for acetaldehyde formation was above 90°C. These data are comparable to those previously determined for the pyruvate oxidation reaction of POR. At 80°C (pH 8.0), the apparent Vm value for pyruvate decarboxylation was about 40% of the apparent Vm value for pyruvate oxidation rate (using P. furiosus ferredoxin as the electron acceptor). Tentative catalytic mechanisms for these two reactions are presented. In addition to POR, three other 2-keto acid ferredoxin oxidoreductases are involved in peptide fermentation by hyperthermophilic archaea. It is proposed that the various aldehydes produced by these oxidoreductases in vivo are used by two aldehyde-utilizing enzymes, alcohol dehydrogenase and aldehyde ferredoxin oxidoreductase, the physiological roles of which were previously unknown. PMID:9275170

Ma, Kesen; Hutchins, Andrea; Sung, Shi-Jean S.; Adams, Michael W. W.

1997-01-01

162

Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product.  

PubMed Central

An NADPH-dependent aldehyde reductase (ALR) isolated from a red yeast, Sporobolomyces salmonicolor, catalyzes the reduction of a variety of carbonyl compounds. To investigate its primary structure, we cloned and sequenced the cDNA coding for ALR. The aldehyde reductase gene (ALR) comprises 969 bp and encodes a polypeptide of 35,232 Da. The deduced amino acid sequence showed a high degree of similarity to other members of the aldo-keto reductase superfamily. Analysis of the genomic DNA sequence indicated that the ALR gene was interrupted by six introns (two in the 5' noncoding region and four in the coding region). Southern hybridization analysis of the genomic DNA from S. salmonicolor indicated that there was one copy of the gene. The ALR gene was expressed in Escherichia coli under the control of the tac promoter. The enzyme expressed in E. coli was purified to homogeneity and showed the same catalytic properties as did the enzyme from S. salmonicolor. PMID:8779568

Kita, K; Matsuzaki, K; Hashimoto, T; Yanase, H; Kato, N; Chung, M C; Kataoka, M; Shimizu, S

1996-01-01

163

Kinetic characterisation of the light-driven protochlorophyllide oxidoreductase (POR) from Thermosynechococcus elongatus.  

PubMed

The light-driven enzyme NADPH:protochlorophyllide oxidoreductase (POR) catalyses the reduction of the C17-C18 double bond of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), which is a key regulatory step in the chlorophyll biosynthesis pathway. POR from the thermophilic cyanobacterium Thermosynechococcus elongatus is an attractive system for following the reaction and in the present work we have carried out a detailed steady state kinetic characterisation of this enzyme. The thermophilic POR was shown to have maximal activity at approximately 50 degrees C, which is similar to the growth temperature of the organism. The V(max) was calculated to be 0.53 microM min(-1) and the K(m) values for NADPH and Pchlide were 0.013 microM and 1.8 microM, respectively. The binding properties for both substrates as well as the NADP(+) product have been analysed by using fluorescence emission measurements, which have allowed the dissociation constants for binding to be calculated. These results represent the first steady state kinetic characterisation of a thermophilic version of POR. PMID:16307122

McFarlane, Michael J; Hunter, C Neil; Heyes, Derren J

2005-12-01

164

Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses.  

PubMed

The respiratory complex I (electrogenic NADH:quinone oxidoreductase) has been considered to act exclusively as a H+ pump. This was questioned when the search for the NADH-driven respiratory Na+ pump in Klebsiella pneumoniae initiated by Peter Dimroth led to the discovery of a Na+-translocating complex in this enterobacterium. The 3D structures of complex I from different organisms support the idea that the mechanism of cation transport by complex I involves conformational changes of the membrane-bound NuoL, NuoM and NuoN subunits. In vitro methods to follow Na+ transport were compared with in vivo approaches to test whether complex I, or its individual NuoL, NuoM or NuoN subunits, extrude Na+ from the cytoplasm to the periplasm of bacterial host cells. The truncated NuoL subunit of the Escherichia coli complex I which comprises amino acids 1-369 exhibits Na+ transport activity in vitro. This observation, together with an analysis of putative cation channels in NuoL, suggests that there exists in NuoL at least one continuous pathway for cations lined by amino acid residues from transmembrane segments 3, 4, 5, 7 and 8. Finally, we discuss recent studies on Na+ transport by mitochondrial complex I with respect to its putative role in the cycling of Na+ ions across the inner mitochondrial membrane. PMID:24059520

Steffen, Wojtek; Steuber, Julia

2013-10-01

165

Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2.  

PubMed

Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

Saraiva, Ivo H; Newman, Dianne K; Louro, Ricardo O

2012-07-20

166

Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase.  

PubMed

WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX's suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-?B activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-?B pathway. On the other hand, latent membrane protein 2A of Epstein-Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just "the tip of the iceberg" regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis. PMID:25488911

Chang, Yao; Lan, Yu-Yan; Hsiao, Jenn-Ren; Chang, Nan-Shan

2014-12-01

167

The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase.  

PubMed

Escherichia coli contains two thioredoxins, Trx1 and Trx2, and a thioredoxin-like protein, YbbN, which presents a strong homology in its N-terminal part with thioredoxins, and possesses a 20kDa C-terminal part of unknown function. We reported previously that YbbN displays both protein oxido-reductase and chaperone properties in vitro. In this study, we show that an ybbN-deficient strain displays an increased sensitivity to thermal stress but not to oxidative stress, a normal redox state of its cellular proteins but a decreased expression of several cytoplasmic proteins, including EF-Tu, DnaK, GroEL, trigger factor and several Krebs cycle enzymes, suggesting that the chaperone properties of YbbN are more important in vivo than its redox properties. YbbN specifically interacts with DnaK and GroEL, as shown by reverse purification. It increases 4-fold the rate of protein renaturation in vitro by the DnaK chaperone machine, suggesting that it cooperates with DnaK for the optimal expression of several cytoplasmic proteins. PMID:18657513

Kthiri, Fatoum; Le, Hai-Tuong; Tagourti, Jihen; Kern, Renée; Malki, Abderrahim; Caldas, Teresa; Abdallah, Jad; Landoulsi, Ahmed; Richarme, Gilbert

2008-10-01

168

Identification of Potential Targets for Thylakoid Oxidoreductase AtVKOR/LTO1 in Chloroplasts.  

PubMed

The Arabidopsis thylakoid membrane bimodular oxidoreductase, AtVKOR, could catalyze disulfide bond formation, and its direct functional domain (thioredoxin-like domain) is located in the thylakoid lumen according to the topological structure. Many proteins have one or several disulfide bonds in the thylakoid lumen, including photosynthetic chain components. A yeast two-hybrid assay was used to identify potential targets for the AtVKOR, and a Trx-like domain was constructed into a BD vector as bait. Twenty-two thylakoid lumenal proteins with disulfides were selected. The cDNAs encoding these proteins were constructed into an AD vector. Eight proteins were identified from the hybrid results to interact with AtVKOR, including HCF164, cytochrome c6A, violaxanthin de-epoxidase, embryo sac development arrest 3 protein (EDA3), two members pentapeptide repeat proteins (TL17 and TL20.3), and two FK-506 binding proteins (FKBP13 and FKBP20-2). The BIACORE system was used to demonstrate that the recombinant HCF164 and Trx-like domain of AtVKOR could interact directly in vitro. The KD value for binding HCF164 to AtVKOR was calculated as 2.5×10-6 M. These results suggest that AtVKOR can interact with partial thylakoid lumenal proteins and indicates AtVKOR plays an important role in regulating the thylakoid lumen redox. PMID:25412899

Lu, Ying; Du, Jia-Jia; Yu, Zhi-Bo; Peng, Jun-Jie; Xu, Jia-Ning; Wang, Xiao-Yun

2014-11-21

169

Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.  

PubMed

The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. PMID:24996970

Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

2014-12-01

170

Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase.  

PubMed

NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 Å resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel. PMID:25471880

Steuber, Julia; Vohl, Georg; Casutt, Marco S; Vorburger, Thomas; Diederichs, Kay; Fritz, Günter

2014-12-01

171

Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex.  

PubMed

Photosynthesis uses chlorophylls for the conversion of light into chemical energy, the driving force of life on Earth. During chlorophyll biosynthesis in photosynthetic bacteria, cyanobacteria, green algae and gymnosperms, dark-operative protochlorophyllide oxidoreductase (DPOR), a nitrogenase-like metalloenzyme, catalyzes the chemically challenging two-electron reduction of the fully conjugated ring system of protochlorophyllide a. The reduction of the C-17=C-18 double bond results in the characteristic ring architecture of all chlorophylls, thereby altering the absorption properties of the molecule and providing the basis for light-capturing and energy-transduction processes of photosynthesis. We report the X-ray crystallographic structure of the substrate-bound, ADP-aluminium fluoride-stabilized (ADP·AlF(3)-stabilized) transition state complex between the DPOR components L(2) and (NB)(2) from the marine cyanobacterium Prochlorococcus marinus. Our analysis permits a thorough investigation of the dynamic interplay between L(2) and (NB)(2). Upon complex formation, substantial ATP-dependent conformational rearrangements of L(2) trigger the protein-protein interactions with (NB)(2) as well as the electron transduction via redox-active [4Fe-4S] clusters. We also present the identification of artificial "small-molecule substrates" of DPOR in correlation with those of nitrogenase. The catalytic differences and similarities between DPOR and nitrogenase have broad implications for the energy transduction mechanism of related multiprotein complexes that are involved in the reduction of chemically stable double and/or triple bonds. PMID:23341615

Moser, Jürgen; Lange, Christiane; Krausze, Joern; Rebelein, Johannes; Schubert, Wolf-Dieter; Ribbe, Markus W; Heinz, Dirk W; Jahn, Dieter

2013-02-01

172

Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.  

PubMed

NADH:ubiquinone oxidoreductase (complex I) is a proton pump in the electron transport chain that can produce a significant amounts of superoxide and hydrogen peroxide. While the flavin mononucleotide (FMN) is the putative site for hydrogen peroxide generation, sites responsible for superoxide are less certain. Here, data on complex I kinetics and ROS generation are analyzed using a computational model to determine the sites responsible for superoxide. The analysis includes all the major redox centers: the FMN, iron-sulfur cluster N2, and semiquinone. Analysis reveals that the fully reduced FMN and semiquinone are the primary sources of superoxide, and the iron-sulfur cluster N2 produces none. The FMN radical only produces ROS when the quinone reductase site is blocked. Model simulations reveal that ROS generation is maximized during reverse electron transport with both the FMN and the semiquinone producing similar amounts of superoxide. In addition, the model successfully predicts the increase in ROS generation when the membrane potential is high and matrix pH is alkaline. Of the total ROS produced by complex I, the majority originates from the FMN. PMID:25236739

Bazil, Jason N; Pannala, Venkat R; Dash, Ranjan K; Beard, Daniel A

2014-12-01

173

Posttranslational Modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis Chloroplasts1[W][OPEN  

PubMed Central

Rapid responses of chloroplast metabolism and adjustments to photosynthetic machinery are of utmost importance for plants’ survival in a fluctuating environment. These changes may be achieved through posttranslational modifications of proteins, which are known to affect the activity, interactions, and localization of proteins. Recent studies have accumulated evidence about the crucial role of a multitude of modifications, including acetylation, methylation, and glycosylation, in the regulation of chloroplast proteins. Both of the Arabidopsis (Arabidopsis thaliana) leaf-type FERREDOXIN-NADP+ OXIDOREDUCTASE (FNR) isoforms, the key enzymes linking the light reactions of photosynthesis to carbon assimilation, exist as two distinct forms with different isoelectric points. We show that both AtFNR isoforms contain multiple alternative amino termini and undergo light-responsive addition of an acetyl group to the ?-amino group of the amino-terminal amino acid of proteins, which causes the change in isoelectric point. Both isoforms were also found to contain acetylation of a conserved lysine residue near the active site, while no evidence for in vivo phosphorylation or glycosylation was detected. The dynamic, multilayer regulation of AtFNR exemplifies the complex regulatory network systems controlling chloroplast proteins by a range of posttranslational modifications, which continues to emerge as a novel area within photosynthesis research. PMID:25301888

Lehtimäki, Nina; Koskela, Minna M.; Dahlström, Käthe M.; Pakula, Eveliina; Lintala, Minna; Scholz, Martin; Hippler, Michael; Hanke, Guy T.; Rokka, Anne; Battchikova, Natalia; Salminen, Tiina A.; Mulo, Paula

2014-01-01

174

Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells  

PubMed Central

NADH:quinone oxidoreductase 1 (NQO1) is known to be involved in the regulation of energy synthesis and metabolism, and the functional studies of NQO1 have largely focused on metabolic disorders. Here, we show for the first time that compared to NQO1-WT mice, NQO1-KO mice exhibited a marked increase of permeability and spontaneous inflammation in the gut. In the DSS-induced colitis model, NQO1-KO mice showed more severe inflammatory responses than NQO1-WT mice. Interestingly, the transcript levels of claudin and occludin, the major tight junction molecules of gut epithelial cells, were significantly decreased in NQO1-KO mice. The colons of NQO1-KO mice also showed high levels of reactive oxygen species (ROS) and histone deacetylase (HDAC) activity, which are known to affect transcriptional regulation. Taken together, these novel findings indicate that NQO1 contributes to the barrier function of gut epithelial cells by regulating the transcription of tight junction molecules. [BMB Reports 2014;47(9): 494-499] PMID:24393524

Nam, Seung Taek; Hwang, Jung Hwan; Kim, Dae Hong; Park, Mi Jung; Lee, Ik Hwan; Nam, Hyo Jung; Kang, Jin Ku; Kim, Sung Kuk; Hwang, Jae Sam; Chung, Hyo Kyun; Shong, Minho; Lee, Chul-Ho; Kim, Ho

2014-01-01

175

Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex  

PubMed Central

Photosynthesis uses chlorophylls for the conversion of light into chemical energy, the driving force of life on Earth. During chlorophyll biosynthesis in photosynthetic bacteria, cyanobacteria, green algae and gymnosperms, dark-operative protochlorophyllide oxidoreductase (DPOR), a nitrogenase-like metalloenzyme, catalyzes the chemically challenging two-electron reduction of the fully conjugated ring system of protochlorophyllide a. The reduction of the C-17=C-18 double bond results in the characteristic ring architecture of all chlorophylls, thereby altering the absorption properties of the molecule and providing the basis for light-capturing and energy-transduction processes of photosynthesis. We report the X-ray crystallographic structure of the substrate-bound, ADP-aluminium fluoride–stabilized (ADP·AlF3-stabilized) transition state complex between the DPOR components L2 and (NB)2 from the marine cyanobacterium Prochlorococcus marinus. Our analysis permits a thorough investigation of the dynamic interplay between L2 and (NB)2. Upon complex formation, substantial ATP-dependent conformational rearrangements of L2 trigger the protein–protein interactions with (NB)2 as well as the electron transduction via redox-active [4Fe–4S] clusters. We also present the identification of artificial “small-molecule substrates” of DPOR in correlation with those of nitrogenase. The catalytic differences and similarities between DPOR and nitrogenase have broad implications for the energy transduction mechanism of related multiprotein complexes that are involved in the reduction of chemically stable double and/or triple bonds. PMID:23341615

Moser, Jürgen; Lange, Christiane; Krausze, Joern; Rebelein, Johannes; Schubert, Wolf-Dieter; Ribbe, Markus W.; Heinz, Dirk W.; Jahn, Dieter

2013-01-01

176

Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans  

PubMed Central

Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR) due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors. PMID:23203137

Ichida, Kimiyoshi; Amaya, Yoshihiro; Okamoto, Ken; Nishino, Takeshi

2012-01-01

177

A bacterial quercetin oxidoreductase QuoA-mediated perturbation in the phenylpropanoid metabolic network increases lignification with a concomitant decrease in phenolamides in Arabidopsis  

PubMed Central

Metabolic perturbations by a gain-of-function approach provide a means to alter steady states of metabolites and query network properties, while keeping enzyme complexes intact. A combination of genetic and targeted metabolomics approach was used to understand the network properties of phenylpropanoid secondary metabolism pathways. A novel quercetin oxidoreductase, QuoA, from Pseudomonas putida, which converts quercetin to naringenin, thus effectively reversing the biosynthesis of quercetin through a de novo pathway, was expressed in Arabidopsis thaliana. QuoA transgenic lines selected for low, medium, and high expression levels of QuoA RNA had corresponding levels of QuoA activity and hypocotyl coloration resulting from increased anthocyanin accumulation. Stems of all three QuoA lines had increased tensile strength resulting from increased lignification. Sixteen metabolic intermediates from anthocyanin, lignin, and shikimate pathways had increased accumulation, of which 11 paralleled QuoA expression levels in the transgenic lines. The concomitant upregulation of the above pathways was explained by a significant downregulation of the phenolamide pathway and its precursor, spermidine. In a tt6 mutant line, lignifications as well as levels of the lignin pathway metabolites were much lower than those of QuoA transgenic lines. Unlike QuoA lines, phenolamides and spermidine were not affected in the tt6 line. Taken together, these results suggest that phenolamide pathway plays a major role in directing metabolic intermediates into the lignin pathway. Metabolic perturbations were accompanied by downregulation of five genes associated with branch-point enzymes and upregulation of their corresponding products. These results suggest that gene–metabolite pairs are likely to be co-ordinately regulated at critical branch points. Thus, these perturbations by a gain-of-function approach have uncovered novel properties of the phenylpropanoid metabolic network. PMID:24085580

Swarup, Sanjay

2013-01-01

178

Spatially programmed assembling of oxidoreductases with single-stranded DNA for cofactor-required reactions.  

PubMed

Cofactor is especially important for biotransformation catalyzed by oxidoreductases. Many attempts in enhancing performance of the reactions by improving cofactor utilization have been reported. In this study, efficiency of cofactor-requiring biocatalysis was enhanced by improving cofactor recycling via spatially programmed assembling glycerol dehydrogenase (GlyDH, Escherichia coli MG1655) and glutamate dehydrogenase (GluDH, Bacillus subtilis str168), with the aid of single-stranded DNA (ssDNA). The two enzymes were first independently expressed as molecules fused with a phage protein A* that could covalently link ssDNA with certain features. After an enzymatic cross-linking reaction taking place under mild conditions, the conjugate of fused enzyme and ssDNA was assembled into desired structures through base pairing enabled by the ssDNA. Results showed that, to some extent, the fusion with protein A* could improve the specific activity of the enzymes (GlyDH-A*/GlyDH?=?116.0 %; GluDH-A*/GluDH?=?105.2 %). Additionally, in the coupled reaction system with glycerol and ?-ketoglutaric acid as substrates, regarding the production of glutamic acid based on HPLC analysis, the efficiency of cofactor utilization was significantly enhanced (by 23.8- to 41.9-folds), indicating the existence of a substrate-channeling mechanism for cofactor utilization in the assembled reaction system due to the proximity effects. The degree of substrate channeling was calculated as from 1.65 to 1.73. Furthermore, the efficiency of cofactor utilization was influenced in an architecture-dependent manner when complexes with different stoichiometry of GlyDH and GluDH were utilized in biotransformation. This study demonstrated a novel strategy of cofactor recycling for enhanced performance of coupled oxidoreductive reactions. PMID:25363557

Wang, Tianwen David; Ma, Fei; Ma, Xingyuan; Wang, Ping

2014-11-01

179

Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase.  

PubMed

Succinate-ubiquinone oxidoreductase (SQR, EC?1.3.5.1), also known as mitochondrial respiratory complex?II or succinate dehydrogenase (SDH), catalyzes the oxidation of succinate to fumarate as part of the tricarboxylic acid cycle. SQR has been identified as a novel target of a large family of agricultural fungicides. However, the detailed mechanism of action between the fungicides and SQR is still unclear, and the bioactive conformation of fungicides in the SQR binding pocket has not been identified. In this study, the kinetics of porcine SQR inhibition by ten commercial carboxamide fungicides were measured, and noncompetitive inhibition was observed with respect to succinate, DCIP, and cytochrome?c, while competitive inhibition was observed with respect to ubiquinone. With the aim to uncover the binding conformation of these fungicides, molecular docking, molecular dynamics simulation, and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculations were then performed. The excellent correlation (r(2) =0.94) between the calculated (?Gcal ) and experimental (?Gexp ) binding free energies indicates that the obtained docking conformation could be the bioactive conformation. The acid moiety of carboxamide fungicides inserts into the ubiquinone binding site (Q-site) of SQR, forming van?der Waals (vdW) interactions with C_R46, C_S42, B_I218, and B_P169, while the amine moiety extends to the mouth of the Q-site, forming vdW interactions with C_W35, C_I43, and C_I30. The carbonyl oxygen atom of the carboxamide forms hydrogen bonds with B_W173 and D_Y91. These findings provide valuable information for the design of more potent and specific inhibitors of SQR. PMID:24678033

Zhu, Xiao-Lei; Xiong, Li; Li, Hui; Song, Xin-Ya; Liu, Jing-Jing; Yang, Guang-Fu

2014-07-01

180

Dietary flavonoids as intracellular substrates for an erythrocyte trans-plasma membrane oxidoreductase activity.  

PubMed

The plasma membrane oxidoreductase (PMOR) activity, which mainly utilises ascorbate as intracellular electron donor, represents a major mechanism for cell-dependent reduction of extracellular oxidants and might be an important process used by the erythrocytes to keep a reduced plasma environment. We previously reported that in human erythrocytes, myricetin and quercetin act as intracellular substrates of a PMOR showing a novel mechanism whereby these flavonoids could exert beneficial effects under oxidative stress conditions. Here, we evaluated the ability of different flavonoids (quercetin, myricetin, morin, kaempferol, fisetin, catechin, luteolin, apigenin, acacetin, rutin, taxifolin, naringenin, genistein) and of two in vivo O-methylated metabolites of quercetin (isorhamnetin and tamarixetin) to be substrates of PMOR, by comparing their antioxidant capacity (i.e. direct interaction with the oxidant ferricyanide or with the free radical 1,1-diphenyl-2-picryl-hydrazil) with their ability to penetrate the erythrocytes and donate electrons to the PMOR. The results obtained indicate that, although most of the flavonoids display significant antioxidant activities, only those (quercetin, myricetin, fisetin) that combine the cathecol structure of the B ring (responsible for the reducing activity) with the 2,3 double bond and 4-oxo function of the C ring (responsible for the uptake by erythrocytes) can act as intracellular substrates for PMOR. It is of note that the metabolites of quercetin enter erythrocytes and donate electrons to the PMOR as the parent compound. The present data show a relationship between the flavonoid structures and their ability to provide electrons to the PMOR, suggesting an additional mechanism whereby dietary flavonoids may exert beneficial effects in man. PMID:16176603

Fiorani, Mara; Accorsi, Augusto

2005-09-01

181

Analysis of the Kinetics and Bistability of Ubiquinol:Cytochrome c Oxidoreductase  

PubMed Central

Ubiquinol:cytochrome c oxidoreductase, bc1 complex, is the enzyme in the respiratory chain of mitochondria responsible for the transfer reducing potential from ubiquinol to cytochrome c coupled to the movement of charge against the electrostatic potential across the mitochondrial inner membrane. The complex is also implicated in the generation of reactive oxygen species under certain conditions and is thus a contributor to cellular oxidative stress. Here, a biophysically detailed, thermodynamically consistent model of the bc1 complex for mammalian mitochondria is developed. The model incorporates the major redox centers near the Qo- and Qi-site of the enzyme, includes the pH-dependent redox reactions, accounts for the effect of the proton-motive force of the reaction rate, and simulates superoxide production at the Qo-site. The model consists of six distinct states characterized by the mobile electron distribution in the enzyme. Within each state, substates that correspond to various electron localizations exist in a rapid equilibrium distribution. The steady-state equation for the six-state system is parameterized using five independent data sets and validated in comparison to additional experimental data. Model analysis suggests that the pH-dependence on turnover is primarily due to the pKa values of cytochrome bH and Rieske iron sulfur protein. A previously proposed kinetic scheme at the Qi-site where ubiquinone binds to only the reduced enzyme and ubiquinol binds to only the oxidized enzyme is shown to be thermodynamically infeasible. Moreover, the model is able to reproduce the bistability phenomenon where at a given overall flux through the enzyme, different rates of superoxide production are attained when the enzyme is differentially reduced. PMID:23870256

Bazil, Jason N.; Vinnakota, Kalyan C.; Wu, Fan; Beard, Daniel A.

2013-01-01

182

The Subunit Composition of Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I) From Pichia pastoris  

PubMed Central

Respiratory complex I (NADH:quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and post-translational modifications of complex I from Pichia pastoris, using a combination of proteomic and bioinformatic approaches. Forty-one subunits were identified in P. pastoris complex I, comprising the 14 core (conserved) subunits and 27 supernumerary subunits; seven of the core subunits are mitochondrial encoded. Three of the supernumerary subunits (named NUSM, NUTM, and NUUM) have not been observed previously in any species of complex I. However, homologues to all three of them are present in either Yarrowia lipolytica or Pichia angusta complex I. P. pastoris complex I has 39 subunits in common with Y. lipolytica complex I, 37 in common with N. crassa complex I, and 35 in common with the bovine enzyme. The mitochondrial encoded subunits (translated by the mold mitochondrial genetic code) retain their N-?-formyl methionine residues. At least eight subunits are N-?-acetylated, but the N-terminal modifications of the nuclear encoded subunits are not well-conserved. A combination of two methods of protein separation (SDS-PAGE and HPLC) and three different mass spectrometry techniques (peptide mass fingerprinting, tandem MS and molecular mass measurements) were required to define the protein complement of P. pastoris complex I. This requirement highlights the need for inclusive and comprehensive strategies for the characterization of challenging membrane-bound protein complexes containing both hydrophilic and hydrophobic components. PMID:20610779

Bridges, Hannah R.; Fearnley, Ian M.; Hirst, Judy

2010-01-01

183

Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase.  

PubMed

Ubiquinol:cytochrome c oxidoreductase, bc1 complex, is the enzyme in the respiratory chain of mitochondria responsible for the transfer reducing potential from ubiquinol to cytochrome c coupled to the movement of charge against the electrostatic potential across the mitochondrial inner membrane. The complex is also implicated in the generation of reactive oxygen species under certain conditions and is thus a contributor to cellular oxidative stress. Here, a biophysically detailed, thermodynamically consistent model of the bc1 complex for mammalian mitochondria is developed. The model incorporates the major redox centers near the Qo- and Qi-site of the enzyme, includes the pH-dependent redox reactions, accounts for the effect of the proton-motive force of the reaction rate, and simulates superoxide production at the Qo-site. The model consists of six distinct states characterized by the mobile electron distribution in the enzyme. Within each state, substates that correspond to various electron localizations exist in a rapid equilibrium distribution. The steady-state equation for the six-state system is parameterized using five independent data sets and validated in comparison to additional experimental data. Model analysis suggests that the pH-dependence on turnover is primarily due to the pKa values of cytochrome bH and Rieske iron sulfur protein. A previously proposed kinetic scheme at the Qi-site where ubiquinone binds to only the reduced enzyme and ubiquinol binds to only the oxidized enzyme is shown to be thermodynamically infeasible. Moreover, the model is able to reproduce the bistability phenomenon where at a given overall flux through the enzyme, different rates of superoxide production are attained when the enzyme is differentially reduced. PMID:23870256

Bazil, Jason N; Vinnakota, Kalyan C; Wu, Fan; Beard, Daniel A

2013-07-16

184

Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.  

PubMed

Lignin biodegradation, a key step in carbon recycling in land ecosystems, is carried out by white-rot fungi through an H(2)O(2)-dependent process defined as enzymatic combustion. Pleurotus eryngii is a selective lignin-degrading fungus that produces H(2)O(2) during redox cycling of p-anisylic compounds involving the secreted flavoenzyme aryl-alcohol oxidase (AAO). Here, the 2.4 A resolution X-ray crystal structure of this oxidoreductase, which catalyzes dehydrogenation reactions on various primary polyunsaturated alcohols, yielding the corresponding aldehydes, is reported. The AAO crystal structure was solved by single-wavelength anomalous diffraction of a selenomethionine derivative obtained by Escherichia coli expression and in vitro folding. This monomeric enzyme is composed of two domains, the overall folding of which places it into the GMC (glucose-methanol-choline oxidase) oxidoreductase family, and a noncovalently bound FAD cofactor. However, two additional structural elements exist in the surroundings of its active site that modulate the access of substrates; these are absent in the structure of the model GMC oxidoreductase glucose oxidase. The folding of these novel elements gives rise to a funnel-like hydrophobic channel that connects the solvent region to the buried active-site cavity of AAO. This putative active-site cavity is located in front of the re side of the FAD isoalloxazine ring and near two histidines (His502 and His546) that could contribute to alcohol activation as catalytic bases. Moreover, three aromatic side chains from two phenylalanines (Phe397 and Phe502) and one tyrosine (Tyr92) at the inner region of the channel form an aromatic gate that may regulate the access of the enzyme substrates to the active site as well as contribute to the recognition of the alcohols that can effectively be oxidized by AAO. PMID:19923715

Fernández, Israel S; Ruíz-Dueñas, Francisco J; Santillana, Elena; Ferreira, Patricia; Martínez, María Jesús; Martínez, Angel T; Romero, Antonio

2009-11-01

185

Partial purification and characterization of a NADPH dependent tetrahydroalstonine synthase from Catharanthus roseus cell suspension cultures.  

PubMed

A new enzyme was discovered which specifically hydrogenates the iminium form of cathenamine at position 21 to yield the heteroyohimbine alkaloid tetrahydroalstonine. The enzyme was partially purified (35-fold) from Catharanthus roseus cell suspension cultures. It was shown to use exclusively NADPH as reductant, the pH optimum is at 6.6, the temperature optimum at 30°C, the half life of the soluble enzyme preparation is 26 min at 37°C, and the molecular weight is 81 000 ± 3%. Evidence is presented for the occurrence of two distinct and different cathenamine reductases, one reducing the iminium form of this central intermediate to give tetrahydroalstonine, the other one reducing cathenamine to yield ajmalicine. Tetrahydroalstonine synthase was present in cell suspension cultures of C. ovalis, C. roseus, Picralima nitida, Rhazya stricta, and Vinca herbacea. PMID:24253886

Hemscheidt, T; Zenk, M H

1985-08-01

186

Glucose6-phosphate dehydrogenase expression associated with NADPH-dependent reactions in cerebellar neurons  

Microsoft Academic Search

This review describes the variation of glucose-6-phosphate dehydrogenase (G6PD) activity in the main neurons of the molecular\\u000a and granular layers as well as in the deep nuclei of the cerebellum as observed so far by optical and electron microscopy\\u000a studies. Light microscopy and semiquantitative microphotometry of histochemical staining showed that the highest G6PD activity\\u000a was expressed by Purkinje cells and

Enrica Biagiotti; Loretta Guidi; Paolo Del Grande; Paolino Ninfali

2003-01-01

187

Inhibition of beta-carotene and astaxanthin of NADPH-dependent microsomal phospholipid peroxidation.  

PubMed

To evaluate the antioxidant effects of beta-carotene and astaxanthin, rat liver microsomes were exposed to a mixture of chelated iron (Fe3+/ADP) and NADPH. The carotenoids (190 pmol/mg protein) were incorporated into some of these microsomal membranes, and phospholipid hydroperoxides (PLOOH), thiobarbituric acid reactive substances (TBARS) and endogenous alpha-tocopherol content were measured over time after the initiation of oxidant stress. In control microsomes, oxidant stress led to accumulation of 1,865 (+/- 371) pmol PLOOH/mg protein during the initial 10-min peroxidation reaction, followed by a more gradual decrease during the subsequent 20-min of reaction. PLOOH accumulation during the initial 10-min reaction period was reduced to 588 (+/- 169) pmol/mg protein with beta-carotene present and 800 (+/- 288) pmol/mg protein with astaxanthin present. During the following 20-min of incubation, PLOOH levels declined in the carotenoid-supplemented microsomes but continued to increase at a slower rate in control preparations. TBARS did not show such large accumulation as observed in PLOOH during the initial 10-min incubation in any microsomal sample. The presence of carotenoids in the microsomal membrane partially inhibited the loss of alpha-tocopherol, especially during the later phase of oxidant stress. When lipid peroxidation is generated by membrane-bound cyt-P450, the specific measurement of PLOOH clearly demonstrates that the presence of carotenoids provides antioxidant protection. PMID:9268922

Nakagawa, K; Kang, S D; Park, D K; Handelman, G J; Miyazawa, T

1997-06-01

188

The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells  

PubMed Central

Isocitrate dehydrogenase 2 (IDH2) is located in the mitochondrial matrix. IDH2 acts in the forward Krebs cycle as an NADP+-consuming enzyme, providing NADPH for maintenance of the reduced glutathione and peroxiredoxin systems and for self-maintenance by reactivation of cystine-inactivated IDH2 by glutaredoxin 2. In highly respiring cells, the resulting NAD+ accumulation then induces sirtuin-3-mediated activating IDH2 deacetylation, thus increasing its protective function. Reductive carboxylation of 2-oxoglutarate by IDH2 (in the reverse Krebs cycle direction), which consumes NADPH, may follow glutaminolysis of glutamine to 2-oxoglutarate in cancer cells. When the reverse aconitase reaction and citrate efflux are added, this overall “anoxic” glutaminolysis mode may help highly malignant tumors survive aglycemia during hypoxia. Intermittent glycolysis would hypothetically be required to provide ATP. When oxidative phosphorylation is dormant, this mode causes substantial oxidative stress. Arg172 mutants of human IDH2—frequently found with similar mutants of cytosolic IDH1 in grade 2 and 3 gliomas, secondary glioblastomas, and acute myeloid leukemia—catalyze reductive carboxylation of 2-oxoglutarate and reduction to D-2-hydroxyglutarate, which strengthens the neoplastic phenotype by competitive inhibition of histone demethylation and 5-methylcytosine hydroxylation, leading to genome-wide histone and DNA methylation alternations. D-2-hydroxyglutarate also interferes with proline hydroxylation and thus may stabilize hypoxia-induced factor ?. PMID:22675360

Smolková, Katarína; Ježek, Petr

2012-01-01

189

Energy Conservation by the H2:Heterodisulfide Oxidoreductase from Methanosarcina mazei Go ¨1: Identification of Two Proton-Translocating Segments  

Microsoft Academic Search

The membrane-bound H2:heterodisulfide oxidoreductase system of the methanogenic archaeon Methanosar- cina mazei Go ¨1 catalyzed the H2-dependent reduction of 2-hydroxyphenazine and the dihydro-2-hydroxyphena- zine-dependent reduction of the heterodisulfide of HS-CoM and HS-CoB (CoM-S-S-CoB). Washed inverted vesicles of this organism were found to couple both processes with the transfer of protons across the cyto- plasmic membrane. The maximal H1\\/2e2 ratio was

TINA IDE; SEBASTIAN BAUMER; UWE DEPPENMEIER

1999-01-01

190

Identification of NAD(P)H Quinone Oxidoreductase Activity in Azoreductases from P. aeruginosa: Azoreductases and NAD(P)H Quinone Oxidoreductases Belong to the Same FMN-Dependent Superfamily of Enzymes  

PubMed Central

Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions. PMID:24915188

Ryan, Ali; Kaplan, Elise; Nebel, Jean-Christophe; Polycarpou, Elena; Crescente, Vincenzo; Lowe, Edward; Preston, Gail M.; Sim, Edith

2014-01-01

191

Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes  

PubMed Central

Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases – pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, d-amino acid oxidase, and l-lactate oxidase – was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

2014-01-01

192

Energy Conservation by the H2:Heterodisulfide Oxidoreductase from Methanosarcina mazei Gö1: Identification of Two Proton-Translocating Segments  

PubMed Central

The membrane-bound H2:heterodisulfide oxidoreductase system of the methanogenic archaeon Methanosarcina mazei Gö1 catalyzed the H2-dependent reduction of 2-hydroxyphenazine and the dihydro-2-hydroxyphenazine-dependent reduction of the heterodisulfide of HS-CoM and HS-CoB (CoM-S-S-CoB). Washed inverted vesicles of this organism were found to couple both processes with the transfer of protons across the cytoplasmic membrane. The maximal H+/2e? ratio was 0.9 for each reaction. The electrochemical proton gradient (??H+) thereby generated was shown to drive ATP synthesis from ADP plus Pi, exhibiting stoichiometries of 0.25 ATP synthesized per two electrons transported for both partial reactions. ATP synthesis and the generation of ??H+ were abolished by the uncoupler 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847). The ATP synthase inhibitor N,N?-dicyclohexylcarbodiimide did not affect H+ translocation but led to an almost complete inhibition of ATP synthesis and decreased the electron transport rates. The latter effect was relieved by the addition of SF 6847. Thus, the energy-conserving systems showed a stringent coupling which resembles the phenomenon of respiratory control. The results indicate that two different proton-translocating segments are present in the H2:heterodisulfide oxidoreductase system; the first involves the 2-hydroxyphenazine-dependent hydrogenase, and the second involves the heterodisulfide reductase. PMID:10383977

Ide, Tina; Bäumer, Sebastian; Deppenmeier, Uwe

1999-01-01

193

Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid  

NASA Astrophysics Data System (ADS)

Ferredoxin:NADP+ oxidoreductase (FNR) is a plant and cyanobacterial photosynthetic enzyme, also found in non-photosynthetic tissues, where it is involved in redox reactions of biosynthetic pathways. In vivo it transfers electrons to nicotinamide adenine dinucleotide phosphate (NADP+), forming its reduced version, NADPH, while in vitro it can also use NADPH to reduce several substrates, such as ferricyanide, various quinones and nitriles. As an oxidoreductase catalyzing reaction of a broad range of substrates, FNR may be used in biotechnological processes. Quantum dots are semiconductor nanocrystals of a few to several nanometers diameter, having very useful luminescent properties. We present the spectroscopic and functional characteristics of a covalent conjugation of FNR and CdSe/ZnS quantum dots. Two types of quantum dots, of different diameter and emission maximum (550 and 650 nm), were used for comparison. Steady-state fluorescence and gel electrophoresis confirmed efficient conjugation, while fluorescence correlation spectroscopy (FCS) allowed for determination of the conjugates’ radii. The nanohybrids sustained enzymatic activity; however, changes in maximal reaction rates and Michaelis constant were found. Detailed analysis of the kinetic parameters showed that the changes in the enzyme activity depend on the substrate used for activity measurement but also on the size of the quantum dots. The presented nanohybrids, as the first example using plant and photosynthetic enzyme as a protein partner, may became a tool to study photosynthesis as well as other biosynthetic and biotechnological processes, involving enzymatically catalyzed electron transfer.

Szczepaniak, Krzysztof; Worch, Remigiusz; Grzyb, Joanna

2013-05-01

194

Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes.  

PubMed

Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases - pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, D-amino acid oxidase, and L-lactate oxidase - was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

2014-04-01

195

Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei.  

PubMed

The requirement of complex I (NADH:ubiquionone oxidoreductase) for respiration in Trypanosoma brucei is controversial. Recent identification of homologues of its subunits in mitochondrial proteome resolved a question of its presence or absence. However, with one exception, no data have been available concerning the function(s) of complex I or its subunits. Here we present a functional RNAi study of three (NUBM, NUKM, NUEM) putative subunits of this complex. Although no changes were detected in growth, mitochondrial membrane potential or reactive oxygen species production in cell lines depleted for target transcript, the NUBM and NUKM RNAi knock-downs showed decreased specific NADH:ubiquinone oxidoreductase activity. Moreover, glycerol gradients of all cell lines revealed the presence of two distinct peaks of NADH dehydrogenase activity, with shifted sensitivity to inhibitors of complex I upon RNAi induction. Thus complex I is not only present in the procyclic stage of T. brucei 29-13 strain, but it does participate in electron transport chain. PMID:21074578

Verner, Zden?k; Cermáková, Petra; Skodová, Ingrid; Kriegová, Eva; Horváth, Anton; Lukes, Julius

2011-02-01

196

Diversity and Spatial Distribution of Hydrazine Oxidoreductase (hzo) Gene in the Oxygen Minimum Zone Off Costa Rica  

E-print Network

Anaerobic ammonia oxidation (anammox) as an important nitrogen loss pathway has been reported in marine oxygen minimum zones (OMZs), but the community composition and spatial distribution of anammox bacteria in the eastern ...

Kong, Liangliang

197

Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children  

E-print Network

leukemia with MLL translocations in infants and children. (Blood. 2002;100:4590-4593) © 2002NEOPLASIA Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children Martyn T. Smith, Yunxia Wang, Christine F. Skibola, Diana J

California at Berkeley, University of

198

Pseudomonas aeruginosa MdaB and WrbA are water-soluble two-electron quinone oxidoreductases with the potential to defend against oxidative stress.  

PubMed

Water-soluble quinone oxidoreductases capable of reducing quinone substrates via a concerted two-electron mechanism have been implicated in bacterial antioxidant defence. Twoelectron transfer avoids formation of dangerously reactive semi-quinone intermediates, moreover previous work in Pseudomonas putida indicated a direct protective effect for the quinols generated by an over-expressed oxidoreductase. Here, the Pseudomonas aeruginosa orthologs of five quinone oxidoreductases--MdaB, ChrR, WrbA, NfsB, and NQO1--were tested for their possible role in defending P. aeruginosa against H2O2 challenge. In in vitro assays, each enzyme was shown to reduce quinone substrates with only minimal semiquinone formation. However, when each was individually over-expressed in P. aeruginosa no overt H2O2-protective phenotype was observed. It was shown that this was due to a masking effect of the P. aeruginosa catalase, KatA; in a katA mutant, H2O2 challenged strains over-expressing the WrbA and MdaB orthologs grew significantly better than the empty plasmid control. A growth advantage was also observed for H2O2 challenged P. putida strains over-expressing P. aeruginosa wrbA, mdaB or katA. Despite not conferring a growth advantage to wild type P. aeruginosa, it is possible that these quinone oxidoreductases defend against H2O2 toxicity at lower concentrations. PMID:25085734

Green, Laura K; La Flamme, Anne C; Ackerley, David F

2014-09-01

199

An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein.  

PubMed Central

In most higher plants a period of desiccation is the terminal event in embryogenesis. Excised barley embryos acquire desiccation tolerance at a precise developmental stage and cDNA clones have been isolated which are temporally linked with desiccation tolerance. One such clone (pG22-69) with a putative gene product of 34 kd displays high structural homology to mammalian genes encoding an NADPH dependent aldose reductase involved in the synthesis of sorbitol. This first aldose reductase gene of plants is expressed constitutively during embryo maturation and is modulated by the plant hormones abscisic acid (ABA) and gibberellic acid (GA). Immunohistochemistry showed that the protein is preferentially expressed in tissues formed at early stages in embryogenesis. Measurements of enzymatic activity indicate that pG22-69 encodes an active aldose reductase. The finding of this reductase activity and the cloning of the corresponding gene supports the existence of a metabolic pathway in plants playing a role in the synthesis of osmolytes like sorbitol. The significance of this work is that genes of related structure and functions are being used in diverse organisms to fulfil stress related biological requirements. Images PMID:1827067

Bartels, D; Engelhardt, K; Roncarati, R; Schneider, K; Rotter, M; Salamini, F

1991-01-01

200

A novel potato defence-related alcohol:NADP + oxidoreductase induced in response to Erwinia carotovora  

Microsoft Academic Search

Identification of Solanum tuberosum genes responsive to culture filtrates (CF) from Erwinia carotovora subsp. carotovora led to the isolation of a full-length cDNA with high sequence similarity to several alcohol dehydrogenases. Accumulation of transcripts corresponding to this defence-related alcohol dehydrogenase (drd-1) was rapidly induced in CF-treated and wounded plants. The gene was also responsive to molecules involved in defence signalling

Marcos Montesano; Heidi Hyytiäinen; Rodolfo Wettstein; E. Tapio Palva

2003-01-01

201

The two common polymorphic forms of human NRH-quinone oxidoreductase 2 (NQO2) have different biochemical properties  

PubMed Central

There are two common forms of NRH-quinone oxidoreductase 2 (NQO2) in the human population resulting from SNP rs1143684. One has phenylalanine at position 47 (NQO2-F47) and the other leucine (NQO2-L47). Using recombinant proteins, we show that these variants have similar steady state kinetic parameters, although NQO2-L47 has a slightly lower specificity constant. NQO2-L47 is less stable towards proteolytic digestion and thermal denaturation than NQO2-F47. Both forms are inhibited by resveratrol, but NQO2-F47 shows negative cooperativity with this inhibitor. Thus these data demonstrate, for the first time, clear biochemical differences between the variants which help explain previous biomedical and epidemiological findings. PMID:24631540

Megarity, Clare F.; Gill, James R.E.; Clare Caraher, M.; Stratford, Ian J.; Nolan, Karen A.; Timson, David J.

2014-01-01

202

P5-type sulfhydryl oxidoreductase promotes the sorting of proteins to protein body I in rice endosperm cells  

PubMed Central

In rice (Oryza sativa) endosperm cells, oxidative protein folding is necessary for the sorting of storage proteins to protein bodies, PB-I and PB-II. Here we examined the role of sulfhydryl oxidoreductase PDIL2;3 (a human P5 ortholog) in the endoplasmic reticulum (ER), using GFP-AB, a PB-I marker in which the N-terminal region (AB) of ?-globulin is fused to green fluorescent protein (GFP). RNAi knockdown of PDIL2;3 inhibited the accumulation of GFP-AB in PB-I and promoted its exit from the ER. We discuss the role of PDIL2;3 in retaining proteins within the ER and specifying their localization to PB-I through disulfide bond formation. PMID:23299424

Onda, Yayoi; Kawagoe, Yasushi

2013-01-01

203

Thermodynamic contribution to the regulation of electron transfer in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae.  

PubMed

The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a fundamental enzyme of the oxidative phosphorylation metabolism and ionic homeostasis in several pathogenic and marine bacteria. To understand the mechanism that couples electron transfer with sodium translocation in Na(+)-NQR, the ion dependence of the redox potential of the individual cofactors was studied using a spectroelectrochemical approach. The redox potential of one of the FMN cofactors increased 90 mV in the presence of Na(+) or Li(+), compared to the redox potentials measured in the presence of other cations that are not transported by the enzyme, such as K(+), Rb(+), and NH(4)(+). This shift in redox potential of one FMN confirms the crucial role of the FMN anionic radicals in the Na(+) pumping mechanism and demonstrates that the control of the electron transfer rate has both kinetic (via conformational changes) and thermodynamic components. PMID:22533880

Neehaul, Yashvin; Juárez, Oscar; Barquera, Blanca; Hellwig, Petra

2012-05-15

204

Inhibitory Effects of Tart Cherry (Prunus cerasus) Juice on Xanthine Oxidoreductase Activity and its Hypouricemic and Antioxidant Effects on Rats.  

PubMed

The aim of this study was to investigate the effect of tart cherry juice on serum uric acid levels, hepatic xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration), in normal and hyperuricemic rats. Tart cherry juice (5 ml/kg) was given by oral gavage to rats for 2 weeks. Allopurinol (5 mg/kg) was used as a positive control and was also given by oral gavage. Data showed that tart cherry juice treatment did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced (P<0.05) the serum uric acid levels of hyperuricemic rats in a time-dependent manner. Tart cherry juice treatment also inhibited hepatic xanthine oxidase/dehydrogenase activity. Moreover, a significant increase (P<0.05) in serum total antioxidant capacity was observed in tart cherry juice treated-rats in both normal and hyperuricemic groups. The oral administration of tart cherry juice also led to a significant reduction (P<0.05) in MDA concentration in the hyperuricemic rats. Although the hypouricemic effect of allopurinol, as a putative inhibitor of xanthine oxidoreductase, was much higher than that of tart cherry, it could not significantly change anti-oxidative parameters. These features of tart cherry make it an attractive candidate for the prophylactic treatment of hyperuricaemia, particularly if it is to be taken on a long-term basis. Further investigations to define its clinical efficacy would be highly desirable. PMID:22691805

Haidari, F; Mohammad Shahi, M; Keshavarz, S A; Rashidi, M R

2009-03-01

205

Murine and Human b Locus Pigmentation Genes Encode a Glycoprotein (gp75) with Catalase Activity  

Microsoft Academic Search

Melanogenesis is regulated in large part by tyrosinase (monophenol monooxygenase; monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1), and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b\\/b) or hypopigmented (Blt\\/Blt)

Ruth Halaban; Gisela Moellmann

1990-01-01

206

Increased Furan Tolerance in Escherichia coli Due to a Cryptic ucpA Gene  

PubMed Central

Expression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. Deleting ucpA decreased furfural tolerance. Although the mechanism remains unknown, the cryptic ucpA gene is now associated with a phenotype: furan resistance. PMID:22267665

Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, K. T.

2012-01-01

207

Flavodoxin:Quinone Reductase (FqrB): a Redox Partner of Pyruvate:Ferredoxin Oxidoreductase That Reversibly Couples Pyruvate Oxidation to NADPH Production in Helicobacter pylori and Campylobacter jejuni  

Microsoft Academic Search

Pyruvate-dependent reduction of NADP has been demonstrated in cell extracts of the human gastric pathogen Helicobacter pylori. However, NADP is not a substrate of purified pyruvate:ferredoxin oxidoreductase (PFOR), suggesting that other redox active enzymes mediate this reaction. Here we show that fqrB (HP1164), which is essential and highly conserved among the epsilonproteobacteria, exhibits NADPH oxidoreductase activity. FqrB was purified by

M. St. Maurice; N. Cremades; M. A. Croxen; G. Sisson; J. Sancho; P. S. Hoffman

2007-01-01

208

Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine  

Microsoft Academic Search

The expression patterns of the two distinct subfamilies of genes (designated porA and porB) encoding the light- dependent NADPH:protochlorophyllide oxidoreductases (PORs) in loblolly pine (Pinus taeda L.) were examined. Transcripts arising from both gene subfamilies were shown to be present at high levels in the cotyledons of dark-grown pine seedlings and to a lesser extent in their stems. Exposure of

Jeffrey S. Skinner; Michael P. Timko

1999-01-01

209

Involvement of NADH:Acceptor Oxidoreductase and Butyryl Coenzyme A Dehydrogenase in Reversed Electron Transport during Syntrophic Butyrate Oxidation by Syntrophomonas wolfei? †  

PubMed Central

Methanogenic oxidation of butyrate to acetate requires a tight cooperation between the syntrophically fermenting Syntrophomonas wolfei and the methanogen Methanospirillum hungatei, and a reversed electron transport system in S. wolfei was postulated to shift electrons from butyryl coenzyme A (butyryl-CoA) oxidation to the redox potential of NADH for H2 generation. The metabolic activity of butyrate-oxidizing S. wolfei cells was measured via production of formazan and acetate from butyrate, with 2,3,5-triphenyltetrazolium chloride as electron acceptor. This activity was inhibited by trifluoperazine (TPZ), an antitubercular agent known to inhibit NADH:menaquinone oxidoreductase. In cell extracts of S. wolfei, the oxidation of NADH could be measured with quinones, viologens, and tetrazolium dyes as electron acceptors, and also this activity was inhibited by TPZ. The TPZ-sensitive NADH:acceptor oxidoreductase activity appeared to be membrane associated but could be dissociated from the membrane as a soluble protein and was semipurified by anion-exchange chromatography. Recovered proteins were identified by peptide mass fingerprinting, which indicated the presence of an NADH:acceptor oxidoreductase as part of a three-component [FeFe] hydrogenase complex and a selenocysteine-containing formate dehydrogenase. Furthermore, purification of butyryl-CoA dehydrogenase (Bcd) activity and peptide mass fingerprinting revealed two Bcd proteins different from the Bcd subunit of the Bcd/electron-transfer flavoprotein complex (Bcd/EtfAB) predicted from the genome sequence of S. wolfei. The results suggest that syntrophic oxidation of butyrate in S. wolfei involves a membrane-associated TPZ-sensitive NADH:acceptor oxidoreductase as part of a hydrogenase complex similar to the recently discovered “bifurcating” hydrogenase in Thermotoga maritima and butyryl-CoA dehydrogenases that are different from Bcd of the Bcd/EtfAB complex. PMID:19648244

Müller, Nicolai; Schleheck, David; Schink, Bernhard

2009-01-01

210

Selective localisation of P450 enzymes and NADPH-P450 oxidoreductase in rat basal ganglia using anti-peptide antisera  

Microsoft Academic Search

Environmental or endogenous toxins may cause nigral cell death in Parkinson's disease (PD) due to altered expression of P450 enzymes. In rat brain, immunohistochemistry using anti-peptide antisera showed NADPH-P450 oxidoreductase and CYP2B1\\/2 in various hypothalamic nuclei and CYP1A1 in the globus pallidus, but neither enzyme was expressed in substantia nigra. No specific immunoreactivity to CYP2D1 or CYP3A1 was found in

Andrew G Riedl; Paul M Watts; Robert J Edwards; Alan R Boobis; Peter Jenner; C. David Marsden

1996-01-01

211

Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens  

PubMed Central

Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life histories. These adaptations were likely shaped by ancient, as well as contemporary, intimate associations with monocot hosts. PMID:18373860

Powell, Amy J; Conant, Gavin C; Brown, Douglas E; Carbone, Ignazio; Dean, Ralph A

2008-01-01

212

Ipsdienol dehydrogenase (IDOLDH): a novel oxidoreductase important for Ips pini pheromone production  

Microsoft Academic Search

Ipsdienone (2-methyl-6-methylene-2,7-octadien-4-one) is an important intermediate in the biosynthesis of pheromonal ipsdienol (2-methyl-6-methylene-2,7-octadien-4-ol) and ipsenol (2-methyl-6-methylene-7-octen-4-ol) in male pine engraver beetles, Ips pini (Say). A novel ipsdienol dehydrogenase (IDOLDH) with a pheromone biosynthetic gene expression pattern was cloned, expressed, functionally characterized, and its cellular localization analyzed. The cDNA has a 762 nt ORF encoding a 253 amino acid predicted translation

Rubi Figueroa-Teran; William H. Welch; Gary J. Blomquist; Claus Tittiger

213

Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis  

PubMed Central

Photosynthesis converts solar energy to chemical energy using chlorophylls (Chls). In a late stage of biosynthesis of Chls, dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR), a nitrogenase-like enzyme, reduces the C17 = C18 double bond of Pchlide and drastically changes the spectral properties suitable for photosynthesis forming the parental chlorin ring for Chl a. We previously proposed that the spatial arrangement of the proton donors determines the stereospecificity of the Pchlide reduction based on the recently resolved structure of the DPOR catalytic component, NB-protein. However, it was not clear how the two-electron and two-proton transfer events are coordinated in the reaction. In this study, we demonstrate that DPOR initiates a single electron transfer reaction from a [4Fe-4S]-cluster (NB-cluster) to Pchlide, generating Pchlide anion radicals followed by a single proton transfer, and then, further electron/proton transfer steps transform the anion radicals into chlorophyllide (Chlide). Thus, DPOR is a unique iron-sulphur enzyme to form substrate radicals followed by sequential proton- and electron-transfer steps with the protein folding very similar to that of nitrogenase. This novel radical-mediated reaction supports the biosynthesis of Chl in a wide variety of photosynthetic organisms. PMID:24965831

Nomata, Jiro; Kondo, Toru; Mizoguchi, Tadashi; Tamiaki, Hitoshi; Itoh, Shigeru; Fujita, Yuichi

2014-01-01

214

Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase.  

PubMed

The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond-microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called "reactive" intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. PMID:25488797

Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S

2015-01-26

215

Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae.  

PubMed

Abstract Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na+ gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na+-dependent transport processes and describe the central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), a primary Na+ pump, in maintaining a Na+-motive force. The Na+-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na+ across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na+-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported. PMID:25205724

Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

2014-12-01

216

Catalytic Mechanism of Short Ethoxy Chain Nonylphenol Dehydrogenase Belonging to a Polyethylene Glycol Dehydrogenase Group in the GMC Oxidoreductase Family  

PubMed Central

Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149

Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

2013-01-01

217

The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase.  

PubMed

The present work was carried out with the aim to analyze the secretome of Trametes versicolor BAFC 2234 grown on tomato juice medium supplemented with copper and manganese. T. versicolor BAFC 2234 was selected among diverse wood dwelling agaricomycetes from Argentina by its ability to cause a strong white rot on hardwood and in addition to show high tolerance toward phenolic compounds. A considerable number of the identified proteins were related to the degradation/modification of lignocelluloses. Hydrolases, peroxidases and phenoloxidases were the most abundant enzymes produced under the above-mentioned culture conditions. The lignin-modifying oxidoreductases laccase, manganese peroxidase (MnP) and versatile peroxidase (VP) were successfully purified - the latter for the first time from T. versicolor. The native VP protein has a molecular mass of 45kDa and an isoelectric point of pH 3.7. The study clearly shows that complex plant-based media being rich in phenolics, such as tomato juice, can stimulate the secretion of a broad set of extracellular lignocellulolytic enzymes. Using such natural products as fungal culture media may give the opportunity to investigate plant biomass decomposition as well as the biodegradation of organic pollutants in an environment close to nature. PMID:23948257

Carabajal, Maira; Kellner, Harald; Levin, Laura; Jehmlich, Nico; Hofrichter, Martin; Ullrich, René

2013-10-10

218

Identification and Characterization of the Rhizobium sp. Strain GIN611 Glycoside Oxidoreductase Resulting in the Deglycosylation of Ginsenosides  

PubMed Central

Using enrichment culture, Rhizobium sp. strain GIN611 was isolated as having activity for deglycosylation of a ginsenoside, compound K (CK). The purified heterodimeric protein complex from Rhizobium sp. GIN611 consisted of two subunits with molecular masses of 63.5 kDa and 17.5 kDa. In the genome, the coding sequence for the small subunit was located right after the sequence for the large subunit, with one nucleotide overlapping. The large subunit showed CK oxidation activity, and the deglycosylation of compound K was performed via oxidation of ginsenoside glucose by glycoside oxidoreductase. Coexpression of the small subunit helped soluble expression of the large subunit in recombinant Escherichia coli. The purified large subunit also showed oxidation activity against other ginsenoside compounds, such as Rb1, Rb2, Rb3, Rc, F2, CK, Rh2, Re, F1, and the isoflavone daidzin, but at a much lower rate. When oxidized CK was extracted and incubated in phosphate buffer with or without enzyme, (S)-protopanaxadiol [PPD(S)] was detected in both cases, which suggests that deglycosylation of oxidized glucose is spontaneous. PMID:22020506

Kim, Eun-Mi; Kim, Juhan; Seo, Joo-Hyun; Park, Jun-Seong; Kim, Duck-Hee

2012-01-01

219

The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis  

SciTech Connect

GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attached FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.

Noinaj, Nicholas; Bosserman, Mary A.; Schickli, M. Alexandra; Piszczek, Grzegorz; Kharel, Madan K.; Pahari, Pallab; Buchanan, Susan K.; Rohr, Jürgen (NIH); (Kentucky)

2012-11-26

220

Arabidopsis tic62 trol mutant lacking thylakoid-bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic phenotype.  

PubMed

Ferredoxin-NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane via the C-terminal domains of Tic62 and TROL proteins in a pH-dependent manner. The tic62 trol double mutants contained a reduced level of FNR, exclusively found in the soluble stroma. Although the mutant plants showed no visual phenotype or defects in the function of photosystems under any conditions studied, a low ratio of NADPH/NADP+ was detected. Since the CO? fixation capacity did not differ between the tic62 trol plants and wild-type, it seems that the plants are able to funnel reducing power to most crucial reactions to ensure survival and fitness of the plants. However, the activity of malate dehydrogenase was down-regulated in the mutant plants. Apparently, the plastid metabolism is able to cope with substantial changes in directing the electrons from the light reactions to stromal metabolism and thus only few differences are visible in steady-state metabolite pool sizes of the tic62 trol plants. PMID:24043709

Lintala, Minna; Schuck, Natalie; Thormählen, Ina; Jungfer, Andreas; Weber, Katrin L; Weber, Andreas P M; Geigenberger, Peter; Soll, Jürgen; Bölter, Bettina; Mulo, Paula

2014-01-01

221

Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O 2-accumulating Brassica napus leaf protoplasts.  

PubMed

The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H(+) was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH. PMID:25255860

Tewari, Rajesh Kumar; Satoh, Mamoru; Kado, Sayaka; Mishina, Kohei; Anma, Misato; Enami, Kazuhiko; Hanaoka, Mitsumasa; Watanabe, Masami

2014-12-01

222

Automated resonance assignment of the 21 kDa stereo-array isotope labeled thioldisulfide oxidoreductase DsbA  

NASA Astrophysics Data System (ADS)

The automated chemical shift assignment algorithm FLYA has been extended for use with stereo-array isotope labeled (SAIL) proteins to determine the sequence-specific resonance assignments of large proteins. Here we present the assignment of the backbone and sidechain chemical shifts of the 21 kDa thioldisulfide oxidoreductase DsbA from Escherichia coli that were determined with the SAIL-FLYA algorithm in conjunction with automated peak picking. No manual corrections of peak lists or assignments were applied. The assignments agreed with manually determined reference assignments in 95.4% of the cases if 16 input spectra were used, 94.1% if only 3D 13C/15N-resolved NOESY, CBCA(CO)NH, and 2D [13C/15N,1H]-HSQC were used, and 86.8% if exclusively 3D 13C/15N-resolved NOESY spectra were used. Considering only the assignments that are classified as reliable by the SAIL-FLYA algorithm, the degrees of agreement increased to 97.5%, 96.5%, and 94.2%, respectively. With our approach it is thus possible to automatically obtain almost complete and correct assignments of proteins larger than 20 kDa.

Schmidt, Elena; Ikeya, Teppei; Takeda, Mitsuhiro; Löhr, Frank; Buchner, Lena; Ito, Yutaka; Kainosho, Masatsune; Güntert, Peter

2014-12-01

223

Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas.  

PubMed

An NADH--rubredoxin oxidoreductase previously isolated from Desulfovibrio gigas [LeGall, J. (1968) Ann. Inst. Pasteur 114, 109-115] has now been fully purified and further characterized. It contains two subunits of 27 kDa and 32 kDa. With two mid-point redox potentials of -295 mV and -325 mV, this FMN- and FAD-containing protein can induce the specific reduction of D. gigas rubredoxin. In contrast, rubredoxins from the other Desulfovibrio species or desulforedoxin from D. gigas show very low reaction rates with the same enzyme. The phylogenetic significance of the narrow specificity of the enzyme toward the rubredoxin from the same organism is discussed. The purified enzyme has NADH oxidase activity with H2O2 as a final product of O2 reduction. The reaction is half-inhibited by 4.2 microM p-chloromercuribenzoate, whereas cyanide and azide are not significant inhibitors in this reaction. The role of this protein as a part of the enzymic equipment that allows the formation of ATP in the presence of oxygen from the degradation of carbon reserves is discussed. PMID:8375383

Chen, L; Liu, M Y; Legall, J; Fareleira, P; Santos, H; Xavier, A V

1993-09-01

224

Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria NADH:FMN-oxidoreductase-luciferase.  

PubMed

We have studied the effects of a gel-like environment on the characteristics of enzyme preparations based on the coupled enzyme system of luminous bacteria, NADH:FMN-oxidoreductase-luciferase, to design a stable immobilizing reagent for bioluminescent analysis. Natural polymers, gelatin and starch, were used to create a viscous, structured microenvironment. The stability of the coupled enzyme system to such physical and chemical environmental factors as temperature, pH, and ionic strength in gelatin and starch-containing media was examined. It was shown that both gelatin and starch have a stabilizing effect on the enzymes of luminous bacteria under specific conditions. In particular, the enzymes' activity is increased twofold in the presence of 1 and 5% of gelatin at 20 °C and 25 °C, respectively (temperatures lower than the gel point). Also, the acceptable pH range of the coupled enzyme system expands into the alkaline region and becomes 6.8-8.1. Stabilization at low ionic strength (0.01-0.06 mol L(-1)) is observed. At the same time, microenvironments based on either gelatin or starch do not change the enzymes' thermal inactivation rate constants in the temperature range from 25 to 43 °C. Finally, gelatin and starch are suitable for development of a reagent for immobilization of enzymes which would be stable and resistant to physical and chemical environmental conditions. PMID:25002335

Bezrukikh, Anna; Esimbekova, Elena; Nemtseva, Elena; Kratasyuk, Valentina; Shimomura, Osamu

2014-09-01

225

Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols.  

PubMed

Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank. PMID:1864846

Ikeda, H; Esaki, N; Nakai, S; Hashimoto, K; Uesato, S; Soda, K; Fujita, T

1991-02-01

226

Structure of Escherichia coli Succinate:Quinone Oxidoreductase with an Occupied and Empty Quinone-binding Site*  

PubMed Central

Three new structures of Escherichia coli succinate-quinone oxidoreductase (SQR) have been solved. One with the specific quinone-binding site (Q-site) inhibitor carboxin present has been solved at 2.4 ? resolution and reveals how carboxin inhibits the Q-site. The other new structures are with the Q-site inhibitor pentachlorophenol and with an empty Q-site. These structures reveal important details unresolved in earlier structures. Comparison of the new SQR structures shows how subtle rearrangements of the quinone-binding site accommodate the different inhibitors. The position of conserved water molecules near the quinone binding pocket leads to a reassessment of possible water-mediated proton uptake networks that complete reduction of ubiquinone. The dicarboxylate-binding site in the soluble domain of SQR is highly similar to that seen in high resolution structures of avian SQR (PDB 2H88) and soluble flavocytochrome c (PDB 1QJD) showing mechanistically significant structural features conserved across prokaryotic and eukaryotic SQRs. PMID:19710024

Ruprecht, Jonathan; Yankovskaya, Victoria; Maklashina, Elena; Iwata, So; Cecchini, Gary

2009-01-01

227

Tissue-Specific Regulatory Differences for the Alcohol Dehydrogenase Genes of Hawaiian Drosophila are Conserved in Drosophila melanogaster Transformants  

Microsoft Academic Search

Naturally occurring regulatory variation is a source of genetic variability that is well documented but poorly understood. Two members of the Hawaiian picture-winged Drosophila, D. affinidisjuncta and D. hawaiiensis, display markedly different levels of alcohol dehydrogenase (alcohol: NAD+ oxidoreductase, EC 1.1.1.1) in the larval midgut and Malpighian tubules. To analyze the regulation of the alcohol dehydrogenase genes from these two

Mark D. Brennan; Chyong-Yi Wu; A. J. Berry

1988-01-01

228

Biosynthesis of the Antimicrobial Peptide Epilancin 15X and Its N-terminal Lactate  

PubMed Central

SUMMARY Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides. The recently discovered lantibiotic epilancin 15X produced by Staphylococcus epidermidis 15X154 contains an unusual N-terminal lactate group. To understand its biosynthesis, the epilancin 15X biosynthetic gene cluster was identified. The N-terminal lactate is produced by dehydration of a Ser residue in the first position of the core peptide by ElxB, followed by proteolytic removal of the leader peptide by ElxP, and hydrolysis of the resulting new N-terminal dehydroalanine. The pyruvate group thus formed is reduced to lactate by an NADPH dependent oxidoreductase designated ElxO. The enzymatic activity of ElxB, ElxP, and ElxO were investigated in vitro or in vivo and the importance of the N-terminal modification for peptide stability against bacterial aminopeptidases was assessed. PMID:21802007

Velásquez, Juan E.; Zhang, Xingang; van der Donk, Wilfred

2011-01-01

229

Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae.  

PubMed

The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a ?agl1?gph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

Badaruddin, Muhammad; Holcombe, Lucy J; Wilson, Richard A; Wang, Zheng-Yi; Kershaw, Michael J; Talbot, Nicholas J

2013-01-01

230

Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae  

PubMed Central

The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a ?agl1?gph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

2013-01-01

231

NADH: flavin oxidoreductase/NADH oxidase and ROS regulate microsclerotium development in Nomuraea rileyi.  

PubMed

Based on transcriptome library, an NADH: flavinoxidore ductase/NADH oxidase gene (Nox) was cloned from Nomuraea rileyi. The 1,663-bp full-length cDNA contains an open reading frame of 1,233 bp coding 410 amino acids. The expression level of Nox was up-regulated and co-related to the intracellular H2O2 concentration during microsclerotium (MS) initiation. Rotenone inhibition showed that inhibition of Nox could cause a noticeable decrease in the MS yields. Silencing of Nox resulted in the MS yields, H2O2 and virulence decreased by 98.5, 38 and 21.5%, respectively. On the other hand, MS yields increased by 24.8-61% when induced by H2O2 or menadione. Furthermore, the reactive oxygen species (ROS) scavenger, ascorbic acid (up to 0.03 g ascorbic acid l(-1)), completely inhibited the formation of MS. In conclusion, the results obtained suggested that ROS promoted MS development, and that Nox was required for MS differentiation through regulation of intracellular H2O2 concentration. Besides, Nox had a great impact on the virulence in N. rileyi. PMID:24497186

Liu, Juanjuan; Yin, Youping; Song, Zhangyong; Li, Yan; Jiang, Shasha; Shao, Changwen; Wang, Zhongkang

2014-07-01

232

Ipsdienol dehydrogenase (IDOLDH): a novel oxidoreductase important for Ips pini pheromone production.  

PubMed

Ipsdienone (2-methyl-6-methylene-2,7-octadien-4-one) is an important intermediate in the biosynthesis of pheromonal ipsdienol (2-methyl-6-methylene-2,7-octadien-4-ol) and ipsenol (2-methyl-6-methylene-7-octen-4-ol) in male pine engraver beetles, Ips pini (Say). A novel ipsdienol dehydrogenase (IDOLDH) with a pheromone-biosynthetic gene expression pattern was cloned, expressed, functionally characterized, and its cellular localization analyzed. The cDNA has a 762nt ORF encoding a 253 amino acid predicted translation product of 28kDa and pI 5.8. The protein has conserved motifs of the Cp2 subfamily of "classical" short-chain dehydrogenases. Transcript levels were highest in pheromone producing tissue: the anterior midgut of fed males. The protein was detected only in male midguts and localized in the cytosolic fraction of midgut cells. Recombinant IDOLDH was produced in Sf9 cells using a baculovirus expression system. Enzyme assays of protein preparations showed IDOLDH used both NAD? and NADP? as coenzymes with specific activities in the nanomole range. Enzyme assays and GC/MS analysis showed that IDOLDH catalyzed the oxidation of racemic ipsdienol and (4R)-(-)-ipsdienol to form ipsdienone, while (4S)-(+)-ipsdienol was not a substrate. These data strongly implicate IDOLDH as an enzyme involved in terminal pheromone-biosynthetic steps, likely functioning to "tune" ipsdienol enantiomeric ratios. PMID:22101251

Figueroa-Teran, Rubi; Welch, William H; Blomquist, Gary J; Tittiger, Claus

2012-02-01

233

Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria.  

PubMed

In all photosynthetic organisms, chlorophylls function as light-absorbing photopigments allowing the efficient harvesting of light energy. Chlorophyll biosynthesis recurs in similar ways in anoxygenic phototrophic proteobacteria as well as oxygenic phototrophic cyanobacteria and plants. Here, the biocatalytic conversion of protochlorophyllide to chlorophyllide is catalysed by evolutionary and structurally distinct protochlorophyllide reductases (PORs) in anoxygenic and oxygenic phototrophs. It is commonly assumed that anoxygenic phototrophs only contain oxygen-sensitive dark-operative PORs (DPORs), which catalyse protochlorophyllide reduction independent of the presence of light. In contrast, oxygenic phototrophs additionally (or exclusively) possess oxygen-insensitive but light-dependent PORs (LPORs). Based on this observation it was suggested that light-dependent protochlorophyllide reduction first emerged as a consequence of increased atmospheric oxygen levels caused by oxygenic photosynthesis in cyanobacteria. Here, we provide experimental evidence for the presence of an LPOR in the anoxygenic phototrophic ?-proteobacterium Dinoroseobacter shibae?DFL12(T). In vitro and in vivo functional assays unequivocally prove light-dependent protochlorophyllide reduction by this enzyme and reveal that LPORs are not restricted to cyanobacteria and plants. Sequence-based phylogenetic analyses reconcile our findings with current hypotheses about the evolution of LPORs by suggesting that the light-dependent enzyme of D. shibae?DFL12(T) might have been obtained from cyanobacteria by horizontal gene transfer. PMID:25039543

Kaschner, Marco; Loeschcke, Anita; Krause, Judith; Minh, Bui Quang; Heck, Achim; Endres, Stephan; Svensson, Vera; Wirtz, Astrid; von Haeseler, Arndt; Jaeger, Karl-Erich; Drepper, Thomas; Krauss, Ulrich

2014-09-01

234

Characterization of NADPH-cytochrome P450 reductase gene from the cotton bollworm, Helicoverpa armigera.  

PubMed

A complete cDNA encoding the NADPH-cytochrome P450 reductase (haCPR) and its genomic sequence from the cotton bollworm Helicoverpa armigera were cloned and sequenced. The open reading frame of haCPR codes for a protein of 687 amino acid residues with a calculated molecular mass of 77.4kDa. The haCPR gene spans over 11 kb and its coding region is interrupted by 11 introns. haCPR is ubiquitously expressed in various tissues and at various stages of development. Escherichia coli produced haCPR enzyme exhibited catalytic activity for NADPH-dependent reduction of cytochrome c, following Michaelis-Menten kinetics. The functionality of CPR was further demonstrated by its capacity to support cytochrome P450 (e.g. haCYP9A14 and chicken CYP1A5) mediated O-dealkylation activity of alkoxyresorufins. The flavoprotein-specific inhibitor (diphenyleneiodonium chloride, DPI) showed a potent inhibition to haCPR activity (IC50=1.69 ?M). Inhibitory effect of secondary metabolites in the host plants (tannic acid, quercetin and gossypol) on CPR activity (with an IC50 value ranged from 15 to 90 ?M) was also observed. PMID:24768738

Liu, Dong; Zhou, Xiaojie; Li, Mei; Zhu, Shunyi; Qiu, Xinghui

2014-07-25

235

Chromogenic Identification of Genetic Regulatory Signals in Bacillus subtilis Based on Expression of a Cloned Pseudomonas Gene  

Microsoft Academic Search

A method to isolate fragments of DNA that promote gene expression in Bacillus subtilis is described. The system is based on production of catechol 2,3-dioxygenase [CatO2ase; catechol:oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.2] encoded by the Pseudomonas putida TOL plasmid gene xylE. The gene was transferred to a B. subtilis\\/Escherichia coli plasmid vector to construct pTG402. Although xylE is functionally expressed in

Mark M. Zukowski; Dairena F. Gaffney; Denis Speck; Muriel Kauffmann; Annie Findeli; Anne Wisecup; Jean-Pierre Lecocq

1983-01-01

236

Characterization of the Ubiquinone Binding Site in Alternative NADH-Quinone Oxidoreductase of Saccharomyces cerevisiae by Photoaffinity Labeling†  

PubMed Central

The Ndi1 enzyme found in the mitochondrial membrane of Saccharomyces cerevisiae is an NDH-2-type alternative NADH-quinone (Q) oxidoreductase. As Ndi1 is expected to be a possible remedy for complex I defects of mammalian mitochondria, a detailed biochemical characterization of the enzyme is needed. To identify the ubiquinone (UQ) binding site in Ndi1, we carried out photoaffinity labeling using a photoreactive biotinylated UQ mimic (compound 2) synthesized following a concept of least modification of the substituents on the quinone ring possible. Cleavage with CNBr of Ndi1 cross-linked by 2 revealed the UQ-ring of 2 to be specifically cross-linked to the region Phe281-Met410 (130 amino acids). Digestion of the CNBr fragment with V8 protease and lysylendopeptidase (Lys C) gave ~8 kDa and ~4 kDa peptides, respectively. The ~8 kDa V8 digest was identified as Thr329-Glu399 (71 amino acids) by an N-terminal sequence analysis. Although the ~4 kDa Lys C digest could not be identified by N-terminal sequence analysis, the band was thought to cover the region Gly374-Lys405 (32 amino acids). Taken together, the binding site of the Q-ring of 2 must be located in a common region of the V8 and the Lys C digests Gly374-Glu399 (26 amino acids). Superimposition of the Ndi1 sequence onto a 3D-structural model of NDH-2 from Escherichia coli suggested that the C-terminal portion of this region is close to the isoalloxazine ring of FAD. PMID:20192260

Murai, Masatoshi; Yamashita, Tetsuo; Senoh, Mai; Mashimo, Yuko; Kataoka, Michihiko; Kosaka, Hiroaki; Matsuno-Yagi, Akemi; Yagi, Takao; Miyoshi, Hideto

2010-01-01

237

The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei  

PubMed Central

Background Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells. Results Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+ cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages. Conclusions Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis. PMID:24382268

2014-01-01

238

NAD(P)H: Quinone Oxidoreductase 1 Deficiency Conjoint with Marginal Vitamin C Deficiency Causes Cigarette Smoke Induced Myelodysplastic Syndromes  

PubMed Central

Background The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs. Methodology and Principal Findings Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective. Conclusions and Significance CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS. PMID:21655231

Das, Archita; Dey, Neekkan; Ghosh, Arunava; Das, Tanusree; Chatterjee, Indu B.

2011-01-01

239

Genetic evidence for NAD(P)H:quinone oxidoreductase 1-catalyzed quinone reduction on passage through the mouse pulmonary circulation  

PubMed Central

The quinones duroquinone (DQ) and coenzyme Q1 (CoQ1) and quinone reductase inhibitors have been used to identify reductases involved in quinone reduction on passage through the pulmonary circulation. In perfused rat lung, NAD(P)H:quinone oxidoreductase 1 (NQO1) was identified as the predominant DQ reductase and NQO1 and mitochondrial complex I as the CoQ1 reductases. Since inhibitors have nonspecific effects, the goal was to use Nqo1-null (NQO1?/?) mice to evaluate DQ as an NQO1 probe in the lung. Lung homogenate cytosol NQO1 activities were 97 ± 11, 54 ± 6, and 5 ± 1 (SE) nmol dichlorophenolindophenol reduced·min?1·mg protein?1 for NQO1+/+, NQO1+/?, and NQO1?/? lungs, respectively. Intact lung quinone reduction was evaluated by infusion of DQ (50 ?M) or CoQ1 (60 ?M) into the pulmonary arterial inflow of the isolated perfused lung and measurement of pulmonary venous effluent hydroquinone (DQH2 or CoQ1H2). DQH2 efflux rates for NQO1+/+, NQO1+/?, and NQO1?/? lungs were 0.65 ± 0.08, 0.45 ± 0.04, and 0.13 ± 0.05 (SE) ?mol·min?1·g dry lung?1, respectively. DQ reduction in NQO1+/+ lungs was inhibited by 90 ± 4% with dicumarol; there was no inhibition in NQO1?/? lungs. There was no significant difference in CoQ1H2 efflux rates for NQO1+/+ and NQO1?/? lungs. Differences in DQ reduction were not due to differences in lung dry weights, wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total DQ recoveries. The data provide genetic evidence implicating DQ as a specific NQO1 probe in the perfused rodent lung. PMID:21296895

Lindemer, Brian J.; Bongard, Robert D.; Hoffmann, Raymond; Baumgardt, Shelley; Gonzalez, Frank J.

2011-01-01

240

Characterization of the kinetics and electron paramagnetic resonance spectroscopic properties of Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase (SQR).  

PubMed

Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase (SQR) catalyzes the oxidation of sulfide to polysulfide chains or elemental sulfur coupled to quinone reduction via a non-covalent FAD cofactor. We investigated the role of the FAD using kinetics and EPR spectroscopy. The properties of the enzyme were compared with alanine and/or serine variants of conserved cysteine residues (Cys128, Cys160, Cys356) structurally close to the FAD cofactor and histidine residues (His132, His198) implicated in function. When the pre-steady state reduction of FAD was monitored, variants of Cys128 and His132 had similar rates to wild-type enzyme confirming they do not participate in the reductive half reaction whereas variants of Cys160, Cys356 and His198 had greatly reduced activity. Using steady state kinetics of Na2S-dependent decylubiquinone (DUQ) reduction we measured a kcat of 6.5s(-1) and a Km (Na2S) of 3.0?M and a Km (DUQ) of 3.4?M. Variants of Cys160, Cys356 and His198 had greatly diminished DUQ reduction activity whereas variants of Cys128 and His132 were less affected. A neutral flavin semiquinone was observed in the EPR spectrum of SQR reduced with Na2S which was enhanced in the Cys160Ala variant suggesting the presence of a Cys356-S(?)-S-C(4A)-FAD adduct. Potentiometric titrations of the FAD semiquinone revealed an Em of -139±4mV at pH 7.0. PMID:25303790

Zhang, Yanfei; Weiner, Joel H

2014-12-15

241

Reevaluating the relationship between EPR spectra and enzyme structure for the iron–sulfur clusters in NADH:quinone oxidoreductase  

PubMed Central

NADH:quinone oxidoreductase (complex I) plays a pivotal role in cellular energy production. It employs a series of redox cofactors to couple electron transfer to the generation of a proton-motive force across the inner mitochondrial or bacterial cytoplasmic membrane. Complex I contains a noncovalently bound flavin mononucleotide at the active site for NADH oxidation and eight or nine iron–sulfur clusters to transfer electrons between the flavin and a quinone-binding site. Understanding the mechanism of complex I requires the properties of these clusters to be defined, both individually and as an ensemble. Most functional information on the clusters has been gained from EPR spectroscopy, but some clusters are not observed by EPR and attributing the observed signals to the structurally defined clusters is difficult. The current consensus picture relies on correlating the spectra from overexpressed subunits (containing one to four clusters) with those from intact complexes I. Here, we analyze spectra from the overexpressed NuoG subunit from Escherichia coli complex I and compare them with spectra from the intact enzyme. Consequently, we propose that EPR signals N4 and N5 have been misassigned: signal N4 is from NuoI (not NuoG) and signal N5 is from the conserved cysteine-ligated [4Fe-4S] cluster in NuoG (not from the cluster with a histidine ligand). The consequences of reassigning the EPR signals and their associated functional information on the free energy profile for electron transfer through complex I are discussed. PMID:17640900

Yakovlev, Gregory; Reda, Torsten; Hirst, Judy

2007-01-01

242

Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency  

SciTech Connect

Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland); Mallet, Delphine [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France)] [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Hofer, Gaby [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland)] [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland); Samara-Boustani, Dinane [Hopital Necker-Enfants malades, Paris (France)] [Hopital Necker-Enfants malades, Paris (France); Leger, Juliane [Hopital Robert Debre, Paris (France)] [Hopital Robert Debre, Paris (France); Polak, Michel [Hopital Necker-Enfants malades, Paris (France)] [Hopital Necker-Enfants malades, Paris (France); Morel, Yves [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France)] [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland)

2011-09-09

243

Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)  

NASA Astrophysics Data System (ADS)

Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

2008-02-01

244

Depletion of leaf-type ferredoxin-NADP(+) oxidoreductase results in the permanent induction of photoprotective mechanisms in Arabidopsis chloroplasts.  

PubMed

Arabidopsis thaliana contains two photosynthetically competent chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F(1) (fnr1?×?fnr2) and F(2) (fnr1?fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1?×?fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment-protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem?II (PSII) electron transport was lower, non-photochemical quenching (NPQ) was higher and the rate of P700(+) re-reduction was faster in the mutant plants. The slight over-reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de-epoxidation state of xanthophylls, as well as the content of ?-tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1?fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1?fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts. PMID:22300243

Lintala, Minna; Lehtimäki, Nina; Benz, J Philipp; Jungfer, Andreas; Soll, Jürgen; Aro, Eva-Mari; Bölter, Bettina; Mulo, Paula

2012-06-01

245

Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.  

PubMed

In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. PMID:24631263

Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

2014-05-15

246

The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression.  

PubMed

Screening of an Aspergillus niger differential cDNA library, constructed by subtracting cDNA fragments of a xlnR loss-of-function mutant from wild-type cDNA fragments, resulted in the cloning of the gene encoding D-xylose reductase (xyrA). Northern blot analysis using an A. niger wild-type strain, a xlnR multiple-copy strain and a xlnR loss-of-function mutant confirmed that the xyrA gene is regulated by XlnR, the transcriptional activator of the xylanolytic enzyme system in A. niger. D-xylose reductase catalyses the NADPH-dependent reduction of D-xylose to xylitol, which is the first step in D-xylose catabolism in fungi. Until now, XlnR was shown to control the transcription of genes encoding extracellular hydrolytic enzymes involved in cellulose and xylan degradation. In the present study, we show that A. niger is able to harmonize its sugar metabolism and extracellular xylan degradation via XlnR by regulating the expression of XyrA. PMID:10760176

Hasper, A A; Visser, J; de Graaff, L H

2000-04-01

247

Design, synthesis, and pharmacological and pharmacokinetic evaluation of 3-phenyl-5-pyridyl-1,2,4-triazole derivatives as xanthine oxidoreductase inhibitors  

Microsoft Academic Search

In an effort to find a potent xanthine oxidoreductase (XO) inhibitor, we discovered the best compound 2-[2-(2-methoxy-ethoxy)-ethoxy]-5-[5-(2-methyl-pyridin-4-yl)-1H-[1,2,4]triazol-3-yl]-benzonitrile 28. Here, we describe the following: (1) the design, synthesis, and structure–activity relationship of a series of 3-phenyl-5-pyridyl-1,2,4-triazole derivatives by in vitro studies of XO inhibitory activity in bovine milk and in vivo studies of serum uric acid (UA) reductive activity in rats,

Takahiro Sato; Naoki Ashizawa; Takashi Iwanaga; Hiroshi Nakamura; Koji Matsumoto; Tsutomu Inoue; Osamu Nagata

2009-01-01

248

Discovery of 3-(3-cyano-4-pyridyl)-5-(4-pyridyl)-1,2,4-triazole, FYX-051-a xanthine oxidoreductase inhibitor for the treatment of hyperuricemia  

Microsoft Academic Search

Our previous study identified 2-[2-(2-methoxy-ethoxy)-ethoxy]-5-[5-(2-methyl-4-pyridyl)-1H-[1,2,4]triazol-3-yl]-benzonitrile (2) as a safe and potent xanthine oxidoreductase (XOR) inhibitor for the treatment of hyperuricemia. Here, we synthesized a series of 3,5-dipyridyl-1,2,4-triazole derivatives and, in particular, examined their in vivo activity in lowering the serum uric acid levels in rats. As a result, we identified 3-(3-cyano-4-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (FYX-051, compound 39) to be one of the most

Takahiro Sato; Naoki Ashizawa; Koji Matsumoto; Takashi Iwanaga; Hiroshi Nakamura; Tsutomu Inoue; Osamu Nagata

2009-01-01

249

Low-resolution structure determination of Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae by ab initio phasing and electron microscopy.  

PubMed

A low-resolution structure of the Na(+)-translocating NADH:ubiquinone oxidoreductase from the human pathogen Vibrio cholerae was determined by ab initio phasing and independently confirmed by electron microscopy. This multi-subunit membrane-protein complex (molecular weight 210 kDa) generates an Na(+) gradient that is essential for substrate uptake, motility, pathogenicity and efflux of antibiotics. The obtained 16 Å resolution electron density-map revealed an asymmetric particle with a central region of low electron density and a putative detergent region, and allowed the identification of the transmembrane regions of the complex. PMID:22683795

Lunin, Vladimir Y; Lunina, Natalia L; Casutt, Marco S; Knoops, Kèvin; Schaffitzel, Christiane; Steuber, Julia; Fritz, Günter; Baumstark, Manfred W

2012-06-01

250

Three-dimensional structure of bovine heart NADH: ubiquinone oxidoreductase (complex I) by electron microscopy of a single negatively stained two-dimensional crystal.  

PubMed

Bovine heart NADH:ubiquinone oxidoreductase (complex I), which is the largest (about 1 MDa) membrane protein complex in the mitochondrial respiratory chain, catalyzes the electron transfer from NADH to ubiquinone, coupled with proton pumping. We have crystallized bovine complex I in reconstituted lipid bilayers and obtained a three-dimensional density map by the electron crystallographic analysis of a single negatively stained two-dimensional crystal. The asymmetric unit with dimensions of a = 388 Å, b = 129 Å and ? = 90° contains two molecules and is of P1 symmetry. Structural differences between the two molecules indicate flexibility of the hydrophilic domain relative to the membrane-embedded domain. PMID:24523515

Shimada, Satoru; Shinzawa-Itoh, Kyoko; Amano, Satoko; Akira, Yui; Miyazawa, Atsuo; Tsukihara, Tomitake; Tani, Kazutoshi; Gerle, Christoph; Yoshikawa, Shinya

2014-04-01

251

Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615.  

PubMed

In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3', 5'-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators. PMID:25153529

Anwar, Naeem; Rouf, Syed Fazle; Römling, Ute; Rhen, Mikael

2014-01-01

252

Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615  

PubMed Central

In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3?, 5?-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators. PMID:25153529

Römling, Ute; Rhen, Mikael

2014-01-01

253

Genes and Gene Therapy  

MedlinePLUS

... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

254

Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).  

PubMed

Poplar plants (Populus deltoides x nigra, DN34) growing under hydroponic conditions were exposed to 50 mg L(-1) of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) for 24 h. The expression of genes potentially involved in the metabolism of toxic explosives was analyzed by reverse-transcriptase (RT) real-time PCR. Genes under study were selected by reference to corresponding genes that were previously shown to be upregulated in the model plant Arabidopsis thaliana by exposure to 2,4,6-trinitrotoluene (TNT) (Ekman et al., 2003. Plant Physiol., 133, 1397-1406). The target genes investigated include several genes encoding for enzymes known to be involved in the detoxification of xenobiotic pollutants, such as glutathione S-transferases (GSTs), cytochrome P-450s (CYPs), NADPH-dependent reductases, and peroxidases. Starting from A. thaliana TNT-inducible genes, corresponding Populus sequences were retrieved from the JGI Poplar Genome Project database and were used to design gene-specific primers. 18S ribosomal DNA (rDNA) was used as an internal standard and recorded gene expression levels were normalized by reference to nonexposed plants. In three separate experiments, five genes were found to be significantly amplified in leaf tissues by exposure to RDX, including GST (9.7 fold), CYP (1.6 fold), reductases (1.6-1.7 fold), and peroxidase (1.7 fold). In root tissues, only a single GST gene was found to be significantly amplified by exposure to RDX (2.0 fold). These results show, for the first time, that the exposure of poplar plants to RDX results in the induction of several genes that are potentially involved in explosive detoxification. PMID:18246712

Tanaka, Sachiyo; Brentner, Laura B; Merchie, Kate M; Schnoor, Jerald L; Yoon, Jong Moon; Van Aken, Benoit

2007-01-01

255

Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.  

PubMed Central

Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a 100,000-fold difference in the equilibrium constant (K(eq)) with glutathione between the most oxidizing member, DsbA, and the most reducing member, thioredoxin. Here we present a systematic study on a series of variants of thioredoxin from Escherichia coli, in which the Xaa-Xaa dipeptide was exchanged by that of glutaredoxin, PDI, and DsbA. Like the corresponding natural enzymes, all thioredoxin variants proved to be stronger oxidants than the wild-type, with the order wild-type < PDI-type < DsbA-type < glutaredoxin-type. The most oxidizing, glutaredoxin-like variant has a 420-fold decreased value of K(eq), corresponding to an increase in redox potential by 75 mV. While oxidized wild-type thioredoxin is more stable than the reduced form (delta deltaG(ox/red) = 16.9 kJ/mol), both redox forms have almost the same stability in the variants. The pH-dependence of the reactivity with the alkylating agent iodoacetamide proved to be the best method to determine the pKa value of thioredoxin's nucleophilic active-site thiol (Cys32). A pKa of 7.1 was measured for Cys32 in the reduced wild-type. All variants showed a lowered pKa of Cys32, with the lowest value of 5.9 for the glutaredoxin-like variant. A correlation of redox potential and the Cys32 pKa value could be established on a quantitative level. However, the predicted correlation between the measured delta deltaG(ox/red) values and Cys32 pKa values was only qualitative. PMID:9605329

Mössner, E.; Huber-Wunderlich, M.; Glockshuber, R.

1998-01-01

256

Functional and Bioinformatics Analysis of Two Campylobacter jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA  

PubMed Central

Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether the data presented here constitute the considerable insight to the Epsilonproteobacterial Dsb systems, which have been poorly understood so far. PMID:25181355

Grabowska, Anna D.; Wywia?, Ewa; Dunin-Horkawicz, Stanislaw; ?asica, Anna M.; Wösten, Marc M. S. M.; Nagy-Staro?, Anna; Godlewska, Renata; Bocian-Ostrzycka, Katarzyna; Pie?kowska, Katarzyna; ?aniewski, Pawe?; Bujnicki, Janusz M.; van Putten, Jos P. M.; Jagusztyn-Krynicka, E. Katarzyna

2014-01-01

257

Fenpyroximate binds to the interface between PSST and 49 kDa subunits in mitochondrial NADH-ubiquinone oxidoreductase.  

PubMed

Using a photoaffinity labeling technique, Nakamaru-Ogiso et al. demonstrated that fenpyroximate, a strong inhibitor of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I), binds to the ND5 subunit [Nakamaru-Ogiso, E., et al. (2003) Biochemistry 42, 746-754]. Considering that the main body of the ND5 subunit composed of transmembrane helixes 1-15 is located at the distal end of the membrane domain [Efremov, R. G., et al. (2010) Nature 465, 441-445], however, their result may be questionable. Because establishing the number and location of inhibitors and/or quinone binding sites in the membrane domain is necessary to elucidate the function of the enzyme, it is critical to clarify whether there is an additional inhibitor and/or quinone binding site besides the interface between the hydrophilic and membrane domains. We therefore performed photoaffinity labeling experiments using two newly synthesized fenpyroximate derivatives [[(125)I]-4-azidophenyl fenpyroximate ([(125)I]APF) and [(125)I]-3-azido-5-iodobenzyl fenpyroximate ([(125)I]AIF)] possessing a photoreactive azido group at and far from the pharmacophoric core moiety, respectively. Doubled sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that [(125)I]APF and [(125)I]AIF bind to the PSST and 49 kDa subunits, respectively. Careful examination of the fragmentation patterns of the labeled PSST and 49 kDa subunits generated by limited proteolysis indicated that the residues labeled by [(125)I]APF and [(125)I]AIF are located in the Ser43-Arg66 (PSST) and Asp160-Arg174 (49 kDa) regions, respectively, which face the supposed quinone-binding pocket formed at the interface of the PSST, 49 kDa, and ND1 subunits. We conclude that fenpyroximate does not bind to the distal end of the membrane domain but rather resides at the interface between the two domains in a manner such that the pharmacophoric pyrazole ring and side chain of the inhibitor orient toward the PSST and 49 kDa subunits, respectively. This study answers a critical question relating to complex I. PMID:22353032

Shiraishi, Yusuke; Murai, Masatoshi; Sakiyama, Naoto; Ifuku, Kentaro; Miyoshi, Hideto

2012-03-01

258

Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002.  

PubMed

The enzyme ferredoxin-NADP(+) oxidoreductase (FNR) from Synechococcus sp. PCC 7002 has an extended structure comprising three domains (FNR-3D) (Schluchter, W. M., and Bryant, D. A. (1992) Biochemistry 31, 3092-3102). Phycobilisome (PBS) preparations from wild-type cells contained from 1.0 to 1.6 molecules of FNR-3D per PBS, with an average value of 1.3 FNR per PBS. A maximum of two FNR-3D molecules could be specifically bound to wild-type PBS via the N-terminal, CpcD-like domain of the enzyme when exogenous recombinant FNR-3D (rFNR-3D) was added. To localize the enzyme within the PBS, the interaction of PBS and their substructures with rFNR-3D was further investigated. The binding affinity of rFNR-3D for phycocyanin (PC) hexamers, which contained a 22-kDa proteolytic fragment derived from CpcG, the L(RC)(27) linker polypeptide, was higher than its affinity for PC hexamers containing no linker protein. PBS from a cpcD3 mutant, which lacks the 9-kDa, PC-associated rod linker, incorporated up to six rFNR-3D molecules per PBS. PBS of a cpcC mutant, which has peripheral rods that contain single PC hexamers, also incorporated up to six rFNR-3D molecules per PBS. Direct competition binding experiments showed that PBS from the cpcD3 mutant bound more enzyme than PBS from the cpcC mutant. These observations support the hypothesis that the enzyme binds preferentially to the distal ends of the peripheral rods of the PBS. These data also show that the relative affinity order of the PC complexes for FNR-3D is as follows: (alpha(PC)beta(PC))(6)-L(R)(33) > (alpha(PC)beta(PC))(6)-L(RC)(27) > (alpha(PC)beta(PC))(6). The data suggest that, during the assembly of the PBS, FNR-3D could be displaced to the periphery according to its relative binding affinity for different PC subcomplexes. Thus, FNR-3D would not interfere with the light absorption and energy transfer properties of PC in the peripheral rods of the PBS. The implications of this localization of FNR within the PBS with respect to its function in cyanobacteria are discussed. PMID:14636046

Gómez-Lojero, Carlos; Pérez-Gómez, Bertha; Shen, Gaozhong; Schluchter, Wendy M; Bryant, Donald A

2003-12-01

259

Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder.  

PubMed

Recently, it was shown that electrochemical methods can be used for analysis of poorly water-soluble proteins and for study of their structural changes and intermolecular (protein-ligand) interactions. In this study, we focused on complex electrochemical investigation of recombinant protein FTT1103, a disulfide oxidoreductase with structural similarity to well described DsbA proteins. This thioredoxin-like periplasmic lipoprotein plays an important role in virulence of bacteria Francisella tularensis. For electrochemical analyses, adsorptive transfer (ex situ) square-wave voltammetry with pyrolytic graphite electrode, and alternating-current voltammetry and constant-current chronopotentiometric stripping analysis with mercury electrodes, including silver solid amalgam electrode (AgSAE) were used. AgSAE was used in poorly water-soluble protein analysis for the first time. In addition to basic redox, electrocatalytic and adsorption/desorption characterization of FTT1103, electrochemical methods were also used for sensitive determination of the protein at nanomolar level and study of its interaction with surface of AgSA microparticles. Proposed electrochemical protocol and AgSA surface-inhibition approach presented here could be used in future for biochemical studies focused on proteins associated with membranes as well as on those with disulfide oxidoreductase activity. PMID:24856508

Ve?erková, Renata; Hernychová, Lenka; Dobeš, Petr; Vrba, Ji?í; Josyp?uk, Bohdan; Bartošík, Martin; Vacek, Jan

2014-06-01

260

Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis.  

PubMed

Angiosperms require light for chlorophyll biosynthesis because one reaction in the pathway, the reduction of protochlorophyllide (Pchlide) to chlorophyllide, is catalyzed by the light-dependent protochlorophyllide oxidoreductase (POR). Here, we report that Cell growth defect factor1 (Cdf1), renamed here as chaperone-like protein of POR1 (CPP1), an essential protein for chloroplast development, plays a role in the regulation of POR stability and function. Cdf1/CPP1 contains a J-like domain and three transmembrane domains, is localized in the thylakoid and envelope membranes, and interacts with POR isoforms in chloroplasts. CPP1 can stabilize POR proteins with its holdase chaperone activity. CPP1 deficiency results in diminished POR protein accumulation and defective chlorophyll synthesis, leading to photobleaching and growth inhibition of plants under light conditions. CPP1 depletion also causes reduced POR accumulation in etioplasts of dark-grown plants and as a result impairs the formation of prolamellar bodies, which subsequently affects chloroplast biogenesis upon illumination. Furthermore, in cyanobacteria, the CPP1 homolog critically regulates POR accumulation and chlorophyll synthesis under high-light conditions, in which the dark-operative Pchlide oxidoreductase is repressed by its oxygen sensitivity. These findings and the ubiquitous presence of CPP1 in oxygenic photosynthetic organisms suggest the conserved nature of CPP1 function in the regulation of POR. PMID:24151298

Lee, Jae-Yong; Lee, Ho-Seok; Song, Ji-Young; Jung, Young Jun; Reinbothe, Steffen; Park, Youn-Il; Lee, Sang Yeol; Pai, Hyun-Sook

2013-10-01

261

Liver NADPH-dependent oxidation of the 5-nitrofurans, FANFT and ANFT, by guinea pig and rat.  

PubMed

1. Oxidative metabolism of the bladder carcinogens FANFT/ANFT was examined in vitro in guinea pig (resistant species) relative to rat (susceptible species). 2. The total rate of ANFT hepatic metabolism by guinea pig (soluble metabolites plus protein bound, 354 pmol/min per mg protein) was approx. 4 times that in rat. 3. The total rate of FANFT metabolism was similar in both species and approx. one-quarter that for ANFT in guinea pig. In rat, the rate of total metabolism of FANFT and ANFT was similar. 4. Cytochrome P450 inhibitors, 2,4-dichloro-6-phenylphenoxyethylamine, 7,8-benzoflavone, and n-octylamine largely inhibited metabolism in guinea pig, but had little effect in rat. 5. H.p.l.c. analysis of ANFT metabolites indicated distinctly different products in guinea pig compared to rat. 7,8-Benzoflavone decreased metabolite formation by 80% in guinea pig, but only 30% in rat. 6. Flavin-dependent monooxygenases may participate in metabolism of these carcinogens in rat, but not guinea pig. 7. Because ANFT is thought to be a more proximate carcinogen than FANFT, the increased rate of ANFT metabolism and the formation of different products in guinea pig compared to rat may partially explain the resistance of guinea pig to FANFT-induced bladder cancer. PMID:8498082

Dawley, R M; Lakshmi, V M; Babu, S R; Zenser, T V; Davis, B B

1993-02-01

262

Molecular Characterization of an NADPH-Dependent Acetoin Reductase/2,3-Butanediol Dehydrogenase from Clostridium beijerinckii NCIMB 8052  

PubMed Central

Acetoin reductase is an important enzyme for the fermentative production of 2,3-butanediol, a chemical compound with a very broad industrial use. Here, we report on the discovery and characterization of an acetoin reductase from Clostridium beijerinckii NCIMB 8052. An in silico screen of the C. beijerinckii genome revealed eight potential acetoin reductases. One of them (CBEI_1464) showed substantial acetoin reductase activity after expression in Escherichia coli. The purified enzyme (C. beijerinckii acetoin reductase [Cb-ACR]) was found to exist predominantly as a homodimer. In addition to acetoin (or 2,3-butanediol), other secondary alcohols and corresponding ketones were converted as well, provided that another electronegative group was attached to the adjacent C-3 carbon. Optimal activity was at pH 6.5 (reduction) and 9.5 (oxidation) and around 68°C. Cb-ACR accepts both NADH and NADPH as electron donors; however, unlike closely related enzymes, NADPH is preferred (Km, 32 ?M). Cb-ACR was compared to characterized close homologs, all belonging to the “threonine dehydrogenase and related Zn-dependent dehydrogenases” (COG1063). Metal analysis confirmed the presence of 2 Zn2+ atoms. To gain insight into the substrate and cofactor specificity, a structural model was constructed. The catalytic zinc atom is likely coordinated by Cys37, His70, and Glu71, while the structural zinc site is probably composed of Cys100, Cys103, Cys106, and Cys114. Residues determining NADP specificity were predicted as well. The physiological role of Cb-ACR in C. beijerinckii is discussed. PMID:24441158

Raedts, John; Siemerink, Marco A. J.; Levisson, Mark; van der Oost, John

2014-01-01

263

Human carbonyl reductase (CBR) localized to band 21q22. 1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells  

SciTech Connect

Human carbonyl reductase (CBR) belongs to a group of NADPH-dependent enzymes called aldo-keto reductases. The enzyme can function as an aldo-keto reductase or as a quinone reductase with potential for modulating quinone-mediated oxygen free radicals. The CBR gene was mapped by high-resolution fluorescence in situ hybridization to band 21q22.12, very close to the SOD1 locus at position 2lq22.11. CBR displayed gene dosage effects in trisomy 21 human lymphoblasts at the DNA and mRNA levels. Lymphoblasts with increasing chromosome 21 ploidy also showed increased aldo-keto reductase activity and increased quinone reductase activity. Both aldo-keto reductase activity and quinone reductase activity have been shown to be associated with carbonyl reductase. The location of CBR near SOD1 and the increased enzyme activity and potential for free radical modulation in trisomy 21 cells implicate CBR as a candidate for contributing to the pathology of certain diseases such as Down syndrome and Alzheimer disease. 28 refs., 1 fig., 1 tab.

Lemieux, N. (Universite de Montreal (Canada)); Malfoy, B. (Institut Curie Section de Biologie, Paris (France)); Forrest, G.L. (Beckman Research Institute at the City of Hope, Duarte, CA (United States))

1993-01-01

264

[Detection and analysis of sulfur metabolism genes in Sphaerotilus natans subsp. sulfidivorans representatives].  

PubMed

The lithotrophic capacity of the betaproteobacteria Sphaerotilus natans subsp. sulfidivorans was confirmed at genetic level: functional genes of sulfur metabolism were detected (aprBA, soxB, and sqr, coding for adenylyl phosphosulfate reductase, thiosulfate-cleaving enzyme, and sulfide:quinone oxidoreductase, respectively), and the expression of aprA and soxB genes was demonstrated. An evolutionary scenario for soxB genes in Sphaerotilus representatives is suggested based on comparative analysis of codon occurrence frequency, DNA base composition (G + C content), and topology of phylogenetic trees. The ancestor bacterium of the Sphaerotilus-Leptothrix group was capable of lithotrophic growth in the presence of reduced sulfur compounds. However, in the course of further evolution, the sulfur metabolism genes, including the soxB gene, were lost by some Sphaerotilus strains. As a result, the lithotrophic Sphaerotilus-Leptothrix group split into two phylogenetic lineages, lithotrophic and organotrophic ones. PMID:25509396

Belousova, E V; Chernousova, E Iu; Dubinina, G A; Turova, T P; Grabovich, M Iu

2013-01-01

265

H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments.  

PubMed

Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine ? lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits. PMID:24813672

Tobler, Michael; Henpita, Chathurika; Bassett, Brandon; Kelley, Joanna L; Shaw, Jennifer H

2014-09-01

266

Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium.  

PubMed

We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba × tremula) and syringyl (S)-rich transgenic derivatives. A combination of microarrays and liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Comparisons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 regulated genes, 11 of which were significantly higher (>2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene expression patterns are substantially influenced by lignin composition. PMID:25015893

Gaskell, Jill; Marty, Amber; Mozuch, Michael; Kersten, Philip J; Splinter BonDurant, Sandra; Sabat, Grzegorz; Azarpira, Ali; Ralph, John; Skyba, Oleksandr; Mansfield, Shawn D; Blanchette, Robert A; Cullen, Dan

2014-09-01

267

A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity.  

PubMed Central

Protochlorophyllide reductase (NADPH:protochlorophyllide oxidoreductase; EC 1.6.99.1) catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide, a key regulatory step in the chlorophyll biosynthetic pathway. We have developed an expression system in which the protochlorophyllide reductase from pea (Pisum sativum L.) is used to complement protochlorophyllide reduction mutants in the photosynthetic bacterium Rhodobacter capsulatus, allowing analysis of wild-type and mutant forms of the enzyme. By protein sequence comparisons, we have identified the plant protochlorophyllide reductases as belonging to the family of short-chain alcohol dehydrogenases. Based on our protein sequence alignments, we have identified and mutated two conserved residues (Tyr-275 and Lys-279) within the proposed active site of the enzyme and shown that they are critical for activity. A model of the enzyme reaction mechanism for light-dependent protochlorophyllide reduction is proposed. Images Fig. 2 Fig. 3 Fig. 4 PMID:7846042

Wilks, H M; Timko, M P

1995-01-01

268

A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity.  

PubMed

Polymyxin B and colistin were examined for their ability to inhibit the type II NADH-quinone oxidoreductases (NDH-2) of three species of Gram-negative bacteria. Polymyxin B and colistin inhibited the NDH-2 activity in preparations from all of the isolates in a concentration-dependent manner. The mechanism of NDH-2 inhibition by polymyxin B was investigated in detail with Escherichia coli inner membrane preparations and conformed to a mixed inhibition model with respect to ubiquinone-1 and a non-competitive inhibition model with respect to NADH. These suggest that the inhibition of vital respiratory enzymes in the bacterial inner membrane represents one of the secondary modes of action for polymyxins. PMID:24169795

Deris, Zakuan Z; Akter, Jesmin; Sivanesan, Sivashangarie; Roberts, Kade D; Thompson, Philip E; Nation, Roger L; Li, Jian; Velkov, Tony

2014-02-01

269

Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae.  

PubMed

The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA-NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1-377 was solved in space groups C222? and P2? by SAD phasing and molecular replacement at 1.9 and 2.1?Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8?Å resolution. PMID:25005105

Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M; Steuber, Julia; Fritz, Günter

2014-07-01

270

Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.  

PubMed

Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group. PMID:18298367

Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

2008-02-01

271

Identification of pathways, gene networks and paralogous gene families in Daphnia pulex responding to exposure to the toxic cyanobacterium Microcystis aeruginosa  

PubMed Central

Although cyanobacteria produce a wide range of natural toxins that impact aquatic organisms, food webs and water quality, the mechanisms of toxicity are still insufficiently understood. Here, we implemented a whole-genome expression microarray to identify pathways, gene networks and paralogous gene families responsive to Microcystis stress in Daphnia pulex. Therefore, neonates of a sensitive isolate were given a diet contaminated with Microcystis to contrast with those given a control diet for sixteen days. The microarray revealed 2247 differentially expressed (DE) genes (7.6% of the array) in response to Microcystis, of which 17% are lineage specific( i.e., these genes have no detectable homology to any other gene in currently available databases) and 49% are gene duplicates (paralogs). We identified four pathways/gene networks and eight paralogous gene families affected by Microcystis. Differential regulation of the ribosome, including 3 paralogous gene families encoding 40S, 60S and mitochondrial ribosomal proteins, suggests an impact of Microcystis on protein synthesis of D. pulex. In addition, differential regulation of the oxidative phosphorylation pathway (including the NADH ubquinone oxidoreductase gene family) and the trypsin paralogous gene family (a major component of the digestive system in D. pulex) could explain why fitness is reduced based on energy budget considerations. PMID:22799445

Asselman, Jana; De Coninck, Dieter IM; Glaholt, Stephen; Colbourne, John K; Janssen, Colin R; Shaw, Joseph R; De Schamphelaere, Karel AC

2013-01-01

272

Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp  

PubMed Central

The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

2015-01-01

273

The mammalian aldehyde oxidase gene family  

PubMed Central

Aldehyde oxidases (EC 1.2.3.1) are a small group of structurally conserved cytosolic proteins represented in both the animal and plant kingdoms. In vertebrates, aldehyde oxidases constitute the small sub-family of molybdo-flavoenzymes, along with the evolutionarily and structurally related protein, xanthine oxidoreductase. These enzymes require a molybdo-pterin cofactor (molybdenum cofactor, MoCo) and flavin adenine dinucleotide for their catalytic activity. Aldehyde oxidases have broad substrate specificity and catalyse the hydroxylation of N-heterocycles and the oxidation of aldehydes to the corresponding acid. In humans, a single aldehyde oxidase gene (AOX1) and two pseudogenes clustering on a short stretch of chromosome 2q are known. In other mammals, a variable number of structurally conserved aldehyde oxidase genes has been described. Four genes (Aox1, Aox3, Aox4 and Aox3l1), coding for an equivalent number of catalytically active enzymes, are present in the mouse and rat genomes. Although human AOX1 and its homologous proteins are best known as drug metabolising enzymes, the physiological substrate(s) and function(s) are as yet unknown. The present paper provides an update of the available information on the evolutionary history, tissue- and cell-specific distribution and function of mammalian aldehyde oxidases. PMID:20038499

2009-01-01

274

PAH Particles Perturb Prenatal Processes and Phenotypes: Protection from Deficits in Object Discrimination Afforded by Dampening of Brain Oxidoreductase Following In Utero Exposure to Inhaled Benzo(a)pyrene  

PubMed Central

The wild-type (WT) Cprlox/lox (cytochrome P450 oxidoreductase, Cpr) mouse is an ideal model to assess the contribution of P450 enzymes to the metabolic activation and disposition of environmental xenobiotics. In the present study, we examined the effect of in utero exposure to benzo(a)pyrene [B(a)P] aerosol on Sp4 and N-methyl-D-aspartate (NMDA)–dependent systems as well as a resulting behavioral phenotype (object discrimination) in Cpr offspring. Results from in utero exposure of WT Cprlox/lox mice were compared with in utero exposed brain-Cpr-null offspring mice. Null mice were used as they do not express brain cytochrome P4501B1–associated NADPH oxidoreductase (CYP1B1-associated NADPH oxidoreductase), thus reducing their capacity to produce neural B(a)P metabolites. Subsequent to in utero (E14–E17) exposure to B(a)P (100 ?g/m3), Cprlox/lox offspring exhibited: (1) elevated B(a)P metabolite and F2-isoprostane neocortical tissue burdens, (2) elevated concentrations of cortical glutamate, (3) premature developmental expression of Sp4, (4) decreased subunit ratios of NR2B:NR2A, and (5) deficits in a novelty discrimination phenotype monitored to in utero exposed brain-Cpr-null offspring. Collectively, these findings suggest that in situ generation of metabolites by CYP1B1-associated NADPH oxidoreductase promotes negative effects on NMDA-mediated signaling processes during the period when synapses are first forming as well as effects on a subsequent behavioral phenotype. PMID:21987461

Chadalapaka, Gayathri; Ramesh, Aramandla; Khoshbouei, Habibeh; Maguire, Mark; Safe, Stephen; Rhoades, Raina E.; Clark, Ryan; Jules, George; McCallister, Monique; Aschner, Michael; Hood, Darryl B.

2012-01-01

275

Novel integrons and gene cassettes from a Cascadian submarine gas-hydrate-bearing core.  

PubMed

To determine whether integrons are present in a submarine gas hydrate community, metagenomic DNA was extracted from a gas-hydrate-bearing core, 150 m below the seafloor, from the Cascadian Margin. Integrons and gene cassettes were recovered by PCR from metagenomic DNA and sequenced. Thirty-seven integron integrase phylotypes were identified. The phylotypes were diverse and included members with homology to integrases from Methylomonas methanica, Desulfuromonas acetoxidans, Thermodesulfatator indicus, and marine uncultured bacteria. The gene cassette composition, 153 gene cassettes, was dominated by two types of encoded putative proteins. The first of these was predicted oxidoreductases, such as iron/sulfur cluster-binding proteins. A second type was alkyl transferases. Some cassette proteins showed homologies with those from methane-related archaea. These observations suggest that integrons may assist in the adaptation of microbial communities in this environment. PMID:24117886

Elsaied, Hosam; Stokes, Hatch W; Yoshioka, Hideyoshi; Mitani, Yasuo; Maruyama, Akihiko

2014-02-01

276

Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene.  

PubMed Central

Precorrin-6x reductase, which catalyzes the NADPH-dependent reduction of precorrin-6x to a dihydro derivative named precorrin-6y, was purified 14,300-fold to homogeneity with an 8% yield from extracts of a recombinant strain of Pseudomonas denitrificans. Precorrin-6y was identified by fast atom bombardment-mass spectrometry. It was converted in high yield (90%) to hydrogenobyrinic acid by cell-free protein preparations from P. denitrificans. For the purification and characterization of precorrin-6x reductase, a coupled-enzyme radioenzymatic assay was developed in which precorrin-6y was methylated in situ by the cobL gene product (F. Blanche, A. Famechon, D. Thibaut, L. Debussche, B. Cameron, J. Crouzet, J. Bacteriol. 174:1050-1052, 1992) in the presence of [methyl-3H]S-adenosyl-L-methionine. Molecular weights of precorrin-6x reductase obtained by gel filtration (Mr congruent to 27,000) and by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr congruent to 31,000) were consistent with the enzyme being a monomer. Km values of 3.6 +/- 0.2 microM for precorrin-6x and 23.5 +/- 3.5 microM for NADPH and a Vmax value of 17,000 U mg-1 were obtained at pH 7.7. The N-terminal sequence (six amino acids) and three internal sequences obtained after tryptic digestion of the enzyme were determined by microsequencing and established that precorrin-6x reductase is encoded by the cobK gene, located on a previously described 8.7-kb EcoRI fragment (J. Crouzet, B. Cameron, L. Cauchois, S. Rigault, M.-C. Rouyez, F. Blanche, D. Thibaut, and L. Debussche, J. Bacteriol. 172:5980-5990, 1990). However, the coding sequence was shown to be on the strand complementary to the one previously proposed as the coding strand. Images PMID:1732193

Blanche, F; Thibaut, D; Famechon, A; Debussche, L; Cameron, B; Crouzet, J

1992-01-01

277

Genes and gene regulation  

SciTech Connect

Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

MacLean, N.

1988-01-01

278

The MoxR ATPase RavA and Its Cofactor ViaA Interact with the NADH:Ubiquinone Oxidoreductase I in Escherichia coli  

PubMed Central

MoxR ATPases are widespread throughout bacteria and archaea. The experimental evidence to date suggests that these proteins have chaperone-like roles in facilitating the maturation of dedicated protein complexes that are functionally diverse. In Escherichia coli, the MoxR ATPase RavA and its putative cofactor ViaA are found to exist in early stationary-phase cells at 37°C at low levels of about 350 and 90 molecules per cell, respectively. Both proteins are predominantly localized to the cytoplasm, but ViaA was also unexpectedly found to localize to the cell membrane. Whole genome microarrays and synthetic lethality studies both indicated that RavA-ViaA are genetically linked to Fe-S cluster assembly and specific respiratory pathways. Systematic analysis of mutant strains of ravA and viaA indicated that RavA-ViaA sensitizes cells to sublethal concentrations of aminoglycosides. Furthermore, this effect was dependent on RavA's ATPase activity, and on the presence of specific subunits of NADH:ubiquinone oxidoreductase I (Nuo Complex, or Complex I). Importantly, both RavA and ViaA were found to physically interact with specific Nuo subunits. We propose that RavA-ViaA facilitate the maturation of the Nuo complex. PMID:24454883

Wong, Keith S.; Snider, Jamie D.; Graham, Chris; Greenblatt, Jack F.; Emili, Andrew; Babu, Mohan; Houry, Walid A.

2014-01-01

279

Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection.  

PubMed Central

The gram-negative ethanologenic bacterium Zymomonas mobilis is able to grow in media containing high concentrations of glucose or other sugars. A novel compatible solute for bacteria, sorbitol, which enhances growth of Z. mobilis at glucose concentrations exceeding 0.83 M (15%), is described. Added sorbitol was accumulated intracellularly up to 1 M to counteract high external glucose concentrations (up to 1.66 M or 30%). Accumulation of sorbitol was triggered by a glucose upshift (e.g., from 0.33 to 1.27 M or 6 to 23%) and was prevented by the uncoupler CCCP (carbonyl cyanide m-chlorophenylhydrazone; 100 microM). The sorbitol transport system followed Michaelis-Menten kinetics, with an apparent Km of 34 mM and a Vmax of 11.2 nmol.min-1.mg-1 (dry mass). Sorbitol was produced by the cells themselves and was accumulated when growing on sucrose (1 M or 36%) by the action of the periplasmic enzyme glucose-fructose oxidoreductase, which converts glucose and fructose to gluconolactone and sorbitol. Thus, Z. mobilis can form and accumulate the compatible solute sorbitol from a natural carbon source, sucrose, in order to overcome osmotic stress in high-sugar media. No other major compatible solute (betaine, proline, glutamate, or trehalose) was detected. PMID:8002594

Loos, H; Krämer, R; Sahm, H; Sprenger, G A

1994-01-01

280

Sulindac compounds facilitate the cytotoxicity of ?-lapachone by up-regulation of NAD(P)H quinone oxidoreductase in human lung cancer cells.  

PubMed

?-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of ?-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, ?-lapachone toxicity was positively correlated with the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to ?-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in ?-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of ?-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers. PMID:24505400

Kung, Hsiu-Ni; Weng, Tsai-Yun; Liu, Yu-Lin; Lu, Kuo-Shyan; Chau, Yat-Pang

2014-01-01

281

Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?  

PubMed Central

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the membrane-bound electron transport chain in mitochondria. It conserves energy, from the reduction of ubiquinone by NADH, as a protonmotive force across the inner membrane, but the mechanism of energy transduction is not known. The structure of the hydrophilic arm of thermophilic complex I supports the idea that proton translocation is driven at (or close to) the point of quinone reduction, rather than at the point of NADH oxidation, with a chain of iron–sulfur clusters transferring electrons between the two active sites. Here, we describe experiments to determine whether complex I, isolated from bovine heart mitochondria, operates via a Q-cycle mechanism analogous to that observed in the cytochrome bc1 complex. No evidence for the ‘reductant-induced oxidation’ of ubiquinol could be detected; therefore no support for a Q-cycle mechanism was obtained. Unexpectedly, in the presence of NADH, complex I inhibited by either rotenone or piericidin A was found to catalyse the exchange of redox states between different quinone and quinol species, providing a possible route for future investigations into the mechanism of energy transduction. PMID:16895522

Sherwood, Steven; Hirst, Judy

2006-01-01

282

Interplay of Flavin's Redox States and Protein Dynamics: An Insight from QM/MM Simulations of Dihydronicotinamide Riboside Quinone Oxidoreductase 2  

PubMed Central

Dihydronicotinamide riboside quinone oxidoreductase 2 is known to catalyze a two-electron reduction of quinone to hydroquinone using its cofactor, flavin adenine dinucleotide. Using quantum mechanical/molecular mechanical simulations, we have computed the reorganization free energies of the electron and proton transfer processes of flavin in the free state as well as when it is bound in the active site of the enzyme. The calculated energetics for electron transfer processes demonstrate that the enzyme active site lowers the reorganization energy for the redox process as compared to the enzyme-free aqueous state. This is most apparent in the two electron reduction step, which eliminates the possibility of flavosemiquinone generation. In addition, essential dynamics study of the simulated motions revealed spectacular changes in the principal components of atomic fluctuations upon reduction of flavin. This alteration of active site dynamics provides an insight into the `ping-pong' kinetics exhibited by the enzyme upon a change in the redox state of the enzyme-bound flavin. A charge perturbation analysis provides further support that the observed change in dynamics is correlated with the change in energetics due to the altered electrostatic interactions between the flavin ring and the active site residues. This study shows that the effect of electrostatic preorganization goes beyond the chemical catalysis as it strongly impacts the post-catalytic intrinsic protein dynamics. PMID:21410212

Mueller, Robyn M.; North, Michael A.; Yang, Chee; Hati, Sanchita; Bhattacharyya, Sudeep

2011-01-01

283

Structural Data on the Periplasmic Aldehyde Oxidoreductase PaoABC from Escherichia coli: SAXS and Preliminary X-ray Crystallography Analysis  

PubMed Central

The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an ??? heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS) have been carried out. The protein crystallizes in the presence of 20% (w/v) polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K) was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 Å and belong to the C2 space group, with cell parameters a = 109.42 Å, b = 78.08 Å, c = 151.77 Å, ? = 99.77°, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an ??? heterotrimer. PMID:24492481

Otrelo-Cardoso, Ana Rita; da Silva Correia, Márcia Alexandra; Schwuchow, Viola; Svergun, Dmitri I.; Romão, Maria João; Leimkühler, Silke; Santos-Silva, Teresa

2014-01-01

284

GmcA Is a Putative Glucose-Methanol-Choline Oxidoreductase Required for the Induction of Asexual Development in Aspergillus nidulans  

PubMed Central

Aspergillus nidulans asexual differentiation is induced by Upstream Developmental Activators (UDAs) that include the bZIP-type Transcription Factor (TF) FlbB. A 2D-PAGE/MS-MS-coupled screen for proteins differentially expressed in the presence and absence of FlbB identified 18 candidates. Most candidates belong to GO term classes involved in osmotic and/or oxidative stress response. Among these, we focused on GmcA, a putative glucose-methanol-choline oxidoreductase which is upregulated in a ?flbB background. GmcA is not required for growth since no differences were detected in the radial extension upon deletion of gmcA. However, its activity is required to induce conidiation under specific culture conditions. A ?gmcA strain conidiates profusely under acid conditions but displays a characteristic fluffy aconidial phenotype in alkaline medium. The absence of asexual development in a ?gmcA strain can be suppressed, on one hand, using high concentrations of non-fermentable carbon sources like glycerol, and on the other hand, when the cMyb-type UDA TF flbD is overexpressed. Overall, the results obtained in this work support a role for GmcA at early stages of conidiophore initiation. PMID:22792266

Etxebeste, Oier; Herrero-García, Erika; Cortese, Marc S.; Garzia, Aitor; Oiartzabal-Arano, Elixabet; de los Ríos, Vivian; Ugalde, Unai; Espeso, Eduardo A.

2012-01-01

285

Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites.  

PubMed

Type II NADH-quinone oxidoreductase (NDH-2) catalyzes the transfer electrons from NADH to the quinone pool and plays an essential role in the oxidative phosphorylation system of Mycobacterium tuberculosis (Mtb). The absence of NDH-2 in the mammalian mitochondrial electron transport chain makes this enzyme an attractive target for antibiotic development. To fully establish the kinetic properties of this enzyme, we studied the interaction of Mtb NDH-2 with substrates, NADH, and various quinone analogues and their products in both membrane and soluble environments. These studies, and comparative analyses of the kinetics with thio-NAD(+) and quinone electron acceptors, provided evidence that Mtb NDH-2 catalyzes the transfer electrons from NADH to quinone substrates by a nonclassical, two-site ping-pong kinetic mechanism whereby substrate quinones bind to a site that is distinct from the NADH-binding site. Furthermore, the effects of quinols on Mtb NDH-2 catalytic activity demonstrate the presence of two binding sites for quinone ligands, one favoring the reduced form and the other favoring the oxidized form. PMID:24447297

Yano, Takahiro; Rahimian, Maryam; Aneja, Kawalpreet K; Schechter, Norman M; Rubin, Harvey; Scott, Charles P

2014-02-25

286

Structural data on the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli: SAXS and preliminary X-ray crystallography analysis.  

PubMed

The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an ??? heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS) have been carried out. The protein crystallizes in the presence of 20% (w/v) polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K) was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 Å and belong to the C2 space group, with cell parameters a = 109.42 Å, b = 78.08 Å, c = 151.77 Å, ? = 99.77°, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an ??? heterotrimer. PMID:24492481

Otrelo-Cardoso, Ana Rita; da Silva Correia, Márcia Alexandra; Schwuchow, Viola; Svergun, Dmitri I; Romão, Maria João; Leimkühler, Silke; Santos-Silva, Teresa

2014-01-01

287

Characterization of two quinone radicals in the NADH:ubiquinone oxidoreductase from Escherichia coli by a combined fluorescence spectroscopic and electrochemical approach.  

PubMed

The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. It was proposed that the electron transfer involves quinoid groups localized at the end of the electron transfer chain. To identify these groups, fluorescence excitation and emission spectra of Escherichia coli complex I and its fragments, namely, the NADH dehydrogenase fragment containing the flavin mononucleotide and six iron-sulfur (Fe-S) clusters, and the quinone reductase fragment containing three Fe-S clusters were measured. Signals sensitive to reduction by either NADH or dithionite were detected within the complex and the quinone reductase fragment and attributed to the redox transition of protonated ubiquinone radicals. A fluorescence spectroscopic electrochemical redox titration revealed midpoint potentials of -37 and- 235 mV (vs the standard hydrogen electrode) for the redox transitions of the quinone radicals in complex I at pH 6 with an absorption around 325 nm and a fluorescence emission at 460/475 nm. The role of these cofactor(s) for electron transfer is discussed. PMID:24279322

Hielscher, Ruth; Yegres, Michelle; Voicescu, Mariana; Gnandt, Emmanuel; Friedrich, Thorsten; Hellwig, Petra

2013-12-17

288

The MoxR ATPase RavA and its cofactor ViaA interact with the NADH:ubiquinone oxidoreductase I in Escherichia coli.  

PubMed

MoxR ATPases are widespread throughout bacteria and archaea. The experimental evidence to date suggests that these proteins have chaperone-like roles in facilitating the maturation of dedicated protein complexes that are functionally diverse. In Escherichia coli, the MoxR ATPase RavA and its putative cofactor ViaA are found to exist in early stationary-phase cells at 37 °C at low levels of about 350 and 90 molecules per cell, respectively. Both proteins are predominantly localized to the cytoplasm, but ViaA was also unexpectedly found to localize to the cell membrane. Whole genome microarrays and synthetic lethality studies both indicated that RavA-ViaA are genetically linked to Fe-S cluster assembly and specific respiratory pathways. Systematic analysis of mutant strains of ravA and viaA indicated that RavA-ViaA sensitizes cells to sublethal concentrations of aminoglycosides. Furthermore, this effect was dependent on RavA's ATPase activity, and on the presence of specific subunits of NADH:ubiquinone oxidoreductase I (Nuo Complex, or Complex I). Importantly, both RavA and ViaA were found to physically interact with specific Nuo subunits. We propose that RavA-ViaA facilitate the maturation of the Nuo complex. PMID:24454883

Wong, Keith S; Snider, Jamie D; Graham, Chris; Greenblatt, Jack F; Emili, Andrew; Babu, Mohan; Houry, Walid A

2014-01-01

289

Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.  

PubMed

Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs. PMID:24361395

Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

2014-01-01

290

Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation.  

PubMed

N-terminal or C-terminal arms that extend from folded protein domains can play a critical role in quaternary structure and other intermolecular associations and/or in controlling biological activity. We have tested the role of an extended N-terminal arm in the structure and function of a periplasmic enzyme glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis. We have determined the crystal structure of the NAD(+) complex of a truncated form of the enzyme, GFORDelta, in which the first 22 residues of the N-terminal arm of the mature protein have been deleted. The structure, refined at 2.7 A resolution (R(cryst)=24.1%, R(free)=28.4%), shows that the truncated form of the enzyme forms a dimer and implies that the N-terminal arm is essential for tetramer formation by wild-type GFOR. Truncation of the N-terminal arm also greatly increases the solvent exposure of the cofactor; since GFOR activity is dependent on retention of the cofactor during the catalytic cycle we conclude that the absence of GFOR activity in this mutant results from dissociation of the cofactor. The N-terminal arm thus determines the quaternary structure and the retention of the cofactor for GFOR activity and during translocation into the periplasm. The structure of GFORDelta also shows how an additional mutation, Ser64Asp, converts the strict NADP(+) specificity of wild-type GFOR to a dual NADP(+)/NAD(+) specificity. PMID:11099381

Lott, J S; Halbig, D; Baker, H M; Hardman, M J; Sprenger, G A; Baker, E N

2000-12-01

291

Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: Insight into the mechanism of chlorophyll formation in light-adapted plants  

PubMed Central

The mechanism of the protochlorophyllide (PChlide) photoreduction reaction operating in light-adapted plants and catalyzed by NADPH:protochlorophyllide oxidoreductase B (PORb) has been analyzed by low-temperature fluorescence spectroscopy by using purified barley PORb overexpressed heterologously in Escherichia coli as a fusion protein with the maltose-binding protein. We show that the PORb-catalyzed PChlide reduction reaction consists of two steps, one photochemical and the other nonphotochemical. The initial photochemical reaction follows a single quantum mechanism and leads to the formation of an unstable intermediate with mixed pigment electronic structure and an EPR spectrum that suggests the presence of a free electron. The second step involves the spontaneous conversion of the unstable intermediate into chlorophyllide as defined by its spectroscopic characteristics and migration on an HPLC column. Both steps of the reaction can be performed at subzero temperatures in frozen samples, suggesting that they do not include major changes in enzyme conformation or pigment rearrangement within the active site. The rate of the reaction at room temperature depends linearly on enzyme and substrate (PChlide) concentration, and the kinetic parameters are consistent with one molecule of substrate bound per active monomer in solution. The PORb-catalyzed reaction in vitro is spectroscopically similar to that identified in leaves of light-adapted plants, suggesting that the same reaction sequence observed operates in planta. PMID:10449801

Lebedev, Nikolai; Timko, Michael P.

1999-01-01

292

Flavodoxin Cofactor Binding Induces Structural Changes that are Required for Protein-Protein Interactions with NADP+ Oxidoreductase and Pyruvate Formate-Lyase Activating Enzyme  

PubMed Central

Flavodoxin (Fld) conformational changes, thermal stability, and cofactor binding were studied using circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis. Thermodynamics of apo and holo-Fld folding were examined to discern the features of this important electron transfer protein and to provide data on apo-Fld. With the exception of fluorescence and UV-vis binding experiments with its cofactor flavin mononucleotide (FMN), apo-Fld is almost completely uncharacterized in Escherichia coli. Fld is more structured when the FMN cofactor is bound; the association is tight and driven by enthalpy of binding. Surface plasmon resonance binding experiments were carried out under anaerobic conditions for both apo- and holo-Fld and demonstrate the importance of structure and conformation for interaction with binding partners. Holo-Fld is capable of associating with NADP+-dependent flavodoxin oxidoreductase (FNR) and pyruvate formate-lyase activating enzyme (PFL-AE) whereas there is no detectable interaction between apo-Fld and either protein. Limited proteolysis experiments were analyzed by LC-MS to identify the regions in Fld that are involved in conformations changes upon cofactor binding. Docking software was used to model the Fld/PFL-AE complex to understand the interactions between these two proteins and gain insight into electron transfer reactions from Fld to PFL-AE. PMID:24016774

Crain, Adam V.; Broderick, Joan B.

2014-01-01

293

Mycobacterium tuberculosis Type II NADH-Menaquinone Oxidoreductase Catalyzes Electron Transfer through a Two-Site Ping-Pong Mechanism and Has Two Quinone-Binding Sites  

PubMed Central

Type II NADH-quinone oxidoreductase (NDH-2) catalyzes the transfer electrons from NADH to the quinone pool and plays an essential role in the oxidative phosphorylation system of Mycobacterium tuberculosis (Mtb). The absence of NDH-2 in the mammalian mitochondrial electron transport chain makes this enzyme an attractive target for antibiotic development. To fully establish the kinetic properties of this enzyme, we studied the interaction of Mtb NDH-2 with substrates, NADH, and various quinone analogues and their products in both membrane and soluble environments. These studies, and comparative analyses of the kinetics with thio-NAD+ and quinone electron acceptors, provided evidence that Mtb NDH-2 catalyzes the transfer electrons from NADH to quinone substrates by a nonclassical, two-site ping-pong kinetic mechanism whereby substrate quinones bind to a site that is distinct from the NADH-binding site. Furthermore, the effects of quinols on Mtb NDH-2 catalytic activity demonstrate the presence of two binding sites for quinone ligands, one favoring the reduced form and the other favoring the oxidized form. PMID:24447297

2015-01-01

294

High-Level Chromate Resistance in Arthrobacter sp. strain FB24 Requires Previously Uncharacterized Accessory Genes  

SciTech Connect

The annotated genome sequence of Arthrobacter sp. strain FB24 revealed a chromate resistance determinant (CRD): a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their regulatory roles. Collectively, our findings indicate that chromate resistance in strain FB24 is primarily achieved by plasmid-mediated chromate efflux with the contribution of previously unrecognized accessory genes.

Henne, Kristene L.; Nakatsu, Cindy N.; Thompson, Dorothea K.; Konopka, Allan

2009-09-24

295

RNA-Seq analysis reveals a six-gene SoxR regulon in Streptomyces coelicolor.  

PubMed

The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes. In both S. coelicolor and P. aeruginosa, SoxR-regulated genes are expressed in stationary phase during the production of endogenously-produced redox-active antibiotics. These observations suggest that SoxR evolved to sense endogenous secondary metabolites and activate machinery to process and transport them in antibiotic-producing bacteria. Previous bioinformatics analysis that searched the genome for SoxR-binding sites in putative promoters defined a five-gene SoxR regulon in S. coelicolor including an ABC transporter, two oxidoreductases, a monooxygenase and an epimerase/dehydratase. Since this in silico screen may have missed potential SoxR-targets, we conducted a whole genome transcriptome comparison of wild type S. coelicolor and a soxR-deficient mutant in stationary phase using RNA-Seq. Our analysis revealed a sixth SoxR-regulated gene in S. coelicolor that encodes a putative quinone oxidoreductase. Knowledge of the full complement of genes regulated by SoxR will facilitate studies to elucidate the function of this regulatory molecule in antibiotic producers. PMID:25162599

Naseer, Nawar; Shapiro, Joshua A; Chander, Monica

2014-01-01

296

RNA-Seq Analysis Reveals a Six-Gene SoxR Regulon in Streptomyces coelicolor  

PubMed Central

The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving >100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes. In both S. coelicolor and P. aeruginosa, SoxR-regulated genes are expressed in stationary phase during the production of endogenously-produced redox-active antibiotics. These observations suggest that SoxR evolved to sense endogenous secondary metabolites and activate machinery to process and transport them in antibiotic-producing bacteria. Previous bioinformatics analysis that searched the genome for SoxR-binding sites in putative promoters defined a five-gene SoxR regulon in S. coelicolor including an ABC transporter, two oxidoreductases, a monooxygenase and an epimerase/dehydratase. Since this in silico screen may have missed potential SoxR-targets, we conducted a whole genome transcriptome comparison of wild type S. coelicolor and a soxR-deficient mutant in stationary phase using RNA-Seq. Our analysis revealed a sixth SoxR-regulated gene in S. coelicolor that encodes a putative quinone oxidoreductase. Knowledge of the full complement of genes regulated by SoxR will facilitate studies to elucidate the function of this regulatory molecule in antibiotic producers. PMID:25162599

Naseer, Nawar; Shapiro, Joshua A.; Chander, Monica

2014-01-01

297

Studying Genes  

MedlinePLUS

NIGMS Home > Science Education > Studying Genes Studying Genes Tagline (Optional) Middle/Main Content Area What are genes? Genes are sections of DNA that contain instructions for making the molecules—many of ...

298

Structure-Based Computational Study of Two Disease Resistance Gene Homologues (Hm1 and Hm2) in Maize (Zea mays L.) with Implications in Plant-Pathogen Interactions  

PubMed Central

The NADPH-dependent HC-toxin reductases (HCTR1 and 2) encoded by enzymatic class of disease resistance homologous genes (Hm1 and Hm2) protect maize by detoxifying a cyclic tetrapeptide, HC-toxin, secreted by the fungus Cochliobolus carbonum race 1(CCR1). Unlike the other classes' resistance (R) genes, HCTR-mediated disease resistance is an inimitable mechanism where the avirulence (Avr) component from CCR1 is not involved in toxin degradation. In this study, we attempted to decipher cofactor (NADPH) recognition and mode of HC-toxin binding to HCTRs through molecular docking, molecular dynamics (MD) simulations and binding free energy calculation methods. The rationality and the stability of docked complexes were validated by 30-ns MD simulation. The binding free energy decomposition of enzyme-cofactor complex was calculated to find the driving force behind cofactor recognition. The overall binding free energies of HCTR1-NADPH and HCTR2-NADPH were found to be ?616.989 and ?16.9749 kJ mol?1 respectively. The binding free energy decomposition revealed that the binding of NADPH to the HCTR1 is mainly governed by van der Waals and nonpolar interactions, whereas electrostatic terms play dominant role in stabilizing the binding mode between HCTR2 and NADPH. Further, docking analysis of HC-toxin with HCTR-NADPH complexes showed a distinct mode of binding and the complexes were stabilized by a strong network of hydrogen bond and hydrophobic interactions. This study is the first in silico attempt to unravel the biophysical and biochemical basis of cofactor recognition in enzymatic class of R genes in cereal crop maize. PMID:24847713

Maharana, Jitendra; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Choudhury, Manabendra Dutta; Barooah, Madhumita

2014-01-01

299

Alternative splicing isoform in succinate dehydrogenase complex, subunit C causes downregulation of succinate-coenzyme Q oxidoreductase activity in mitochondria.  

PubMed

Mitochondrial succinate dehydrogenase (SDH) is localized to the inner mitochondrial membrane and is responsible for the redox of succinic acid. SDH is a tetrameric iron-sulfur flavoprotein of the tricarboxylic acid cycle and respiratory chain. The SDH complex, subunit C (SDHC) transcript has deletion-type alternative splicing sites. Generally, alternative splicing produces variant proteins and expression patterns, as products of different genes. In certain cases, specific alternative splicing variants (ASVs) have been associated with human disease. Due to a frameshift mutation causing loss of the heme binding region, the SDHC ?5 isoform (lacking exon 5) exhibits no SDHC activity. To investigate whether the SDHC splicing variants can function as dominant-negative inhibitors, SDHC ASVs were overexpressed in HCT-15 human colorectal cancer cells. Using real-time reverse transcription-polymerase chain reaction, a dominant-negative effect of the ?5 isoform on SDHC mRNA was shown. In addition, ?5 overexpression increased the levels of reactive oxygen species. Furthermore, in the ?5 isoform-overexpressing cells, SDH activity was reduced. SDHC activation is a significant event during the electron transport chain, and the function of the SDHC ?5 variant may be significant for the differentiation of tumor cells. PMID:25435987

Satoh, Nana; Yokoyama, Chikako; Itamura, Noriaki; Miyajima-Nakano, Yoshiharu; Hisatomi, Hisashi

2015-01-01

300

The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.  

PubMed Central

The mammalian mitochondrial NADH:ubiquinone oxidoreductase (Complex I) has been shown to exist in two kinetically and structurally distinct slowly interconvertible forms, active (A) and de-activated (D) [Vinogradov and Grivennikova (2001) IUBMB Life 52, 129-134]. This work was undertaken to investigate the putative Complex I A-D transition in the mitochondrial membrane of the lower eukaryote Neurospora crassa and in plasma membrane of the prokaryote Paracoccus denitrificans, organisms that are eligible for molecular genetic manipulations. The potential interconversion between A and D forms was assessed by examination of the initial and steady-state rates of NADH oxidation catalysed by inside-out submitochondrial ( N. crassa ) and sub-bacterial ( P. denitrificans ) particles and their sensitivities to N -ethylmaleimide and Mg(2+). All diagnostic tests provide evidence that slow temperature- and turnover-dependent A-D transition is an explicit feature of eukaryotic N. crassa Complex I, whereas the phenomenon is not seen in the membranes of the prokaryote P. denitrificans. Significantly lower activation energy for A-to-D transition characterizes the N. crassa enzyme compared with that determined previously for the mammalian Complex I. Either a lag or a burst in the onset of the NADH oxidase assayed in the presence of Mg(2+) is seen when the reaction is initiated by the thermally de-activated or NADH-activated particles, whereas the delayed final activities of both preparations are the same. We conclude that continuous slow cycling between A and D forms occurs during the steady-state operation of Complex I in N. crassa mitochondria. PMID:12379145

Grivennikova, Vera G; Serebryanaya, Darya V; Isakova, Elena P; Belozerskaya, Tatyana A; Vinogradov, Andrei D

2003-01-01

301

Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction.  

PubMed

Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data. PMID:25261288

Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa

2014-09-27

302

Mouse liver NAD(P)H:quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli, and enzyme activity analysis.  

PubMed Central

The amino acid sequence of mouse liver NAD(P)H:quinone acceptor oxidoreductase (EC 1.6.99.2) has been determined by tandem mass spectrometry and deduced from the nucleotide sequence of the cDNA encoding for the enzyme. The electrospray mass spectral analyses revealed, as previously reported (Prochaska HJ, Talalay P, 1986, J Biol Chem 261:1372-1378), that the 2 forms--the hydrophilic and hydrophobic forms--of the mouse liver quinone reductase have the same molecular weight. No amino acid sequence differences were found by tandem mass spectral analyses of tryptic peptides of the 2 forms. Moreover, the amino-termini of the mouse enzymes are acetylated as determined by tandem mass spectrometry. Further, only 1 cDNA species encoding for the quinone reductase was found. These results suggest that the 2 forms of the mouse quinone reductase have the same primary sequences, and that any difference between the 2 forms may be attributed to a labile posttranslational modification. Analysis of the mouse quinone reductase cDNA revealed that the enzyme is 273 amino acids long and has a sequence homologous to those of rat and human quinone reductases. In this study, the mouse quinone reductase cDNA was also ligated into a prokaryotic expression plasmid pKK233.2, and the constructed plasmid was used to transform Escherichia coli strain JM109. The E. coli-expressed mouse quinone reductase was purified and characterized. Although mouse quinone reductase has an amino acid sequence similar to those of the rat and human enzymes, the mouse enzyme has a higher NAD(P)H-menadione reductase activity and is less sensitive to flavones and dicoumarol, 2 known inhibitors of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7527260

Chen, S.; Clarke, P. E.; Martino, P. A.; Deng, P. S.; Yeh, C. H.; Lee, T. D.; Prochaska, H. J.; Talalay, P.

1994-01-01

303

Removal of naphthols and analogues by the combined use of an oxidoreductase polyphenol oxidase and a biopolymer chitosan from aqueous solutions.  

PubMed

In this study, the combined use of an amino group-containing polymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was applied to the removal of naphthols and dihydroxynaphthalenes (DHNs) from aqueous solutions. The process parameters, such as the pH value, temperature and enzyme dose, were discussed for PPO-catalysed oxidation of 1-naphthol. The optimum conditions of enzymatic oxidation of 1-naphthol were determined to be pH 8.0 and 40 °C. Under the optimum conditions, PPO-catalysed oxidation of 1-naphthol increased with an increase in the enzyme dose. Quinone derivatives enzymatically generated were chemisorbed on chitosan beads and the initial velocity of PPO-catalysed oxidation increased with an increase in the amount of added chitosan beads. A specific initial velocity of 0.0675 ?mol/U·min was obtained in the PPO concentration range below 200 U/cm(3) and 1-naphthol was completely removed within 24 h by quinone adsorption on chitosan beads (0.20 cm(3)/cm(3)) at a PPO concentration of 100 U/cm(3). The removal time was shortened by increasing the enzyme dose or the amount of added chitosan beads. 2-Naphthol was also completely removed at an initial concentration of 0.05 mM or less by prolonging the reaction time, since PPO-catalysed oxidation of 2-naphthol was much slower than that of 1-naphthol. In addition, this procedure was also applied to the removal of DHNs. These results revealed that the procedure constructed in this study was an effective technique to remove naphthols and DHNs from the aqueous medium. PMID:25189838

Kimura, Yuji; Gotoh, Asahi; Shinozaki, Fumiyoshi; Kashiwada, Ayumi; Yamada, Kazunori

2014-12-01

304

Resonance Raman spectral properties of FMN of bovine heart NADH:ubiquinone oxidoreductase suggesting a mechanism for the prevention of spontaneous production of reactive oxygen species.  

PubMed

A highly improved method for obtaining resonance Raman (RR) spectra provided spectra comparable to the best known flavoprotein spectra when the method was tested using bovine heart NADH:ubiquinone oxidoreductase (Complex I), a protein with a molecular mass of 1000 kDa, which causes the level of RR noise to be 1 order of magnitude higher than for most flavoproteins. The FMN RR band shift (1631/1633 cm(-1)) and the increase in the magnitude of the band at 1252 cm(-1) upon binding to Complex I suggest hydrogen bond formation involving one of the C=O groups [C(2)=O] of isoalloxazine to stabilize its quinoid form. This lowers the redox potential of FMN and the electron density of the O(2) binding site [a carbon atom, C(4a)] in the reduced form. Thus, spontaneous production of reactive oxygen species at the FMN site is prevented by minimizing the duration of the fully reduced state by accelerating the FMN oxidation and by weakening the O(2) affinity of C(4a). Other band shifts (1258/1252 cm(-1) and 1161/1158 cm(-1)) suggest a significantly weaker hydrogen bond to the NH group [N(3)-H] of isoalloxazine. This result, together with the reported X-ray structure in which N(3)-H is surrounded by negatively charged surface without hydrogen bond formation, suggests that N(3)-H is weakly but significantly polarized. The polarized N(3)-H, adjacent to the C(2)=O group, stabilizes the polarized state of C(2)=O to strengthen the hydrogen bond to C(2)=O. This could fine-tune the hydrogen bond strength. Other results show a high-dielectric constant environment and weak hydrogen bonds to the isoalloxazine, suggesting adaptability for various functional controls. PMID:23215454

Hikita, Masahide; Shinzawa-Itoh, Kyoko; Moriyama, Masakazu; Ogura, Takashi; Kihira, Kiyohito; Yoshikawa, Shinya

2013-01-01

305

Semiquinone and cluster N6 signals in His-tagged proton-translocating NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli.  

PubMed

NADH:ubiquinone oxidoreductase (complex I) pumps protons across the membrane using downhill redox energy. The Escherichia coli complex I consists of 13 different subunits named NuoA-N coded by the nuo operon. Due to the low abundance of the protein and some difficulty with the genetic manipulation of its large ~15-kb operon, purification of E. coli complex I has been technically challenging. Here, we generated a new strain in which a polyhistidine sequence was inserted upstream of nuoE in the operon. This allowed us to prepare large amounts of highly pure and active complex I by efficient affinity purification. The purified complex I contained 0.94 ± 0.1 mol of FMN, 29.0 ± 0.37 mol of iron, and 1.99 ± 0.07 mol of ubiquinone/1 mol of complex I. The extinction coefficient of isolated complex I was 495 mM(-1) cm(-1) at 274 nm and 50.3 mM(-1) cm(-1) at 410 nm. NADH:ferricyanide activity was 219 ± 9.7 ?mol/min/mg by using HEPES-Bis-Tris propane, pH 7.5. Detailed EPR analyses revealed two additional iron-sulfur cluster signals, N6a and N6b, in addition to previously assigned signals. Furthermore, we found small but significant semiquinone signal(s), which have been reported only for bovine complex I. The line width was ~12 G, indicating its neutral semiquinone form. More than 90% of the semiquinone signal originated from the single entity with P½ (half-saturation power level) = 1.85 milliwatts. The semiquinone signal(s) decreased by 60% when with asimicin, a potent complex I inhibitor. The functional role of semiquinone and the EPR assignment of clusters N6a/N6b are discussed. PMID:23543743

Narayanan, Madhavan; Gabrieli, David J; Leung, Steven A; Elguindy, Mahmoud M; Glaser, Carl A; Saju, Nitha; Sinha, Subhash C; Nakamaru-Ogiso, Eiko

2013-05-17

306

NMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na+-translocating NADH:Quinone oxidoreductase from Vibrio cholerae.  

PubMed

The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na(+)-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na(+)-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na(+)-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na(+)-NQR. PMID:24003222

Nedielkov, Ruslan; Steffen, Wojtek; Steuber, Julia; Möller, Heiko M

2013-10-18

307

Regulation of Etioplast Pigment-Protein Complexes, Inner Membrane Architecture, and Protochlorophyllide a Chemical Heterogeneity by Light-Dependent NADPH:Protochlorophyllide Oxidoreductases A and B1  

PubMed Central

The etioplast of dark-grown angiosperms is characterized by the prolamellar body (PLB) inner membrane, the absence of chlorophyll, and the accumulation of divinyl and monovinyl derivatives of protochlorophyll(ide) a [Pchl(ide) a]. Either of two structurally related, but differentially expressed light-dependent NADPH:Pchlide oxidoreductases (PORs), PORA and PORB, can assemble the PLB and form dark-stable ternary complexes containing enzymatically photoactive Pchlide-F655. Here we have examined in detail whether these polypeptides play redundant roles in etioplast differentiation by manipulating the total POR content and the PORA-to-PORB ratio of etiolated Arabidopsis seedlings using antisense and overexpression approaches. POR content correlates closely with PLB formation, the amounts, spectroscopic properties, and photoreduction kinetics of photoactive Pchlide, the ratio of photoactive Pchlide-F655 to non-photoactive Pchl(ide)-F632, and the ratio of divinyl- to monovinyl-Pchl(ide). This last result defines POR as the first endogenous protein factor demonstrated to influence the chemical heterogeneity of Pchl(ide) in angiosperms. It is intriguing that excitation energy transfer between different spectroscopic forms of Pchl(ide) in etiolated cotyledons remains largely independent of POR content. We therefore propose that the PLB contains a minimal structural unit with defined pigment stoichiometries, within which a small amount of non-photoactive Pchl(ide) transfers excitation energy to a large excess of photoactive Pchlide-F655. In addition, our data suggests that POR may bind not only stoichiometric amounts of photoactive Pchlide, but also substoichiometric amounts of non-photoactive Pchl(ide). We conclude that the typical characteristics of etioplasts are closely related to total POR content, but not obviously to the specific presence of PORA or PORB. PMID:11115885

Franck, Fabrice; Sperling, Ulrich; Frick, Geneviève; Pochert, Babette; van Cleve, Barbara; Apel, Klaus; Armstrong, Gregory A.

2000-01-01

308

Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA  

PubMed Central

Biosensors for the detection of benzaldehyde and ??aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below ?0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer. PMID:25587431

Badalyan, Artavazd; Dierich, Marlen; Stiba, Konstanze; Schwuchow, Viola; Leimkühler, Silke; Wollenberger, Ulla

2014-01-01

309

Kinetic and Structural Studies of Aldehyde Oxidoreductase from Desulfovibrio gigas Reveal a Dithiolene-Based Chemistry for Enzyme Activation and Inhibition by H2O2  

PubMed Central

Mononuclear Mo-containing enzymes of the xanthine oxidase (XO) family catalyze the oxidative hydroxylation of aldehydes and heterocyclic compounds. The molybdenum active site shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. The XO family member aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is an exception as presents in its catalytically competent form an equatorial oxo ligand instead of the sulfido ligand. Despite this structural difference, inactive samples of DgAOR can be activated upon incubation with dithionite plus sulfide, a procedure similar to that used for activation of desulfo-XO. The fact that DgAOR does not need a sulfido ligand for catalysis indicates that the process leading to the activation of inactive DgAOR samples is different to that of desulfo-XO. We now report a combined kinetic and X-ray crystallographic study to unveil the enzyme modification responsible for the inactivation and the chemistry that occurs at the Mo site when DgAOR is activated. In contrast to XO, which is activated by resulfuration of the Mo site, DgAOR activation/inactivation is governed by the oxidation state of the dithiolene moiety of the pyranopterin cofactor, which demonstrates the non-innocent behavior of the pyranopterin in enzyme activity. We also showed that DgAOR incubation with dithionite plus sulfide in the presence of dioxygen produces hydrogen peroxide not associated with the enzyme activation. The peroxide molecule coordinates to molybdenum in a ?2 fashion inhibiting the enzyme activity. PMID:24391748

Brondino, Carlos D.; Moura, José J. G.; Romão, Maria J.; González, Pablo J.; Santos-Silva, Teresa

2013-01-01

310

Indolequinone Inhibitors of NRH:Quinone Oxidoreductase 2 (NQO2). Characterization of Mechanism of Inhibition in both Cell-free and Cellular Systems. †  

PubMed Central

We describe a series of indolequinones as efficient mechanism-based inhibitors of NRH:quinone oxidoreductase 2 (NQO2) for use either in cellular or cell-free systems. Compounds were designed to be reduced in the active site of the enzyme leading to loss of a substituted phenol leaving group and generation of a reactive iminium electrophile. Inhibition of NQO2 activity was assessed in both cell-free systems and in the human leukemia K562 cell line. Inhibition of recombinant human NQO2 by the indolequinones was NRH-dependent with kinetic parameters characteristic of mechanism-based inhibition and partition ratios as low as 2.0. Indolequinones inhibited NQO2 activity in K562 cells at nanomolar concentrations which did not inhibit NQO1 and were non-toxic to cells. Computational-based molecular modeling simulations demonstrated favorable conformations of indolequinones positioned directly above and in parallel to the isoalloxazine ring of FAD and mass spectrometry extended our previous finding of adduction of the FAD in the active site of NQO2 by an indolequinone-derived iminium electrophile to the wider series of indolequinone inhibitors. Modeling combined with biochemical testing identified key structural parameters for effective inhibition including a 5-aminoalkyamino side chain. Hydrogen bonding of the terminal amine nitrogen in the aminoalkylamino side chain was found to be critical for correct orientation of the inhibitors in the active site. These indolequinones were irreversible inhibitors and were found to be at least an order of magnitude more potent than any previously documented competitive inhibitors of NQO2 and represent the first mechanism-based inhibitors of NQO2 to be characterized in cellular systems. PMID:21718050

Yan, Chao; Dufour, Marine; Siegel, David; Reigan, Philip; Gomez, Joe; Shieh, Biehuoy; Moody, Christopher J.; Ross, David

2011-01-01

311

Gene Cloning  

NSDL National Science Digital Library

This lesson covers the utilization of gene cloning to isolate and copy a specific gene of interest. The transformation of bacteria with plasmids containing antibiotic resistance genes to make gene libraries and the selection of bacteria colonies that contain the specific gene of interest are described.

312

NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I  

SciTech Connect

Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(?/?), Cyp1a2(?/?) and Cyp1a1/1a2(?/?) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ? NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ? Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ? NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ? Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)] [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States)] [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London (United Kingdom)] [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany)] [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany)] [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London (United Kingdom)] [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)] [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

2012-12-15

313

Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model.  

PubMed

To introduce DNA into mitochondria efficiently, we fused adenoassociated virus capsid VP2 with a mitochondrial targeting sequence to carry the mitochondrial gene encoding the human NADH ubiquinone oxidoreductase subunit 4 (ND4). Expression of WT ND4 in cells with the G11778A mutation in ND4 led to restoration of defective ATP synthesis. Furthermore, with injection into the rodent eye, human ND4 DNA levels in mitochondria reached 80% of its mouse homolog. The construct expressed in most inner retinal neurons, and it also suppressed visual loss and optic atrophy induced by a mutant ND4 homolog. The adenoassociated virus cassette accommodates genes of up to ?5 kb in length, thus providing a platform for introduction of almost any mitochondrial gene and perhaps even allowing insertion of DNA encompassing large deletions of mtDNA, some associated with aging, into the organelle of adults. PMID:22523243

Yu, Hong; Koilkonda, Rajeshwari D; Chou, Tsung-Han; Porciatti, Vittorio; Ozdemir, Sacide S; Chiodo, Vince; Boye, Sanford L; Boye, Shannon E; Hauswirth, William W; Lewin, Alfred S; Guy, John

2012-05-15

314

NAD(P)H:Quinone Oxidoreductase_1 (DT Diaphorase) Specifically Prevents the Formation of Benzo[a]Pyrene Quinone-DNA Adducts Generated by Cytochrome P4501A1 and P450 Reductase  

Microsoft Academic Search

Monkey kidney COS1 cells transiently transfected with plasmids pMT2-cytochrome P450 1A1 (CYP1A1), pMT2-cytochrome P450 reductase (P450 reductase), and pMT2-NAD(P)H:quinone oxidoreductase_1 (NQO_1 or DT diaphorase), individually or in combination, expressed significantly elevated levels of the respective enzyme(s). The transfected cells were homogenized to break cell membranes without affecting the nuclei and incubated with benzo[a]pyrene (BP) to determine the role of cDNA-encoded

Pius Joseph; Anil K. Jaiswal

1994-01-01

315

Bromodomain and extraterminal proteins suppress NF-E2-related factor 2-mediated antioxidant gene expression.  

PubMed

Oxidative stress, a pathogenetic factor in many conditions, including chronic obstructive pulmonary disease, arises due to accumulation of reactive oxygen species and defective antioxidant defenses in the lungs. The latter is due, at least in part, to impaired activation of NF-E2-related factor 2 (Nrf2), a transcription factor involved in the activation of antioxidant and cytoprotective genes. The bromodomain and extraterminal (BET) proteins, Brd2, Brd3, Brd4, and BrdT, bind to acetylated lysine residues on histone or nonhistone proteins recruiting transcriptional regulators and thus activating or repressing gene transcription. We investigated whether BET proteins modulate the regulation of Nrf2-dependent gene expression in primary human airway smooth muscle cells and the human monocytic cell line, THP-1. Inhibition of BET protein bromodomains using the inhibitor JQ1+ or attenuation of Brd2 and Brd4 expression using small interfering RNA led to activation of Nrf2-dependent transcription and expression of the antioxidant proteins heme oxygenase-1, NADPH quinone oxidoreductase 1, and glutamate-cysteine ligase catalytic subunit. Also, JQ1+ prevented H2O2-induced intracellular reactive oxygen species production. By coimmunoprecipitation, BET proteins were found to be complexed with Nrf2, whereas chromatin-immunoprecipitation studies indicated recruitment of Brd2 and Brd4 to Nrf2-binding sites on the promoters of heme oxygenase-1 and NADPH quinone oxidoreductase 1. BET proteins, particularly Brd2 and Brd4, may play a key role in the regulation of Nrf2-dependent antioxidant gene transcription and are hence an important target for augmenting antioxidant responses in oxidative stress-mediated diseases. PMID:24733848

Michaeloudes, Charalambos; Mercado, Nicolas; Clarke, Colin; Bhavsar, Pankaj K; Adcock, Ian M; Barnes, Peter J; Chung, Kian Fan

2014-05-15

316

Gene Concepts, Gene Talk, and Gene Patents  

E-print Network

Since the existence of a discrete unit of heredity was first proposed by Gregor Mendel, scientific concepts of the “gene” have undergone rapid evolution. Beyond obvious epistemic and operational importance to the scientific community, changing gene...

Torrance, Andrew W.

2010-01-01

317

Rapid spontaneous dihydrofolate reductase gene amplification shown by fluorescence-activated cell sorting.  

PubMed Central

We have determined whether the gene encoding dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) varies spontaneously in gene copy number in cells in vitro. Cells were stained under nonselective conditions with fluoresceinated methotrexate, which binds quantitatively to dihydrofolate reductase. Cells with the highest fluorescence were collected by a fluorescence-activated cell sorter and subsequently grown in the absence of methotrexate. At no time during the experiment were the cells placed under metabolic stress. After 10 successive rounds of growth and sorting, the derived population showed a 50-fold increase in fluorescence intensity, was highly resistant to methotrexate, and was amplified 40-fold in content of dihydrofolate reductase gene. We also found that cells already having amplified genes can undergo increases or decreases in their fluorescence and in gene copy number even more rapidly (at rates as high as 3 X 10(-2) amplification events per cell division) than do parental cells (ca. 10(-3) events per division). We therefore conclude that gene amplification can occur spontaneously in cells and that the rate of its occurrence varies with gene copy number. Images PMID:6574509

Johnston, R N; Beverley, S M; Schimke, R T

1983-01-01

318

Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1.  

PubMed Central

Thermococcus strain ES-1 is a strictly anaerobic, hyperthermophilic archaeon that grows at temperatures up to 91 degrees C by the fermentation of peptides. It is obligately dependent upon elemental sulfur (S(o)) for growth, which it reduces to H2S. Cell extracts contain high aldehyde oxidation activity with viologen dyes as electron acceptors. The enzyme responsible, which we term aldehyde ferredoxin oxidoreductase (AOR), has been purified to electrophoretic homogeneity. AOR is a homodimeric protein with a subunit M(r) of approximately 67,000. It contains molybdopterin and one W, four to five Fe, one Mg, and two P atoms per subunit. Electron paramagnetic resonance analyses of the reduced enzyme indicated the presence of a single [4Fe-4S]+ cluster with an S = 3/2 ground state. While AOR oxidized a wide range of aliphatic and aromatic aldehydes, those with the highest apparent kcat/Km values (> 10 microM-1S-1) were acetaldehyde, isovalerylaldehyde, and phenylacetaldehyde (Km values of < 100 microM). The apparent Km value for Thermococcus strain ES-1 ferredoxin was 10 microM (with crotonaldehyde as the substrate). Thermococcus strain ES-1 AOR also catalyzed the reduction of acetate (apparent Km of 1.8 mM) below pH 6.0 (with reduced methyl viologen as the electron donor) but at much less than 1% of the rate of the oxidative reaction (with benzyl viologen as the electron acceptor at pH 6.0 to 10.0). The properties of Thermococcus strain ES-1 AOR are very similar to those of AOR previously purified from the saccharolytic hyperthermophile Pyrococcus furiosus, in which AOR was proposed to oxidize glyceraldehyde as part of a novel glycolytic pathway (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). However, Thermococcus strain ES-1 is not known to metabolize carbohydrates, and glyceraldehyde was a very poor substrate (kcat/Km of < 0.2 microM-1S-1) for its AOR. The most efficient substrates for Thermococcus strain ES-1 AOR were the aldehyde derivatives of transaminated amino acids. This suggests that the enzyme functions to oxidize aldehydes generated during amino acid catabolism, although the possibility that AOR generates aldehydes from organic acids produced by fermentation cannot be ruled out. PMID:7642503

Heider, J; Ma, K; Adams, M W

1995-01-01

319

Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1.  

PubMed

Thermococcus strain ES-1 is a strictly anaerobic, hyperthermophilic archaeon that grows at temperatures up to 91 degrees C by the fermentation of peptides. It is obligately dependent upon elemental sulfur (S(o)) for growth, which it reduces to H2S. Cell extracts contain high aldehyde oxidation activity with viologen dyes as electron acceptors. The enzyme responsible, which we term aldehyde ferredoxin oxidoreductase (AOR), has been purified to electrophoretic homogeneity. AOR is a homodimeric protein with a subunit M(r) of approximately 67,000. It contains molybdopterin and one W, four to five Fe, one Mg, and two P atoms per subunit. Electron paramagnetic resonance analyses of the reduced enzyme indicated the presence of a single [4Fe-4S]+ cluster with an S = 3/2 ground state. While AOR oxidized a wide range of aliphatic and aromatic aldehydes, those with the highest apparent kcat/Km values (> 10 microM-1S-1) were acetaldehyde, isovalerylaldehyde, and phenylacetaldehyde (Km values of < 100 microM). The apparent Km value for Thermococcus strain ES-1 ferredoxin was 10 microM (with crotonaldehyde as the substrate). Thermococcus strain ES-1 AOR also catalyzed the reduction of acetate (apparent Km of 1.8 mM) below pH 6.0 (with reduced methyl viologen as the electron donor) but at much less than 1% of the rate of the oxidative reaction (with benzyl viologen as the electron acceptor at pH 6.0 to 10.0). The properties of Thermococcus strain ES-1 AOR are very similar to those of AOR previously purified from the saccharolytic hyperthermophile Pyrococcus furiosus, in which AOR was proposed to oxidize glyceraldehyde as part of a novel glycolytic pathway (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). However, Thermococcus strain ES-1 is not known to metabolize carbohydrates, and glyceraldehyde was a very poor substrate (kcat/Km of < 0.2 microM-1S-1) for its AOR. The most efficient substrates for Thermococcus strain ES-1 AOR were the aldehyde derivatives of transaminated amino acids. This suggests that the enzyme functions to oxidize aldehydes generated during amino acid catabolism, although the possibility that AOR generates aldehydes from organic acids produced by fermentation cannot be ruled out. PMID:7642503

Heider, J; Ma, K; Adams, M W

1995-08-01

320

Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.  

PubMed

NAD(P)H:(quinone-acceptor) oxidoreductase (NQOR, EC 1.6.99.2), an enzyme catalyzing the obligatory two electron reduction of quinones, can utilize both NADH and NADPH as electron donors at similar efficiencies. Based on site-directed mutagenesis studies, we previously suggested that the glycine-rich region of rat liver NQOR is important for the binding of NAD(P)H (Ma et al., J. Biol. Chem. 267, 22298-22304, 1992). However, the mode of interactions between the active site and NADH or NADPH is not clearly known. In this study, we conducted site-directed mutagenesis experiments and identified H194 and D163 of NQOR as key residues affecting the Km of NADPH. Steady-state kinetic analysis for the reduction of dichloroindophenol (DCIP) showed that Km(NADPH) values of purified mutant proteins H194D, H194A, and D163V were 288-, 14-, and 96-fold higher, respectively, than that of NQOR; but the Km(NADH) values were only slightly higher. The kcat(NADPH) values were almost the same as that of NQOR in the reduction of DCIP at the respective pH optima which were affected by the mutations. The kcat(NADH) values of these mutant enzymes were 30 to 60% that of NQOR. In the reduction of menadione, the mutations also caused much larger increases in km(NADPH) than Km(NADH). The results suggest that H194 and D163 are important for the interaction with the 2'-phosphate group of NADPH. NAD(P)H analogues, N-methyldihydronicotinamide and dihydronicotinamide mononucleotide, can also serve as electron donors for NQOR, but the Km values were 4.5- and 495-fold higher, respectively, than that with NADH. Mutations at H194 and D163 and at the glycine-rich region of NQOR, which increased Km(NADH) and Km(NADPH), did not substantially affect the Km values of these two analogues. This result is consistent with the suggested roles of these amino acid residues in the interaction with nicotinamide coenzymes. Based on these results, a model of the NAD(P)H binding site is proposed showing the interaction of the pyrophosphate group with the glycine-rich region and the interaction of 2'-phosphate group with H194 and D163. PMID:7487087

Cui, K; Ma, Q; Lu, A Y; Yang, C S

1995-11-10

321

Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction.  

PubMed

Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have determined the structures of the following three forms of the enzyme: the unliganded form, the complex with NADPH, and the complex with NADPH and pyrrole-2-carboxylate at 1.55-, 1.8-, and 1.7-A resolutions, respectively. The enzyme exists as a dimer, and the subunit consists of three domains; domain I, domain II (NADPH binding domain), and domain III. The core of the NADPH binding domain consists of a seven-stranded predominantly antiparallel beta-sheet fold (which we named SESAS) that is characteristic of the new oxidoreductase family. The enzyme preference for NADPH over NADH is explained by the cofactor binding site architecture. A comparison of the overall structures revealed that the mobile domains I and III change their conformations to produce the catalytic form. This conformational change plays important roles in substrate recognition and the catalytic process. The active site structure of the catalytic form made it possible to identify the catalytic Asp:Ser:His triad and investigate the catalytic mechanism from a stereochemical point of view. PMID:16192274

Goto, Masaru; Muramatsu, Hisashi; Mihara, Hisaaki; Kurihara, Tatsuo; Esaki, Nobuyoshi; Omi, Rie; Miyahara, Ikuko; Hirotsu, Ken

2005-12-01

322

Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver  

PubMed Central

Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4? and PPAR? in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

2013-01-01

323

Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)  

SciTech Connect

[zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed the presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.

Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr. (National Institutes of Health, Bethesda, MD (United States))

1994-05-15

324

New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis.  

PubMed

In plants, thioredoxins (TRX) constitute a large protein disulphide oxidoreductase family comprising 10 plastidial members in Arabidopsis thaliana and subdivided in five types. The f- and m-types regulate enzymes involved mainly in carbon metabolism whereas the x, y, and z types have an antioxidant function. The reduction of TRXm and f in chloroplasts is performed in the light by ferredoxin:thioredoxin reductase (FTR) that uses photosynthetically reduced ferredoxin (Fd) as a reductant. The reduction system of Arabidopsis TRXx, y, and z has never been demonstrated. Recently, a gene encoding an atypical plastidial NADPH-dependent TRX reductase (NTRC) was found. In the present study, gene expression analysis revealed that both reductases are expressed in all organs of Arabidopsis and could potentially serve as electron donors to plastidial TRX. This ability was tested in vitro either with purified NTRC in presence of NADPH or with a light-driven reconstituted system comprising thylakoids and purified Fd and FTR. The results demonstrate that FTR reduces the x and y TRX isoforms but not the recently identified TRXz. Moreover, the results show that NTRC cannot be an efficient alternative reducing system, neither for TRXz nor for the other plastidial TRX. The data reveal that TRXf, m, x, and y, known as redox regulators in the chloroplast, have also the ability to reduce TRXz in vitro. Overall, the present study points out the unique properties of TRXz among plastidial TRX. PMID:23096001

Bohrer, Anne-Sophie; Massot, Vincent; Innocenti, Gilles; Reichheld, Jean-Philippe; Issakidis-Bourguet, Emmanuelle; Vanacker, Hélène

2012-11-01

325

Sulfo-SADP (sulfosuccinimidyl[4-azidophenyldithio]propionate) an active site directed reagent inhibiting the NADPH dependent O2- generation of leukocyte cytochrome b(558).  

PubMed

Functional reagents known to bring about the formation of a distinct membrane molecular complex of the subunits of cytochrome b(558) (gp 91(phox) and p22(phox)) were investigated for their influence on the O2- generating capability of liposome incorporated cytochrome b(558) preparations. One, ethyleneglycolbis[sulfo-succinimidylsuccinate], (sulfo-EGS) was found to inhibit O2- generation at concentrations which are known to result in cross-linking the two subunits of cytochrome b(558). Sulfosuccinimidyl [4-azidophenyldithio] propionate, (sulfo-SADP) on the other hand, was found to be a powerful inhibitor of the cytochrome b(558) dependent O2- production at concentrations not able to result in cross linking of the two subunits. Sulfo-SADP inhibits the cytochrome b(558) O2- production 50% at 25 microM, while sulfo-EGS requires 400 microM. For these reagents, the succinimidyl group of sulfo-SADP and sulfo-EGS is the reactive group, which inhibit irreversibly, cytochrome b(558) generation of O2-. Both sulfo-SADP and sulfo-EGS have similar linker arms of 13.9 and 16.1 A, respectively. The difference, accounting for the strong inhibitory profile for sulfo-SADP as compared with sulfo-EGS, resides in the aryl group associated with the sulfo-SADP. The aryl group of sulfo-SADP has been found to be important in directing the specificity of the probe in its inhibition of O2- generation. When the disulfide bond linking the aromatic portion of the probe to the succinimidyl ring is cleaved by DTT (dithiothreitol), the product loses its specificity and has an inhibitory activity with respect to O2- generation comparable to that of sulfo-EGS. The partial protection against the inhibitory influence of sulfo-SADP by NADP(+) indicates that the reagent may interact at the pyridine nucleotide-binding domain of cytochrome b(558). Its low inhibitory titer and its water solubility suggest that sulfo-SADP reacts with a specific amine (the primary reactant for the succinimidyl group) on cytochrome b(558). PMID:12186752

Cheng, Ming; Guillory, Richard John

2002-06-01

326

Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue  

PubMed Central

Nitric Oxide (NO) and Reactive oxygen species (ROS) are endogenous regulators of angiogenesis-related events as endothelial cell proliferation and survival, but NO/ROS defect or unbalance contribute to cancers. We recently designed a novel photoactive inhibitor of NO-Synthases (NOS) called NS1, which binds their NADPH site in vitro. Here, we show that NS1 inhibited NO formed in aortic rings. NS1-induced NO decrease led to an inhibition of angiogenesis in a model of VEGF-induced endothelial tubes formation. Beside this effect, NS1 reduced ROS levels in endothelial and melanoma A375 cells and in aorta. In metastatic melanoma cells, NS1 first induced a strong decrease of VEGF and blocked melanoma cell cycle at G2/M. NS1 decreased NOX4 and ROS levels that could lead to a specific proliferation arrest and cell death. In contrast, NS1 did not perturb melanocytes growth. Altogether, NS1 revealed a possible cross-talk between eNOS- and NOX4 –associated pathways in melanoma cells via VEGF, Erk and Akt modulation by NS1 that could be targeted to stop proliferation. NS1 thus constitutes a promising tool that modulates NO and redox stresses by targeting and directly inhibiting eNOS and, at least indirectly, NADPH oxidase(s), with great potential to control angiogenesis. PMID:25296975

Rouaud, Florian; Romero-Perez, Miguel; Wang, Huan; Lobysheva, Irina; Ramassamy, Booma; Henry, Etienne; Tauc, Patrick; Giacchero, Damien; Boucher, Jean-Luc; Deprez, Eric; Rocchi, Stéphane; Slama-Schwok, Anny

2014-01-01

327

Interaction with arginine 597 of NADPH-cytochrome P-450 oxidoreductase is a primary source of the uniform binding energy used to discriminate between NADPH and NADH.  

PubMed

Site-directed mutagenesis has been used in conjunction with pH and alternate substrate/inhibitor studies to characterize the interactions between NADPH-cytochrome P-450 oxidoreductase (P-450R) and the 2'-phosphate of NADP(H) that provide P-450R with its strong nicotinamide nucleotide specificity. It is known that the 2'-phosphate of NADP(H) is bound to P-450R as the dianion and that interactions between it and residues on P-450R provide 5 kcal/mol of essentially uniform binding energy (preceding paper in this issue). In order to probe these interactions further, Arg597 of P-450R, which is homologous to Arg235 of ferredoxin-NADP+ reductase that forms a salt bridge with the 2'-phosphate of 2'-phospho-AMP in the crystal structure of that complex [Karplus, P. A., Daniels, M. J., & Herriott, J. R. (1991) Science 251, 60], was mutated to methionine. The mutant protein, P-450R (R597M), does not appear to have a grossly perturbed tertiary structure on the basis of the observation of similar 31P-NMR chemical shifts for FAD (pyrophosphate) bound to it and wild-type (WT) P-450R, although it is more unstable to urea denaturation. P-450R (R597M) has a Km for NADPH that is 150 times that of P-450R (WT) and a Ki for NADP+ that is 240 times that of P-450R (WT). In contrast, the R597M mutation has only a modest effect on the Km for NADH (0.8 WT) and the Ki for NAD+ (2.9 WT), indicating that Arg597 must have been interacting specifically with the 2'-phosphate of NADP(H). The R597M mutation has relatively little effect on kcat for NADPH (1.2 WT) or NADH (0.6 WT), indicating that the mutation is affecting ground and transition states to essentially the same degree, by removing 3 kcal/mol of uniform binding energy. The NADP+ pKi profile for P-450R (R597M) shows a pKa of 5.78 for the 2'-phosphate of NADP+, which is bound to P-450R (R597M) as the dianion, but the pKa of 9.5 for the preferentially protonated enzymic group observed in the P-450R (WT) profile is no longer present. It is argued then that the 2'-phosphate binding pocket of P-450R (WT) has a high positive charge density (> + 2) and that Arg597, which is in this binding pocket, has a highly perturbed pKa of 9.5. Finally, a general theoretical treatment of the thermodynamic consequences of individual and combined perturbations to complementary interacting groups on enzyme and substrate is presented (see Appendix).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8218222

Sem, D S; Kasper, C B

1993-11-01

328

Gene Regions  

NSDL National Science Digital Library

This animation shows the three gene coding regions. This is the fourth of a series of seven animations that detail the process of crop genetic engineering. To begin at the beginning, see Overview of Crop Genetic Engineering. (To return to the animation previous to this, go to Gene Cloning. To go to the next animation, go to Gene Modification.)

329

The Role of Glycine Residues 140 and 141 of Subunit B in the Functional Ubiquinone Binding Site of the Na+-pumping NADH:quinone Oxidoreductase from Vibrio cholerae*  

PubMed Central

The Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na+-NQR with its electron acceptor, ubiquinone. PMID:22645140

Juárez, Oscar; Neehaul, Yashvin; Turk, Erin; Chahboun, Najat; DeMicco, Jessica M.; Hellwig, Petra; Barquera, Blanca

2012-01-01

330

Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats  

PubMed Central

Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases. PMID:24250417

Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

2011-01-01

331

Molecular cloning of the isoamyl alcohol oxidase-encoding gene (mreA) from Aspergillus oryzae.  

PubMed

Isoamyl alcohol oxidase (IAAOD) is a novel enzyme that catalyzes the formation of isovaleraldehyde, which is the main component of mureka that gives sake an off-flavor (Yamashita et al. Biosci. Biotechnol. Biochem., 63, 1216-1222, 1999). We cloned the genomic DNA sequence encoding IAAOD from a koji mold, Aspergillus oryzae, using a PCR-amplified DNA fragment corresponding to the partial amino acid sequences of the purified protein as a probe. The cloned gene comprises 1903 bp of an open reading frame with three putative introns and encodes 567 amino acids with a presumed signal peptide consisting of 24 amino acids at the N-terminus. Moreover, nine potential N-glycosylation sites were present. Homology search on amino acid sequence showed that IAAOD has a region significantly similar to those conserved in FAD-dependent oxidoreductases. Southern hybridization analysis revealed that the cloned gene exists as a single copy in the A. oryzae RIB 40 chromosome. The cloned gene was overexpressed under the control of the amyB promoter in A. oryzae. The isovaleraldehyde-producing activity in the culture supernatant of one transformant was over 800 times as high as that of transformant with the control vector. This result demonstrates that the cloned gene encodes IAAOD. We named this novel alcohol oxidase gene "mreA". PMID:16232791

Yamashita, N; Motoyoshi, T; Nishimura, A

2000-01-01

332

Alpha-Tocopherol Modulates Genes Involved in Hepatic Xenobiotic Pathways in Mice  

PubMed Central

Hepatic proteins involved in xenobiotic pathways (Phases I, II, and III) are responsible for the metabolism and disposition of endogenous and exogenous compounds including dietary phytochemicals. To test the hypothesis that elevated ?-tocopherol intakes alter gene expression of hepatic xenobiotic pathways, mice were fed diets supplemented with either 1000 IU (++E) or 35 IU (E) all-rac-?-tocopheryl acetate for 4 month, liver RNA was isolated and gene expression determined using both whole genome microarray and real-time quantitative PCR (RT-qPCR) analyses. Hepatic ?-tocopherol (173 ± 18 vs. 21 ± 1 nmol/g, mean ± SE) and its metabolite (?-CEHC, 0.232 ± 0.046 vs. 0.031 ± .019 nmol/g) concentrations were ?8-fold higher following the ++E dietary treatment. In ++E relative to E mice, gene expression of Phase I enzymes, P450 oxidoreductase and cytochrome P450 (Cyp) 3a11, increased 1.6- and 4.0-fold, respectively; two Phase II genes, sulfotransferase 2a and glutathione S-transferase mu 3, increased 10.8- and 1.9-fold respectively; and a Phase III biliary transporter, Abcb1a, doubled. Thus, consumption of high-level dietary ?-tocopherol simultaneously coordinated Phase I, II and III gene expression. These data demonstrate that increased hepatic ?-tocopherol modulates its own concentrations through increasing xenobiotic metabolism, a process that may alter metabolism of other foreign compounds, such as therapeutic drugs and phytochemicals, in humans. PMID:18789671

Mustacich, Debbie J.; Gohil, Kishorchandra; Bruno, Richard S.; Yan, Michelle; Leonard, Scott W.; Ho, Emily; Cross, Carroll E.; Traber, Maret G.

2009-01-01

333

Negative regulation of DsbA-L gene expression by the transcription factor Sp1.  

PubMed

Disulfide-bond A oxidoreductase-like protein (DsbA-L) possesses beneficial effects such as promoting adiponectin multimerization and stability, increasing insulin sensitivity, and enhancing energy metabolism. The expression level of DsbA-L is negatively correlated with obesity in mice and humans, but the underlying mechanisms remain unknown. To address this question, we generated reporter gene constructs containing the promoter sequence of the mouse DsbA-L gene. Deletion analysis showed that the proximal promoter of mouse DsbA-L is located between -186 and -34 bp relative to the transcription start site. In silico analysis identified a putative Sp1 transcription factor binding site in the first intron of the DsbA-L gene. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Sp1 bound to this intron region in vitro and in intact cells. Overexpression of Sp1 or suppressing Sp1 expression by siRNA reduced or increased DsbA-L promoter activity, respectively. The binding activity of Sp1 was gradually decreased during 3T3-L1 cell differentiation and was significantly increased in adipose tissues of obese mice. Our results identify Sp1 as an inhibitor of DsbA-L gene transcription, and the Sp1-mediated inhibition of DsbA-L gene expression may provide a mechanism underlying obesity-induced adiponectin downregulation and insulin resistance. PMID:25024375

Fang, Qichen; Yang, Wenjing; Li, Huating; Hu, Wenxiu; Chen, Lihui; Jiang, Shan; Dong, Kun; Song, Qianqian; Wang, Chen; Chen, Shuo; Liu, Feng; Jia, Weiping

2014-12-01

334

Identification of Methylmercury Tolerance Gene Candidates in Drosophila  

PubMed Central

Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/?selection and +/?MeHg) identified a “down-down-up” expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway–regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms. PMID:20375079

Mahapatra, Cecon T.; Bond, Jeffrey; Rand, David M.; Rand, Matthew D.

2010-01-01

335

Single gene insertion drives bioalcohol production by a thermophilic archaeon.  

PubMed

Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

Basen, Mirko; Schut, Gerrit J; Nguyen, Diep M; Lipscomb, Gina L; Benn, Robert A; Prybol, Cameron J; Vaccaro, Brian J; Poole, Farris L; Kelly, Robert M; Adams, Michael W W

2014-12-01

336

Gene Modifications  

NSDL National Science Digital Library

This animation shows how a gene is constructed to eventually produce a protein in a Bt corn plant. This is the fifth of a series of seven animations that detail the process of crop genetic engineering. To begin at the beginning, see Overview of Crop Genetic Engineering. (To return to the animation previous to this, go to Gene Regions. To go to the next animation, go to Gene Gun.)

337

Screening differentially expressed genes in an amphipod (Hyalella azteca) exposed to fungicide vinclozolin by suppression subtractive hybridization.  

PubMed

Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism. PMID:25190560

Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H

2014-01-01

338

Gene Gun  

NSDL National Science Digital Library

How the gene gun works to transform cells with new DNA. This is thesixth of a series of seven animations that detail the process of cropgenetic engineering. To begin at the beginning, see Overview of Crop Genetic Engineering. (To return to the animation previous to this, go to Gene Modification. To go to the next animation, go to Backcross Breeding.)

339

Gene Cloning  

NSDL National Science Digital Library

A basic depiction of the steps in gene cloning. This is the third of a series of seven animations that detail the process of crop genetic engineering. To begin at the beginning, see Overview of Crop Genetic Engineering. (To return to the animation previous to this, go to DNA and DNA Extraction. To go to the next animation, go to Gene Regions.)

340

Trichoderma genes  

DOEpatents

Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

Foreman, Pamela (Los Altos, CA); Goedegebuur, Frits (Vlaardingen, NL); Van Solingen, Pieter (Naaldwijk, NL); Ward, Michael (San Francisco, CA)

2012-06-19

341

Gene Puzzles  

NSDL National Science Digital Library

In this Science NetLinks lesson, students will examine a fictional pedigree and determine which gene is responsible for a given trait. The genetic information for individuals is depicted as a jigsaw puzzle. Without delving into a complicated explanation of the process, the activity in this lesson will help students build an understanding of how offspring inherit genes from their parents.

Science Netlinks

2001-10-20

342

[Gene therapy].  

PubMed

In the last years there has been much progress in our understanding of molecular mechanisms in the pathogenesis of disease. In this review we provide an overview of gene therapy, its most actualized techniques for gene delivery, and we give specific examples of laboratory and clinical achievements to date. The development of methods for delivering genes to mammalian cells has stimulated great interest in the possibility of treating human disease by gene-based therapies. As a result, concepts and methods that would have been considered purely science fiction 50 years ago are now used in the treatment of diseases. The widespread application of gene therapy technology to many diseases is already breaking down the traditional boundaries of modern medicine. However, despite its progress, several key technical drawbacks need to be overcome before gene therapy can be used safely and effectively in clinical settings. Technological developments, particularly in the areas of gene delivery and cell transplantation, will be critical for the successful practice of gene therapy. PMID:9527700

Rodríguez-Fragoso, L

1997-01-01

343

Metabolic gene variants associated with chromosomal aberrations in healthy humans.  

PubMed

Nonspecific chromosomal aberrations (CAs) are found in about 1% of lymphocytes drawn from healthy individuals. They include chromosome-type aberrations (CSAs), which are increased in exposure to ionizing radiation, and chromatid-type aberrations (CTAs) which in experimental systems are formed by DNA binding carcinogens and mutagens. The frequency of CAs is associated with the risk of cancer, but the causes of CAs in general population are unknown. Here, we want to test whether variants in metabolic genes associate with CAs in healthy volunteers. Cases were considered those whose total CA (CAtot) frequency was >2% and for CSA and CTA the limit was >1%. Controls had lower frequencies of CAs. Functional polymorphisms in seven genes were selected for analysis: cytochrome P450 1B1 (CYP1B1), epoxide hydrolase 1 (EPHX1), NAD(P)H:quinone oxidoreductase 1 (NQO1), each coding for phase 1 enzymes, and glutathione S-transferase P1 (GSTP1), glutathione S-transferases M1 (GSTM1) and T1 (GSTT1), coding for enzymes which conjugate reactive metabolites, that is, phase 2 enzymes. The number of volunteers genotyped for each gene varied from 550 to 1,500. Only EPHX1 was individually associated with CAtot; high activity genotypes decreased CAtot. A total of six significant (P < 0.01) pair-wise interactions were observed, most including a GST variant as one of the pair. In all genotype combinations with significant odds ratios for CAs a GST variant was involved. The present data provide evidence that variants in genes coding for metabolic enzymes, which individually have small effects, interact and are associated with CA frequencies in peripheral lymphocytes of healthy volunteers. © 2015 Wiley Periodicals, Inc. PMID:25622915

Hemminki, Kari; Frank, Christoph; Försti, Asta; Musak, Ludovit; Kazimirova, Alena; Barancokova, Magdalena; Horska, Alexandra; Vymetalkova, Veronika; Smerhovsky, Zdenek; Naccarati, Alessio; Soucek, Pavel; Vodickova, Ludmila; Buchancova, Janka; Smolkova, Bozena; Dusinska, Maria; Vodicka, Pavel

2015-04-01

344

Genome-Wide Survey and Expression Analysis Suggest Diverse Roles of Glutaredoxin Gene Family Members During Development and Response to Various Stimuli in Rice  

PubMed Central

Glutaredoxins (GRXs) are glutathione-dependent oxidoreductase enzymes involved in a variety of cellular processes. In this study, our analysis revealed the presence of 48 genes encoding GRX proteins in the rice genome. GRX proteins could be classified into four classes, namely CC-, CGFS-, CPYC- and GRL-type, based on phylogenetic analysis. The classification was supported with organization of predicted conserved putative motifs in GRX proteins. We found that expansion of this gene family has occurred largely via whole genome duplication events in a species-specific manner. We explored rice oligonucleotide array data to gain insights into the function of GRX gene family members during various stages of development and in response to environmental stimuli. The comprehensive expression analysis suggested diverse roles of GRX genes during growth and development in rice. Some of the GRX genes were expressed in specific organs/developmental stages only. The expression of many of rice GRX genes was influenced by various phytohormones, abiotic and biotic stress conditions, suggesting an important role of GRX proteins in response to these stimuli. The identification of GRX genes showing differential expression in specific tissues or in response to environmental stimuli provide a new avenue for in-depth characterization of selected genes of importance. PMID:21044985

Garg, Rohini; Jhanwar, Shalu; Tyagi, Akhilesh K.; Jain, Mukesh

2010-01-01

345

Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing.  

PubMed

Despite recent advances in genomic sequencing and DNA chemical synthesis, construction of large gene clusters containing DNA fragments is still a difficult and expensive task. To tackle this problem, we developed a gene cluster extraction method based on in vitro single-strand overlapping annealing (SSOA). It starts with digesting the target gene cluster in an existing genome, followed by recovering digested chromosome fragments. Subsequently, the single-strand DNA overhangs formed from the digestion process would be specifically annealed and covalently joined together with a circular and a linear vector, respectively. The SSOA method was successfully applied to clone a 18 kb DNA fragment encoding NADH:ubiquinone oxidoreductase. Genomic DNA fragments of different sizes including 11.86, 18.33, 28.67, 34.56, and 55.99 kb were used to test the cloning efficiency. Combined with genetic information from KEGG and the KEIO strain collection, this method will be useful to clone any specific region of an E. coli genome at sizes less than ~28 kb. The method provides a cost-effective way for genome assembly, alternative to chemically synthesized gene clusters. PMID:23651252

Wang, Rui-Yan; Shi, Zhen-Yu; Chen, Jin-Chun; Chen, Guo-Qiang

2012-07-20

346

A Novel Whole Exon Deletion in WWOX Gene Causes Early Epilepsy, Intellectual Disability and Optic Atrophy.  

PubMed

Recent studies have implicated the WW domain-containing oxidoreductase encoding gene (WWOX) in a severe form of autosomal recessive neurological disorder. This condition showed an overlapping spectrum of clinical features including spinocerebellar ataxia associated with generalized seizures and delayed psychomotor development to growth retardation, spasticity, and microcephaly. We evaluated a child from a consanguineous Emirati family that presented at birth with growth retardation, microcephaly, epileptic seizures, and later developed spasticity and delayed psychomotor development. Screening for deletions and duplications using whole-chromosomal microarray analysis identified a novel homozygous microdeletion encompassing exon 5 of the WWOX gene. Analysis of parental DNA indicated that this deletion was inherited from both parents and lies within a large region of homozygosity. Sanger sequencing of the cDNA showed that the deletion resulted in exon 5 skipping leading to a frame-shift and creating a premature stop codon at amino acid position 212. Quantification of mRNA revealed striking low level of WWOX expression in the child and moderate level of expression in the mother compared to a healthy control. To the best of our knowledge, this is the first homozygous germline structural variation in WWOX gene resulting in truncated transcripts that were presumably subject to NMD pathway. Our findings extend the clinical and genetic spectrum of WWOX mutations and support a crucial role of this gene in neurological development. PMID:25403906

Ben-Salem, Salma; Al-Shamsi, Aisha M; John, Anne; Ali, Bassam R; Al-Gazali, Lihadh

2014-11-18

347

Transcriptome Analysis of Integument Differentially Expressed Genes in the Pigment Mutant (quail) during Molting of Silkworm, Bombyx mori  

PubMed Central

In the silkworm Bombyx mori, pigment mutants with diverse body colors have been maintained throughout domestication for about 5000 years. The silkworm larval body color is formed through the mutual interaction of melanin, ommochromes, pteridines and uric acid. These pigments/compounds are synthesized by the cooperative action of various genes and enzymes. Previous reports showed that melanin, ommochrome and pteridine are increased in silkworm quail (q) mutants. To understand the pigment increase and alterations in pigment synthesis in q mutant, transcriptome profiles of the silkworm integument were investigated at 16 h after head capsule slippage in the fourth molt in q mutants and wild-type (Dazao). Compared to the wild-type, 1161 genes were differentially expressed in the q mutant. Of these modulated genes, 62.4% (725 genes) were upregulated and 37.6% (436 genes) were downregulated in the q mutant. The molecular function of differently expressed genes was analyzed by Blast2GO. The results showed that upregulated genes were mainly involved in protein binding, small molecule binding, transferase activity, nucleic acid binding, specific DNA-binding transcription factor activity and chromatin binding, while exclusively down-expressed genes functioned in oxidoreductase activity, cofactor binding, tetrapyrrole binding, peroxidase activity and pigment binding. We focused on genes related to melanin, pteridine and ommochrome biosynthesis; transport of uric acid; and juvenile hormone metabolism because of their importance in integument coloration during molting. This study identified differently expressed genes implicated in silkworm integument formation and pigmentation using silkworm q mutant. The results estimated the number and types of genes that drive new integument formation. PMID:24718369

Cheng, Tingcai; Li, Qiongyan; Wu, Yuqian; Zhou, Mengting; Zhang, Yinxia; Xia, Qingyou

2014-01-01

348

Gene Cloning  

NSDL National Science Digital Library

This interactive activity adapted from the University of Nebraska's Library of Crop Technologies details the steps involved in producing clones of genes that can then be used to transform the characteristics of an organism.

WGBH Educational Foundation

2009-12-07

349

Pseudomonas aeruginosa LysR PA4203 regulator NmoR acts as a repressor of the PA4202 nmoA gene encoding a nitronate monooxygenase.  

PubMed

The PA4203 gene encodes a LysR regulator and lies between the ppgL gene (PA4204), which encodes a periplasmic gluconolactonase, and in the opposite orientation the PA4202 nmoA gene coding for a nitronate monooxygenase and ddlA (PA4201) encoding a D-alanine alanine ligase. The intergenic regions between PA4203 and ppgL, and nmoA are very short (79 and 107 nucleotides, respectively). Here we show that PA4203 (nmoR) represses its own transcription and the expression of nmoA. A chromatin immunoprecipation analysis showed the presence of a single NmoR binding site between nmoA and nmoR, which was confirmed by Electrophoretic mobility shift assays (EMSAs) with the purified NmoR protein. Despite this, a transcriptome analysis revealed more genes to be affected in an nmoR mutant, including genes known to be part of the MexT LysR activator regulon. The PA1225 gene encoding a quinone oxidoreductase is the most highly up-regulated in the nmoR deletion mutant, independently of MexT. Finally, deletion of the nmoA gene resulted in an increased sensitivity of the cells to 3-nitropropionic acid (3-NPA), confirming the role of nitronate monooxygenase protein in the detoxification of nitronate. PMID:25384477

Vercammen, Ken; Wei, Qing; Charlier, Daniel; Dötsch, Andreas; Haüssler, Susanne; Schulz, Sebastian; Salvi, Francesca; Gadda, Giovanni; Spain, Jim; Levin Rybtke, Morten; Tolker-Nielsen, Tim; Dingemans, Jozef; Ye, Lumeng; Cornelis, Pierre

2014-11-10

350

Identification of Plasmopara viticola genes potentially involved in pathogenesis on grapevine suggests new similarities between oomycetes and true fungi.  

PubMed

Plant diseases caused by fungi and oomycetes result in significant economic losses every year. Although phylogenetically distant, these organisms share many common features during infection. We identified genes in the oomycete Plasmopara viticola that are potentially involved in pathogenesis in grapevine by using fungal databases and degenerate primers. Fragments of P. viticola genes encoding NADH-ubiquinone oxidoreductase (PvNuo), laccase (PvLac), and invertase (PvInv) were obtained. PvNuo was overexpressed at 2 days postinoculation (dpi), during the development of the first hyphal structures and haustoria. PvLac was overexpressed at 5 dpi when genes related to pterostilbene biosynthesis were induced in grapevine. Transcript level for PvInv increased between 1 and 4 dpi before reaching a plateau. These results might suggest a finely tuned strategy of infection depending on nutrition and plant response. Phylogenetic analyses of PvNuo showed that P. viticola clustered with other oomycetes and was associated with brown algae and diatoms, forming a typical Straminipila clade. Based on the comparison of available sequences for laccases and invertases, the group formed by P. viticola and other oomycetes tended to be more closely related to Opisthokonta than to Straminipila. Convergent evolution or horizontal gene transfer could explain the presence of fungus-like genes in P. viticola. PMID:23634808

Luis, P; Gauthier, A; Trouvelot, S; Poinssot, B; Frettinger, P

2013-10-01

351

Ensemble attribute profile clustering: discovering and characterizing groups of genes with similar patterns of biological features  

PubMed Central

Background Ensemble attribute profile clustering is a novel, text-based strategy for analyzing a user-defined list of genes and/or proteins. The strategy exploits annotation data present in gene-centered corpora and utilizes ideas from statistical information retrieval to discover and characterize properties shared by subsets of the list. The practical utility of this method is demonstrated by employing it in a retrospective study of two non-overlapping sets of genes defined by a published investigation as markers for normal human breast luminal epithelial cells and myoepithelial cells. Results Each genetic locus was characterized using a finite set of biological properties and represented as a vector of features indicating attributes associated with the locus (a gene attribute profile). In this study, the vector space models for a pre-defined list of genes were constructed from the Gene Ontology (GO) terms and the Conserved Domain Database (CDD) protein domain terms assigned to the loci by the gene-centered corpus LocusLink. This data set of GO- and CDD-based gene attribute profiles, vectors of binary random variables, was used to estimate multiple finite mixture models and each ensuing model utilized to partition the profiles into clusters. The resultant partitionings were combined using a unanimous voting scheme to produce consensus clusters, sets of profiles that co-occured consistently in the same cluster. Attributes that were important in defining the genes assigned to a consensus cluster were identified. The clusters and their attributes were inspected to ascertain the GO and CDD terms most associated with subsets of genes and in conjunction with external knowledge such as chromosomal location, used to gain functional insights into human breast biology. The 52 luminal epithelial cell markers and 89 myoepithelial cell markers are disjoint sets of genes. Ensemble attribute profile clustering-based analysis indicated that both lists contained groups of genes with the functional properties of membrane receptor biology/signal transduction and nucleic acid binding/transcription. A subset of the luminal markers was associated with metabolic and oxidoreductase activities, whereas a subset of myoepithelial markers was associated with protein hydrolase activity. Conclusion Given a set of genes and/or proteins associated with a phenomenon, process or system of interest, ensemble attribute profile clustering provides a simple method for collating and sythesizing the annotation data pertaining to them that are present in text-based, gene-centered corpora. The results provide information about properties common and unique to subsets of the list and hence insights into the biology of the problem under investigation. PMID:16542449

Semeiks, JR; Rizki, A; Bissell, MJ; Mian, IS

2006-01-01

352

A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1.  

PubMed

Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s(-1)) and FAD (4.4 µM, 56 s(-1)). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases. PMID:25116410

Gröning, Janosch A D; Kaschabek, Stefan R; Schlömann, Michael; Tischler, Dirk

2014-12-01

353

The conformational changes induced by ubiquinone binding in the Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) are kinetically controlled by conserved glycines 140 and 141 of the NqrB subunit.  

PubMed

Na(+)-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na(+)-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na(+)-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A; Barquera, Blanca; Hellwig, Petra

2014-08-22

354

Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity.  

PubMed

The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S ? FMNC). PMID:24030824

Shea, Michael E; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

2013-10-25

355

Infrared spectroscopic evidence of a redox-dependent conformational change involving ion binding residue NqrB-D397 in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae.  

PubMed

The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a unique respiratory enzyme that conserves energy by translocating Na(+) through the plasma membrane. Found only in prokaryotes, the enzyme serves as the point of entry of electrons into the respiratory chain in many pathogens, including Vibrio cholerae and Yersinia pestis. In this study, a combined electrochemical and Fourier transform infrared (FTIR) spectroscopic approach revealed that Na(+)-NQR undergoes significant conformational changes upon oxidoreduction, depending on the monovalent cation present (Na(+), Li(+), K(+), or Rb(+)). In the presence of the inhibitor Rb(+), additional conformational changes are evident, indicating a changed accessibility of the sodium binding sites. In electrochemically induced FTIR difference spectra, the involvement of deprotonated acid residues in the binding of cations, together with the spectral features, that point toward a monodentate binding mode for these acid residues in the oxidized form of the enzyme and bidentate binding in the reduced form could be identified. The measurements confirmed that NqrB-D397 is one of the acid residues involved in Na(+) and Li(+) binding. In the NqrB-D397E mutant, the spectral features characteristic of COO(-) groups are shifted, and a weakening of the hydrogen binding of the ion binding cluster is revealed. Finally, H-D exchange kinetics of amide protons confirmed that Na(+)-NQR adopts different conformations, with different accessibilities to the aqueous environment, depending on the cation present, which contributes to the selectivity mechanism of ion translocation. PMID:23566241

Neehaul, Yashvin; Juárez, Oscar; Barquera, Blanca; Hellwig, Petra

2013-05-01

356

Indigofera suffruticosa Mill extracts up-regulate the expression of the ? class of glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 in rat Clone 9 liver cells.  

PubMed

Because induction of phase II detoxification enzyme is important for chemoprevention, we study the effects of Indigofera suffruticosa Mill, a medicinal herb, on the expression of ? class of glutathione S-transferase (GSTP) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Both water and ethanolic extracts of I. suffruticosa significantly increased the expression and enzyme activities of GSTP and NQO1. I. suffruticosa extracts up-regulated GSTP promoter activity and the binding affinity of nuclear factor erythroid 2-related factor 2 (Nrf2) with the GSTP enhancer I oligonucleotide. Moreover, I. suffruticosa extracts increased nuclear Nrf2 accumulation as well as ARE transcriptional activity. The level of phospho-ERK was augmented by I. suffruticosa extracts, and the ERK inhibitor PD98059 abolished the I. suffruticosa extract-induced ERK activation and GSTP and NQO-1 expression. Moreover, I. suffruticosa extracts, especially the ethanolic extract increased the glutathione level in mouse liver and red blood cells as well as Clone 9 liver cells. The efficacy of I. suffruticosa extracts in induction of phase II detoxification enzymes and glutathione content implies that I. suffruticosa could be considered as a potential chemopreventive agent. PMID:23831193

Chen, Chun-Chieh; Liu, Chin-San; Li, Chien-Chun; Tsai, Chia-Wen; Yao, Hsien-Tsung; Liu, Te-Chung; Chen, Haw-Wen; Chen, Pei-Yin; Wu, Yu-Ling; Lii, Chong-Kuei; Liu, Kai-Li

2013-09-01

357

The synthesis and evaluation of 3-aryloxymethyl-1,2-dimethylindole-4,7-diones as mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1) activity  

PubMed Central

NAD(P)H:quinone oxidoreductase 1 is a proposed target in pancreatic cancer. We describe the synthesis of a series of indolequinones, based on the 5- and 6-methoxy-1,2-dimethylindole-4,7-dione chromophores with a range of phenolic leaving groups at the (indol-3-yl)methyl position. The ability of these indolequinones to function as mechanism-based inhibitors of purified human NQO1 was evaluated, as was their ability to inhibit both NQO1 and cell growth in human pancreatic MIA PaCa-2 tumor cells. The inhibition of rhNQO1 was related to the pKa of the leaving group: compounds with poorer phenolic leaving groups were poor inhibitors whereas those with more acidic leaving groups were more efficient inhibitors. These inhibition data also correlated with the inhibition NQO1 in MIA PaCa-2 cells. However, the data demonstrate that NQO1 inhibition does not correlate with growth inhibitory activity, at least in the MIA PaCa-2 cell line, suggesting that targets in addition to NQO1 need to be considered to explain the potent growth inhibitory activity of this series of indolequinones in human pancreatic cancer cells. PMID:17944451

Colucci, Marie A.; Reigan, Philip; Siegel, David; Chilloux, Aurélie; Ross, David; Moody, Christopher J.

2008-01-01

358

Identification and characterization of Mini1, a gene regulating rice shoot development.  

PubMed

The aerial parts of higher plants are generated from the shoot apical meristem (SAM). In this study, we isolated a small rice (Oryza sativa L.) mutant that showed premature termination of shoot development and was named mini rice 1 (mini1). The mutant was first isolated from a japonica cultivar Zhonghua11 (ZH11) subjected to ethyl methanesulfonate (EMS) treatment. With bulked segregant analysis (BSA) and map-based cloning method, Mini1 gene was finally fine-mapped to an interval of 48.6?kb on chromosome 9. Sequence analyses revealed a single base substitution from G to A was found in the region, which resulted in an amino acid change from Gly to Asp. The candidate gene Os09g0363900 was predicted to encode a putative adhesion of calyx edges protein ACE (putative HOTHEAD precursor) and genetic complementation experiment confirmed the identity of Mini1. Os09g0363900 contains glucose-methanol-choline (GMC) oxidoreductase and NAD(P)-binding Rossmann-like domain, and exhibits high similarity to Arabidopsis HOTHEAD (HTH). Expression analysis indicated Mini1 was highly expressed in young shoots but lowly in roots and the expression level of most genes involved in auxin biosynthesis and signal transduction were reduced in mutant. We conclude that Mini1 plays an important role in maintaining SAM activity and promoting shoot development in rice. PMID:24946831

Fang, Yunxia; Hu, Jiang; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Xiong, Guosheng; Zhu, Li; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Dong, Guojun; Yan, Meixian; Guo, Longbiao; Wang, Yonghong; Qian, Qian

2015-02-01

359

Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae.  

PubMed

ToxT is the central regulatory protein involved in activation of the main virulence genes in Vibrio cholerae. We have identified transposon insertions in central metabolism genes, whose disruption increases toxT transcription. These disrupted genes encode the primary respiration-linked sodium pump (NADH:ubiquinone oxidoreductase or NQR) and certain tricarboxylic acid (TCA) cycle enzymes. Observations made following stimulation of respiration in the nqr mutant or chemical inhibition of NQR activity in the TCA cycle mutants led to the hypothesis that NQR affects toxT transcription via the TCA cycle. That toxT transcription increased when the growth medium was supplemented with citrate, but decreased with oxaloacetate, focused our attention on the TCA cycle substrate acetyl-CoA and its non-TCA cycle metabolism. Indeed, both the nqr and the TCA cycle mutants increased acetate excretion. A similar correlation between acetate excretion and toxT transcription was observed in a tolC mutant and upon amino acid (NRES) supplementation. As acetate and its tendency to decrease pH exerted no strong effect on toxT transcription, and because disruption of the major acetate excretion pathway increased toxT transcription, we propose that toxT transcription is regulated by either acetyl-CoA or some close derivative. PMID:23429745

Minato, Yusuke; Fassio, Sara R; Wolfe, Alan J; Häse, Claudia C

2013-04-01

360

Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1.  

PubMed

The gene for an approximately 27-kDa outer membrane-associated, immunoreactive protein was cloned from the rickettsial pathogen Coxiella burnetii. The gene, designated com1 for Coxiella outer membrane protein 1, was expressed in Escherichia coli, presumably by its own promoter. The complete nucleotide sequence of the gene was determined. The deduced amino acid sequence of 252 residues includes a putative leader sequence. The leader sequence is recognized in and removed by E. coli on the basis of the difference in the molecular mass of the protein produced in an in vitro transcription-translation system (27.6 kDa) and that of the protein immunoprecipitated from an iodinated E. coli clone (25.7 kDa). The Com1 protein expressed in E. coli was proteinase K sensitive in nondisrupted cells and soluble in 1% Sarkosyl, suggesting a loose association with the outer membrane. While the complete predicted sequence of the Com1 protein does not show any overall similarity to those of previously described proteins, a region which includes the only two cysteines in Com1 is homologous to the catalytic site of protein disulfide oxidoreductases. PMID:8423075

Hendrix, L R; Mallavia, L P; Samuel, J E

1993-02-01

361

In vitro study of genes and molecular pathways differentially regulated by synchrotron microbeam radiotherapy.  

PubMed

The aim of this study was to identify genes and molecular pathways differentially regulated by synchrotron-generated microbeam radiotherapy (MRT) versus conventional broadbeam radiotherapy (CRT) in vitro using cultured EMT6.5 cells. We hypothesized (based on previous findings) that gene expression and molecular pathway changes after MRT are different from those seen after CRT. We found that at 24 h postirradiation, MRT exerts a broader regulatory effect on multiple pathways than CRT. MRT regulated those pathways involved in gene transcription, translation initiation, macromolecule metabolism, oxidoreductase activity and signaling transduction in a different manner compared to CRT. We also found that MRT/CRT alone, or when combined with inflammatory factor lipopolysaccharide, upregulated expression of Ccl2, Ccl5 or Csf2, which are involved in host immune cell recruitment. Our findings demonstrated differences in the molecular pathway for MRT versus CRT in the cultured tumor cells, and were consistent with the idea that radiation plays a role in recruiting tumor-associated immune cells to the tumor. Our results also suggest that a combination of MRT/CRT with a treatment targeting CCL2 or CSF2 could repress the tumor-associated immune cell recruitment, delay tumor growth and/or metastasis and yield better tumor control than radiation alone. PMID:25409126

Yang, Yuqing; Crosbie, Jeffrey C; Paiva, Premila; Ibahim, Mohammad; Stevenson, Andrew; Rogers, Peter A W

2014-12-01

362

Analysis of Gene-Gene Interactions  

PubMed Central

The goal of this unit is to introduce gene-gene interactions (epistasis) as a significant complicating factor in the search for disease susceptibility genes. This unit begins with an overview of gene-gene interactions and why they are likely to be common. Then, it reviews several statistical and computational methods for detecting and characterizing genes with effects that are dependent on other genes. The focus of this unit is genetic association studies of discrete and quantitative traits because most of the methods for detecting gene-gene interactions have been developed specifically for these study designs. PMID:21735376

Gilbert-Diamond, Diane; Moore, Jason H.

2014-01-01

363

The organization of the fuc regulon specifying L-fucose dissimilation in Escherichia coli K12 as determined by gene cloning.  

PubMed

In Escherichia coli the six known genes specifying the utilization of L-fucose as carbon and energy source cluster at 60.2 min and constitute a regulon. These genes include fucP (encoding L-fucose permease), fucI (encoding L-fucose isomerase), fucK (encoding L-fuculose kinase), fucA (encoding L-fuculose 1-phosphate aldolase), fucO (encoding L-1,2-propanediol oxidoreductase), and fucR (encoding the regulatory protein). In this study the fuc genes were cloned and their positions on the chromosome were established by restriction endonuclease and complementation analyses. Clockwise, the gene order is: fucO-fucA-fucP-fucI-fucK-fucR. The operons comprising the structural genes and the direction of transcription were determined by complementation analysis and Southern blot hybridization. The fucPIK and fucA operons are transcribed clockwise. The fucO operon is transcribed counterclockwise. The fucR gene product activates the three structural operons in trans. PMID:3325779

Chen, Y M; Zhu, Y; Lin, E C

1987-12-01

364

Attention Genes  

ERIC Educational Resources Information Center

A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

2007-01-01

365

Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.  

SciTech Connect

Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c{sub 552}, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data.

Beliaev, A. S.; Thompson, D. K.; Khare, T.; Lim, H.; Brandt, C. C.; Li, G.; Murray, A. E.; Heidelberg, J. F.; Giometti, C. S.; Yates, J., III; Nealson, K. H.; Tiedje, J. M.; Zhou, J.; Biosciences Division; ORNL; Scripps Research Inst.; Michigan State Univ.; The Inst. for Genomic Research; Jet Propulsion Laboratory; California Inst. of Tech.

2002-01-01

366

Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.  

PubMed

Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 ?M) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production. To study differential gene expression under three types of oxidative stress, a Giardia genomic DNA array was constructed and hybridized with labeled cDNA of cells with or without stress. The transcriptomic data has been analyzed and further validated using real time PCR. We identified that out of 9216 genes represented on the array, more than 200 genes encoded proteins with functions in metabolism, oxidative stress management, signaling, reproduction and cell division, programmed cell death and cytoskeleton. We recognized genes modulated by at least ? 2 fold at a significant time point in response to oxidative stress. The study has highlighted the genes that are differentially expressed during the three experimental conditions which regulate the stress management pathway differently to achieve redox homeostasis. Identification of some unique genes in oxidative stress regulation may help in new drug designing for this common enteric parasite prone to drug resistance. Additionally, these data suggest the major role of this early divergent ancient eukaryote in anaerobic to aerobic organism evolution. PMID:24321693

Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

2014-02-10

367

Global Gene Expression Profiles of Subcutaneous Adipose and Muscle From Glucose-Tolerant, Insulin-Sensitive, and Insulin-Resistant Individuals Matched for BMI  

PubMed Central

OBJECTIVE To determine altered gene expression profiles in subcutaneous adipose and skeletal muscle from nondiabetic, insulin-resistant individuals compared with insulin-sensitive individuals matched for BMI. RESEARCH DESIGN AND METHODS A total of 62 nondiabetic individuals were chosen for extremes of insulin sensitivity (31 insulin-resistant and 31 insulin-sensitive subjects; 40 were European American and 22 were African American) and matched for age and obesity measures. Global gene expression profiles were determined and compared between ethnic groups and between insulin-resistant and insulin-sensitive participants individually and using gene-set enrichment analysis. RESULTS African American and European American subjects differed in 58 muscle and 140 adipose genes, including many inflammatory and metabolically important genes. Peroxisome proliferator–activated receptor ? cofactor 1A (PPARGC1A) was 1.75-fold reduced with insulin resistance in muscle, and fatty acid and lipid metabolism and oxidoreductase activity also were downregulated. Unexpected categories included ubiquitination, citrullination, and protein degradation. In adipose, highly represented categories included lipid and fatty acid metabolism, insulin action, and cell-cycle regulation. Inflammatory genes were increased in European American subjects and were among the top Kyoto Encyclopedia of Genes and Genomes pathways on gene-set enrichment analysis. FADS1, VEGFA, PTPN3, KLF15, PER3, STEAP4, and AGTR1 were among genes expressed differentially in both adipose and muscle. CONCLUSIONS Adipose tissue gene expression showed more differences between insulin-resistant versus insulin-sensitive groups than the expression of genes in muscle. We confirm the role of PPARGC1A in muscle and show some support for inflammation in adipose from European American subjects but find prominent roles for lipid metabolism in insulin sensitivity independent of obesity in both tissues. PMID:21266331

Elbein, Steven C.; Kern, Philip A.; Rasouli, Neda; Yao-Borengasser, Aiwei; Sharma, Neeraj K.; Das, Swapan K.

2011-01-01

368

Identification of Campylobacter jejuni Genes Contributing to Acid Adaptation by Transcriptional Profiling and Genome-Wide Mutagenesis?  

PubMed Central

In order to cause disease, the food- and waterborne pathogen Campylobacter jejuni must face the extreme acidity of the host stomach as well as cope with pH fluctuations in the intestine. In the present study, C. jejuni NCTC 11168 was grown under mildly acidic conditions mimicking those encountered in the intestine. The resulting transcriptional profiles revealed how this bacterium fine-tunes gene expression in response to acid stress. This adaptation involves the differential expression of respiratory pathways, the induction of genes for phosphate transport, and the repression of energy generation and intermediary metabolism genes. We also generated and screened a transposon-based mutant library to identify genes required for wild-type levels of growth under mildly acidic conditions. This screen highlighted the important role played by cell surface components (flagella, the outer membrane, capsular polysaccharides, and lipooligosaccharides) in the acid stress response of C. jejuni. Our data also revealed that a limited correlation exists between genes required for growth under acidic conditions and genes differentially expressed in response to acid. To gain a comprehensive picture of the acid stress response of C. jejuni, we merged transcriptional profiles obtained from acid-adapted cells and cells subjected to acid shock. Genes encoding the transcriptional regulator PerR and putative oxidoreductase subunits Cj0414 and Cj0415 were among the few up-regulated under both acid stress conditions. As a Cj0415 mutant was acid sensitive, it is likely that these genes are crucial to the acid stress response of C. jejuni and consequently are important for host colonization. PMID:18192408

Reid, Anne N.; Pandey, Reenu; Palyada, Kiran; Whitworth, Lisa; Doukhanine, Evgueni; Stintzi, Alain

2008-01-01

369

Genes and Hearing Loss  

MedlinePLUS

Genes and Hearing Loss Genes and Hearing Loss Patient Health Information News media interested in covering the ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

370

Isotropic exchange interaction between Mo and the proximal FeS center in the xanthine oxidase family member aldehyde oxidoreductase from Desulfovibrio gigas on native and polyalcohol inhibited samples: an EPR and QM/MM study.  

PubMed

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a homodimeric molybdenum-containing protein that catalyzes the hydroxylation of aldehydes to carboxylic acids and contains a Mo-pyranopterin active site and two FeS centers called FeS 1 and FeS 2. The electron transfer reaction inside DgAOR is proposed to be performed through a chemical pathway linking Mo and the two FeS clusters involving the pyranopterin ligand. EPR studies performed on reduced as-prepared DgAOR showed that this pathway is able to transmit very weak exchange interactions between Mo(V) and reduced FeS 1. Similar EPR studies but performed on DgAOR samples inhibited with glycerol and ethylene glycol showed that the value of the exchange coupling constant J increases ~2 times upon alcohol inhibition. Structural studies in these DgAOR samples have demonstrated that the Mo-FeS 1 bridging pathway does not show significant differences, confirming that the changes in J observed upon inhibition cannot be ascribed to structural changes associated neither with pyranopterin and FeS 1 nor with changes in the electronic structure of FeS 1, as its EPR properties remain unchanged. Theoretical calculations indicate that the changes in J detected by EPR are related to changes in the electronic structure of Mo(V) determined by the replacement of the OHx labile ligand for an alcohol molecule. Since the relationship between electron transfer rate and isotropic exchange interaction, the present results suggest that the intraenzyme electron transfer process mediated by the pyranopterin moiety is governed by a Mo ligand-based regulatory mechanism. PMID:25344343

Gómez, María C; Neuman, Nicolás I; Dalosto, Sergio D; González, Pablo J; Moura, José J G; Rizzi, Alberto C; Brondino, Carlos D

2014-10-25

371

Loss of NADPH Quinone Oxidoreductase in the Prostate and Enhanced Serum Levels of Cytokine-Induced Neutrophil Chemoattractant 2? in Hormone-Stimulated Noble Rats: Potential Role in Prostatic Intraepithelial Neoplasia Development1  

PubMed Central

The Noble rat is an established model for studying hormone-induced development of prostatic intraepithelial neoplasia and prostatic adenocarcinoma. It is known that for a period, hormones in the prostate generate reactive molecules that have the capacity to overwhelm intracellular defenses, damage macromolecules, and modulate redox-regulated signaling pathways leading to increased oxidative stress. Such hormone-induced imbalance in the oxidative stress/antioxidant defense enzymes may lead to neoplastic transformation of the prostate. We investigated alteration in the expression of critical antioxidant defense enzymes, a redox-regulated transcription factor nuclear factor ?B (NF?B) and its downstream target inflammation-associated cyclooxygenase 2 (Cox-2) in the prostate from hormone-stimulated Noble rats using immunohistochemistry. Further, we also analyzed serum levels of cytokines and chemokines associated with inflammation using multiplex immunoassay. Our results show that there was no significant change in the expression of glutathione peroxidase, glutathione S-transferase pi, superoxide dismutase, or catalase. However, the level of NADPH quinone oxidoreductase decreased in hormone-stimulated animals compared with their unstimulated counterparts. Further, the prostate from hormone-stimulated rats showed very strong expressions of p65, Cox-2, and NF?B DNA binding activity. In addition, the cytokine-induced neutrophil chemoattractant 2? was significantly upregulated by more than 10-fold (P = .001) in serum from animals stimulated with hormones. Although further studies are required, we speculate that activation of NF?B/cytokine-induced neutrophil chemoattractant 2?/Cox-2 along with modulation of antioxidant defense mechanisms may create a proinflammatory environment suitable for tumor growth and survival. PMID:19412421

Ghosh, Rita; Schoolfield, John; Yeh, I-Tien; Smith, Maxwell L; Hursting, Stephen D; Chan, Daniel C; Lucia, M Scott; Kumar, Addanki P

2009-01-01

372

The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes  

SciTech Connect

Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.

Paxman, Jason J.; Borg, Natalie A.; Horne, James; Thompson, Philip E.; Chin, Yanni; Sharma, Pooja; Simpson, Jamie S.; Wielens, Jerome; Piek, Susannah; Kahler, Charlene M.; Sakellaris, Harry; Pearce, Mary; Bottomley, Stephen P.; Rossjohn, Jamie; Scanlon, Martin J.; (UWA); (Monash)

2010-09-07

373

IruO Is a Reductase for Heme Degradation by IsdI and IsdG Proteins in Staphylococcus aureus*  

PubMed Central

Staphylococcus aureus is a common hospital- and community-acquired bacterium that can cause devastating infections and is often multidrug-resistant. Iron acquisition is required by S. aureus during an infection, and iron acquisition pathways are potential targets for therapies. The gene NWMN2274 in S. aureus strain Newman is annotated as an oxidoreductase of the diverse pyridine nucleotide-disulfide oxidoreductase (PNDO) family. We show that NWMN2274 is an electron donor to IsdG and IsdI catalyzing the degradation of heme, and we have renamed this protein IruO. Recombinant IruO is a FAD-containing NADPH-dependent reductase. In the presence of NADPH and IruO, either IsdI or IsdG degraded bound heme 10-fold more rapidly than with the chemical reductant ascorbic acid. Varying IsdI-heme substrate and monitoring loss of the heme Soret band gave a Km of 15 ± 4 ?m, a kcat of 5.2 ± 0.7 min?1, and a kcat/Km of 5.8 × 103 m?1 s?1. From HPLC and electronic spectra, the major heme degradation products are 5-oxo-?-bilirubin and 15-oxo-?-bilirubin (staphylobilins), as observed with ascorbic acid. Although heme degradation by IsdI or IsdG can occur in the presence of H2O2, the addition of catalase and superoxide dismutase did not disrupt NADPH/IruO heme degradation reactions. The degree of electron coupling between IruO and IsdI or IsdG remains to be determined. Homologs of IruO were identified by sequence similarity in the genomes of Gram-positive bacteria that possess IsdG-family heme oxygenases. A phylogeny of these homologs identifies a distinct clade of pyridine nucleotide-disulfide oxidoreductases likely involved in iron uptake systems. IruO is the likely in vivo reductant required for heme degradation by S. aureus. PMID:23893407

Loutet, Slade A.; Kobylarz, Marek J.; Chau, Crystal H. T.; Murphy, Michael E. P.

2013-01-01

374

CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes  

SciTech Connect

CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced liver injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury.

Reisman, Scott A.; Buckley, David B.; Tanaka, Yuji [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417 (United States); Klaassen, Curtis D. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417 (United States)], E-mail: cklaasse@kumc.edu

2009-04-01

375

Burkholderia cenocepacia ShvR-Regulated Genes That Influence Colony Morphology, Biofilm Formation, and Virulence ?  

PubMed Central

Burkholderia cenocepacia is an opportunistic pathogen that primarily infects cystic fibrosis (CF) patients. Previously, we reported that ShvR, a LysR regulator, influences colony morphology, virulence, and biofilm formation and regulates the expression of an adjacent 24-kb genomic region encoding 24 genes. In this study, we report the functional characterization of selected genes in this region. A Tn5 mutant with shiny colony morphology was identified with a polar mutation in BCAS0208, predicted to encode an acyl-coenzyme A dehydrogenase. Mutagenesis of BCAS0208 and complementation analyses revealed that BCAS0208 is required for rough colony morphology, biofilm formation, and virulence on alfalfa seedlings. It was not possible to complement with BCAS0208 containing a mutation in the catalytic site. BCAS0201, encoding a putative flavin adenine dinucleotide (FAD)-dependent oxidoreductase, and BCAS0207, encoding a putative citrate synthase, do not influence colony morphology but are required for optimum levels of biofilm formation and virulence. Both BCAS0208 and BCAS0201 contribute to pellicle formation, although individual mutations in each of these genes had no appreciable effect on pellicle formation. A mutant with a polar insertion in BCAS0208 was significantly less virulent in a rat model of chronic lung infection as well as in the alfalfa model. Genes in this region were shown to influence utilization of branched-chain fatty acids, tricarboxylic acid cycle substrates, l-arabinose, and branched-chain amino acids. Together, our data show that the ShvR-regulated genes BCAS0208 to BCAS0201 are required for the rough colony morphotype, biofilm and pellicle formation, and virulence in B. cenocepacia. PMID:21690240

Subramoni, Sujatha; Nguyen, David T.; Sokol, Pamela A.

2011-01-01

376

Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes.  

PubMed

High explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT) are important contaminants in the environment and phytoremediation has been viewed as a cost-effective abatement. There remains, however, an insufficient knowledge-base about how plants respond to explosives, especially in the steady state. Microarray analysis was conducted on Arabidopsis thaliana that were grown in Murashige and Skoog media containing steady-state levels of 0.5 mM RDX or 2.0 microM TNT to study the effect of these compounds on its transcriptional profile. Our results for both RDX and TNT were consistent with the existing theory for xenobiotic metabolism in plants. Among the genes that were differentially expressed included oxidoreductases, cytochrome P450s, transferases, transporters, and several unknown expressed proteins. We discuss the potential role of upregulated genes in plant metabolism, phytoremediation, and phytosensing. Phytosensing, the detection of field contamination using plants, is an end goal of this project. PMID:19543758

Rao, Murali R; Halfhill, Matthew D; Abercrombie, Laura G; Ranjan, Priya; Abercrombie, Jason M; Gouffon, Julia S; Saxton, Arnold M; Stewart, C Neal

2009-11-01

377

Systemic resistance to methotrexate in transgenic mice carrying a mutant dihydrofolate reductase gene.  

PubMed Central

A full-length cDNA coding for a mutant dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3), cloned from a mouse fibroblast cell line grown in high concentrations of methotrexate (MTX), was microinjected into mouse embryos to produce transgenic mice. The DHFR cDNA product is 270-fold more resistant to MTX than the wild-type enzyme. Seventeen transgenic mouse lines, identified by Southern blotting of tail or spleen DNA, carried between 1 and 400 copies of the foreign gene per cell. Eight lines have thus far been tested for resistance to MTX. Control mice were treated until death; MTX was withdrawn from transgenic mice when a cumulative MTX dose uniformly fatal for controls was reached. The major site of MTX toxicity was the gastrointestinal tract, with death of controls resulting from fluid and weight loss. Transgenic animals were relatively resistant to these symptoms and tolerated significantly more MTX than control animals. These results show that genes conferring resistance to chemotherapeutic agents can, after transfer into intact organisms, produce systemic drug resistance. PMID:3467329

Isola, L M; Gordon, J W

1986-01-01

378

Xenobiotic Metabolizing Gene Variants and Renal Cell Cancer: A Multicenter Study  

PubMed Central

Background: The countries of Central and Eastern Europe have among the highest worldwide rates of renal cell cancer (RCC). Few studies have examined whether genetic variation in xenobiotic metabolic pathway genes may modify risk for this cancer. Methods: The Central and Eastern Europe Renal Cell Cancer study was a hospital-based case–control study conducted between 1998 and 2003 across seven centers in Central and Eastern Europe. Detailed data were collected from 874 cases and 2053 controls on demographics, work history, and occupational exposure to chemical agents. Genes [cytochrome P-450 family, N-acetyltransferases, NAD(P)H:quinone oxidoreductase I (NQO1), microsomal epoxide hydrolase (mEH), catechol-O-methyltransferase (COMT), uridine diphosphate-glucuronosyltransferase (UGT)] were selected for the present analysis based on their putative role in xenobiotic metabolism. Haplotypes were calculated using fastPhase. Odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for country of residence, age, sex, smoking, alcohol intake, obesity, and hypertension. Results: We observed an increased risk of RCC with one SNP. After adjustment for multiple comparisons it did not remain significant. Neither NAT1 nor NAT2 slow acetylation was associated with disease. Conclusion: We observed no association between this pathway and renal cell cancer. PMID:22645715

Heck, Julia E.; Moore, Lee E.; Lee, Yuan-Chin A.; McKay, James D.; Hung, Rayjean J.; Karami, Sara; Gaborieau, Valérie; Szeszenia-Dabrowska, Neonila; Zaridze, David G.; Mukeriya, Anush; Mates, Dana; Foretova, Lenka; Janout, Vladimir; Kollárová, Helena; Bencko, Vladimir; Rothman, Nathaniel; Brennan, Paul; Chow, Wong-Ho; Boffetta, Paolo