Science.gov

Sample records for nafion membranes modified

  1. Chemically-modified Nafion ®/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Song, Min-Kyu; Kim, Young-Taek; Fenton, James M.; Kunz, H. Russell; Rhee, Hee-Woo

    Miscible Nafion ®/poly(vinylidene fluoride) blend membranes are prepared and characterized PVdF = poly(vinylidene fluoride). The membranes have high miscibility above a 60 wt.% Nafion ® fraction when both polymers are dissolved in a solvent mixture of N, N'-dimethylacetamide and 2-propanol. Despite the high miscibility, the extremely hydrophobic PVdF component reduces the water uptake of Nafion ®/PVdF blend, and the proton conductivity is much lower than that of a Nafion ® 115 membrane even with a high weight fraction of Nafion ®. To improve water affinity and proton conductivity, PVdF is chemically-modified by means of a dehydrofluorination reaction and H 2SO 4 doping prior to solution blend. The chemically-modified Nafion ®/PVdF blend membrane shows similar conductance to Nafion ® 115 without any auxiliary fillers. Nafion ®/PVdF blend membranes of ˜35 μm thickness are hot-pressed between catalyzed carbon paper ELAT ® electrodes. A 25 cm 2 single cell delivers a maximum power of about 440 mW cm -2 at 900 mA cm -2 under H 2/O 2, which is comparable to the performance of Nafion ® 115 under the same operating conditions.

  2. Amino-silica modified Nafion membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hong; Yang, Ming-Chien; Wei, Hwa-Jou

    2015-05-01

    A hybrid membrane of Nafion/amino-silica (amino-SiO2) for vanadium redox flow battery (VRB) systems is prepared via the sol-gel method to improve the selectivity of the Nafion membrane, to reduce the crossover of vanadium ions, and to decrease water transfer across the membranes. The sulfonated pores of the pristine Nafion membrane are filled with amino-SiO2 nanoparticles localized by electrostatic interaction. The permeability of vanadium ions through the Nafion/amino-SiO2 hybrid membrane is determined by electrometric titration. The results indicate the crossover of vanadium ions through the hybrid membrane is 26.8% of the pristine Nafion membrane. The presence of amino-SiO2 in the hybrid membrane is verified by X-ray photoelectron spectroscopy (XPS). Nafion/amino-SiO2 hybrid membrane exhibits through plane conductivity about the same as the pristine Nafion membrane. The ion exchange capacity (IEC) of the hybrid membrane is 9.4% higher than that of the pristine Nafion membrane. In addition, Nafion/amino-SiO2 hybrid membrane exhibits a higher coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) over a range of current densities from 20 to 80 mA cm-2. The performance of VRB with Nafion/amino-SiO2 hybrid membrane varies little around a charge-discharge current density of 80 mA cm-2 for 150 cycles. Thus, the Nafion/amino-SiO2 hybrid membrane can suppress the vanadium ions crossover in VRB.

  3. Silver modified platinum surface/H + conducting Nafion membrane for cathodic reduction of nitrate ions

    NASA Astrophysics Data System (ADS)

    Hasnat, M. A.; Ahamad, N.; Nizam Uddin, S. M.; Mohamed, Norita

    2012-01-01

    Electrocatalytic reduction of NO3- was performed at an Ag modified Pt electrodes supported on a H+ conducting Nafion-117 polymer electrolyte. The cyclic voltammetric and electrolysis experiments showed that the reduction process was a two-electron transfer reaction. The conversion of nitrate to nitrite follows first order kinetics. Controlled potential electrolysis experiments revealed that the highest reduction rate (k1; 95.1 × 10-3 min-1) could be obtained at -1.3 V versus Ag/AgCl (std. KCl) reference electrode. Meanwhile, substantial nitrate removal (ca. 89%) could be attained by a flow system when the flow rate is as low as 0.1 ml min-1. The Ag particles on the Pt film were a in polycrystalline state having roughness value of 0.45 μm, which was reduced to 0.30 μm after 270 min of undergoing electrolysis.

  4. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    PubMed Central

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  5. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification.

    PubMed

    Muriithi, Beatrice; Loy, Douglas A

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%-30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%-42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  6. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity.

    PubMed

    Ketpang, Kriangsak; Lee, Kibong; Shanmugam, Sangaraju

    2014-10-01

    We describe a facile route to fabricate mesoporous metal oxide (TiO2, CeO2 and ZrO1.95) nanotubes for efficient water retention and migration in a Nafion membrane operated in polymer electrolyte fuel cell under low relative humidity (RH). Porous TiO2 nanotubes (TNT), CeO2 nanotubes (CeNT), and ZrO1.95 (ZrNT) were synthesized by calcining electrospun polyacrylonitrile nanofibers embedded with metal precursors. The nanofibers were prepared using a conventional single spinneret electrospinning technique under an ambient atmosphere. Their porous tubular morphology was observed by SEM and TEM analyses. HR-TEM results revealed a porous metal oxide wall composed of small particles joined together. The mesoporous structure of the samples was analyzed using BET. The tubular morphology and outstanding water absorption ability of the TNT, CeNT, and ZrNT fillers resulted in the effective enhancement of proton conductivity of Nafion composite membranes under both fully humid and dry conditions. Compared to a commercial membrane (Nafion, NRE-212) operated under 100% RH at 80 °C, the Nafion-TNT composite membrane delivered approximately 1.29 times higher current density at 0.6 V. Compared to the Nafion-TiO2 nanoparticles membrane, the Nafion-TNT membrane also generated higher current density at 0.6 V. Additionally, compared to a NRE-212 membrane operated under 50% RH at 80 °C, the Nafion-TNT composite membrane exhibited 3.48 times higher current density at 0.6 V. Under dry conditions (18% RH at 80 °C), the Nafion-TNT, Nafion-CeNT, and Nafion-ZrNT composite membranes exhibited 3.4, 2.4, and 2.9 times higher maximum power density, respectively, than the NRE-212 membrane. The remarkably high performance of the Nafion composite membrane was mainly attributed to the reduction of ohmic resistance by the mesoporous hygroscopic metal oxide nanotubes, which can retain water and effectively enhance water diffusion through the membrane. PMID:25203667

  7. Dissolution of Nafion ® membrane and recast Nafion ® film in mixtures of methanol and water

    NASA Astrophysics Data System (ADS)

    Siroma, Z.; Fujiwara, N.; Ioroi, T.; Yamazaki, S.; Yasuda, K.; Miyazaki, Y.

    In order to estimate the durability of Nafion ® membrane as an electrolyte for direct methanol fuel cells (DMFCs), the degree of dissolution of Nafion ® membranes in mixtures of methanol and water at various temperatures up to 80 °C was examined. At 80 °C, more than 30% of the membrane was dissolved in mixed solvents with methanol concentrations of higher than 80%. Dissolution of recast films made from Nafion ® solution was also examined, because it is an important component of the catalyst layers of DMFCs. The effects of heat treatment on the durability of the recast films were also examined. Although high temperature (160 °C for 1 min) or long time (120 °C for 1 h) heat treatment improved significantly the durability at room temperature, the films were dissolved at 80 °C and the amounts of dissolution were larger than that of Nafion ® 117 membranes.

  8. Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties

    SciTech Connect

    Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

    2011-04-15

    Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes’ area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

  9. Crossover of formic acid through Nafion ® membranes

    NASA Astrophysics Data System (ADS)

    Rhee, Young-Woo; Ha, Su Y.; Masel, Richard I.

    Formic acid has been proposed as a possible fuel for miniature fuel cells, because formic acid is expected to show low crossover and easy water management. In this paper, the permeation of formic acid through Nafion ® membranes is investigated at room temperature. It is found that the permeation of formic acid through Nafion ® 112 and 117 is much lower than that of methanol. For example, at a 1 M concentration, the steady state flux of formic acid through Nafion ® 117 is only 2.03±0.07×10 -8 mol/cm 2 s. By comparison, previous workers have observed a methanol flux of 3 to 6×10 -6 mol/cm 2 s through Nafion ® 117 under similar conditions. The flux through Nafion ® 117 increases with increasing formic acid concentration, reaching a maximum of 1.86±0.11×10 -7 mol/cm 2 s at a formic acid concentration of 10 M. The flux of formic acid is about a factor of two higher through Nafion ® 112 than through Nafion ® 117 but still low. These results show that the permeation of formic acid through Nafion ® is much slower than the permeation of methanol through the same membrane. Consequently, formic acid is an attractive alternative fuel for small polymer electrolyte membrane (PEM) fuel cells.

  10. Aqua-vanadyl ion interaction with Nafion® membranes

    DOE PAGESBeta

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  11. Structure and Water Transport in Nafion Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  12. Mechanical and water sorption properties of nafion and composite nafion/titanium dioxide membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Satterfield, May Barclay

    The mechanical properties of the membranes used in polymer electrolyte membrane fuel cells are important to the performance and longevity of the cell. The speed and extent of membrane water uptake depend on the membrane's viscoelastic mechanical properties, which are themselves dependent on membrane hydration, and increased hydration improves membrane proton conductivity and fuel cell performance. Membrane mechanical properties also affect durability and cell longevity, preventing membrane failure from stresses induced by changing temperature and water content during operational cycling. Further, membrane creep and stress-relaxation can change the extent of membrane/electrode contact, also changing cell behavior. New composite membrane materials have exhibited superior performance in fuel cells, and it is suspected that improved mechanical properties are responsible. Studies of polymer electrolyte membrane (PEM) fuel cell dynamics using Nafion membranes have demonstrated the importance of membrane mechanical properties, swelling and water-absorption behavior to cell performance. Nonlinear and delayed dynamic responses to changing operating parameters were unexpected, but reminiscent of polymer viscoelastic behavior and water sorption dynamics, illustrating the need to better understand membrane properties to design and operate fuel cells. Further, Nafion/TiO2 composite membranes developed by the Princeton Chemistry Department improve fuel cell performance, which may be due to changes in membrane microstructure and enhanced mechanical properties. Mechanical properties, stress-relaxation behavior, water sorption and desorption rates and pressures exerted during hydration by a confined membrane have been measured for Nafion and for Nafion/TiO2 composite membranes. Mechanical properties, including the Young's modulus and limits of elastic deformation are dependent on temperature and membrane water content. The Young's modulus decreases with increasing water content and

  13. Preparation and performance of a Nafion ®/montmorillonite nanocomposite membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shin, D. R.; Kim, J. S.

    Direct methanol fuel cells (DMFC) have major technical problems, e.g. slow methanol oxidation kinetics and high methanol crossover, to use as power sources for several applications. To overcome these problems it has been proposed to increase the fuel cell operating temperature to over 100-150 °C and to reduce the methanol permeability. In this work, we made Nafion ®/montmorillonite (MMT) nanocomposite membranes and carried out diverse tests. The nanocomposite membranes were produced by direct melt intercalation of perfluorosulfonylfluoride copolymer resin (Nafion ® resin) into the montmorillonite and modified montmorillonite (m-MMT) which was organized by dodecylamine. The membrane-electrode assembly (MEA) has been made using a hot pressing method and the electrode prepared using PtRu black and Pt black catalysts for anode and cathode, respectively. The morphology of the nanocomposite membranes has been investigated using SEM and TEM. The nanocomposite membranes and MMT and m-MMT were analyzed using by FT-IR and X-ray diffraction (XRD). The thermal and mechanical properties of those membranes were also investigated and the methanol permeability was measured by gas chromatography (GC). The performance of the MEA using the nanocomposite membrane was evaluated by single cell test. The results show that the performance of the MEA using the nanocomposite membrane was higher than that of a commercial Nafion ® membrane at high operating temperature.

  14. Water permeation through Nafion membranes: the role of water activity.

    PubMed

    Majsztrik, Paul; Bocarsly, Andrew; Benziger, Jay

    2008-12-25

    The permeation of water through 1100 equivalent weight Nation membranes has been measured for film thicknesses of 51-254 microm, temperatures of 30-80 degrees C, and water activities (a(w)) from 0.3 to 1 (liquid water). Water permeation coefficients increased with water content in Nafion. For feed side water activity in the range 0 < a(w) < 0.8, permeation coefficients increased linearly with water activity and scaled inversely with membrane thickness. The permeation coefficients were independent of membrane thickness when the feed side of the membrane was in contact with liquid water (a(w) = 1). The permeation coefficient for a 127 microm thick membrane increased by a factor of 10 between contacting the feed side of the membrane to water vapor (a(w) = 0.9) compared to liquid water (a(w) = 1). Water permeation couples interfacial transport across the fluid membrane interface with water transport through the hydrophilic phase of Nafion. At low water activity the hydrophilic volume fraction is small and permeation is limited by water diffusion. The volume fraction of the hydrophilic phase increases with water activity, increasing water transport. As a(w) --> 1, the effective transport rate increased by almost an order of magnitude, resulting in a change of the limiting transport resistance from water permeation across the membrane to interfacial mass transport at the gas/membrane interface. PMID:19053672

  15. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    NASA Astrophysics Data System (ADS)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  16. Synthesis and characterization of polyaniline grafted multiwalled carbon nanotube loaded Nafion-silica nanocomposite membrane.

    PubMed

    Ragupathy, D; Gopalan, A; Kim, Kyeong-Wung; Lee, Kwang Pill

    2011-01-01

    The preparation and characterization results of a new nanocomposite, polyaniline (PANI) grafted multiwalled carbon nanotube (MWNT) loaded Nafion-silica, (designated as Nafion-silica/MWNT-g-PANI), are reported in this paper. The preparation involves the formation of a silica network in a Nafion membrane and the subsequent loading of polyaniline-grafted multiwalled carbon nanotubes (MWNT-g-PANI) onto the Nafion-silica nanocomposite. The new nanocomposite, Nafion-silica/ MWNT-g-PANI, was characterized as to its morphology, structure and properties. The conductivity and methanol permeability of the nanocomposite membranes were evaluated. PMID:21446537

  17. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes. PMID:26716283

  18. Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells

    NASA Astrophysics Data System (ADS)

    Amjadi, M.; Rowshanzamir, S.; Peighambardoust, S. J.; Sedghi, S.

    2012-07-01

    The Nafion 117 membrane has doped with SiO2 particles by in situ sol-gel reaction. In order to minimize leaching of doped particles, the reaction conditions are optimized using full factorial design of experiment. The results obtained from the full factorial analysis indicate that the minimum amount of leaching takes place at 60 °C, without addition of acid, and with the swelling of membranes prior to the reaction. The membranes, prepared at optimum reaction conditions, are characterized for water uptake, thermal stability, proton conductivity, and cell performance. Furthermore, Nafion/SiO2 composites are investigated to reduce the hydrogen permeation rate across the membrane. The Nafion/SiO2 composites demonstrate significantly low hydrogen permeability. Moreover, the water uptake of Nafion/SiO2 membrane with 7% of doping level increase up to 43% that is 30% higher than that of the pure Nafion membrane. DSC Measurements for modified samples show an increase in Tg as compared to unmodified sample. In general, the proton conductivities of hybridized membranes under ambient temperature are lower than that of the pure membrane. However, at 110 °C and in low humid conditions, the modified membranes show increased fuel cell performance than the pure Nafion. Among the composite membranes, the sample with 5-7% of SiO2 content exhibits higher water uptake and better performance of fuel cell test.

  19. Nafion/PTFE composite membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Li; Yu, T. Leon; Huang, Li-Ning; Chen, Li-Chung; Shen, Kun-Sheng; Jung, Guo-Bin

    Using dynamic light scattering and scanning electron microscope (SEM), it is shown that a high-carbon-number alcohol/water, i.e., 2-propanol/water, mixed solvent is more effective than low-carbon-number alcohol/water, i.e., ethanol/water and methanol/water, mixed solvents in dispersing Nafion molecules. Thus, it is a better solvent for the preparation of Nafion/PTFE (poly(tetrafluoroethylene)) composite membranes. The performance of direct methanol fuel cells (DMFCs) with a Nafion/PTFE composite membrane, which was prepared in-house, a commercial Nafion-117 membrane, or a commercial Nafion-112 membrane were investigated by feeding various concentrations, i.e., 2-5 M, of methanol to the anode. The Nafion/PTFE composite membrane gave a better DMFC performance than that obtained with Nafion-117 or Nafion-112 membranes. Using a DMFC model and varying the methanol concentration at the anode, cell voltage data were analyzed with respect to methanol concentration and cell current. The results indicate that inserting porous PTFE into Nafion polymer causes a reduction not only in methanol diffusion cross-over but also in the electro-osmosis of methanol cross-over in the membrane.

  20. Molecular dynamics simulations of water permeation across Nafion membrane interfaces.

    PubMed

    Daly, Kevin B; Benziger, Jay B; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-07-24

    Permeation of water across the membrane/vapor and membrane/liquid-water interfaces of Nafion is studied using nonequilibrium molecular dynamics (NEMD) simulations, providing direct calculations of mass-transfer resistance. Water mass transfer within one nanometer of the vapor interface is shown to be 2 orders of magnitude slower than at any other point within the membrane, in qualitative agreement with permeation experiments. This interfacial resistance is much stronger than the resistance suggested by prior simulation work calculating self-diffusivity near the interface. The key difference between the prior approach and the NEMD approach is that the NEMD approach implicitly incorporates changes in solubility in the direction normal to the interface. Water is shown to be very insoluble near the vapor interface, which is rich in hydrophobic perfluorocarbon chains, in agreement with advancing contact angle experiments. Hydrophilic side chains are buried beneath this hydrophobic layer and aligned toward the interior of the membrane. Hydrophilic pores are not exposed to the vapor interface as proposed in prior theoretical work. At the membrane/liquid-water interface, highly swollen polymer chains extend into the liquid-water phase, forming a nanoscopically rough interface that is consistent with atomic force microscopy experiments. In these swollen conformations, hydrophilic side chains are exposed to the liquid-water phase, suggesting that the interface is hydrophilic, in agreement with receding contact angle experiments. The mass-transfer resistance of this interface is negligible compared to that of the bulk, in qualitative agreement with permeation experiments. The water activity at the vapor and liquid-water interfaces are nearly the same, yet large conformational and transport differences are observed, consistent with a mass-transfer-based understanding of Schroeder's paradox for Nafion. PMID:24971638

  1. Nafion-Initiated ATRP of 1-Vinylimidazole for Preparation of Proton Exchange Membranes.

    PubMed

    Feng, Kai; Liu, Lei; Tang, Beibei; Li, Nanwen; Wu, Peiyi

    2016-05-11

    Nafion is one of the most widely investigated materials applied in proton exchange membranes. Interestingly, it was found that Nafion could serve as a macroinitiator to induce atom transfer radical polymerization (ATRP) on its C-F sites. In this study, poly(1-vinylimidazole) was selectively bonded on the side chains of Nafion via the Nafion-initiated ATRP process, which was confirmed by the measurements of (1)H/(19)F nuclear magnetic resonance spectra, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimeter and matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry. The as-prepared Nafion-co-poly(1-vinylimidazole) (Nafion-PVIm) membranes, with tunable loading amount of imidazole rings, presented greatly enhanced proton conductivity and methanol resistivity due to their well-controlled chemical structures. Especially, chemically bonding PVIm with Nafion chains endowed the Nafion-PVIm membranes with high stability in proton conductivity. For the first time, we revealed the great potentials of the Nafion-initiated ATRP process in developing high-performance proton exchange membranes. PMID:27077232

  2. Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method

    NASA Astrophysics Data System (ADS)

    Jung, Sun Yong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    In this study, to improve the performance of an ionic polymer metal composite (IPMC), we suggest a porous nafion membrane fabricated with the particulate leaching method with zinc oxide and propose an IPMC that uses the porous nafion membrane. To fabricate this membrane, the proper ratio of nafion and zinc oxide powder is dispersed in a solvent. Then the zinc oxide embedded in the nafion membrane is fabricated with a casting method. With the particulate leaching method, the embedded zinc oxide particles are dissolved by an acid solution, and the spaces of the zinc oxide particles changed to pores. Finally, through electroless plating and ion exchange procedures, an IPMC with the porous nafion membrane is fabricated. The proposed IPMC has higher water uptake (WUP) and ion exchange capacity (IEC) and can show better actuation performance compared to the conventional nafion-based IPMC. We also measure the actuation displacement and blocking forces of the proposed IPMC. Compared with the conventional nafion-based IPMC, the proposed IPMC with the porous nafion membrane has increased displacements: about 80% at ac input and about 250% at dc input, and increased blocking force about 130% at dc input.

  3. Spectroscopic Investigations of the Fouling Process on Nafion Membranes in Vanadium Redox Flow Batteries

    SciTech Connect

    Vijayakumar, M.; Sivakumar, Bhuvaneswari M.; Nachimuthu, Ponnusamy; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Liu, Jun; Graff, Gordon L.; Thevuthasan, Suntharampillai; Hu, Jian Z.

    2011-01-01

    The Nafion-117 membrane used in vanadium redox flow battery (VRFB) is analyzed by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface due to their low diffusivity. On the other hand, the 17O NMR spectrum explores the diffused vanadium cation from the bulk part of Nafion and shows the chemical bonding of cation and the host membrane. The 19F NMR shows the basic Nafion structure is not altered due to the presence of diffused vanadium cation. Based on these spectroscopic studies, the chemical environment of diffused vanadium cation in the Nafion membrane is discussed. This study also shed light into the possible cause for the high diffusivity of certain vanadium cations inside the Nafion membranes.

  4. Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance.

    PubMed

    Jiang, Bo; Yu, Lihong; Wu, Lantao; Mu, Di; Liu, Le; Xi, Jingyu; Qiu, Xinping

    2016-05-18

    Nafion membranes are now the most widely used membranes for long-life vanadium flow batteries (VFBs) because of their extremely high chemical stability. Today, the type of Nafion membrane that should be selected and how to pretreat these Nafion membranes have become critical issues, which directly affects the performance and cost of VFBs. In this work, we chose the Nafion 115 membrane to investigate the effect of the pretreatment process (as received, wet, boiled, and boiled and dried) on the performance of VFBs. The relationship between the nanostructure and transport properties of Nafion 115 membranes is elucidated by wide-angle X-ray diffraction and small-angle X-ray scattering techniques. The self-discharge process, battery efficiencies, electrolyte utilization, and long-term cycling stability of VFBs with differently pretreated Nafion membranes are presented comprehensively. An online monitoring system is used to monitor the electrolyte volume that varies during the long-term charge-discharge test of VFBs. The capacity fading mechanism and electrolyte imbalance of VFBs with these Nafion 115 membranes are also discussed in detail. The optimal pretreatment processes for the benchmark membrane and practical application are synthetically selected. PMID:27123693

  5. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  6. Design and characterization of Nafion/ex-situ silica nanocomposite membranes: Effects of particle size and surface modification

    NASA Astrophysics Data System (ADS)

    Muriithi, Beatrice Wanjku

    This dissertation focuses on the preparation of new Nafion RTM/ex-situ silica nanocomposite membranes and the impact of particle size of spherical silica particles on the nanocomposites' properties. To achieve acceptable power production, fuel cell polymer membranes are required with good proton conductivity, water retention, thermal and mechanical stability. However, to avoid poisoning of fuel cell electrocatalysts with CO or other fuel contaminants, they must be operated at temperatures (>100°C). At these temperatures, fuel cell membranes dehydrate resulting in dramatic decreases in proton conductivity or complete failure as membranes crack due to volumetric stress from water loss. Even if fuel cell is kept in a humidified chamber, increasing temperature will eventually shut the cell down as Nafion RTM's bicontinuous structure "dissolves" into a single poorly conducting phase at temperatures above the polymer's Tg. This research provides systematic studies of effects of silica particle size on properties of silica-NafionRTM nanocomposites. Results of this study include new insights into requirements for reproducible particle syntheses, practical methods for avoiding silica particle floatation during NafionRTM nanocomposite membranes preparation, and a summary of the influence of particle size and functionalization on NafionRTM membrane properties. Stober particle syntheses showed high sensitive to ammonia concentration and we discovered that literature procedures' variability is likely due to researchers' failure to accurately measure ammonia concentration in their aqueous base (which can be 50% or more off). Homogeneous nanocomposite membranes, as determined by AFM and SEM, were successfully prepared using more viscous dispersions. It was observed that nanocomposite membranes with small particles (<50 nm) showed significant increases in proton conductivity at temperatures above 80°C. Surface modification of the silica particles improved the proton conductivity

  7. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples.

    PubMed

    Nguyen-Boisse, Thanh-Thuy; Saulnier, Joëlle; Jaffrezic-Renault, Nicole; Lagarde, Florence

    2014-02-01

    A new conductometric enzyme-based biosensor was developed for the determination of formaldehyde (FA) in aqueous solutions. The biosensor was prepared by cross-linking formaldehyde dehydrogenase from Pseudomonas putida with bovine serum albumin in saturated glutaraldehyde vapours (GA) at the surface of interdigitated gold microelectrodes. Nicotinamide adenine dinucleotide cofactor (NAD(+)) was added in solution at each measurement to maintain enzyme activity. Addition of a Nafion layer over the enzyme modified electrode resulted in a significant increase of biosensor signal due to enhanced accumulation of protons generated by enzymatic reaction at the electrode surface. Different parameters affecting enzyme activity or playing a role in ionic transfer through the Nafion membrane were optimised. In optimal conditions (0.045 mg enzyme, 30 min exposure to GA, 0.3 μL of a 1% (v/v) Nafion solution deposit, measurement in 5 mM phosphate buffer pH 7 containing 20 μM NAD(+)), the biosensor signal was linear up to 10 mM FA, and the detection limit was 18 μM. Relative standard deviations calculated from five consecutive replicates of FA solutions were lower than 5% in the 1-10 mM range. The biosensor was successfully applied to the determination of FA in spiked water samples (tap water and Rhone river water), with recoveries in the 95-110% range. PMID:23907681

  8. Energy Conversion from Salinity Gradient Using Microchip with Nafion Membrane

    NASA Astrophysics Data System (ADS)

    Chang, Che-Rong; Yeh, Ching-Hua; Yeh, Hung-Chun; Yang, Ruey-Jen

    2016-06-01

    When a concentrated salt solution and a diluted salt solution are separated by an ion-selective membrane, cations and anions would diffuse at different rates depending on the ion selectivity of the membrane. The difference of positive and negative charges at both ends of the membrane would produce a potential, called the diffusion potential. Thus, electrical energy can be converted from the diffusion potential through reverse electrodialysis. This study demonstrated the fabrication of an energy conversion microchip using the standard micro-electromechanical technique, and utilizing Nafion junction as connecting membrane, which was fabricated by a surface patterned process. Through different salinity gradient of potassium chloride solutions, we experimentally investigated the diffusion potential and power generation from the microchip, and the highest value measured was 135 mV and 339 pW, respectively. Furthermore, when the electrolyte was in pH value of 3.8, 5.6, 10.3, the system exhibited best performance at pH value of 10.3; whereas, pH value of 3.8 yielded the worst.

  9. Tangential and normal conductivities of Nafion ® membranes used in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Silva, R. F.; De Francesco, M.; Pozio, A.

    Conductivity measurements of Nafion ® 112, 115 and 117 membranes in the normal direction are reported in this paper. The measurements were made by means of impedance spectroscopy as a function of temperature. The conductivity was measured directly on hot-pressed carbon paper/membrane/carbon paper samples fully immersed in deionized water. The data show that Nafion ® membranes are really isotropic and that tangential and normal direction conductivity measurements gave the same results when the same hydration level was utilized.

  10. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  11. Electrospun Nafion®/Polyphenylsulfone composite membranes for regenerative Hydrogen bromine fuel cells

    DOE PAGESBeta

    Park, Jun; Wycisk, Ryszard; Pintauro, Peter N.; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    Here, the regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control.more » After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 m thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 m Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.« less

  12. Processing, morphology, and water uptake of Nafion/ex situ Stöber silica nanocomposite membranes as a function of particle size.

    PubMed

    Muriithi, Beatrice; Loy, Douglas A

    2012-12-01

    Because of the bicontinuous phase structure of Nafion with small hydrophilic channels, formation of composites with silica colloids to improve thermal stability, hydration, and proton conductivity should be influenced by size and surface functionality of the colloids. To test this hypothesis, we prepared batches of silica particles between 20 and 400 nm in diameter with narrow polydispersities using a modified Stöber procedure. Some particles were subsequently surface-modified using mercaptopropyltriethoxysilane. Enough particles were mixed with Nafion in alcohols to achieve 5 wt % silica in the final membranes, which were made by casting and drying. Membrane top and bottom surface and cross-section morphologies were examined with AFM and SEM to determine how the particles were dispersed. We discovered that casting the membranes from dispersions with viscosities less than 65 cPs led to larger particles floating to the top surface of the membrane where they were easily dislodged from the dry membrane. Membranes cast from more viscous solutions exhibited homogeneous distributions of particles. Water uptake was over 60% higher in nanocomposites with unmodified silica particles than for Nafion and about 15% higher than for Nafion with in situ generated silica particles, but showed no trend in water uptake correlating with particle size. Surface silated particles of all sizes appeared to have reduced water uptake relative to Nafion alone. PMID:23138476

  13. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance

    SciTech Connect

    Ren, X.; Springer, T.E.; Gottesfeld, S.

    2000-01-01

    This paper compares direct methanol fuel cells (DMFCs) employing two types of Nafion{reg{underscore}sign} (E.I.DuPont de Nemours and Company) membranes of different equivalent weight (EW). Methanol and water uptakes in 1,100 and 1,200 EW Nafion membranes were determined by weighing P{sub 2}O{sub 5}-dried and methanol solution-equilibrated membranes. Both methanol and water uptakes in the 1,200 EW membrane were about 70--74% of those in the 1,100 EW membrane. The methanol crossover rate corresponding to that in a DMFC at open circuit was measured using a voltammetric method in the DMFC configuration and under the same cell operating conditions. After accounting for the thickness difference between the membrane samples, the methanol crossover rate through a 1,200 EW membrane was 52% of that through an 1,100 EW membrane. To resolve the cathode and anode performances in an operating DMFC, a dynamic hydrogen electrode was used as a reference electrode. Results show that in an operating DMFC the cathode can be easily flooded, as shown in a DMFC using 1,100 EW membrane. An increase in methanol crossover rate decreases the DMFC cathode potential at open circuit. At a high cell current density, the DMFC cathode potential can approach that of a H{sub 2}/air cell.

  14. Behavior of NAFION perfluorosulfonate ionomer membranes in presence of tritiated water

    SciTech Connect

    Matei, L.; Postolache, C.; Cristescu, I.; Brad, S.

    2008-07-15

    The behavior of NAFION membrane was analyzed in presence of high activity tritiated water. The fundamental radiolytical processes have been analyzed by simulation, using quantum mechanical methods. NAFION and PTFE samples were immersed in water and exposed to gamma radiation fields. The samples were characterized by FTIR spectrometry and fluoride emissions. Self radiolytical processes were analyzed by storage of NAFION in high activity tritiated water. The induced modification analyses were carried out using FTIR and fluoride emissions characterization. The experimental results were correlated with quantum-chemical simulations. (authors)

  15. Dry and Wet Molecular Dynamics Simulations of Nafion® Polymer Electrolyte Fuel Cell Membrane

    NASA Astrophysics Data System (ADS)

    Yana, Janchai; Lee, Vannajan Sanghiran; Nimmanpipug, Piyarat; Dokmaisrijan, Supaporn; Aukkaravittayapun, Suparerk; Vilaithong, Thirapat

    The interactions between the hydronium ions and the waters in Nafion® polyelectrolyte membrane are relevant in the proton transfer process of fuel cell. To investigate a role of water in the proton transfer mechanism, molecular dynamic simulations have been performed for models of Nafion® side chains cluster with the water molecules and the hydronium ions comparing with dry system. After simulations, the trajectories were analyzed in term of intermolecular distances, potential energy, and radial distribution function.

  16. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    PubMed

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. PMID:24295698

  17. Nafion/PTFE/silicate composite membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ning; Chen, Li-Chun; Yu, T. Leon; Lin, Hsiu-Li

    Poly(tetrafluoro ethylene) (PTFE)/Nafion composite membranes (PN composite membranes) were prepared by impregnating micro-porous PTFE membranes in Nafion/2-propanol/water solutions. The PN composite membranes were then further impregnated with tetraethoxysilane (TEOS) solutions to prepare PTFE/Nafion/silicate (PNS) composite membranes. The influence of hybridizing silicate into the PN membranes on their direct methanol fuel cell (DMFC) performance and methanol crossover was investigated. Silicate in PN membranes causes reduction both in proton conductivity and methanol crossover of membranes. Thus PNS had a higher voltage than PN at low current densities due to the lower methanol crossover of PNS. However, at high current densities, PNS had a lower voltage than PN due to the higher resistance to proton transference of PNS. The range of lower current densities where PNS had a higher voltage than PN was i = 0-120 mA cm -2 when the methanol feed concentration was 2 M. This lower current density range became broader as the methanol feed concentration was increased, and it was broadened to i = 0-190 mA cm -2 as the methanol feed concentration was increased to 5 M. A comparison of the methanol crossover on the DMFC performance of PN and PNS with Nafion-112 was also studied. We showed that Nafion-112 exhibits higher methanol electro-osmosis than PN and PNS. Thus at a high current density, the higher methanol crossover via electro-osmosis caused Nafion-112 to have a lower voltage than PN and PNS.

  18. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    PubMed

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  19. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Haryadi, Gunawan, Y. B.; Mursid, S. P.; Harjogi, D.

    2016-04-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  20. Atomistic Simulations of Perfluoro Phosphonic and Phosphinic Acid Membranes and Comparisons to Nafion

    SciTech Connect

    Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel

    2011-03-31

    We used classical molecular dynamics (MD) simulations to investigate the nanoscale morphology and proton transport properties of perfluoro phosphonic (FPA) and phosphinic acid (FPA-I) membranes as they are being considered for use in low temperature fuel cells. We systematically investigated these properties as a function of the hydration level. The changes in nanostructure, in transport dynamics of water and hydronium ions, and in water network percolation were extracted from MD simulations and compared with Nafion. Phosphonic and phosphinic acid moieties in FPA and FPA-I, have lower acidity than sulfonic acid in Nafion, yet the diffusion of water was observed to be faster in FPA and FPA-I than in Nafion, particularly at low hydration levels. However this did not give rise to notable differences in hydronium ion diffusion and water network percolation for these membranes over Nafion. Similar observations were also reported by our group recently in a study of perfluoro-sulfonyl imide membranes carrying stronger super-acids than sulfonic acid of Nafion. These findings together suggest no strong apparent correlation between the acidity strength of the functional acid groups and the dynamics of water and hydronium ions in hydrated polymer electrolyte membranes (PEMs) with similar fluorocarbon backbones and acidic group-carrying side chains. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, Valeriy; Kleperis, Janis; Pavlovica, Sanita; Vaivars, Guntars

    2012-08-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  2. A molecular simulation study of chemical degradation and mechanical deformation of hydrated Nafion membranes

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Ban, Shuai; Liu, Bei; Zhou, Hongjun

    2016-01-01

    A combined modeling approach using kinetic Monte Carlo and molecular dynamics simulations is applied to investigate both chemical and mechanical degradation of Nafion membranes on the molecular level. In different hydration conditions, two major degradation reactions are identified to be the main chain unzipping and the side chain scission. The dissolution process of Nafion is evaluated in terms of weight loss, production emission rate and evolution of functional groups. Further, the complicated structural deformation is preliminarily investigated by imposing linear strain on degraded Nafion membrane. Different craze patterns are compared before and after chemical degradation, and the mechanism of crack propagation is proposed. Finally, prospective applications of our modeling approach are addressed for future studies of membrane degradation phenomena under fuel cell operation conditions.

  3. A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Wu, Ruizhe; Xu, J. B.; Luo, Zhengtang; Zhao, T. S.

    2016-04-01

    Methanol crossover due to the low selectivity of proton exchange membranes is a long-standing issue in direct methanol fuel cell technology. Here we attempt to address this issue by designing a composite membrane fabricated by sandwiching a monolayer graphene between two thin Nafion membranes to take advantage of monolayer graphene's selective permeability to only protons. The methanol permeability of the present membrane is demonstrated to have a 68.6% decrease in comparison to that of the pristine Nafion membrane. The test in a passive direct methanol fuel cell (DMFC) shows that the designed membrane retains high proton conductivity while substantially suppressing methanol crossover. As a result, the present membrane enables the passive DMFC to exhibit a decent performance even at a methanol concentration as high as 10.0 M.

  4. Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes.

    PubMed

    Ling, Xiao; Bonn, Mischa; Parekh, Sapun H; Domke, Katrin F

    2016-03-14

    The connection between the nanoscale structure of two chemically equivalent, yet morphologically distinct Nafion fuel-cell membranes and their macroscopic chemical properties is demonstrated. Quantification of the chemical interactions between water and Nafion reveals that extruded membranes have smaller water channels with a reduced sulfonic acid head group density compared to dispersion-cast membranes. As a result, a disproportionally large amount of non-bulk water molecules exists in extruded membranes, which also exhibit larger proton conductivity and larger water mobility compared to cast membranes. The differences in the physicochemical properties of the membranes, that is, the chemical constitution of the water channels and the local water structure, and the accompanying differences in macroscopic water and proton transport suggest that the chemistry of nanoscale channels is an important, yet largely overlooked parameter that influences the functionality of fuel-cell membranes. PMID:26895211

  5. Characterization of direct methanol fuel cell (DMFC) applications with H 2SO 4 modified chitosan membrane

    NASA Astrophysics Data System (ADS)

    Osifo, Peter O.; Masala, Aluwani

    Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H 2SO 4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm -1 than Chs membranes of 204 s cm -1. The proton fluxes across the membranes were 2.73 mol cm -2 s -1 for Chs- and 1.12 mol cm -2 s -1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10 -6 cm 2 s -1 for Chs membranes and 3.9 × 10 -6 cm 2 s -1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm -2 was 2.7 times higher than in the case of Chs MEA.

  6. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    PubMed

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. PMID:22192576

  7. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    SciTech Connect

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, Suntharampillai; Liu, Jun; Graff, Gordon L.; Hu, Jian Z.

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultraviolet visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.

  8. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    PubMed Central

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213

  9. Composite Nafion/sulfonated zirconia membranes: effect of the filler surface properties on proton transport characteristics

    PubMed Central

    D’Epifanio, Alessandra; Navarra, Maria Assunta; Weise, F. Christoph; Mecheri, Barbara; Farrington, Jaime; Licoccia, Silvia; Greenbaum, Steve

    2009-01-01

    Due to their strong acidity and water affinity, sulfated zirconia nanoparticles were evaluated as inorganic additives in the formation of composite Nafion-based membranes. Two types of sulfated zirconia were obtained according to the preparation experimental conditions. Sulfated zirconia-doped Nafion membranes were prepared by a casting procedure. The properties of the composite membranes were compared with those of an unfilled Nafion membrane obtained by the same preparation method. The water uptake, measured at room temperature in a wide relative humidity range, was higher for the composite membranes, this confirming the hydrophilic nature of the selected additives. The membrane doped by zirconia particles having the highest sulphate group concentration showed the highest water diffusion coefficient in the whole range of temperature and relative humidity investigated due to the presence of SO42− providing extra acid sites for water diffusion. The proton diffusivity calculated from impedance spectroscopy measurements was compared with water self diffusion coefficients measured by NMR Spectroscopy. The difference between proton and water diffusivity became significant only at high humidification levels, highlighting the role of water in the intermolecular proton transfer mechanism. Finally, great improvements were found when using the composite membrane as electrolyte in a fuel cell working at very low relative humidity. PMID:20209115

  10. Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: a solid state NMR study.

    PubMed

    Zhang, Limin; Xu, Jun; Hou, Guangjin; Tang, Huiru; Deng, Feng

    2007-07-01

    A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. The structure of these nanocomposite materials have been characterized using FT-IR, elemental analysis, XRD and solid state NMR techniques, including 19F magic-angle spinning (MAS) NMR, 19F NMR relaxation time measurements, 29Si MAS, 1H MAS, 1H-13C cross-polarization magic-angle spinning (CPMAS), and 1H-13C heteronuclear correlation (HETCOR) 2D NMR. The results showed that thermal stability of Nafion was improved moderately by the addition of dodecylamine modified MMT without intercalation. FT-IR and 29Si MAS NMR results indicated that dodecylamine modification did not result in obvious changes in the MMT lattice structure. The XRD results showed that the protonated dodecylamine has been embedded and intercalated into the MMT interlayers, whereas Nafion was not. Elemental analysis results also suggested that some dodecylamine was adsorbed on the surface of MMT. 1H-13C HETCOR 2D NMR experiment clearly indicated that strong electrostatic interactions were present between the NH+3 group of dodecylamine and the fluorine-containing groups (CF3, OCF2, and SCF2) of Nafion resin. Such electrostatic interactions are probably the major contributors for the improved thermal stability of the resultant composite materials. PMID:17382953

  11. Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Teng, Xiangguo; Dai, Jicui; Bi, Fangyuan; Yin, Geping

    2014-12-01

    Ultra-thin and high performance polytetrafluoroethene (PTFE)/Nafion/silica composite membrane has been successfully prepared by solution casting and sol-gel method for all vanadium redox flow battery (VRB). Thickness of ∼25 μm polytetrafluoroethene/Nafion (P/N) membrane is first prepared by impregnating porous PTFE membrane with Nafion solution, and then the P/N membrane is immersed in tetraethoxysilane (TEOS) solution to prepare PTFE/Nafion/silica (P/N/S) composite membranes. The chemical structures of membranes are investigated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), which prove that the Nafion resin and silica are well impregnated in PTFE membrane. The water uptake, proton conductivity, vanadium permeability and VRB single cell tests of the composite membrane are also investigated in detail. At 80 mA cm-2, coulombic efficiency, voltage efficiency and energy efficiency of the VRB with P/N/S-7 (7 wt.% SiO2 in P/N/S) membrane are 93.9%, 87.2% and 81.9%, respectively. Furthermore, the self-discharge rate of the VRB with P/N/S membrane is much slower than that of the VRB with P/N membrane, which indicates that the membrane has good vanadium block ability. Fifty cycles charge-discharge test proves that the P/N/S membrane is very stable and possesses high chemical stability under the strong acid solutions.

  12. Pervaporation of Water from Aqueous Sulfuric Acid at Elevated Temperatures Using Nafion® Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2009-01-01

    The concentration of sulfuric acid by pervaporation has been studied using Nafion-112® and Nafion-117® membranes, which have been characterized in terms of flux, permeability, and selectivity at 100 ºC and 120 ºC. Feed concentrations investigated ranged from 40 to over 80 weight percent. In general, water fluxes ranged from 100-8000 g/m2h, depending on feed acid concentration and separations factors as high as 104 were observed. Membrane stability was probed using Dynamic Mechanical Analysis that revealed some embrittlement of the membranes during use. Further studies showed that the embrittlement was due to an interaction with the acid and was not induced by the operating temperature.

  13. Development of sulfonated FEP Nafion hybrid proton exchange membranes for PEFC

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Fujii, K.; Mitani, N.; Matsuura, A.; Kakigi, T.; Muto, F.; Li, J.; Oshima, A.; Washio, M.

    2007-12-01

    The performance of polymer electrolyte fuel cell (PEFC) is affected by an interfacial property between a proton exchange membrane (PEM) and electrodes. Thus, to develop a well-laminated membrane electrode assembly (MEA), a hybrid PEM (FN) was fabricated by mixing a radiation grafted membrane (sulfonated FEP) with ionomer (Nafion ® dispersion) which is applied to coat the interface of the PEM and electrodes. The obtained FN, sulfonated FEP and Nafion ®112 were characterized in terms of water uptake, ion exchange capacity (IEC), polarization performance and electrochemical impedance. FN showed high IEC and water uptake, which would induce the highest ionic conductivity (IC) among tested PEMs. In terms of FN, the interface between the PEM and electrodes should have been improved because FN showed the lowest charge transfer resistance than other tested PEMs. The high IC and improved interface between the PEM and electrodes resulted in the best cell performance of FN in tested PEMs.

  14. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A.

    2010-04-01

    Variations of free volume and gas permeability of the Nafion® membrane upon ion-exchange of H+ with Cs+ or Pt2+ was studied as a function of temperature. Free volume was quantified using the positron annihilation lifetime technique. Our results showed that the free volume (VFV,Ps) of the dried membrane is enlarged by thermal expansion. It was found that the ion-exchange significantly expands the free volume and at the same time decreases the permeabilities of O2 and H2. Good linear correlations between the logarithm of permeabilities of O2 and H2 at different temperatures and 1/VFV,Ps for the ion-exchanged forms of Nafion® in the dried state suggest an important role played by the free volume in gas permeation. Considerable downward deviation of the correlations for the ion-exchanged ionomers from the H+-form suggested the importance of polymer stiffening in gas permeation.

  15. Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyoung; Kang, Myeongsoon; Choi, Yeong Suk; Kim, Hae Kyung; Lee, Wonmok; Chang, Hyuk; Seung, Doyoung

    Nafion sulfonated clay nanocomposite membranes were successfully produced via a film coating process using a pilot coating machine. For producing the composite membranes, we optimized the solvent ratio of N-methyl-2-pyrrolidinone (NMP) to N, N‧-dimethylacetamide (DMAc), the amount of sulfonated montmorillonite (S-MMT) in composite membranes and the overall concentration of composite dispersions. Based on the optimized viscosity and composition, the composite dispersions were coated on a poly(ethylene terephthalate) (PET) substrate film. The distance between a metering roll and a PET film and the ratio of metering roll speed versus coating roll speed of the pilot coating machine were varied to control membrane thickness. The film coated composite membrane exhibited enhanced properties in the swelling behavior against MeOH solution, ion conductivity and MeOH permeability, compared to the cast Nafion composite membrane due to the higher dispersion state of S-MMT in Nafion matrix and the uniform distribution of small-size ion clusters. These properties influenced a cell performance test of a direct methanol fuel cell (DMFC), showing the film coated composite membrane had a higher power density than that of Nafion 115. The power density was also related with the higher selectivity of the composite membrane than Nafion 115.

  16. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    NASA Astrophysics Data System (ADS)

    Naidoo, S.; Naidoo, Q.; Blottnitz, H.; Vaivars, G.

    2013-12-01

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O2) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 - 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities.

  17. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  18. Nafion/poly(1-vinyl imidazole) composite membranes for fuel cell application

    NASA Astrophysics Data System (ADS)

    Kim, Dukjoon

    2008-03-01

    A base monomer (1-vinyl imidazole, VIDz) was polymerized in Nafion^ 112 membrane by UV irradiation in order to reduce methanol permeability of the latter. With increasing content of poly 1-vinyl imidazole (PVI), equilibrium water uptake was decreased due to reduced size of hydrated ion cluster in the composite membrane as confirmed by a small angle X-ray scattering analysis. The electrochemical properties of the membrane such as ion conductivity, methanol permeability and electro-osmotic drag were also affected by equilibrium water uptake and hydrated pore size. Even a minute incorporation of the base polymer showed a significant effect on proton conductivity and methanol permeability. Methanol transport by electro-osmotic drag was evaluated by using relating equations and methanol permeability and limiting current density data obtained in this study. Although the absolute number of electro-osmotic drag was hard to determine, the trend of change could be studied in relation to bulk-like water in composite membranes. This novel composite membrane exhibited an increased cell performance compared with a plain Nafion membrane due to reduced methanol crossover rate.

  19. Comparison of electrochemical and microbiological characterization of microbial fuel cells equipped with SPEEK and Nafion membrane electrode assemblies.

    PubMed

    Suzuki, Kei; Owen, Rubaba; Mok, Joann; Mochihara, Hiroki; Hosokawa, Takuya; Kubota, Hiroko; Sakamoto, Hisatoshi; Matsuda, Atsunori; Tashiro, Yosuke; Futamata, Hiroyuki

    2016-09-01

    Microbial fuel cells equipped with SPEEK-MEA (SPEEK-MFC) and Nafion-MEA (Nafion-MFC) were constructed with organic waste as electron donor and lake sediment as inoculum and were then evaluated comprehensively by electrochemical and microbial analyses. The proton conductivity of SPEEK was several hundreds-fold lower than that of Nafion 117, whereas the oxygen mass and diffusion transfer coefficients of SPEEK were 10-fold lower than those of Nafion 117. It was difficult to predict which was better membrane for MFC based on the feature of membrane. Analyses of polarization curves indicated that the potential of electricity production was similar in both MFCs, as the SPEEK-MFC produced 50-80% of the practical current density generated by the Nafion-MFC. Chronopotentiometry analyses indicated that the Nafion-MEA kept the performance longer than the SPEEK-MEA for long period, whereas performance of both anodes improved on time. Multidimensional scaling analyses based on DGGE profiles revealed the anolytic and biofilm communities of the SPEEK-MFC had developed differently from those of the Nafion-MFC. Clone library analyses indicated that Geobacter spp. represented 6.3% of the biofilm bacterial community in the Nafion-MFC but not detected in the SPEEK-MFC. Interestingly, the clone closely related to Acetobacterium malicum strain HAAP-1, belonging to the homoacetogens, became dominant in both anolytic and biofilm communities of the SPEEK-MFC. It was suggested that the lower proton conductivity of SPEEK-MEA allowed the bacteria closely related to strain HAAP-1 to be dominant specifically in SPEEK-MFC. These results indicated that Nafion-MFC ranked with SPEEK-MFC and that MEAs had strong selective pressure for electricity-producing bacterial community. PMID:27215833

  20. Luminescent Nafion membranes dyed with ruthenium(II) complexes as sensing materials for dissolved oxygen

    SciTech Connect

    Garcia-Fresnadillo, D.; Orellana, G.; Marazuela, M.D.; Moreno-Bondi, M.C.

    1999-09-14

    The absorption spectroscopy, photophysics, and dioxygen quenching of [RuL{sub 3}]{sup 2+} luminescent probes, where L stands for 2,2{prime}-bipyridine, 1,10-phenanthroline, 5-octadecanamide-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline (dip), electrostatically loaded onto Nafion ionomer membrane have been investigated in air and in organic solvents and water, with the aim of developing rugged materials for optical sensing of molecular oxygen. The significant differences in size and hydrophobicity of the Ru(II) dyes have been used to probe their location within the perfluorinated ionomer pore network, as well as to gain insight into the oxygen accessibility to its microcrystalline and interfacial domains. While the absorption maximums of the probes (444--458nm) remain relative unchanged, their emission wavelengths (578--622 nm) are extremely sensitive to the degree of Nafion swelling by the solvent. This feature has been characterized by measuring the density (1.19--2.04 g cm{sup {minus}3}) of the solvent-saturated ionomer and the mass and volume fractions of solvents (0.0--0.7) uptake by the original acidic Nafion and Li{sup +}-, Na{sup +}-, or K{sup +}-exchanged films. The excited-state lifetimes of the [RuL{sub 3}]{sup 2+} complexes (0.03--4.9{micro}s) reflect important variations of the microenvironment around the luminescent probes, which are rationalized in terms of their location and oxygen accessibility when loaded onto the polysulfonated material. Emission quenching rate constants of 1.7 {+-} 0.3 M{sup {minus}1}s{sup {minus}1} have been measured for the [Ru(dip){sub 3}]{sup 2+}-dyed films dipped in methanol; their oxygen sensitivity turns out to be independent of the Ru(II) loading and counterion of Nafion. Highly oxygen-sensitive luminescent membranes, suitable for continuous monitoring in organic solvents, water, or gas phase, have been prepared by immobilization of [Ru(dip){sub 3}]{sup 2+} indicator in 178-{micro}m thick Nafion, with response

  1. Material properties of the Pt electrode deposited on nafion membrane by the impregnation-reduction method.

    PubMed

    Rashid, Muhammad; Jun, Tae-Sun; Kim, Yong Shin

    2013-05-01

    Platinum nanoparticles (Pt NPs) were chemically deposited on a Nafion polymer electrolyte membrane by the impregnation-reduction (I-R) procedure to prepare an active electrode for solid electrochemical sensors. Various analysis methods such as SEM, EDX, XRD and cyclic voltammogram (CV) measurements were employed in order to characterize microstructures and electrochemical properties of the Pt layer. At the conditions ([Pt(NH3)4Cl2] = 10 mM, [NaBH4] = 60 mM, 50 degrees C), the porous Pt thin-film, consisting of sphere-like particles formed by the agglomeration of primary polycrystalline Pt NPs with an average crystal size of 13-18 nm, was obtained and confirmed to have a large surface area (roughness factor = 267) and strong adhesion due to the formation of interfacial Pt-Nafion composites. The secondary globular particles were found to have an average diameter of 215 nm and irregular protuberances on the surface. Furthermore, this electrode exhibited well-resolved CV peaks for the hydrogen redox reactions in an acid solution, suggesting the existence of different adsorption sites and good electrochemical behaviors. Pt/Nafion electrodes were prepared under different conditions in [Pt(NH3)4Cl2], [NaBH4] and reaction temperature, and their material properties were discussed from the viewpoint of a Pt growth mechanism. PMID:23858916

  2. High-Performance of PEI/Nafion/ox-MWCNT Composite Membranes Based on Semi-Interpenetrating Polymer Networks for PEMFCs.

    PubMed

    Kim, Hee Jin; Talukdar, Krishan; Kim, Young Ho; Lee, Ho-Chang; Choi, Sang-June

    2015-11-01

    Polymer electrolyte membrane fuel cells (PEMFCs) are an up-and-coming technology for green and efficient power generation and offer a clean alternative to current technologies that use hydrocarbon fuel sources. In this paper, a reinforcing membrane was fabricated by Polyethylenimine polymer. Oxidized multiwalled carbon nanotube was dispersed into the PEI/Nafion membranes to achieve additional strength. The membranes were acidified via absorption of phosphoric acid from aqueous solution to make semi-interpenetrating polymer network (s-IPNs) which increases the proton conductivity by producing proton channel in the membrane. The PEI/Nafion/ox-MWCNT composite membranes show excellent phosphoric acid retention and high humidity, which impart a high ion exchange capacity (IEC) as well as improved proton conductivity. The surface morphologies and cross-sections of the resulting H3PO4 treated PEI/Nafion/ox-MWCNT composite membranes were observed using optical microscopy and scanning electron microscopy (SEM). The improvements in the thermal properties of the prepared PEI/Nafion/ox-MWCNT composite membranes were determined using thermogravimetric analysis (TGA). These performance results combined with the low inexpensive synthetic approach substantiate the potential for the new membrane to be used in PEMFCs. PMID:26726601

  3. Experimental determination of the transport number of water in Nafion 117 membrane

    SciTech Connect

    Fuller, T.F.; Newman, J. . Dept. of Chemical Engineering)

    1992-05-01

    The transport number of water in Nafion 117 membrane over a wide range of water contents is determined experimentally using a concentration cell. The transport number of water, the ratio f[sup m][sub o]/Z[sub o], is about 1.4 for a membrane equilibrated with saturated water vapor at 25[degrees]C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the concentration of water approaches zero. In this paper, the relationship between the transference number, the transport number, and the electro-osmotic drag coefficient is presented, and their relevance to water management is solid-polymer-electrolyte fuel cells is discussed. Results are compared with other data available in the literature and with the theoretical maximum.

  4. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport.

    PubMed

    Komarov, Pavel V; Khalatur, Pavel G; Khokhlov, Alexei R

    2013-01-01

    Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25-50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. PMID:24205452

  5. Performance improvement of passive direct methanol fuel cells with surface-patterned Nafion® membranes

    NASA Astrophysics Data System (ADS)

    Pu, Longjuan; Jiang, Jingjing; Yuan, Ting; Chai, Jieshi; Zhang, Haifeng; Zou, Zhiqing; Li, Xue-Mei; Yang, Hui

    2015-02-01

    Nafion® 115 membrane, patterned by thermal imprint lithography on the anode side, is used for passive direct methanol fuel cells (DMFCs). The membrane roughness factor, defined as the ratio between the actual and projected membrane surface area, was investigated for its effects on the performance of the DMFCs. When the anode Pt-Ru (1:1) catalyst loading is 1.0 mg cm-2, the maximum power density of the DMFC with a surface-patterned membrane (roughness factor: 5.4) using 3.0 M methanol as the fuel at 25 ± 1 °C reaches 27.2 ± 0.3 mW cm-2, an increase of ∼57.2% in comparison to DMFC using the pristine membrane (roughness factor: ∼1.0). Further, electrochemical characterization indicates that increased roughness factor of the membrane results in increased electrochemically active surface area and reduced charge transfer resistance in the cell. These performance improvements are ascribed to the increased surface roughness which enlarges the membrane/catalyst interface, possibly facilitating mass transport of the fuel and improving anode catalyst utilization. Thus, patterned membranes have great potential in improving the performance of fuel cells and reducing catalyst loading.

  6. Constitutive model development and micro-structural topology optimisation for nafion hydrogel membranes with ionic clustering.

    PubMed

    Li, Hua; Yuan, Z; Ng, T Y; Lee, H P; Lam, K Y; Wang, Q X; Wu, Shunnian; Fu, Jie; Hanes, Justin

    2003-01-01

    The deployment of electroactive ionic polymer hydrogel-metal composites in artificial muscle and BioMEMS applications has recently been intensively investigated. In order to analyse their electromechanical responses to externally applied electrical fields, it is critical to develop a constitutive model linking the macro-mechanical moduli with the micro-mechanical characteristics, and to determine the geometric size and shape of the micro-structural cluster and investigate the effect of cluster morphology on the effective electro-elastic moduli of the polymer hydrogels. As a typical ionic polymer-based hydrogel, the Nafion membrane is studied in this work. Based on the Biot poroelasticity theory, a multi-scale constitutive model which includes both macro and micro characteristics is developed using an asymptotic homogenisation method. The effect of water-volume fraction on the effective elastic moduli of the hydrogel membrane is examined for different equivalent weights. Numerical investigations show that the simulated effective constitutive moduli agree well with experimental data. The presently developed constitutive model is thus validated. In order to determine the micro-structural shape of the polymer skeleton subject to fluid pressure, a representative volume element (RVE) is designed by topology optimisation of the periodic microstructures of the Nafion hydrogels, through the minimisation of the electro-elastic interaction energy between the polymer-based fluorocarbon matrix and the surrounding fluid. This optimal RVE correctly predicts the geometric shapes of the clusters. PMID:14768907

  7. Effect of various concentration of sulfuric acid for Nafion membrane activation on the performance of fuel cell

    NASA Astrophysics Data System (ADS)

    Pujiastuti, Sri; Onggo, Holia

    2016-02-01

    This work proposes an activation treatment to Nafion 117 membrane with sulfuric acid in various concentrations. The main goal of this study is to increase the Nafion 117 membrane performance, which is determined by proton number in the membrane and membrane performance in Polymer Electrolyte Membrane Fuel Cell (PEMFC). This work was developed using sulfuric acids in four different concentrations: 1, 2, 3, and 4 M. The surface morphology and functional groups of activated membranes were studied using Scanning Electron Microscope and Fourier Transform Infrared, respectively. The proton number absorbed in membranes was observed by gravimetric measurements. The performances of activated membranes in PEMFC were studied by single cell measurements with H2/O2 operation. The experimental results showed that activation of Nafion membrane did not change its surface morphology and functional groups. The proton number increased when the concentration of sulfuric acid is increased from 1 to 3 M and from 1 to 4 M. On the other hand, there is no significant increase when the concentration of sulfuric acid was increased from 1 to 2 M. Similar trends were observed when testing activated membrane performance in PEMFC, especially for current density at 0.6 V and maximum power. It is assumed that there is a correlation between the increase of sulfuric acid concentration in activation process with the increase of proton number in the membrane that are available for facilitating of transfer protons from the anode to the cathode.

  8. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities.

    PubMed

    White, Nicholas; Misovich, Maria; Yaroshchuk, Andriy; Bruening, Merlin L

    2015-04-01

    Electrodialysis (ED) membranes typically exhibit modest selectivities between monovalent and divalent ions. This paper reports a dramatic enhancement of the monovalent/divalent cation selectivities of Nafion 115 membranes through coating with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. Remarkably, K(+)/Mg(2+) ED selectivities reach values >1000, and similar monovalent/divalent cation selectivities occur with feed solutions containing K(+) and Ca(2+). For comparison, the corresponding K(+)/Mg(2+) selectivity of bare Nafion 115 is only 1.8 ± 0.1. However, with 0.01 M KNO3 and 0.01 M Mg(NO3)2 in the source phase, as the applied current density increases from 1.27 to 2.54 mA cm(-2), the K(+)/Mg(2+) selectivities of coated membranes decrease from >1000 to 22. Water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains 0.1 M KNO3 and 0.1 M Mg(NO3)2, the K(+) transference number approaches unity and the K(+)/Mg(2+) selectivity is >20,000, presumably because the applied current is below the limiting value for K(+) and H(+) transport is negligible at this high K(+) concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. PMID:25738468

  9. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  10. Effect of solvents on the characteristics of Nafion ®/PTFE composite membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Velayutham, G.; Subramaniam, C. K.; Rajalakshmi, N.; Dhathathreyan, K. S.

    Composite membranes were prepared by impregnation of porous PTFE membrane with 2.5% Nafion ® solution prepared in various solvents. The solvents chosen were based on their solubility parameters to effectively wet the substrate for obtaining membranes with lower resistances. Earlier studies on composite membrane preparation did not take the solubility parameter of the solvent to wet the substrate into account. Membrane conductivity was dependent on the solvent type and its solubility parameter. Solvents with solubility parameter close to Nafion ® backbone/PTFE showed lower charge transfer resistance and the solvents with solubility parameter close to ionic groups showed higher conductivity. The effect of other parameters like compaction pressure, humidity and incorporation of Pt particles on the membrane resistance have also been investigated.

  11. A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150 °C

    NASA Astrophysics Data System (ADS)

    Ansari, Y.; Tucker, T. G.; Huang, W.; Klein, I. S.; Lee, S.-Y.; Yarger, J. L.; Angell, C. A.

    2016-01-01

    The search for fuel cell membranes has focused on carbon backbone polymers, among which Nafion seems to best survive the most severe of the degradation mechanisms - attack by peroxide radicals. Less attention has been given to inorganic membranes because of their generally inflexible nature and lower conductivity, though some SiO2-Nafion composites have shown improved properties. Nafion dominates, despite needing hydration, which then restricts operation to below 100 °C (so CO poisoning problems persist). Described herein is a low cost, flexible, and all-inorganic fiberglass reinforced gel membrane with conductivity exceeding that of Nafion at any temperature above 60 °C. Using Teflon fuel cells, maximum currents > 1 Acm-2 and OCV of 1.03 V at 150 °C are demonstrated. No detectable loss of cell potential was observed over 24 h during 50 mAcm-2 constant current operation at 120 °C while, at 150 °C and maximum power, the degradation rate is intermediate among other high conductivity H3PO4-PBI type membranes. The structure of the membrane is deduced, mainly from 29Si solid state-NMR. The -115 ppm resonance, which is extreme for Q4 Si(O) structures, identifies a zeolite-like SiO2 network, which is "floppy". 31P and 1H NMR establish nano-permeating H3PO4 as the source of the exceptional conductivity.

  12. Modeling of hydro-thermo-mechanical behavior of Nafion NRE212 for Polymer Electrolyte Membrane Fuel Cells using the Finite Viscoplasticity Theory Based on Overstress for Polymers (FVBOP)

    NASA Astrophysics Data System (ADS)

    Colak, Ozgen U.; Acar, Alperen

    2013-08-01

    The primary aim of this work is to present the modifications made to the Finite Viscoplasticity Theory Based on Overstress for Polymers (FVBOP). This is a unified state variable theory and the proposed changes are designed to account for humidity and temperature effects relevant to the modeling of the hydrothermal deformation behavior of ionomer membranes used in Polymer Electrolyte Membrane Fuel Cells (PEMFC). Towards that end, the flow function, which is responsible for conferring rate dependency in FVBOP, is modified. A secondary objective of this work was to investigate the feasibility of using the storage modulus obtained by Dynamic Mechanical Analysis (DMA) in place of the elasticity modulus obtained from conventional tensile/compressive tests, and find the correlation between the storage modulus and the elasticity modulus. The numerical simulations were juxtaposed against data from tensile monotonic loading and unloading experiments on perfluorosulfonic acid (PFSA) membrane Nafion NRE212 samples which are used extensively as a membrane material in PEMFC. The deformation behavior was modeled at four different temperatures (298, 323, 338, and 353 K—all values below the glass transition temperature of Nafion) and at three water content levels (3, 7 and 8 % swelling). The effects of strain rate, temperature, and hydration were captured well with the modified FVBOP model.

  13. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    PubMed

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics. PMID:22703479

  14. Tailoring of interfacial mechanical shear strength by surface chemical modification of silicon microwires embedded in Nafion membranes.

    PubMed

    Gallant, Betar M; Gu, X Wendy; Chen, David Z; Greer, Julia R; Lewis, Nathan S

    2015-05-26

    The interfacial shear strength between Si microwires and a Nafion membrane has been tailored through surface functionalization of the Si. Acidic (-COOH-terminated) or basic (-NH2-terminated) surface-bound functionality was introduced by hydrosilylation reactions to probe the interactions between the functionalized Si microwires and hydrophilic ionically charged sites in the Nafion polymeric side chains. Surfaces functionalized with SiOx, Si-H, or Si-CH3 were also synthesized and investigated. The interfacial shear strength between the functionalized Si microwire surfaces and the Nafion matrix was quantified by uniaxial wire pull-out experiments in an in situ nanomechanical instrument that allowed simultaneous collection of mechanical data and visualization of the deformation process. In this process, an axial load was applied to the custom-shaped top portions of individual wires until debonding occurred from the Nafion matrix. The shear strength obtained from the nanomechanical measurements correlated with the chemical bond strength and the functionalization density of the molecular layer, with values ranging from 7 MPa for Si-CH3 surfaces to ∼16-20 MPa for oxygen-containing surface functionalities. Hence surface chemical control can be used to influence the mechanical adhesion forces at a Si-Nafion interface. PMID:25872455

  15. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.

    PubMed

    Zhang, Ziheng; Martin, Jonathan; Wu, Jinfeng; Wang, Haijiang; Promislow, Keith; Balcom, Bruce J

    2008-08-01

    Water management is critical to optimize the operation of polymer electrolyte membrane fuel cells. At present, numerical models are employed to guide water management in such fuel cells. Accurate measurements of water content variation in polymer electrolyte membrane fuel cells are required to validate these models and to optimize fuel cell behavior. We report a direct water content measurement across the Nafion membrane in an operational polymer electrolyte membrane fuel cell, employing double half k-space spin echo single point imaging techniques. The MRI measurements with T2 mapping were undertaken with a parallel plate resonator to avoid the effects of RF screening. The parallel plate resonator employs the electrodes inherent to the fuel cell to create a resonant circuit at RF frequencies for MR excitation and detection, while still operating as a conventional fuel cell at DC. Three stages of fuel cell operation were investigated: activation, operation and dehydration. Each profile was acquired in 6 min, with 6 microm nominal resolution and a SNR of better than 15. PMID:18555714

  16. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    PubMed

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. PMID:27544443

  17. Transport Properties of Multivalent Cations in Nafion-117 Membrane with Mixed Ionic Composition.

    PubMed

    Chaudhury, Sanhita; Agarwal, Chhavi; Goswami, A

    2015-08-20

    The transport characteristics of multivalent cations like Ba(2+) and Eu(3+) have been studied in bi-ionic form of the Nafion-117 membrane. The membranes have been prepared by loading different proportions of H(+)-Ba(2+)/Mg(2+)-Ba(2+)/Ba(2+)-Eu(3+)/H(+)-Eu(3+)/Na(+)-Eu(3+). The cationic compositions of the membranes have been determined from the measured ion exchange isotherms. Results show that the self-diffusion coefficient of Ba(2+) (D(Ba)) in H-Ba/Mg-Ba systems as well as the self-diffusion coefficient of Eu(3+) (D(Eu)) in H-Eu/Na-Eu systems are strongly dependent on the membrane ionic compositions and decreased continuously with increasing concentration of the highly hydrated ions (H(+)/Na(+)/Mg(2+)) in the membrane. Increase in the proportion of H(+)/Na(+)/Mg(2+) ions in the membrane increases the effective charge on the membrane matrix. This causes stronger electrostatic interaction of the less hydrated multivalent ions (Ba(2+)/Eu(3+)) with the membrane matrix charges, which ultimately results in their slower self-diffusion coefficients. The higher the valence, the stronger the electrostatic interaction is with the fixed ionic charges; hence, in general, D(Eu) is affected more as compared to D(Ba). On the basis of the free-volume theory for polymers, the effective interaction potential (Φ) of the Ba(2+) with the fixed ionic sites in the membrane has been calculated and found to be on the order of approximately millivolts. The higher the proportion of hydrated ion in the membrane, the higher the Φ is and the stronger the ion pair formation is with the fixed ionic sites in the membrane. However, in the Ba-Eu system, as the electrostatic interactions of the two ions with the membrane matrix are close, D(Ba) and D(Eu) are independent of the membrane ionic composition. The ionic composition dependence of D(Ba) in the H-Ba system is reflected in the transport rate of Ba(2+), showing the importance of such measurements in understanding the transport

  18. Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode

    PubMed Central

    Castro, Suely S. L.; Mortimer, Roger J.; de Oliveira, Marcelo F.; Stradiotto, Nelson R.

    2008-01-01

    The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 × 105 cm3 mol-1 s-1 at a concentration of 5.0 × 10-5 mol L-1. When a Nafion® film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 × 10-5 to 5.0 × 10-4 mol L-1 with a slope of 23.5 mA mol-1 L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 × 10-6 mol L-1 and the relative standard deviation for five measurements of 2.5 × 10-4 mol L-1 dopamine was 0.58%.

  19. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    PubMed Central

    Komarov, Pavel V; Khokhlov, Alexei R

    2013-01-01

    Summary Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. PMID:24205452

  20. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    NASA Astrophysics Data System (ADS)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  1. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment.

    PubMed

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-01-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes. PMID:25947254

  2. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products

    PubMed Central

    Feng, Mingbao; Qu, Ruijuan; Habteselassie, Mussie; Wu, Jun; Yang, Shaogui; Sun, Ping; Huang, Qingguo; Wang, Zunyao

    2015-01-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs. PMID:26057616

  3. Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    PubMed Central

    Piech, Robert; Rumin, Martyna; Paczosa-Bator, Beata

    2015-01-01

    A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1) to 15 µM (4.5 mg·L−1) concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n = 5). The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples. PMID:25741451

  4. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  5. Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Lv, Weixin; Li, Guanghua; Mezaal, Mohammed Adnan; Li, Xiaojing; Lei, Lixu

    2014-12-01

    It has been found that the faradaic efficiency is decreasing with the electrolysis time for electrochemical reduction of CO2 to formate on a Sn cathode with a Pt anode in an undivided electrolytic cell, because the oxidation of formed formate takes place on the Pt anode, which also limits seriously the highest concentration of formate in the system. Here, we report that a coat of Nafion membrane on the Pt anode can retard the oxidation of formate: even if the concentration of the formate in the electrolyte reaches to 0.12 mol L-1, the faradaic efficiency still maintains above 61.3%; in contrast, the oxidation reaction of the formate on the naked Pt electrode is very fast, when the concentration of the formate in the electrolyte reaches to 0.023 mol L-1, the faradaic efficiency decreases to 35.3%. This is very important because the separation of formic acid could not be economical when its concentration is not high enough, and it is also costly if the depleted solution allows too less of its concentration because the solution has to be reused in the electrochemical process.

  6. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine.

    PubMed

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan; Chen, Jianhua; Hu, Shirong; Hao, Aiyou

    2015-01-01

    Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA. PMID:25467470

  7. A comparison study of ionic polymer-metal composites (IPMCs) fabricated with Nafion and other ion exchange membranes

    NASA Astrophysics Data System (ADS)

    Park, Jiyeon; Palmre, Viljar; Kim, Kwang; Shin, Dongsuk; Kim, Daniel H.; Yim, Woosoon; Bae, Chulsung

    2013-04-01

    Ionic polymer-metal composites (IPMCs) have been and still are one of the best candidates with great potential to be used as actuators and sensors particularly in bioengineering where the environmental conditions are in an aqueous medium. Each component of an IPMC is important. However, the ion exchange membrane should be more emphasized because it is where ions migrate when electrical stimulation is applied and eventually it produces deformation of the IPMC. So far, the most commonly used ion exchange membrane is Nafion and many studies have been conducted with it for IPMC applications. There are a number of other commercially available ion exchange membranes now, but only a few studies have been done on those membranes to be used in IPMC applications. In this study, four commercially available membranes, (1) Nafion N115 (DuPont), (2) CMI7000S (Membranes International Inc.), (3) F-14100 (fumatech), (4) GEFC-700 (Golden Energy Fuel Cell) were selected and fabricated in IPMCs and their potentials as actuators were examined by conducting various characterizations such as water uptake, ion exchange capacity, SEM, DSC, blocking force and bending displacement.

  8. Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators

    NASA Astrophysics Data System (ADS)

    Ru, Jie; Wang, Yanjie; Chang, Longfei; Chen, Hualing; Li, Dichen

    2016-09-01

    In this paper, we developed a new kind of ionic polymer metal composite (IPMC) actuator by doping water-soluble sulfonated multi-walled carbon nanotube (sMWCNT) into Nafion matrix to overcome some major drawbacks of traditional IPMCs, such as relatively low bending deformation and carring capacity at low driving voltages. Firstly, sMWCNT was synthesized via diazotization coupling reaction, and then doped into Nafion matrix by casting method. Subsequently, the electrochemical and electromechanical properties of sMWCNT-reinforced Nafion membranes and the corresponding IPMCs were investigated. Finally, the effects of sMWCNT on the performances of IPMCs were evaluated and analyzed systematacially. The results showed that sMWCNT was homogeneously dispersed in Nafion matrix without any entangled structure or obvious agglomeration. The main factors for superior actuation performances, like water-uptake ratio, proton conductivity and elastic modulus, increased significantly. Compared to the pure Nafion IPMC and MWCNT/Nafion IPMC, much superior electrochemical and electromechanical performances were achieved in the sMWCNT/Nafion IPMC, which were attributed to the numerous insertion sites, high surface conductivity and excellent mechanical strength as well as the homogeneous dispersity of the incorporated sMWCNT. Herein, a trace amount of sMWCNT can improve the performances of IPMCs significantly for realistic applications.

  9. Controlled morphology of Nafion^ perflourinated ionomer membrane and poly(vinylidene-co-trifluoroethylene) blends for swelling suppression.

    NASA Astrophysics Data System (ADS)

    Nazir, Nadzrinahamin Ahmad; Kyu, Thein

    2009-03-01

    The major objective of the present study is concerned with the swelling suppression of Nafion^ membrane upon hydration through blending with poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) copolymer. The phase diagram of the Nafion/PVDF-TrFE blend was established by differential scanning calorimetry, cloud point measurement, and optical microscopy. A theoretical phase diagram was calculated by self-consistently solving the combined Flory-Huggins free energy for liquid-liquid demixing and the phase field free energy for crystal solidification. The resulting phase diagram is the combined LCST-UCST and/or an hour glass type. Guided by the phase diagram, the phase separated domain morphology can be controlled to exhibit bicontinuous or dispersed domains via phase separation by solvent casting or thermal quenching. The blends thus prepared not only afford suppression of water uptake, but also render dimensional stability. Fourier transform infrared spectroscopy studies and water uptake measurement showed infallible evidence that modification of Nafion^ with PVDF-TrFE reduces swelling upon hydration.

  10. Improved Methanol Barrier Property of Nafion Hybrid Membrane by Incorporating Nanofibrous Interlayer Self-Immobilized with High Level of Phosphotungstic Acid.

    PubMed

    Abouzari-lotf, Ebrahim; Nasef, Mohamed Mahmoud; Ghassemi, Hossein; Zakeri, Masoumeh; Ahmad, Arshad; Abdollahi, Yadollah

    2015-08-12

    High level of phosphotungstic acid (PWA) was self-immobilized on electrospun nylon nanofiberous sheet to fabricate highly selective methanol barrier layer for sandwich structured proton conducting membranes. Simple tuning for the assembly conditions of central layer and thickness of outer Nafion layers allowed obtaining different composite membranes with superior methanol barrier properties (namely, P=3.59×10(-8) cm2 s(-1)) coupled with proton conductivities reaching 58.6 mS cm(-1) at 30 °C. Comparable activation energy for proton transport and more than 20 times higher selectivity than Nafion 115 confirm the effectiveness of the central layer and resulting membranes for application in direct methanol fuel cells (DMFCs). When tested in DMFC single cell, the performance of hybrid membrane was far better than Nafion 115 especially at higher methanol concentrations. PMID:26196374

  11. A comparative study to evaluate the osteoblastic cell behavior of two nano coated titanium surfaces with NAFION stabilized the membrane

    PubMed Central

    Nayar, Sanjna; Chakraverty, Sanket

    2015-01-01

    Aim: The aim of the study was to comparatively analyze the in vitro cell adhesion between nano coated titanium dioxide, and calcium hydroxyapatite (HA) coated titanium samples. Materials and Methods: Nano coated titanium dioxide, and calcium HA were coated onto the titanium samples by drop casting with NAFION membrane and cell culture was done by seeding human osteoblastic sarcoma cells on the coated samples. Results and conclusion: There was marked cell adhesion seen in the samples coated by titanium dioxide nano particles and more cells spreading as compared to calcium HA nano particles. PMID:26929484

  12. Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Willert-Porada, M.

    Pure layered phosphates of varying crystalline phases and crystallinity and composites of gradient layers of zirconium phosphate in Nafion 117-membranes have been prepared. The proton conductivity and, in case of the composites, also the dynamic mechanical properties of these materials were measured under different conditions of temperature and humidity. Membrane-electrode assemblies with low platinum catalyst loading of 0.4 mg cm -2 Pt at the cathode and 1.9 mg cm -2 Pt-Ru at the anode were examined in a direct methanol fuel cell (DMFC) at medium temperatures (130 °C). The conductivity of the layered zirconium phosphates is superior to the titanium phosphates and increases with decreasing crystallite size. The electrical performance of the composites in a DMFC-environment is slightly decreased as compared to the unmodified membrane but taking the reduced methanol crossover into account, higher efficiencies can be reached with the zirconium phosphate modified membrane. Furthermore, the mechanical properties are significantly improved by the presence of the inorganic compound.

  13. In-operando investigation of the humidity condition and the swelling of a Nafion-based membrane in a DMFC with synchrotron X-ray imaging

    NASA Astrophysics Data System (ADS)

    Arlt, T.; Schröder, A.; Heyne, K.; Riesemeier, H.; Wippermann, K.; Lehnert, W.; Manke, I.

    2015-11-01

    The water distribution of a Nafion-based membrane in a direct methanol fuel cell was analyzed in-operando using high resolved synchrotron X-ray radiography. A specially developed fuel cell design that meets the requirements for radiography as well as for stable cell operation was used. Different electric loads were applied during cell operation. A correlation between the electric load of the cell and the thickness of the membrane was found: the membrane thickness increased with increasing current density. The impact of local water drop dynamics on the water distribution in the membrane and the electrodes have been analyzed. We found a strong influence of water drops in the cathode channel on the water distribution in the adjacent area of the Nafion membrane.

  14. Optimization of a Nafion Membrane-Based System for Removal of Chloride and Fluoride from Lunar Regolith-Derived Water

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Santiago-Maldonado, Edgardo; Captain, James G.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.

    2012-01-01

    A long-term human presence in space will require self-sustaining systems capable of producing oxygen and potable water from extraterrestrial sources. Oxygen can be extracted from lunar regolith, and water contaminated with hydrochloric and hydrofluoric acids is produced as an intermediate in this process. We investigated the ability of Nafion proton exchange membranes to remove hydrochloric and hydrofluoric acids from water. The effect of membrane thickness, product stream flow rate, and acid solution temperature and concentration on water flux, acid rejection, and water and acid activity were studied. The conditions that maximized water transport and acid rejection while minimizing resource usage were determined by calculating a figure of merit. Water permeation is highest at high solution temperature and product stream flow rate across thin membranes, while chloride and fluoride permeation are lowest at low acid solution temperature and concentration across thin membranes. The figure of merit varies depending on the starting acid concentration; at low concentration, the figure of merit is highest across a thin membrane, while at high concentration, the figure of merit is highest at low solution temperature. In all cases, the figure of merit increases with increasing product stream flow rate.

  15. Electrochemical Detection of p-Aminophenol by Flexible Devices Based on Multi-Wall Carbon Nanotubes Dispersed in Electrochemically Modified Nafion

    PubMed Central

    Scandurra, Graziella; Antonella, Arena; Ciofi, Carmine; Saitta, Gaetano; Lanza, Maurizio

    2014-01-01

    A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs–Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 μM, with a detection limit of 90 nM and a sensitivity of 7 μA·(μM−1)·cm−2. PMID:24854357

  16. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO 3H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 × 10 -2 S cm -1. In terms of the overall selectivity index (β = σ/ P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L -1) and much better (three times) at high methanol concentration (12 mol L -1).

  17. All-solid-state supercapacitor using a Nafion ® polymer membrane and its hybridization with a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Won; Ahn, Hyo-Jin; Sung, Yung-Eun

    An all-solid-state supercapacitor is fabricated and optimized using a Nafion ® membrane and an ionomer. The device shows good capacitance (ca. 200 F g -1) as demonstrated by cyclic voltammograms (CVs) and charge-discharge curves. The supercapacitor exhibits a relatively stable capacitance during l0,000 cycles of operation. A hybrid system comprising a direct methanol fuel cell (DMFC) and an all-solid-state supercapacitor has been designed and tested. It is confirmed that the power discharged by the supercapacitor is transferred effectively to the DMFC. The power of the hybrid is immediately improved by 30% compared with that of a DMFC alone operating at 25 °C. The possibilities of using this system for high energy and high instantaneous power devices and integrated fabrication processes are discussed.

  18. Low-temperature synthesis of nano-TiO2 anatase on nafion membrane for using on DMFC

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Manh; Thanh Nha, Ngo; Hoang Tuyen, Nguyen

    2009-09-01

    Low-temperature synthesis of 60-70°C of anatase nanocrystalline titanium dioxide TiO2 using sol-gel technique on Nafion membrane is investigated and characterized. Titan tetraisopropoxide (TTIP) is used as precursor and ethanol as the solvent. The best precursor to solvent weight ratio has been used for the synthesis of nano-TiO2 particles. The X-ray diffractograms and TEM images show the formation of anatase structure of nanocrystalline TiO2 at low temperatures as shown with average particle size below 12 nm. The films deposited by spin coating technique using these nanoparticles show the crystalline and porous nature of the films. The nano-TiO2 film as shown can be used to reduce the cross-over permeation of methanol through the PEM and increase electric power of the DMFC.

  19. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  20. Property Control of Layer-by-Layer Assembled Sulfonated Poly(phenylene oxide) Composite Membrane Based on Nafion for Fuel Cell Applications.

    PubMed

    Kim, Byung Guk; Kim, Seon Mi; Cho, Chang Gi

    2015-02-01

    Multilayered composite proton exchange membranes were prepared by LbL method by alternating deposition of poly(diallyl dimethyl ammonium chloride) (PDDA) and highly sulfonated poly(phenylene oxide) (sPPO) onto the surface of Nafion 212. The sulfonated sPPO solution contained polystyrenesulfonic acid copolymer with azide moiety. Thickness of the LbL composite membrane was controlled by using the anionic solution of sPPO containing 0.5 M NaCl. The membranes were crosslinked by using UV to give the mechanical and chemical durability. The crosslinked composite membrane showed decreased methanol permeability with the increasing number of bilayers, and showed increased overall selectivity compared to Nafion film. PMID:26353659

  1. Theoretical evidence of the difference in kinetics of water sorption and desorption in Nafion® membrane and experimental validation

    NASA Astrophysics Data System (ADS)

    Didierjean, S.; Perrin, J. C.; Xu, F.; Maranzana, G.; Klein, M.; Mainka, J.; Lottin, O.

    2015-12-01

    Water transport during sorption and desorption in Nafion® 117 samples is studied by means of dynamic model and experiments as a response of relative humidity step. The model takes into account a transfer resistance at the interface between the membrane and the surrounding medium, and considers that the water content of the membrane remains uniform at all times during sorption and desorption, which was confirmed using NMR imaging. Thus, its main hypothesis is that the membrane is in equilibrium with the humid gas located at the interface whose relative humidity is different than in the bulk. The calculated time-variations in the water content of a membrane sample (in acid form) during sorption and desorption show that desorption is faster than sorption due to the variations in the slope of the water uptake isotherm. The theoretical results and the experimental data show a good agreement which allows the determination of the mass transfer coefficient. The influence of diffusion and thermal effects are also discussed.

  2. SAXS Analysis of the Thermal Relaxation of Anisotropic Morphologies in Oriented Nafion Membranes

    SciTech Connect

    Page,K.; Landis, F.; Phillips, A.; Moore, R.

    2006-01-01

    The current study uses variable temperature, small-angle X-ray scattering (SAXS) to examine the thermal relaxation behavior of oriented Nafion films as a means to evaluate the morphological stability of this ionomer at elevated temperatures. The SAXS patterns of uniaxially oriented films are characterized by strong equatorial scattering peaks which are attributed to scattering arising from the oriented ionic domains (ionomer peak ca. q = 2 nm{sup -1}). The intensity of the equatorial peaks-obtained from integration in the azimuthal direction ({chi})-and the degree of orientation-calculated using the Hermans orientation function (f)-were monitored as a function of temperature. At lower temperatures, a constant value of f and a correlation between the {beta} relaxation and a slight decrease in the scattering intensity of the equatorial peaks are in agreement with our earlier assignment of the {beta} relaxation to the T{sub g} of Nafion. At temperatures in the vicinity of the {beta} relaxation, the static electrostatic network inhibits long-range molecular relaxation and yields a persistent anisotropic morphology. In contrast, significant changes in intensity of the equatorial peaks and values of the orientation parameter at elevated temperatures were shown to correlate well with the {alpha} relaxation observed in DMA. At temperatures in the vicinity of the {alpha} relaxation, a significant destabilization of the oriented electrostatic network occurs (i.e., through the activation of a dynamic network involving significant ion-hopping processes), thus facilitating the observed relaxation to an isotropic morphology. Therefore, morphological stability in this ionomer is principally governed by the thermal stability of the electrostatic network and not the glass transition.

  3. A novel tridentate bis(phosphinic acid)phosphine oxide based europium(III)-selective Nafion membrane luminescent sensor.

    PubMed

    Sainz-Gonzalo, F J; Popovici, C; Casimiro, M; Raya-Barón, A; López-Ortiz, F; Fernández, I; Fernández-Sánchez, J F; Fernández-Gutiérrez, A

    2013-10-21

    A new europium(III) membrane luminescent sensor based on a new tridentate bis(phosphinic acid)phosphine oxide (3) system has been developed. The synthesis of this new ligand is described and its full characterization by NMR, IR and elemental analyses is provided. The luminescent complex formed between europium(III) chloride and ligand 3 was evaluated in solution, observing that its spectroscopic and chemical characteristics are excellent for measuring in polymer inclusion membranes. Included in a Nafion membrane, all the parameters (ligand and ionic additives) that can affect the sensitivity and selectivity of the sensing membrane as well as the instrumental conditions were carefully optimized. The best luminescence signal (λexc = 229.06 nm and λem = 616.02 nm) was exhibited by the sensing film having a Nafion : ligand composition of 262.3 : 0.6 mg mL(-1). The membrane sensor showed a short response time (t95 = 5.0 ± 0.2 min) and an optimum working pH of 5.0 (25 mM acetate buffer solution). The membrane sensor manifested a good selectivity toward europium(III) ions with respect to other trivalent metals (iron, chromium and aluminium) and lanthanide(III) ions (lanthanum, samarium, terbium and ytterbium), although a small positive interference of terbium(III) ions was observed. It provided a linear range from 1.9 × 10(-8) to 5.0 × 10(-6) M with a very low detection limit (5.8 × 10(-9) M) and sensitivity (8.57 × 10(-7) a.u. per M). The applicability of this sensing film has been demonstrated by analyzing different kinds of spiked water samples obtaining recovery percentages of 95-97%. PMID:23967443

  4. Fast Water Diffusion and Long-Term Polymer Reorganization during Nafion Membrane Hydration Evidenced by Time-Resolved Small-Angle Neutron Scattering.

    PubMed

    Fumagalli, M; Lyonnard, S; Prajapati, G; Berrod, Q; Porcar, L; Guillermo, A; Gebel, G

    2015-06-11

    We report a small-angle neutron scattering study of liquid water sorption in Nafion membranes. The swelling of hydrophilic domains was measured on the nanoscale by combining in situ time-resolved and long-term static experiments, yielding kinetic curves recorded over an unprecedented time scale, from hundreds of milliseconds to several years. At low water content, typically below 5 water molecules per ionic group, a limited subdiffusive regime was observed and ascribed to nanoconfinement and local interactions between charged species and water molecules. Further ultrafast and thermally activated swelling due to massive liquid water sorption was observed and analyzed by using Fick's equation. The extracted mutual water diffusion coefficients are in good agreement with pulsed field gradient NMR self-diffusion coefficient values, evidencing a water diffusion-driven process due to concentration gradients within the Nafion membrane. Finally, after completion of the ultrafast regime, the kinetic swelling curves exhibit a remarkable long-term behavior scaling as the logarithm of time, showing that the polymer membrane can continuously accommodate additional water molecules upon hydration stress. The present nanoscale kinetics results provide insights into the vapor-versus-liquid sorption mechanisms, the nanostructure of Nafion, and the role of polymer reorganization modes, highlighting that the membrane can never reach a steady state. PMID:25971732

  5. Characterization of perfluorinated cation-exchange membranes MF-4SC surface modified with halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Filippov, A.; Afonin, D.; Kononenko, N.; Shkirskaya, S.

    2015-10-01

    The electrical conductivity and diffusion permeability through perfluorinated cation-exchange membranes MF-4SC (Russian analog of the Nafion-type membrane), whose surface is modified by nanotubes of halloysite using short exposures of low temperature microwave plasma, are theoretically investigated using the Nernst-Planck approach. The method of quantitative evaluation of physicochemical parameters (individual and averaged diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of the systems `electrolyte solution - bi-layer ion-exchange membrane - water/electrolyte solution', which was proposed by us earlier, is further developed. The aforementioned parameters of modified MF-4SC/halloysite membranes were found using the least squares method. For this purpose we used electrical conductivity as well as diffusion permeability data experimentally obtained for NaCl and HCl solutions of different concentration. A new model of bi-layer membrane system can be used for refining the calculated results by taking into account the difference between co- and counter-ion diffusivities inside the membrane layers. We showed that grafting the layer of halloysite nanotubes onto the membrane surface noticeably affects the exchange capacity as well as the structural and transport characteristics of the original perfluorinated membrane. In particular, such a membrane may show weak asymmetry of diffusion permeability when its position inside a measuring cell is changed. Hybrid MF-4SC/halloysite membranes can thus be productively used in fuel cells and catalysis.

  6. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system.

    PubMed

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length. PMID:27415327

  7. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system

    NASA Astrophysics Data System (ADS)

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length.

  8. The effect of Na{sup +} impurities on the conductivity and water uptake of nafion 115 polymer electrolyte fuel cell membranes.

    SciTech Connect

    Bendert, J. C.; Papadias, D. D.; Myers, D. J.; Chemical Sciences and Engineering Division

    2010-08-25

    Water uptake and ionic conductivities are reported for Nafion 115 membranes as functions of water activity and percentage of sulfonic groups occupied by sodium impurities. Water content was determined gravimetrically under liquid hydration and at 100, 75.3, and 11.3% relative humidity (RH). Water content exponentially decreased from the H{sup +}-form membrane water uptake isotherm to the Na{sup +}-form isotherm when hydrated by water vapor. Ninety percent of this decrease is reached at a substitution level of 0.2Na{sup +}/SO{sub 3}{sup -}. Water uptake under liquid water hydration decreased more gradually, only 50% to completion at 0.2Na{sup +}/SO{sub 3}{sup -}. Four-probe conductivity testing of Nafion 115 membranes, normalized against dry dimensions, revealed that although hydration decreases immediately with the introduction of sodium impurities, ionic conductivity at 100% RH remains constant up to 0.15Na{sup +}/SO{sub 3}{sup -}. Above 0.15Na{sup +}/SO{sub 3}{sup -} an exponential decrease in ionic conductivity is observed with higher sodium content. The dependence of ionic conductivity on water content is also reported for sodium contents of 0, 0.27, 0.62 and 1Na{sup +}/SO{sub 3}{sup -}.

  9. Electron Paramagnetic Resonance studies of x-ray irradiated Nafion

    NASA Astrophysics Data System (ADS)

    Fragoso, Juan; Usher, Timothy

    2007-03-01

    Fuel cells promise a bright future as power sources for a variety of electronic equipment as well as more power demanding elements. Nafion (DuPont's trademark of a sulfonated tetrafluorethylene polymer modified from Teflon) is the heart of Proton Exchange Membrane Fuel Cells (PEMFCs) as well as Direct Methanol Fuel Cells (DMFCs). Fuel cells are used to power electronic equipment on spacecraft, satellites and unpiloted high altitude aircraft, where ionizing radiation can be a concern. Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that is very sensitive to free radicals such as those produced by ionizing radiation therefore EPR can give us a window into the degradation of the Nafion membranes due to the ionizing radiation. Nafion samples were irradiated using a x-ray diffractometer with a copper target operating at 40kV and 55mA for at least 3hrs. X-Band EPR spectroscopy of the irradiated nafion reveals a peak at 3400G with a width of 10G, which decays over time, completely diminishing in a couple of weeks. Preliminary results from the polarization studies on the effects of ionizing radiation will also be presented.

  10. Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications?

    NASA Astrophysics Data System (ADS)

    Maiti, Jatindranath; Kakati, Nitul; Lee, Seok Hee; Jee, Seung Hyun; Viswanathan, Balasubramanian; Yoon, Young Soo

    2012-10-01

    Though fuel cells have been considered as a viable energy conversion device, their adaptation for practical applications has been facing certain challenging issues regarding the availability of appropriate materials and components. For low temperature fuel cells, membranes that are cost effective and also competitive to Nafion® are the major requirements especially for Direct Methanol Fuel Cells (DMFC). Proton conductivity and methanol crossover are the two main characteristics that are of great concern for the development of suitable, alternate, and viable membranes for DMFC applications, though other factors including environmental acceptability are also important. In this regard, in recent time's poly (vinyl alcohol) based membranes have been developed as a viable alternative. This presentation therefore assesses the technological advances that have been made and the impediments that are faced in this development. This critical assessment exercise, it is presumed, may contribute toward a speedy development of this critical component for a viable fuel cell based energy economy.

  11. Voltammetric analysis with the use of a novel electro-polymerised graphene-nafion film modified glassy carbon electrode: simultaneous analysis of noxious nitroaniline isomers.

    PubMed

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2012-12-01

    A new modified electrode was constructed by the electro-polymerization of 7-[(2,4-dihydroxy-5-carboxybenzene)azo]-8-hydroxyquinoline-5-sulfonic acid (DHCBAQS) at a graphene-nafion modified glassy carbon electrode (GCE). The construction process was performed stepwise and at each step the electrochemical characteristics were investigated particularly with respect to the oxidation of the three noxious analytes, 2-nitroaniline (2-NA), 3-nitroaniline (3-NA), 4-nitroaniline (4-NA); the electrode treated with the fluorescence reagent DHCBAQS performed best. At this electrode, the differential pulse voltammetry peak currents of the three isomers increased linearly with their concentrations in the range of 0.05-0.60 μg mL(-1), respectively, and their corresponding limits of detection (LODs) were all about 0.022 μg mL(-1). Furthermore, satisfactory results were obtained when this electrode was applied for the simultaneous quantitative analysis of the nitroaniline isomer mixtures by Principal component regression (PCR) and Partial least squares (PLS) as calibration methods (relative prediction error (PRE(T)) - 9.04% and 9.23%) and average recoveries (101.0% and 101.7%), respectively. The above novel poly-DHCBAQS/graphene-nafion/GCE was successfully employed for the simultaneous analysis of the three noxious nitroaniline isomers in water and sewage samples. PMID:23142057

  12. Synthesis and characterization of Nafion/SiO2 - MOx (M= Ti, Zr, W) nanocomposite membranes by sol-gel reaction for fuel cells

    NASA Astrophysics Data System (ADS)

    Shahzadi, Ambreen; Ahmed, Riaz; Siddiq, Muhammad

    2014-06-01

    Development of efficient and durable cation exchange membranes for fuel cells is important particularly a method for inhibiting the volatility of water at higher temperature is a crucial issue. Nafion composite membranes were prepared by impregnation with SiO2, SiO2 -TiO2, SiO2 - WO3, and SiO2 - ZrO2 by immersing these in-situ sol-gel solution and stirring. The sol-gel solution mixture served to swell the pores of the membrane to maximize the adsorption of the precursor solution. The composite membranes have been characterized by X-ray diffraction, scanning electron microscopy, water uptake, ion exchange capacity and conductivity. XRD studies showed the crystallinity and particle sizes of oxides. FTIR showed the bond formation in oxide mixtures. SEM provides information about the morphology of the particles. Water uptake increased gradually from pure membrane to SiO2, SiO2 - TiO2, SiO2 -WO3, and SiO2 - ZrO2 particles added membranes and was maximum for SiO2 - ZrO2 added membrane. Composite membranes exhibited higher water uptake, ion exchange capacity, conductivity and can improve the efficiency and durability of PEM fuel cells considerably.

  13. Monitoring Transport Across Modified Nanoporous Alumina Membranes

    PubMed Central

    Penumetcha, Sai S.; Kona, Ravikanth; Hardin, Jonathan L.; Molder, Andrew L.; Steinle, Erich D.

    2007-01-01

    This paper describes the use of several characterization methods to examine alumina nanotubule membranes that have been modified with specific silanes. The function of these silanes is to alter the transport properties through the membrane by changing the local environment inside the alumina nanotube. The presence of alkyl groups, either long (C18) or short and branched (isopropyl) hydrocarbon chains, on these silanes significantly decreases the rate of transport of permeant molecules through membranes containing alumina nanotubes as monitored via absorbance spectroscopy. The presence of an ionic surfactant can alter the polarity of these modified nanotubes, which correlates to an increased transport of ions. Fluorescent spectroscopy is also utilized to enhance the sensitivity of detecting these permeant molecules. Confirmation of the alkylsilane attachment to the alumina membrane is achieved with traditional infrared spectroscopy, which can also examine the lifetime of the modified membrane. The physical parameters of these silane-modified porous alumina membranes are studied via scanning electron microscopy. The alumina nanotubes are not physically closed off or capped by the silanes that are attached to the alumina surfaces.

  14. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films.

    PubMed

    Tyszczuk-Rotko, Katarzyna; Bęczkowska, Ilona; Wójciak-Kosior, Magdalena; Sowa, Ireneusz

    2014-11-01

    The paper describes the fabrication and application of a novel sensor (a boron-doped diamond electrode modified with Nafion and lead films) for the simultaneous determination of paracetamol and ascorbic acid by differential pulse voltammetry. The main advantage of the lead film and polymer covered boron-doped diamond electrode is that the sensitivity of the stripping responses is increased and the separation of paracetamol and ascorbic acid signals is improved due to the modification of the boron-doped diamond surface by the lead layer. Additionally, the repeatability of paracetamol and ascorbic acid signals is improved by the application of the Nafion film coating. In the presence of oxygen, linear calibration curves were obtained in a wide concentration range from 5×10(-7) to 2×10(-4) mol L(-1) for paracetamol and from 1×10(-6) to 5×10(-4) mol L(-1) for ascorbic acid. The analytical utility of the differential pulse voltammetric method elaborated was tested in the assay of paracetamol and ascorbic acid in commercially available pharmaceutical formulations and the method was validated by high performance liquid chromatography coupled with diode array detector. PMID:25127609

  15. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode.

    PubMed

    Sun, Wei; Gao, Ruifang; Jiao, Kui

    2007-05-01

    Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2. PMID:17425353

  16. Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: An electrochemical study in solution and a membrane-electrode-assembly study in fuel cells

    NASA Astrophysics Data System (ADS)

    He, Qinggang; Mugadza, Tawanda; Kang, Xiongwu; Zhu, Xiaobing; Chen, Shaowei; Kerr, John; Nyokong, Tebello

    2012-10-01

    This study was motivated by the need for improved understanding of the kinetics and transport phenomena in a homogeneous catalyst system for the oxygen reduction reaction (ORR). Direct interaction between the sulfonic groups of Nafion and an Fe(III) meso-tetra(N-methyl-4-pyridyl) porphine chloride (Fe(III)TMPyP) compound was observed using FTIR and in situ UV-Vis spectroelectrochemical characterizations. A positive shift of the half wave potential value (E1/2) for ORR on the iron porphyrin catalyst (Fe(III)TMPyP) was observed upon addition of a specific quantity of Nafion ionomer on a glassy carbon working electrode, indicating not only a faster charge transfer rate but also the role of protonation in the oxygen reduction reaction (ORR) process. A membrane electrode assembly (MEA) was made as a sandwich of a Pt-coated anode, a Nafion® 212 membrane, and a Fe(III)TMPyP + Nafion ionomer-coated cathode. This three-dimensional catalysis system has been demonstrated to be working in a H2/O2 proton exchange membrane (PEM) fuel cell test.

  17. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations.

    PubMed

    Yiğit, Aydın; Yardım, Yavuz; Çelebi, Metin; Levent, Abdulkadir; Şentürk, Zühre

    2016-09-01

    A graphene-Nafion composite film was fabricated on the glassy carbon electrode (GR-NF/GCE), and used for simultaneous determination of paracetamol (PAR), aspirin (ASA) and caffeine (CAF). The electrochemical behaviors of PAR, ASA and CAF were investigated by cyclic voltammetry and square-wave adsorptive anodic stripping voltammetry. By using stripping one for simultaneous determination of PAR, ASA and CAF, their electrochemical oxidation peaks appeared at +0.64, 1.04 and 1.44V, and good linear current responses were obtained with the detection limits of 18ngmL(-1) (1.2×10(-9)M), 11.7ngmL(-1) (6.5×10(-8)M) and 7.3ngmL(-1) (3.8×10(-8)M), respectively. Finally, the proposed electrochemical sensor was successfully applied for quantifying PAR, ASA and CAF in commercial tablet formulations. PMID:27343573

  18. In vivo selective monitoring of basal levels of cerebral dopamine using voltammetry with Nafion modified (NA-CRO) carbon fibre micro-electrodes.

    PubMed

    Crespi, F; Möbius, C

    1992-05-01

    The electrochemical technique of differential pulse voltammetry (DPV) with micro-biosensors has been used for a number of years to monitor in vivo and in situ changes in the extracellular concentration of cerebral ascorbic acid, as well as that of the metabolites of dopamine (DA) and serotonin (5-HT). We have recently prepared a carbon fibre micro-electrode (mCFE) which specifically pretreated and coated with Nafion (a negatively charged polymer which repels acids such as 3,4-dihydroxyphenylacetic acid (DOPAC)) allows the direct selective detection of the oxidation of DA and 5-HT in nanomolar concentration in vitro and that of extracellular basal levels of cerebral 5-HT in vivo (peak B at +240 mV). We describe here a modified version of this micro-biosensor now called NA-CRO mCFE as its active tip (30 microns in diameter) is coated with a 50/50 (v:v) mixture of Nafion and dibenzo-18-crown-6 (Aldrich). In vitro this newly reported electrode shows insensitivity to acids (e.g., DOPAC) up to 100 microns and sensitivity to 0.5-1 nM DA. In vivo, in the striatum of anaesthetised rats, a basal oxidation peak at +80 mV (peak A, on average 0.6 nA in height), which corresponds to the oxidation potential of DA in vitro, is consistently detectable with the NA-CRO mCFE (corresponding to an estimated concentration of 1.5 nM). Experiments performed in vivo in anaesthetised rats implanted in the striatum with uncoated (normal) mCFE to measure extracellular DOPAC or with NA-CRO mCFE have been performed in order to analyse the chemical nature of peak A in vivo. It is concluded that the addition of the crown-ether compound to the Nafion coat improves the sensitivity of the micro-biosensor for DA in vitro and allows the detection of its basal extracellular levels in vivo. PMID:1501500

  19. Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery

    SciTech Connect

    Reed, David M.; Thomsen, Edwin C.; Wang, Wei; Nie, Zimin; Li, Bin; Wei, Xiaoliang; Koeppel, Brian J.; Sprenkle, Vincent L.

    2015-07-01

    Three Nafion membranes of similar composition but different thicknesses were operated in a 3-cell 1kW class all vanadium mixed acid redox flow battery. The influence of current density on the charge/discharge characteristics, coulombic and energy efficiency, capacity fade, operating temperature and pressure drop in the flow circuit will be discussed and correlated to the Nafion membrane thickness. Material costs associated with the Nafion membranes, ease of handling the membranes, and performance impacts will also be discussed.

  20. Quasireversible Process of Dopamine on Copper-Nickel Hydroxide Composite/Nitrogen Doped Graphene/Nafion Modified GCE and Its Electrochemical Application.

    PubMed

    Liu, Chuan-Yin; Liu, Zhong-Yong; Peng, Rong; Zhong, Zhi-Cheng

    2014-01-01

    Cu-Ni(OH)2/N-GR/Nafion/GCE has been prepared by electrodeposition and activation with NaOH. The proposed modified GCE was studied by electrochemical methods. It is found that dopamine shows favorable redox cyclic voltammetric response on the proposed modified GCE with peak separation of 25 mV and large current compared with on single-component modified GCE. The kinetic of electrode process has also been investigated with rate constant of 6.618 × 10(-3) cm/s, which can be deduced to be a quasireversible or near-reversible process. The proposed method has been used for DA detection with linear range of 1.0 × 10(-7) mol/L to 4.6 × 10(-5) mol/L, and the detection limit is 3.3 × 10(-8) mol/L. The proposed method has favorable stability and reproducibility and has also been used to determine DA in simulated samples and DA injections with favorable recoveries of 98.4% to 102.6%. PMID:25024866

  1. Antioxidant status and Na(+), K (+)-ATPase activity in freshwater fish Carassius auratus exposed to different combustion products of Nafion 117 membrane: an integrated biomarker approach.

    PubMed

    Feng, Mingbao; Wang, Xinghao; Wang, Chao; Qin, Li; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely applied in numerous chemical technologies. Its increasing production and utilization will inevitably lead to the problem of waste disposal, with incineration as an important method. However, toxicity data of its combustion products on aquatic organisms have been seldom reported. The present study was therefore conducted to investigate the antioxidant response and Na(+), K(+)-ATPase activity in liver of Carassius auratus exposed to different combustion products of N117 for 5, 15, and 30 days. The concentrations of fluorine ion (F(-)) in the aquaria among the exposure durations were analyzed using the ion chromatography system. The results showed that these treatments have the capability to induce oxidative stress and suppress Na(+), K(+)-ATPase activity, as indicated by some significant alterations on these measured toxicity end-points in fish liver. According to the integrated biomarker response (IBR) index, the toxicity intensity of these experimental treatments was tentatively ranked. Taken together, these observations provided some preliminary data on the potential toxicity of the combustion products of N117 on aquatic organisms and could fill the information gaps in the toxicity database of the current-use PEM. PMID:25398218

  2. Sensitive voltammetric sensor based on isopropanol-Nafion-PSS-GR nanocomposite modified glassy carbon electrode for determination of clenbuterol in pork.

    PubMed

    Wang, Ling; Yang, Ran; Chen, Jing; Li, Jianjun; Qu, Lingbo; de B Harrington, Peter

    2014-12-01

    In the present study, poly(sodium 4-styrenesulfonate) (PSS) functionalized graphene (GR) was synthesised via a simple one-step chemical reduction of exfoliated graphite oxides in the presence of PSS. Characterisation of as-made nanocomposite using Fourier transform infrared spectroscopy (FT-IR) and ultraviolet and visible spectroscopy (UV-vis) clearly demonstrate the successful attachment of PSS to graphene sheets. A novel clenbuterol (CLB) electrochemical sensor was fabricated based on isopropanol-Nafion-PSS-GR composite film modified glassy carbon electrode. In the Britton-Robinson buffer (pH 1.2), the sensor exhibited superior electrocatalytic activity towards the oxidation of CLB. Applying linear sweep voltammetry, a good linear relationship of the oxidation peak current with respect to concentrations of CLB cross the range of 7.5 × 10(-8)-2.5 × 10(-5)mol L(-1) and a detection limit of 2.2 × 10(-8) mol L(-1) were achieved. The proposed method was successfully applied for the determination of CLB in pork. PMID:24996313

  3. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    PubMed

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. PMID:26920482

  4. Fabrication and characteristics of a multilayered ionic polymer metal composite based on Nafion/tetraethyl orthosilicate and Nafion/MCNT nanocomposites.

    PubMed

    He, Qing-Song; Yu, Min; Ding, Yan; Dai, Zhen-Dong

    2014-10-01

    Nafion/multi-walled carbon nanotubes (Nafion/MCNT) and Nafion/tetraethyl orthosilicate (Nafion/TEOS) nanocomposites were prepared and used as starting materials in the fabrication of an ionic polymer metal composite (IPMC). Experimental data show that the Nafion/MCNT-based IPMC exhibited a blocking force that is two times higher than that of bare Nafion-based IPMC. This higher blocking force is due to the stable homogeneous dispersions of multiwalled carbon nanotubes as well as to their improved conductivity. Meanwhile, the Nafion/TEOS-based IPMC generated a blocking force that is more than two times higher than that of bare Nafion-based IPMC because of the induced channels and increased water content. In this paper, a novel Nafion membrane containing a primary Nafion/TEOS layer sandwiched between two outer Nafion/MCNT nanocomposite layers was prepared by consecutive casting of liquid solutions. By using the multilayered Nafion membrane, IPMC was carefully fabricated by electroless plating. In addition, the blocking force, displacement, and electric current of the IPMC were measured on the test apparatus. The multilayered IPMC exhibited a significantly improved blocking force of 6.5 gf as well as a long effective air-operating life time. Finally, this multilayered IPMC was successfully used to actuate the robotic fish. PMID:25942807

  5. Photoelectrochemistry of photosystem I bound in nafion.

    PubMed

    Baker, David R; Simmerman, Richard F; Sumner, James J; Bruce, Barry D; Lundgren, Cynthia A

    2014-11-18

    Developing a solid state Photosystem I (PSI) modified electrode is attractive for photoelectrochemical applications because of the quantum yield of PSI, which approaches unity in the visible spectrum. Electrodes are constructed using a Nafion film to encapsulate PSI as well as the hole-scavenging redox mediator Os(bpy)2Cl2. The photoactive electrodes generate photocurrents of 4 μA/cm(2) when illuminated with 1.4 mW/cm(2) of 676 nm band-pass filtered light. Methyl viologen (MV(2+)) is present in the electrolyte to scavenge photoelectrons from PSI in the Nafion film and transport charges to the counter electrode. Because MV(2+) is positively charged in both reduced and oxidized states, it is able to diffuse through the cation permeable channels of Nafion. Photocurrent is produced when the working electrode is set to voltages negative of the Os(3+)/Os(2+) redox potential. Charge transfer through the Nafion film and photohole scavenging at the PSI luminal surface by Os(bpy)2Cl2 depends on the reduction of Os redox centers to Os(2+) via hole scavenging from PSI. The optimal film densities of Nafion (10 μg/cm(2) Nafion) and PSI (100 μg/cm(2) PSI) are determined to provide the highest photocurrents. These optimal film densities force films to be thin to allow the majority of PSI to have productive electrical contact with the backing electrode. PMID:25341002

  6. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode.

    PubMed

    Chaiyo, Sudkate; Mehmeti, Eda; Žagar, Kristina; Siangproh, Weena; Chailapakul, Orawon; Kalcher, Kurt

    2016-04-28

    A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L(-1). With an accumulation period of 120 s detection limits of 0.09 ng mL(-1), 0.06 ng L(-1) and 0.08 ng L(-1) were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry. PMID:27046207

  7. Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW class all vanadium mixed acid redox flow battery

    NASA Astrophysics Data System (ADS)

    Reed, David; Thomsen, Edwin; Wang, Wei; Nie, Zimin; Li, Bin; Wei, Xiaoliang; Koeppel, Brian; Sprenkle, Vincent

    2015-07-01

    Three Nafion® membranes of similar composition but different thicknesses were operated in a 3-cell 1 kW class all vanadium mixed acid redox flow battery. The influence of current density on the charge/discharge characteristics, coulombic and energy efficiency, capacity fade, operating temperature and pressure drop in the flow circuit will be discussed and correlated to the Nafion® membrane thickness. Material costs associated with the Nafion® membranes, ease of handling the membranes, and performance impacts will also be discussed.

  8. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Di, Zhigang; Xie, Qiang; Li, Haibin; Mao, Dali; Li, Ming; Zhou, Daowu; Li, Lu

    2015-01-01

    The SiO2-Nafion/sulfonated poly (ether ether ketone) (SPEEK) composite membranes are fabricated by using the simple mechanical ball-milling process to combine SiO2 glass powders with small portion of Nafion, in which SiO2 glass powders are prepared by modified sol-gel progress and Nafion is embedded in situ into a highly porous silica network. The morphology, thermal and mechanical properties, pore structure, proton conductivity and fuel cell performance of the SiO2-Nafion/SPEEK composite membranes are investigated. The poor miscibility of Nafion and sulfonated aromatic polymer is solved by fixing Nafion into SiO2 glass powders. The composite membranes perform well even if the proportion of inorganic component in membranes is as high as 40 wt.%. A maximum of proton conductivity, 0.018 S cm-1, is obtained from the membrane of 4(8Si-2N)/6SPEEK at 80 °C and 90% relative humidity, which is owing to its enhanced hygroscopicity and highly dispersed Nafion clusters. In addition, a single fuel cell equipped with the composite membrane shows a peak power density of 589.2 mW cm-2 at 70 °C.

  9. Water-Nafion equilibria. absence of Schroeder's paradox.

    PubMed

    Onishi, Lisa M; Prausnitz, John M; Newman, John

    2007-08-30

    Water-Nafion phase equilibria and proton conductivities were measured in two ways. First, Nafion was in contact with saturated water vapor. Second, Nafion was in contact with liquid water at the same temperature. At 29 degrees C, for preboiled, vapor-equilibrated Nafion exposed to water with an activity = 1 and air pressures ranging from 0 to 0.96 bar, the water content was lambda = 23 +/- 1 mol H(2)O/mol SO3-. For the preboiled, liquid-equilibrated membrane, lambda = 24 +/- 2. At 100% relative humidity (RH), the water content of preboiled Nafion decreased as the temperature rose from 30 to 80 degrees C but did not recover its initial water content when the temperature returned to 30 degrees C. The water content of predried Nafion at 1 atm and 30 degrees C was lambda = 13.7 +/- 0.2 when vapor-equilibrated and lambda = 13.1 +/- 0.5 when liquid-equilibrated. A Nafion membrane originally boiled in water had much higher liquid- and 100% RH vapor-equilibrated proton conductivities than the same membrane originally dried at 110 degrees C with a RH less than 2%. The liquid-equilibrated and 100% RH vapor-equilibrated membrane conductivities were the same when the membrane had the same thermal history. The conductivity data was fit to a model, and the water content was determined at different temperatures. The predried membrane water content increased with temperature, and the preboiled membrane's water content changed slightly with temperature. Both water sorption and proton-conductivity data do not exhibit Schroeder's paradox. These studies and previous results suggest that Schroeder's paradox is resolved when attention is given to the thermal history of the absorbing polymer. PMID:17685645

  10. NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs

    PubMed Central

    Nicotera, Isabella; Angjeli, Kristina; Coppola, Luigi; Aricò, Antonino S.; Baglio, Vincenzo

    2012-01-01

    Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE) diffusion under variable temperature conditions. Synthetic (Laponite) and natural (Swy-2) smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC). The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell. PMID:24958179

  11. Effect of bound state of water on hydronium ion mobility in hydrated Nafion using molecular dynamics simulations

    SciTech Connect

    Mabuchi, Takuya; Tokumasu, Takashi

    2014-09-14

    We have performed a detailed analysis of the structural properties of the sulfonate groups in terms of isolated and overlapped solvation shells in the nanostructure of hydrated Nafion membrane using classical molecular dynamics simulations. Our simulations have demonstrated the correlation between the two different areas in bound water region, i.e., the first solvation shell, and the vehicular transport of hydronium ions at different water contents. We have employed a model of the Nafion membrane using the improved force field, which is newly modified and validated by comparing the density and water diffusivity with those obtained experimentally. The first solvation shells were classified into the two types, the isolated area and the overlapped area. The mean residence times of solvent molecules explicitly showed the different behaviors in each of those areas in terms of the vehicular transport of protons: the diffusivity of classical hydronium ions in the overlapped area dominates their total diffusion at lower water contents while that in the isolated area dominates for their diffusion at higher water contents. The results provided insights into the importance role of those areas in the solvation shells for the diffusivity of vehicular transport of hydronium ions in hydrated Nafion membrane.

  12. Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes.

    PubMed

    Quan, Do Phuc; Tuyen, Do Phuc; Lam, Tran Dai; Tram, Phan Thi Ngoc; Binh, Nguyen Hai; Viet, Pham Hung

    2011-12-01

    A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required. The later modified electrode exhibits superior electrocatalytic activity towards AA, DA and UA thanks to synergic effect of NF/SWCNT (combining unique properties of SWCNT such as high specific surface area, electrocatalytic and adsorptive properties, with the cation selectivity of NF). On the surface of NF/SWCNT/PMT/GCE AA, DA, UA were oxidized respectively at distinguishable potentials of 0.15, 0.37 and 0.53 V (vs. Ag/AgCl), to form well-defined and sharp peaks, making possible simultaneous determination of each compound. Also, it has several advantages, such as simple preparation method, high sensitivity, low detection limit and excellent reproducibility. Thus, the proposed NF/SWCNT/PMT/GCE could be advantageously employed for the determination of DA in real pharmaceutical formulations. PMID:21907551

  13. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis. PMID:26695338

  14. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  15. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  16. Interactions of a hydrophobically modified polycation with zwitterionic lipid membranes.

    PubMed

    Kepczynski, Mariusz; Jamróz, Dorota; Wytrwal, Magdalena; Bednar, Jan; Rzad, Ewa; Nowakowska, Maria

    2012-01-10

    The interactions between synthetic polycations and phospholipid bilayers play an important role in some biophysical applications such as gene delivery or antibacterial usage. Despite extensive investigation into the nature of these interactions, their physical and molecular bases remain poorly understood. In this Article, we present the results of our studies on the impact of a hydrophobically modified strong polycation on the properties of a zwitterionic bilayer used as a model of the mammalian cellular membrane. The study was carried out using a set of complementary experimental methods and molecular dynamic (MD) simulations. A new polycation, poly(allyl-N,N-dimethyl-N-hexylammonium chloride) (polymer 3), was synthesized, and its interactions with liposomes composed of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) were examined using dynamic light scattering (DLS), zeta potential measurements, and cryo-transmission electron microscopy (cryo-TEM). Our results have shown that polymer 3 can efficiently associate with and insert into the POPC membrane. However, it does not change its lamellar structure, as was demonstrated by cryo-TEM. The influence of polymer 3 on the membrane functionality was studied by leakage experiments applying a fluorescence dye (calcein) encapsulated in the phospholipid vesicles. The MD simulations of model systems reveal that polymer 3 promotes formation of hydrophilic pores in the membrane, thus increasing considerably its permeability. PMID:22085465

  17. Mechanical and transport properties of NafionRTM for PEM fuel cells; temperature and hydration effects

    NASA Astrophysics Data System (ADS)

    Majsztrik, Paul William

    This work investigates the mechanical and water transport properties of Nafion, a fully fluorinated ion conducting polymer used as a membrane material in proton exchange membrane fuel cells (PEMFCs). Both of these properties are extremely important to the short and long term operation of fuel cells. Nafion is a viscoelastic material, responding to stress in a time-dependant manner. The result is that Nafion flows under stress and responds dynamically to changes in hydration and stress. Stresses applied to the membrane of a PEM fuel cell, both from clamping as well as strain from changing levels of hydration, cause Nafion to flow. This results in thinning in spots and sometimes leads to the development of pinholes or contact problems between membrane and electrode. Temperature and water content strongly affect Nafion's viscoelastic response, of direct importance for operating PEM fuel cells. The viscoelastic response of Nafion was measured over a range of temperature and hydration using viscoelastic creep. A specially designed creep apparatus with environmental controls was used. It was found that the effects of temperature and hydration on Nafion's viscoelastic response are very complicated. Around room temperature, water acts to plasticize Nafion; elastic modulus and resistance to creep decrease with increasing hydration. As temperature increases, water has the opposite effect on mechanical response; hydration acts to stabilize the material. Mechanical property values are reported over a range of temperature and hydration germane to the operation of PEMFCs. Additionally, the data is used to infer molecular level interactions and the effects of temperature and hydration on microstructure. Hydration of Nafion and other PEMFC materials is required for the high proton conductivity needed for fuel cell operation. Uptake of water by Nafion results in volumetric swelling. Water transport through Nafion was directly measured by permeation. Both liquid and vapor phase

  18. Ion exchange capacity of Nafion and Nafion composites

    SciTech Connect

    Chen, T.Y.; Leddy, J.

    2000-03-21

    The ion exchange capacity of recast Nafion films and composites of Nafion and polystyrene microbeads is determined by titration. Composite formation enhances exchange capacity; exchange capacity increases with the surface area microbeads in the composite. For recast films, an equivalent weight of 996 {+-} 24 is found, whereas the lowest equivalent weight (highest exchange capacity) found for composite is 878 {+-} 8. This suggests that {approx_gt} 13% of the exchange sites within recast films are inaccessible for ion exchange; for 1,100 equivalent weight material, {approx_gt} 25% of the sulfonates are inaccessible. Equivalent weight results are consistent with an ordered interfacial domain between Nafion and the microbeads. A fractal model based on microbead radii, microbead fraction, and interfacial domain thickness provides a predictive model for designing composites with increased exchange capacity and cation transport.

  19. A fabrication method of unique Nafion® shapes by painting for ionic polymer–metal composites

    NASA Astrophysics Data System (ADS)

    Trabia, Sarah; Hwang, Taeseon; Kim, Kwang J.

    2016-08-01

    Ionic polymer–metal composites (IPMC) are useful actuators because of their ability to be fabricated in different shapes and move in various ways. However, producing unique or intricate shapes can be difficult based upon the current fabrication techniques. Presented here is a fabrication method of producing the Nafion® membrane or thin film through a painting method. Using an airbrush, a Nafion water dispersion is sprayed onto an acrylonitrile butadiene styrene surface with a stencil of the desired shape. To verify that this method of fabrication produces a Nafion membrane similar to that which is commercially available, a sample that was made using the painting method and Nafion 117 purchased from DuPont™ were tested for various characteristics and compared. The results show promising similarities. The painted Nafion sample was chemically plated with platinum and compared with a traditional IPMC for its displacement and blocking force capabilities. The painted IPMC sample showed comparable results.

  20. Azobenzene Modified Polymer Electrolyte Membrane for Ion Gating

    NASA Astrophysics Data System (ADS)

    Piedrahita, Camilo; Mballa, Mireille; He, Ruixuan; Kyu, Thein

    By virtue of ion concentration gradient across cell membranes, neuron cells are highly polarized driving electrical potential difference (e.g., Gibbs law). To regulate and control ion movement, living cells have specific channels with gates that are permeable to cations, enabling or excluding them via charge polarity and size. This mechanism for generating and transmitting signals from one neuron to another controls body movement via brain function. By virtue of trans-cis isomerization, azobenzene derivative (AZO) has been heavily sought for ion-gating in biological cells as a means of signal generation and transmission through nervous systems. In this work, PEM consisted of PEGDA/SCN/LiTFSI was modified with AZO derivatives for gating of lithium ions. At low concentrations of azobenzene of 3 wt Supported by NSF-DMR 1502543.

  1. Purification and proteomics of pathogen-modified vacuoles and membranes

    PubMed Central

    Herweg, Jo-Ana; Hansmeier, Nicole; Otto, Andreas; Geffken, Anna C.; Subbarayal, Prema; Prusty, Bhupesh K.; Becher, Dörte; Hensel, Michael; Schaible, Ulrich E.; Rudel, Thomas; Hilbi, Hubert

    2015-01-01

    Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. PMID:26082896

  2. Laccase-based biocathodes: Comparison of chitosan and Nafion.

    PubMed

    El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K

    2016-09-21

    Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. PMID:27590544

  3. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing.

    PubMed

    Yang, Jen Ming; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. PMID:24364963

  4. Visualization of ion transport in Nafion using electrochemical strain microscopy

    SciTech Connect

    Kim, Suran; No, Kwangsoo; Hong, Seungbum

    2015-12-24

    The electromechanical response of a Nafion membrane immersed in water was probed using electrochemical strain microscopy (ESM) to redistribute protons and measure the resulting local strain that is caused by the movement of protons. We also measured the relaxation of protons from the surface resulting from proton diffusion. Using this technique, we can visualize and analyze the local strain change resulting from the redistribution and relaxation of hydrated protons.

  5. FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER

    SciTech Connect

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-09-01

    This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced

  6. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  7. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    SciTech Connect

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  8. Donnan dialysis of transition metal ions using anion exchange membrane modified with Xylenol Orange

    SciTech Connect

    Sawicka, B.; Brajter, K.; Trojanowicz, M.; Kado, B. )

    1991-01-01

    A chelating ion-exchange membrane was obtained by modification of a PTFE-based anion-exchange membrane with Xylenol Orange. Its utility for dialysis of Cu(II), Ni(II), Mn(II), and Zn(II) was investigated by using receiver solutions without and with iminodiacetate. 1,2-diaminocyclohexanetetraacetic acid, and tetraethylenepentamine. In comparison to commercial PTFE cation-exchange membranes, modified chelating membranes exhibit for the metal ions investigated a larger differentiation of retention in the membrane phase and transport-to-receiver solution depending on the modifier used and the composition of the receiver solution.

  9. Silver Nafion for Thermogalvanic Applications

    NASA Astrophysics Data System (ADS)

    Chang, William; Popere, Bhooshan; Evans, Chris; Russ, Boris; Segalman, Rachel

    2015-03-01

    Thermogalvanics convert a temperature gradient, typically from waste heat, into electrical power using a reversible electrochemical reaction. The conversion efficiency in thermogalvanics, like with thermoelectrics, are governed by the Seebeck coefficient, the carrier conductivity and the thermal conductivity of the material. We demonstrate that the material systems silver Nafion and silver poly-styrenesulfonate are air-stable, water processable materials that demonstrate extremely high Seebeck coefficients and moderate carrier conductivities. These power factors, when coupled with the low thermal conductivities inherent in polymers, results in materials with excellent thermogalvanic figure of merits. We show the dependence of these three material properties to material composition and processing. In this talk, we show how the Seebeck coefficient in silver Nafion and silver polystyrene-sulfonate are opposite in sign, allowing construction of a thermogalvanic device. With these ion conductors, we hope to open up a flexible pathway to waste heat recovery using materials typically studied for electrochemical applications.

  10. Characterization of modified PVDF membrane by gamma irradiation for non-potable water reuse.

    PubMed

    Lim, Seung Joo; Kim, Tak-Hyun; Shin, In Hwan

    2015-01-01

    Poly(vinylidene fluorine) (PVDF) membranes were grafted by gamma-ray irradiation and were sulfonated by sodium sulfite to modify the surface of the membranes. The characteristics of the modified PVDF membranes were evaluated by the data of Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), the contact angle of the membrane surface and the water permeability. From the results of FT-IR, XPS and FE-SEM, it was shown that the modified membranes were successfully grafted by gamma-ray irradiation and were sulfonated. The content of oxygen and sulfur increased with the monomer concentration, while the content of fluorine sharply decreased. The pore size of the modified membranes decreased after gamma-ray irradiation. The contact angle and the water permeability showed that the hydrophilicity of the modified membranes played a role in determining the membrane performance. The feasibility study of the modified PVDF membranes for using non-potable water reuse were carried out using a laboratory-scale microfiltration system. Grey wastewater was used as the influent in the filtration unit, and permeate quality satisfied non-potable water reuse guidelines in the Republic of Korea. PMID:25812106

  11. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. PMID:27524062

  12. Lipid-membrane modified electrodes to study quinone oxidoreductases

    PubMed Central

    Weiss, Sophie A.; Jeuken, Lars J. C.

    2013-01-01

    Quinone oxidoreductases are a class of membrane enzymes that catalyse the oxidation or reduction of membrane-bound quinols/quinones. The conversion of quinone/quinol by these enzymes is difficult to study due to the hydrophobic nature of the enzymes and their substrates. We describe some biochemical properties of quinones and quinone oxidoreductases and then look in more detail at two model membranes that can be used to study quinone oxidoreductases in a native-like membrane environment with their native lipophylic quinone substrates. The results obtained with these model membranes are compared to classical enzyme assays that use water-soluble quinone analogues. PMID:19614580

  13. Role of the Fast Kinetics of Pyroglutamate-Modified Amyloid-β Oligomers in Membrane Binding and Membrane Permeability

    PubMed Central

    2015-01-01

    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer’s disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1–40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3–42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3–42 and Aβ1–42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3–42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3–42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3–42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability. PMID:24950761

  14. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes.

    PubMed

    Molinari, R; Argurio, P

    2001-01-01

    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. PMID:11381544

  15. A new force field for molecular dynamics studies of Li + and Na +-nafion

    NASA Astrophysics Data System (ADS)

    Soolo, Endel; Liivat, Anti; Kasemägi, Heiki; Tamm, Tarmo; Brandell, Daniel; Aabloo, Alvo

    2008-03-01

    Nafion is widely known as one of the most popular membrane materials for low temperature fuel cell applications. However, the particular exchange membrane material properties make it also valuable for other applications. One of the electroactive polymer (EAP) subclasses, ionic polymer metal composites (IPMC) commonly exploits Nafion as the ion exchange polymer membrane. The ion conducting properties of Nafion are extremely important for IPMCs. Although, ion conductivity depends strongly on the structural properties of the polymer matrix, there has been very little insight at the atomistic level. Molecular dynamics simulations are one of the possibilities to study the ion conduction mechanism at atomistic level. So far, the simulation results have been rather contradictory and very much dependent from the force fields and polymer matrix setup used. In the present work, new force field parameters for Li + and Na + - nafion based on DFT calculations are presented. The developed potentials and the force field were tested by molecular dynamics simulations. It can be concluded that Li + and Na + ions are coordinated to different Nafion side-chain terminal group (SO 3 -) oxygens and to very few water molecules. One cation is coordinated to three different side-chains. Oxygens of SO 3 groups and cations form complicated multi-header systems. In the equilibrium state, no cations dissociated from side chains were found.

  16. A novel inorganic/organic composite membrane tailored by various organic silane coupling agents for use in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Tao; Yang, Yong

    A series of organic silica/Nafion composite membranes has been prepared by using organic silane coupling agents (SCA) bearing different hydrophilic functional groups. The physico-chemical properties of the composite membranes have been characterized by electrochemical techniques, scanning electron microscopy (SEM), diffuse-reflection Fourier-transform infrared spectroscopy (DRFTIR), wide-angle X-ray diffraction (WAXRD), thermogravimetric analysis (TGA), and thermogravimetric mass spectrometry (TG-MS). It has been found that some organic silica/Nafion composite membranes modified by organic silane agents bearing amino groups exhibit extremely low methanol crossover and proton conductivity values, e.g., a composite membrane shows a proton conductivity that is about five orders of magnitude lower and a methanol permeability that is about three orders of magnitude lower than those of a Nafion117 membrane. However, under optimized conditions for controlling the basicity of the amino groups, we also obtained a composite membrane with 89% lower methanol permeability and 49% lower proton conductivity compared with Nafion117 membrane. The results clearly demonstrate that the diffusion of methanol and protons through the membrane can be controlled by adjusting the functional groups on the organic silica.

  17. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  18. Performance of diatomite/iron oxide modified nonwoven membrane used in membrane bioreactor process for wastewater reclamation.

    PubMed

    He, Yueling; Zhang, Wenqi; Rao, Pinhua; Jin, Peng

    2014-01-01

    This study describes an approach for surface modification of a nonwoven membrane by diatomite/iron oxide to examine its filterability. Analysis results showed that nonwoven hydrophilicity is enhanced. Static contact angle decreases dramatically from 122.66° to 39.33°. Scanning electron micrograph images show that diatomite/iron oxide is attached on nonwoven fiber. X-ray diffraction analysis further proves that the compound is mostly magnetite. Fourier transformed infrared spectra results reveal that two new absorption peaks might be attributed to Si-O and Fe-O, respectively. Modified and original membranes were used in double nonwoven membrane bioreactors (MBRs) for synthetic wastewater treatment. High critical flux, long filtration time, slow trans-membrane pressure rise and stable sludge volume index confirmed the advantages of modified nonwoven. Comparing with original nonwoven, similar effluent qualities are achieved, meeting the requirements for wastewater reclamation. PMID:25098885

  19. SEPARATION PROPERTIES OF SURFACE MODIFIED SILICA SUPPORTED LIQUID MEMBRANES FOR DIVALENT METAL REMOVAL/RECOVERY

    EPA Science Inventory

    The synthesis and separation properties of a mesoporous silica supported liquid membrane (SLM) were studied. The membranes consisted of a silica layer, from dip-coated colloidal silica, on a a-alumina support, modified with DCDMS (dichlorodimethyl silane) to add surface methyl g...

  20. Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs).

    PubMed

    Xue, Shuang-Mei; Xu, Zhen-Liang; Tang, Yong-Jian; Ji, Chen-Hao

    2016-07-27

    In this work, three modified multiwalled carbon nanotubes (MWCNTs) with carboxyl (MWCNT-COOH), hydroxyl (MWCNT-OH) and amino groups (MWCNT-NH), respectively, were added into the aqueous phase containing piperazine (PIP) to fabricate the nanocomposite nanofiltration (NF) membranes via interfacial polymerization. The influences of functional groups of MWCNTs on the performance of modified NF membrane were investigated. The MWCNTs were characterized by TEM, FT-IR and TGA; meanwhile, the properties of the membranes were evaluated by XPS, TEM, AFM and contact angle. The XPS results proved the successful incorporation of MWCNT in the active layer of modified NF membrane. When the MWCNT concentration is 0.01% (w/v), all the nanocomposite membranes possessed the optimal separation properties, among which the membrane incorporated with MWCNT-OH demonstrated the highest water flux of 41.4 L·m(-2)·h(-1) and the Na2SO4 rejection of 97.6% whereas the one with MWCNT-COOH had the relative lowest rejection of 96.6%. Furthermore, the increased hydrophilicity of functional groups in modified MWCNTs resulted in different nodular surface morphologies, thicknesses and hydrophilicities of the nanocomposite membranes. All the membranes possessed a molecular weight cutoff (MWCO) within 300 Da and good operation stability. PMID:27387192

  1. Dependence of high-temperature PEM fuel cell performance on Nafion ® content

    NASA Astrophysics Data System (ADS)

    Song, Ying; Xu, Hui; Wei, Yu; Kunz, H. Russell; Bonville, Leonard J.; Fenton, James M.

    Operating a proton exchange membrane (PEM) fuel cell at elevated temperatures (above 100 °C) has significant advantages, such as reduced CO poisoning, increased reaction rates, faster heat rejection, easier and more efficient water management and more useful waste heat. Catalyst materials and membrane electrode assembly (MEA) structure must be considered to improve PEM fuel cell performance. As one of the most important electrode design parameters, Nafion ® content was optimized in the high-temperature electrodes in order to achieve high performance. The effect of Nafion ® content on the electrode performance in H 2/air or H 2/O 2 operation was studied under three different operation conditions (cell temperature (°C)/anode (%RH)/cathode (%RH)): 80/100/75, 100/70/70 and 120/35/35, all at atmospheric pressure. Different Nafion ® contents in the cathode catalyst layers, 15-40 wt%, were evaluated. For electrodes with 0.5 mg cm -2 Pt loading, cell voltages of 0.70, 0.68 and 0.60 V at a current density of 400 mA cm -2 were obtained at 35 wt% Nafion ® ionomer loading, when the cells were operated at the three test conditions, respectively. Cyclic voltammetry was conducted to evaluate the electrochemical surface area. The experimental polarization curves were analyzed by Tafel slope, catalyst activity and diffusion capability to determine the influence of the Nafion ® loading, mainly associated with the cathode.

  2. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    PubMed

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF. PMID:27118046

  3. Surface-modified anodic aluminum oxide membrane with hydroxyethyl celluloses as a matrix for bilirubin removal.

    PubMed

    Xue, Maoqiang; Ling, Yisheng; Wu, Guisen; Liu, Xin; Ge, Dongtao; Shi, Wei

    2013-01-01

    Microporous anodic aluminum oxide (AAO) membranes were modified by 3-glycidoxypropyltrimethoxysilane to produce terminal epoxy groups. These were used to covalently link hydroxyethyl celluloses (HEC) to amplify reactive groups of AAO membrane. The hydroxyl groups of HEC-AAO composite membrane were further modified with 1,4-butanediol diglycidyl ether to link arginine as an affinity ligand. The contents of HEC and arginine of arginine-immobilized HEC-AAO membrane were 52.1 and 19.7mg/g membrane, respectively. As biomedical adsorbents, the arginine-immobilized HEC-AAO membranes were tested for bilirubin removal. The non-specific bilirubin adsorption on the unmodified HEC-AAO composite membranes was 0.8mg/g membrane. Higher bilirubin adsorption values, up to 52.6mg/g membrane, were obtained with the arginine-immobilized HEC-AAO membranes. Elution of bilirubin showed desorption ratio was up to 85% using 0.3M NaSCN solution as the desorption agent. Comparisons equilibrium and dynamic capacities showed that dynamic capacities were lower than the equilibrium capacities. In addition, the adsorption mechanism of bilirubin and the effects of temperature, initial concentration of bilirubin, albumin concentration and ionic strength on adsorption were also investigated. PMID:23290920

  4. Heat Modifiability of Outer Membrane Proteins from Gram-Negative Bacteria

    PubMed Central

    Noinaj, Nicholas; Kuszak, Adam J.; Buchanan, Susan K.

    2016-01-01

    Summary β-barrel membrane proteins are somewhat unique in that their folding states can be monitored using semi-native SDS-PAGE methods to determine if they are folded properly or not. This property, which is commonly referred to as heat modifiability, has been used for many years on both purified protein and on whole cells to monitor folded states of proteins of interest. Additionally, heat modifiability assays have proven indispensable in studying the BAM complex and its role in folding and inserting β-barrel membrane proteins into the outer membrane. Here, we describe the protocol our lab uses for performing the heat modifiability assay in our studies on outer membrane proteins. PMID:26427675

  5. Heat Modifiability of Outer Membrane Proteins from Gram-Negative Bacteria.

    PubMed

    Noinaj, Nicholas; Kuszak, Adam J; Buchanan, Susan K

    2015-01-01

    β-barrel membrane proteins are somewhat unique in that their folding states can be monitored using semi-native SDS-PAGE methods to determine if they are folded properly or not. This property, which is commonly referred to as heat modifiability, has been used for many years on both purified protein and on whole cells to monitor folded states of proteins of interest. Additionally, heat modifiability assays have proven indispensable in studying the BAM complex and its role in folding and inserting β-barrel membrane proteins into the outer membrane. Here, we describe the protocol our lab uses for performing the heat modifiability assay in our studies on outer membrane proteins. PMID:26427675

  6. Modified cationic membranes for water purification, and their selective permeability

    NASA Astrophysics Data System (ADS)

    Mavrin, G. V.; Fasullin, D. D.; Melkolvan, R. G.

    2014-12-01

    Wastewater containing heavy metal ions pose a significant toxicological risk to aquatic ecosystems and humans. The common problem of modern engineering technology is the development of environmentally friendly systems with a closed-circuit and a minimum waste. The ion exchange membrane can significantly reduce the cost of wastewater treatment and provide a high degree of purification.

  7. Effect of H2O2 on Nafion® properties and conductivity at fuel cell conditions

    NASA Astrophysics Data System (ADS)

    Hongsirikarn, Kitiya; Mo, Xunhua; Goodwin, James G.; Creager, Stephen

    2011-03-01

    During PEM fuel cell operation, formation of H2O2 and material corrosion occurs, generating trace amounts of metal cations (i.e., Fe2+, Pt2+) and subsequently initiating the deterioration of cell components and, in particular, PFSA membranes (e.g., Nafion). However, most previous studies of this have been performed using conditions not relevant to fuel cell environments, and very few investigations have studied the effect of Nafion decomposition on conductivity, one of the most crucial factors governing PEMFC performance. In this study, a quantitative examination of properties and conductivities of degraded Nafion membranes at conditions relevant to fuel cell environments (30-100%RH and 80 °C) was performed. Nafion membranes were pre-ion-exchanged with small amounts of Fe2+ ions prior to H2O2 exposure. The degradation degree (defined as loss of ion-exchange capacity, weight, and fluoride content), water uptake, and conductivity of H2O2-exposed membranes were found to strongly depend on Fe content and H2O2 treatment time. SEM cross-sections showed that the degradation initially took place in the center of the membrane, while FTIR analysis revealed that Nafion degradation preferentially proceeds at the sulfonic end group and at the ether linkage located in the pendant side chain and that the H-bond of water is weakened after prolonged H2O2 exposure.

  8. Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles.

    PubMed

    Campos, B B; Gelde, L; Algarra, M; Esteves da Silva, J C G; Vázquez, M I; Benavente, J

    2016-10-20

    A highly hydrophilic planar membrane fabricated with regenerated cellulose (RC-4 membrane), a biocompatible polymer, was modified by inclusion of water-soluble silicon quantum dot nanoparticles (SiQDs). Both bare SiQDs and SiQDs coated with a PAMAM-OH dendrimer were employed in order to obtain luminescent and thermally stable membrane systems (RC-4/SiQDs and RC-4/SiQDs-PAMAM-OH membranes). Original and SiQDs-modified membranes were characterized by fluorescence spectroscopy (steady and confocal), derivative thermogravimetric analysis and impedance spectroscopy measurements. According to these results, both SiQDs-regenerated cellulose composite membranes present luminescent character as well as higher thermal resistance and conductivity than the original sample, although the dendrimer coverage of the SiQDs might partially shield such effects. Moreover, the permanence of SiQDs nanoparticles in the structure of the cellulosic support in aqueous environments and their effect on diffusive transport were determined by water uptake as well as by membrane potential measurements at different concentrations of a model electrolyte (KCl). These results demonstrate the possible use of these stable nano-engineered membranes, which are based on SiQDs nanoparticles, in electrochemical devices under flow conditions. PMID:27474642

  9. Effects of fluid flow on elution of hydrophilic modifier from dialysis membrane surfaces.

    PubMed

    Matsuda, Masato; Sato, Mika; Sakata, Hiroki; Ogawa, Takahisa; Yamamoto, Ken-ichiro; Yakushiji, Taiji; Fukuda, Makoto; Miyasaka, Takehiro; Sakai, Kiyotaka

    2008-01-01

    When uremic blood flows through dialyzers during hemodialysis, dialysis membrane surfaces are exposed to shear stress and internal filtration, which may affect the surface characteristics of the dialysis membranes. In the present study, we evaluated changes in the characteristics of membrane surfaces caused by shear stress and internal filtration using blood substitutes: water purified by reverse osmosis and 6.7 wt% dextran70 solution. We focused on the levels of a hydrophilic modifier, polyvinylpyrrolidone (PVP), on the membrane surface measured by attenuated total reflectance Fourier transform infrared spectroscopy. Experiments involving 4 h dialysis, 0-144 h shear-stress loading, and 4 h dead-end filtration were performed using polyester-polymer alloy (PEPA) and polysulfone (PS) membranes. After the dialysis experiments with accompanying internal filtration, average PVP retention on the PEPA membrane surface was 93.7% in all areas, whereas that on the PS membrane surface was 98.9% in all areas. After the shear-stress loading experiments, PVP retention on the PEPA membrane surface decreased as shear-stress loading time and the magnitude of shear stress increased. However, with the PS membrane, PVP retention scarcely changed. After the dead-end filtration experiments, PVP retention decreased in all areas for both PEPA and PS membranes, but PVP retention on the PEPA membrane surface was lower than that on the PS membrane surface. PVP on the PEPA membrane surface was eluted by both shear stress and internal filtration, while that on the PS membrane surface was eluted only by internal filtration. PMID:18836876

  10. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection.

    PubMed

    Wang, Na; Wang, Xianfeng; Jia, Yongtang; Li, Xiaoqi; Yu, Jianyong; Ding, Bin

    2014-08-01

    Here we describe a formaldehyde sensor fabricated by coating polyethyleneimine (PEI) functionalized chitosan nanofiber-net-binary structured layer on quartz crystal microbalance (QCM). The chitosan fibrous substrate comprising nanofibers and spider-web-like nano-nets constructed by a facile electro-spinning/netting process provided an ideal structure for the uniform PEI modification and sensing performance enhancement. Benefiting from the fascinating nanostructure, abundant primary amine groups of PEI, and strong adhesive force to the QCM electrode of PEI-chitosan membranes, the developed formaldehyde sensor presented rapid response and low detection limit (5 ppm) at room temperature. These findings have important implications in fabricating multi-dimensional nanostructures on QCM for gas sensing and chemical analysis. PMID:24751264

  11. How Leucocyte Cell Membrane Modified Janus Microcapsules are Phagocytosed by Cancer Cells.

    PubMed

    He, Wenping; Frueh, Johannes; Wu, Zhenwei; He, Qiang

    2016-02-01

    Modern drug delivery systems rely on either antibody-based single-surface recognition or on surface-hydrophobicity-based approaches. For a tumor showing various surface mutations, both approaches fail. This publication hereby presents Janus capsules based on polyelectrolyte multilayer microcapsules exhibiting human leucocyte (THP-1 cell line) cell membranes for discriminating HUVEC cells from three different cancer cell lines. Despite destroying the cellular integrity of leucocyte cells, the modified Janus capsules are able to adhere to cancer cells. Leucocyte cell-membrane-coated Janus capsules are phagocytosed with the cellular membrane part pointing to the cells. PMID:26824329

  12. Membrane paradigm of black holes in Chern-Simons modified gravity

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Yi; Wang, Towe

    2016-06-01

    The membrane paradigm of black hole is studied in the Chern-Simons modified gravity. Derived with the action principle a la Parikh-Wilczek, the stress tensor of membrane manifests a rich structure arising from the Chern-Simons term. The membrane stress tensor, if related to the bulk stress tensor in a special form, obeys the low-dimensional fluid continuity equation and the Navier-Stokes equation. This paradigm is applied to spherically symmetric static geometries, and in particular, the Schwarzschild black hole, which is a solution of a large class of dynamical Chern-Simons gravity.

  13. Proteomes of Host Cell Membranes Modified by Intracellular Activities of Salmonella enterica*

    PubMed Central

    Vorwerk, Stephanie; Krieger, Viktoria; Deiwick, Jörg; Hensel, Michael; Hansmeier, Nicole

    2015-01-01

    Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches. PMID:25348832

  14. Absorption behavior of vanadium in Nafion®

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Seok; Ohashi, Masato; Van Zee, J. W.

    2014-12-01

    The absorption of vanadium to Nafion® was investigated through ex-situ isotherm and conductivity measurements at 23 °C. The data show a maximum loss of ion exchange capacity (IEC) of 30% for all four oxidation states of vanadium. The affinity of vanadium for N115 was measured by back titration and atomic absorption (AA) and characterized by isotherms at 23 °C, and the affinity is highest for the divalent species and lowest for the pentavalent species in the following order: VO2+ (V5+) < VO2+ (V4+) < V3+ < V2+. Steric hindrance from the associated water complex may explain the lower absorption of vanadium compared to alkali metals. The conductivity for the VO2+ (minimum affinity)-exchanged membrane was 2-3× lower than the sodium-exchanged membrane at an approximate RH = 100%.

  15. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    PubMed Central

    Couto, Rosa A. S.; Quinaz, Maria Beatriz

    2016-01-01

    Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs) for the voltammetric detection of the anti-tuberculosis (anti-TB) drug ethambutol (ETB). The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples. PMID:27376291

  16. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol.

    PubMed

    Couto, Rosa A S; Quinaz, Maria Beatriz

    2016-01-01

    Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs) for the voltammetric detection of the anti-tuberculosis (anti-TB) drug ethambutol (ETB). The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples. PMID:27376291

  17. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  18. Solution-Membrane Equilibrium at Metal-Deposited Cation-Exchange Membranes: Chronopotentiometric Characterization of Metal-Modified Membranes.

    PubMed

    Shahi; Prakash; Ramachandraiah; Rangarajan; Vasudevan

    1999-08-01

    Copper- and lead-deposited interpolymer cationic membranes have been prepared by electroless plating by an ion-exchange method and characterized by chronopotentiometry and cyclic voltammetry. The parameters such as transition time (tau), Itau1/2, the potential drop (E0) across these membranes immediately after the application of constant current (I), and the height of the potential jump (DeltaE) across the membrane at tau have been measured by chronopotentiometry and compared with those of plain membranes. The approximate percentage of metal coverage and the number of ionic sites masked by the deposited metal in terms of NaCl concentration have been estimated from the differences in Itau1/2 values of plain and metal-deposited membranes. The quantity of metal deposited in a unit area of the membrane surface was measured by differential pulse polarography. The oxidation and reduction peak potentials corresponding to Cu(0)/Cu(II) and Pb(0)/Pb(II) couples were identified by cyclic voltammetry at pH 2.8 and 4.5 of 0.2 M CH3COONa-H2SO4. Copyright 1999 Academic Press. PMID:10395776

  19. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    NASA Astrophysics Data System (ADS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; da Silva Zambom, Luis; Mansano, Ronaldo Domingues

    2007-10-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells.

  20. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    PubMed

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application. PMID:25823854

  1. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    PubMed

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated. PMID:12775076

  2. Design of a low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated phthalocyanine in Nafion

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, K.; Vijayan, C.; Kothiyal, M. P.

    2007-10-01

    We report on the design of a stable optical limiter in the low laser power regime based on the thermal variation of refractive index in a novel nanocomposite material. The optical material, chloroaluminium-phthalocyanine (ClAlPc), is embedded in SiO2-Nafion nanocomposite membrane (ClSNf) and its thermally induced nonlinear refractive index is characterized by the Z-scan technique with a low power cw He-Ne laser as the source. The value of nonlinear refractive index coefficient, n2, is found to be about 1.11 × 10-11 m2 W-1. The experiment is repeated with the dye doped in pure Nafion membrane (ClNf) and the results are compared with those of ClAlPc doped SiO2-Nafion nanocomposite membrane. The value of n2 is found to be 1.36 × 10-11 m2 W-1 and is larger than that of the ClAlPc embedded SiO2-Nafion nanocomposite membrane. The photostability of the dye-embedded membrane is studied by exposing the sample to cw He-Ne laser and monitoring its fluorescence emission intensity continuously. The samples are found to show large thermal lens effect and demonstrated to be good optical limiters in the low power regime. Whereas the optical properties of dye-doped Nafion appear to be slightly better than those of the dye embedded in silica and incorporated in Nafion, the latter is found to offer excellent photostability.

  3. Temperature dependence of oxygen reduction activity at Nafion-coated bulk Pt and Pt/carbon black catalysts.

    PubMed

    Yano, Hiroshi; Higuchi, Eiji; Uchida, Hiroyuki; Watanabe, Masahiro

    2006-08-24

    Oxygen reduction reaction (ORR) activity and H(2)O(2) formation at Nafion-coated film electrodes of bulk-Pt and Pt nanoparticles dispersed on carbon black (Pt/CB) were investigated in 0.1 M HClO(4) solution at 30 to 110 degrees C by using a channel flow double electrode method. We have found that the apparent rate constants k(app) (per real Pt active surface area) for the ORR at bulk-Pt (with and without Nafion-coating) and Nafion-coated Pt/CB (19.3 and 46.7 wt % Pt, d(Pt) = 2.6 to 2.7 nm) thin-film electrodes were in beautiful agreement with each other in the operation conditions of polymer electrolyte fuel cells (PEFCs), i.e., 30-110 degrees C and ca. 0.7 to 0.8 V vs RHE. The H(2)O(2) yield was 0.6-1.0% at 0.7-0.8 V on all Nafion-coated Pt/CB and bulk-Pt and irrespective of Pt-loading level and temperature. Nafion coating was pointed out to be a major factor for the H(2)O(2) formation on Pt catalysts modifying the surface property, because H(2)O(2) production was not detected at the bulk-Pt electrode without Nafion coating. PMID:16913788

  4. Mixtures of Supported and Hybrid Lipid Membranes on Heterogeneously Modified Silica Nanoparticles

    PubMed Central

    Piper-Feldkamp, Aundrea R.; Wegner, Maria; Brzezinski, Peter; Reed, Scott M.

    2013-01-01

    Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was co-deposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes. PMID:23387352

  5. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; AL-Sheetan, Khalid M.; Shaik, Mohammed Rafi; Al-Andis, Naser M.; Al-Suhybani, M. S.

    2015-09-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m2 h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles.

  6. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance.

    PubMed

    Al-Hobaib, Abdullah S; Al-Sheetan, Khalid M; Shaik, Mohammed Rafi; Al-Andis, Naser M; Al-Suhybani, M S

    2015-12-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m(2) h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles. PMID:26428014

  7. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide.

    PubMed

    Zhao, Yuanyuan; Lu, Jiaqi; Liu, Xuyang; Wang, Yudan; Lin, Jiuyang; Peng, Na; Li, Jingchun; Zhao, Fangbo

    2016-10-15

    A novel polyvinyl chloride (PVC) membrane was modified with graphene oxide (GO) via phase inversion method to improve its hydrophilicity and mechanical properties. The GO presented a large amount of hydrophilic groups after the modification through the modified Hummers method. It was observed that with the addition of low fraction of GO powder, the GO/PVC hybrid membranes exhibited a significant enhancement in hydrophilicity, water flux, and mechanical properties. With optimal dosage (0.1wt%), the pure water flux of GO/PVC membrane increased from 232.6L/(m(2)hbar) to 430.0L/(m(2)hbar) and the tensile strength increased from 231.3cN to 305.3cN. The improved properties of the PVC/GO hybrid membranes are mainly attributed to the strong hydrophilicity of functional groups on the GO surface, indicating that GO has a promising candidate for modification of PVC ultrafiltration membranes in wastewater treatment. PMID:27399613

  8. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  9. Characterization of charge properties of an ultrafiltration membrane modified by surface grafting of poly(allylamine) hydrochloride.

    PubMed

    Dejeu, J; Lakard, B; Fievet, P; Lakard, S

    2009-05-01

    A polyethersulfone ultrafiltration membrane was functionalized by a cationic polyelectrolyte, the poly(allylamine) hydrochloride (PAH). The influence of the time of adsorption of PAH on the membrane charge properties was studied. Several characterization techniques were used to investigate the membrane modification. Tangential and transmembrane streaming potential measurements were conducted to characterize the outer and inner surfaces of the membrane, respectively. Both techniques indicated that the surface modification of the membrane was efficient. The charge of the outer surface was reversed (from negative values for the unmodified membrane to positive values for the modified membrane) and the charge of the inner surface was neutralized after adsorption of the cationic polyelectrolyte onto the pore walls. The modification of both the outer surface of the membrane and the pore walls was also put in evidence with membrane potential measurements. It was found that the charge of the PAH-modified membrane is affected by the time of immersion in PAH solution. Experimental data seem to show a fast modification of the membrane for the first 15 min; nevertheless, the modification was more pronounced after 24 h of PAH adsorption. Diffusion experiments carried out with unmodified and modified membranes for four salts (KCl, NaCl, MgCl, and CaCl(2)) showed a decrease in the salt permeability after functionalization of the membrane. The permeability decrease was greater for 2:1 salts than for 1:1 salts. This decrease was explained by electrostatic interactions. PMID:19215937

  10. Radiation-grafted, chemically modified membranes part I - Synthesis of a selective aluminum material

    NASA Astrophysics Data System (ADS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, José E.; Geraldo, Aurea B. C.

    2014-01-01

    Polymeric membranes were styrene grafted by irradiation methods and the obtained material was chemically modified to become aluminum selective. For this purpose, polymeric substrates of PVC (polyvinyl chloride) and PP (polypropylene) were styrene grafted mutually by gamma and electron beam irradiation. The modification process includes three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation to achieve aluminum selectivity. Although this specific chemical modification in derivatives of polystyrene is not new, the new challenge is to obtain a selective material where original membrane characteristics (physical shape and mechanical resistance) are minimally conserved after such an aggressive treatment.

  11. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications.

    PubMed

    Sheikh, Zeeshan; Khan, Abdul Samad; Roohpour, Nima; Glogauer, Michael; Rehman, Ihtesham U

    2016-11-01

    Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4'-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37°C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86±1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87±3.16°). The ultimate tensile strength and elastic modulus of PEU (27±1MPa and 14±2MPa) and PEU-PDMS (8±1MPa and 26±1MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial cells from

  12. Conductivity Analysis of Membranes for High-Temperature PEMFC Applications

    SciTech Connect

    Reed, R.; Turner, J.A.

    2005-01-01

    Low-temperature operation requirements for per-fluorinated membranes are one factor that limits the viability of current fuel cell technology for transportation and other uses. Because of this, high-temperature membrane materials are being researched. The protonic conductivity of organic/inorganic hybrid composites, Nafion® analog material, and heteropoly acid doped Nafion membranes were studied using a BekkTech® conductivity test cell as a hydrogen pump. The goal was to find a high-temperature membrane with sufficient enough conductive properties to replace the currently implemented low-temperature membranes, such as Nafion. Four-point conductivity measurements were taken using a hydrogen pump experiment. Results showed that one of the organic/inorganic membranes that we tested had similar protonic conductivity to Nafion. Nafion analog membranes were shown to have similar to slightly better conductivity than Nafion at high-temperatures. However, like Nafion, performance dropped upon dehydration of the membrane at higher temperatures. Of the heteropoly acid doped Nafion membranes studied, silicotungstic acid was found to be, overall, the most promising for use as a dopant.

  13. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.

    PubMed

    Zharov, Ilya; Khabibullin, Amir

    2014-02-18

    Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule

  14. Water permeability of polyethylene terephthalate track membranes modified in plasma of dimethylaniline

    NASA Astrophysics Data System (ADS)

    Kravets, Lyubov; Dmitriev, Serguei; Gilman, Alla; Drachev, Alexander

    2004-09-01

    The surface properties and hydrodynamic characteristics of composite membranes consisting of a porous substrate, on which a polymer layer from a direct current discharge in a mixture of air and vapours of dimethylaniline was deposited, have been investigated. As a substrate, we used poly(ethylene) terephthalate track membrane (PET TM) of the thickness of 10 μ m and the effective pore diameter of 0.215 μ m (pore density is 2\\cdot 10^8 cm-2). The performed researches show that when treating the membranes in plasma, two competing processes are observed: deposition of the polymer layer on a membrane surface, that testifies increase of the mass of sample, and etching of a polymeric matrix which causes growth of effective pore diameter. The last process is stipulated by presence of oxygen in the gas mixture. Decreasing the degree of overweight of the sample at increasing the treatment time leads us to a supposition that a dominating process in this case becomes the process of gas-discharge etching. In all cases, if treating PET TM, a drop of the water contact angle occurs, i.e. hydrophilization of the membrane surface takes place that is connected first of all with a grafting of polymer layer containing polar functional groups. The research in the hydrodynamic characteristics of the initial PET TM and the membranes modified in plasma at neutral and subacid pH value of filtrate leads to a linear dependence of their permeability upon the quantity of applied pressure. It is connected with a viscous character of the flow, that is, when the diameter of the pores of the membrane is much more than the size of the water molecules. This fact shows that the macromolecules of the deposited polymer layer in this case have a compact conformation, which does not hinder the water molecules infiltration. At a lower pH value of the filtrate, the picture cardinally changes. For modified in plasma membranes a diversion from the linear relation is observed. This means that in this case

  15. Highly conductive polymer electrolyte membranes modified with polyethylene glycol-bis-carbamate

    NASA Astrophysics Data System (ADS)

    Fu, Guopeng; Dempsey, Janel; Kyu, Thein

    By virtue of its non-flammability and chemical stability, polyethylene glycol (PEG) networks have shown potential application in all solid-state polymer electrolyte membranes (PEM). However, room temperature ionic conductivity of these PEG based PEMs is inherently low. Plasticization of these PEMs is needed to improve the ionic conductivity. It was demonstrated by this group that small-molecule plasticizers such as succinonitrile, ethylene carbonate, or urea-carbamate can boost ionic conductivity of solid-state polymer electrolyte membranes. Polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction of polyethylene glycol diamine and ethylene carbonate. The PEGBC modified PEM has shown higher ionic conductivity relative to the unmodified PEM. Moreover, PEGBC modified PEM has a better thermal stability relative to ethylene carbonate based liquid electrolyte with enhanced ionic conductivity. Supported by NSF-DMR 1161070, 1502543 and REU 1359321.

  16. Adsorption separation of terpene lactones from Ginkgo biloba L. extract using glass fiber membranes modified with octadecyltrichlorosilane.

    PubMed

    Su, I-Fang; Chen, Li-Jen; Suen, Shing-Yi

    2005-07-01

    In this study porous glass fiber membranes were modified by reaction with octadecyl-trichlorosilane to form C18 hydrophobic membranes. The contact angle and the CH2 vibration bands at 2855 and 2920 cm(-1) found by FTIR measurements verified the successful immobilization of C18 groups on the glass fiber membranes. The resulting C18 hydrophobic membranes were used to adsorb terpene lactones from crude Ginkgo biloba L. extracts. In batch adsorption processes, the modified C18 membranes exhibited a better adsorption performance than commercial C18 solid phase extraction adsorbents. Different desorption solvents were tested and ethyl acetate was found to preferentially desorb terpene lactones from the modified C18 membranes. In flow adsorption experiments at 1 mL/min, terpene lactone contents higher than 6 wt% (the standardized content) could be achieved in the elution step using ethyl acetate. PMID:16116999

  17. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.

    PubMed

    Wrobel, Dominika; Appelhans, Dietmar; Signorelli, Marco; Wiesner, Brigitte; Fessas, Dimitrios; Scheler, Ulrich; Voit, Brigitte; Maly, Jan

    2015-07-01

    The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between

  18. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles.

    PubMed

    Ruenraroengsak, Pakatip; Novak, Pavel; Berhanu, Deborah; Thorley, Andrew J; Valsami-Jones, Eugenia; Gorelik, Julia; Korchev, Yuri E; Tetley, Teresa D

    2012-02-01

    The respiratory epithelium is a significant target of inhaled, nano-sized particles, the biological reactivity of which will depend on its physicochemical properties. Surface-modified, 50 and 100 nm, polystyrene latex nanoparticles (NPs) were used as model particles to examine the effect of particle size and surface chemistry on transformed human alveolar epithelial type 1-like cells (TT1). Live images of TT1 exposed to amine-modified NPs taken by hopping probe ion conductance microscopy revealed severe damage and holes on cell membranes that were not observed with other types of NPs. This paralleled induction of cell detachment, cytotoxicity and apoptotic (caspase-3/7 and caspase-9) cell death, and increased release of CXCL8 (IL-8). In contrast, unmodified, carboxyl-modified 50 nm NPs and the 100 nm NPs did not cause membrane damage, and were less reactive. Thus, the susceptibility and membrane damage to respiratory epithelium following inhalation of NPs will depend on both surface chemistry (e.g., cationic) and nano-size. PMID:21352086

  19. Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes.

    PubMed

    Armstrong, Jason A; Bernal, Edxon Eduardo Licón; Yaroshchuk, Andriy; Bruening, Merlin L

    2013-08-13

    Selective ion exclusion from charged nanopores in track-etched membranes allows separation of ions with different charges or mobilities. This study examines pressure-driven transport of dissolved ions through track-etched membranes modified by adsorption of poly(styrene sulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For nominal 30 nm pores modified with a single layer of PSS, Br(-)/SO4(2-) selectivities are ∼3.4 with SO4(2-) rejections around 85% due to selective electrostatic exclusion of the divalent anion from the negatively charged pore. Corresponding membranes containing an adsorbed PSS/PAH bilayer are positively charged and exhibit average K(+)/Mg(2+) selectivities >10 at 8 mM ionic strength, and Mg(2+) rejections are >97.5% at ionic strengths <5 mM. The high rejection of Mg(2+) compared to SO4(2-) likely results from both a smaller pore size after deposition of the PAH layer and higher surface charge because of Mg(2+) adsorption. Simultaneous modeling of K(+) and Mg(2+) rejections using the nonlinearized Poisson-Boltzmann equation gives an average modified pore diameter of 8.4 ± 2.1 nm, which does not vary significantly with ionic strength. This diameter is smaller than that calculated from hydraulic permeabilities and estimated pore densities, suggesting that narrow regions near the pore entrance control ion transport. In addition to simple electrostatic exclusion, streaming potentials lead to differing rejections of Br(-) and acetate in PSS/PAH-modified pores, and of Li(+) and Cs(+) in PSS-modified pores. For these cases, electrical migration of ions toward the feed solution results in higher rejection of the more mobile ion. PMID:23902372

  20. Nafion Structural Phenomena at the Platinum and Carbon Interfaces

    SciTech Connect

    WoodIII, David L; Chlistunoff, Jerzy; Majewski, Jaroslaw; Borup, Rodney

    2009-01-01

    Neutron Reflectometry (NR) was used to examine the interactions of Polymer Electrolyte Fuel Cell (PEFC) materials that comprise the triple-phase interface. Smooth, idealized layers of Nafion on glassy carbon (GC) and Pt surfaces were used to experimentally model the PEFC electrode interfaces. Different multilayer structures of Nafion were found in contact with the Pt or GC surfaces. These structures showed separate hydrophobic and hydrophilic domains formed within the Nafion layer when equilibrated with saturated D2O vapor. A hydrophobic Nafion region was formed adjacent to a Pt film. However, when Nafion was in contact with a PtO surface, the Nafion at the Pt interface became hydrophilic. The adsorbed oxide layer caused a long-range restructuring of the perfluorosulfonic acid (PFSA) polymer chains that comprise Nafion . The thicknesses of the hydrophobic and hydrophilic domains changed to the same magnitude when the oxide layer was present compared to a thin hydrophobic domain in contact with Pt. A three-layer Nafion structure was formed when Nafion was in direct contact with GC. The findings in this research are direct experimental evidence that both the interfacial and long-range structural properties of Nafion are affected by the material with which it is in contact. Evidence of physical changes of aged Nafion films was obtained, and the results showed a permanent increase in the thickness of the Nafion film and a decrease in scattering length density (SLD), which are attributed to irreversible swelling of the Nafion film. The aging also resulted in a decrease in SLD of the GC substrate, which is likely due to either an increase in surface oxidation of the carbon or loss of carbon mass at the GC surface.

  1. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  2. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  3. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting

    NASA Astrophysics Data System (ADS)

    Rahimpour, A.; Madaeni, S. S.; Zereshki, S.; Mansourpanah, Y.

    2009-05-01

    In this study, the poly(vinylidene fluoride) (PVDF) membrane was prepared via immersion precipitation technique and modified by UV photo-grafting of hydrophilic monomers on the top membrane surface. Acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as acrylic monomers and 2,4-phenylenediamine (PDA) and ethylene diamine (EDA) as amino monomers were used at different concentrations to modify the membrane and improve the hydrophilicity with less fouling tendency. Moreover the presence of benzophenon as photo-initiator for grafting the hydrophilic monomers onto PVDF membrane surface was elucidated. The virgin and modified PVDF membranes were characterized by contact angle, ATR-FTIR, SEM and cross-flow filtration. The contact angle measurements demonstrated that the hydrophilicities of the membranes were significantly enhanced by UV photo-grafting of hydrophilic monomers onto the membrane surface. The ATR-FTIR confirmed the occurrence of modification on PVDF membrane by UV photo-grafting. The pure water flux of membranes was declined by UV photo-grafting but the milk water permeation and protein rejection were slightly improved. Moreover the antifouling properties and flux recovery of PVDF membrane were improved by UV photo-grafting of hydrophilic monomers.

  4. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.

    PubMed Central

    Siegel, D P

    1999-01-01

    A model of the energetics of lipid assemblies (Siegel. 1993. Biophys. J. 65:2124-2140) is used to predict the relative free energy of intermediates in the transitions between lamellar (Lalpha) inverted hexagonal (HII), and inverted cubic (QII) phases. The model was previously used to generate the modified stalk theory of membrane fusion. The modified stalk theory proposes that the lowest energy structures to form between apposed membranes are the stalk and the transmonolayer contact (TMC), respectively. The first steps in the Lalpha/HII and Lalpha/QII phase transitions are also intermembrane events: bilayers of the Lalpha phase must interact to form new topologies during these transitions. Hence the intermediates in these phase transitions should be similar to the intermediates in the modified stalk mechanism of fusion. The calculations here show that stalks and TMCs can mediate transitions between the Lalpha, QII, and HII phases. These predictions are supported by studies of the mechanism of these transitions via time-resolved cryoelectron microscopy (. Biophys. J. 66:402-414; Siegel and Epand. 1997. Biophys. J. 73:3089-3111), whereas the predictions of previously proposed transition mechanisms are not. The model also predicts that QII phases should be thermodynamically stable in all thermotropic lipid systems. The profound hysteresis in Lalpha/QII transitions in some phospholipid systems may be due to lipid composition-dependent effects other than differences in lipid spontaneous curvature. The relevant composition-dependent properties are the Gaussian curvature modulus and the membrane rupture tension, which could change the stability of TMCs. TMC stability also influences the rate of membrane fusion of apposed bilayers, so these two properties may also affect the fusion rate in model membrane and biomembrane systems. One way proteins catalyze membrane fusion may be by making local changes in these lipid properties. Finally, although the model identifies stalks

  5. Pilot study on municipal wastewater treatment by a modified submerged membrane bioreactor.

    PubMed

    Wei, Chunhai; Huang, Xia; Wen, Xianghua

    2006-01-01

    A pilot-scale modified submerged membrane bioreactor (SMBR) with the capacity of 18.1 m3d(-1) was developed on the basis of the principle of air-lift internal-loop reactor. Economical aeration intensity of the SMBR was determined as 96 m3m(-2)h(-1) according to hydrodynamic investigation. Corresponding economical air-flow rate was selected as the working air-flow rate in the long-term run. Under economical aeration intensity, the critical flux zone of the modified SMBR was as high as 30-35 Lm(-2)h(-1) when MLSS was less than 13 gL(-1). Therefore, a sub-critical flux of 30 Lm(-2)h(-1) was selected as the working membrane flux in the long-term run. Membrane fouling was effectively controlled by sub-critical flux operation and periodic on-line chemical cleaning in the long-term run. When the average influent CODCr, NH3-N and turbidity were 310 and 44.3 mgL(-1) and 161 NTU, respectively, the average permeate were 38.5 and 19.5 mgL(-1) and 0.96 NTU under hydraulic retention time (HRT) was only 2.8 h. Corresponding removal was 86, 58.2 and 99.4%. DO deficiency caused by high MLSS was demonstrated as the main reason for low NH3-N removal. PMID:16841733

  6. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes.

    PubMed

    Kono, K; Henmi, A; Takagishi, T

    1999-09-21

    To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. PMID:10561483

  7. Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes

    NASA Astrophysics Data System (ADS)

    Yao, Chen; Li, Xinsong; Neoh, K. G.; Shi, Zhilong; Kang, E. T.

    2009-01-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane, with its excellent chemical and mechanical properties, has good potential for broad applications. However, due to its hydrophobic nature, microbial colonization is commonly encountered. In this work, electrospun PVDF-HFP fibrous membranes were surface modified by poly(4-vinyl- N-alkylpyridinium bromide) to achieve antibacterial activities. The membranes were first subjected to plasma pretreatment followed by UV-induced surface graft copolymerization of 4-vinylpyridine (4VP) and quaternization of the grafted pyridine groups with hexylbromide. The chemical composition of the surface modified PVDF-HFP electrospun membranes was studied by X-ray photoelectron spectroscopy (XPS). The morphology and mechanical properties of pristine and surface modified PVDF-HFP fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile test, respectively. The antibacterial activities of the modified electrospun PVDF-HFP fibrous membranes were assessed against Gram-positive Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli). The results showed that the PVDF-HFP fibrous membranes modified with quaternized pyridinium groups are highly effective against both bacteria with killing efficiency as high as 99.9999%.

  8. Molecular Composite Coatings on Nafion Using Layer-by-Layer Self-Assembly.

    PubMed

    Lefaux, Christophe J; Kim, Byoung-Suhk; Venkat, Narayanan; Mather, Patrick T

    2015-05-20

    Controlled growth of nanometer-scale multilayered coatings of negatively charged sulfonated poly(benzobisimidazole) (SPBI), complexed with positively charged poly(2-vinylpyridine) (P2VP) on quartz, and Nafion membrane as substrates has been explored. Both polymers, SPBI and P2VP, possess a net charge in methanol as a result of the dissolution of SPBI by complexation with triethylamine (TEA) and the protonation of P2VP with HCl, respectively, and thereby can form a multilayered molecular composite of alternating anionic SPBI and cationic P2VP via an electrostatic layer-by-layer (LbL) self-assembly. UV-vis absorption spectrophotometry was used to monitor the buildup and growth rate of such SPBI/P2VP multilayer films. Atomic force microscopy (AFM) was used to determine the roughness and thickness of the resulting SPBI/P2VP multilayers. As a result, it was found that a steady-state linear growth regime for the LbL self-assembled SPBI/P2VP multilayer films and coatings onto quartz and Nafion membranes was observed after completion of the first few deposition cycles, indicating the successful formation of the SPBI/P2VP multilayered assembly in methanol solutions. In addition, the SPBI/P2VP multilayer films in the perpendicular direction (flat view) demonstrated isotropic orientation distribution on the Nafion membrane, while the SPBI/P2VP multilayer films examined by X-ray scattering in the parallel direction (edge view) revealed anisotropic orientation, the combined observations indicating confinement of SPBI rods to the plane of the coating. We further found that the SPBI/P2VP multilayer coated Nafion possesses good thermal stability, as indicated by isothermal gravimetric analysis at 310 °C, and it was further observed that SPBI/P2VP multilayer coatings using the LbL self-assembly technique on Nafion membrane significantly increased the membrane stiffness, despite the small coating thickness employed. PMID:25923689

  9. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.

    PubMed

    Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng

    2015-09-01

    Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and

  10. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes.

    PubMed

    Gao, Xiang; Campbell, Warren A; Chaibva, Maxmore; Jain, Pranav; Leslie, Ashley E; Frey, Shelli L; Legleiter, Justin

    2016-01-12

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by abnormally long CAG-repeats in the huntingtin gene that encode an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ domains are directly correlated to disease-related htt aggregation. Htt is found highly associated with a variety of cellular and subcellular membranes that are predominantly comprised of lipids. Since cholesterol homeostasis is altered in HD, we investigated how varying cholesterol content modifies the interactions between htt and lipid membranes. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added cholesterol. As the cholesterol content of the membrane increased, the extent of htt insertion decreased. Vesicles containing extra cholesterol were resistant to htt-induced permeabilization. Morphological and mechanical changes in the bilayer associated with exposure to htt were also drastically altered by the presence of cholesterol. Disrupted regions of pure TBLE bilayers were grainy in appearance and associated with a large number of globular aggregates. In contrast, morphological changes induced by htt in bilayers enriched in cholesterol were plateau-like with a smooth appearance. Collectively, these observations suggest that the presence and amount of cholesterol in lipid membranes play a critical role in htt binding and aggregation on lipid membranes. PMID:26652744

  11. Preparation and properties of PEC nanocomposite membranes with carboxymethyl cellulose and modified silica.

    PubMed

    Liu, Tao; An, Quan-Fu; Wang, Xue-San; Zhao, Qiang; Zhu, Bao-Ku; Gao, Cong-Jie

    2014-06-15

    Carboxymethyl cellulose (CMC)-modified silica nanocomposites were prepared via in situ incorporation of modified silica during the ionic complexation between CMC and poly(2-methacryloyloxy ethyl trimethylammonium chloride) (PDMC). Ionic bonds were introduced between the poly(2-acrylamido-2-methylproanesulfonic acid) modified silica (SiO2-PAMPS) and the polyelectrolyte complex (PEC) matrix. The PEC nanocomposites (PECNs) and their membranes (PECNMs) were characterized with Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and tensile testing. PECNM containing 5 wt.% SiO2-PAMPS showed a tensile strength of 68 MPa and elongation at break of 7.1%, which were 1.9 and 2.6 times as high as those of pristine PEC membranes, respectively. Moreover, the pervaporation performance of as-prepared PECNMs was evaluated with dehydration of 10 wt.% aqueous isopropanol mixtures, and the PECNMs exhibited a flux of 2,400 gm(-2)h(-1) with a high separation factor of 4491 at 70°C. PMID:24721095

  12. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries.

    PubMed

    Seidel, S M; Jeschke, S; Vettikuzha, P; Wiemhöfer, H-D

    2015-08-01

    Improved hybrid polymer electrolyte membranes are introduced based on ether-modified polysiloxanes and poly(vinylidene fluoride-co-hexafluoropropylene) yielding a safe separator membrane, which is able to be sprayed directly onto lithium ion battery active materials, with an active role for enhanced ion transport. PMID:26121633

  13. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    PubMed

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. PMID:23417984

  14. Antibiofouling Polyvinylidene Fluoride Membrane Modified by Quaternary Ammonium Compound: Direct Contact-Killing versus Induced Indirect Contact-Killing.

    PubMed

    Zhang, Xingran; Ma, Jinxing; Tang, Chuyang Y; Wang, Zhiwei; Ng, How Yong; Wu, Zhichao

    2016-05-17

    Widespread applications of membrane technology call for the development of antibiofouling membranes. For the traditional contact-killing strategy, the antibacterial action is restricted to the surface: the membrane loses its antibiofouling efficacy once its surface is completely covered with a fouling layer. However, in this study, polyvinylidene fluoride (PVDF) microfiltration membranes blended with quaternary ammonium compound (QAC) exhibited a surprisingly lasting antimicrobial activity in the vicinity of the membrane surface. The results indicated that QAC was capable of driving surface segregation with a high structural stability, and the QAC modified membrane shows clear antibacterial effects against both Gram-positive and Gram-negative bacteria. Covering the modified membrane surface by an abiotic alginate layer resulted in a loss of antibacterial efficiency by 86.2%. In contrast, the antibacterial efficiency was maintained after developing a biofilm of Staphylococcus aureus of 30 μm in thickness. The current study may suggest that bacteria affected by contact-killing might interact with other bacteria in the vicinity, resulting in retarded biofilm growth. The antibiofouling effect and associated mechanism of the QAC modified membrane were further validated in a membrane bioreactor during long-term operation. PMID:27104660

  15. Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization.

    PubMed

    Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav

    2011-07-15

    Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling. PMID:21682251

  16. Water sorption, viscoelastic, and optical properties of thin NafionRTM films

    NASA Astrophysics Data System (ADS)

    Petrina, Stephanie Ann

    The hydrogen fuel cell industry continues to make strides in terms of improving device efficiency and performance, yet ion transport within the catalyst layer is not well understood. Thin ionomer films coating the catalytic particles are responsible for proton transport throughout the catalytic layer, yet the basic physical properties of these thin films, which interact with the catalyst surface, are widely unknown. Fundamentally, the material properties of thin polymer films are known to deviate from thick, free-standing membranes composed of the same material based on their interfacial interactions. The work in this dissertation seeks to uncover the properties of thin NafionRTM films to begin to understand their role in catalyst layer performance. By identifying the influence of processing conditions, polymer--substrate interaction, and thickness on water uptake characteristics of thin Nafion RTM films, the proton and oxygen transport parameters that are most relevant to performance in the catalyst layer can be understood. Since the hydration of NafionRTM is relevant for its proton conduction and performance in a fuel cell, water sorption of substrate--supported NafionRTM thin films was characterized via the change in sample mass and thickness as the relative humidity (RH) of the sample environment was varied. Monolithic thin NafionRTM films were characterized for a variety of sample preparation conditions and substrates to identify how processing conditions and other sample parameters may affect water uptake. Spin cast NafionRTM films exhibited low density and refractive index for very thin films due to the higher relative void fraction induced by rapid film formation. The density of hydrated films was observed to decrease beyond the volume additivity limit as RH increased, and the relationship between density and refractive index was confirmed with the Lorentz-Lorenz relationship. The complex refractive indices (N = n + ik) of substrate--supported Nafion RTM

  17. Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes.

    PubMed

    Hamidi, Hassan; Hasan, Kamrul; Emek, Sinan Cem; Dilgin, Yusuf; Åkerlund, Hans-Erik; Albertsson, Per-Åke; Leech, Dónal; Gorton, Lo

    2015-03-01

    Thylakoid membranes (TMs) are uniquely suited for photosynthesis owing to their distinctive structure and composition. Substantial efforts have been directed towards use of isolated photosynthetic reaction centers (PRCs) for solar energy harvesting, however, few studies investigate the communication between whole TMs and electrode surfaces, due to their complex structure. Here we report on a promising approach to generate photosynthesis-derived bioelectricity upon illumination of TMs wired with an osmium-redox-polymer modified graphite electrode, and generate a photocurrent density of 42.4 μA cm(-2). PMID:25703722

  18. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  19. Enhancement of dopamine sensing by layer-by-layer assembly of PVI-dmeOs and Nafion on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Fang; Cui, Yu-Han; Sun, Yu-Long; Zhang, Kuan; Zhang, Wei-De

    2010-05-01

    In this study, carbon nanotubes (CNTs) were modified to further improve their performance in electrochemical sensing of dopamine (DA) levels. After a redox polymer, poly(vinylimidazole) complexed with Os(4, 4'-dimethyl- 2, 2-bipyridine)2Cl (termed PVI-dmeOs) was electrodeposited on multi-wall CNTs (MWCNTs), Nafion and PVI-dmeOs films were successfully layer-by-layer (LBL) assembled on the hydrophilic surface of the as-prepared PVI-dmeOs/CNTs nanocomposites through electrostatic interactions. The LBL assembly was proved by scanning electron microscopy (SEM), electrochemistry and UV-vis spectroscopy measurements. LBL assembly of Nafion/PVI-dmeOs films on CNTs significantly enhanced their linear sweep voltammetry (LSV) response sensitivity to DA, with a maximum enhancement for three Nafion/PVI-dmeOs film-modified MWCNTs. The LSV peak current density of (Nafion/PV I-dmeOs)3/CNT electrodes in response to 10 and 50 µM DA solutions was about 7.3 and 3.9 times those for bare CNTs. At the (Nafion/PV I-dmeOs)3/CNT electrodes, the limit of detection (LOD) (signal-to-noise ratio: 3) was 0.05 µM DA, the linear range was 0.1-10 µM DA (with a linear regression coefficient of 0.97) and the DA-sensing sensitivity was 8.15 µA cm - 2 µM - 1. The newly fabricated (Nafion/PV I-dmeOs)3/CNT electrodes may be developed as an ideal biosensor for direct and in situ measurement of DA levels.

  20. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    SciTech Connect

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  1. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    PubMed Central

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-01-01

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes. PMID:26015293

  2. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    DOE PAGESBeta

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; Nogan, John J.; Stromberg, Loreen R.; Firestone, Millicent A.; Mukundan, Harshini; Montaño, Gabriel A.

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less

  3. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-08-01

    Titanium dioxide (TiO2) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  4. Canine herpesvirus ORF2 is a membrane protein modified by N-linked glycosylation.

    PubMed

    Nishikawa, Yoshifumi; Kimura, Michiko; Xuan, Xuenan; Makala, Levi; Nagasawa, Hideyuki; Mikami, Takeshi; Otsuka, Haruki

    2002-07-01

    Canine herpesvirus (CHV) ORF2, located downstream of the glycoprotein C (gC) gene, has homologues with some of the alphaherpesviruses. To characterize CHV OFR2, a recombinant CHV carrying a LacZ gene in the ORF2 locus, and recombinant vaccinia virus expressing ORF2 protein were constructed. Northern blot analysis revealed ORF2 and a gamma2 class late gene, and its protein product was detectable in CHV-infected cells reacted with ORF2 protein antiserum. Tunicamycin and N-glycosidase F treatment revealed that the ORF2 protein was modified by N-linked glycosylation. Fractionation and immune fluorescence analyses of the CHV-infected cells showed the ORF2 as a membrane protein transportable to the surface of infected cells. In vitro, the ORF2 protein did not affect viral replication and cell-to-cell viral spreading. Present findings represent the first evidence pointing to the CHV ORF2 as a membrane protein modified by an N-linked glycosylation. PMID:12135784

  5. Advanced Glycation-Modified Human Serum Albumin Evokes Alterations in Membrane and Eryptosis in Erythrocytes.

    PubMed

    Awasthi, Saurabh; Gayathiri, S K; Ramya, R; Duraichelvan, R; Dhason, A; Saraswathi, N T

    2015-11-01

    Increased burden of advanced glycation end-products (AGEs) in case of hyperglycemic conditions leads to the development of retinopathy, nephropathy, and cardiovascular and neurological disorders such as Alzheimer's disease. AGEs are considered as pro-oxidants, and their accumulation increases the oxidative stress. The prolonged exposure to these AGEs is the fundamental cause of chronic oxidative stress. Abnormal morphology of red blood cells (RBCs) and excessive eryptosis has been observed in diabetes, glomerulonephritis, dyslipidemia, and obesity, but yet the contribution of extracellular AGEs remains undefined. In this study, we investigated the effect of AGEs on erythrocytes to determine their impact on the occurrence of different pathological forms of these blood cells. Specifically, carboxymethyllysine (CML), carboxyethyllysine (CEL), and Arg-pyrimidine (Arg-P) which have been reported to be the most pre-dominant AGEs formed under in vivo conditions were used in this study. Results suggested the eryptotic properties of CML, CEL, and Arg-P for RBCs, which were evident from the highly damaged cell membrane and occurrence of abnormal morphologies. Methylglyoxal-modified albumin showed more severe effects, which can be attributed to the high reactivity and pro-oxidant nature of glycation end products. These findings suggest the possible role of AGE-modified albumin towards the morphological changes in erythrocyte's membrane associated with diabetic conditions. PMID:26276445

  6. Polydimethysiloxane Modified Silica Nanochannel Membrane for Hydrophobicity-Based Molecular Filtration and Detection.

    PubMed

    Lin, Xingyu; Zhang, Bowen; Yang, Qian; Yan, Fei; Hua, Xin; Su, Bin

    2016-08-01

    We report in this work the fabrication of ultrathin silica nanochannel membranes inhomogeneously modified by polydimethysiloxane (PDMS), designated as PDMS-SNM, for hydrophobicity-based molecular filtration and detection. The modification was accomplished by spatially selective evaporation of hydrophobic PDMS oligomers onto the top surface of the membrane and orifice of silica nanochannels. Thanks to this hydrophobic ultrathin layer and beneath ultrasmall channels (2-3 nm in diameter), only small hydrophobic molecules are able to transport through the PDMS-SNM, whereas hydrophilic and large ones are remarkably inhibited. We first employed this PDMS-SNM as the molecular sieving matrix for selective electrochemical detection of hydrophobic organophosphates (OPs) in milk samples without pretreatment. The PDMS-SNM modified electrode displayed an excellent analytical performance and antifouling/anti-interference ability. We also prepared the free-standing PDMS-SNM consisting of perforated channels, which could filtrate molecules based on their hydrophobicity with an excellent selectivity. As demonstrated, 2,4,6-trinitrotoluene and dopamine could be separated with a selectivity coefficient as high as 335. Moreover, because of the inhomogeneous nanochannel structure and ultrasmall thickness, a remarkably high flux of hydrophobic molecules across the PDMS-SNM was obtained, which was 3-4 orders of magnitude higher than that reported previously. PMID:27414252

  7. Effective debundling of carbon nanotubes and simultaneous synthesis of Pt nanoparticles by Nafion® induced emulsions

    NASA Astrophysics Data System (ADS)

    Soehn, M.; Zils, S.; Nicoloso, N.; Roth, C.

    2011-08-01

    Carbon nanostructures and, in particular, Single Wall Carbon Nanotubes (SWNT) or Multi Wall Carbon Nanotubes (MWNT) provide unique properties, notably outstanding chemical stability and electronic conductivity. Therefore they can be seen as a potential replacement for carbon black, which is frequently used as support material for polymer electrolyte membrane fuel cell (PEMFC) catalysts. This paper describes a new synthesis method to deposit platinum nanoparticles on carbon by using MWNT/Nafion® emulsions in the reduction reaction of hexachloroplatinate with ethylene glycol and butyl acetate. In contrast to other syntheses described in the literature, the formation of an emulsion allows effective debundling and a good dispersion of MWNTs in the solvent. This strategy helps to maintain a narrow Pt particle size distribution of 3 nm ± 0.5 nm and a homogeneous dispersion of the nanoparticles on the support even at loadings of up to 50 wt%. It furthermore reduces agglomeration of the MWNTs during electrode manufacturing, so that an airbrush technique can be used, and enhances the ionic conductivity of the electrode layer. Catalyst morphology and distribution are investigated by transmission electron microscopy, X-ray diffraction and scanning electron microscopy. Electrodes are produced by a conventional airbrush technique on Nafion® membranes (Nafion® 117 and Nafion® NRE 212) and tested in a fuel cell test bench.

  8. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    PubMed

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. PMID:25752579

  9. Monoacylated Cellular Prion Protein Modifies Cell Membranes, Inhibits Cell Signaling, and Reduces Prion Formation*

    PubMed Central

    Bate, Clive; Williams, Alun

    2011-01-01

    Prion diseases occur following the conversion of the cellular prion protein (PrPC) into a disease related, protease-resistant isoform (PrPSc). In these studies, a cell painting technique was used to introduce PrPC to prion-infected neuronal cell lines (ScGT1, ScN2a, or SMB cells). The addition of PrPC resulted in increased PrPSc formation that was preceded by an increase in the cholesterol content of cell membranes and increased activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, although PrPC lacking one of the two acyl chains from its glycosylphosphatidylinositol (GPI) anchor (PrPC-G-lyso-PI) bound readily to cells, it did not alter the amount of cholesterol in cell membranes, was not found within detergent-resistant membranes (lipid rafts), and did not activate cPLA2. It remained within cells for longer than PrPC with a conventional GPI anchor and was not converted to PrPSc. Moreover, the addition of high amounts of PrPC-G-lyso-PI displaced cPLA2 from PrPSc-containing lipid rafts, reduced the activation of cPLA2, and reduced PrPSc formation in all three cell lines. In addition, ScGT1 cells treated with PrPC-G-lyso-PI did not transmit infection following intracerebral injection to mice. We propose that that the chemical composition of the GPI anchor attached to PrPC modified the local membrane microenvironments that control cell signaling, the fate of PrPC, and hence PrPSc formation. In addition, our observations raise the possibility that pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases. PMID:21212283

  10. Nafion coated stainless steel for anti-biofilm application.

    PubMed

    Zhong, Li Juan; Pang, Li Qing; Che, Li Ming; Wu, Xue E; Chen, Xiao Dong

    2013-11-01

    Biofilms can adhere to most surfaces and have caused a wide range of problems in various industrial processes as well as daily life activities. In this work, the anti-biofilm ability of Nafion-coated stainless steel surface was investigated and our results showed that stainless steel discs coated with 1% Nafion can significantly reduce E. coli adhesion. Nafion has a large amount of negatively charged sulphonate groups, and the findings of this study suggest that the negative surface charge can greatly reduce bacterial adhesion through increasing the electrostatic repulsion between negatively charged bacterial cells and Nafion coated stainless steel surface. The roughness of coated and uncoated stainless steel discs made no significant differences while the hydrophobic of the discs increased after coated with Nafion. PMID:23831592

  11. In Situ Method for Measuring the Mechanical Properties of Nafion Thin Films during Hydration Cycles.

    PubMed

    Page, Kirt A; Shin, Jae Wook; Eastman, Scott A; Rowe, Brandon W; Kim, Sangcheol; Kusoglu, Ahmet; Yager, Kevin G; Stafford, Gery R

    2015-08-19

    Perfluorinated ionomers, in particular Nafion, are an essential component in hydrogen fuel cells, as both the proton exchange membrane and the binder within the catalyst layer. During normal operation of a hydrogen fuel cell, the ionomer will progressively swell and deswell in response to the changes in hydration, resulting in mechanical fatigue and ultimately failure over time. In this study, we have developed and implemented a cantilever bending technique in order to investigate the swelling-induced stresses in biaxially constrained Nafion thin films. When the deflection of a cantilever beam coated with a polymer film is monitored as it is exposed to varying humidity environments, the swelling induced stress-thickness product of the polymer film is measured. By combining the stress-thickness results with a measurement of the swelling strain as a function of humidity, as measured by quartz crystal microbalance (QCM) and X-ray reflectivity (XR), the swelling stress can be determined. An estimate of the Young's modulus of thin Nafion films as a function of relative humidity is obtained. The Young's modulus values indicate orientation of the ionic domains within the polymer films, which were confirmed by grazing incidence small-angle X-ray scattering (GISAXS). This study represents a measurement platform that can be expanded to incorporate novel ionomer systems and fuel cell components to mimic the stress state of a working hydrogen fuel cell. PMID:26258630

  12. Modification of Polyethersulfone Hollow Fiber Membranes by Novel Charged Surface Modifying Macromolecule (cSMM) Blends for Water Application

    NASA Astrophysics Data System (ADS)

    Bolong, N.; Ismail, A. F.; Salim, M. R.; Rana, D.; Matsuura, T.

    2009-06-01

    The analysis on modification of the polyethersulfone hollow fiber membranes by blending with Surface Modifying Macromolecules (SMMs) with end-groups of Aromatic sulfonate or aromatic benzoate for introducing charges at membrane surface is presented. The charged SMMs (cSMM) was synthesized and blended into the dope solution of polyethersulfone (PES) membranes. The synthesized cSMM was dissolved into the dope solution which consists of PES using N-methyl-2-pyrrolidone (NMP) as solvent. The membranes are prepared by phase inversion technique with the dry-wet hollow fiber spinning condition. The morphology of the fabricated membranes was observed from the Field Emission Scanning Electron Microscopy (FESEM). The FESEM observation did not show significant difference due to cSMM modification indicated the base polymer remained relatively unchanged. The miscibility and existence of cSMM in PES membrane was then confirmed via Fourier transform infra-red (FTIR) scan. The increase of pure water permeation performance of the modified membranes than the unmodified membranes was also observed.

  13. A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane.

    PubMed

    Zhang, Zhiqiang; Xia, Siqing; Leonard, Didier; Jaffrezic-Renault, Nicole; Zhang, Jiao; Bessueille, François; Goepfert, Yves; Wang, Xuejiang; Chen, Ling; Zhu, Zhiliang; Zhao, Jianfu; Almeida, M Gabriela; Silveira, Célia M

    2009-02-15

    A conductometric biosensor for nitrite detection was developed using cytochrome c nitrite reductase (ccNiR) extracted from Desulfovibrio desulfuricans ATCC 27774 cells immobilized on a planar interdigitated electrode by cross-linking with saturated glutaraldehyde (GA) vapour in the presence of bovine serum albumin, methyl viologen (MV), Nafion, and glycerol. The configuration parameters for this biosensor, including the enzyme concentration, ccNiR/BSA ratio, MV concentration, and Nafion concentration, were optimized. Various experimental parameters, such as sodium dithionite added, working buffer solution, and temperature, were investigated with regard to their effect on the conductance response of the biosensor to nitrite. Under the optimum conditions at room temperature (about 25 degrees C), the conductometric biosensor showed a fast response to nitrite (about 10s) with a linear range of 0.2-120 microM, a sensitivity of 0.194 microS/microM [NO(2)(-)], and a detection limit of 0.05 microM. The biosensor also showed satisfactory reproducibility (relative standard deviation of 6%, n=5). The apparent Michaelis-Menten constant (K(M,app)) was 338 microM. When stored in potassium phosphate buffer (100mM, pH 7.6) at 4 degrees C, the biosensor showed good stability over 1 month. No obvious interference from other ionic species familiar in natural waters was detected. The application experiments show that the biosensor is suitable for use in real water samples. PMID:18804367

  14. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the

  15. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites

    NASA Astrophysics Data System (ADS)

    Welp, L. R.; Keeling, R. F.; Weiss, R. F.; Paplawsky, W.; Heckman, S.

    2013-05-01

    In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm) mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS) analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratios without drying the sample by measuring H2O mixing ratio at the same frequency as the main analytes, and then correcting for the dilution and peak broadening effects of H2O on the mixing ratios of the other analytes measured in moist air. However, it is difficult to accurately validate the water vapor correction in the field. By substantially lowering the amount of H2O in the sample, uncertainties in the applied water vapor corrections can be reduced by an order of magnitude or more, thus eliminating the need to determine instrument-specific water vapor correction coefficients and to verify the stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (-97 °C) method for removing H2O and found that in wet-air tests, the Nafion reduces the CO2 dry-gas mixing ratios of the sample gas by as much as 0.1 ± 0.01 ppm due to leakage across the membrane. The effect on CH4 was smaller and varied within ± 0.2 ppb, with an approximate uncertainty of 0.1 ppb. The Nafion-induced CO2 bias is partially offset by sending the dry reference gases through the Nafion dryer as well. The residual bias due to the impact of moisture differences between sample and reference gas on the permeation through the Nafion was approximately -0.05 ppm for CO2 and varied within ± 0.2 ppb for CH4. The uncertainty of this

  16. Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution.

    PubMed

    Cheng, Zihong; Liu, Xiaoshuai; Han, Mei; Ma, Wei

    2010-10-15

    A modified chitosan transparent thin membrane (MCTTM) was prepared and used as the adsorbent to investigate the adsorption kinetics due to excellent capacity of removing copper ions in water solution. The structure and morphology of MCTTM were characterized by SEM analysis and FTIR analysis. External mass transfer, intra particle diffusion, and pseudo-first and pseudo-second order models were used to describe the adsorption process. The results obtained from the study illustrated that the adsorption process could be described by the pseudo-second order model, which indicated adsorption process was a chemical adsorption behavior of chelation ion exchange proved by the FTIR and adsorption free energy analysis. External mass transfer and intra particle diffusion processes were the rate-controlling steps. PMID:20634000

  17. Microscopic Analysis of Current and Mechanical Properties of Nafion® Studied by Atomic Force Microscopy

    PubMed Central

    Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas

    2012-01-01

    The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429

  18. An oxalate selective electrode based on modified PVC-membrane with tetra-butylammonium--Clinoptilolite nanoparticles.

    PubMed

    Hoseini, Zohre; Nezamzadeh-Ejhieh, Alireza

    2016-03-01

    A modified PVC-membrane electrode with tetra-butylammonium bromide - Clinoptilolite nano-particles (TBA-NCP) showed good Nernstian slope (29.9±0.6 mV per decade of oxalate concentration) in concentration range of 3.1×10(-7)-8.3×10(-1) mol L(-1) with a detection limit of 1.5×10(-7) mol L(-1). The best performance was obtained with a membrane composition of 31.5% PVC, 62.5% DOP and 6% TBA-NCP in the temperature range of 20-35 °C and the pH range of 4-9. The fast response time and good reproducibility over a period of 3 months are other characteristics of the sensor. The proposed electrode was successfully used as an indicator electrode in titration of oxalate ions with CaCl2 solution. The proposed electrode was also used in direct potentiometric determination of oxalate in many real samples such as: mushroom, black and green tea, spinach and beet. PMID:26706514

  19. Colloidal crystal formation at the "Nafion-water" interface.

    PubMed

    Bunkin, Nikolay F; Gorelik, Vladimir S; Kozlov, Valeriy A; Shkirin, Alexey V; Suyazov, Nikolay V

    2014-03-27

    In our recent work [Bunkin et al. Water 2013, 4, 129-154] it was first obtained that the water layer, having a size of several tens of micrometers and being adjacent to the swollen Nafion interface, is characterized by enhanced optical density; the refractive index of water at the interface is 1.46. Furthermore, the birefringence effect was observed in this layer. To explain these results, it has been hypothesized that because of "disentangling" of charged polymer chains from the Nafion surface toward the bulk of water, a photonic crystal close to the surface is formed [Bunkin et al. Water 2013, 4, 129-154]. In this paper, we describe experiments with laser-stimulated luminescence from dry and swollen Nafion. It was shown in the experiment with dry Nafion that the apparatus function of our experimental setup (Green's function) is well-described by a Gaussian profile. It was obtained that a highly concentrated colloidal suspension of Nafion particles with a steep spatial boundary is formed in the water layer adjacent to the interface. The volume density of the Nafion particles as a function of the distance from the Nafion interface was found. These findings can be considered indirect confirmation of the previously formulated photonic crystal hypothesis [Bunkin et al. Water 2013, 4, 129-154]. PMID:24568638

  20. DEVELOPMENT OF HIGH TEMPERATURE MEMBRANES AND IMPROVED CATHODE CATALYSTS; PROJECT PERIOD JANUARY 1, 2002 - DECEMBER 31, 2005

    SciTech Connect

    Lesia Protsailo

    2006-04-20

    Polymer Electrolyte Membranes (PEMs) currently available for fuel cell development work are limited to the temperature range of 60-80°C. For mass commercialization in the transportation arena, three important disadvantages that are linked with the relatively low operating temperature range need to be addressed. These three disadvantages are: (a) sluggish cathode kinetics, (b) CO poisoning at the anode and (c) inefficient thermal characteristics. All three of the above mentioned disadvantages could be solved by increasing the operating temperature range to 100-120°C. To understand the issues associated with high temperature PEMFCs operation, UTCFC has teamed with leading research groups that possess competencies in the field of polymer chemistry. The subcontractors on the program were investigating modified Nafion® and new non-Nafion® based, reinforced and non-reinforced membrane systems. Nafion® based PEMs rely on using high temperature inorganic solid conductor fillers like phosphotungstic acid. Hydrocarbon membrane systems are based on poly (arylene ether sulfone) polymers, PEEK, PAN, etc.

  1. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  2. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  3. Structure-Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    SciTech Connect

    Lydon, Megan E; Unocic, Kinga A; Jones, Christopher W; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO{sub x}H{sub y} nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO{sub 2}/CH{sub 4} separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N{sub 2} physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO{sub 2}/CH{sub 4} selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg{sup 2+}, followed by base-induced precipitation and growth of MgOxHy nanostructures, deemed 'ion exchange functionalization' here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO{sub 2}/CH{sub 4} selectivity (40) than could be obtained with the other functionalization techniques (30), while maintaining a CO{sub 2} permeability of 10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case.

  4. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  5. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 °C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The

  6. Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering

    SciTech Connect

    Kusoglu, Ahmet; Modestino, Miguel A.; Hexemer, Alexander; Segalman, Rachel A.; Weber, Adam Z.

    2011-11-09

    The ability of the Nafion membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This research demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake. In situ small-angle X-ray scattering (SAXS) experiments captured the rapid swelling of the membrane in liquid water with a nanostructure rearrangement on the order of seconds. For membranes in contact with water vapor, morphological changes are four orders-of-magnitude slower than in liquid water, suggesting that interfacial resistance limits the penetration of water into the membrane. Furthermore, upon water absorption from liquid water, a structural rearrangement from a distribution of spherical and cylindrical domains to exclusively cylindrical-like domains is suggested. These differences in water-uptake kinetics and morphology provide a new perspective into Schroeder's paradox, which dictates a different water content for vapor- and liquid-equilibrated ionomers at unit activity. Lastly, the findings of this work provide critical insights into the fast kinetics of water absorption of the Nafion membrane, which can aid in the design of energy conversion devices that operate under frequent changes in environmental conditions.

  7. An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates

    PubMed Central

    Anuraj, Nishotha; Bhattacharjee, Somnath; Geiger, James H.; Baker, Gregory L.; Bruening, Merlin L.

    2011-01-01

    Microporous membranes are attractive for protein purification because convection rapidly brings proteins to binding sites. However, the low binding capacity of such membranes limits their applications. This work reports a rapid, aqueous procedure to create highly permeable, polymer brush-modified membranes that bind large amounts of protein. The synthetic method includes a 10-min adsorption of a macroinitiator in a hydroxylated nylon membrane and a subsequent 5-min aqueous atom transfer radical polymerization of 2-(methacryloyloxy)ethyl succinate from the immobilized initiator to form poly(acid) brushes. This procedure likely leads to more swollen, less dense brushes than polymerization from silane initiators, and thus requires less polymer to achieve the same binding capacity. The hydraulic permeability of the poly(acid) membranes is 4-fold higher than that of similar membranes prepared by growing brushes from immobilized silane initiators. These brush-containing nylon membranes bind 120 mg/cm3 of lysozyme using solution residence times as short as 35 ms, and when functionalized with nitrilotriacetate (NTA)-Ni2+ complexes, they capture 85 mg/cm3 of histidine6-tagged (His-tagged) Ubiquitin. Additionally the NTA-Ni2+-functionalized membranes isolate His-tagged myo-inositol-1-phosphate synthase directly from cell extracts and show >90% recovery of His-tagged proteins. PMID:22287817

  8. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes.

    PubMed

    Zhao, Feng-Yang; Ji, Yan-Li; Weng, Xiao-Dan; Mi, Yi-Fang; Ye, Chun-Chun; An, Quan-Fu; Gao, Cong-Jie

    2016-03-01

    The poor dispensability of pristine carbon nanotubes in water impedes their implications in thin-film nanocomposite membranes for crucial utilities such as water purification. In this work, high-flux positively charged nanocomposite nanofiltration membranes were exploited by uniformly embedding poly(dopamine) modified multiwall carbon nanotubes (PDA-MWCNTs) in polyamide thin-film composite membranes. With poly(dopamine) modification, fine dispersion of MWCNTs in polyethyleneimine (PEI) aqueous solutions was achieved, which was interracially polymerized with trimesoyl chloride (TMC) n-hexane solutions to prepare nanocomposite membranes. The compatibility and interactions between modified MWCNTs and polyamide matrix were enhanced, attributed to the poly(dopamine) coatings on MWCNT surfaces, leading to significantly improved water permeability. At optimized conditions, pure water permeability of the PEI/PDA-MWCNTs/TMC nanofiltration membrane (M-4) was 15.32 L m(-2) h(-1) bar(-1), which was ∼1.6 times increased compared with that of pristine PEI/TMC membranes. Salt rejection of M-4 to different multivalent cations decreased in the sequence ZnCl2 (93.0%) > MgCl2 (91.5%) > CuCl2 (90.5%) ≈ CaCl2, which is well-suited for water softening and heavy metal ion removal. PMID:26901491

  9. Comparing selected morphological models of hydrated Nafion using large scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Knox, Craig K.

    Experimental elucidation of the nanoscale structure of hydrated Nafion, the most popular polymer electrolyte or proton exchange membrane (PEM) to date, and its influence on macroscopic proton conductance is particularly challenging. While it is generally agreed that hydrated Nafion is organized into distinct hydrophilic domains or clusters within a hydrophobic matrix, the geometry and length scale of these domains continues to be debated. For example, at least half a dozen different domain shapes, ranging from spheres to cylinders, have been proposed based on experimental SAXS and SANS studies. Since the characteristic length scale of these domains is believed to be ˜2 to 5 nm, very large molecular dynamics (MD) simulations are needed to accurately probe the structure and morphology of these domains, especially their connectivity and percolation phenomena at varying water content. Using classical, all-atom MD with explicit hydronium ions, simulations have been performed to study the first-ever hydrated Nafion systems that are large enough (~2 million atoms in a ˜30 nm cell) to directly observe several hydrophilic domains at the molecular level. These systems consisted of six of the most significant and relevant morphological models of Nafion to-date: (1) the cluster-channel model of Gierke, (2) the parallel cylinder model of Schmidt-Rohr, (3) the local-order model of Dreyfus, (4) the lamellar model of Litt, (5) the rod network model of Kreuer, and (6) a 'random' model, commonly used in previous simulations, that does not directly assume any particular geometry, distribution, or morphology. These simulations revealed fast intercluster bridge formation and network percolation in all of the models. Sulfonates were found inside these bridges and played a significant role in percolation. Sulfonates also strongly aggregated around and inside clusters. Cluster surfaces were analyzed to study the hydrophilic-hydrophobic interface. Interfacial area and cluster volume

  10. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    SciTech Connect

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’as, Eman Husni; Giannelis, Emmanuel P.

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold