Sample records for nafion composite films

  1. Introduction of gold nanoparticles into myoglobin-Nafion film for direct electrochemistry application.

    PubMed

    Xie, Wenting; Kong, Linlin; Kan, Meixiu; Han, Dongmei; Wang, Xueji; Zhang, Hui-Min

    2010-10-01

    An effective myoglobin-Nafion film is prepared by introducing gold nanoparticles in through a simple procedure by ion-exchange combined with electrochemical reduction. Gold nanoparticles are highly dispersed in myoglobin-Nafion film with an average size of 2.3 +/- 0.2 nm. The electrochemical behavior of myoglobin entrapped in the film has been carefully investigated with cyclic voltammetry. The results show that the introduction of gold nanoparticles into myoglobin-Nafion film makes the direct electron transfer of myoglobin efficient. A pair of well-defined redox peaks for myoglobin heme Fe(II)/Fe(III) is observed with a formal potential of -0.150 V in 0.1 M phosphate buffer (pH 7.0). The electrochemical parameters of myoglobin in the composite film are further calculated with the results of the electron-transfer rate constant (k(s)) as 0.93 s(-1) and the charge transfer coefficient (alpha) as 0.69. The experimental results also demonstrate that the immobilized myoglobin retains its electrocatalytic activity for the reduction of hydrogen peroxide and the catalytic reduction peak of myoglobin appear in a linear relationship with H2O2 concentration in the range of 10.0-235.0 microM with correlation coefficient of 0.9970. Thus fabricated Au/Mb/Nafion electrode should give a new approach for developing redox protein or enzyme-based biosensors.

  2. Poly(malachite green) at nafion doped multi-walled carbon nanotube composite film for simple aliphatic alcohols sensor.

    PubMed

    Umasankar, Yogeswaran; Periasamy, Arun Prakash; Chen, Shen-Ming

    2010-01-15

    Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Gamma) of PMG to approximately 396%, and increases the electron transfer rate constant (k(s)) to approximately 305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa=609, 614 and 602mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92microAmM(-1)cm(-2) respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.

  3. Sensor Properties of Field-Effect Transistors Based on Graphene Oxide and Nafion Films with Proton Conductivity

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Mokrushin, A. D.; Denisov, N. N.; Dobrovolsky, Yu. A.

    2018-07-01

    The proton conductivity of graphene oxide (GO) and Nafion films was studied depending on the humidity and voltage on electrodes. The electric properties of the films were similar, but the mobility of positive charges in Nafion was approximately two orders of magnitude higher than in GO. In GO films, the negative ion current with a positive voltage bias was up to 10% of the proton current, while in Nafion films it was almost absent (<1%). The sensors based on GO and Nafion films were most effective at humidity (RH) in the range 20-80%.

  4. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    NASA Astrophysics Data System (ADS)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  5. Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.

    PubMed

    Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi

    2014-12-01

    Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.

  6. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    PubMed

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Electrochemistry and electrocatalysis of myoglobin immobilized in sulfonated graphene oxide and Nafion films.

    PubMed

    Chen, Guiying; Sun, Hong; Hou, Shifeng

    2016-06-01

    In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb-SGO-Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb-SGO-Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around -0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential. Copyright © 2016. Published by Elsevier Inc.

  8. Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode.

    PubMed

    Sun, Wei; Zhai, ZiQin; Wang, DanDan; Liu, ShuFeng; Jiao, Kui

    2009-02-01

    A stable composite film composed of the ionomer Nafion, the ZnO nanoparticle and the protein hemoglobin was cast on the surface of an ionic liquid modified carbon paste electrode (CILE) to establish a modified electrode denoted as Nafion/nano-ZnO/Hb/CILE. UV-vis and FT-IR spectrum showed that hemoglobin in the film retained its native conformation. The electrochemical behaviors of hemoglobin entrapped in the film were carefully investigated with cyclic voltammetry. A pair of well-defined and quasi-reversible redox voltammetric peaks for Hb Fe(III)/Fe(II) was obtained with the standard potential (E(0)') located at -0.344 V (vs. SCE) in phosphate buffer solution (PBS, pH 7.0), which was attributed to the direct electron transfer of Hb with electrode in the microenvironments of ZnO nanoparticle and ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The electrochemical parameters of Hb in the composite film were further carefully calculated with the results of the electron-transfer rate constant (k(s)) as 0.139 s(-1), the charge transfer coefficient (alpha) as 0.413 and the number of electron transferred (n) as 0.95. The Hb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid (TCA).

  9. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  10. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film.

    PubMed

    Sun, Dong; Xie, Xiafeng; Cai, Yuepiao; Zhang, Huajie; Wu, Kangbing

    2007-01-02

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd(2+). Based on this, an electrochemical method was developed for the determination of trace levels of Cd(2+) by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd(2+) was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd(2+). The linear range is found to be from 4.0 x 10(-8) to 4.0 x 10(-6) mol L(-1), and the lowest detectable concentration is estimated to be 4.0 x 10(-9) mol L(-1). Finally, this method was successfully employed to detect Cd(2+) in water samples.

  11. Proton conductivity and methanol permeability of Nafion-SiO2/SiWA composite membranes

    NASA Astrophysics Data System (ADS)

    Thiam, Hui San; Chia, Min Yan; Cheah, Qiao Rou; Koo, Charlene Chai Hoon; Lai, Soon Onn; Chong, Kok Chung

    2017-04-01

    Proton exchange membranes for a direct methanol fuel cell (DMFC) were prepared by incorporating silica/silicotungstic acid (SiO2/SiWA) inorganic composite into a Nafion polymer. The effects of SiO2/SiWA content on proton conductivity of membranes were investigated by using a four-probe conductivity cell. Methanol permeability of composite membrane was also determined by using a homemade diffusion cell and gas chromatography technique. It was found that proton conductivity of the composite membranes decreased with SiO2/SiWA content, however the highest proton conductivity achieved was 11% greater than the pure recast Nafion membrane. The methanol permeability of composite membrane was much lower than that of pure recast Nafion, in a reduction of 58% which indicated a better resistance to fuel crossover. Nafion-SiO2/SiWA composite membrane showed promising advantages over pure Nafion on electrochemical properties such as proton conductivity and fuel crossover and it is potentially attractive for use in DMFC.

  12. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells.

    PubMed

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    The regenerative H₂/Br₂-HBr fuel cell, utilizing an oxidant solution of Br₂ in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H₂-Br₂ fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H₂/Br₂-HBr systems.

  13. Electrospun Nafion ®/Polyphenylsulfone composite membranes for regenerative Hydrogen bromine fuel cells

    DOE PAGES

    Park, Jun; Wycisk, Ryszard; Pintauro, Peter N.; ...

    2016-02-29

    Here, the regenerative H 2/Br 2-HBr fuel cell, utilizing an oxidant solution of Br 2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanicalmore » reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H 2-Br 2 fuel cell power output with a 65 m thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 m Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H 2/Br 2-HBr systems.« less

  14. Novel Composite Proton Exchange Membrane with Connected Long-Range Ionic Nanochannels Constructed via Exfoliated Nafion-Boron Nitride Nanocomposite.

    PubMed

    Jia, Wei; Tang, Beibei; Wu, Peiyi

    2017-05-03

    Nafion-boron nitride (NBN) nanocomposites with a Nafion-functionalized periphery are prepared via a convenient and ecofriendly Nafion-assisted water-phase exfoliation method. Nafion and the boron nitride nanosheet present strong interactions in the NBN nanocomposite. Then the NBN nanocomposites were blended with Nafion to prepare NBN Nafion composite proton exchange membranes (PEMs). NBN nanocomposites show good dispersibility and have a noticeable impact on the aggregation structure of the Nafion matrix. Connected long-range ionic nanochannels containing exaggerated (-SO 3 - ) n ionic clusters are constructed during the membrane-forming process via the hydrophilic and H-bonding interactions between NBN nanocomposites and Nafion matrix. The addition of NBN nanocomposites with sulfonic groups also provides additional proton transportation spots and enhances the water uptake of the composite PEMs. The proton conductivity of the NBN Nafion composite PEMs is significantly increased under various conditions relative to that of recast Nafion. At 80 °C-95% relative humidity, the proton conductivity of 0.5 NBN Nafion is 0.33 S·cm -1 , 6 times that of recast Nafion under the same conditions.

  15. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    NASA Astrophysics Data System (ADS)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  16. Mesoscale simulations of confined Nafion thin films.

    PubMed

    Vanya, P; Sharman, J; Elliott, J A

    2017-12-07

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  17. Mesoscale simulations of confined Nafion thin films

    NASA Astrophysics Data System (ADS)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  18. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    PubMed

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultravioletmore » visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.« less

  20. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.

    PubMed

    Li, Bo; Li, Zhengliang; Situ, Bo; Dai, Zong; Liu, Qinlan; Wang, Qian; Gu, Dayong; Zheng, Lei

    2014-02-15

    A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection. © 2013 Elsevier B.V. All rights reserved.

  1. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik

    2001-07-01

    Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.

  2. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    NASA Astrophysics Data System (ADS)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  3. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    PubMed

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  5. Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.

    2017-02-01

    A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.

  6. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran

    2016-11-01

    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reductionmore » in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.« less

  7. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Li, Zhen; Yang, Xin; Cao, Li; Wang, Chongbin; Zhang, Bei; Wu, Hong; Jiang, Zhongyi

    2016-11-01

    Design and fabrication of efficient proton transport channels within solid electrolytes is crucial and challenging to new energy-relevant devices such as proton exchange membrane fuel cells (PEMFCs). In this study, the phosphoric acid (H3PO4) molecules are impregnated into SNW-1-type covalent organic frameworks (COFs) via vacuum assisted method. High loading of H3PO4 in SNW-1 and low guest leaching rate are achieved due to the similar diameter between H3PO4 and micropores in SNW-1. Then the COF-based composite membranes are fabricated for the first time with impregnated COFs (H3PO4@SNW-1) and Nafion matrix. For the composite membranes, the acid-base pairs formed between H3PO4@SNW-1 networks and Nafion optimize the interfacial interactions and hydrophilic domains. The acidic -PO3H2 groups in pores of H3PO4@SNW-1 provide abundant proton transfer sites. As a result, the continuous proton transfer channels with low energy barrier are created. At the filler content of 15 wt%, the composite membrane exhibits a superior proton conductivity of 0.0604 S cm-1 at 51% relative humidity and 80 °C. At the same time, the maximum power density of single fuel cell is 60.3% higher than that of the recast Nafion membrane.

  8. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  9. Origin of Toughness in Dispersion-Cast Nafion Membranes

    DOE PAGES

    Kim, Yu Seung; Welch, Cynthia F.; Hjelm, Rex Paul; ...

    2015-03-23

    In this study, the gelation behavior of Nafion dispersions was investigated using small-angle neutron scattering to better understand the mechanical toughness of dispersion-cast Nafion membranes. Three types of gelation were observed, depending on dispersing fluids: (i) homogeneous, thermally reversible gelation that was present in most aprotic polar dispersing fluids; (ii) inhomogeneous, thermally irreversible gelation as films, found in alcohols; and (iii) inhomogeneous, thermally irreversible gelation which precipitates in water/monohydric alcohol mixtures. The mechanical toughness of dispersion-cast Nafion membranes depends on the dispersing fluid, varying by more than 4 orders of magnitude. Excellent correlation between the critical gelation concentration and mechanicalmore » toughness was demonstrated with the Nafion membranes cast at 140 °C. Additional thermal effects among Nafion membranes cast at 190 °C were qualitatively related to the boiling point of dispersing fluids. Little correlation between mechanical toughness and percent crystalline area of Nafion was observed, suggesting that the origin of mechanical toughness of dispersion-cast Nafion membranes is due to chain entanglements rather than crystallinity. Finally, the correlation between critical gelation concentration and mechanical toughness is a new way of predicting mechanical behavior in dispersion-cast polymer systems in which both polymer-dispersing fluid and polymer–polymer interactions play a significant role in the formation of polymer chain entanglements.« less

  10. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    PubMed

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemical modification of Nafion membranes by protic ionic liquids: the key role of ionomer-cation interactions.

    PubMed

    Lu, Fei; Gao, Xinpei; Xie, Shuting; Sun, Nan; Zheng, Liqiang

    2014-10-21

    Chemically modified Nafion composite membranes were successfully fabricated using five kinds of protic ionic liquids (PILs) with different cations, 1-butylammonium methanesulfonate (BA-MS), tributylammonium methanesulfonate (TBA-MS), 2,4,6-trimethylphenylammonium methanesulfonate (TMA-MS), butane-1,4-diammonium methanesulfonate (BDA-MS), and N-(2-aminoethyl)ethane-1,2-diammonium methanesulfonate (DETA-MS). The PIL incorporated Nafion composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), dynamic-mechanical analysis (DMA) and thermogravimetric analysis (TGA). In general, the Nafion/PIL composite membranes exhibit a significant increase in the ionic conductivities than Nafion under anhydrous conditions. The interactions between the Nafion ionomer and different geometric cations of PILs were also discussed by the comparison of nanostructures, dynamic-mechanical properties and thermal stabilities of the Nafion/PIL composite membranes.

  12. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    NASA Astrophysics Data System (ADS)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  14. Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes.

    PubMed

    Yin, Chongshan; Wang, Lingtao; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2017-06-21

    The free volumes and proton conductivities of Nafion membranes were investigated at different humidities by positron annihilation lifetime spectroscopy (PALS) and using an electrochemical workstation, respectively. The results showed that the variation in o-Ps lifetime τ o-Ps was closely associated with the microstructure evolution and the development of hydrophilic ion clusters in Nafion membranes as a function of water uptake, regardless of metal oxide additives. In particular, with increasing relative humidity, the maximum value of τ o-Ps in the Nafion membranes corresponded to the formation of numerous water channels for proton transportation. Numerous well-connected water channels in Nafion-TiO 2 hybrid membranes could be formed at a much lower relative humidity (∼40% RH) than in the pristine one (∼75% RH), due to the better water retention ability of the Nafion-TiO 2 membranes. Further, a percolation behavior of proton conductivity at high water uptake in Nafion membranes was observed, which showed that the percolation of ionic-water clusters occurred at the water uptake of ∼4.5 wt%, and ∼6 wt% was basically enough for the formation of a well-connected water channel network.

  15. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  17. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Li, Xiaojie; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Shi, Lei; Li, Hongjun

    2017-02-01

    Proton currents are an integral part of the most important energy-converting structures in biology. We prepared a new type of bioinspired Nafion (Bio-Nafion) membrane composited of biofunctional SiO2 (Bio-SiO2) nanofiber and Nafion matrix. SiO2 nanofibers were prepared by electrospinning silica sol prepared from tetraethyl orthosilicate. Meanwhile, Bio-SiO2 nanofibers were synthesized by immobilizing amino acids (cysteine, serine, lysine, and glycine) on SiO2 nanofibers, which acted as efficient proton-conducting pathways that involved numerous H+ transport sites. In our study, the SiO2 nanofibers biofunctionalized with cysteine were further oxidized, and the composite membranes were designated as Nafion-Cys, Nafion-Lys, Nafion-Ser, and Nafion-Gly, respectively. We then investigated the different polar groups (sbnd SO3H, sbnd OH, and sbnd NH2) of the amino acids that contributed to membrane properties of thermal stability, water uptake (WU), dimensional stability, proton conductivity, and methanol permeability. Nafion-Cys exhibited the highest proton conductivity of 0.2424 S/cm (80 °C). Nafion-Gly showed the lowest proton conductivity and WU because glycine contains the least number of hydrophilic groups among the amino acids. Overall, the introduction of Bio-SiO2 nanofiber to composite membranes significantly improved proton conductivity, dimensional stability, and methanol permeability.

  18. Permselective SPEEK/Nafion Composite-Coated Separator as a Potential Polysulfide Crossover Barrier Layer for Li-S Batteries.

    PubMed

    Babu, Dasari Bosu; Giribabu, Krishnan; Ramesha, Kannadka

    2018-06-13

    Minimizing the shuttle effect by constraining polysulfides to the cathode compartment and activating the passive layer between cathode and separator are highly important for improving the Li-S cell performance, Coulombic efficiency, and cycle life. Here, we report a submicron thin coating of permselective sulfonated poly(ether ether ketone) (SPEEK) composite layer on the separator that would reduce polysulfide crossover, imparting a significant improvement in cycle life. It is observed that SPEEK increases the stability, and adding Nafion improves the capacity value. Among different ratios of Nafion and SPEEK (25:75, 50:50, and 75:25), the composite with a SPEEK/Nafion ratio of 50:50 showed a controlled shuttle effect with a stable cell capacity of 600 mA h g -1 up to 300 cycles. This modified separator with permselective coatings not only reduces the polysulfide shuttle but also improves the wettability and interfacial contact, which results in an improvement in average cell potential and lithium diffusivity. It is demonstrated here that the combination of functional (ionomer coating on separator) and nonfunctional (extra cathode layer) physical barriers effectively suppresses the polysulfide crossover and improves the electrochemical performance of Li-S batteries. The cell shows an initial capacity of 1300 mA h g -1 and a capacity retention of 650 mA h g -1 over 500 cycles with a 6 mg/cm 2 sulfur loading.

  19. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Tang, Qiwei; Shan, Zhongqiang; Wang, Li; Qin, Xue; Zhu, Kunlei; Tian, Jianhua; Liu, Xuesheng

    2014-01-01

    In this paper, a nafion coated electrode is prepared to improve the performance of lithium sulfur batteries. It is demonstrated from a series of measurements that the nafion layer is quite effective in reducing shuttle effect and enhancing the stability and the reversibility of the electrode. When measured under the rate of 0.2 C, the initial discharge capacity of the nafion coated electrode can reach 1084 mAh g-1, with a Columbic efficiency of about 100%. After 100 charge/discharge cycles, this electrode can also deliver a reversible capacity of as high as 879 mAh g-1. Significantly, the charge-transfer resistance of the electrode tends to be reducing after coated with an appropriate thickness of nafion film. The cation conductivity as well as anion inconductivity is considered to be the dominant factor for the superior electrochemical properties.

  20. Nafion as Cosurfactant: Solubilization of Nafion in Water in the Presence of Pluronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelarakis, Antonios; Giannelis, Emmanuel P.

    2011-01-18

    Incorporation of Nafion to aqueous solutions of Pluronics adversely impacts micellization due to extensive Nafion/copolymer interactions. Light scattering and zeta potential measurements provide evidence for the formation of sizable and stable Nafion/copolymer complexes, in expense of the neat copolymer micelles. At high copolymer concentrations, the overall interaction diagram of Nafion/copolymer reflects the competitive action of the release of packing constraints due to micellar destabilization induced by Nafion on one hand and the gelator nature of the Nafion on the other. Measurements using a quartz crystal microbalance (QCM-D) show that aqueous solutions of Pluronics (even at very low concentration) can dissolvemore » the Nafion coating on the crystal resonator, while typical low molecular weight ionic surfactants fail to induce similar effects. These studies demonstrate that complexation with this class of copolymers is a facile route to impart dispersibility to Nafion in aqueous environments that otherwise can be achieved through tedious and harsh treatments.« less

  1. Investigation of Free-Standing Plasmonic Mesoporous Ag/CMK-8-Nafion Composite Membrane for the Removal of Organic Pollutants with 254-nm UV Irradiation

    NASA Astrophysics Data System (ADS)

    Tseng, Chuan Ming; Chen, Hsin Liang; Lai, Sz Nian; Chen, Ming Shiung; Peng, Chien Jung; Li, Chia Jui; Hung, Wei Hsuan

    2017-05-01

    "Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.

  2. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.

    PubMed

    Yin, Chongshan; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2018-04-25

    Proton exchange membrane fuel cell (PEMFC) is one of the most promising green power sources, in which perfluorinated sulfonic acid ionomer-based membranes (e.g., Nafion) are widely used. However, the widespread application of PEMFCs is greatly limited by the sharp degradation in electrochemical properties of the proton exchange membranes under high temperature and low humidity conditions. In this work, the high-performance sulfonated carbon nanotubes/Nafion composite membranes (Su-CNTs/Nafion) for the PEMFCs were prepared and the mechanism of the microstructures on the macroscopic properties of membranes was intensively studied. Microstructure evolution in Nafion membranes during water uptake was investigated by positron annihilation lifetime spectroscopy, and results strongly showed that the Su-CNTs or CNTs in Nafion composite membranes significantly reinforced Nafion matrices, which influenced the development of ionic-water clusters in them. Proton conductivities in Su-CNTs/Nafion composite membranes were remarkably enhanced due to the mass formation of proton-conducting pathways (water channels) along the Su-CNTs. In particular, these pathways along Su-CNTs in Su-CNTs/Nafion membranes interconnected the isolated ionic-water clusters at low humidity and resulted in less tortuosity of the water channel network for proton transportation at high humidity. At a high temperature of 135 °C, Su-CNTs/Nafion membranes maintained high proton conductivity because the reinforcement of Su-CNTs on Nafion matrices reduced the evaporation of water molecules from membranes as well as the hydrophilic Su-CNTs were helpful for binding water molecules.

  3. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, Valeriy; Kleperis, Janis; Pavlovica, Sanita; Vaivars, Guntars

    2012-08-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  4. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes.

  5. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao

    2018-04-01

    Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.

  6. Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells.

    PubMed

    Ma, Shuang; Qiao, Wenyuan; Cheng, Tai; Zhang, Bing; Yao, Jianxi; Alsaedi, Ahmed; Hayat, Tasawar; Ding, Yong; Tan, Zhan'ao; Dai, Songyuan

    2018-01-31

    In PIN-type perovskite solar cells (PSCs), the hydroscopicity and acidity of the poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) (PEDOT:PSS) hole transport layer (HTL) have critical influences on the device stability. To eliminate these problems, Nafion, the hydrophobic perfluorosulfonic copolymer, is incorporated into PEDOT:PSS by a simple spin-coating process. For the modified film, Nafion/PSSH (poly(styrene sulfonate) acid) acts as an electron-blocking layer on the surface and the PEDOT-rich domain tends to gather into larger particles with better interchain charge transfer inside the film. Consequently, the modified PEDOT:PSS HTL shows enhanced conductivity and light transmittance as well as more favorable work function, ending up with the increased short-circuit current density (J sc ) and open-circuit voltage (V oc ) of the device. Finally, PSCs with Nafion-modified HTLs achieve the best power conversion efficiency of 16.72%, with 23.76% improvement compared with PEDOT:PSS-only devices (13.51%). Most importantly, the device stability is obviously enhanced because of the hydrophobicity and chemical and mechanical stability of the Nafion polymer that is enriched on the surface of the PEDOT:PSS film.

  7. Effect of the structure of imidazolium cations in [BF4](-)-type ionic liquids on direct electrochemistry and electrocatalysis of horseradish peroxidase in Nafion films.

    PubMed

    Lu, Lu; Huang, Xirong; Qu, Yinbo

    2011-10-01

    The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets.

    PubMed

    He, Xueyi; He, Guangwei; Zhao, Anqi; Wang, Fei; Mao, Xunli; Yin, Yongheng; Cao, Li; Zhang, Bei; Wu, Hong; Jiang, Zhongyi

    2017-08-23

    Nafion, as a state-of-the-art solid electrolyte for proton exchange membrane fuel cells (PEMFCs), suffers from drastic decline in proton conductivity with decreasing humidity, which significantly restricts the efficient and stable operation of the fuel cell system. In this study, the proton conductivity of Nafion at low relative humidity (RH) was remarkably enhanced by incorporating multifunctional graphene oxide (GO) nanosheets as multifunctional fillers. Through surface-initiated atom transfer radical polymerization of sulfopropyl methacrylate (SPM) and poly(ethylene glycol) methyl ether methacrylate, the copolymer-grafted GO was synthesized and incorporated into the Nafion matrix, generating efficient paths at the Nafion-GO interface for proton conduction. The Lewis basic oxygen atoms of ethylene oxide (EO) units and sulfonated acid groups of SPM monomers served as additional proton binding and release sites to facilitate the proton hopping through the membrane. Meanwhile, the hygroscopic EO units enhanced the water retention property of the composite membrane, conferring a dramatic increase in proton conductivity under low humidity. With 1 wt % filler loading, the composite membrane displayed the highest proton conductivity of 2.98 × 10 -2 S cm -1 at 80 °C and 40% RH, which was 10 times higher than that of recast Nafion. Meanwhile, the Nafion composite exhibited a 135.5% increase in peak power density at 60 °C and 50% RH, indicating its great application potential in PEMFCs.

  9. Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.

    2013-12-01

    In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.

  10. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications.

    PubMed

    Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C

    2013-08-28

    Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.

  11. Evolution of nano-rheological properties of Nafion¯ thin films during pH modification by strong base treatment: A static and dynamic force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam; Solares, Santiago D.

    2016-04-01

    Addition of a strong base to Nafion® proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculation of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.

  12. Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film.

    PubMed

    Sun, Wei; Gong, Shixing; Shi, Fan; Cao, Lili; Ling, Luyang; Zheng, Weizhe; Wang, Wencheng

    2014-07-01

    In this paper a novel sensing platform based on graphene oxide (GO), ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate and Nafion for the immobilization of hemoglobin (Hb) was adopted with a carbon ionic liquid electrode (CILE) as the substrate electrode, which was denoted as Nafion/Hb-GO-IL/CILE. Spectroscopic results suggested that Hb molecules were not denatured in the composite. A pair of well-defined redox peaks appeared on the cyclic voltammogram, which was attributed to the realization of direct electron transfer of Hb on the electrode. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with the electrochemical parameters calculated. Based on the catalytic ability of the immobilized Hb, Nafion/Hb-GO-IL/CILE exhibited excellent electrocatalytic behavior towards the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.01 to 40.0mM with the detection limit as 3.12 μM (3σ), H2O2 in the concentration range from 0.08 to 635.0 μM with the detection limit as 0.0137 μM (3σ) and NaNO2 in the concentration range from 0.5 to 800.0 μM with the detection limit as 0.0104 μM (3σ). So the proposed bioelectrode could be served as a new third-generation electrochemical sensor without mediator. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode.

    PubMed

    Sun, Wei; Gao, Ruifang; Jiao, Kui

    2007-05-03

    Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2.

  14. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.

    PubMed

    Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S

    2012-07-25

    A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.

  15. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    PubMed

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2005-05-01

    Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.

  17. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  18. Inducing microstructural changes in Nafion by incorporating graphitic carbon nitride to enhance the vanadium-blocking effect.

    PubMed

    Wu, Chunxiao; Lu, Shanfu; Zhang, Jin; Xiang, Yan

    2018-03-14

    Two-dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets are introduced into a Nafion matrix to prepare a 'vanadium-blocking' recast Nafion membrane for vanadium redox flow battery (VRFB) applications. After 0.2 wt% g-C 3 N 4 nanosheets are incorporated, the vanadium ion permeability of the composite membrane decreases from 3.3 × 10 -7 cm 2 min -1 to 3.8 × 10 -9 cm 2 min -1 , which is a reduction of two orders of magnitude in comparison to the pristine recast Nafion membrane. This satisfactory result contributes to the physical blocking effect as well as the Donnan effect from the 2D morphology and functional amino groups of g-C 3 N 4 nanosheets. Notably, this work reveals that the g-C 3 N 4 nanosheets can help reinforce the vanadium-blocking effect by changing the microstructure of Nafion in addition to the well-known effects mentioned above. The g-C 3 N 4 nanosheets induce shrinkage in the original spherical structure of the ion cluster and generate a new lamellar structure. Correspondingly, the amorphous phase of Nafion is interrupted, and the membrane crystallinity is reduced. The VRFB with an optimized composite membrane achieves a high coulombic efficiency of 97% and an energy efficiency of 83% at a current density of 160 mA cm -2 . Meanwhile, the battery exhibited excellent lifetime stability during a 100 charge-discharge cycling test.

  19. An electrochemically enhanced solid-phase microextraction approach based on a multi-walled carbon nanotubes/Nafion composite coating.

    PubMed

    Zeng, Jingbin; Chen, Jinmei; Song, Xinhong; Wang, Yiru; Ha, Jaeho; Chen, Xi; Wang, Xiaoru

    2010-03-12

    In this paper, we proposed an approach using a multi-walled carbon nanotubes (MWCNTs)/Nafion composite coating as a working electrode for the electrochemically enhanced solid-phase microextraction (EE-SPME) of charged compounds. Suitable negative and positive potentials were applied to enhance the extraction of cationic (protonated amines) and anionic compounds (deprotonated carboxylic acids) in aqueous solutions, respectively. Compared to the direct SPME mode (DI-SPME) (without applying potential), the EE-SPME presented more effective and selective extraction of charged analytes primarily via electrophoresis and complementary charge interaction. The experimental parameters relating to extraction efficiency of the EE-SPME such as applied potentials, extraction time, ionic strength, sample pH were studied and optimized. The linear dynamic range of developed EE-SPME-GC for the selected amines spanned three orders of magnitude (0.005-1mugmL(-1)) with R(2) larger than 0.9933, and the limits of detection were in the range of 0.048-0.070ngmL(-1). All of these characteristics demonstrate that the proposed MWCNTs/Nafion EE-SPME is an efficient, flexible and versatile sampling and extraction tool which is ideally suited for use with chromatographic methods. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    NASA Astrophysics Data System (ADS)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  1. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    PubMed

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  2. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  3. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    PubMed

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  4. In situ nanostructure formation of (micro-hydroxo)bis(micro-carboxylato) diruthenium units in nafion membrane and its utilization for selective reduction of nitrosonium ion in aqueous medium.

    PubMed

    Kumar, Annamalai Senthil; Tanase, Tomoaki; Iida, Masayasu

    2007-01-16

    Nanostructured molecular film containing the (micro-hydroxo)bis(micro-carboxylato) diruthenium(III) units, [RuIII2(micro-OH)(micro-CH3COO)2(HBpz3)2]+ ({RuIII2(micro-OH)}), was prepared by an in situ conversion of its micro-oxo precursor, [RuIII2(micro-O)(micro-CH3COO)2(HBpz3)2] ({RuIII2(micro-O)}), in a Nafion membrane matrix, where HBpz3 is hydrotris(1-pyrazolyl)borate. The conversion procedure results in fine nanoparticle aggregates of the {RuIII2(micro-OH)} units in the Nafion membrane (Nf-{RuIII2(micro-OH)}), where an average particle size (4.1 +/- 2.3 nm) is close to the Nafion's cluster dimension of approximately 4 nm. Chemically modified electrodes by using the Nafion molecular membrane films (Nf-{RuIII2(micro-OH)}-MMFEs) were further developed on ITO/glass and glassy carbon electrode (GCE) surfaces, and a selective reduction of nitrosonium ion (NO+), presumably through reaction of a {RuIIRuIII(micro-OH)} mixed-valence state with HNO2, was demonstrated without interference by molecular oxygen in an acidic aqueous solution. The Nf-{RuIII2(micro-OH)}-MMFEs are stable even in a physiological condition (pH 7), where the naked {RuIII2(-OH)} complex is readily transformed into its deprotonated {RuIII2(micro-O)} form, demonstrating an unusual stabilizing effects for the {RuIII2(micro-OH)} unit by the Nafion cluster environment.

  5. Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO 2 on performance of PEMFC with Nafion/TiO 2 composite membrane at elevated temperature and low relative humidity

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Han, C. C.; Tsai, C. H.; Huang, J.; Chen-Yang, Y. W.

    Three high-purity TiO 2 (anatase) powders (T PF6, T BF4, and T conventional) were prepared by the sol-gel method with/without ionic liquid as template and calcinations at 450 °C. These powders were, then, characterized to investigate their differences in morphological properties. Electrochemical performances of the H 2/O 2 PEMFCs employing the Nafion composite membranes with these three TiO 2 powders as fillers were studied over 80-120 °C under 50% and 95% relative humidity (RH). The result showed that the order of the fillers effect on the performance at 80 and 90 °C was the same as that of the TiO 2 filler's specific surface area (i.e. T PF6 > T conventional > T BF4 > P25, a commercially available nonporous TiO 2 powder). However, the order between T conventional and T BF4 was reversed at 110 and 120 °C under 50% RH. This indicates that the size and the amount of mesopores, which better confined the water molecules, were significant contributing factors to the performances at the higher temperatures. The best power density obtained under 50% RH at 120 °C and a voltage of 0.4 V was from the PEMFC with the T PF6-containing Nafion composite membrane. It was about 5.7 times higher than the value obtained from that with the recast Nafion membrane.

  6. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy.

    PubMed

    Huang, Jing-Yi; Zhao, Lang; Lei, Wan; Wen, Wei; Wang, Yi-Jia; Bao, Ting; Xiong, Hua-Yu; Zhang, Xiu-Hua; Wang, Sheng-Fu

    2018-01-15

    In this work, we have developed an electrochemical aptasensor for high-sensitivity determination of carcinoembryonic antigen (CEA) based on lead ion (Pb 2+ )-dependent DNAzyme-assisted signal amplification and graphene quantum dot-ionic liquid-nafion (GQDs-IL-NF) composite film. We designed hairpin DNA containing CEA-specific aptamers and DNAzyme chains. In the presence of CEA, hairpin DNA recognized the target and performed a DNAzyme-assisted signal amplification reaction to yield a large number of single-stranded DNA. The GQDs-IL-NF composite film was immobilized on the glassy carbon electrode for the interaction with single-stranded DNA through noncovalent π-π stacking interaction. Therefore, the methylene blue-labeled substrate DNA (MB-substrate) was fixed on the electrode and exhibited an initial electrochemical signal. Under optimal conditions, the response current change was proportional to the concentration of CEA, demonstrating a wide linear range from 0.5fgmL -1 to 0.5ngmL -1 , with a low detection limit of 0.34fgmL -1 . Furthermore, the proposed aptasensor was successfully applied in determining CEA in serum samples, showing its superior prospects in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An ionic polymer-metal composite actuator based on PSMI-incorporated PVDF with chemical stability and performance durability

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2009-07-01

    To develop artificial muscles with improved performance, a novel ionic polymer-metal composite (IPMC) actuator was developed by employing the newly-synthesized ionic networking film of poly (styrene-alt-maleimide) (PSMI)- incorporated poly (vinylidene fluoride) (PVDF). Scanning electron microscope and transmission electron microscopy revealed that much smaller and more uniform nano-sized platinum particles were formed on the surfaces of the film as well as within its polymer matrix after the electroless-plating process. Fourier transform infrared results suggested that no hydrolysis occurred for the as-prepared film actuator before and after the exposure to the elevated PH solutions at 25°C for 48h. The new actuator showed much larger tip displacement than that of a Nafion-based counterpart under the applied electrical stimulus, and overcame the back relaxation of the traditional IPMC actuator under the constant voltage. The current actuator was operated over 6.5h at high-frequency sinusoidal excitation, and its tip displacement was still comparable to that of the referenced Nafion actuator when the test was terminated. The excellent electromechanical performance is due to the inherent large ionic-exchange capacity and the unique hydrophilic nano-channels of the ionic networking film. Furthermore, the working principle of the developed IPMC actuator is thought to be based on a combination of piezoelectricity and ionic transport. The film of PSMI-incorporated PVDF has some advantages over the most widely-used Nafion-based one by diversifying niche applications in biomimetic motion, and the present study is believed to open a new avenue for the design and fabrication of the electro-active polymer film with unique functional properties.

  8. Electrochemical Detection of p-Aminophenol by Flexible Devices Based on Multi-Wall Carbon Nanotubes Dispersed in Electrochemically Modified Nafion

    PubMed Central

    Scandurra, Graziella; Antonella, Arena; Ciofi, Carmine; Saitta, Gaetano; Lanza, Maurizio

    2014-01-01

    A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs–Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 μM, with a detection limit of 90 nM and a sensitivity of 7 μA·(μM−1)·cm−2. PMID:24854357

  9. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  10. Proton transport through aqueous Nafion membrane

    NASA Astrophysics Data System (ADS)

    Son, D. N.; Kasai, H.

    2009-08-01

    We introduce a new model for proton transport through a single proton-conducting channel of an aqueous Nafion membrane based on a mechanism in which protons move under electrostatic effect provided by the sulfonate ( SO3 -groups of the Nafion side chains, the spin effect of active components, the hydrogen bonding effect with water molecules, and the screening effect of water media. This model can describe the proton transport within various levels of humidification ranging from the low humidity to the high humidity as a function of operating temperature. At low humidity, this model approaches to the so-called surface mechanism, while at high humidity, it approaches the well-known Grotthuss one. Proton motion is considered as the transfer from cluster to cluster under a potential energy. A proton-proton interaction is comprised in the calculation. Using Green function method, we obtained the proton current as a function of the Nafion membrane temperature. We found that the lower the temperature, the higher the proton current transfer through the Nafion membrane in low temperatures compared to the critical point 10K, which separates magnetic regime from non-magnetic regime. The increasing of proton current at very low temperatures is attributed to the spin effect. As the membrane temperature is higher than 40 ° C , the decreasing of proton current is attributed to the loss of water uptake and the polymer contraction. The results of this study are qualitatively in good agreement with experiments. The expression for the critical temperature is also presented as a function of structural and tunable parameters, and interpreted by experimental data. in here

  11. Aqua-vanadyl ion interaction with Nafion® membranes

    DOE PAGES

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; ...

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  12. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Wang, Yikai; Hu, Jiazhi; Lu, Bo; Dang, Dingying; Zhang, Junqian; Cheng, Yang-Tse

    2018-05-01

    This work focuses on understanding the role of various binders, including sodium alginate (SA), Nafion, and polyvinylidene fluoride (PVDF), on the mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. In situ curvature measurement of bilayer electrodes, consisting of a silicon-binder-carbon black composite layer on a copper foil, is used to determine the effects of binders on bending deformation, elastic modulus, and stress on the composite electrodes. It is found that the lithiation induced curvature and the modulus of the silicon/SA electrodes are larger than those of electrodes with Nafion and PVDF as binders. Although the modulus of Nafion is smaller than that of PVDF, the curvature and the modulus of silicon/Nafion composite are larger than those of silicon/PVDF electrodes. The moduli of all three composites decrease not only during lithiation but also during delithiation. Based on the measured stress and scanning electron microscopy observations of cracking in the composite electrodes, we conclude that the stress required to crack the composite electrodes with SA and Nafion binders is considerably higher than that of the silicon/PVDF electrode during electrochemical cycling. Thus, the cracking resistance of silicon/SA and silicon/Nafion composite electrodes is higher than that of silicon/PVDF electrodes.

  13. Automated Composites Processing Technology: Film Module

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.

  14. TEACHING COMPOSITION WITH FILM.

    ERIC Educational Resources Information Center

    COURSEN, HERBERT R., JR.

    A COMPOSITION PROGRAM DESIGNED TO GIVE UPWARD BOUND STUDENTS A FEELING OF SUCCESS WAS BASED ON FILMS WHICH THE STUDENTS VIEWED, DISCUSSED, AND WROTE ABOUT. THE FILMS FELL ROUGHLY INTO THE CATEGORIES OF SOCIAL PROBLEMS, POLITICS AND PROPAGANDA, AND ART AND MUSIC. FOLLOWING CLASS DISCUSSIONS, STUDENTS WERE REQUIRED MERELY TO "WRITE ABOUT THE…

  15. A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150 °C

    NASA Astrophysics Data System (ADS)

    Ansari, Y.; Tucker, T. G.; Huang, W.; Klein, I. S.; Lee, S.-Y.; Yarger, J. L.; Angell, C. A.

    2016-01-01

    The search for fuel cell membranes has focused on carbon backbone polymers, among which Nafion seems to best survive the most severe of the degradation mechanisms - attack by peroxide radicals. Less attention has been given to inorganic membranes because of their generally inflexible nature and lower conductivity, though some SiO2-Nafion composites have shown improved properties. Nafion dominates, despite needing hydration, which then restricts operation to below 100 °C (so CO poisoning problems persist). Described herein is a low cost, flexible, and all-inorganic fiberglass reinforced gel membrane with conductivity exceeding that of Nafion at any temperature above 60 °C. Using Teflon fuel cells, maximum currents > 1 Acm-2 and OCV of 1.03 V at 150 °C are demonstrated. No detectable loss of cell potential was observed over 24 h during 50 mAcm-2 constant current operation at 120 °C while, at 150 °C and maximum power, the degradation rate is intermediate among other high conductivity H3PO4-PBI type membranes. The structure of the membrane is deduced, mainly from 29Si solid state-NMR. The -115 ppm resonance, which is extreme for Q4 Si(O) structures, identifies a zeolite-like SiO2 network, which is ;floppy;. 31P and 1H NMR establish nano-permeating H3PO4 as the source of the exceptional conductivity.

  16. A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform.

    PubMed

    Li, Yan; Yang, Wei-Kang; Fan, Man-Qi; Liu, Ao

    2011-01-01

    A novel approach to fabricate a label-free amperometric immunosensor for the detection of carcinoembryonic antigen (CEA) was described. Herein, methylene blue (MB), gold nanoparticles (AuNPs) and carcinoembryonic antibody (anti-CEA) were layer-by-layer assembled on the graphene-Nafion nanocomposite film-modified electrode by means of a self-assembling technique and the opposite-charged adsorption. Subsequently, the stepwise self-assembling procedure of the immunosensor was further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors influencing the performance of the resulting immunosensor were studied in detail. The developed procedure showed improved features, including larger amount and higher immunoactivity of the immobilized antibody and repeatable regeneration of the sensor, as well as direct, rapid and simple determination for the antigen without multiple separation and labeling steps. The immunosensor could detect the target protein in a range of 0.5 to 120 ng/mL with a limit of 0.17 ng/mL (at 3σ). Finally, the immunosensing system was evaluated on several clinical samples. Analytical results were found to be in satisfactory agreement with those detected by the enzyme-linked immunosorbent assay (ELISA) method, indicating that this new method was a promising alternative tool for clinical diagnosis.

  17. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes

    NASA Astrophysics Data System (ADS)

    Klose, Carolin; Breitwieser, Matthias; Vierrath, Severin; Klingele, Matthias; Cho, Hyeongrae; Büchler, Andreas; Kerres, Jochen; Thiele, Simon

    2017-09-01

    We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H2 crossover current density, thus fulfilling the target of 2 mA/cm2 of the DOE after degradation. The chemical accelerated stress test (100 h OCV hold at 90 °C, 30% RH, H2/air, 50/50 kPa) revealed a degradation rate of about 0.8 mV/h for the fuel cell with SPEK reinforced membrane, compared to 1.0 mV/h for the PVDF-HFP reinforced membrane.

  18. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    NASA Astrophysics Data System (ADS)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  19. Hierarchical Nafion enhanced carbon aerogels for sensing applications

    NASA Astrophysics Data System (ADS)

    Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun

    2016-02-01

    This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG

  20. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  1. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    PubMed

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  2. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  3. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.

    PubMed

    Wu, Qiong; Xu, Yuxi; Yao, Zhiyi; Liu, Anran; Shi, Gaoquan

    2010-04-27

    Composite films of chemically converted graphene (CCG) and polyaniline nanofibers (PANI-NFs) were prepared by vacuum filtration the mixed dispersions of both components. The composite film has a layered structure, and PANI-NFs are sandwiched between CCG layers. Furthermore, it is mechanically stable and has a high flexibility; thus, it can be bent into large angles or be shaped into various desired structures. The conductivity of the composite film containing 44% CCG (5.5 x 10(2) S m(-1)) is about 10 times that of a PANI-NF film. Supercapacitor devices based on this conductive flexible composite film showed large electrochemical capacitance (210 F g(-1)) at a discharge rate of 0.3 A g(-1). They also exhibited greatly improved electrochemical stability and rate performances.

  4. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Zhu, Zicai; Liu, Jiayu; Chang, Longfei; Chen, Hualing

    2016-08-01

    In this paper, the surface of a Nafion membrane was roughened by the sandblasting method, mainly considering the change of sandblasting time and powder size. The roughened surfaces were characterized in terms of their topography from the confocal laser scanning microscope (CLSM) and SEM. The key surface parameters, such as Sa (the arithmetical mean deviation of the specified surface profile), SSA (the surface area ratio before and after roughening) and the area measurement on the histogram from the CLSM images, were extracted and evaluated from the roughened membranes. Also, the detailed change in surface and interfacial electrodes were measured and discussed together with the surface resistance, equivalent modulus, capacitance and performances of IPMC actuators based on the roughened membranes. The results show that a suitable sandblasting condition, resulting in the decrease in the bending stiffness and the increase in the interface area closely related to the capacitance, can effectively increase the electromechanical responses of IPMCs. Although the surface roughening by sandblasting caused a considerable lowering of mechanical strength, it was very effective for enlarging the interfacial area between Nafion membrane and the electrode layers, and for forming a penetrated electrode structure, which facilitated improvement of the surface resistance and capacitance characteristics of IPMCs. In this work, a quantitative relationship was built between the topography of Nafion membrane surface and electromechanical performance of IPMCs by means of sandblasting.

  5. Graphene-silica composite thin films as transparent conductors.

    PubMed

    Watcharotone, Supinda; Dikin, Dmitriy A; Stankovich, Sasha; Piner, Richard; Jung, Inhwa; Dommett, Geoffrey H B; Evmenenko, Guennadi; Wu, Shang-En; Chen, Shu-Fang; Liu, Chuan-Pu; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  6. Graphene-silica Composite Thin Films as Transparent Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watcharotone,S.; Dikin, D.; Stankovich, S.

    2007-01-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiO{sub x}/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  7. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  8. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  9. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    PubMed

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Self-Healing Proton-Exchange Membranes Composed of Nafion-Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells.

    PubMed

    Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi

    2018-04-30

    Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    PubMed

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  12. Electronic structure of cyclodextrin–carbon nanotube composite films

    DOE PAGES

    Jeong, Hae Kyung; Echeverria, Elena; Chakraborti, Priyanka; ...

    2017-02-10

    The electronic structures of two kinds of cyclodextrin–carbon nanotube (αCD–CNT and γCD–CNT) composite films are investigated by using (angular dependent) photoelectron spectroscopy to gain insight as to why the αCD–CNT and γCD–CNT composite films show different performances in biosensor applications. The γCD–CNT composite film is likely to have the CD localized on the surface rather than in the bulk of the film, while αCD–CNT has CD relatively more concentrated within the bulk of selvedge region of the film, rather than the surface. The results indicate that the CD, of the γCD–CNT composite, may be more bioactive, and possibly a bettermore » sensor of biomolecules due to the favorable surface position compared with that of αCD–CNT. The valence band of αCD–CNT and γCD–CNT show little difference from the CNT film except for a density of states, originating from CD, evident at a binding energy near 27 eV below Fermi level, meaning that there are few or no redox interactions between the CD and the CNT. The absence of a redox interaction between the CD and the CNT permits a clear electrochemical response to occur when guest biomolecules are captured on the composites, providing a route to biosensor applications.« less

  13. Crystallinity enhancement of Nafion electrolyte membranes assisted by a molecular gelator.

    PubMed

    Zhang, Wenjing; Yue, Po-Lock; Gao, Ping

    2011-08-02

    Nanocrystallites, acting as physical cross-links in Nafion membranes, play a crucial role in building blocks for improving mechanical durability and stopping fuel crossover. However, Nafion membranes suffer from low crystallinity due to the irregular pendent side chains, which hinder self-aggregation of the poly(tetrafluoroethylene) (PTFE) backbones. For the first time, a molecular gelator was introduced in the membrane casting process to enhance the rate of self-assembly of PTFE backbones so as to increase the membrane's crystallinity as well as proton conductivity without sacrificing the purity of Nafion. The molecular gelator used was 3,4-dimethylbenzaldehyde (DMBA). Addition of 0.5 wt % DMBA led to a 42% increase in crystallinity, a 32% increase in yield strength, a 22% increase in tensile modulus and an 18% increase in proton conductivity at 60 °C and 90% relative humidity. Additionally, the membrane electrode assembly (MEA) prepared from the membranes cast from the solution containing 0.5 wt % DMBA also showed an increase of 17% in maximum power density in comparison to the MEA prepared from pure Nafion membrane in a single cell polarization test without any external humidification. Transmission electron microscopy (TEM) and molecular dynamics simulation were used to elucidate the structural changes in Nafion membrane due to the introduction of DMBA. It was observed that the presence of DMBA gives wider crystalline regions under TEM. The molecular dynamics simulation at 500 K shows that the PTFE backbones become elongated in the presence of DMBA due to the enhanced mobility. This is consistent with the observed increase in crystallinity in the membrane as it means reduced entropic change upon crystallization.

  14. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  15. Fullerene reinforced ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Cheng, T. H.; Oh, I. K.

    2009-07-01

    Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.

  16. Preparation and biocompatibility of a chitin nanofiber/gelatin composite film.

    PubMed

    Ogawa, Yoko; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Ochi, Kosuke; Osaki, Tomohiro; Ito, Norihiko; Okamoto, Yoshiharu; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2017-11-01

    The development of chitin-based materials with favorable mechanical properties and biocompatibility is an important research goal owing to the wide-ranging practical applications. In this study, a composite film was prepared using chitin nanofibers and gelatin. The CNF/gelatin composite film was highly viscous and had a fine nanofiber structure. The transmittances indicated high transparency, regardless of nanofiber content. The water content of the CNF/gelatin composite film increased linearly as the gelatin content increased. Although the CNF/gelatin composite film did not induce severe inflammation, it strongly induced fibroblast proliferation, indicating high biocompatibility. Based on these results, the films are suitable for biological applications, e.g., tissue engineering, medicines, and cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode.

    PubMed

    Qiu, Yanyan; Qu, Xiangjin; Dong, Jing; Ai, Shiyun; Han, Ruixia

    2011-06-15

    A new electrochemical biosensor for directly detecting DNA damage induced by acrylamide (AA) and its metabolite was presented in this work. The graphene-ionic liquid-Nafion modified pyrolytic graphite electrode (PGE) was prepared, and then horseradish peroxidase (HRP) and natural double-stranded DNA were alternately assembled on the modified electrode by the layer-by-layer method. The PGE/graphene-ionic liquid-Nafion and the construction of the (HRP/DNA)(n) film were characterized by electrochemical impedance spectroscopy. With the guanine signal in DNA as an indicator, the damage of DNA was detected by differential pulse voltammetry after PGE/graphene-ionic liquid-Nafion/(HRP/DNA)(n) was incubated in AA solution or AA+H(2)O(2) solution at 37°C. This method provides a new model to mimic and directly detect DNA damage induced by chemical pollutants and their metabolites in vitro. The results indicated that, in the presence of H(2)O(2), HRP was activated and catalyzed the transformation of AA to glycidamide, which could form DNA adducts and induce more serious damage of DNA than AA. In order to further verify these results, UV-vis spectrophotometry was also used to investigate DNA damage induced by AA and its metabolites in solution and the similar results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    PubMed Central

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213

  19. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  20. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  1. Fabrication and characterization of compositionally-graded shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Cole, Daniel Paul

    2009-12-01

    The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME

  2. Fabrication of composite films containing zirconia and cationic polyelectrolytes.

    PubMed

    Pang, Xin; Zhitomirsky, Igor

    2004-03-30

    Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.

  3. Film Delivery Module For Fiber Placement Fabrication of Hybridized Composite Structures

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; Young, Greg

    2005-01-01

    A new fabrication technology has been developed at the NASA Marshall Space Flight Center that will allow for the fabrication of hybridized composite structures using fiber placement processing. This technology was originally developed in response to a need to address the issue of hydrogen permeation and microcracking in cryogenic propellant tanks. Numerous thin polymeric and metallized films were investigated under low temperatures conditions for use as barrier films in a composite tank. Manufacturing studies conducted at that time did not address the processing issues related to fabrication of a hybridized tank wall. A film processing head was developed that will allow for the processing of thin polymeric and metallized films, metallic foils, and adhesives using fiber placement processing machinery. The film head is designed to enable the simultaneous processing of film materials and composite tape/tow during the composite part layup process and is also capable of processing the film during an independent operation. Several initial demonstrations were conducted to assess the performance of the film module device. Such assessments included film strip lay-up accuracy, capability to fabricate panels having internal film liners, and fabrication of laminates with embedded film layers.

  4. Preparation of a porcine plasma protein composite film and its application.

    PubMed

    Lee, Ji-Hyun; Song, Kyung Bin

    2015-01-01

    To use blood released from slaughtering houses, a porcine plasma protein (PPP)/nanoclay composite film was prepared. The tensile strength and elongation at break values of the PPP composite film with 5% nanoclay were 10.01 MPa and 6.55%, respectively. The PPP composite film containing 1% grapefruit seed extract (GSE) was applied to pork meat, and the populations of inoculated Escherichia coli O157:H7 and Listeria monocytogenes in the pork meat packaged with the PPP composite film decreased by 0.8 and 1.0 log CFU/g, respectively, after 7 days of storage compared to the populations of the control. In addition, thiobarbituric acid values in the pork meat packaged with the PPP composite film were less than those of the control sample during storage. These results suggest that the PPP nanocomposite film containing 1% GSE can be used as a packaging material to maintain the quality of pork meat.

  5. Electrical and optical percolations in PMMA/GNP composite films

    NASA Astrophysics Data System (ADS)

    Arda, Ertan; Mergen, Ömer Bahadır; Pekcan, Önder

    2018-05-01

    Effects of graphene nanoplatelet (GNP) addition on the electrical conductivity and optical absorbance of poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composite films were studied. Optical absorbance and two point probe resistivity techniques were used to determine the variations of the optical and electrical properties of the composites, respectively. Absorbance intensity, A, and surface resistivity, Rs, of the composite films were monitored as a function of GNP mass fraction (M) at room temperature. Absorbance intensity values of the composites were increased and surface resistivity values were decreased by increasing the content of GNP in the composite. Electrical and optical percolation thresholds of composite films were determined as Mσ = 27.5 wt.% and Mop = 26.6 wt.%, respectively. The conductivity and the optical results were attributed to the classical and site percolation theories, respectively. Optical (βop) and electrical (βσ) critical exponents were calculated as 0.40 and 1.71, respectively.

  6. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.

  7. Electrodeposition of MWNT/Bi2Te3 Composite Thermoelectric Films

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Wei

    2013-07-01

    The effect of multiwalled carbon nanotubes (MWNTs) on the electrochemical behavior of the Bi-Te binary system in nitric acid baths was investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Based on the results, MWNT/Bi2Te3 composite thermoelectric films were prepared by potentiostatic electrodeposition at room temperature. The morphology, composition, and structure of the MWNT/Bi2Te3 composite films were analyzed by environmental scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The results show that addition of MWNTs to the electrolyte did not change the electrochemical reduction mechanisms of Bi3+, HTeO{2/+} or their mixture, but the reduction processes of Bi3+, HTeO{2/+}, and their mixture become easier. MWNT/Bi2Te3 composite thermoelectric films can be obtained by potentiostatic electrodeposition at a wide range of potentials with subsequent annealing. The MWNTs in the films act as nucleation sites for Bi2Te3 compound and thereby elevate the film deposition rate. The content of Bi element and MWNTs in the films increased as the potential was shifted negatively. In addition, the MWNTs can enhance the crystallization of Bi2Te3 film.

  8. Molecular interactions in gelatin/chitosan composite films.

    PubMed

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. High-Strength Konjac Glucomannan/Silver Nanowires Composite Films with Antibacterial Properties

    PubMed Central

    Lei, Jia; Zhou, Lei; Tang, Yongjian; Luo, Yong; Duan, Tao; Zhu, Wenkun

    2017-01-01

    Robust, high-strength and environmentally friendly antibacterial composite films were prepared by simply blending konjac glucomannan (KGM) and silver nanowires (Ag NWs) in an aqueous system. The samples were then characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis, mechanical property tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and antimicrobial tests. The results showed that there was a high ratio of Ag NWs uniformly distributed in the composite films, which was vital for mechanical reinforcement and stable antibacterial properties. The enhanced thermal stability and mechanical intensity increased, while the elongation at break was reduced with an increase in the amount of Ag NWs found in the composite films. When the percentage of Ag NWs in the composite films reached 5%, the tensile strength was 148.21 MPa, Young’s modulus was 13.79 GPa and the ultimate strain was 25.28%. Antibacterial tests showed that the KGM films had no antibacterial effect. After the addition of Ag NWs, the composite films had an obvious inhibitory effect on bacteria, with the uniform dispersion of Ag NWs promoting the antibacterial effect to a certain degree. These results indicated that these composite films would have a potential application in the fields of environmentally friendly packaging or medicine. PMID:28772883

  10. Composite films from pectin and fish skin gelatin or soybean flour protein.

    PubMed

    Liu, LinShu; Liu, Cheng-Kung; Fishman, Marshall L; Hicks, Kevin B

    2007-03-21

    Composite films were prepared from pectin and fish skin gelatin (FSG) or pectin and soybean flour protein (SFP). The inclusion of protein promoted molecular interactions, resulting in a well-organized homogeneous structure, as revealed by scanning electron microscopy and fracture-acoustic emission analysis. The resultant composite films showed an increase in stiffness and strength and a decrease in water solubility and water vapor transmission rate, in comparison with films cast from pectin alone. The composite films inherited the elastic nature of proteins, thus being more flexible than the pure pectin films. Treating the composite films with glutaraldehyde/methanol induced chemical cross-linking with the proteins and reduced the interstitial spaces among the macromolecules and, consequently, improved their mechanical properties and water resistance. Treating the protein-free pectin films with glutaraldehyde/methanol also improved the Young's modulus and tensile strength, but showed little effect on the water resistance, because the treatment caused only dehydration of the pectin films and the dehydration is reversible. The composite films were biodegradable and possessed moderate mechanical properties and a low water vapor transmission rate. Therefore, the films are considered to have potential applications as packaging or coating materials for food or drug industries.

  11. Decoupling thermal, chemical, and mechanical strain components in thin films

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith; Crumlin, Ethan; Shao-Horn, Yang; Boyce, Mary

    2011-03-01

    Many electrochemical systems have performance which is affected by internal strains due to thermal and/or chemical stimuli. The bi-material curvature method is a means to quantify these thermal and chemical strains and their coupling with mechanical stress. In this method, a thin layer of the material of interest is deposited on a substrate of intermediate thickness. The composite assumes a curvature that depends on the mismatch strains between the substrate and film. The Stoney formula provides an explicit expression for the film stress as a function of the elastic substrate properties, film and substrate thickness, and curvature. Here we study two distinct materials systems: Nafion used as the polymer electrolyte in low temperature fuel cells, and epitaxial perovskite thin films used as a catalyst for the oxygen reduction reaction in solid oxide fuel cells. The thermal, chemical, and mechanical strains are quantitatively determined as functions of temperature and atmospheric conditions by monitoring the curvature evolution with changes in these parameters. The extent of coupling of the thermal and chemical strains with mechanical stress is evaluated by conducting the experiment at multiple substrate thicknesses.

  12. Film/Adhesive Processing Module for Fiber-Placement Processing of Composites

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2007-01-01

    An automated apparatus has been designed and constructed that enables the automated lay-up of composite structures incorporating films, foils, and adhesives during the automated fiber-placement process. This apparatus, denoted a film module, could be used to deposit materials in film or thin sheet form either simultaneously when laying down the fiber composite article or in an independent step.

  13. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.

  14. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  15. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    PubMed

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  16. High-Performance Cellulose Nanofibril Composite Films

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; Zhiyong Cai

    2012-01-01

    Cellulose nanofibril/phenol formaldehyde (CNF/PF) composite films with high work of fracture were prepared by filtering a mixture of 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) oxidized wood nanofibers and water-soluble phenol formaldehyde with resin contents ranging from 5 to 20 wt%, followed by hot pressing. The composites were characterized by tensile testing,...

  17. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    PubMed

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.

  18. Thermoelectric properties of conducting polyaniline/BaTiO3 nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Anno, H.; Yamaguchi, K.; Nakabayashi, T.; Kurokawa, H.; Akagi, F.; Hojo, M.; Toshima, N.

    2011-05-01

    Conducting polyaniline (PANI)/BaTiO3 nanoparticle composite films with different molar ratio values R=1, 5, 10, and 100 have been prepared on a quartz substrate by casting the m-cresol solution of PANI, (±)-10-camphorsulfonic acid (CSA) and BaTiO3 nanoparticle with an average diameter of about 20 nm. The CSA-doped PANI/BaTiO3 composite films were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis transmission spectroscopy. The Seebeck coefficient and the electrical conductivity of the films with different R values, together with CSA-doped PANI films, were measured in the temperature range from room temperature to ~400 K. The relation between the Seebeck coefficient and the electrical conductivity in the composite films are discussed from a comparison of them with those of CSA-doped PANI films and other PANI composite films.

  19. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  20. Properties of cellulose/Thespesia lampas short fibers bio-composite films.

    PubMed

    Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada

    2015-01-01

    Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Laccase-based biocathodes: Comparison of chitosan and Nafion.

    PubMed

    El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K

    2016-09-21

    Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  3. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  4. In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC.

    PubMed

    Peng, Zhe; Morin, Arnaud; Huguet, Patrice; Schott, Pascal; Pauchet, Joël

    2011-11-10

    A new method based on hydrogen pump has been developed to measure the electroosmotic drag coefficient in representative PEMFC operating conditions. It allows eliminating the back-flow of water which leads to some errors in the calculation of this coefficient with previously reported electrochemical methods. Measurements have been performed on 50 μm thick Nafion membranes both extruded and recast. Contrary to what has been described in most of previous published works, the electroosmotic drag coefficient decreases as the membrane water content increases. The same trend is observed for temperatures between 25 and 80 °C. For the same membrane water content, the electroosmotic drag coefficient increases with temperature. In the same condition, there is no difference in drag coefficient for extruded Nafion N112 and recast Nafion NRE212. These results are discussed on the basis of the two commonly accepted proton transport mechanisms, namely, Grotthus and vehicular.

  5. Development and characterisation of composite films made of kefiran and starch.

    PubMed

    Motedayen, Ali Akbar; Khodaiyan, Faramarz; Salehi, Esmail Atai

    2013-02-15

    In this study, new edible composite films were prepared by blending kefiran with corn starch. Film-forming solutions of different ratios of kefiran to corn starch (100/0, 70/30, 50/50, 30/70) were cast at room temperature. The effects of starch addition on the resulting films' physical, mechanical and water-vapor permeability (WVP) properties were investigated. Increasing starch content from 0% to 50% (v/v) decreased the WVP of films; however, with further starch addition the WVP increased. Also, this increase in starch content increased the tensile strength and extensibility of the composite films. However, these mechanical properties decreased at higher starch contents. Dynamic mechanical thermal analysis (DMTA) curves showed that addition of starch at all levels increased the glass transition temperature of films. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. Thus, it was observed that these two film-forming components were compatible, and that an interaction existed between them. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. AC impedance investigations of proton conduction in Nafion(sup TM)

    NASA Astrophysics Data System (ADS)

    Cahan, B. D.; Wainright, J. S.

    1993-12-01

    AC impedance spectroscopy has been employed to study the conduction of protons in Nafion 117 polymer electrolyte membrane. Both two- and four-electrode geometries have been used to uniquely distinguish between the membrane impedance and the interfacial impedances. The results show that the impedance of Nafion for frequencies up to 100 kHz is characterized by a pure resistance, similar to conventional liquid electrolytes. The frequency dependent features observed using a two-electrode geometry are shown to be consistent will well-characterized interfacial impedances and do not arise from ionic conduction in the membrane. These results show that previous two-electrode studies reported in the literature have misinterpreted the impedance of the electrode interfaces as belonging to the conduction process in the electrolyte.

  7. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina.

  8. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Graphene Oxide-Polymer Composite Langmuir Films Constructed by Interfacial Thiol-Ene Photopolymerization

    NASA Astrophysics Data System (ADS)

    Luo, Xiaona; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Zhang, Lexin; Zhou, Jingxin; Li, Bingbing

    2017-02-01

    The effective synthesis and self-assembly of graphene oxide (GO) nanocomposites are of key importance for a broad range of nanomaterial applications. In this work, a one-step chemical strategy is presented to synthesize stable GO-polymer Langmuir composite films by interfacial thiol-ene photopolymerization at room temperature, without use of any crosslinking agents and stabilizing agents. It is discovered that photopolymerization reaction between thiol groups modified GO sheets and ene in polymer molecules is critically responsible for the formation of the composite Langmuir films. The film formed by Langmuir assembly of such GO-polymer composite films shows potential to improve the mechanical and chemical properties and promotes the design of various GO-based nanocomposites. Thus, the GO-polymer composite Langmuir films synthesized by interfacial thiol-ene photopolymerization with such a straightforward and clean manner, provide new alternatives for developing chemically modified GO-based hybrid self-assembled films and nanomaterials towards a range of soft matter and graphene applications.

  10. Ultrastable Quantum Dot Composite Films under Severe Environments.

    PubMed

    Yang, Zunxian; Zhang, Yuxiang; Liu, Jiahui; Ai, Jingwei; Lai, Shouqiang; Zhao, Zhiwei; Ye, Bingqing; Ruan, Yushuai; Guo, Tailiang; Yu, Xuebin; Chen, Gengxu; Lin, Yuanyuan; Xu, Sheng

    2018-05-09

    Semiconductor quantum dots (QDs) have attracted extensive attention because of their remarkable optical and electrical characteristics. However, the practical application of QDs and further the QD composite films have greatly been hindered mainly owing to their essential drawbacks of extreme unstability under oxygen and water environments. Herein, one simple method has been employed to enhance enormously the stability of Cd x Zn 1- x Se y S 1- y QD composite films by a combination of Cd x Zn 1- x Se y S 1- y QDs and poly(vinylidene) fluoride (PVDF), which is characteristic of closely arranged molecular chains and strong hydrogen bonds. There are many particular advantages in using QD/PVDF composite films such as easy processing, low cost, large-area fabrication, and especially extreme stability even in the boiling water for more than 240 min. By employing K 2 SiF 6 :Mn 4+ as a red phosphor, a prototype white light-emitting diode (WLED) with color coordinates of (0.3307, 0.3387), T c of 5568 K, and color gamut 112.1NTSC(1931)% at 20 mA has been fabricated, and there is little variation under different excitation currents, indicating that the QD/PVDF composite films fabricated by this simple blade-coating process make them ideal candidates for liquid-crystal display backlight utilization via assembling a WLED on a large scale owing to its ultrahigh stability under severe environments.

  11. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  12. Preparation of Polyurethane/Graphite Composite Films with Stable Mechanical Property and Wear Resistance Underwater.

    PubMed

    Wang, Miaomiao; Wang, Zubin; Chen, Qirong; Meng, Xiangfu; Heng, Liping

    2018-06-01

    The wear resistance and stable mechanical properties affect the service life of the underwater functional materials to a certain extent. Unfortunately, the current study of underwater functional materials is rarely related to these aspects. Herein, we successfully designed and prepared polyurethane/graphite nanosheet (PU/GN) composite materials, which exhibited excellent wear resistance and stable mechanical properties underwater. The PU/GN composite films were prepared by evaporating a mixed solution of PU and GN on concave hexagonal honeycomb silicon templates. The mechanical properties of the composite films were determined by tensile test, and the wear resistance was evaluated by comparing the surface morphology before and after grind. By adjusting the content of graphite in the composite films, we found that the composite films containing 23 wt% GN had higher tensile strength and superior wear resistance. Moreover, this composite film showed an outstanding stability when expose to water. The impressive results along with simple preparation process made PU/GN composite films had potential applications in robust underwater functional materials.

  13. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous andmore » tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.« less

  14. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    PubMed

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  15. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  16. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  17. Dispersion of Rod-like Particles of Nafion in Salt-Free Water/1-Propanol and Water/Ethanol Solutions.

    PubMed

    Yamaguchi, Makoto; Matsunaga, Takuro; Amemiya, Kazuki; Ohira, Akihiro; Hasegawa, Naoki; Shinohara, Kazuhiko; Ando, Masaki; Yoshida, Toshihiko

    2014-12-26

    The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor controlling the performance of catalyst layers in membrane electrode assemblies of proton exchange membrane fuel cells (PEMFCs). The effect of water/alcohol composition on the dispersion of H-Nafion in water/1-propanol and water/ethanol solutions was studied by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopy. Hydrodynamic radii calculated from DLS decay profiles and the radii and interparticle distance of rod-like particles derived from SAXS profiles showed almost the same dependence on alcohol concentration. 1-Propanol was more effective than ethanol to induce changes in the characteristic lengths of the rod-like particles. The motional narrowing in the (19)F NMR spectra by addition of 1-propanol indicates selective solvation of the rod-like particles. We suppose this might have decreased their radii and induced their elongation, which eventually led to extension of the ordered regions as observed in the hydrodynamic radii. Our study helps to clarify the dispersion of Nafion in aqueous alcohol solutions, which has implications for the performance of PEMFCs.

  18. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  19. Wearable near-field communication antennas with magnetic composite films

    NASA Astrophysics Data System (ADS)

    Zhan, Bihong; Su, Dan; Liu, Sheng; Liu, Feng

    2017-06-01

    The flexible near-field communication (NFC) antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA) magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L) and quality factor (Q) of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  20. Polymer compositions, polymer films and methods and precursors for forming same

    DOEpatents

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  1. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  2. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  3. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    PubMed

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  4. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.

    PubMed

    Cho, Hyunjin; Rho, Hokyun; Kim, Jun Hee; Chae, Su-Hyeong; Pham, Thang Viet; Seo, Tae Hoon; Kim, Hak Yong; Ha, Jun-Seok; Kim, Hwan Chul; Lee, Sang Hyun; Kim, Myung Jong

    2017-11-22

    The heat generated from electronic devices such as light emitting diodes (LEDs), batteries, and highly integrated transistors is one of the major causes obstructing the improvement of their performance and reliability. Herein, we report a comprehensive method to dissipate the generated heat to a vast area by using the new type of graphene-carbon-metal composite film as a heat sink. The unique porous graphene-carbon-metal composite film that consists of an electrospun carbon nanofiber with arc-graphene (Arc-G) fillers and an electrochemically deposited copper (Cu) layer showed not only high electrical and thermal conductivity but also high mechanical stability. Accordingly, superior thermal management of LED devices to that of conventional Cu plates and excellent resistance stability during the repeated 10 000 bending cycles has been achieved. The heat dissipation of LEDs has been enhanced by the high heat conduction in the composite film, heat convection in the air flow, and thermal radiation at low temperature in the porous carbon structure. This result reveals that the graphene-carbon-metal composite film is one of the most promising materials for a heat sink of electronic devices in modern electronics.

  5. Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater.

    PubMed

    Kim, Taeyoung; Kang, Sukwon; Sung, Je Hoon; Kang, Youn Koo; Kim, Young Hwa; Jang, Jae Kyung

    2016-12-28

    Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer ( e.g ., for O₂/H⁺/ions) than the Nafion PEM; in the case of oxygen mass transfer coefficient (k o ), a rate of 50.0 × 10⁻⁵ cm·s⁻¹ was observed compared with a rate of 20.8 × 10⁻⁵ cm/s in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen (D O ) for PC (2.0-3.3 × 10⁻⁶ cm²/s) was lower than that of the Nafion PEM (3.8 × 10⁻⁶ cm²/s). The PC was found to have a low ohmic resistance (0.29-0.38 Ω) in the MFC, which was similar to that of Nafion PEM (0.31 Ω); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC (104.3 ± 15.3 A/m³) compared with MFCs with Nafion PEM (100.4 ± 17.7 A/m³), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.

  6. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  7. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  8. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    PubMed Central

    Lertngim, Anantaya; Phiriyawirut, Manisara; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-01-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure–properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film. PMID:29134083

  9. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    NASA Astrophysics Data System (ADS)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  10. Nafion-coating of the electrodes improves the flow-stability of the Ag/SiO2/Ag2O electroosmotic pump.

    PubMed

    Shin, Woonsup; Zhu, Enhua; Nagarale, Rajaram Krishna; Kim, Chang Hwan; Lee, Jong Myung; Shin, Samuel Jaeho; Heller, Adam

    2011-06-15

    When a current or a voltage is applied across the ceramic membrane of the nongassing Ag/Ag(2)O-SiO(2)-Ag/Ag(2)O pump, protons produced in the anodic reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-) are driven to the cathode, where they are consumed by the reaction Ag(2)O(s) + H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). The flow of water is induced by momentum transfer from the electric field-driven proton-sheet at the surface of the ceramic membrane. About 10(4) water molecules flowed per reacted electron. Because dissolved ions decrease the field at the membrane surface, the flow decreases upon increasing the ionic strength. For this reason Ag(+) ions introduced through the anodic reaction and by dissolution of Ag(2)O decrease the flow. Their accumulation is reduced by applying Nafion-films to the electrodes. The 20 μL min(-1) flow rate of 6 mm i.d. pumps with Nafion coated electrodes operate daily for 5 min at 1 V for 1 month, for 70 h when the pump is pulsed for 30 s every 30 min, and for 2 h when operating continuously.

  11. Composition gradient optimization and electrical characterization of (Pb, Ca)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Bao, Dinghua; Mizutani, Nobuyasu; Zhang, Liangying; Yao, Xi

    2001-01-01

    Compositionally graded (Pb, Ca)TiO3 thin films were prepared by a monoethanolamine-modified sol-gel technique on platinum-coated silicon substrates at the annealing temperature of 600 °C. The composition gradient of the films was greatly improved by a modified annealing method. The dielectric constants, for up-graded and down-graded films annealed at 600 °C for 60 min, were found to be 469 and 355, respectively. Both were larger than those reported for conventional (Pb, Ca)TiO3 thin films. The compositionally graded films had large polarization offsets in hysteresis loops when excited by an alternating electric field. The more smooth the composition gradient of the graded film, the larger the polarization offset. This was consistent with a theoretical model reported previously by Mantese and coworkers [Appl. Phys. Lett. 71, 2047 (1997)]. The magnitude of polarization offset displayed a power-law dependence on the electric field, and the direction of the offset depended on the direction of the composition gradient with respect to the substrate. Both up-graded and down-graded films had good leakage current characteristics.

  12. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    PubMed Central

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-01-01

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310

  13. The characterization of dielectric properties of platinum-Nafion-poly(3,4-ethylenedioxythiophene) system

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Seok

    The generation of electrical energy by piezoelectric polymer when mechanically stressed has motivated the investigation of poly(vinylidenefluoride-trifluoro ethylene) (PVDF-TrFE) devices as implantable physiological power supplies. The fragility, specific weight, and rigidity of traditional piezoelectric ceramics used have limited their applicability, although the concept of using piezoelectric elements as mechanically actuated electric power generators for implanted organs has been exploited to some extent. In contrast, piezoelectric polymers are flexible, light, resistant to mechanical fatigue, and efficient as voltage generators. Thus, they can be considered as a source for generating, through mechanical deformation, the electric power needed to fuel implanted artificial organs or to trigger assisting devices such as cardiac pacemakers. This study demonstrates the feasibility of power generation devices that create current from mechanical deformation. One type of power generating device is PVDF-TrFE copolymer and, when built on the pacemaker's lead, can use the motion of the heart as its power source. The other type of device is a Pt-Nafion-PEDOT (PNP) composite device which is fabricated using Perfluorosulfonate ionomeric polymer (Nafion) and conductive polymer, Poly(3,4-ethylenedioxythiophene), by electrochemical synthesis. The device will enable passive location-specific stimulation, thus mimicking the contraction signal of the normal heart. It can generate its own power and may therefore make the battery-lifetime longer. In other applications of these materials is an ultrasound transducer and receiver. Ultrasound transducer/receivers using PNP composite and PVDF as a reference transducer/receiver were studied in order to detect and locate the depth of material (alloy metal, polymer gel) by a pulse-echo method. In a time of flight (TOF) measurement, a transmitter emits short packets of ultrasound waves toward the surface of object in tissue, where they are

  14. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Treesearch

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  15. Effect of cations (Na +, Ca 2+, Fe 3+) on the conductivity of a Nafion membrane

    NASA Astrophysics Data System (ADS)

    Hongsirikarn, Kitiya; Goodwin, James G.; Greenway, Scott; Creager, Stephen

    It is known that trace amounts of cations have a detrimental effect on the liquid-phase conductivity of perfluorosulfonated membranes at room temperature. However, the conditions used were very different from typical fuel cell conditions. Recent research has shown the impact of conductivity measurement conditions on NH 4 + contaminated membranes. In this study, the impact of nonproton-containing cations (M n+ = Na +, Ca 2+, and Fe 3+) on Nafion membrane (N-211) conductivity was investigated both in deionized (DI) water at room temperature (∼25 °C) and in the gas phase at 80 °C under conditions similar to in a PEMFC. These conductivities were compared with those of Nafion membranes contaminated with NH 4 + ions. Under the same conditions, the conductivity of a metal cationic-contaminated membrane having the same proton composition (yH+m) was similar, but slightly lower than that of an NH 4 +-contaminated membrane. The conductivity in the purely H +-form of N-211 was more than 12 times greater than the M n+-form form at 25 °C in DI water. At 80 °C, the gas-phase conductivity was 6 times and 125 times greater at 100%RH and 30%RH, respectively. The quantitative results for conductivity and activation energy of contaminated membranes under typical fuel cell conditions are reported here for the first time.

  16. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  17. Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis.

    PubMed

    Sun, Wei; Guo, Yaqing; Ju, Xiaomei; Zhang, Yuanyuan; Wang, Xiuzhen; Sun, Zhenfan

    2013-04-15

    A biocompatible sensing platform based on graphene (GR) and titanium dioxide (TiO₂) nanorods for the immobilization of hemoglobin (Hb) was adopted in this paper. The GR-TiO₂-Hb composite-modified carbon ionic liquid electrode was constructed through a simple casting method with Nafion as the film forming material. UV-Vis and FT-IR spectra confirmed that Hb retained its native structure in the composite film. Direct electron transfer of Hb incorporated into the composite was realized with a pair of quasi-reversible redox waves appeared, indicating that the presence of GR-TiO₂ nanocomposite on the electrode surface could facilitate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.6 to 21.0 mmol L⁻¹. These results indicated that GR-TiO₂ nanocomposite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  19. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  20. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  1. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport.

    PubMed

    Komarov, Pavel V; Khalatur, Pavel G; Khokhlov, Alexei R

    2013-01-01

    Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25-50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity.

  2. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  3. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties.

    PubMed

    Akyuz, Lalehan; Kaya, Murat; Koc, Behlul; Mujtaba, Muhammad; Ilk, Sedef; Labidi, Jalel; Salaberria, Asier M; Cakmak, Yavuz Selim; Yildiz, Aysegul

    2017-12-01

    Practical applications of biopolymers in different industries are gaining considerable increase day by day. But still, these biopolymers lack important properties in order to meet the industrial demands. In the same regard, in the current study, chitosan composite films are produced by incorporating diatomite soil at two different concentrations. In order to obtain a homogeneous film, glutaraldehyde was supplemented to chitosan solution as a cross-linker. Compositing diatomaceous earth to chitosan film resulted in improvement of various important physicochemical properties compared to control such as; enhanced film wettability, increase elongation at break and improved thermal stability (264-277°C). The microstructure of the film was observed to haveconsisted of homogeneously distributed blister-shaped structures arised due to the incorporation of diatomite. The incorporation of diatomite did not influence the overall antioxidant activity of the composite films, which can be ascribe to the difficulty radicals formation. Chitosan film incorporated with increasing fraction of diatomite revealed a notable enhancement in the antimicrobial activity. Additionally with the present study, for the first time possible interactions between chitosan/diatomite were determined via quantum chemical calculations. Current study will be helpful in giving a new biotechnological perspective to diatom in terms of its successful application in hydrophobic composite film production. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films

    NASA Astrophysics Data System (ADS)

    Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan

    2018-04-01

    We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.

  5. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  6. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenchao; Wang, Zhipeng; School of Chemical Engineering, Tianjin University, Tianjin

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffractionmore » (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.« less

  7. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles

    NASA Astrophysics Data System (ADS)

    Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia

    2015-04-01

    We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic

  8. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  9. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  10. Comparing selected morphological models of hydrated Nafion using large scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Knox, Craig K.

    Experimental elucidation of the nanoscale structure of hydrated Nafion, the most popular polymer electrolyte or proton exchange membrane (PEM) to date, and its influence on macroscopic proton conductance is particularly challenging. While it is generally agreed that hydrated Nafion is organized into distinct hydrophilic domains or clusters within a hydrophobic matrix, the geometry and length scale of these domains continues to be debated. For example, at least half a dozen different domain shapes, ranging from spheres to cylinders, have been proposed based on experimental SAXS and SANS studies. Since the characteristic length scale of these domains is believed to be ˜2 to 5 nm, very large molecular dynamics (MD) simulations are needed to accurately probe the structure and morphology of these domains, especially their connectivity and percolation phenomena at varying water content. Using classical, all-atom MD with explicit hydronium ions, simulations have been performed to study the first-ever hydrated Nafion systems that are large enough (~2 million atoms in a ˜30 nm cell) to directly observe several hydrophilic domains at the molecular level. These systems consisted of six of the most significant and relevant morphological models of Nafion to-date: (1) the cluster-channel model of Gierke, (2) the parallel cylinder model of Schmidt-Rohr, (3) the local-order model of Dreyfus, (4) the lamellar model of Litt, (5) the rod network model of Kreuer, and (6) a 'random' model, commonly used in previous simulations, that does not directly assume any particular geometry, distribution, or morphology. These simulations revealed fast intercluster bridge formation and network percolation in all of the models. Sulfonates were found inside these bridges and played a significant role in percolation. Sulfonates also strongly aggregated around and inside clusters. Cluster surfaces were analyzed to study the hydrophilic-hydrophobic interface. Interfacial area and cluster volume

  11. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  12. Synthesis and characterization of Au-MWCNT/PEDOT: PSS composite film for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Jasna, M.; Anjana, R.; Jayaraj, M. K.

    2017-08-01

    Recently, flexible organic optoelectronics have got great attention because of their light weight, mechanical flexibility and cost effective fabrication process. Conjugated polymers like PEDOT: PSS are widely used for the transparent electrode applications due to its chemical stability, high conductivity, flexibility and optical transparency in the visible region. Conductivity of the PEDOT: PSS polymer can be enhanced by adding organic solvents or conducting nano fillers like CNT, graphene, etc. Carbon nanotubes are good nano fillers to enhance the conductivity and mechanical strength of PEDOT: PSS composite film. Inthe present work, the effect of gold nano particles in PEDOT: PSS/CNT composite is studied. The conductivity enhancement in PEDOT: PSS/CNT thin films can be attributed to the formation of CNT network in the polymer matrix and conformational change of the PEDOT from benzoid to quinoid structure. Even though the conductivity was enhanced, the transparency of the composite thin films decreased with increase in CNT concentration. To overcome this problem, gold nano particles were attached to CNT walls via chemical route. AuMWCNT/PEDOT: PSS composite films were prepared by spin coating method. TEM images confirmed the decoration of gold nano particles on CNT walls. Electrical and optical properties of the composite films were studied. This simple solution processed conducting films are suitable for optoelectronic applications

  13. Effect of temperature on optical properties of PMMA/SiO2 composite thin film

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-05-01

    Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.

  14. Tunneling studies of compositionally modulated PB/Fe films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wawro, A.; Witek, A.; Majewski, J.

    1988-01-01

    Preliminary results of preparation and investigation of compositionally modulated Pb/Fe films are reported. These films have been used as electrodes in Al/Al/sub 2/O/sub 3//{kappa}(Pb/Fe) tunnel junctions and the tunnelling characteristics I-V, dV/dI and d/sup 2/V/d/I/sup 2/ vs V have been studied in dependence on the modulation period.

  15. Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-09-01

    The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.

  16. Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.

    The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particlesmore » located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.« less

  17. Physicochemical, microstructural, and antibacterial properties of β-chitosan and kudzu starch composite films.

    PubMed

    Zhong, Yu; Li, Yunfei; Zhao, Yanyun

    2012-10-01

    This study investigated physicochemical, microstructural, and antibacterial properties of β-chitosan-kudzu starch composite films with addition of 0%, 20%, 60%, or 100% kudzu starch (w starch/w chitosan) in 1% chitosan solution. Molecular interactions between chitosan and kudzu starch and the crystal structure of the films were also determined. Adding 60% kudzu starch reduced water vapor permeability and solubility of pure β-chitosan film by about 15% and 20%, respectively, whereas mechanical strength and flexibility of the film were increased about 50% and 25%, respectively. Micrograph showed that β-chitosan film was totally amorphous, and the composite films generally became rougher with more starch added. Fourier transform infrared and X-ray diffraction spectra showed that the 2 film-forming components were compatible with each other. Pure β-chitosan film resulted in 9.5 and 11.5 log CFU/mL reduction in Escherichia coli and Listeria innocua based on plate count method, respectively. Addition of kudzu starch reduced the antibacterial activity of film, but still achieved 8.3 and 10.3 log CFU/mL reduction in E. coli and L. innocua, respectively when kudzu starch to chitosan weight ratio was 1:1. Reduced antibacterial activity might attribute to the interaction of amino groups in β-chitosan with the hydroxyl groups in kudzu starch. This study demonstrated that kudzu starch effectively improved water barrier of β-chitosan film, and the composite films retained strong antibacterial ability. One percent of β-chitosan containing 60% kudzu starch (w/w chitosan) composite films possessed better mechanical and water barrier properties than pure β-chitosan films, and showed strong antibacterial activity against both Gram-positive and Gram-negative bacteria. The films may be used as wraps or coatings to prolong the shelf life of different foods or other similar applications. © 2012 Institute of Food Technologists®

  18. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    PubMed Central

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  19. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.

    PubMed

    Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang

    2013-12-23

    A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone

    NASA Astrophysics Data System (ADS)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2016-09-01

    We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.

  1. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    PubMed

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  2. Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method

    DOEpatents

    Nishi, Mineo; Makishima, Hideo

    1996-01-01

    A composition for forming anti-reflection film on resist surface which comprises an aqueous solution of a water soluble fluorine compound, and a pattern formation method which comprises the steps of coating a photoresist composition on a substrate; coating the above-mentioned composition for forming anti-reflection film; exposing the coated film to form a specific pattern; and developing the photoresist, are provided. Since the composition for forming anti-reflection film can be coated on the photoresist in the form of an aqueous solution, not only the anti-reflection film can be formed easily, but also, the film can be removed easily by rinsing with water or alkali development. Therefore, by the pattern formation method according to the present invention, it is possible to form a pattern easily with a high dimensional accuracy.

  3. Processing and Pretreatment Effects on Vanadium Transport in Nafion Membranes

    DOE PAGES

    Xie, Wei; Darling, Robert M.; Perry, Mike L.

    2015-10-13

    Here, this work describes how manufacturing processes and pretreatments affect the proton conductivity and vanadyl permeability of Nafion® and how these properties are altered by running in a cell. Five Nafion membranes were examined: reinforced XL100, dispersion cast NR211 and NR212, and extruded N115 and N117. The membranes were subjected to pretreatments that included annealing at 120°C and immersing in ambient temperature and boiling water and sulfuric acid. Vanadyl permeability varied by ~15X with pretreatment and ~3X with manufacturing process. Variations in ionic conductivity were comparatively modest: ~1.5X with pretreatment and ~1.2X with processing. Differences in permeability can be eliminatedmore » by annealing the extruded membranes above their glass-transition temperature or by immersing in boiling sulfuric acid. The differences induced by processing and pretreatments were largely absent from membranes removed from vanadium redox cells subjected to repeated charge/discharge cycles.« less

  4. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties.

    PubMed

    Raghunathan, Sreejesh Poikavila; Narayanan, Sona; Poulose, Aby Cheruvathur; Joseph, Rani

    2017-02-10

    Flexible regenerated cellulose/polypyrrole (RC-PPy) conductive composite films were prepared by insitu polymerization of pyrrole on regenerated cellulose (RC) matrix using ammonium persulphate as oxidant. FTIR, XPS and XRD analysis of RC-PPy composite films revealed strong interaction between polypyrrole (PPy) and RC matrix. XRD results indicated that crystalline structure of RC matrix remains intact even after composite formation. SEM micrographs revealed the formation of a continuous conductive network of PPy particles in the RC matrix, leading to significant improvement in electrical and dielectric properties. The electrical conductivity of RC-PPy composites with 12wt% of PPy was 3.2×10 -5 S/cm, which is approximately seven fold higher than that of RC. Composites showed high dielectric constant and low dielectric loss values, which is essential in capacitor application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    PubMed Central

    Komarov, Pavel V; Khokhlov, Alexei R

    2013-01-01

    Summary Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. PMID:24205452

  6. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters.

    PubMed

    He, Xin; He, Ruihui; Lan, Qiuming; Wu, Weijie; Duan, Feng; Xiao, Jundong; Zhang, Mei; Zeng, Qingguang; Wu, Jianhao; Liu, Junyan

    2017-02-23

    A transparent and flexible film heater was fabricated; based on a hybrid structure of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowires (Ag NWs) using a screen printing; which is a scalable production technology. The resulting film integrates the advantages of the two conductive materials; easy film-forming and strong adhesion to the substrate of the polymer PEDOT:PSS; and high conductivity of the Ag NWs. The fabricated composite films with different NW densities exhibited the transmittance within the range from 82.3% to 74.1% at 550 nm. By applying 40 V potential on the films; a stable temperature from 49 °C to 99 °C was generated within 30 s to 50 s. However; the surface temperature of the pristine PEDOT:PSS film did not increase compared to the room temperature. The composite film with the transmittance of 74.1% could be heated to the temperatures from 41 °C to 99 °C at the driven voltages from 15 V to 40 V; indicating that the film heater exhibited uniform heating and rapid thermal response. Therefore; the PEDOT:PSS/Ag NW composite film is a promising candidate for the application of the transparent and large-scale film heaters.

  7. Carbon nanotube-graphene composite for ionic polymer actuators

    NASA Astrophysics Data System (ADS)

    Yang, Woosung; Choi, Hyonkwang; Choi, Suho; Jeon, Minhyon; Lee, Seung-Yop

    2012-05-01

    In this paper, we develop a new ionic polymer-metal composite (IPMC) by replacing a typical platinum or gold electrode with a multi-walled carbon nanotube (MWNT)-graphene based electrode. A solvent of MWNT and graphene is formed on both sides of the ionic polymer membranes as electrodes by means of spray coating and baking. Then, the ionic liquid process is performed for actuating in air. The four kinds of IPMC samples with different MWNT-graphene ratios are fabricated with the same solid Nafion film. Experimental results show that the IPMC with a pure MWNT based electrode exhibits higher displacement compared to the conventional IPMC with a platinum electrode. Also, the increment of the ratio of graphene to the MWNT-graphene electrode decreases the resultant displacement but increases the fundamental natural frequency of the polymer actuator.

  8. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.

    PubMed

    Tong, Shi Yun; Wang, Zuyong; Lim, Poon Nian; Wang, Wilson; Thian, Eng San

    2017-01-01

    Regeneration of injuries at tendon-to-bone interface (TBI) remains a challenging issue due to the complex tissue composition involving both soft tendon tissues and relatively hard bone tissues. Tissue engineering using polymeric/ceramic composites has been of great interest to generate scaffolds for tissue's healing at TBI. Herein, we presented a novel method to blend polymers and bioceramics for tendon tissue engineering application. A homogeneous composite comprising of nanohydroxyapatite (nHA) particles in poly(ε-caprolactone) (PCL) matrix was obtained using a combination of solvent and mechanical blending process. X-ray diffraction analysis showed that the as-fabricated PCL/nHA composite film retained phase-pure apatite and semi-crystalline properties of PCL. Infrared spectroscopy spectra confirmed that the PCL/nHA composite film exhibited the characteristics functional groups of PCL and nHA, without alteration to the chemical properties of the composite. The incorporation of nHA resulted in PCL/nHA composite film with improved mechanical properties such as Young's Modulus and ultimate tensile stress, which were comparable to that of the native human rotator tendon. Seeding with human tenocytes, cells attached on the PCL/nHA composite film, and after 14days of culturing, these cells could acquire elongated morphology without induced cytotoxicity. PCL/nHA composite film could also result in increased cell metabolism with prolonged culturing, which was comparable to that of the PCL group and higher than that of the nHA group. All these results demonstrated that the developed technique of combining solvent and mechanical blending could be applied to fabricate composite films with potential for tendon tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of composition on SILAR deposited CdxZn1-xS thin films

    NASA Astrophysics Data System (ADS)

    Ashith V., K.; Gowrish Rao, K.

    2018-04-01

    In the group of II-VI compound semiconductor, cadmium zinc sulphide (CdxZn1-xS) thin films have broad application in photovoltaic, optoelectronic devices etc. For heterojunction aspects, CdxZn1-xS thin film can be used as heterojunction partner for CdTe as the absorber layer. In this work, CdZnS thin films prepared on glass substrates by Successive Ion Layer Adsorption and Reaction (SILAR) method by varying the composition. The XRD patterns of deposited films showed polycrystalline with the hexagonal phase. The crystallite size of the films was estimated from W-H plot. The bond length of the film varied w.r.to the composition of the CdxZn1-xS films. The urbach energy of the films was calcualted from absorbance data.

  10. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    PubMed

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Xin, Le; Uzunoglu, Aytekin

    In making a catalyst ink, the interaction between Nafion ionomer and catalyst support are the key factors that directly affect both ionic conductivity and electronic conductivity of the catalyst layer in a membrane electrode assembly (MEA). One of the major aims of this investigation is to understand the behavior of the catalyst support, Vulcan XC-72 (XC-72) aggregates, in the existence of the Nafion ionomer in a catalyst ink to fill the knowledge gap of the interaction of these components. The dispersion of catalyst ink not only depends on the solvent, but also depends on the interaction of Nafion and carbonmore » particles in the ink. The interaction of Nafion ionomer particles and XC-72 catalyst aggregates in liquid media was studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM techniques. Carbon black XC-72) and functionalized carbon black systems were introduced to study the interaction behaviors. A multiple curve fitting was used to extract the particle size and size distribution from scattering data. The results suggest that the particle size and size distribution of each system changed significantly in Nafion + XC-72 system, Nafion + NH2-XC72 system, and Nafion + SO3H-XC-72 system, which indicates that an interaction among these components (i.e. ionomer particles and XC-72 aggregates) exists. The cryogenic TEM, which allows for the observation the size of particles in a liquid, was used to validate the scattering results and shows excellent agreement.« less

  12. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    PubMed

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  13. Post-irradiation time effects on the graft of poly(ethylene-alt-tetrafluoroethylene) (ETFE) films for ion exchange membrane application

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana N.; Zen, Heloísa A.; Ribeiro, Geise; Ferreira, Henrique P.; Souza, Camila P.; Parra, Duclerc F.; Santiago, Elisabete I.; Lugão, Ademar B.

    2010-03-01

    Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) was studied for synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto ETFE films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. The ETFE films were irradiated at 20 kGy dose at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established at 14 days when the films were remained in styrene/toluene 1:1 v/v. After this period the grafting degree was evaluated in the samples. The grafted films were sulfonated using chlorosulfonic acid and 1, 2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The membranes were analyzed by infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric measurements (TG) and degree of grafting (DOG). The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for ETFE membranes were achieved higher than Nafion ® films. Preliminary single cell performance was made using pure H 2 and O 2 as reactants at a cell temperature of 80 °C and atmospheric gas pressure. The fuel cell performance of ETFE films was satisfactory when compared to state-of-art Nafion ® membranes.

  14. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mechanism for degradation of Nafion in PEM fuel cells from quantum mechanics calculations.

    PubMed

    Yu, Ted H; Sha, Yao; Liu, Wei-Guang; Merinov, Boris V; Shirvanian, Pezhman; Goddard, William A

    2011-12-14

    We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S-C bond to form H(2)SO(4) plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H(2) crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C-F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF(2), SCF(2)) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism. © 2011 American Chemical Society

  16. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    PubMed

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  17. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    NASA Astrophysics Data System (ADS)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  18. Automated Fiber Placement of PEEK/IM7 Composites with Film Interleaf Layers

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce; Banks, William I., III; Pipes, R. Byron; Tiwari, Surendra N.; Cano, Roberto J.; Johnston, Norman J.; Clinton, R. G., Jr. (Technical Monitor)

    2001-01-01

    The incorporation of thin discrete layers of resin between plies (interleafing) has been shown to improve fatigue and impact properties of structural composite materials. Furthermore, interleafing could be used to increase the barrier properties of composites used as structural materials for cryogenic propellant storage. In this work, robotic heated-head tape placement of PEEK/IM7 composites containing a PEEK polymer film interleaf was investigated. These experiments were carried out at the NASA Langley Research Center automated fiber placement facility. Using the robotic equipment, an optimal fabrication process was developed for the composite without the interleaf. Preliminary interleaf processing trials indicated that a two-stage process was necessary; the film had to be tacked to the partially-placed laminate then fully melted in a separate operation. Screening experiments determined the relative influence of the various robotic process variables on the peel strength of the film-composite interface. Optimization studies were performed in which peel specimens were fabricated at various compaction loads and roller temperatures at each of three film melt processing rates. The resulting data were fitted with quadratic response surfaces. Additional specimens were fabricated at placement parameters predicted by the response surface models to yield high peel strength in an attempt to gage the accuracy of the predicted response and assess the repeatability of the process. The overall results indicate that quality PEEK/lM7 laminates having film interleaves can be successfully and repeatability fabricated by heated head automated fiber placement.

  19. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  20. Development and Characterization of Biodegradable Composite Films Based on Gelatin Derived from Beef, Pork and Fish Sources

    PubMed Central

    Nur Hanani, Zainal A.; Beatty, Eddie; Roos, Yrjo H.; Morris, Mick A.; Kerry, Joseph P.

    2012-01-01

    The objectives of this study were to develop composite films using various gelatin sources with corn oil (CO) incorporation (55.18%) and to investigate the mechanical and physical properties of these films as potential packaging films. There were increases (p < 0.05) in the tensile strength (TS) and puncture strength (PS) of films when the concentration of gelatin increased. The mechanical properties of these films were also improved when compared with films produced without CO. Conversely, the water barrier properties of composite films decreased (p < 0.05) when the concentration of gelatin in composite films increased. Comparing with pure gelatin films, water and oxygen barrier properties of gelatin films decreased when manufactured with the inclusion of CO. PMID:28239092

  1. Interplay Between Thin Film Ferroelectric Composition, Microstructure and Microwave Phase Shifter Performance

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Miranda, Felix A.

    2003-01-01

    One of the keys to successfully incorporating ferroelectric films into Ku-band (12 to 18 GHz) phase shifters is to establish the composition, microstructure, and thickness required to meet the tuning needs, and tailor the film properties to meet these needs. Optimal performance is obtained when the film composition and device design are such that the device performance is limited by odd mode dielectric losses, and these losses are minimized as much as possible while still maintaining adequate tunability. The parameters required to maintain device performance will vary slightly depending on composition, but we can conclude that the best tuning-to-loss figures of merit (K-factor) are obtained when there is minimal variation between the in-plane and out-of-plane lattice parameters, and the full-width half maximum values of the BSTO (002) peaks are less than approximately 0.04 deg. We have observed that for phase shifters in which the ferroelectric crystalline quality and thickness are almost identical, higher losses are observed in films with higher BaISr ratios. The best performance was observed in phase shifters with Ba:Sr = 30:70. The superiority of this composition was attributed to several interacting factors: the B a: Sr ratio was such that the Curie temperature (180 K) was far removed from room temperature, the crystalline quality of the film was excellent, and there was virtually no difference between the inplane and out-of-plane lattice parameters of the film.

  2. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.

  3. Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy.

    PubMed

    Gu, Guang Qin; Han, Chang Bao; Tian, Jing Jing; Lu, Cun Xin; He, Chuan; Jiang, Tao; Li, Zhou; Wang, Zhong Lin

    2017-04-05

    As a green and eco-friendly technology, triboelectric nanogenerator (TENG) can harvest energy from human motion to generate electricity, so TENGs have been widely applied in wearable electronic devices to replace traditional batteries. However, the surface of these TENGs is easily contaminated and breeds bacteria, which is a threat to human health. Here, we report an antibacterial composite film-based triboelectric nanogenerator (ACF-TENG) that uses Ag-exchanged zeolite (Ag-zeolite) and polypropylene (PP) composite film as the triboelectric layer. Adding a small amount of Ag-zeolite with excellent antibacterial properties can increase the dielectric permittivity and improve the surface charge density of composite films, which enhances the output performance of the ACF-TENG. The open-circuit voltage (V OC ), short-circuit current (I SC ), and transferred charge (Q Tr ) of the ACF-TENG are about 193.3, 225.4, and 233.3% of those of a pure PP film-based TENG, respectively. Because of the silver in the Ag-zeolite, the ACF-TENG can effectively kill Escherichia coli and fungi. When used in insoles, the ACF-TENG can resist the athlete's foot fungus effectively and work as a power source to light up light-emitting diodes and charge capacitors. The ACF-TENG has wide application prospects in self-powered medical and healthcare electronics.

  4. Doped SnO₂ transparent conductive multilayer thin films explored by continuous composition spread.

    PubMed

    Lee, Jin Ju; Ha, Jong-Yoon; Choi, Won-Kook; Cho, Yong Soo; Choi, Ji-Won

    2015-04-13

    Mn-doped SnO₂ thin films were fabricated by a continuous composition spread (CCS) method on a glass substrate at room temperature to find optimized compositions. The fabricated materials were found to have a lower resistivity than pure SnO₂ thin films because of oxygen vacancies generated by Mn doping. As Mn content was increased, resistivity was found to decrease for limited doping concentrations. The minimum thin film resistivity was 0.29 Ω-cm for a composition of 2.59 wt % Mn-doped SnO₂. The Sn-O vibrational stretching frequency in FT-IR showed a blue shift, consistent with oxygen deficiency. Mn-doped SnO₂/Ag/Mn-doped SnO₂ multilayer structures were fabricated using this optimized composition deposited by an on-axis radio frequency (RF) sputter. The multilayer transparent conducting oxide film had a resistivity of 7.35 × 10⁻⁵ Ω-cm and an average transmittance above 86% in the 550 nm wavelength region.

  5. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  6. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.

    PubMed

    Oh, Soo Jung; Lee, Jun Kyu; Yoon, Woo Young

    2014-09-01

    The principal drawback of lithium-sulfur batteries is the dissolution of long-chain lithium polysulfides into the electrolyte, which limits cycling performance. To overcome this problem, we focused on the development of a novel cathode as well as anode material and designed Nafion-coated NiCrAl/S as a cathode and lithium powder as an anode. Nafion-coated NiCrAl/S cathode was synthesized using a two-step dip-coating technique. The lithium-powder anode was used instead of a lithium-foil anode to prohibit dendrite growth and to improve on the electrochemical behaviors. The cells showed an initial discharge capacity of about 900 mA g(-1) and a final discharge capacity of 772 mA g(-1) after 100 cycles at 0.1 C-rate. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrate that using the Nafion-coated NiCrAl/S cathode can suppress the dissolution of long-chain lithium polysulfides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Composite Films Formed by Cellulose nanocrystals and Latex Nanoparticles: Optical, Structural, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Vollick, Brandon McRae

    This thesis describes the preparation of iridescent, birefringent, composite films composed of cellulose nanocrystals (CNCs), latex nanoparticles (NPs) and a NP crosslinker; hexanediamine (HDA). First, aqueous suspensions were prepared with varying quantities of CNCs, NPs and HDA before equilibrating for one week. The cholesteric (Ch) phase was then cast and dried into a film. The optical, structural and mechanical properties of the film was analyzed. Second, films with identical compositions of CNCs, NPs, and HDA were fabricated in three different ways to yield films of different morphology, (i) fast drying of an isotropic suspension, yielding an isotropic film, (ii) slow drying of an isotropic suspension, yielding a partially Ch films, (iii) slow drying of an equilibrated suspension, yielding a highly Ch film. The optical and mechanical properties of the films was analyzed.

  8. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  9. Ion plasma deposition of oxide films with graded-stoichiometry composition: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.

    2016-07-01

    A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.

  10. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  11. Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan.

    PubMed

    Khan, Younus H; Islam, Atif; Sarwar, Afsheen; Gull, Nafisa; Khan, Shahzad M; Munawar, Muhammad A; Zia, Saba; Sabir, Aneela; Shafiq, Muhammad; Jamil, Tahir

    2016-08-01

    Graphene oxide (GO) was indigenously synthesized from graphite using standard Hummers method. Chitosan-graphene oxide green composite films were fabricated by mixing aqueous solution of chitosan and GO using dilute acetic acid as a solvent for chitosan. Chitosan of different viscosity and calculated molecular weight was used keeping amount of GO constant in each composite film. The structural properties, thermal stability and mechanical properties of the composite films were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile test. FTIR studies revealed the successful synthesis of GO from graphite powder and it was confirmed that homogenous blending of chitosan and GO was promising due to oxygenated functional groups on the surface of GO. XRD indicated effective conversion of graphite to GO as its strong peak observed at 11.06° as compared to pristine graphite which appeared at 26°. Moreover, mechanical analysis confirmed the effect of molecular weight on the mechanical properties of chitosan-GO composites showing that higher molecular weight chitosan composite (GOCC-1000) showed best strength (higher than 3GPa) compared to other composite films. Thermal stability of GOCC-1000 was enhanced for which residual content increased up to 56% as compared to the thermal stability of GOCC-200 whose residue was restricted to only 24%. The morphological analysis of the composites sheets by SEM was smooth having dense structure and showed excellent interaction, miscibility, compatibility and dispersion of GO with chitosan. The prepared composite films find their applications as biomaterials in different biomedical fields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films.

    PubMed

    Cuba, M; Muralidharan, G

    2015-11-01

    The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.

  13. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder

    PubMed Central

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-01-01

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications. PMID:29186047

  14. High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  15. Composition spread studies of Nd1-xLaxNiO3 combinatorial thin films

    NASA Astrophysics Data System (ADS)

    Suchoski, Richard; Jin, Kui; Yasui, Shintaro; Greene, Richard; Takeuchi, Ichiro

    2013-03-01

    Rare earth nickelates have attracted a great deal of attention in recent years due to a host of interesting features, one being a transition from paramagnetic metal to antiferromagnetic insulator through distortions from the ideal perovskite unit cell. This metal-to-insulator transition (MIT) can be manipulated by modifying variables such as temperature, rare earth ion size, oxygen content, or stress from lattice-mismatched epitaxial thin film growth. Research on this family has been extensive, though there still exists an absence of thin film studies focusing on intermediate compositions. We have fabricated epitaxial thin film composition spreads of Nd1-xLaxNiO3 grown via combinatorial PLD to investigate these transitional compositions. While our films exhibit a smooth composition progression, we observe a composition threshold where orthorhombic NdNiO3 transforms to rhombohedral LaNiO3, correlating with disappearance of the MIT, and displays a non-Vegard evolution of the film's in-plane lattice constant in HRXRD and Raman scattering data of the A1g rotational mode. This work was performed at the Center for Nanophysics and Advanced Materials (CNAM) at UMD, and supported by AFO SR MURI Grant #FA95500910603.

  16. Composition measurement of epitaxial Sc x Ga1-x N films

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Barradas, N. P.; Alves, E.; Pereira, S.; Palgrave, R. G.; Davies, R. J.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-06-01

    Four different methods for measuring the compositions of epitaxial Sc x Ga1-x N films were assessed and compared to determine which was the most reliable and accurate. The compositions of epitaxial Sc x Ga1-x N films with 0 ≤ x ≤ 0.26 were measured directly using Rutherford backscattering (RBS) and x-ray photoelectron spectroscopy (XPS), and indirectly using c lattice parameter measurements from x-ray diffraction and c/a ratio measurements from electron diffraction patterns. RBS measurements were taken as a standard reference. XPS was found to underestimate the Sc content, whereas c lattice parameter and c/a ratio were not reliable for composition determination due to the unknown degree of strain relaxation in the film. However, the Sc flux used during growth was found to relate linearly with x and could be used to estimate the Sc content.

  17. One-step synthesis of magnetic chitosan polymer composite films

    NASA Astrophysics Data System (ADS)

    Cesano, Federico; Fenoglio, Gaia; Carlos, Luciano; Nisticò, Roberto

    2015-08-01

    In this study, a magnetic iron oxide-chitosan composite film is synthesized by one-step method and thoroughly investigated in order to better understand its inorganic/organic properties. A deep physico-chemical characterization of the magnetic films has been performed. In particular, the material composition was evaluated by means of XRD and ATR-FTIR spectroscopy, whereas the thermal stability and the subsequent inorganic phase transitions involving iron oxide species were followed by TGA analyses carried out at different experimental conditions (i.e. inert and oxidative atmosphere). The magnetic properties of the films were tested at the bulk and at the surface level, performing respectively magnetization hysteresis curve and magnetic force microscopy (MFM) surface mapping. Results indicate that the synthesized material can be prepared through a very simple synthetic procedure and suggests that it can be successfully applied for instance to environmental applications, such as the adsorption of contaminants from solid and liquid media thanks to its pronounced magnetic properties, which favour its recover.

  18. Graphene and water-based elastomers thin-film composites by dip-moulding.

    PubMed

    Iliut, Maria; Silva, Claudio; Herrick, Scott; McGlothlin, Mark; Vijayaraghavan, Aravind

    2016-09-01

    Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.

  19. Model Lung Surfactant Films: Why Composition Matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phasemore » but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.« less

  20. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  1. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    PubMed

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  2. Bioacceptable and calcification-resistant membranes and interfaces for implantable sensors and devices

    NASA Astrophysics Data System (ADS)

    Galeska, Izabela Ewa

    The rational design and characterization of biocompatible, semipermeable and calcification resistant materials to serve as an outer membrane for implantable glucose biosensors, was the primary focus of this research. Multilayered films of polyanions (i.e. Nafion(TM), a perfluorinated ionomer, and Humic Acids (HAs), naturally occurring biopolymers), fabricated by layer-by-layer self-assembly with oppositely charged ferric ions were investigated as potential membranes. Spectroscopic ellipsometry and quartz crystal microbalance studies point towards a stepwise film growth, with growth rates of 47 and 24.3 nm per layer (for Nafion and HAs respectively) that can be altered depending on the pH and ionic strength of the polyanion solution. Nafion/Fe3+ assembled films exhibited an order of magnitude lower calcification as compared to dip-coated Nafion films and did not require annealing to impart insolubility. Similarly the HAs/Fe3+ films were also devoid of calcification, even after four-week immersion in DMEM cell culture media. Significantly, in vivo studies on the HAs/Fe3 films point to their biocompatibility as demonstrated by mild tissue reaction. These results, along with controllable glucose permeability, could prove vital in prolonging the lifetime of implantable biosensors. Additionally in effort to minimize tissue trauma upon implantation, novel poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites were investigated for dexamethasone delivery. A release rate of 25 to 40% over one month, following a zero order profile, was achieved by preferential adsorption of surface active polyacids (poly(acrylic acid), Nafion and HAs) on the hydrogel dispersed microspheres. Environmental scanning electron microscopy investigation on the degradation mechanism of the microspheres pointed towards their slow homogeneous degradation in the PVA hydrogels that was significantly surface-accelerated in the presence of polyacids. The physico

  3. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    PubMed

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  5. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    PubMed Central

    Kim, Jong Won; Lee, Joon Seok

    2016-01-01

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf), and void content (Vc), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film. PMID:28773467

  6. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites.

    PubMed

    Kim, Jong Won; Lee, Joon Seok

    2016-05-06

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction ( V f ), and void content ( V c ), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, V c decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  7. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  8. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions.

    PubMed

    Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem

    2018-07-15

    The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    PubMed

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-02

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ultrastrong composite film of Chitosan and silica-coated graphene oxide sheets.

    PubMed

    Yan, Haichen; Jiang, Lei; Xu, Xiaozhou; Li, Yanbao; Shen, Yuesong; Zhu, Shemin

    2017-11-01

    Chitosan (CS) has attracted significant interest in various fields due to its outstanding functional properties (especially, its chain with positive charge). However, wide-range applications of CS are severely limited because of its poor mechanical properties. Ultrastrong composite film of CS and silica-coated graphene oxide sheets (GO@SiO 2 ) were prepared by a simple solution casting method in this article. GO@SiO 2 was prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) in GO ethanol solution. Compared with the pure CS film, the tensile strength of the CS/GO@SiO 2 composite film with incorporation of 1.75wt% GO@SiO 2 fillers was significantly increased 158% from 55±4 to 142±24MPa. Such high tensile strength may be caused synergistically by strong interaction between two components and high crystallinity of the CS matrix. CS based composite with ultrastrong strength may have more potential applications in biomedical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique

    NASA Astrophysics Data System (ADS)

    Bunkin, Nikolai F.; Kozlov, Valeriy A.; Shkirin, Alexey V.; Ninham, Barry W.; Balashov, Anatoliy A.; Gudkov, Sergey V.

    2018-03-01

    Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.15 μm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90-500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6.10-11 cm2/s.

  12. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films

    NASA Astrophysics Data System (ADS)

    Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A.; Faris, Tsegie; Cronin, Harry; Silva, S. Ravi P.; Sainsbury, Toby; Gilmore, Ian S.; Stoeva, Zlatka; Pollard, Andrew J.

    2017-05-01

    Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international standardisation.

  13. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  14. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes.

    PubMed

    Koók, László; Nemestóthy, Nándor; Bakonyi, Péter; Zhen, Guangyin; Kumar, Gopalakrishnan; Lu, Xueqin; Su, Lianghu; Saratale, Ganesh Dattatraya; Kim, Sang-Hyoun; Gubicza, László

    2017-05-01

    In this work, the performance of dual-chamber microbial fuel cells (MFCs) constructed either with commonly used Nafion ® proton exchange membrane or supported ionic liquid membranes (SILMs) was assessed. The behavior of MFCs was followed and analyzed by taking the polarization curves and besides, their efficiency was characterized by measuring the electricity generation using various substrates such as acetate and glucose. By using the SILMs containing either [C 6 mim][PF 6 ] or [Bmim][NTf 2 ] ionic liquids, the energy production of these MFCs from glucose was comparable to that obtained with the MFC employing polymeric Nafion ® and the same substrate. Furthermore, the MFC operated with [Bmim][NTf 2 ]-based SILM demonstrated higher energy yield in case of low acetate loading (80.1 J g -1 COD in m -2  h -1 ) than the one with the polymeric Nafion ® N115 (59 J g -1 COD in m -2  h -1 ). Significant difference was observed between the two SILM-MFCs, however, the characteristics of the system was similar based on the cell polarization measurements. The results suggest that membrane-engineering applying ionic liquids can be an interesting subject field for bioelectrochemical system research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of composition on properties of In2O3-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  16. Ion-exchange synthesis and magneto-optical spectra of colored magnetic thin films composed of metal(II) hexacyanochromate(III).

    PubMed

    Tozawa, Masanori; Ohkoshi, Shin-ichi; Kojima, Norimichi; Hashimoto, Kazuhito

    2003-05-21

    Magnetic thin films composed of hexacyanochromate-based magnets, MII1.5[CrIII(CN)6].ZH2O (M = Co, Ni, Cu), were prepared on a transparent Nafion membrane by an ion-exchange process and their Faraday spectra were observed in the visible region.

  17. SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Fu, Zhimin; Liu, Jinying; Liu, Qifeng

    2016-01-01

    A membrane consisting of a blend of sulfonated poly(ether ether ketone) (SPEEK), poly(vinylidene fluoride) (PVDF), and poly(ether sulfone) (PES) has been fabricated and used as an ion exchange membrane for application in vanadium redox flow batteries (VRBs). The vanadium ion permeability of the SPEEK/PVDF/PES membrane was one order of magnitude lower than that of Nafion 117 membrane. The low-cost composite membrane exhibited better performance than Nafion 117 membrane at the same operating condition. A VRB single cell with SPEEK/PVDF/PES membrane showed significantly lower capacity loss, higher coulombic efficiency (>95%), and higher energy efficiency (>82%) compared with Nafion 117 membrane. In the self-discharge test, the duration of the cell with the SPEEK/PVDF/PES membrane was nearly two times longer than that with Nafion 117 membrane. Considering these good properties and its low cost, SPEEK/PVDF/PES membrane is expected to have excellent commercial prospects as an ion exchange membrane for VRB systems.

  18. Migration of copper from nanocopper/LDPE composite films.

    PubMed

    Liu, Fang; Hu, Chang-Ying; Zhao, Quan; Shi, Yu-Jie; Zhong, Huai-Ning

    2016-11-01

    Three nanocopper/low-density polyethylene (LDPE) composite films were tested in food simulants (3% acetic acid and 10% ethanol) and real food matrices (rice vinegar, bottled water and Chinese liquor) to explore the behaviours of copper migration using ICP-OES and GFAAS. The effects of exposure time, temperature, nanocopper concentration and contact media on the release of copper from nanocopper/LDPE composite films were studied. It was shown that the migration of copper into 10% ethanol was much less than that into 3% acetic acid at the same conditions. With the increase of nanocopper concentration, exposure time and temperature, the release of copper increased. Copper migration does not appear to be significant in the case of bottled water and Chinese liquor compared with rice vinegar with a maximum value of 0.54 μg mL -1 for the CF-0.25# bags at 70°C for 2 h. The presence and morphology of copper nanoparticles in the films and the topographical changes of the films were confirmed by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). In this manner, copper nanoparticles of different morphologies, sizes and distribution were found, and samples with higher nanocopper concentration had a more irregular topography. In the case of Fourier transform infrared spectroscopy (FTIR), no chemical bonds formed between copper nanoparticles and LDPE. Copper nanoparticles were just as physically dispersed in LDPE.

  19. Assembly of potassium niobate nanosheets/silver oxide composite films with good SERS performance towards crystal violet detection

    NASA Astrophysics Data System (ADS)

    Zhu, Kun; Hong, Zhen; Kang, Shi-Zhao; Qin, Lixia; Li, Guodong; Li, Xiangqing

    2018-04-01

    The orderly potassium niobate nanosheets/silver oxide (Ag2O) composite films with uniform morphology were achieved by layer-by-layer self-assembly combined with ultraviolet light irradiation. The composition, structure and morphology of the potassium niobate nanosheets/Ag2O composite films were studied by XPS, XRD and SEM. Furthermore, the films were used as a SERS probe to detect crystal violet molecules. The results showed that the potassium niobate nanosheets/Ag2O composite films were an active substrate for fast and sensitive detection of crystal violet with low concentration. The limit of detection by the films can reach 1 × 10-6 mol L-1. Both electromagnetic enhancement and chemical enhancement contributed to the enhanced SERS in the (potassium niobate nanosheets/Ag2O)4 films. Moreover, it was found that the films were relatively stable under light irradiation or heat treatment in a certain range.

  20. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE PAGES

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    2016-11-17

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  1. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  2. Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single target

    NASA Astrophysics Data System (ADS)

    Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari

    2016-11-01

    Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.

  3. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    NASA Astrophysics Data System (ADS)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  4. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    NASA Astrophysics Data System (ADS)

    Gamble, Lisa M.; Farrell, Thomas J.; Jones, Glenn W.; Hayward, Joseph E.

    2003-04-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions.

  5. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film.

    PubMed

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-04-07

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions.

  6. Films based on neutralized chitosan citrate as innovative composition for cosmetic application.

    PubMed

    Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P

    2016-10-01

    In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore.

    PubMed

    Zargoosh, Kiomars; Chaichi, Mohammad Javad; Shamsipur, Mojtaba; Hossienkhani, Saman; Asghari, Sakineh; Qandalee, Mohammad

    2012-05-15

    A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated H(2)O(2) was constructed by the effective immobilization of glucose oxidase (GOD)/carbon-nanotubes (CNTs)/gold nanoparticles (GNPs) in nafion film on graphite support. The influences of various experimental parameters such as solution pH, the action time of the enzyme, interferents and the concentration of CL reagents were investigated. Carbon nanotubes and gold nanoparticles offer excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between glucose oxidase and glucose, which would enable sensitive determination of glucose. Under the optimum condition, the linear response range of glucose was found to be 2.25 × 10(-6) to 1.75 × 10(-4 ) mol L(-1), and the detection limit (defined as the concentration that could be detected at the signal-to-noise ratio of 3) was 1.00 × 10(-6) mol L(-1). The CL biosensor exhibited good storage stability, i.e., 80% of its initial response was retained after 10 days storage at pH 7.0. The present CL biosensor has been used to determine the glucose concentrations in real serum and urine samples with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effects of the PPy layer thickness on Co-PPy composite films

    NASA Astrophysics Data System (ADS)

    Haciismailoglu, Murside

    2015-11-01

    Co-PPy composite films were electrodeposited on ITO substrate from two different solutions potentiostatically. Firstly, the PPy layers with the thicknesses changing from 20 to 5000 nm were produced on ITO. Then Co was electrodeposited on these PPy/ITO substrates with a charge density of 1000 mC cm-2. The electrochemical properties were investigated by the current density-time transients and the variation of the elapsed time for the Co deposition depending on the PPy layer thickness. X-ray photoelectron (XPS) spectra indicated the presence of both Co metal and its oxides on the surface. The weak reflections of the Co3O4, CoO and hcp Co were detected by the X-ray diffraction (XRD) technique. According to scanning electron microscopy (SEM) images, the thickness of the PPy layer strongly affects the Co nucleation. The composite films with the PPy layer thinner than 200 nm and thicker than 2000 nm have an isotropic magnetic behavior due to the symmetrical crystal field. The composite films with the PPy layer thicknesses between 200 and 2000 nm have an anisotropic magnetic behavior attributable to the deterioration of this symmetrical crystal field by the PPy bubbles on the surface. All films are hard magnetic material, since the coercivities are larger than 125 Oe.

  9. Influence of external magnetic field on the microwave absorption properties of carbonyl iron and polychloroprene composites film

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Mingjie; Li, Xueai

    2016-12-01

    The carbonyl iron particles were dispersed in a polychloroprene rubber (CR) matrix under a magnetic field for a practical application as microwave absorption composites film. In comparison with the carbonyl iron particles (CIP)/CR composites film prepared by general route, such films made with external magnetic field exhibit excellent microwave absorption properties, strongly depending on the increment of anisotropy and rearrangement of magnetic particles. The film made under external magnetic field with a thickness of only 0.54 mm shows least reflection loss of -15.98 dB and the reflection loss value less than -10.0 dB over the frequency range of 11.4˜14.8 GHz. The results indicated the composite film made under external magnetic field have excellent microwave absorption properties, which suggest that the composites thin film could be used as a thinner and lighter microwave absorber.

  10. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  11. Preparation of smooth, flexible and stable silver nanowires- polyurethane composite transparent conductive films by transfer method

    NASA Astrophysics Data System (ADS)

    Bai, Shengchi; Wang, Haifeng; Yang, Hui; Zhang, He; Guo, Xingzhong

    2018-02-01

    Silver nanowires (AgNWs)-polyurethane (PU) composite transparent conductive films were fabricated via transfer method using AgNWs conductive inks and polyurethane as starting materials, and the effects of post-treatments including heat treatment, NaCl solution bath and HCl solution bath for AgNWs film on the sheet resistance and transmittance of the composite films were respectively investigated in detail. AgNWs networks are uniformly embedded in the PU layer to improve the adhesion and reduce the surface roughness of AgNWs-PU composite films. Heat treatment can melt and weld the nanowires, and NaCl and HCl solution baths promote the dissolution and re-deposition of silver and the dissolving of the polymer, both which form conduction pathways and improve contact of AgNWs for reducing the sheet resistance. Smooth and flexible AgNWs-PU composite film with a transmittance of 85% and a sheet resistance of 15 Ω · sq‑1 is obtained after treated in 0.5 wt% HCl solution bath for 60 s, and the optoelectronic properties of the resultant composite film can maintain after 1000 cycles of bending and 100 days.

  12. The Effect of the Melt Viscosity and Impregnation of a Film on the Mechanical Properties of Thermoplastic Composites

    PubMed Central

    Kim, Jong Won; Lee, Joon Seok

    2016-01-01

    Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP) films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf), and void content (Vc) were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). The tensile property, flexural property, interlaminar shear strength (ILSS), and scanning electron microscopy (SEM) were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites. PMID:28773572

  13. Surface-coated fly ash reinforced biodegradable poly(vinyl alcohol) composite films: part 2-analysis and characterization

    NASA Astrophysics Data System (ADS)

    Nath, D. C. D.; Bandyopadhyay, S.; Campbell, J.; Yu, A.; Blackburn, D.; White, C.

    2010-12-01

    Composite films of poly(vinyl alcohol) (PVA) reinforced with 5, 10, 15, 20 and 25 wt.% surface-coated fly ash by surfactant, sodium lauryl sulphate (SLS-FA) along with 1 wt.% cross-linking agent, glutaraldehyde (GLA) were prepared by aqueous casting method. The tensile strengths of the composite films were increased proportionally with the addition of SLS-FA. The maximum 75% higher strength of the composite with 20 wt.% was achieved compared to that of neat PVA. The modulus of the composites was also increased proportionally with SLS-FA and the maximum 218% reached in composite with 20 wt.%, but the strain at break was decreased with addition of SLS-FA. Changes in FTIR spectra reflect the chemical and/or physical bonding in the ternary PVA, SLS-FA and GLA component systems. In the study of surface morphology, the connectivity was visualized in SEM images along with interstitial voids. The films with SLS-FA show 53% smoother surface calculated with AFM compared to unmodified FA composite films.

  14. Fabrication of Thermoplastic Composite Laminates Having Film Interleaves By Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)

    2001-01-01

    Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

  15. Nafion(TM) Coats For Electrodes In Liquid-Feed Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald; Vamos, Eugene; Frank, Harvey A.

    1995-01-01

    Coating or impregnation with commercially available material enables oxidation of organic liquid fuels. Nafion(TM) investigated for use in application because of known combination of desirable characteristics: It is perfluorinated, hydrophilic, proton-conducting ion-exchange polymer exhibiting relatively high thermal and electrochemical stability and not detrimental to kinetics of electrochemical processes. Available in solubilized form and used to apply stable coats to surfaces of electrodes.

  16. Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading.

    PubMed

    Li, Zhen; He, Guangwei; Zhang, Bei; Cao, Ying; Wu, Hong; Jiang, Zhongyi; Tiantian, Zhou

    2014-06-25

    In this study, phytic acid (myo-inositol hexaphosphonic acid) was first immobilized by MIL101 via vacuum-assisted impregnation method. The obtained phytic@MIL101 was then utilized as a novel filler to incorporate into Nafion to fabricate hybrid proton exchange membrane for application in PEMFC under different relative humidities (RHs), especially under low RHs. High loading and uniform dispersion of phytic acid in MIL 101(Cr) were achieved as demonstrated by ICP, FT-IR, XPS, and EDS-mapping. The phytic@MIL101 was dispersed homogeneously in the Nafion matrix when the filler content was less than 12%. Hybrid membranes were evaluated by proton conductivity, mechanical property, thermal stability, and so forth. Remarkably, the Nafion/phytic@MIL hybrid membranes showed high proton conductivity at different RHs, especially under low RHs, which was up to 0.0608 S cm(-1) and 7.63 × 10(-4) S cm(-1) at 57.4% RH and 10.5% RH (2.8 and 11.0 times higher than that of pristine membrane), respectively. Moreover, the mechanical property of Nafion/phtic@MIL hybrid membranes was substantially enhanced and the thermal stability of membranes was well preserved.

  17. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  18. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  19. Harvesting polysulfides by sealing the sulfur electrode in a composite ion-selective net

    NASA Astrophysics Data System (ADS)

    Chen, Yazhou; Li, Zhong; Li, Xuekui; Zeng, Danli; Xu, Guodong; Zhang, Yunfeng; Sun, Yubao; Ke, Hanzhong; Cheng, Hansong

    2017-11-01

    A cathode was prepared by sealing a carbon supported sulfur electrode inside a composite ion-selective net made of carbon, binder and lithiated ionomer to restrict shuttling of polysulfide anionic species. As a result, the soluble polysulfide anions become unable to escape from the composite ion-selective films due to the electrostatic repulsion between the immobilized single ion conducting ionomers and the polysulfides with no dead angles. Experimentally, lithiated 4,4‧-difluoro bis(benzene sulfonyl)imide and PEG200 were copolymerized to form a polyether based single ion conducting polymer. The ionic conductivity of the blend film made of ionomer and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) at a mass ratio of 1:1 is 0.57 mS cm-1 at room temperature. The battery capacity with the sealed sulfur electrode is 1412 mAh g-1 at 0.5 C, 1041 mAh g-1 at 1.0 C, 873 mAh g-1 at 2.0 C and 614 mAh g-1 at 5.0 C, significantly better than the results with lithiated Nafion especially at high C rates. In addition, a long cycling test at 2 C for 500 cycles gives rise to a stable capacity of 800 mAh g-1. The intrinsic electrostatic repulsion between polysulfide anions and the negatively charged electrolyte film, together with the overall sealed electrode configuration, is responsible for blocking the shuttling of polysulfides effectively.

  20. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties.

    PubMed

    Shankar, Shiv; Tanomrod, Nattareya; Rawdkuen, Saroat; Rhim, Jong-Whan

    2016-11-01

    Silver nanoparticles (AgNPs) was synthesized by a green method using an aqueous extract of Caesalpinia mimosoides Lamk (CMLE) as reducing and stabilizing agents, and they were used for the preparation of pectin-based antimicrobial composite films. The AgNPs were spherical in shape with the size in the range of 20-80nm and showed the absorption peak around 500nm. The pectin/AgNPs composite film exhibited characteristic absorption peak of AgNPs at 480nm. The surface color and light transmittance of the pectin films were greatly influenced by the addition of AgNPs. The lightness of the films decreased, however, redness and yellowness of the films increased after incorporation of AgNPs. UV-light barrier property of the pectin film increased significantly with a little decrease in the transparency. Though there were no structural changes in the pectin film by the incorporation of CMLE and AgNPs as indicated by the FTIR results, the film properties such as thermal stability, mechanical strength, and water vapor barrier properties of the pectin films increased. The pectin/AgNPs nanocomposite films exhibited strong antibacterial activity against food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies

    NASA Astrophysics Data System (ADS)

    ElKaoutit, Mohammed; Naranjo-Rodriguez, Ignacio; Domínguez, Manuel; Hidalgo-Hidalgo-de-Cisneros, José Luis

    2011-10-01

    Use of a mixture of Nafion and glutaraldehyde as new immobilization matrix was described. The percentage of Nafion was optimized to prevent denaturation of horseradish peroxidase enzyme after its crosslinkage with glutaraldehyde on electro-synthesized polypyrrole surface. Topographic study by Atomic Force Microscopy (AFM) shows that the enzyme seems to have been introduced inside the ionic cluster of Nafion. The characterization of the resulting bio-interfaces by UV-vis and FT-IR shows that the intra-crosslinkage phenomena caused by the use of glutaraldehyde can be eliminated by the optimization of the concentration of Nafion additive. The secondary structure contents of native and immobilized enzyme were analyzed by a Gaussian curve fitting of the respective FT-IR spectra in the amide I region. Immobilized enzyme presented notable increasing percentages of globular and short helical structure compared with native enzyme. This indicates that immobilized enzyme was folded which is in accordance with AFM studies and supports the enzyme entrance inside ionic clutter of Nafion. Thanks to synergic effects of the polypyrrole conducting polymer and the perfluorosulfonic acid polymer Nafion, HRP enzyme was immobilized in its "native" state, the resulting biosensor was able to sense peroxide without any chemical mediator and can be categorized as third generation.

  2. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.

    PubMed

    Liu, Wen; Jiang, Jianbing; Yang, Ke R; Mi, Yingying; Kumaravadivel, Piranavan; Zhong, Yiren; Fan, Qi; Weng, Zhe; Wu, Zishan; Cha, Judy J; Zhou, Henghui; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang

    2017-04-04

    Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

  3. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  4. A Novel Method for Fabricating Wearable, Piezoresistive, and Pressure Sensors Based on Modified-Graphite/Polyurethane Composite Films

    PubMed Central

    He, Yin; Li, Wei; Yang, Guilin; Liu, Hao; Lu, Junyu; Zheng, Tongtong; Li, Xiaojiu

    2017-01-01

    A wearable, low-cost, highly repeatable piezoresistive sensor was fabricated by the synthesis of modified-graphite and polyurethane (PU) composites and polydimethylsiloxane (PDMS). Graphite sheets functionalized by using a silane coupling agent (KH550) were distributed in PU/N,N-dimethylformamide (DMF) solution, which were then molded to modified-graphite/PU (MG/PU) composite films. Experimental results show that with increasing modified-graphite content, the tensile strength of the MG/PU films first increased and then decreased, and the elongation at break of the composite films showed a decreasing trend. The electrical conductivity of the composite films can be influenced by filler modification and concentration, and the percolation threshold of MG/PU was 28.03 wt %. Under liner uniaxial compression, the 30 wt % MG/PU composite films exhibited 0.274 kPa−1 piezoresistive sensitivity within the range of low pressure, and possessed better stability and hysteresis. The flexible MG/PU composite piezoresistive sensors have great potential for body motion, wearable devices for human healthcare, and garment pressure testing. PMID:28773047

  5. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    PubMed

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  6. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  7. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecularmore » device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.« less

  8. Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films

    DTIC Science & Technology

    2010-01-01

    Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled

  9. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    DTIC Science & Technology

    2017-12-04

    34High-Concentration III-V Multijunction Solar Cells," 2017, <http://www.nrel.gov/ pv /high-concentration-iii-v-multijunction- solar - cells.html>. O. K...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR ...0242 Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Searching for a new ionomer for 3D printable ionic polymer-metal composites: Aquivion as a candidate

    NASA Astrophysics Data System (ADS)

    Trabia, Sarah; Olsen, Zakai; Kim, Kwang J.

    2017-11-01

    The work presented in this paper introduces Aquivion as a potential candidate for additive manufacturing of ionomeric polymers for the application of IPMCs. First, Aquivion was characterized and compared with Nafion to show that it has the similar qualities, with the major difference being the ionic conductivity. Ionic polymer-metal composites (IPMCs) were fabricated using off-the-shelf membranes of Nafion and Aquivion. The actuation tests showed improved performance for an IPMC with Aquivion as the base compared to an IPMC with a Nafion base. With these results in mind, additive manufacturing of unique shapes using Aquivion filament was studied. A 3D printer was modified to work with Aquivion filament and the polymer was printed into various shapes. Using the printed membranes, IPMCs were fabricated using an electroless plating process. Nafion-based and printed Aquivion-based IPMCs were tested for their performance in back relaxation, frequency driven actuation, blocking force, and mechano-electric sensing. The printed Aquivion-based IPMCs performed comparably to Nafion-based IPMC in back relaxation and showed significantly improved performance in frequency driven actuation, blocking force generation, and mechano-electric sensing.

  11. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. © 2014 Wiley Periodicals, Inc.

  12. Composition- and crystallinity-dependent thermoelectric properties of ternary BixSb2-xTey films

    NASA Astrophysics Data System (ADS)

    Kim, Jiwon; Lim, Jae-Hong; Myung, Nosang V.

    2018-01-01

    BixSb2-xTey films with controlled compositions were synthesized by a simple and cost-effective electrodeposition technique followed by post-annealing, for thermoelectric applications. Tailoring the chemical composition of ternary BixSb2-xTey materials is critical to adjust the carrier concentration and carrier type, which are crucial to determine their thermoelectric performance. Herein, the composition of electrodeposited BixSb2-xTey film was simply tailored by controlling the [Sb]/[Bi] ratio in the electrolytes while maintaining their dense and uniform morphology. Crystallographic properties of the BixSb2-xTey films, such as crystallinity and grain size changes, were confirmed by X-ray diffraction. Room-temperature measurements of electrical conductivity, Hall mobility, and carrier concentration revealed that the substitution of Bi with Sb decreased the carrier concentration, and increased the mobility. The Seebeck coefficient of the ternary BixSb2-xTey films transitioned between p- and n-type characteristics with an increase in the Bi content. Moreover, the mobility-dependent electrical conductivity of the Bi10Sb30Te60 film resulted in a high Seebeck coefficient owing to decreased carrier concentration of the film, leading to a power factor (PF) of ∼490 μW/m K2. This is more than 10 times higher than the PF values of binary nanocrystalline Sb2Te3 films.

  13. Synthesis, Structural, Optical and Dielectric Properties of Nanostructured 0-3 PZT/PVDF Composite Films.

    PubMed

    Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R

    2018-07-01

    Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.

  14. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer.

    PubMed

    Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya

    2017-12-01

    The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.

  15. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    PubMed

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  16. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  17. Compositional analysis of ultrananocrystalline diamond (UNCD) films using ion beam scattering

    NASA Astrophysics Data System (ADS)

    AlFaify, S.; Garratt, E.; Nandasiri, M. I.; Kayani, A.; Sumant, A. V.; Mancini, D. C.

    2009-11-01

    Determination of the elemental composition is important to correlate the electrical and the optical properties of ultrananocrystalline diamond (UNCD) films, doped with and without nitrogen. To obtain the complete picture of impurities in the UNCD thin films, Rutherford backscattering spectroscopy (RBS), Non-Rutherford backscattering spectroscopy (NRBS), Elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were performed on UNCD films on Si substrate and on free standing films. Helium beam was used for RBS and ERDA and protons were used for NRBS measurements. Exploiting the nuclear reaction of deuterons with C, O and N, 1.1 MeV D+ beam was used to quantitatively measure the concentration of these elements. Our results show that UNCD films contain less than 3% of Hydrogen while Nitrogen content incorporated in the film was estimated to be lower than 1%. The intermixing region between the substrate and the film was found to be negligible.

  18. [The effect of C-SiO2 composite films on corrosion resistance of dental Co-Cr alloy].

    PubMed

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm 2 to -5.3006 μA/cm 2 . Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  19. Highly Transparent, Nanofiller-Reinforced Scratch-Resistant Polymeric Composite Films Capable of Healing Scratches.

    PubMed

    Li, Yang; Chen, Shanshan; Li, Xiang; Wu, Mengchun; Sun, Junqi

    2015-10-27

    Integration of healability and mechanical robustness is challenging in the fabrication of highly transparent films for applications as protectors in optical and displaying devices. Here we report the fabrication of healable, highly transparent and scratch-resistant polymeric composite films that can conveniently and repeatedly heal severe damage such as cuts of several tens of micrometers wide and deep. The film fabrication process involves layer-by-layer (LbL) assembly of a poly(acrylic acid) (PAA) blend and branched poly(ethylenimine) (bPEI) blend, where each blend contains the same polyelectrolytes of low and high molecular weights, followed by annealing the resulting PAA/bPEI films with aqueous salt solution and incorporation of CaCO3 nanoparticles as nanofillers. The rearrangement of low-molecular-weight PAA and bPEI under aqueous salt annealing plays a critical role in eliminating film defects to produce optically highly transparent polyelectrolyte films. The in situ formation of tiny and well-dispersed CaCO3 nanoparticles gives the resulting composite films enhanced scratch-resistance and also retains the healing ability of the PAA/bPEI matrix films. The reversibility of noncovalent interactions among the PAA, bPEI, and CaCO3 nanoparticles and the facilitated migration of PAA and bPEI triggered by water enable healing of the structural damage and restoration of optical transparency of the PAA/bPEI films reinforced with CaCO3 nanoparticles.

  20. Water Dynamics in Nafion Fuel Cell Membranes: the Effects of Confinement and Structural Changes on the Hydrogen Bond Network

    PubMed Central

    Moilanen, David E.; Piletic, Ivan R.; Fayer, Michael D.

    2008-01-01

    The complex environments experienced by water molecules in the hydrophilic channels of Nafion membranes are studied by ultrafast infrared pump-probe spectroscopy. A wavelength dependent study of the vibrational lifetime of the O-D stretch of dilute HOD in H2O confined in Nafion membranes provides evidence of two distinct ensembles of water molecules. While only two ensembles are present at each level of membrane hydration studied, the characteristics of the two ensembles change as the water content of the membrane changes. Time dependent anisotropy measurements show that the orientational motions of water molecules in Nafion membranes are significantly slower than in bulk water and that lower hydration levels result in slower orientational relaxation. Initial wavelength dependent results for the anisotropy show no clear variation in the time scale for orientational motion across a broad range of frequencies. The anisotropy decay is analyzed using a model based on restricted orientational diffusion within a hydrogen bond configuration followed by total reorientation through jump diffusion. PMID:18728757

  1. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Dinh, D. A.; Hui, K. S.; Hui, K. N.; Cho, Y. R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-04-01

    A green facile chemical approach to control the dimensions of Ag nanoparticles-graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N2/H2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  2. Grain-size-dependent diamond-nondiamond composite films: characterization and field-emission properties.

    PubMed

    Pradhan, Debabrata; Lin, I Nan

    2009-07-01

    Diamond films with grain sizes in the range of 5-1000 nm and grain boundaries containing nondiamond carbon are deposited on a silicon substrate by varying the deposition parameters. The overall morphologies of the as-deposited diamond-nondiamond composite films are examined by scanning electron microscopy and atomic force microscopy, which show a decrease in the surface roughness with a decrease in the diamond grain size. Although the Raman spectra show predominately nondiamond carbon features in the diamond films with smaller grain sizes, glancing-angle X-ray diffraction spectra show the absence of graphitic carbon features and the presence of very small amorphous carbon diffraction features. The CH4 percentage (%) in Ar and H2 plasma during deposition plays a crucial role in the formation of diamond films with different grain sizes and nondiamond carbon contents, which, in turn, determines the field-emission behavior of the corresponding diamond films. The smaller the grain size of the diamond, the lower is the turn-on field for electron emission. A lower turn-on field is obtained from the diamond films deposited with 2-5% CH4 than from the films deposited with either 1% or 7.5% CH4 in the Ar medium. A current density greater than 1 mA/cm2 (at 50 V/microm) is obtained from diamond films deposited with a higher percentage of CH4. A model is suggested for the field-emission mechanism from the diamond-nondiamond composite films with different diamond grain sizes and nondiamond contents.

  3. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  4. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture.

    PubMed

    Hu, Xiaorong; Chen, Lin; Tao, Dandan; Ma, Zhaocheng; Liu, Shilin

    2017-01-05

    The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC), the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young's modulus value increased from 3.2 GPa (RC film) to 5.1 GPa (RCBEA50 film). The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA) resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials.

  5. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture

    PubMed Central

    Hu, Xiaorong; Chen, Lin; Tao, Dandan; Ma, Zhaocheng; Liu, Shilin

    2017-01-01

    The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC), the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young’s modulus value increased from 3.2 GPa (RC film) to 5.1 GPa (RCBEA50 film). The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA) resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials. PMID:28772399

  6. Optical properties of InGaN thin films in the entire composition range

    NASA Astrophysics Data System (ADS)

    Kazazis, S. A.; Papadomanolaki, E.; Androulidaki, M.; Kayambaki, M.; Iliopoulos, E.

    2018-03-01

    The optical properties of thick InGaN epilayers, with compositions spanning the entire ternary range, are studied in detail. High structural quality, single phase InxGa1-xN (0001) films were grown heteroepitaxially by radio-frequency plasma assisted molecular-beam epitaxy on freestanding GaN substrates. Their emission characteristics were investigated by low temperature photoluminescence spectroscopy, whereas variable angle spectroscopic ellipsometry was applied to determine the complex dielectric function of the films, in the 0.55-4.0 eV photon range. Photoluminescence lines were intense and narrow, in the range of 100 meV for Ga-rich InGaN films (x < 0.3), around 150 meV for mid-range composition films (0.3 < x < 0.6), and in the range of 50 meV for In-rich alloys (x > 0.6). The composition dependence of the strain-free emission energy was expressed by a bowing parameter of b = 2.70 ± 0.12 eV. The films' optical dielectric function dispersion was obtained by the analysis of the ellipsometric data employing a Kramers-Kronig consistent parameterized optical model. The refractive index dispersion was obtained for alloys in the entire composition range, and the corresponding values at the band edge show a parabolic dependence on the InN mole fraction expressed by a bowing parameter of b = 0.81 ± 0.04. The bowing parameter describing the fundamental energy bandgap was deduced to be equal to 1.66 ± 0.07 eV, consistent with the ab initio calculations for statistically random (non-clustered) InGaN alloys.

  7. Geometric and compositional factors on critical current density in YBa2Cu3O7‑δ films containing nanorods

    NASA Astrophysics Data System (ADS)

    Horide, Tomoya; Nagao, Sho; Izutsu, Ryosuke; Ishimaru, Manabu; Kita, Ryusuke; Matsumoto, Kaname

    2018-06-01

    Critical current density (J c) was investigated in YBa2Cu3O7‑δ films containing nanorods prepared with various nanorod materials, with variation of nanorod content, substrate temperature, and oxidization condition. Three types of compositional situation were realized: films containing strain induced oxygen vacancies; fully oxidized films containing cation compositional deviation; and oxygen deficient films. Normalized J c‑B behavior was determined via the matching field, which is a geometric factor, regardless of the compositional details. A J c‑critical temperature (T c) relation depending on distribution and fraction of compositional deviation (cation compositional deviation and strain induced oxygen vacancies) was found: the J c values decreased with decreasing T c due to the effect of T c on nanorod pinning strength in the fully oxidized films; J c decreased with decreasing oxygen pressure in the film cooling process after film deposition in spite of T c remaining almost the same, due to reduction of the effective area for current flow in the oxygen deficient films. Thus, a J c landscape based on geometric and compositional factors was obtained. The study highlights the importance of the J c‑T c analysis in the understanding of J c in YBa2Cu3O7‑δ films containing nanorods.

  8. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    PubMed

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  9. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-08-01

    The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO2/ZnO composite film is synthesized by surface modification with TiO2 via sol-gel methods. Results show the anatase TiO2/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO2/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules.

  10. Substrate bias effects on composition and coercivity of CoCrTa/Cr thin films on canasite and glass

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lambeth, D. N.; Sui, X.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    CoCrTa/Cr thin films were prepared by rf diode sputtering onto canasite and glass substrates at various bias voltages from two targets of different compositions (Co82.8Cr14.6Ta2.6 and Co86Cr12Ta2). While Auger depth profile analysis indicates that there is some broadening at the CoCrTa-Cr interface, x-ray fluorescence spectroscopy reveals that changes in alloy composition due to the resputtering processes are even more prominent. For both targets, as the substrate bias increases the Co content in the films declines, and the magnetization decreases. The maximum film coercivity appears to correlate to the final film composition. By investigating the results from both targets, it is concluded that the coercivity reaches a maximum when the film composition is in the neighborhood of Co84Cr13Ta3. Thus, to optimize the coercivity different bias voltages are required for each target. Excessive substrate bias, however, leads to films with low magnetization and coercivity.

  11. Formulation and characterization of novel composite semi-refined iota carrageenan-based edible film incorporating palmitic acid

    NASA Astrophysics Data System (ADS)

    Praseptiangga, Danar; Giovani, Sarah; Manuhara, Godras Jati; Muhammad, Dimas Rahadian Aji

    2017-09-01

    Novel composite films based on semi-refined iota-carrageenan (SRIC) incorporating palmitic acid (PA) were prepared by an emulsification method. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined iota-carrageenan edible films in order to improve water vapor barrier properties. Composite SRIC-based films with varying concentrations of PA (10%, 20%, and 30% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused a significant increase (p < 0.05) in thickness as the concentration of PA increased (from 10% to 30% w/w). The mechanical properties of semi-refined iota-carrageenan were also affected by PA incorporation; increasing the concentration of PA (from 10% to 30% w/w) in films improved the tensile strength (TS). Interestingly, the TS value increased to a peak at 20% w/w PA. However, the TS value showed a decrease when PA were added at 30% w/w. Elongation-at-break (EAB) were significantly (p < 0.05) decreased when the concentration of PA in films increased (from 10% to 30% w/w). Furthermore, the incorporation of PA also affected the water vapor barrier properties of the films. Water vapor transmission rate (WVTR) of the composite semi-refined iota-carrageenan-based edible film decreased significantly (p < 0.05) as the concentration of palmitic acid increased (from 10% to 30% w/w). Composite SRIC-based edible film incorporating 30% w/w of PA presented better water vapor barrier properties as compared to other films with 10% and 20% w/w PA incorporation. Thus, formulation containing 30% w/w palmitic acid promoted films with a highly beneficial to improve water vapor barrier properties and it has the potential for food packaging applications.

  12. The photosensitivity of carbon quantum dots/CuAlO2 films composites.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-31

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  13. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  14. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria.

    PubMed

    Guo, Mingming; Jin, Tony Z; Yadav, Madhav P; Yang, Ruijin

    2015-09-02

    Edible antimicrobial composite films from micro-emulsions containing all natural compounds were developed and their antimicrobial properties and microstructures were investigated. Chitosan, allyl isothiocyanate (AIT), barley straw arabinoxylan (BSAX), and organic acids (acetic, lactic and levulinic acids) were used as film-forming agent, antimicrobial agent, emulsifier, and solvent, respectively. Micro-emulsions were obtained using high pressure homogenization (HPH) processing at 138MPa for 3cycles. The composite films made from the micro-emulsions significantly (p<0.05) inactivated Listeria innocua in tryptic soy broth (TSB) and on the surface of ready-to-eat (RTE) meat samples, achieving microbial reductions of over 4logCFU/ml in TSB after 2days at 22°C and on meat samples after 35days at 10°C. AIT was a major contributor to the antimicrobial property of the films and HPH processing further enhanced its antimicrobial efficacy, while the increase of chitosan from 1.5% to 3%, or addition of acetic acid to the formulations didn't result in additional antimicrobial effects. This study demonstrated an effective approach to developing new edible antimicrobial films and coatings used for food applications. Published by Elsevier B.V.

  15. Physics of transduction in ionic liquid-swollen Nafion membranes

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2006-03-01

    Ionic polymer transducers are a class of electroactive polymers that are able to generate large strains (1-5%) in response to low voltage inputs (1-5 V). Additionally, these materials generate electrical charge in response to mechanical strain and are therefore able to operate as soft, distributed sensors. Traditionally, ionic polymer transducers have been limited in their application by their hydration dependence. This work seeks to overcome this limitation by replacing the water with an ionic liquid. Ionic liquids are molten salts that exhibit very high thermal and electrochemical stability while also possessing high ionic conductivity. Results have shown that an ionic liquid-swollen ionic polymer transducer can operate for more than 250,000 cycles in air as compared to about 2,000 cycles for a water-swollen transducer. The current work examines the mechanisms of transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a model of the charge transport mechanism responsible for electromechanical coupling in these membranes.

  16. Fabrication and optical nonlinearities of composite films derived from the water-soluble Keplerate-type polyoxometalate and chloroform-soluble porphyrin.

    PubMed

    Shi, Zonghai; Zhou, Yunshan; Zhang, Lijuan; Yang, Di; Mu, Cuncun; Ren, Haizhou; Shehzad, Farooq Khurum; Li, Jiaqi

    2015-03-07

    Composite films derived from the water-soluble Keplerate-type polyoxometalate (NH4)42[Mo132O372(CH3COO)30(H2O)72]·ca. 300H2O·ca. 10CH3COONH4 (denoted (NH4)42{Mo132}) and chloroform-soluble tetraphenylporphyrin perchlorate [H2TPP](ClO4)2 are successfully fabricated by a layer-by-layer self-assembly method and characterized by UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The structure of the {Mo132} and [H2TPP](2+) in the films remain intact in light of the results of UV-vis spectroscopy and XPS. UV-vis spectra measurements reveal that the amounts of deposition of {Mo132} and [H2TPP](2+) remain constant in every adsorption cycle in the composite films assembly process. Nonlinear optical properties of the composite films have been investigated by using the Z-scan technique at a wavelength of 532 nm and pulse width of 7 ns. The results show that the composite films have notable nonlinear saturated absorption and self-defocusing effects. The combination of {Mo132} with [H2TPP](2+) can result in composite films with remarkably enhanced optical nonlinearities. The interfacial charge transfer induced by laser from porphyrin to POM in the films is thought to play a key role in the enhancement of NLO response. The third-order NLO susceptibility χ((3)) of the composite films increases with the increase of film thickness.

  17. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.

    PubMed

    Chen, Junchen; Wang, Yaming; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang

    2017-06-14

    A facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm 2 (0.2 mA/cm 2 ) for rGO/PPy films, whereas optimized specific capacitance is as high as 361 F/g (0.2 mA/cm 2 ). All of the composite films exhibit excellent rate capability (at least 175 F/g at the current density of 12 mA/cm 2 ) compared with pure PPy film (only 12 F/g at the current density of 12 mA/cm 2 ). The rGO/PPy composite exhibits excellent cycling stability that maintains 104% of its initial capacitance after cycling for 2000 cycles and 80% for 5000 cycles. The two-electrode solid-state supercapacitor (SC) based on rGO/PPy composite electrodes demonstrates good rate performance, excellent cycling stability, as well as a high area capacitance of 222 mF/cm 2 . The solid-state planar SC based on the rGO/PPy composite exhibits an area capacitance of 9.4 mF/cm 2 , demonstrating great potential for fabrication of microsupercapacitors.

  19. Microstructure and dielectric properties of cellulose acetate-ZnO/ITO composite films based on water hyacinth

    NASA Astrophysics Data System (ADS)

    Diantoro, M.; Mustikasari, A. A.; Wijayanti, N.; Yogihati, C.; Taufiq, A.

    2017-05-01

    The electrical properties of Cellulose Acetate (CA), especially extracted from water hyacinth, is rarely informed. CA is generally more stable compared to its cellulose. It has a good potential for electronic application with specific modifications such as inducing metal oxide. A combination of intrinsic properties of Zinc Oxide (ZnO) and CA is expected as a great potential for electrical and optical applications. CA-ZnO/ITO composite film was investigated in relation with its structure, dielectric constant, and the effect of light intensity on their dielectric constant. CA-ZnO composite films were prepared with different mass of ZnO i.e. 0; 0,02; 0,04; 0,06 and 0,08 grams. CA-ZnO solution was synthesized via the mixing method with PEG:DMF solvents by using a magnetic hotplate stirrer with the rotation rate of 1500 rpm at 80°C. The CA-ZnO solution was then deposited onto ITO/glass substrate by using spin coating technique. The CA-ZnO/ITO films were annealed at 160°C to remove the remaining solvents. The effects of ZnO composition on the structure (crystallinity and morphology) and dielectric constant properties were investigated by using X-Ray Diffractometer, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and LCR meter. It was shown that cellulose can be isolated from water hyacinth with the yield of 67,72 % by Chesson method and can further be transformed into CA. The X-ray diffraction pattern showed that there are 2 phases formed i.e. CA and ZnO. Furthermore, greater ZnO amount increased the crystallinity of composite films. The CA-ZnO films exhibit porous films with ZnO distributed on the CA surface films. Therefore, ZnO increases the dielectric constant of CA-ZnO composite films.

  20. Effect of slurry composition on the chemical mechanical polishing of thin diamond films

    NASA Astrophysics Data System (ADS)

    Werrell, Jessica M.; Mandal, Soumen; Thomas, Evan L. H.; Brousseau, Emmanuel B.; Lewis, Ryan; Borri, Paola; Davies, Philip R.; Williams, Oliver A.

    2017-12-01

    Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films' various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones.

  1. Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage.

    PubMed

    Reesha, K V; Panda, Satyen Kumar; Bindu, J; Varghese, T O

    2015-08-01

    An antimicrobial packaging material was developed by uniformly embedding 1, 3 and 5% chitosan (w/w) in low density polyethylene matrix using maleic anhydride grafted LDPE as a compatible agent. The materials were mixed by compounding and blown into monolayer films via blown film extrusion. The developed films showed good barrier properties against oxygen. Characterization of the composite films with Fourier transform infrared spectroscopy revealed that chitosan and LDPE interacted well with each other. Overall migration showed better release of chitosan adduct from the LDPE matrix which enhanced the antibacterial properties of the films. The interaction between the LDPE/CS and maleic anhydride grafted LDPE had a decreasing effect on the tensile strength and heat sealing properties. Investigation on antimicrobial properties of LDPE/CS films showed 85-100% inhibition of Escherichia coli. Efficacy of LDPE/CS films was evaluated by using them as packaging material for chilled storage of Tilapia (Oreochromis mossambicus). Analysis of storage quality indices (peroxide value, free fatty acid, total volatile base nitrogen and aerobic plate count) revealed good antibacterial property and extension of shelf life of Tilapia in the chitosan incorporated novel composite films compared to virgin LDPE film. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  3. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    PubMed

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  4. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances.

    PubMed

    Xiang, Changsheng; Cox, Paris J; Kukovecz, Akos; Genorio, Bostjan; Hashim, Daniel P; Yan, Zheng; Peng, Zhiwei; Hwang, Chih-Chau; Ruan, Gedeng; Samuel, Errol L G; Sudeep, Parambath M; Konya, Zoltan; Vajtai, Robert; Ajayan, Pulickel M; Tour, James M

    2013-11-26

    A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.

  5. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Young; Kim, Kwang Heon; Kim, Kwang Bum

    Carbon nanotube (CNT)/polypyrrole (PPy) composites with controlled pore size in a three-dimensional entangled structure of a CNT film are prepared as electrode materials for a pseudocapacitor. A CNT film electrode containing nanosize silica between the CNTs is first fabricated using an electrostatic spray deposition of a mixed suspension of CNTs and nanosize silica on to a platinium-coated silicon wafer. Later, nanosize silica is removed leaving a three-dimensional entangled structure of a CNT film. Before removal of the silica from the CNT/silica film electrode, PPy is electrochemically deposited on to the CNTs to anchor them in their entangled structure. Control of the pore size of the final CNT/PPy composite film can be achieved by changing the amount of silica in the mixed suspension of CNTs and nanosize silica. Nanosize silica acts as a sacrificial filler to change the pore size of the entangled CNT film. Scanning electron microscopy of the electrochemically prepared PPy on the CNT film substrate shows that the PPy nucleated heterogeneously and deposited on the surface of the CNTs. The specific capacitance and rate capability of the CNT/PPy composite electrode with a heavy loading of PPy of around 80 wt.% can be improved when it is made to have a three-dimensional network of entangled CNTs with interconnected pores through pore size control.

  6. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2014-03-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  7. Compositional redistribution in alloy films under high-voltage electron microscope irradiation

    NASA Astrophysics Data System (ADS)

    Lam, Nghi Q.; Leaf, O. K.; Minkoff, M.

    1983-10-01

    The problem of nonequilibrium segregation in alloy films under high-voltage electron microscope (HVEM) irradiation at elevated temperatures is re-examined in the present work, taking into account the damage-rate gradients caused by radial variation in the electron flux. Axial and radial compositional redistributions in model solid solutions, representative of concentrated Ni-Cu, Ni-Al and Ni-Si alloys, were calculated as a function of time, temperature, and film thickness, using a kinetic theory of segregation in binary alloys. The numerical results were achieved by means of a new software package (DISPL2) for solving convection-diffusion-kinetics problems with general orthogonal geometries. It was found that HVEM irradiation-induced segregation in thin films consists of two stages. Initially, due to the proximity of the film surfaces as sinks for point defects, the usual axial segregation (to surfaces) occurs at relatively short irradiation times, and rapidly attains quasi-steady state. Then, radial segregation becomes more and more competitive, gradually affecting the kinetics of axial segregation. At a given temperature, the buildup time to steady state is much longer in the present situation than in the simple case of one-dimensional segregation with uniform defect production. Changes in the alloy composition occur in a much larger zone than the irradiated volume. As a result, the average alloy composition within the irradiated region can differ greatly from that of the unirradiated alloy. The present calculations may be useful in the interpretation of the kinetics of certain HVEM irradiation-induced processes in alloys.

  8. Enhanced magnetoelectric coupling in a composite multiferroic system via interposing a thin film polymer

    NASA Astrophysics Data System (ADS)

    Xiao, Zhuyun; Mohanchandra, Kotekar P.; Lo Conte, Roberto; Ty Karaba, C.; Schneider, J. D.; Chavez, Andres; Tiwari, Sidhant; Sohn, Hyunmin; Nowakowski, Mark E.; Scholl, Andreas; Tolbert, Sarah H.; Bokor, Jeffrey; Carman, Gregory P.; Candler, Rob N.

    2018-05-01

    Enhancing the magnetoelectric coupling in a strain-mediated multiferroic composite structure plays a vital role in controlling magnetism by electric fields. An enhancement of magnetoelastic coupling between ferroelectric single crystal (011)-cut [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈ 0.30) and ferromagnetic polycrystalline Ni thin film through an interposed benzocyclobutene polymer thin film is reported. A nearly twofold increase in sensitivity of remanent magnetization in the Ni thin film to an applied electric field is observed. This observation suggests a viable method of improving the magnetoelectric response in these composite multiferroic systems.

  9. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.

    PubMed

    Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert

    2009-06-01

    A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.

  10. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahariya, Vikas

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blendmore » crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.« less

  11. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.

    PubMed

    Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti

    2014-06-25

    A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.

  12. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine.

    PubMed

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan; Chen, Jianhua; Hu, Shirong; Hao, Aiyou

    2015-01-01

    Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  14. Cosputtering crystal growth of zinc oxide-based composite films: From the effects of doping to phase on photoactivity and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Lee, Chia-Min

    2016-10-01

    ZnO-In2O3 (InO) composite thin films were grown by radio frequency cosputtering ZnO and InO ceramic targets in this study. The indium content of the composite films was varied from 1.7 at. % to 8.2 at. % by varying the InO sputtering power during cosputtering thin-film growth. X-ray diffraction and transmission electron microscopy analysis results show that the high indium content leads to the formation of a separated InO phase in the ZnO matrix. The surface crystallite size and roughness of the ZnO-InO composite films grown here increased with an increasing indium content. Furthermore, under the conditions of a higher indium content and InO sputtering power, the number of crystal defects in the composite films increased, and the optical absorbance edge of the composite films broadened. The photoactivity and ethanol gas sensing response of the ZnO-InO composite films increased as their indium content increased; this finding is highly correlated with the microstructural evolution of ZnO-InO composite films of various indium contents, which is achieved by varying the InO sputtering power during cosputtering.

  15. Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC.

    PubMed

    Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi

    2017-11-08

    The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.

  16. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R.; Bajaj, N. S.

    2016-05-06

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DCmore » plot.« less

  17. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  18. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples.

    PubMed

    Nguyen-Boisse, Thanh-Thuy; Saulnier, Joëlle; Jaffrezic-Renault, Nicole; Lagarde, Florence

    2014-02-01

    A new conductometric enzyme-based biosensor was developed for the determination of formaldehyde (FA) in aqueous solutions. The biosensor was prepared by cross-linking formaldehyde dehydrogenase from Pseudomonas putida with bovine serum albumin in saturated glutaraldehyde vapours (GA) at the surface of interdigitated gold microelectrodes. Nicotinamide adenine dinucleotide cofactor (NAD(+)) was added in solution at each measurement to maintain enzyme activity. Addition of a Nafion layer over the enzyme modified electrode resulted in a significant increase of biosensor signal due to enhanced accumulation of protons generated by enzymatic reaction at the electrode surface. Different parameters affecting enzyme activity or playing a role in ionic transfer through the Nafion membrane were optimised. In optimal conditions (0.045 mg enzyme, 30 min exposure to GA, 0.3 μL of a 1% (v/v) Nafion solution deposit, measurement in 5 mM phosphate buffer pH 7 containing 20 μM NAD(+)), the biosensor signal was linear up to 10 mM FA, and the detection limit was 18 μM. Relative standard deviations calculated from five consecutive replicates of FA solutions were lower than 5% in the 1-10 mM range. The biosensor was successfully applied to the determination of FA in spiked water samples (tap water and Rhone river water), with recoveries in the 95-110% range.

  19. Compositional and moisture content effects on the biodegradability of zein/ethylcellulose films.

    PubMed

    Romero-Bastida, Claudia A; Flores-Huicochea, Eduardo; Martin-Polo, Martha O; Velazquez, Gonzalo; Torres, J Antonio

    2004-04-21

    The effect of moisture content and film composition on biodegradability is the focus of this study. Flexible films were first characterized for the effect on water sorption isotherms of relative humidity, temperature, zein content, and the addition of the plasticizers stearic acid, poly(ethylene glycol), or etoxylated ricine oil. Zein/ethylcellulose (EC) mixture films had a behavior between that for pure zein and EC films, which had the lowest water sorption. For films with plasticizer, the lowest water sorption at 25 degrees C was observed for those with stearic acid. Biodegradability of zein/EC films, evaluated using bacterial cultures selected for their zein proteolytic activity and isolated from a local solid waste landfill and a lagoon, showed no plasticizer effect even though its effect on moisture content was significant. Large differences were observed at different film zein concentration with the highest biodegradability for 100% zein. However, biodegradability did not mimic the water sorption behavior of zein/EC mixture films.

  20. Temperature dependence of the biaxial modulus, intrinsic stress and composition of plasma deposited silicon oxynitride films

    NASA Technical Reports Server (NTRS)

    Harding, David R.; Ogbuji, Linus U. T.; Freeman, Mathieu J.

    1995-01-01

    Silicon oxynitride films were deposited by plasma-enhanced chemical-vapor deposition. The elemental composition was varied between silicon nitride and silicon dioxide: SiO(0.3)N(1.0), SiO(0.7)N(1.6), SiO(0.7)N(1.1), and SiO(1.7)N(0.%). These films were annealed in air, at temperatures of 40-240 C above the deposition temperature (260 C), to determine the stability and behavior or each composition. the biaxial modulus, biaxial intrinsic stress, and elemental composition were measured at discrete intervals within the annealing cycle. Films deposited from primarily ammonia possessed considerable hydrogen (up to 38 at.%) and lost nitrogen and hydrogen at anneal temperatures (260-300 C) only marginally higher than the deposition temperature. As the initial oxygen content increased a different mechanism controlled the behavior or the film: The temperature threshold for change rose to approximately equal to 350 C and the loss of nitrogen was compensated by an equivalent rise in the oxygen content. The transformation from silicon oxynitride to silica was completed after 50 h at 400 C. The initial biaxial modulus of all compositions was 21-3- GPa and the intrinsic stress was -30 to 85 MPa. Increasing the oxygen content raised the temperature threshold where cracking first occurred; the two film compositions with the highest initial oxygen content did not crack, even at the highest temperature (450 C) investigated. At 450 C the biaxial modulus increased to approximately equal to 100 GPa and the intrinsic stress was approximately equal to 200 MPa. These increases could be correlated with the observed change in the film's composition. When nitrogen was replaced by oxygen, the induced stress remained lower than the biaxial strength of the material, but, when nitrogen and hydrogen were lost, stress-relieving microcracking occurred.

  1. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    PubMed

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Scanning angle Raman spectroscopy: A nondestructive method for simultaneously determining mixed polymer fractional composition and film thickness

    DOE PAGES

    Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.

    2016-11-03

    A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm -1 for PS, 812 cm -1 for PMMA,more » and 1388 cm -1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less

  3. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    NASA Astrophysics Data System (ADS)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  4. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    PubMed

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  6. Development of tea extracts and chitosan composite films for active packaging materials.

    PubMed

    Peng, Yong; Wu, Yan; Li, Yunfei

    2013-08-01

    The effects of 0.5%, 1% and 2% green tea extracts (GTE) and black tea extracts (BTE) on the physical, structural and antioxidant properties of chitosan films were investigated. Results showed that the addition of tea extracts significantly decreased water vapour permeability and increased the antioxidant ability of films. The DPPH radical scavenging ability of GTE films was stronger than that of BTE films in all food simulants (0%, 20%, 75% and 95% ethanol). The equilibration time in different food simulants decreased with the increased ethanol concentration. DSC and FTIR spectra analysis indicated that there was strong interaction in film matrix, which could be reflected by the physical and mechanical properties of composite films. This study revealed that an active chitosan film could be obtained by incorporation of tea extracts, which may provide new formulation options for developing an antioxidant active packaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  8. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    PubMed Central

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  9. Thin film composition with biological substance and method of making

    DOEpatents

    Campbell, Allison A.; Song, Lin

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  10. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    EPA Science Inventory

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  11. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads.

    PubMed

    Lan, Wei; Chen, Youxin; Yang, Zhiwei; Han, Weihua; Zhou, Jinyuan; Zhang, Yue; Wang, Junya; Tang, Guomei; Wei, Yupeng; Dou, Wei; Su, Qing; Xie, Erqing

    2017-02-22

    Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.

  12. Effect of slurry composition on the chemical mechanical polishing of thin diamond films

    PubMed Central

    Werrell, Jessica M.; Mandal, Soumen; Thomas, Evan L. H.; Brousseau, Emmanuel B.; Lewis, Ryan; Borri, Paola; Davies, Philip R.; Williams, Oliver A.

    2017-01-01

    Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films’ various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones. PMID:29057022

  13. Semiconductor-metal graded-index composite thin films for infrared applications

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Nagendra, C. L.

    1994-01-01

    Theoretical/experimental studies have been carried out on germanium:silver (Ge:Ag) graded-index composite thin films which demonstrate that graded coatings, consisting of varied concentrations of Ag with respect to the Ge film thickness, exhibit different optical properties ranging from selective infrared (IR) reflectance to broadband IR absorptance. The graded coatings have been produced by dc magnetron cosputtering of Ge and Ag and the spectral properties are found to be stable against temperature. The coatings have been applied to an infrared tunnel sensor (micro-Golay cell) to improve the device performance.

  14. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  15. Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties.

    PubMed

    Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Kim, Hyun Chan; Kafy, Abdullahil; Kim, Jung Woong; Kim, Jaehwan

    2017-09-01

    In this paper, calcinated tea and cellulose composite (CTCC) films were fabricated via solution casting method. Chemical structure, morphology, crystallinity and thermal stability of the fabricated films were characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The effect of calcinated tea loading on the properties of the prepared CTCC films was studied. The results suggest that the prepared CTCC films show higher mechanical properties, thermal stability and dielectric constant than the neat cellulose film. In addition, the CTCC films adsorb Pb 2+ ions and its adsorption performance depends on the calcinated tea content and pH level. The CTCC films are useful for sensors, flexible capacitor as well as lead adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nacre-mimic Reinforced Ag@reduced Graphene Oxide-Sodium Alginate Composite Film for Wound Healing.

    PubMed

    Yan, Xu; Li, Fei; Hu, Kang-Di; Xue, Jingzhe; Pan, Xiao-Feng; He, Tao; Dong, Liang; Wang, Xiang-Ying; Wu, Ya-Dong; Song, Yong-Hong; Xu, Wei-Ping; Lu, Yang

    2017-10-23

    With the emerging of drug-resistant bacterial and fungal pathogens, there raise the interest of utilizing versatile antimicrobial biomaterials to treat the acute wound. Herein, we report the spraying mediated assembly of a bio-inspired Ag@reduced graphene-sodium alginate (AGSA) composite film for effective wound healing. The obtained film displayed lamellar microstructures similar to the typical "brick-and-mortar" structure in nacre. In this nacre-mimic structure, there are abundant interfacial interactions between nanosheets and polymeric matrix, leading to remarkable reinforcement. As a result, the tensile strength, toughness and Young's modulus have been improved 2.8, 2.3 and 2.7 times compared with pure sodium alginate film, respectively. In the wound healing study, the AGSA film showed effective antimicrobial activities towards Pseudomonas aeruginosa, Escherichia coli and Candida albicans, demonstrating the ability of protecting wound from pathogenic microbial infections. Furthermore, in vivo experiments on rats suggested the effect of AGSA film in promoting the recovery of wound sites. According to MTT assays, heamolysis evaluation and in vivo toxicity assessment, the composite film could be applied as a bio-compatible material in vitro and in vivo. Results from this work indicated such AGSA film has promising performance for wound healing and suggested great potential for nacre-mimic biomaterials in tissue engineering applications.

  17. Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojia; Peng, Guirong; Zhan, Zaiji

    2017-12-01

    Polymer-based materials with a high discharge energy and low energy loss have attracted considerable attention for energy storage applications. A new class of polymer-based composite films composed of amorphous polycarbonate (PC) and poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] has been fabricated by simply solution blending followed by thermal treatment under vacuum. The results show that the diameter of the spherical phase for PC and the melting temperature of P(VDF-HFP) increase, and the crystallinity and crystallization temperature of P(VDF-HFP) decrease with increasing PC content. The phase transition from the polar β phase to weak polarity γ phase is induced by PC addition. Moreover, the Curie temperature of the P(VDF-HFP)/PC composite films shifts to a lower temperature. With the addition of PC, the permittivity, polarization and discharge energy of the P(VDF-HFP)/PC composite films slightly decrease. However, the energy loss is significantly reduced.

  18. Study of composite thin films for applications in high density data storage

    NASA Astrophysics Data System (ADS)

    Yuan, Hua

    Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media. Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films. Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors

  19. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    PubMed

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  1. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment.

    PubMed

    An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun

    2018-07-06

    Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi 2 Te 3 ) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m -1 K -2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi 2 Te 3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.

  2. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment

    NASA Astrophysics Data System (ADS)

    An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun

    2018-07-01

    Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi2Te3) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m‑1K‑2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi2Te3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.

  3. Simulation and fabrication of 0-3 composite PZT films for ultrahigh frequency (100-300 MHz) ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyang; Fei, Chunlong; Chen, Zeyu; Chen, Ruimin; Yu, Ping; Chen, Zhongping; Shung, K. Kirk; Zhou, Qifa

    2016-03-01

    This paper presents simulation, fabrication, and characterization of single-element ultrahigh frequency (100-300-MHz) needle ultrasonic transducers based on 0-3 composite Pb(Zr0.52Ti0.48)O3 (PZT) films prepared by using composite ceramic sol-gel film and sol-infiltration technique. The center frequency of the developed transducer at 300-MHz was the highest frequency of PbTiO3 ceramic-based ultrasonic transducers ever reported. Furthermore, a brief description of the composite model was followed by the development of a new expression for predicting the longitudinal velocity, the clamped dielectric constant, and the complex electromechanical coupling coefficient kt of these films, which is very important in ultrasonic transducer design. Moreover, these parameters are difficult to obtain by measuring the frequency dependence of impedance and phase angle because of the weak signal of the previous 0-3 composite films transducer (>100 MHz). The modeling results show that the Cubes model with a geometric factor n = 0.05 fits well with the measured data. This model will be helpful for developing the 0-3 composite systems for ultrahigh frequency ultrasonic transducer design.

  4. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties.

    PubMed

    Ionita, Mariana; Pandele, Madalina Andreea; Iovu, Horia

    2013-04-15

    Sodium alginate/graphene oxide (Al/GO) nanocomposite films with different loading levels of graphene oxide were prepared by casting from a suspension of the two components. The structure, morphologies and properties of Al/GO films were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM), thermal gravimetric (TG) analysis, and tensile tests. The results revealed that hydrogen bonding and high interfacial adhesion between GO filler and Al matrix significantly changed thermal stability and mechanical properties of the nanocomposite films. The tensile strength (σ) and Young's modulus (E) of Al films containing 6 wt% GO increased from 71 MPa and 0.85 GPa to 113 MPa and 4.18 GPa, respectively. In addition, TG analysis showed that the thermal stability of Al/GO composite films was better than that of neat Al film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy.

    PubMed

    Chen, Jun; Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-03-08

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO₄·3H₂O, MnHPO₄·2.25H₂O, BaHPO₄·3H₂O, BaMg₂(PO₄)₂, Mg₃(PO₄)₂·22H₂O, Ca₃(PO₄)₂·xH₂O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl.

  6. Nylon surface modification: 2. Nylon-supported composite films.

    PubMed

    Herrera-Alonso, Margarita; McCarthy, Thomas J; Jia, Xinqiao

    2006-02-14

    We have developed techniques for the introduction of reactive functional groups to nylon surfaces via site-specific reactions targeting at the naturally abundant amide repeating units on the surface. In this report, we describe the fabrication of nylon-supported composite surfaces using the most efficient modification methods we have developed. N-Alkylation with (3-glycidoxypropyl)triethoxysilane (GPTES) in the presence of potassium tert-butoxide (t-BuOK) leads to surfaces with silica-like reactivity. Subsequent chemical vapor deposition using tetrachlorosilane (SiCl4) and water results in composite films with a thin layer of silica, which was made hydrophobic by reaction with a fluorinated silane reagent. Reduction of the amide groups with borane-THF (BH3-THF) complex leads to a 69% conversion of surface amides to the corresponding secondary amine groups. Alginate was chosen as the model polyelectrolyte for the introduction of a hydrated surface layer. Because of the strong electrostatic interaction between alginate and the amine-enriched nylon surfaces, the adsorption is fast and concentration-independent (within the concentration range studied). The polysaccharide coats the surface homogeneously, without the formation of large aggregates. The amine surfaces obtained by reduction with BH3-THF ((BH3-THF)nylon-NH) and by alkylation with 2-bromoethylamine hydrobromide (BEA-HBr, (EBA-HBr)nylon-NH2) were also used to study gold deposition through electroless plating. Immobilization of a negatively charged metal complex (AuCl4(-)) was achieved through electrostatic interaction. Gold particles disperse preferentially in the bulk of (EBA-HBr)nylon-NH2 films, while they remain confined to the outer surface layer of (BH3-THF)nylon-NH films.

  7. Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices.

    PubMed

    Yun, Dong-Jin; Rhee, Shi-Woo

    2012-02-01

    Composite films of multiwall carbon nanotube (MWNT)/poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) (PEDOT:PSS) were prepared by spin-coating a mixture solution. The effect of the MWNT loading and the MWNT oxidation, with acid solution or ultraviolet (UV)-ozone treatment, on the film properties such as surface roughness, work function, surface energy, optical transparency and conductivity were studied. Also pentacene thin film transistors and inverters were made with these composite films as a contact metal and the device characteristics were measured. The oxidation of MWNT reduced the conductivity of MWNT/PEDOT:PSS composite film but increased the work function and transparency. UV-ozone treated MWNT/PEDOT:PSS composite film showed higher conductivity (14000 Ω/□) and work function (4.9 eV) than acid-oxidized MWNT/PEDOT:PSS composite film and showed better performance as a source/drain electrode in organic thin film transistor (OTFT) than other types of MWNT/PEDOT:PSS composite films. Hole injection barrier of the UV-ozone treated MWNT/PEDOT:PSS composite film with pentacene was significantly lower than any other films because of the higher work function.

  8. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid.

    PubMed

    Reddy, K Obi; Zhang, Jinming; Zhang, Jun; Rajulu, A Varada

    2014-12-19

    The applications of natural fibers and their microfibrils are increasing rapidly due to their environment benefits, specific strength properties and renewability. In the present work, we successfully extracted cellulose microfibrils from Agave natural fibers by chemical method. The extracted microfibrils were characterized by chemical analysis. The cellulose microfibrils were found to dissolve in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) to larger extent along with little quantity of undissolved microfibrils. Using this solution, the self-reinforced regenerated cellulose composite films were prepared. The raw fiber, extracted cellulose microfibrils and regenerated cellulose composite films were characterized by FTIR, (13)C CP-MAS NMR, XRD, TGA and SEM techniques. The average tensile strength, modulus and elongation at break of the self-reinforced cellulose composite films were found to be 135 MPa, 8150 MPa and 3.2%, respectively. The high values of tensile strength and modulus were attributed to the self-reinforcement of Agave fibers in their generated matrix. These self-reinforced cellulose biodegradable composite films prepared from renewable source can find applications in packaging field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Achieving composition-controlled Cu2ZnSnS4 films by sulfur-free annealing process

    NASA Astrophysics Data System (ADS)

    Jiang, Hailong; Wei, Xiaoqing; Huang, Yongliang; Wang, Xian; Han, Anjun; Liu, Xiaohui; Liu, Zhengxin; Meng, Fanying

    2017-06-01

    Cu2ZnSnS4 (CZTS) films were firstly prepared by the nonvacuum spin-coating method, and then annealed at 550 °C in N2 atmosphere. A graphite box was used to inhibit the volatilization of gaseous SnS and S2 to suppress the CZTS decomposition and generation of MoS2 during annealing. The sulfur supplementation carried out in a conventional annealing process was not applied in this work. It was found that Sn loss was overcome and the compositions of postannealed films were close to that of precursor solution. Thus, by this method, the compositions of CZTS films can be controlled by adjusting the elemental ratios of the precursor solution. Besides, the increase in inert atmosphere pressure could further minimize the Sn loss and improve the crystallinity of CZTS films. Furthermore, the resistive MoS2 layer between the CZTS film and the Mo layer was suppressed because sulfur was not used and CZTS decomposition was suppressed.

  10. Improved cost-effective fabrication of arbitrarily shaped μIPMC transducers

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Chen, Ri-Hong

    2008-01-01

    Conventional ionic polymer-metal composite (IPMC) production cuts individual transducers from bulk IPMC sheets. This paper presents a novel photolithographic technique that grows a large array of identical devices on a thin (~µm range) parylene diaphragm supported on a perforated substrate of material that is immune to the subsequent processing liquids. In particular, the new technique relies on a unique wax fill-up and removal concept that can produce arbitrarily shaped Nafion films with micron feature size. The developed process is cheap and results in devices of high uniformity and reliability, with greater design flexibility. Microtensile testing characterizes the fracture profiles of the non-electroded Nafion film and IPMC. Young's modulus is characterized, as well as maximum displacement and current consumption under various loading, driving voltages, waveforms and frequencies. High product quality and low process costs make this process of interest for mass production of micromachined IPMC transducers.

  11. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  12. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in themore » temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.« less

  13. Extensional ionomeric polymer conductor composite actuators with ionic liquids

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Lin, Minren; Zhang, Qiming

    2008-03-01

    Although the Ionic Polymer-Metal Composite (IPMC) actuators developed up to date are in the form of bending actuators, development of extensional actuators based on IMPC is highly desirable from practical applications and fundamental understanding points of view. This talk presents the design, fabrication and characterization of a recent work on an extensional Ionic Polymer-Metal Composite actuator. The extensional actuator consists of the Nafion ionomer as the matrix and the sub-micron size RuO II particles as the conductive filler for the conductor/ionomr composites. In this investigation, several ionic liquids (IL) were investigated. For a Nafion/RuO II composite with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) IL, it was found that as the ions are driven into the ionomer/RuO II composite (the composite under negative voltage), an extensional strain of 0.9% was observed; while as the ions were expelled from the ionomer/RuO II composite (under positive voltage), a contraction of -1.2% was observed. The results indicate that multiple ions are participating in charge transport and actuation process. In this paper, we also discuss several design considerations for future extensional actuators with fast response, much improved strain and stress level. Especially an actuator based on multilayer configuration can significantly increase the electric field level in the actuator and consequently significantly improve the actuator speed. The extensional actuator investigated here provides a unique platform to investigate various phenomena related to ion transport and their interaction with the ionomer/conductor matrix to realize high electromechanical performance.

  14. The effect of Nafion membrane thickness on performance of all tungsten-cobalt heteropoly acid redox flow battery

    NASA Astrophysics Data System (ADS)

    Liu, Yiyang; Wang, Haining; Xiang, Yan; Lu, Shanfu

    2018-07-01

    Recently, we have reported a new all tungsto-cobalt heteropoly acid redox flow battery (all H6[CoW12O40] RFB) with high coulombic efficiency. Because of the relatively large ion size and high negative charge, the tungsto-cobalt heteropoly acid anion is difficult to cross Nafion membrane, which makes it possible to employ thinner Nafion membrane in all H6[CoW12O40] RFB. In this study, three types of Nafion membranes with different thickness, namely, N212 (50 μm), N211 (25 μm), and N-17 (home-made, 17 μm) are used as polymer electrolyte to investigate its effects on the performance of all H6[CoW12O40] RFB. The ion permeability increases while the area specific resistanceas decreases as reducing the membrane thickness. As a result, the RFB with N211 membrane exhibits best comprehensive performance, which exhibites the energy efficiency of 88.6% at current density of 0.10 A cm-2 and the power density of 0.56 W cm-2 at 0.60 A cm-2. Moreover, the battery delivers impressive cycling performance of 100 cycles with an average coulombic efficiency of 99.4%, energy efficiency of 80.0%, and capacity retention of 99.98% per cycle at current density of 0.20 A cm-2.

  15. Development and characterization of an edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties.

    PubMed

    Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K

    2013-04-01

    An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties. © 2013 Institute of Food Technologists®

  16. Influence of 20 MeV electron irradiation on the optical properties and phase composition of SiOx thin films

    NASA Astrophysics Data System (ADS)

    Hristova-Vasileva, Temenuga; Petrik, Peter; Nesheva, Diana; Fogarassy, Zsolt; Lábár, János; Kaschieva, Sonia; Dmitriev, Sergei N.; Antonova, Krassimira

    2018-05-01

    Homogeneous films from SiO1.3 (250 nm thick) were deposited on crystalline Si substrates by thermal evaporation of silicon monoxide. A part of the films was further annealed at 700 °C to grow amorphous Si (a-Si) nanoclusters in an oxide matrix, thus producing composite a-Si-SiO1.8 films. Homogeneous as well as composite films were irradiated by 20-MeV electrons at fluences of 7.2 × 1014 and 1.44 × 1015 el/cm2. The film thicknesses and optical constants were explored by spectroscopic ellipsometry. The development of the phase composition of the films caused by the electron-beam irradiation was studied by transmission electron microscopy. The ellipsometric and electron microscopy results have shown that the SiOx films are optically homogeneous and the electron irradiation with a fluence of 7.2 × 1014 el/cm2 has led to small changes in the optical constants and the formation of very small a-Si nanoclusters. The irradiation of the a-Si-SiOx composite films caused a decrease in the effective refractive index and, at the same time, an increase in the refractive index of the oxide matrix. Irradiation induced increase in the optical band gap and decrease in the absorption coefficient of the thermally grown amorphous Si nanoclusters have also been observed. The obtained results are discussed in terms of the formation of small amorphous silicon nanoclusters in the homogeneous layers and electron irradiation induced reduction in the nanocluster size in the composite films. The conclusion for the nanoparticle size reduction is supported by infrared transmittance results.

  17. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films

    NASA Astrophysics Data System (ADS)

    Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi

    2017-11-01

    The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach

  18. Modeling and analysis of film composition on mechanical properties of maize starch based edible films.

    PubMed

    Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S

    2013-11-01

    The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    PubMed

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  1. Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting.

    PubMed

    Bui, Hoa Thi; Shrestha, Nabeen K; Khadtare, Shubhangi; Bathula, Chinna D; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan

    2017-05-31

    One of the challenges in obtaining hydrogen economically by electrochemical water splitting is to identify and substitute cost-effective earth-abundant materials for the traditionally used precious-metal-based water-splitting electrocatalysts. Herein, we report the electrochemical formation of a thin film of nickel-based Prussian blue analogue hexacyanoferrate (Ni-HCF) through the anodization of a nickel substrate in ferricyanide electrolyte. As compared to the traditionally used Nafion-binder-based bulk film, the anodically obtained binder-free Ni-HCF film demonstrates superior performance in the electrochemical hydrogen evolution reaction (HER), which is highly competitive with that shown by a Pt-plate electrode. The HER onset and the benchmark cathodic current density of 10 mA cm -2 were achieved at small overpotentials of 15 mV and 0.2 V (not iR-corrected), respectively, in 1 M KOH electrolyte, together with the long-term electrochemical durability of the film. Further, a metal-HCF-electrode-based full water-splitting device consisting of the binder-free Ni-HCF film on a Ni plate and a one-dimensional Co-HCF film on carbon paper as the electrodes for the HER and the oxygen evolution reaction (OER), respectively, was designed and was found to demonstrate very promising performance for overall water splitting.

  2. Piezoelectric response and electrical properties of Pb(Zr1-xTix)O3 thin films: The role of imprint and composition

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Mocuta, C.; Escoubas, S.; Merabet, A.; Texier, M.; Lima, E. C.; Araujo, E. B.; Kholkin, A. L.; Thomas, O.

    2017-10-01

    The compositional dependence of the piezoelectric properties of self-polarized PbZr1-xTixO3 (PZT) thin films deposited on Pt/TiO2/SiO2/Si substrates (x = 0.47, 0.49 and 0.50) was investigated by in situ synchrotron X-ray diffraction and electrical measurements. The latter evidenced an imprint effect in the studied PZT films, which is pronounced for films with the composition of x = 0.50 and tends to disappear for x = 0.47. These findings were confirmed by in situ X-ray diffraction along the crystalline [100] and [110] directions of the films with different compositions revealing asymmetric butterfly loops of the piezoelectric strain as a function of the electric field; the asymmetry is more pronounced for the PZT film with a composition of x = 0.50, thus indicating a higher built-in electric field. The enhancement of the dielectric permittivity and the effective piezoelectric coefficient at compositions around the morphotropic phase boundary were interpreted in terms of the polarization rotation mechanism and the monoclinic phase in the studied PZT thin films.

  3. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-12-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (Tlum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm-2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  4. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity.

    PubMed

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  5. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    PubMed

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  6. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications.

    PubMed

    Cai, Rui; Tao, Gang; He, Huawei; Song, Kai; Zuo, Hua; Jiang, Wenchao; Wang, Yejing

    2017-04-30

    Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs) modified on polydopamine-coated sericin/polyvinyl alcohol (PVA) composite films was developed. Polydopamine (PDA) acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.

  7. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy

    PubMed Central

    Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-01-01

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO4·3H2O, MnHPO4·2.25H2O, BaHPO4·3H2O, BaMg2(PO4)2, Mg3(PO4)2·22H2O, Ca3(PO4)2·xH2O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl. PMID:29518038

  8. Self-lubricating polymer composites and polymer transfer film lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1990-01-01

    The use of self-lubricating polymers and polymer composites in space is somewhat limited today. In general, they are only used when other methods are inadequate. There is potential, however, for these materials to make a significant impact on future space missions if properly utilized. Some of the different polymers and fillers used to make self-lubricating composites are surveyed. The mechanisms of composite lubrication and wear, the theory behind transfer film lubricating mechanisms, and some factors which affect polymer composite wear and transfer are examined. In addition, some of the current space tribology application areas for self-lubricating polymer composites and polymer transfer are mentioned.

  9. Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films

    NASA Astrophysics Data System (ADS)

    Murphy, N. R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, C. V.

    2014-05-01

    Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50-1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.

  10. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios.

    PubMed

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk; Bharadwaja, Srowthi N; Zhang, Dongshe; Zheng, Haixing

    2009-05-08

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol-gel solution to PZT powder in the composite solution. Both the remanent polarization, P(r), and transverse piezoelectric coefficient, e(31,) (f), increase with increasing proportion of the sol-gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm(2), a dielectric constant of 450 (at 1 kHz), and e(31,) (f) = -2.8 C/m(2). Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm(2), a dielectric constant of 1250 (at 1 kHz) and e(31,) (f) = -5.8 C/m(2).

  11. Light diffusing films fabricated by strawberry-like PMMA/SiO₂ composite microspheres for LED application.

    PubMed

    Guo, Shuang; Zhou, Shuxue; Li, Huijing; You, Bo

    2015-06-15

    This paper presents a facile method to fabricate volumetric light diffusing films with high transmittance and haze simultaneously by mimicking the micro- and nanostructure of compound eyes. Strawberry-like polymethyl methacrylate/SiO2 composite microspheres were first prepared via the electrostatic attraction between positively charged PMMA spheres and negatively charged SiO2 nanoparticles, and further blended with polyacrylate latex to produce light diffusing coatings. A novel light diffusing film with hemispherical surface was built by casting the light diffusing coatings on optical-grade PET film. Effects of the sizes of PMMA spheres and SiO2 nanoparticles on the optical properties of light diffusing film were investigated by a haze meter and application on a LED lamp. The best result (transmittance 94.6% and haze 84.2%) was achieved for the strawberry-like composite microspheres based on 1 μm PMMA spheres and 50 nm SiO2 nanoparticles. The light-diffusing mechanism of the strawberry-like microspheres in the film was discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity

    PubMed Central

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Abstract Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol–gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (T lum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm−2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications. PMID:28970866

  13. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  14. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    PubMed

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Ohkubo, I.; Christen, H. M.; Khalifah, P.; Sathyamurthy, S.; Zhai, H. Y.; Rouleau, C. M.; Mandrus, D. G.; Lowndes, D. H.

    2004-02-01

    We have designed an improved pulsed-laser deposition-continuous composition-spread (PLD-CCS) system that overcomes the difficulties associated with earlier related techniques. Our new PLD-CCS system is based on a precisely controlled synchronization between the laser firing, target exchange, and substrate translation/rotation, and offers more flexibility and control than earlier PLD-based approaches. Most importantly, the deposition energetics and the film thickness are kept constant across the entire composition range, and the resulting samples are sufficiently large to allow characterization by conventional techniques. We fabricated binary alloy composition-spread films composed of SrRuO 3 and CaRuO 3. Alternating ablation from two different ceramic targets leads to in situ alloy formation, and the value of x in Sr xCa x-1 RuO 3 can be changed linearly from 0 to 1 (or over any arbitrarily smaller range) along one direction of the substrate.

  16. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    NASA Astrophysics Data System (ADS)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  17. Effects of plasmonic field due to gold nanoparticles and magnetic field on photocurrents of zinc porphyrin-viologen linked compound-gold nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao

    2016-03-01

    Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.

  18. Effect of POLYURETHANE/NANO-SiO2 Composites Coating on Thermo-Mechanical Properties of Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ching, Yern Chee; Yaacob, Iskandar Idris

    2011-06-01

    Polyethylene (PE) film was coated with polyurethane/nanosilica composite layer using rod Mayer process. The polyurethane/nanosilica system was prepared by dispersing nanosilica powder into solvent borne polyurethane (PU) binder under vigorous stirring. The silica nanoparticle used has an average diameter of 16 nm, and their weight fraction were varied from 0 % to 14 %. Two different thicknesses of the PU/nanosilica coating layer were fabricated which were about 4 μm and 8 μm. The structure and thermal mechanical features of the nanocomposite coated PE film were characterized by scanning electron microscope (SEM), dynamic mechanical analyzer (DMA), thermogravimetric analyzer (TGA) as well as tensile tests. The results showed that thin layer coating of the PU/nanosilica composite reduced tensile strength of PE substrate slightly. However, the nanocomposite coating of up to 8 μm reduced the elongation % of PE substrate significantly. PU/nanosilica composite coating layer increased the tensile modulus and stiffness of PE substrate. There was no influence of the PU/nanosilica composite coating to the thermal degradation rate of PE film.

  19. Property Control of (Perfluorinated Ionomer)/(Inorganic Oxide) Composites by Tailoring the Nanoscale Morphology

    DTIC Science & Technology

    1994-06-10

    RPeport PROPERTY CONTROL OF ( PERFLUORINATED IONOMER)/(INORGANIC OXIDE) COMPOSITES BY TAILORING THE NANOSCALE MORPHOLOGY Kenneth A. Mauritz and Robert...Concept ......................................... 45 B. [Si0 2 -TiO2 (mixed)]/Nafion Nanocomposites: Sorption of Pre-Mixed Alkoxides...Nanocomposites: Sorption of Pre- Mixed Alkoxides ......................................... 49 A. Experimental Procedure ............................. 49 B

  20. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm

    NASA Astrophysics Data System (ADS)

    Li, Junhong; Wang, Chenghao; Ren, Wei; Ma, Jun

    2017-05-01

    Residual stress is an important factor affecting the sensitivity of piezoelectric micromachined microphone. A symmetric composite vibrating diaphragm was adopted in the micro electro mechanical systems piezoelectric microphone to decrease the residual stress and improve the sensitivity of microphone in this paper. The ZnO film was selected as piezoelectric materials of microphone for its higher piezoelectric coefficient d 31 and lower relative dielectric constant. The thickness optimization of piezoelectric film on square diaphragm is difficult to be fulfilled by analytic method. To optimize the thickness of ZnO films, the stress distribution in ZnO film was analyzed by finite element method and the average stress in different thickness of ZnO films was given. The ZnO films deposited using dc magnetron sputtering exhibits a densely packed structure with columnar crystallites preferentially oriented along (002) plane. The diaphragm of microphone fabricated by micromachining techniques is flat and no wrinkling at corners, and the sensitivity of microphone is higher than 1 mV Pa-1. These results indicate the diaphragm has lower residual stress.

  1. Transparent megahertz circuits from solution-processed composite thin films.

    PubMed

    Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei

    2016-04-21

    Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.

  2. Depth resolved compositional analysis of aluminium oxide thin film using non-destructive soft x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mangalika; Modi, Mohammed H.

    2017-10-01

    In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.

  3. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  4. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    PubMed

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity.

    PubMed

    Tian, Huafeng; Yan, Jiaan; Rajulu, A Varada; Xiang, Aimin; Luo, Xiaogang

    2017-03-01

    In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  7. One-step synthesis of bifunctional PEGDA/TiO2 composite film by photopolymerization for the removal of Congo red

    NASA Astrophysics Data System (ADS)

    Wei, Yun-Yun; Sun, Xiao-Ting; Xu, Zhang-Run

    2018-07-01

    Wrinkled structures can provide enlarged surface areas for some living organisms to ingest nutrients. Imitating biological wrinkle structures offers an efficient way to enhance the adsorption surface for removing hazardous pollutants in wastewater. In this work, poly-(ethylene glycol) double acrylate (PEGDA)/TiO2 composite film with tunable surface wrinkles was synthesized. TiO2 nanoparticles were evenly immobilized in the PEGDA hydrogel simply by a facile photopolymerization method within 700 ms. Various wrinkle morphologies were obtained by precisely controlling UV exposure time. The composite film was characterized by X-ray diffraction, scanning electron microscopy, diffuse reflection spectroscopy, etc. Congo red was chosen as a model pollutant to demonstrate the adsorption and degradation capacity of the composite film. The experimental results showed that the introduction of wrinkled polymer improved the dispersibility of TiO2 nanoparticles. The removal efficiency reached 100% after 180-min adsorption in the darkness and 180-min UV irradiation. The composite film exhibited a much higher enrichment and photocatalysis capacity than the pure TiO2 powder, and could be developed as a reusable film for the removal of the organic pollutants in wastewater.

  8. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants.

    PubMed

    Yi, H; Wu, K; Hu, S; Cui, D

    2001-12-24

    In this paper, a new voltammetric method for the determination of phenol is described. In pH 8.00 phosphate buffer and in the presence of long-chain cationic surfactant-cetyltrimethylammonium bromide-phenol has a very sensitive oxidation peak at 0.47 V (vs. SCE) on the Nafion-modified glassy carbon electrode (GCE). The experimental parameters, such as supporting electrolyte and pH values, amounts of Nafion, varieties and concentration of surfactants, accumulation potential and time, as well as scan rate were optimized. The peak current is linear with the concentration of phenol in the range from 8x10(-9) to 1x10(-5) M, and the detection limit is 1x10(-9) M after being accumulated at -0.50 V (vs. SCE) for 3 min. Trace levels of phenol in water samples were determined by using this voltammetric method, the average recovery was calculated to be 99.56%.

  9. X-ray photoelectron spectroscopy characterization of composite TiO 2-poly(vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Losito, I.; Amorisco, A.; Palmisano, F.; Zambonin, P. G.

    2005-02-01

    X-ray photoelectron spectroscopy (XPS) was adopted for the analytical characterization of composite titanium dioxide-poly(vinylidenefluoride) (TiO 2-PVDF) films developed for applications in the photocatalytic degradation of pollutants. The composites were deposited on glass substrates by casting or spin coating from TiO 2-PVDF suspensions in dimethylformamide (DMF). XPS data on the TiO 2-PVDF surface composition were used to optimize preparation conditions (composition of the TiO 2/PVDF suspension, deposition technique) in terms of titanium dioxide surface amount and film stability. The use of spin-coating deposition and the increase of TiO 2 amount in the DMF suspensions were found to improve the titanium surface content, although high TiO 2/PVDF ratios led to film instability. PVDF-TiO 2 films were also used in preliminary photocatalytic degradation tests on isoproturon, a phenylurea herbicide, under solar UV irradiation; the results were compared to direct photolysis to evaluate the catalytic efficiency of immobilized TiO 2 and the role played by the PVDF film during the degradation process.

  10. Growth of multi-component alloy films with controlled graded chemical composition on sub-nanometer scale

    DOEpatents

    Bajt, Sasa; Vernon, Stephen P.

    2005-03-15

    The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.

  11. Compositional tuning in sputter-grown highly-oriented Bi-Te films and their optical and electronic structures.

    PubMed

    Saito, Yuta; Fons, Paul; Makino, Kotaro; Mitrofanov, Kirill V; Uesugi, Fumihiko; Takeguchi, Masaki; Kolobov, Alexander V; Tominaga, Junji

    2017-10-12

    Growth of Bi-Te films by helicon-wave magnetron sputtering is systematically explored using alloy targets. The film compositions obtained are found to strongly depend on both the sputtering and antenna-coil powers. The obtainable film compositions range from Bi 55 Te 45 to Bi 43 Te 57 when a Bi 2 Te 3 alloy target is used, and from Bi 42 Te 58 to Bi 40 Te 60 (Bi 2 Te 3 ) for a Te-rich Bi 30 Te 70 target. All films show strong orientation of the van der Waals layers (00l planes) parallel to the substrate. The atomic level stacking of Bi 2 Te 3 quintuple and Bi bi-layers has been directly observed by high resolution transmission electron microscopy. Band structure simulations reveal that Bi-rich Bi 4 Te 3 bulk is a zero band gap semimetal with a Dirac cone at the Gamma point when spin-orbit coupling is included. Optical measurements also confirm that the material has a zero band gap. The tunability of the composition and the topological insulating properties of the layers will enable the use of these materials for future electronics applications on an industrial scale.

  12. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  13. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  14. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  15. Effects of Polypropylene Orientation on Mechanical and Heat Seal Properties of Polymer-Aluminum-Polymer Composite Films for Pouch Lithium-Ion Batteries

    PubMed Central

    Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming

    2018-01-01

    In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength (HSS) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength. PMID:29337881

  16. Effects of Polypropylene Orientation on Mechanical and Heat Seal Properties of Polymer-Aluminum-Polymer Composite Films for Pouch Lithium-Ion Batteries.

    PubMed

    Zeng, Fangxinyu; Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming

    2018-01-16

    In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength ( HSS ) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength.

  17. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film.

    PubMed

    Su, W; Xu, J; Ding, Xianting

    2016-12-01

    Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.

  18. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  19. The influence of the precursor compositional ratio on Cu2ZnSnS4 films prepared by using sulfurization of the metallic precursor

    NASA Astrophysics Data System (ADS)

    Amal, Muhamad I.; Kim, Kyoo Ho

    2013-12-01

    Cu2ZnSnS4 (CZTS) films were prepared by using the sulfurization of sputtered metallic precursors. The compositional ratio of the CZTS films was slightly different compared to their initial metallic precursors due to elemental loss during annealing. The Cu/(Zn+Sn) ratio for the CZTS-1, CZTS-2 and CZTS-3 films were 0.91, 1.06 and 1.21, respectively. In addition, all films had a compositional ratio of Zn/Sn >1. The grain sizes of the CZTS films increased with increasing Cu ratio. X-ray diffraction and Raman spectroscopy showed that the CZTS films with an excess of copper and zinc had secondary phases of Cu2SnS3 and ZnS. The optical band gap and absorption coefficient for all CZTS films in the range of the experimental compositions were calculated to be 1.5 eV and >104 cm-1, respectively. The presence of secondary phases related to compositional ratio in the CZTS films influenced the electrical properties. The CZTS-1 film with a Cu-poor and Zn-rich composition whose a carrier concentration, an electrical mobility, and a resistivity values were 2.29 × 1018 cm-3, 10.29 cm2 V-1 s-1, 3.16 Ω cm, is the most suitable for solar-cell applications.

  20. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  1. Study optoelectronic properties for polymer composite thick film

    NASA Astrophysics Data System (ADS)

    Jobayr, Mahmood Radhi; Al Razak, Ali Hussein Abd; Mahdi, Shatha H.; Fadhil, Rihab Nassr

    2018-05-01

    Coupling the epoxy with cadmium oxide particles are important for optical properties that may be affected by various mixing proportions. The aim of this experimental study was to evaluate the effect of different mixing proportions on these properties of reinforced epoxy with cadmium oxide particles. The ultrasonic techniques were used to mix and prepared samples of composites. The surfaces topographic of the 50 µm thick reinforced epoxy films were studied using atomic force microscopy (AFM) and microscopy technique (FTIR) Spectroscopy. AFM imaging and quantitative characterization of the films showed that for all samples the root mean square of the surface roughness increases monotonically with increasing the CdO concentrations (from 0% to 15%). The observed effects of CdO concentrations on surface roughness can be explained by two things: the first reason is that the atoms of additives are combined with the original material to form a new compound that is smoother, more homogeneity and smaller in particle size. The second reason is due to high mixing due to ultrasonic mixing. It is clear also, AFM examination of the prepared samples of reinforced epoxy resin shown that topographical contrast and the identification of small structural details critically depend on hardness of epoxy resin, which in turn depended on the ratio of material (CdO) added. We show that the AFM imaging of the films showed that the mean diameter (104.8nm) of films for all of the samples decreased from 135.50 nm to 83.20 nm with the increase of CdO concentrations.

  2. The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2003-01-01

    Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. As-grown films were most often In-rich. They became more (204/220)-oriented as indium concentration increased, and always contained a yet unidentified secondary phase. The (112)-prefened orientation became more pronounced as the film composition became more Cu-rich. The secondary phase was determined to be an In-rich compound based on composition analysis and Raman spectroscopy. In addition, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. Depositing a thin Cu layer prior to the growth of CuInS2 increased the maximum grain size from - 0.5 micron to - 1 micron, and prevented the formation of the In-rich secondary phase.

  3. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    PubMed

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  4. Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tanghao; Zhou, Yuanyuan; Hu, Qin

    The fast-growing procedure (FGP) provides a simple, high-yield and lead (Pb)-release free method to prepare perovskite films. In the FGP, the ultra-dilute perovskite precursor solution is drop-cast onto a hot (~240 degrees C) substrate, where a perovskite film grows immediately accompanied by the rapid evaporation of the host solvent. In this process, all the raw materials in the precursor solution are deposited into the final perovskite film. The potential pollution caused by Pb can be significantly reduced. Properties of the FGP-processed perovskite films can be modulated by the precursor composition. While CH3NH3Cl (MACl) affects the crystallization process and leads tomore » full surface coverage, CH(NH2)2I (FAI) enhances the thermal stability of the film. Based on the optimized precursor composition of PbI2(1-x)FAI xMACl, x=0.75, FGP-processed planar heterojunction perovskite solar cells exhibit power conversion efficiencies (PCEs) exceeding 15% with suppressed hysteresis and excellent reproducibility.« less

  5. Fabrication and notable optical nonlinearities of ultrathin composite films derived from water-soluble Keggin-type polyoxometalates and water-insoluble phthalocyanine.

    PubMed

    Shehzad, Farooq Khurum; Qu, Ningning; Zhou, Yunshan; Zhang, Lijuan; Ji, Huanyao; Shi, Zonghai; Li, Jiaqi; Hassan, Sadaf Ul

    2016-11-28

    Composite films with the general formula (POM/CuTAPc) n derived from water-soluble Keggin-type polyoxometalates (POMs = H 5 PMo 10 V 2 O 40 , H 4 SiW 12 O 40 , H 3 PMo 12 O 40 and H 3 PW 12 O 40 ) and water-insoluble 4,9,16,23-copper tetraaminophthalocyanine (denoted CuTAPc) are successfully fabricated by a layer-by-layer self-assembly technique and systematically characterized. The structure of the polyoxometalate anions in the multilayers is kept intact; the deposition amounts of POM and CuTAPc remain constant in every adsorption cycle of the composite film assembly process. The nonlinear optical properties of the composite films were studied by a Z-scan technique at a wavelength of 532 nm and a pulse width of 7 ns. The results not only show that the composite films exhibit notable optical nonlinear self-defocusing behavior and a saturated absorption effect with the nonlinear optical absorption co-efficient β, refractive index n 2 , and third-order NLO susceptibility χ (3) of the films increasing with the increase in number of layers of the films, but also reveal importantly that the discrepancy of LUMO levels between CuTAPc and POMs is proportional to their third-order NLO response.

  6. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products

    PubMed Central

    Feng, Mingbao; Qu, Ruijuan; Habteselassie, Mussie; Wu, Jun; Yang, Shaogui; Sun, Ping; Huang, Qingguo; Wang, Zunyao

    2015-01-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs. PMID:26057616

  7. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    PubMed

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Characterization of MgO/Al2O3 Composite Film Prepared by DC Magnetron Sputtering and Its Secondary Electron Emission Properties

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Zhou, Fan; Wang, Jinshu; Liu, Wei; Zhang, Quan; Yin, Qiao

    2018-07-01

    Magnesium oxide (MgO) and MgO/Al2O3 composite thin films were prepared on silver substrates by DC magnetron sputtering technique and their secondary electron yields ( δ) and working durability under constant electron bombardment were investigated. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses reveal that uniform MgO/Al2O3 composite films were developed and residual Al exists in the films after sputtering of the Mg-Al alloy in an Ar-O2 mixed atmosphere on silver substrates heated at 400°C. The MgO/Al2O3 composite films show superior δ as high as 11.6 and much better resistance to electron bombardment than that of pure MgO films. Good secondary electron emission (SEE) properties of the MgO/Al2O3 film are probably due to the presence of alumina in the film, which has higher bond dissociation energy than MgO, as well as the presence of residual Al in the film, which contributes to effective electron transport in the film and diminished surface charging during SEE. With superior SEE performance, MgO/Al2O3 films have potential for practical electron multipliers in various vacuum electron devices.

  10. Chitosan/alginate multilayer film for controlled release of IDM on Cu/LDPE composite intrauterine devices.

    PubMed

    Tian, Kuan; Xie, Changsheng; Xia, Xianping

    2013-09-01

    To reduce such side effects as pain and bleeding caused by copper-containing intrauterine device (Cu-IUD), a novel medicated intrauterine device, which is coated with an indomethacin (IDM) delivery system on the surface of copper/low-density polyethylene (Cu/LDPE) composite intrauterine device, has been proposed and developed in the present work. The IDM delivery system is a polyelectrolyte multilayer film, which is composed of IDM containing chitosan and alginate layer by layer, is prepared by using self-assembled polyelectrolyte multilayer method, and the number of the layers of this IDM containing chitosan/alginate multilayer film can be tailored by controlling the cyclic repetition of the deposition process. After the IDM containing chitosan/alginate multilayer film is obtained on the surface of Cu/LDPE composite intrauterine device, its release behavior of both IDM and cupric ion has been studied in vitro. The results show that the release duration of IDM increase with the increasing of thickness of the IDM containing chitosan/alginate multilayer film, and the initial burst release of cupric ion cannot be found in this novel medicated Cu/LDPE composite IUD. These results can be applied to guide the design of novel medicated Cu-IUD with minimal side effects for the future clinical use. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Au-C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Saravanan, K.; Tayyab, M.; Bagchi, S.; Avasthi, D. K.

    2016-07-01

    Structural evolution of gold-carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au-C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au-C60 NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 1018 W cm-2. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au-C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  12. Synthesis of composite TiN/Ni3N/a-Si3N4 thin films using the plasma focus device

    NASA Astrophysics Data System (ADS)

    Adeel Umar, Zeshan; Ahmad, Riaz; Khan, Ijaz Ahmad; Hussain, Tousif; Hussnain, Ali; Khalid, Nida; Awais, Ali; Ali, T.

    2013-12-01

    Composite films of TiN/Ni3N/a-Si3N4 were synthesized using the Mather-type plasma focus device with varying numbers of focus deposition shots (5, 15, and 25) at 0° and 10° angular positions. The composition and structural analysis of these films were analyzed by using Rutherford backscattering (RBS) and X-ray diffraction (XRD). Scanning electron microscope and atomic force microscope were used to study the surface morphology of films. XRD patterns confirm the formation of composite TiN/Ni3N/a-Si3N4 films. The crystallite size of TiN (200) plane is 11 and 22 nm, respectively, at 0° and 10° angular positions for same 25 focus deposition shots. Impurity levels and thickness were measured using RBS. Scanning electron microscopy results show the formation of net-like structures for multiple focus shots (5, 15, and 25) at angular positions of 0° and 10°. The average surface roughness of the deposited films increases with increasing focus shots. The roughness of the film decreases at higher angle 10° and the films obtained are smoother as compared with the films deposited at 0° angular positions.

  13. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  14. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2015-10-05

    Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Yang, Xu; Kim, Kwang Jin; Dai, Zhendong

    2015-06-01

    A newly developed ionic electro-active actuator composed of an ionic electrolyte layer sandwiched between two graphene film layers was investigated. Scanning electronic microscopy observation and x-ray diffraction analysis showed that the graphene sheets in the film stacked in a nearly face-to-face fashion but did not restack back to graphite, and the resulting graphene film with low sheet resistance (10 Ω sq-1) adheres well to the electrolyte membrane. Contact angle measurement showed the surface energy (37.98 mJ m-2) of the ionic electrolyte polymer is 2.67 times higher than that (14.2 mJ m-2) of the Nafion membrane, contributing to the good adhesion between the graphene film electrode and the electrolyte membrane. An electric double-layer is formed at the interface between the graphene film electrode and the ionic electrolyte membrane under the input potential, resulting in a higher capacitance of 27.6 mF cm-2. We report that this ionic actuator exhibits adequate bending strain, ranging from 0.032 to 0.1% (305 to 945 μm) as functions of voltage.

  16. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    PubMed

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.

  17. Correlation Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeO x) Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Neil R.; Grant, J. T.; Sun, L.

    2014-03-18

    Germanium oxide (GeO x) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O 2/(Ar + O 2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO 2 and then finally to GeO 2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeO x films grown were amorphous. The opticalmore » properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeO x films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO 2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50–1.00, where the films become GeO 2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeO x films is presented and discussed.« less

  18. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Ma, Li; Gan, Mengyu; Fu, Shenna; Dai, Wenqin; Zhou, Tao; Sun, Xiaowu; Wang, Huihui; Wang, Huining

    2015-12-01

    The research paper describes polyaniline (PANI) nanowires array on flexible polystyrene microsphere/reduced graphene (PS/rGN) film is synthesized by dilute polymerization, and then the PS microspheres are removed to form free-standing three-dimensional (3D) rGN/PANI composite film. The chemical and structural properties of the 3D rGN/PANI film are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and the results confirm the 3D rGN/PANI film is synthesized successfully. When the film is used as a supercapacitor electrode, the maximum specific capacitance is as high as 740 F g-1 (or 581 F cm-3 for volumetric capacitance) at a current density of 0.5 A g-1 and the specific capacitance retains 87% of the initial after constant charge-discharge 1000 cycles at current density of 10 A g-1. It is believed that the free-standing 3D rGN/PANI film will have a great potential for application in supercapacitors.

  19. Superior piezoelectric composite films: taking advantage of carbon nanomaterials.

    PubMed

    Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Yan, Cheng; Azari, Sara; Lee, Sang-Heon; Xu, Yanan; Ma, Jun; Yu, Sirong

    2014-01-31

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

  20. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

    DOE PAGES

    Damodaran, Anoop; Okatan, M. B.; Kacher, J.; ...

    2016-02-15

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less

  1. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodaran, Anoop; Okatan, M. B.; Kacher, J.

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less

  2. Elaboration of m-cresol polyamide12/ polyaniline composite films for antistatic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdour, D.; Tabellout, M.; Bardeau, J.-F

    2013-12-16

    The present work deals with the preparation of transparent antistatic films from an extreme dilution of an intrinsically conducting polymer (ICP) with not coloured polymers. Our approach is based on the chemical polymerization of a very thin layer of Polyaniline (PANI) around particles of an insulating polymer (PA12). Films were obtained by dissolving the synthesized core-shell particles in m-Cresol. The electric property and structure relationships were investigated by using dielectric relaxation spectroscopy, X-ray diffraction and micro-Raman spectroscopy. Composite films exhibited a well established dc conductivity over all the frequency range for 10 wt. % of PANI concentration related to themore » conductive properties of the PANI clusters. X-ray diffraction data show broader and lower intensity of PA12 peaks when increasing PANI content, probably due to the additional doping effect of m- cresol. The doping of PA12/PANI films with Dodecyl benzene sulfonic acid (DBSA) was unequivocally verified by Raman spectroscopy.« less

  3. Tuning cationic composition of La:EuTiO{sub 3−δ} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkabko, Andrey, E-mail: shkabko@gmail.com; Empa, Solid State Chemistry and Catalysis, CH-8600 Dübendorf; Xu, Chencheng

    2013-11-01

    Eu{sub 1−x}La{sub x}TiO{sub 3−δ} (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H{sub 2}(4%)) = 4 × 10{sup −4} mbar atmosphere on (LaAlO{sub 3}){sub 0.3}-(Sr{sub 2}AlTaO{sub 6}){sub 0.7} vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm{sup 2} independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the filmsmore » are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu{sup 3+} rich for films deposited at low laser fluence.« less

  4. Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported.

  5. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  6. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.

    PubMed

    Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A; Li, Xuebing; Lercher, Johannes A

    2010-01-21

    A simple, green, cost- and energy-efficient route for converting phenolic components in bio-oil to hydrocarbons and methanol has been developed, with nearly 100% yields. In the heterogeneous catalysts, RANEY Ni acts as the hydrogenation catalyst and Nafion/SiO(2) acts as the Brønsted solid acid for hydrolysis and dehydration.

  7. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-04-01

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR

  8. Films, Preimpregnated Tapes and Composites Made from Polyimide "Salt-Like" Solutions

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    High quality films, preimpregnated tape (prepegs), and composites have been fabricated from polyimide precursor 'saltlike' solutions. These salt-like solutions have a low viscosity (5,000 to 10,000 cp) and a high solids content (50-65% by weight) and can be coated onto reinforcing fiber to produce prepegs with excellent tack and drape at 12-15% residual solvent (approximately 4-6% water from thermal imidization reaction). The processing of these types of prepegs significantly overcomes solvent removal problems and allows excellent fiber wet out. In addition, the physical characteristics of the polyimide precursor salt-like solutions permits processing into high-performance materials through the use of standard prepregging and composite fabrication equipment. The resultant composites are of high quality.

  9. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  10. NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs

    PubMed Central

    Nicotera, Isabella; Angjeli, Kristina; Coppola, Luigi; Aricò, Antonino S.; Baglio, Vincenzo

    2012-01-01

    Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE) diffusion under variable temperature conditions. Synthetic (Laponite) and natural (Swy-2) smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC). The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell. PMID:24958179

  11. Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films

    NASA Astrophysics Data System (ADS)

    Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.

    2008-03-01

    Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.

  12. Enhanced nonlinear current-voltage behavior in Au nanoparticle dispersed CaCu 3 Ti 4 O 12 composite films

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Can; Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Ming, Hai; Wang, Pei; Zhang, Dongxiang; Yang, Guozhen

    2011-10-01

    An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu 3Ti 4O 12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.

  13. Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji

    2017-10-01

    We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.

  14. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  15. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  16. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  17. Effect of composition and strain on the electrical properties of LaNiO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Mingwei; Komissinskiy, Philipp; Radetinac, Aldin; Vafaee, Mehran; Wang, Zhanjie; Alff, Lambert

    2013-09-01

    The Ni content of LaNi1-xO3 epitaxial thin films grown by pulsed laser deposition has been varied by ablation from targets with different composition. While tensile strain and Ni substoichiometry reduce the conductivity, nearly stoichiometric and unstrained films show reproducibly resistivities below 100 μΩ × cm. Since the thermodynamic instability of the Ni3+ state drives defect formation, Ni defect engineering is the key to obtain highly conducting LaNiO3 thin films.

  18. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor

    PubMed Central

    Lin, Huijuan; Li, Li; Ren, Jing; Cai, Zhenbo; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng

    2013-01-01

    Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability. PMID:23443325

  19. Plasma interactions determine the composition in pulsed laser deposited thin films

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Döbeli, Max; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas

    2014-09-01

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La0.6Sr0.4MnO3, we demonstrate for as grown La0.6Sr0.4MnO3-δ films that a congruent transfer of metallic species is achieved in two pressure windows: ˜10-3 mbar and ˜2 × 10-1 mbar. In the intermediate pressure range, La0.6Sr0.4MnO3-δ becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  20. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  1. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  2. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    PubMed Central

    Choi, Inyoung; Chang, Yoonjee; Shin, So-Hyang; Joo, Eunmi; Song, Hyun Ju; Eom, Haeyoung; Han, Jaejoon

    2017-01-01

    Biopolymer films based on apple skin powder (ASP) and carboxymethylcellulose (CMC) were developed with the addition of apple skin extract (ASE) and tartaric acid (TA). ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR), optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film. PMID:28617325

  3. Composition variations in pulsed-laser-deposited Y-Ba-Cu-O thin films as a function of deposition parameters

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Jones, B. B.; Hunt, B. D.; Barner, J. B.; Vasquez, R. P.; Bajuk, L. J.

    1992-01-01

    The composition of pulsed-ultraviolet-laser-deposited Y-Ba-Cu-O films was examined as a function of position across the substrate, laser fluence, laser spot size, substrate temperature, target conditioning, oxygen pressure and target-substrate distance. Laser fluence, laser spot size, and substrate temperature were found to have little effect on composition within the range investigated. Ablation from a fresh target surface results in films enriched in copper and barium, both of which decrease in concentration until a steady state condition is achieved. Oxygen pressure and target-substrate distance have a significant effect on film composition. In vacuum, copper and barium are slightly concentrated at the center of deposition. With the introduction of an oxygen background pressure, scattering results in copper and barium depletion in the deposition center, an effect which increases with increasing target-substrate distance. A balancing of these two effects results in stoichiometric deposition.

  4. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  5. Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film.

    PubMed

    Wang, Wenqian; Cheng, Yaya; Li, Yansheng; Zhou, Hao; Xu, Li-Ping; Wen, Yongqiang; Zhao, Liang; Zhang, Xueji

    2017-04-06

    The formation and metastatic colonization of circulating tumor cells (CTCs) are responsible for the vast majority of cancer-related deaths. Over the last decade, drug-delivery systems (DDSs) have rapidly developed with the emergence of nanotechnology; however, most reported tumor-targeting DDSs are able to deliver drugs only to solid tumor cells and not CTCs. Herein, a novel DDS comprising a composite nanofiber film was constructed to inhibit the viability of CTCs. In this system, gold nanoparticles (Au NPs) were functionalized with doxorubicin (DOX) through an acid-responsive cleavable linker to obtain Au-DOX NPs. Then, the Au-DOX NPs were mixed in a solution of an acid-responsive polymer {i.e., poly[2-(dimethylamino)ethyl methacrylate]} to synthesize the nanofiber film through electrospinning technology. After that, the nanofiber film was modified with a specific antibody (i.e., anti-EpCAM) to enrich the concentration of CTCs on the film. Finally, the Au-DOX NPs were released from the nanofiber film, and they consequently inhibited the viability of CTCs by delivering DOX to the enriched CTCs. This composite nanofiber film was able to decrease the viability of CTCs significantly in the suspended and fluid states, and it is expected to limit the migration and proliferation of tumor cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, Elias James

    Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.

  7. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films.

    PubMed

    Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang

    2005-12-01

    Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.

  8. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  9. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    NASA Astrophysics Data System (ADS)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  10. C-QDs@UiO-66-(COOH)2 Composite Film via Electrophoretic Deposition for Temperature Sensing.

    PubMed

    Feng, Ji-Fei; Gao, Shui-Ying; Shi, Jianlin; Liu, Tian-Fu; Cao, Rong

    2018-03-05

    Temperature plays a crucial role in both scientific research and industry. However, traditional temperature sensors, such as liquid-filled thermometers, thermocouples, and transistors, require contact to obtain heat equilibrium between the probe and the samples during the measurement. In addition, traditional temperature sensors have limitations when being used to detect the temperature change of fast-moving samples at smaller scales. Herein, the carbon quantum dots (C-QDs) functionalized metal-organic framework (MOF) composite film, a novel contactless solid optical thermometer, has been prepared via electrophoretic deposition (EPD). Instead of terephthalic acid (H 2 BDC), 1',2',4',5'-benzenetetracarboxylic (H 4 BTEC) acid was employed to construct a UiO-66 framework to present two uncoordinated carboxylic groups decorated on the pore surface. The uncoordinated carboxylic groups can generate negative charges, which facilitates the deposition of film on the positive electrode during the EPD process. Moreover, UiO-66-(COOH) 2 MOFs can absorb C-QDs from the solution and prevent C-QDs from aggregating, and the well-dispersed C-QDs impart fluorescence characteristics to composites. As-synthesized composite film was successfully used to detect temperature change in the range of 97-297 K with a relative sensitivity up to 1.3% K -1 at 297 K.

  11. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Aleksey; Mao, Runfang; Lee, Ming-Tsung; Neimark, Alexander V.

    2018-01-01

    We present a coarse-grained model of the acid form of Nafion membrane that explicitly includes proton transport. This model is based on a soft-core bead representation of the polymer implemented into the dissipative particle dynamics (DPD) simulation framework. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with water beads. Morse bond formation and breakup artificially mimics the Grotthuss hopping mechanism of proton transport. The proposed DPD model is parameterized to account for the specifics of the conformations and flexibility of the Nafion backbone and sidechains; it treats electrostatic interactions in the smeared charge approximation. The simulation results qualitatively, and in many respects quantitatively, predict the specifics of nanoscale segregation in the hydrated Nafion membrane into hydrophobic and hydrophilic subphases, water diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from a collection of isolated water clusters to a 3D network of pores filled with water embedded in the hydrophobic matrix. The segregated morphology is characterized in terms of the pore size distribution with the average size growing with hydration from ˜1 to ˜4 nm. Comparison of the predicted water diffusivity with the experimental data taken from different sources shows good agreement at high and moderate hydration and substantial deviation at low hydration, around and below the percolation threshold. This discrepancy is attributed to the dynamic percolation effects of formation and rupture of merging bridges between the water clusters, which become progressively important at low hydration, when the coarse-grained model is unable to mimic the fine structure of water network that includes singe molecule bridges. Selected simulations of water diffusion are performed for the alkali metal substituted membrane which demonstrate the effects of the counter-ions on

  12. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenning, Brandon M.; Martinelli, Elisa; Mieszkin, Sophie

    A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, withmore » the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.« less

  13. Composition and properties of the so-called 'diamond-like' amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Stultz, J. E.; Shiller, P. J.; Macdonald, J. R.; Mirtich, M. J.

    1984-01-01

    The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 A. The integrated intensity of the C-H stretching band at about 2900 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.

  14. Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices

    NASA Astrophysics Data System (ADS)

    Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.

    2000-01-01

    Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.

  15. Design of plasmonic Ag-TiO2/H3PW12O40 composite film with enhanced sunlight photocatalytic activity towards o-chlorophenol degradation.

    PubMed

    Lu, Nan; Wang, Yaqi; Ning, Shiqi; Zhao, Wenjing; Qian, Min; Ma, Ying; Wang, Jia; Fan, Lingyun; Guan, Jiunian; Yuan, Xing

    2017-12-11

    A series of plasmonic Ag-TiO 2 /H 3 PW 12 O 40 composite films were fabricated and immobilized by validated preparation technique. The chemical composition and phase, optical, SPR effect and pore-structure properties together with the morphology of as-prepared composite film are well-characterized. The multi-synergies of as-prepared composite films were gained by combined action of electron-capture action via H 3 PW 12 O 40 , visible-response induced by Ag, and Schottky-junction formed between TiO 2 -Ag. Under simulated sunlight, the maximal K app of o-chlorophenol (o-CP) reached 0.0075 min -1 which was 3.95-fold larger than that of TiO 2 film, while it was restrained obviously under acid condition. In the photocatalytic degradation process, ·OH and ·O 2 - attacked preferentially ortho and para position of o-CP molecule, and accordingly the specific degradation pathways were speculated. The novel composite film exhibited an excellent applicability due to self-regeneration of H 3 PW 12 O 40 , well-protection of metal Ag° and favorable immobilization.

  16. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  17. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    PubMed

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  18. Morphological and compositional study of 238U thin film targets for nuclear experiments

    NASA Astrophysics Data System (ADS)

    Sibbens, Goedele; Ernstberger, Markus; Gouder, Thomas; Marouli, Maria; Moens, André; Seibert, Alice; Vanleeuw, David; Zúñiga, Martin Vargas; Wiss, Thierry; Zampella, Mariavittoria; Zuleger, Evelyn

    2018-05-01

    The uncertainty in neutron cross section values strongly depends on the quality and characteristics of the deposited actinide films which are used as "targets" in the nuclear experiments. Until recently, at the Joint Research Centre in Geel (JRC-Geel), mass and areal densities of actinide layers were determined by measuring activity (using alpha-particle counting), isotopic composition (using thermal ionisation mass spectrometry) and diameter. In this study a series of 238U deposits, prepared by molecular plating and vacuum deposition on different substrates, were characterized with additional non-destructive and destructive analysis techniques. The quality of the deposits was investigated by autoradiography, high-resolution alpha-particle spectrometry, and scanning electron microscopy. The elemental composition was determined by x-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry. The latter technique was also applied on the U3O8 starting material and the converted UF4 powder. This paper compares the quality and morphology of deposited 238U films prepared by molecular plating and vacuum deposition on various backings, including their elemental composition determined by different characterization techniques. Also discussed are problems in target preparation and characterization.

  19. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors.

    PubMed

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-05-07

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g(-1), three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.

  20. Determination of heavy metals in mussel and oyster samples with tris (2,2‧-bipyridyl) ruthenium (II)/graphene/Nafion® modified glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palisoc, Shirley T.; Uy, Donald Jans S.; Natividad, Michelle T.; Lopez, Toni Beth G.

    2017-11-01

    Tris (2,2‧-bipyridyl)ruthenium(II)/graphene/Nafion® modified glassy carbon electrodes (GCEs) were fabricated using the drop coating method. The modified electrode was used as the working electrode in differential pulse voltammetry (DPV) for the determination of lead, cadmium, and copper in mussel and oyster samples. The concentration of Tris (2,2‧-bipyridyl) ruthenium (II) and graphene were varied while those of Nafion®, methanol, and ethanol were held constant in the coating solution. The morphology and elemental composition of the fabricated electrodes were analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Cyclic voltammetry (CV) was done to investigate the reversibility and stability of the modified electrodes. The modified electrode with the best figures of merit was utilized for the detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) via DPV. This was the electrode modified with 4 mg [Ru (bpy)3]2+ and 3 mg graphene. The anodic current and metal concentration showed linear relationship in the range of 48 ppb-745 ppb for Pb2+, 49 ppb-613 ppb for Cd2+, and 28 ppb-472 ppb for Cu2+. The limits of detection for lead, cadmium, and copper were 48 ppb, 49 ppb, and 28 ppb, respectively. Results from atomic absorption spectrometry (AAS) were compared with those measured with DPV. Lead, cadmium, and copper were in mussels, oysters, and sea water. In addition, DPV was able to detect other metals such as zinc, iron, tin and mercury in sea water samples and some samples of oysters.

  1. Simple preparation of fluorescent composite films based on cerium and europium doped LaF3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Secco, Henrique de L.; Ferreira, Fabio F.; Péres, Laura O.

    2018-03-01

    The combination of materials to form hybrids with unique properties, different from those of the isolated components, is a strategy used to prepare functional materials with improved properties aiming to allow their application in specific fields. The doping of lanthanum fluoride with other rare earth elements is used to obtain luminescent particles, which may be useful to the manufacturing of electronic devices' displays and biological markers, for instance. The application of the powder of nanoparticles has limitations in some fields; to overcome this, the powder may be incorporated in a suitable polymeric matrix. In this work, lanthanum fluoride nanoparticles, undoped and doped with cerium and europium, were synthesized through the co-precipitation method in aqueous solution. Aiming the formation of solid state films, composites of nanoparticles in an elastomeric matrix, the nitrile rubber (NBR), were prepared. The flexibility and the transparency of the matrix in the regions of interest are advantages for the application of the luminescent composites. The composites were applied as films using the casting and the spin coating techniques and luminescent materials were obtained in the samples doped with europium and cerium. Scanning electron microscopy images showed an adequate dispersion of the particles in the matrix in both film formation techniques. Aggregates of the particles were detected in the samples which may affect the uniformity of the emission of the composites.

  2. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    NASA Astrophysics Data System (ADS)

    Liao, Hongbo; Wen, Weijia; Wong, George K.

    2006-12-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO2, ZnO, and TiO2) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity.

  3. Influence of superconductor film composition on adhesion strength of coated conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCOmore » samples.« less

  4. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  5. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  6. The inclusion of electroactive β-phase in Sn2+ incorporated PVDF composite film for improving dielectric properties and piezoelectric energy generation

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mehebub; Mandal, Dipankar

    2018-04-01

    Low content (0.5 wt. %) of dihydrate tin chloride (Sn2+) salt leads to inclusion of 98 % electroactive phase in poly(vinylidene fluoride) (PVDF), out of this a high yield of piezoelectric β-phase (˜ 49%) is found, which is most desirable for mechanical energy harvesting application. It is also found that Sn2+ salt can significantly enhanced the dielectric property of resulting Sn2+ incorporated PVDF composite film. Thus, the enhancement of β-phase in the PVDF/Sn2+ composite film owns to be a potential material for mechanical energy harvesting application. We have also demonstrated the mechanical energy harvesting capability of the nanogenerator (NG) made with PVDF/Sn2+ composite film under repeated human finger touch.

  7. Composition-ratio influence on resistive switching behavior of solution-processed InGaZnO-based thin-film.

    PubMed

    Hwang, Yeong-Hyeon; Hwang, Inchan; Cho, Won-Ju

    2014-11-01

    The influence of composition ratio on the bipolar resistive switching behavior of resistive switching memory devices based on amorphous indium-gallium-zinc-oxide (a-IGZO) using the spin-coating process was investigated. To study the stoichiometric effects of the a-IGZO films on device characteristics, four devices with In/Ga/Zn stoichiometries of 1:1:1, 3:1:1, 1:3:1, and 1:1:3 were fabricated and characterized. The 3:1:1 film showed an ohmic behavior and the 1:1:3 film showed a rectifying switching behavior. The current-voltage characteristics of the a-IGZO films with stoichiometries of 1:1:1 and 1:3:1, however, showed a bipolar resistive memory switching behavior. We found that the three-fold increase in the gallium content ratio reduces the reset voltage from -0.9 to - 0.4 V and enhances the current ratio of high to low resistive states from 0.7 x 10(1) to 3 x 10(1). Our results show that the increase in the Ga composition ratio in the a-IGZO-based ReRAM cells effectively improves the device performance and reliability by increasing the initial defect density in the a-IGZO films.

  8. Influence of functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film

    NASA Astrophysics Data System (ADS)

    Kumar Das, Amit; Dharmana, Reuben; Mukherjee, Ayan; Baba, Koumei; Hatada, Ruriko; Kumar Meikap, Ajit

    2018-04-01

    We present a novel technique to obtain a higher or lower value of dielectric constant due to the variation of a functional group on the surface of multiwall carbon nanotube (MWCNTs) for a polyvinyl alcohol (PVA) grafted MWCNT system. We have prepared PVA grafted pristine and different types of functionalized (-COOH, -OH, and -NH2) MWCNT nanocomposite films. The strong interfacial interaction between the host PVA matrix and nanofiller is characterized by different experimental techniques. The frequency variation of the electrical transport properties of the composite films is investigated in a wide temperature range (303 ≤ T ≤ 413 K) and frequency range (20 Hz ≤ f ≤ 1 MHz). The dielectric constant of the amine (-NH2) functionalized MWCNT incorporated PVA film is about 2 times higher than that of the pristine MWCNT embedded PVA film. The temperature variation of the dielectric constant shows an anomalous behaviour. The modified Cole-Cole equation simulated the experimentally observed dielectric spectroscopy at high temperature. The ac conductivity of the composite films obeys the correlated barrier hopping model. The imaginary part of the electric modulus study shows the ideal Debye-type behaviour at low frequency and deviation of that at high frequency. To illustrate the impedance spectroscopy of the nanocomposite films, we have proposed an impedance based battery equivalent circuit model. The current-voltage characteristic shows hysteresis behaviour of the nanocomposite films. The trap state height for all composite films is evaluated by simulating the current density-electric field data with the Poole-Frenkel emission model. This investigation opens a new avenue for designing electronic devices with a suitable combination of cost effective soft materials.

  9. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  10. Toward compositional design of reticular type porous films by mixing and coating titania-based frameworks with silica

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2015-12-01

    A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.

  11. Effect of annealing temperature on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride composite films deposited by plasma focus device

    NASA Astrophysics Data System (ADS)

    Khan, Ijaz A.; Kashif, Muhammad; Farid, Amjad; Rawat, Rajdeep S.; Ahmad, Riaz

    2017-12-01

    In this article, we reveal the post deposition annealing effect on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride (P-ZrON) composite films deposited for 40 focus shots using a plasma focus device. The development of Zr(101), ZrN(111), ZrN(200), Zr3N4(320), ZrN0.28(002), and m-ZrO2(200) diffraction peaks confirms the deposition of P-ZrON composite films. The peak intensity, crystallite size, dislocation density, compressive stress, and texture coefficient of the Zr3N4(320) plane and the microstructural features such as the shape, size and distribution of nanoparticles as well as the film compactness are influenced by the annealing temperature. Elemental analysis confirms the presence of Zr, N, and O in the deposited films. The microhardness of the P-ZrON composite film annealed at 500 °C is found to be 11.87 GPa which is 7.8 times that of virgin zirconium.

  12. Robust and Bright Photoluminescence from Colloidal Nanocrystal/Al2O3 Composite Films Fabricated by Atomic Layer Deposition.

    PubMed

    Palei, Milan; Caligiuri, Vincenzo; Kudera, Stefan; Krahne, Roman

    2018-06-22

    Colloidal nanocrystals are a promising fluorescent class of materials whose spontaneous emission features can be tuned over a broad spectral range via their composition, geometry, and size. However, toward embedding nanocrystal films in elaborated device geometries, one significant drawback is the sensitivity of their emission properties on further fabrication processes like lithography, metal or oxide deposition, etc. In this work, we demonstrate how bright-emitting and robust thin films can be obtained by combining nanocrystal deposition from solutions via spin coating with subsequent atomic layer deposition of alumina. For the resulting composite films, the layer thickness can be controlled on the nanoscale and their refractive index can be finely tuned by the amount of deposited alumina. Ellipsometry is used to measure the real and imaginary part of the dielectric permittivity, which gives direct access to the wavelength dependent refractive index and absorbance of the film. Detailed analysis of the photophysics of thin films of core-shell nanocrystals with different shapes and different shell thicknesses allows to correlate the behavior of the photoluminescence and of the decay lifetime to the changes in the nonradiative rate that are induced by the alumina deposition. We show that the photoemission properties of such composite films are stable in wavelength and intensity over several months and that the photoluminescence completely recovers from heating processes up to 240 °C. The latter is particularly interesting since it demonstrates robustness to the typical heat treatment that is needed in several process steps like resist-based lithography and deposition by thermal or electron beam evaporation of metals or oxides.

  13. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties.

    PubMed

    Li, Yuan-Qing; Yu, Ting; Yang, Tian-Yi; Zheng, Lian-Xi; Liao, Kin

    2012-07-03

    Bio-inspired multifunctional composite films based on reduced poly(vinyl alcohol)/graphene oxide (R-PVA/GO) layers are prepared by a facile solution casting method followed by a reduction procedure. The resulting films with nacre-like, bricks-and-mortar microstructure have excellent mechanical properties, electrical conductivity, and biocompatibility. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Controlling compositional homogeneity and crystalline orientation in Bi 0.8 Sb 0.2 thermoelectric thin films [Control of composition and crystallinity in Bi 0.8Sb 0.2 thermoelectric thin films].

    DOE PAGES

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; ...

    2015-12-01

    Controlling alloy composition, crystalline quality, and crystal orientation is necessary to achieve high thermoelectric performance in Bi 1-xSb x thin films. These microstructural attributes are demonstrated in this letter via co-sputter deposition of Bi and Sb metals on Si/SiO 2 substrates followed by ex-situ post anneals ranging from 200 – 300 °C in forming gas with rapid cooling to achieve orientation along the trigonal axis. We show with cross-sectional transmission electron microscopy and energy-dispersive X-ray spectrometry that 50 – 95% of the Sb segregates at the surface upon exposure to air during transfer. This then forms a nanocrystalline Sb 2Omore » 3 layer upon annealing, leaving the bulk of the film primarily Bi metal which is a poor thermoelectric material. We demonstrate a SiN capping technique to eliminate Sb segregation and preserve a uniform composition throughout the thickness of the film. Given that the Bi 1-xSb x solid solution melting point depends on the Sb content, the SiN cap allows one to carefully approach but not exceed the melting point during annealing. This leads to the strong orientation along the trigonal axis and high crystalline quality desired for thermoelectric applications.« less

  15. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  16. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai

    2013-11-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co-Ti-B4C-Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti-Al, Co-Ti, Co-Sb intermetallics, TiC, TiB2, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB2/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB2/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.

  17. Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

    PubMed Central

    Nabok, Alexei; Davis, Frank; Higson, Séamus P J

    2016-01-01

    Summary In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene–surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir–Blodgett (LB) or electrostatic layer-by-layer (LbL) deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(−)SDS alternated with polyethyleneimine (PEI). The optical study of graphene thin films deposited on different substrates was carried out using UV–vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE) which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers. PMID:26977378

  18. Composition gradient, structure, stress, roughness and magnetic properties of 5-500 nm thin NiFe films obtained by electrodeposition

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Riemer, Steve; Kautzky, Michael; Tabakovic, Ibro

    2016-01-01

    The composition gradients of 5-500 nm thin NiFe films on Cu and NiP substrates obtained by electrodeposition in stirred plating solutions at pH 3.0 on 8 in wafers were studied. It was found that the average elemental composition of the NiFe changes during electrodeposition with steep downturns of Fe-content, from 58 to 50 wt% Fe, in composition gradient zone near the substrate interface in the thickness range 5-250 nm depending on the electrode substrate (Cu and NiP). The increase of Fe-content in the composition gradient zone is accompanied by the increase of coercivity, Hc, magnetic flux saturation, Bs, saturation magnetostriction, λs, increase of dimensionless roughness, ρrms, and change of stress, σ. The coercivity (easy and hard axis) follows the Neel's relation Hc=ct-n (t is thickness and c is a constant). The mechanisms related to the change of coercivity of the NiFe films deposited on different substrates (Cu and NiP) are discussed in terms of material properties of these films.

  19. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    NASA Astrophysics Data System (ADS)

    Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto

    2015-12-01

    In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

  1. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.

  2. Chemical composition, water vapor permeability, and mechanical properties of yuba film influenced by soymilk depth and concentration.

    PubMed

    Zhang, Siran; Lee, Jaesang; Kim, Yookyung

    2018-03-01

    Yuba is a soy protein-lipid film formed during heating of soymilk. This study described yuba as an edible film by analyzing its chemical composition, water vapor permeability (WVP), and mechanical properties. Three yuba films were prepared by using different concentrations and depths of soymilk: HS (86 g kg -1 and 2.3 cm), LS (70 g kg -1 and 2.3 cm), and LD (70 g kg -1 and 3.0 cm). As yuba was successively skimmed, the protein, lipid, and SH content decreased, but carbohydrate and SS content increased. Though both the initial concentration and the depth of soymilk affect the properties of the films, the depth of soymilk influences WVP and tensile strength (TS) more. The WVP of the HS and LS changed the least (13-17 g mm kPa -1 m -2 day 1 ), while that of the LD changed the most (13-35 g mm kPa -1 m -2 day -1 ). There were no differences (P > 0.05) in the TS between the HS and LS. LD had the greatest decrease of TS and the lowest TS among the groups. The earlier the yuba films were collected, the greater the elongation of the films was: 129% (HS), 113% (LS), and 155% (LD). The initial concentration and the depth of soymilk changed the chemical composition and structure of the yuba films. The LS yuba produced more uniform edible films with good mechanical properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting.

    PubMed

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-10

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm -1 . The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l -1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  4. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency.

    PubMed

    Cazón, Patricia; Vázquez, Manuel; Velazquez, Gonzalo

    2018-09-01

    Nowadays consumers are aware of environmental problems. As an alternative to petrochemical polymers for food packaging, researchers have been focused on biopolymeric materials as raw material. The aim of this study was to evaluate mechanical properties (toughness, burst strength and distance to burst), water adsorption, light-barrier properties and transparency of composite films based on cellulose, glycerol and polyvinyl alcohol. Scanning electron microscopy, spectral analysis (FT-IR and UV-VIS-NIR) and differential scanning calorimetry were performed to explain the morphology, structural and thermal properties of the films. Results showed that polyvinyl alcohol enhances the toughness of films up to 44.30 MJ/m 3 . However, toughness decreases when glycerol concentration is increased (from 23.41 to 10.55 MJ/m 3 ). Water adsorption increased with increasing polyvinyl alcohol concentration up to 222%. Polyvinyl alcohol increased the film thickness. The films showed higher burst strength (up to 12014 g) than other biodegradable films. The films obtained have optimal values of transparency like those values of synthetic polymers. Glycerol produced a UV protective effect in the films, an important effect for food packaging to prevent lipid oxidative deterioration. Results showed that it is feasible to obtain cellulose-glycerol-polyvinyl alcohol composite films with improved properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  6. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  7. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-01

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  8. Effect of interface structure regulation caused by variation of imidization rate on conduction current characteristics of PI/nano-Al2O3 three-layer composite films

    NASA Astrophysics Data System (ADS)

    Ma, Xinyu; Liu, Lizhu; Zhang, Xiaorui; He, Hongju

    2018-06-01

    A series of sandwich structure PI films were prepared by different imidization process, with pure PI film as the interlayer and PI/Al2O3 composite films as outer layers. The imidization rate of the film with different cured processes was calculated by characterizing by infrared spectrum (FT-IR), and the morphology of interlayer interface with different imidization rates by scanning electron microscope (SEM). When the imidization conditions of the first and second films were 260 °C/120 min, the composite films displayed better interface structure and higher imidization rate (ID) than others. Moreover, results also showed that the conduction current of three-layer composite film steadily improved with increased ID and temperature, and was higher than that of the pure film. At the temperature of 30 °C, the electrical aging threshold at different ID was obtained. When the ID reached the maximum value of 78.9%, the electrical aging threshold reached the maximum 41.69 kV/mm.

  9. New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes.

    PubMed

    Rivas, Gustavo A; Miscoria, Silvia A; Desbrieres, Jacques; Barrera, Gustavo D

    2007-01-15

    We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity=(0.28+/-0.02)muAmM(-1), r=0.997), fast (4s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700V with detection and quantification limits of 0.035 and 0.107mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.

  10. Dye sensitized solar cell applications of CdTiO3-TiO2 composite thin films deposited from single molecular complex

    NASA Astrophysics Data System (ADS)

    Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad

    2015-10-01

    A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.

  11. TiO2/bi A-SPAES(Ds 1.0) composite membranes for proton exchange membrane in direct methanol fuel cell (DMFC).

    PubMed

    Zhang, Ni; Zhong, Chuanqing; Xie, Bing; Liu, Huiling; Wang, Xingzu

    2014-09-01

    A series of TiO2/bi A-SPAES(Ds 1.0) composite membranes with various contents of nano-sized TiO2 particles were prepared through sol-gel method. Scanning electron microscopy (SEM) images indicated the TiO2 particles were well dispersed within polymer matrix. These membranes were used for proton exchange membrane (PEM) for performance evaluation in direct methanol fuel cell (DMFC). These composite membranes showed good thermal stability and mechanical strength. It was found that the water uptake of these membranes enhanced with the TiO2 amount increasing in these composite membranes. Meanwhile, the introduction of TiO2 particles increased the proton conductivity and reduced the methanol permeability. The proton conductivities of these composite membranes with 8% TiO2 particles (0.120 S/cm and 0.128 S/cm) were higher than those of Nafion 117 membrane (0.114 S/cm and 0.117 S/cm) at 80 degrees C and 100 degrees C. Specially, the methanol diffusion coefficient (1.2 x 10(-7) cm2/s) of the composite membrane with 8% TiO2 content was much lower than that of Nafion 117 membrane (2.1 x 10(-6) cm2/s). As a result, the TiO2/bi A-SPAES composite membrane was considered as a promising material for PEM in DMFC.

  12. Structural, compositional and optical properties of spin coated MoO3 thin film

    NASA Astrophysics Data System (ADS)

    Jain, Vishva; Shah, Dimple; Patel, K. D.; Zankat, Chetan

    2018-05-01

    The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600 rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50 nm. The composition of the film was studied with the help of EDAX. The optical properties were studied by the photoluminescence and UV Spectroscopy. The results from both the characterization are well matched with each other. Photoluminescence studies show band to band emission observed at 416 nm shown in the fig. 5. From UV spectroscopy, using transmission and absorption spectra we observed the band gap edge around 3 eV. This is in accordance with the photoluminescence result.

  13. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.

    PubMed

    Li, Jinsong; Lu, Weibang; Suhr, Jonghwan; Chen, Hang; Xiao, John Q; Chou, Tsu-Wei

    2017-05-24

    Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe 3 O 4 -large scale graphene composite is studied. The Fe 3 O 4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe 3 O 4 prepared from 0.04 M FeCl 3 . Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.

  14. Effect of assistant rf field on phase composition of iron nitride film prepared by magnetron sputtering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.L.; Zheng, F.; Fei, W.D.

    2006-01-15

    Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.

  15. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    NASA Astrophysics Data System (ADS)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  16. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films.

    PubMed

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M

    2011-07-31

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  17. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.

    2011-08-01

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  18. Preparation and characterization of nonaqueous proton-conducting membranes with protic ionic liquids.

    PubMed

    Lu, Fei; Gao, Xinpei; Yan, Xiaojun; Gao, Hejun; Shi, Lijuan; Jia, Han; Zheng, Liqiang

    2013-08-14

    Hybrid Nafion membranes were successfully fabricated by incorporating with protic imidazolium ionic liquids 1-(2-aminoethyl)-3-methylimidazolium chloride ([MimAE]Cl), 1-(2-hydroxylethyl)-3-methylimidazolium chloride ([MimHE]Cl), and 1-carboxylmethyl-3-methylimidazolium chloride ([MimCM]Cl) for high-temperature fuel cells. The composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), scanning electronic microscopy (SEM), and thermogravimetric analysis (TGA). The incorporated protic ionic liquids enhance the doping of phosphoric acid (PA) and result in a relatively high ionic conductivity. The Nafion/10 wt % [MimAE]Cl/PA composite membrane exhibits an ionic conductivity of 6.0 mS/cm at 130 °C without humidification. [MimAE]Cl can swell the Nafion matrix more homogeneously than [MimHE]Cl or [MimCM]Cl, which results in a better ionic conductivity. It is notable that the composite Nafion/IL/PA membranes have a better thermal stability than the pristine Nafion membranes.

  19. Influence of Composition on the Thermoelectric Properties of Bi1- x Sb x Thin Films

    NASA Astrophysics Data System (ADS)

    Rogacheva, E. I.; Nashchekina, O. N.; Orlova, D. S.; Doroshenko, A. N.; Dresselhaus, M. S.

    2017-07-01

    Bi1- x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ˜200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1- x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal-semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1- x Sb x thin films with thicknesses in the range d = 250-300 nm prepared by thermal evaporation of Bi1- x Sb x crystals ( x = 0-0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1- x Sb x crystal composition are reproduced in thin films.

  20. Mechanical and Barrier Properties of Semi Refined Kappa Carrageenan-based Composite Edible Film and Its Application on Minimally Processed Chicken Breast Fillet

    NASA Astrophysics Data System (ADS)

    Praseptiangga, D.; Maimuni, B. H.; Manuhara, G. J.; Muhammad, D. R. A.

    2018-03-01

    Kappa-carrageenan (KC) is one of the most interesting biopolymers that is composed of a linear chain of sulfated galactans and extracted from red seaweed, Kappaphycus alvarezii. It shows good potential for development as a source of biodegradable or edible films. However, KC films do not have good water vapor barrier properties, as they are intrinsically hydrophilic. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined kappa-carrageenan (SRKC) edible films in order to improve water vapor barrier properties. In this study, composite films based on SRKC incorporating PA were prepared and their applications on minimally processed chicken breast fillet were evaluated. Composite SRKC-based films with varying concentrations of PA (5%, 10%, and 15% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused an increase in thickness, but decrease in water vapor transmission rate (WVTR) as the concentration of PA increased (from 5% to 15% w/w). Composite SRKC-based edible film incorporating 15% w/w of PA presented better water vapor barrier properties as compared to other films with 5% and 10% w/w PA incorporation. Thus, formulation containing 15% w/w PA was used as a wrapping material for film application on minimally processed chicken breast fillet. The application results showed that the incorporation of PA in film caused an effect (p < 0.05) on preventing of weight loss significantly compare to control (non-wrapping), however it did not significantly (p >0.05) change the color of minimally processed chicken breast fillet.