Sample records for nai scintillator studied

  1. Characterization of NaI crystal scintillators for the COHERENT collaboration

    NASA Astrophysics Data System (ADS)

    Erkela, Eric; Coherent Collaboration

    2017-09-01

    The COHERENT project aims to make a first observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) using a set of complimentary detector arrays located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Using NaI scintillators acquired from the DHS-ASP program, we plan to construct a multi-tonne array with the capacity to detect CEvNS even in the presence of moderate background. Such an array would also have sensitivity to charged-current scattering of the SNS' pion Decay-At-Rest neutrinos with potential application to neutrinoless double-beta decay nuclear matrix element calculations. Optimization of the array design requires detailed characterization of the NaI scintillators themselves. We will show results on measurements of the light response and its linearity, as well as the energy resolution as a function of detector voltage. We also measured detector thresholds, dynamic range, and spatial and temporal variation of the detector response. This work is supported by the University of Washington Royalty Research Fund.

  2. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  3. Luminescence and radiation resistance of undoped NaI crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiran, N., E-mail: shiran@isc.kharkov.com; Boiaryntseva, I.; Gektin, A.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found thatmore » defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.« less

  4. Excitons in scintillator materials: Optical properties and electron-energy loss spectra of NaI, LaBr 3, BaI 2, and SrI 2

    DOE PAGES

    Schleife, Andre; Zhang, Xiao; Li, Qi; ...

    2016-11-03

    In this paper, materials for scintillator radiation detectors need to fulfill a diverse set of requirements such as radiation hardness and highly specific response to incoming radiation, rendering them a target of current materials design efforts. Even though they are amenable to cutting-edge theoretical spectroscopy techniques, surprisingly many fundamental properties of scintillator materials are still unknown or not well explored. In this work, we use first-principles approaches to thoroughly study the optical properties of four scintillator materials: NaI, LaBr 3, BaI 2, and SrI 2. By solving the Bethe–Salpeter equation for the optical polarization function we study the influence ofmore » excitonic effects on dielectric and electron-energy loss functions. This work sheds light into fundamental optical properties of these four scintillator materials and lays the ground-work for future work that is geared toward accurate modeling and computational materials design of advanced radiation detectors with unprecedented energy resolution.« less

  5. The quick and ultrasensitive determination of K in NaI using inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnquist, Isaac J.; Hoppe, Eric W.

    A highly sensitive, novel and quick assay method utilizing inductively coupled plasma mass spectrometry was developed for the determination of K in NaI powders and NaI(Tl) scintillator crystals for use in ultralow background applications. The determination of K (viz. 40K), as well as Th and U and their daughters, is important in ultralow background detector materials to ensure incorporation of materials of sufficiently high radiopurity. Through the use of improved instrumentation, cool plasma operating conditions, and meticulously clean sample preparations, detection limits of 11 fg natK∙g-1 (or 341 pBq 40K∙kg-1) was attained for K in pure water. Detection limits inmore » the sample matrix (i.e., NaI) were 0.529 ng natK∙g NaI-1 (or 16.4 Bq 40K∙kg NaI -1). A number of different precursor NaI powder samples and NaI(Tl) scintillator crystals were assayed for their K content. Determinations ranged from 0.757 – 31.4 ng natK∙g NaI-1. This method allows for the screening of materials to unprecedented levels in a fraction of the time compared to gamma counting techniques, providing a useful method for a more effective screening tool of K in ultralow background detector materials.« less

  6. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  7. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  8. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  9. First-principles study of complex halide scintillators for radiation detection

    NASA Astrophysics Data System (ADS)

    Feng, Qingguo; Kang, Byungkyun; Mize, Jonathan; Biswas, Koushik

    Current demands for cost-effective and high-performance scintillators have led to a discernible shift from simple binary halides (e.g., NaI, CsI) toward host compounds that are structurally and electronically more complex. Eu-doped SrI2 is a prominant example. Despite its advanced properties, improvements are needed for extensive deployment at low cost. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach we report on the influence of codoping with aliovalent and isovalent impurities. We find all codopants induce deep levels, show amphoteric character, and may bind with I-vacancy forming charge compensated donor-acceptor pairs. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed. We studied another set of stable monoclinic phase of ternary ns2 containing iodides, e.g. TlBa2I5. One objective is to explore them as scintillators where ns2 ions play a central role. Interestingly, we predict Eu2+ activation will be rendered ineffective in these compounds, caused by changes in the valence and conduction band edges. However, the prospect of fast electron capture at ns2 sites and self-activated scintillation could be important for detector applications. This material is based upon work supported by the US Department of Homeland Security under Grant Award Number, 2014-DN-077-ARI075-04.

  10. Position measurements for heavy ion beams using a sodium iodide scintillator

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Lau, K.; Schindler, S. M.

    1981-01-01

    A 50 cm diameter, 1.7 cm thick disc of NaI scintillator has been mounted to permit edge viewing by four photomultipliers. Energetic heavy ions passing through the scintillator at different positions cause a variation in the division of light among the photomultipliers. A performance close to the expected limit for 670 MeV/n neon has been achieved. Calculations of expected response using an optical model agree well with the measurements.

  11. Direct detection of sub-GeV dark matter with scintillating targets

    DOE PAGES

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea; ...

    2017-07-28

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  12. Direct detection of sub-GeV dark matter with scintillating targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  13. Characterization of Two Ton NaI Scintillator

    NASA Astrophysics Data System (ADS)

    Maier, Alleta; Coherent Collaboration

    2017-09-01

    The COHERENT collaboration is dedicated to measuring Coherent Elastic Neutrino-Nucleus Scattering (CE νNS), an interaction predicted by the standard model that ultimately serves as a background floor for dark matter detection. In the pursuit of observing the N2 scaling predicted, COHERENT is deploying two tons of NaI[Tl] detector to observe CE νNS recoils of sodium nuclei. Before the two tons of this NaI[Tl] scintillator are deployed, however, all crystals and PMTs must be characterized to understand the individual properties vital to precision in the measurement of CE νNS. This detector is also expected to allow COHERENT to observe charged current and CE νNS interactions with 127I. A standard operating procedure is developed to characterize each detector based on seven properties relevant to precision in the measurement of CE νNS: energy scale, energy resolution, low-energy light yield non-linearity, decay time energy dependence, position variance, time variance, and background levels. Crystals will be tested and characterized for these properties in the context of a ton-scale NaI[Tl] detector. Preliminary development of the SOP has allowed for greater understanding of optimization methods needed for characterization for the ton scale detector. TUNL, NSF, Duke University.

  14. NAIS Member School Operations, 1982-83; NAIS Membership, 1983-84. NAIS Statistics, Spring 1984.

    ERIC Educational Resources Information Center

    National Association of Independent Schools, Boston, MA.

    This report shows responses to two National Association of Independent Schools (NAIS) surveys distributed in September 1983. Section I focuses on financial aid income for 593 schools, including those deriving income from one source, and on aid to students at 644 schools during 1982-83. Section II shows minority student enrollment in 784 United…

  15. A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.

    2018-05-01

    Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.

  16. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive

  17. Comparative study of perovskite-type scintillator materials CsCaI3 and KCaI3 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Feng, Qingguo; Biswas, Koushik

    2018-02-01

    Several members of a large family of perovskite-like halides with a common chemical formula, ABX3 (A  =  monovalent, B  =  divalent, and X  =  halogen ion), are being investigated for their interesting properties and potential technological applications. CsCaI3 and KCaI3 are two such ionic compounds who are of interest in the quest for superior and cost-effective alternatives to NaI or CsI based scintillators. They are the subject of this first-principles based computational study. Both are wide-gap materials having primarily I 5p and Ca 3d characters near the valence and conduction band edges, respectively. Although built from [CaI6] octahedral motifs, structural differences between the two compounds is reflected in anisotropic electron effective mass and distinctive formation and migration of self-trapped holes. We discuss these properties as they relate to scintillation decay and proportional light yield.

  18. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  19. The puzzling interpretation of NIR indices: The case of NaI2.21

    NASA Astrophysics Data System (ADS)

    Röck, B.; Vazdekis, A.; La Barbera, F.; Peletier, R. F.; Knapen, J. H.; Allende-Prieto, C.; Aguado, D. S.

    2017-11-01

    We present a detailed study of the Na I line strength index centred in the K band at 22 100 Å (NaI2.21 hereafter) relying on different samples of early-type galaxies. Consistent with previous studies, we find that the observed line strength indices cannot be fit by state-of-the-art scaled-solar stellar population models, even using our newly developed models in the near infrared (NIR). The models clearly underestimate the large NaI2.21 values measured for most early-type galaxies. However, we develop an Na-enhanced version of our newly developed models in the NIR, which - together with the effect of a bottom-heavy initial mass function - yield NaI2.21 indices in the range of the observations. Therefore, we suggest a scenario in which the combined effect of [Na/Fe] enhancement and a bottom-heavy initial mass function are mainly responsible for the large NaI2.21 indices observed for most early-type galaxies. To a smaller extent, also [C/Fe] enhancement might contribute to the large observed NaI2.21 values.

  20. NAI Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Grymes, Rose; Tsairides, Catherine

    2000-01-01

    The NAI's Education and Public Outreach Office is committed to building a strong partnership with each member institute to develop a comprehensive interest in educating the public and global community on the activities of the institute and the field of Astrobiology.

  1. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  2. Development of a flexible γ-ray detector using a liquid scintillation light guide (LSLG).

    PubMed

    Nomura, Kiyoshi; Yunoki, Akira; Hara, Masayuki; Morito, Yuko; Fujishima, Akira

    2018-04-10

    A flexible γ detector using a liquid scintillation light guide (LSLG) was developed. The analyzed pulse height (PHA) spectrum depended on the diameter, length and scintillator concentration of the LSLG, and the distance of a γ ray irradiation point from the head of photomultiplier tube (PMT). From the analysis of PHA spectrum, it was found that the count ratio of two divided channel regions linearly decreases as the distance from the PMT head increases. It was further found that the radiation dose rate can be estimated by setting the flexible LSLG tube to a circular shape since the count rate is proportional to the dose rate measured by a conventional NaI (Tl) scintillation detector. Therefore, a flexible and long LSLG detector using a single PMT is useful for determination of the dose rate and has a potential to detect local contaminations in a certain narrow space. Copyright © 2018. Published by Elsevier Ltd.

  3. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  4. Crystal Growth and Scintillation Properties of $${\\rm Cs}_{2}{\\rm NaGdBr}_{6}{:}{\\rm Ce}^{3+}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Pin; Zhou, Xiaowang; Deng, Haoran

    2013-04-02

    Single crystals of Cs 2NaGdBr 6 with different Ce +3 activator concentrations were grown by a two-zone Bridgman method. This new compound belongs to a large elpasolite halide (A 2BLnX 6) family. Many of these elpasolite compounds have shown high luminosity, good energy resolution and excellent proportionality in comparison to traditional scintillators such as CsI and NaI; therefore, they are particularly attractive for gamma-ray spectroscopy applications. This study investigated the scintillator properties of Cs 2NaGdBr 6:Ce +3 crystals as a new material for radiation detection. Special focus has been placed on the effects of activator concentration (0 to 50 mol.%)more » on the photoluminescence responses. Results of structural refinement, photoluminescence, radioluminescence, lifetime and proportionality measurements for this new compound are reported.« less

  5. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and

  6. Systematic studies of small scintillators for new sampling calorimeter

    NASA Astrophysics Data System (ADS)

    Jacosalem, E. P.; Iba, S.; Nakajima, N.; Ono, H.; Sanchez, A. L. C.; Bacala, A. M.; Miyata, H.

    2007-12-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R&D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated ^{90}Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.

  7. Studies on scintillating fiber response

    NASA Astrophysics Data System (ADS)

    Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Müller, M.; Münstermann, M.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1996-02-01

    Scintillating fibers of type Bicron BCF-12 with 2 × 2 mm 2 cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760.

  8. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  9. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  10. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Christini, David J.

    2017-09-01

    Accumulation of intracellular Na+ is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na+ concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na+ concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na+]i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na+]i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na+]i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na+]i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na+]i may play complex roles in cellular and tissue-level cardiac dynamics.

  11. Improved lithium iodide neutron scintillator with Eu 2+ activation: The elimination of Suzuki-Phase precipitates

    DOE PAGES

    Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...

    2017-02-21

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less

  12. Improved lithium iodide neutron scintillator with Eu2+ activation: The elimination of Suzuki-Phase precipitates

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.

    2017-05-01

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.

  13. Assessment of scintillation proxy maps for a scintillation study during geomagnetically quiet and disturbed conditions over Uganda

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2017-02-01

    The objective of this paper is demonstrate the validity and usefulness of scintillation proxies derived from IGS data, through its comparison with data from dedicated scintillation monitors and its application to GNSS scintillation patterns. The paper presents scintillation patterns developed by using data from the dedicated scintillation monitors of the scintillation network decision aid (SCINDA) network, and proxy maps derived from IGS GPS data for 2011 and 2012 over low latitude stations in Uganda. The amplitude and phase scintillation indicies (S4 and σΦ) were obtained from the Novatel GSV4004B ionospheric scintillation and total electron content (TEC) monitor managed by SCINDA at Makerere (0.340N, 32.570E). The corresponding IGS GPS proxy data were obtained from the receivers at Entebbe (0.040N, 32.440E) and Mbarara (0.600S, 30.740E). The derived amplitude (S4p) and phase (sDPR) scintillation proxy maps were compared with maps of S4 and σΦ during geomagnetic storms (moderate and strong) and geomagnetically quiet conditions. The scintillation patterns using S4 and σΦ and their respective proxies revealed similar diurnal and seasonal patterns of strong scintillation occurrence. The peaks of scintillation occurrence with mean values in the range 0.3 < (S4p , sDPR) ≤ 0.6 were observed during nighttime (17:00-22:00 UT) and in the months of March-April and September-October. The results also indicate that high level scintillations occur during geomagnetically disturbed (moderate and strong) and quiet conditions over the Ugandan region. The results show that SCINDA and IGS based scintillation patterns reveal the same nighttime and seasonal occurrence of irregularities over Uganda irrespective of the geomagnetic conditions. Therefore, the amplitude and phase scintillation proxies presented here can be used to fill gaps in low-latitude data where there are no data available from dedicated scintillation receivers, irrespective of the geomagnetic conditions.

  14. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  15. BC404 scintillators as gamma locators studied via Geant4 simulations

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Hoischen, R.; Eisenhauer, K.; Gerl, J.; Pietralla, N.

    2014-05-01

    In many applications in industry and academia, an accurate determination of the direction from where gamma rays are emitted is either needed or desirable. Ion-beam therapy treatments, the search for orphan sources, and homeland security applications are examples of fields that can benefit from directional sensitivity to gamma-radiation. Scintillation detectors are a good option for these types of applications as they have relatively low cost, are easy to handle and can be produced in a large range of different sizes. In this work a Geant4 simulation was developed to study the directional sensitivity of different BC404 scintillator geometries and arrangements. The simulation includes all the physical processes relevant for gamma detection in a scintillator. In particular, the creation and propagation of optical photons inside the scintillator was included. A simplified photomultiplier tube model was also simulated. The physical principle exploited is the angular dependence of the shape of the energy spectrum obtained from thin scintillator layers when irradiated from different angles. After an experimental confirmation of the working principle of the device and a check of the simulation, the possibilities and limitations of directional sensitivity to gamma radiation using scintillator layers was tested. For this purpose, point-like sources of typical energies expected in ion-beam therapy were used. Optimal scintillator thicknesses for different energies were determined and the setup efficiencies calculated. The use of arrays of scintillators to reconstruct the direction of incoming gamma rays was also studied. For this case, a spherical source emitting Bremsstrahlung radiation was used together with a setup consisting of scintillator layers. The capability of this setup to identify the center of the extended source was studied together with its angular resolution.

  16. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  17. Inorganic scintillating materials and scintillation detectors

    PubMed Central

    YANAGIDA, Takayuki

    2018-01-01

    Scintillation materials and detectors that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspection, are reviewed. The fundamental physics understood today is explained, and common scintillators and scintillation detectors are introduced. The properties explained here are light yield, energy non-proportionality, emission wavelength, energy resolution, decay time, effective atomic number and timing resolution. For further understanding, the emission mechanisms of scintillator materials are also introduced. Furthermore, unresolved problems in scintillation phenomenon are considered, and my recent interpretations are discussed. These topics include positive hysteresis, the co-doping of non-luminescent ions, the introduction of an aimed impurity phase, the excitation density effect and the complementary relationship between scintillators and storage phosphors. PMID:29434081

  18. Semiconductor quantum dot scintillation under gamma-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Wang, T

    2006-08-23

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well asmore » security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon

  19. Study of Sun-Earth interactions using equatorial VHF scintillation in the Indian region

    NASA Astrophysics Data System (ADS)

    Banola, Sridhar

    Plasma density irregularities in the ionosphere (associated with ESF, plasma bubbles and Spo-radic E layers) cause scintillations in various frequency ranges. VHF radio wave scintillation technique is extensively used to study plasma density irregularities of sub-kilometre size . Ef-fects of magnetic and solar activity on ionospheric irregularities are studied so as to ascertain their role in the space weather of the near earth environment in space. Indian Institute of Ge-omagnetism operated a ground network of 13 stations monitoring amplitude scintillations on 244/251 MHz (FLEETSAT 73° E) signals in placecountry-regionIndia for more than a decade under AICPITS. At present VHF scintillation is being recorded at Mumbai by monitoring 251 MHz signal transmitted by geostationary satellite UFO2(71.2 E). sampling at 20 Hz. During CAWSES campaign (March-April 2006, low sunspot period) occurrence of daytime scintilla-tions was observed higher than the nighttime scintillations. This could be due to the fact that during low sunspot years occurrence of spread-F is limited to a narrow latitude region near the dip equator. To study solar cycle association of scintillations, long series of simultaneous amplitude scintillation data for period Jan 1989 to Dec 2000 at Indian low-latitude stations Tirunelveli/Trivandrum, close to dip equator, Pondicherry/Karur, located at the fringe of elec-trojet, Mumbai (dip lat. 13.5o N), a temperate station and Ujjain (dip lat. 18.6o N), close to anomaly crest region are utilized. Nighttime scintillation occurrence is solar activity dependent. Equatorial scintillations are inhibited with increase in geomagnetic activity.

  20. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignell, L. J.; Diwan, M. V.; Hans, S.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  1. Study of transionospheric signal scintillation: Quasi- particle approach

    NASA Astrophysics Data System (ADS)

    Lyle, Ruthie D.

    1998-07-01

    A quasi-particle approach is applied to study amplitude scintillation of transionospheric signals caused by Bottomside Sinusoidal (BSS) irregularities. The quasi- particle method exploits wave-particle duality, viewing the wave as a distribution of quasi-particles. This is accomplished by transforming the autocorrelation of the wave function into a Wigner distribution function, which serves as a distribution of quasi-particles in the (/vec r,/ /vec k) phase space. The quasi-particle distribution at any instant of time represents the instantaneous state of the wave. Scattering of the signal by the ionospheric irregularities is equivalent to the evolution of the quasi-particle distribution, due to the collision of the quasi-particles with objects arising from the presence of the BSS irregularities. Subsequently, the perturbed quasi-particle distribution facilitates the computation of average space time propagation properties of the wave. Thus, the scintillation index S4 is determined. Incorporation of essential BSS features in the analysis is accomplished by analytically modeling the power spectrum of the BSS irregularities measured in-situ by the low orbiting Atmosphere-E (AE - E) Satellite. The effect of BSS irregularities on transionospheric signals has been studied. The numerical results agree well with multi-satellite scintillation observations made at Huancayo Peru in close time correspondence with BSS irregularities observed by the AE - E satellite over a few nights (December 8-11, 1979). During this period, the severity of the scintillation varied from moderate to intense, S4 = 0.1-0.8.

  2. Progress in Studying Scintillator Proportionality: Phenomenological Model

    NASA Astrophysics Data System (ADS)

    Bizarri, G.; Cherepy, N. J.; Choong, W. S.; Hull, G.; Moses, W. W.; Payne, S. A.; Singh, J.; Valentine, J. D.; Vasilev, A. N.; Williams, R. T.

    2009-08-01

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  3. Equatorial Scintillation Study at Ilorin and Nsukka, Nigeria during Year 2011-2012

    NASA Astrophysics Data System (ADS)

    Akala, A.

    2017-12-01

    This study presents GNSS scintillations over Ilorin (8.48 oN, 4.54 oE, and mag lat: 1.83oS) and Nsukka (6.84 oN, 7.37 oE, and mag lat: 2.94oS), Nigeria during year 2011-2012. The two stations are located within the inner flank of the equatorial ionization anomaly. Firstly, we investigated the climatology of equatorial scintillations at the two stations. We suppressed multipath effects on the data by imposing a 300 elevation masking on the data. In addition, we investigated scintillation occurrences at the two locations on a satellite-by-satellite basis at varying elevation angles. The source of scintillation records at low-elevation angle is attributed to multipath, while that at high-elevation angle is attributed to ionospheric irregularities. Seasonally, scintillations recorded highest occurrences during March equinox, and the least during June solstice. The trend of scintillations, at both low- and high-elevation angles at the two stations were almost the same. EGNOS satellites signals scintillated at the two locations during the time intervals when GPS satellites signals experienced scintillations. These results could support the development of scintillation models for equatorial Africa, and could also be of benefit to GPS and EGNOS service providers and designers, with a view to providing robust services for GNSS user community in Africa.

  4. Control of photodissociation and photoionization of the NaI molecule by dynamic Stark effect.

    PubMed

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Cong, Shu-Lin

    2009-01-28

    The diabatic photodissociation and photoionization processes of the NaI molecule are studied theoretically using the quantum wave packet method. A pump laser pulse is used to prepare a dissociation wave packet that propagates through both the ionic channel (NaI-->Na(+)+I(-)) and the covalent channel (NaI-->Na+I). A Stark pulse is used to control the diabatic dissociation dynamics and a probe pulse is employed to ionize the products from the two channels. Based on the first order nonresonant nonperturbative dynamic Stark effect, the dissociation probabilities and the branching ratio of the products from the two channels can be controlled. Moreover the final photoelectron kinetic energy distribution can also be affected by the Stark pulse. The influences of the delay time, intensity, frequency, and carrier-envelope phase of the Stark pulse on the dissociation and ionization dynamics of the NaI molecule are discussed in detail.

  5. Study of a coincident observation between the ROCSAT-1 density irregularity and Ascension Island scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Chao, C. K.; Su, S.-Y.; Liu, C. H.

    2012-10-01

    A coincident observation that occurred on 24 March 2000 between the irregularity structure measured by ROCSAT-1 and the scintillation experiment at the Ascension Island has been studied. The study of scintillation statistics is carried out first, and the results show that the Nakagami distribution can portray the normalized intensity of the L-band scintillation at various S4 values, up to S4 equal to 1.4. Moreover, the departure of frequency dependence on S4 predicted by the weak scintillation is noticed due to multiple forward scattering effects. The coincident feature between the characteristics of irregularity structure and the scintillation variation are then studied. The causal relationship between the fluctuation of ion density and the scintillation variation is obtained. A numerical simulation using the parabolic wave equation has been carried out with the ROCSAT-1 data in space to compare with the ground scintillation observation. The results show the reasonable scintillation level at the coincident time to indicate a direct relationship between the irregularity structure and the scintillation in both temporal and amplitudinal variations. Finally, some assumptions and limitations of the simulation model are discussed.

  6. Fabrication and study of cylindrical scintillation counters of the ARES spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranov, V.A.; Evtukhovich, P.G.; Korenchenko, S.M.

    A method is described for fabricating 600 x 87 x 5 mm plastic scintillation counters which are constituent elements of a 673 mm in diameter cylindrical hodoscope. Results of investigations into the amplitude and temporal characteristics of a separate scintillation are presented. Light losses in the transitional and main lightguides were determined primarily by the absorption length of the organic glass. The time resolution of the counter with the beta source placed at the center of the scintillator equaled 1 nsec; the velocity of propagation of light in the scintillator equals 12.1 cm/nsec. The ARES spectrometer detects electrons and gammamore » rays under conditions of high meson-stopping intensity and will be used for pion and muon rare decay studies.« less

  7. Experimental validation and testing of a NaI boron-lined neutron detector

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Emam, Amira G.

    2018-05-01

    Effective neutron detection systems are critical in various nuclear fields. Most of the current detection systems rely on He-3 detectors due to their high neutron cross section. However, the limited sizes and worldwide scarcity of He-3 lead to major research efforts to find alternative neutron detectors. One of the proposed cost-effective alternatives is using boron-lined NaI detectors to detect the gamma ray resulting from the 10B(n,α)7Li reaction. The proposed detector assembly has been experimentally tested and its results were compared with those from a He-3 detector. In addition to detecting the gamma rays from the source and surrounding medium, the boron-lined NaI detector showed a good sensitivity to changes in neutron flux distributions and a higher efficiency when compared to the He-3 detector used.

  8. Sporadic-E Studies by Ionospheric Scintillation Using Ground-Based GPS and Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Seif, A.; Liu, T. J. Y.; Mannucci, A. J.; Carter, B. A.; Norman, R.

    2016-12-01

    The Global Navigation Satellite System (GNSS) based radio occultation (RO) technique provides an ideal limb-viewing geometry from space for studying the occurrence of sporadic E (Es). This study focuses on the detection and analysis of Es from RO measurements, to conclusively show the presence of Es's relationship with daytime scintillation. We bring two data sets to bear, using GNSS signal transmissions received on the ground and from space, which provide a unique opportunity to retrieve information about Es. RO signatures of Es and in GHz scintillation are not the same as ground-based signatures of Es. The viewing geometries are approximately orthogonal, which means the irregularity sources are not the same. That is, irregularities responsible for RO scintillations are essentially in a vertical plane, whereas those responsible for ground-based scintillations are essentially in a horizontal plane. Hence, complementary information is available regarding plasma structure in an Es patch. An analysis of combined data sets should prove to be a profitable avenue for research. In this study, we present the occurrence of scintillation using GPS Ionospheric Scintillation and Total Electron Content Monitor (GISTM) systems from two equatorial stations UKM (2.55°N, 101.46°E), and Langkawi (6.19°N, 99.51°E) in Malaysia. To better understand scale size irregularities as well as identify the occurrence of Es, we use COSMIC RO data. Two key findings coming out from our study are 1) According to the characteristics of daytime scintillation analyzed at, UKM and Langkawi stations, scintillation shows no significant TEC depletions and ROTI enhancements. The finding that ROTI does not exceed 0.5 TECU/min during daytime implies that large scale ionospheric irregularities with a scale length of a few kilometers do not exist at these stations. This is a piece of evidence which positively supports that daytime scintillation shows irregularities consistent with thin layer Es and

  9. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  10. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  11. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells

    PubMed Central

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-01-01

    Abstract Objectives To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time–kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. PMID:29092042

  12. Study of absorption and re-emission processes in a ternary liquid scintillation system

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Li, Xiao-Bo; Zheng, Dong; Cao, Jun; Wen, Liang-Jian; Wang, Nai-Yan

    2010-11-01

    Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.

  13. Temperature dependence of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  14. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    PubMed

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  15. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    PubMed

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  17. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  18. Subnanosecond Scintillation Detector

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  19. Optical and Scintillation Properties of Polydimethyl-Diphenylsiloxane Based Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Quaranta, Alberto; Carturan, Sara Maria; Marchi, Tommaso; Kravchuk, Vladimir L.; Gramegna, Fabiana; Maggioni, Gianluigi; Degerlier, Meltem

    2010-04-01

    Polysiloxane based scintillators with high light yield have been synthesized. The polymer consists in cross-linked polydimethyl-co-diphenylsiloxane with different molar percentages of phenyl units. 2,5-diphenyl oxazole (PPO) and 2,5-bis(5-ter-butyl-2-benzoxazolyl)thiophene (BBOT) have been dispersed in the polymer as dopants. The energy transfer and scintillation capabilities have been investigated, for two different amounts of phenyl groups in the polymer network and for different concentrations of dye molecules, by means of fluorescence spectroscopy, ion beam induced luminescence (IBIL) and scintillation yield measurements with ¿ particles from an 241Am source. The luminescence features and the scintillation yields have been correlated to the composition of the scintillators.

  20. Studies of Transionospheric Scintillation Using Orbiting Satellite Data.

    DTIC Science & Technology

    1980-04-01

    stronger of the two. The auroral station showed much weaker amplitude scin - tillation but had phase fluctuations on the same order. The data taken at...mid-latitude, however, showed very little activity. At any latitude, scintillation level varies with frequency. The scin - tillation index is employed...nearly constant for weak scin - tillation but decreased in the presence of multiple scattering. The effects of strong scintillation are evident in the

  1. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  2. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  3. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  4. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  5. DFT Studies of Semiconductor and Scintillator Detection Materials

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik

    2013-03-01

    Efficient radiation detection technology is dependent upon the development of new semiconductor and scintillator materials with advanced capabilities. First-principles based approaches can provide vital information about the structural, electrical, optical and defect properties that will help develop new materials. In addition to the predictive power of modern density functional methods, these techniques can be used to establish trends in properties that may lead to identifying new materials with optimum properties. We will discuss the properties of materials that are of current interest both in the field of scintillators and room temperature semiconductor detectors. In case of semiconductors, binary compounds such as TlBr, InI, CdTe and recently developed ternary chalcohalide Tl6SeI4 will be discussed. Tl6SeI4 mixes a halide (TlI) with a chalcogenide (Tl2Se), which results in an intermediate band gap (1.86 eV) between that of TlI (2.75 eV) and Tl2Se (0.6 eV). For scintillators, we will discuss the case of the elpasolite compounds whose rich chemical compositions should enable the fine-tuning of the band gap and band edges to achieve high light yield and fast scintillation response.

  6. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy.

    PubMed

    Ingram, W Scott; Robertson, Daniel; Beddar, Sam

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  7. Ecophysiology of Nais elinguis (Oligochaeta) in a brackish-water lagoon

    NASA Astrophysics Data System (ADS)

    Little, Colin

    1984-02-01

    Population densities of Nais elinguis Müller were determined in Swanpool, a brackish-water lagoon at Falmouth, Cornwall, U.K., over a four-year period. High densities were found only from January to May, usually with a peak in March. Significant negative correlations were shown between population density and both salinity and temperature. In laboratory tests, feeding rates remained unchanged from freshwater to 20‰ salinity (S), but declined above this salinity. Nais elinguis was shown to be a good osmoregulator, remaining hyperosmotic below 7‰ S, and hypo-osmotic above this. Feeding rate showed a Q 10 of approximately 2 from 1 to 25°C, but above this the rate declined. Feeding rate was unaffected between pH 6 and 11. Increased salinity to (10‰ S) did not influence the effect of temperature on feeding rate. This high salinity did reduce feeding rate at a pH of 10 and above. It is concluded that the physical and chemical variables considered are unlikely to be direct causal factors limiting populations of N. elinguis in Swanpool. The influence of food supply, competition, predation and changes in reproductive mode are discussed as possible controlling factors. It is shown that the population decline of N. elinguis in early summer usually coincides with the rise of populations of chironomid larvae.

  8. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, G.; Grant, C.; Piepke, A.

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  9. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE PAGES

    Keefer, G.; Grant, C.; Piepke, A.; ...

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  10. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2017-09-01

    A thin plate of a plastic scintillator for detecting a beta-ray was developed. The plastic scintillator was made using epoxy resin and organic scintillators such as 2.5-diphenyloxazole (PPO) and 1,4-bis [5-phenyl-2-oxazole] benzene (POPOP). The mixture ratio of epoxy resin and the organic scintillators was determined using their absorbance, transmittance, emission spectra, and transparency. Their optimal weight percentage of PPO and POPOP in the organic scintillators was adjusted to 0.2 wt%:0.01 wt%. The prepared plastic scintillator was used to measure the standard source of Sr-90. The pulse height spectra and total counts of the prepared plastic scintillator were similar to a commercial plastic scintillator. Based on the above results, a large-area plastic scintillator was prepared for rapid investigation of a site contaminated with Sr-90. The prepared large-area plastic scintillator was evaluated for the characteristics in the laboratory. The evaluation results are expected to be usefully utilized in the development of a large-area plastic scintillation detector. The large-area plastic scintillation detector developed on the basis of the evaluation results is expected to be utilized to quickly measure the contamination of Sr-90 in the grounds used as a nuclear power facility.

  11. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  12. Impact of Ionospheric Scintillation on Spaceborne SAR Observations Studied Using GNSS

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Meyer, Franz J.; Chotoo, Kancham; Freeman, Anthony; Caton, Ronald G.; Bridgewood, Christopher T.

    2012-01-01

    A survey of artifacts seen in JAXA's Phase Array type L-band synthetic aperture radar (PALSAR) data over South America during a low solar activity year is reported in this paper. A significant impact on the radar data is revealed: about 14% of the surveyed PALSAR images (totally 2779) are affected by the artifacts during a month and the artifacts occur on 74.2% of the surveyed days. The characteristics of the artifacts have led to a consideration that the artifacts are the effects of ionospheric scintillation. This raises not only a concern about scintillation effects on radar but also a question about active scintillation conditions during a low solar activity year. To assess and verify the scintillation conditions, GPS data collected from the constellation of FORMOSAT-3/COSMIC satellites and three ground-based GPS networks are processed and analyzed. The GPS data provides a global context and regional dense converge, respectively, of ionospheric irregularity and scintillation measurements. It is concluded tat even during a low solar activity year, L-band scintillation at low latitudes can occur frequently and affect L-band SAR significantly.

  13. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maski, Kalpana, E-mail: k-maski@rediffmail.com; Vijay, S. K.

    2015-07-31

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificialmore » satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes.« less

  14. Ionospheric Scintillation Activity Over Ilorin, Nigeria

    NASA Astrophysics Data System (ADS)

    Oladipo, O. A.; Adeniyi, J. O.; Doherty, P. H.; Radicella, S. M.; Adimula, I. A.; Olawepo, A. O.

    2018-02-01

    Scintillation of radio waves in the L-band frequency is a regular occurrence at the equatorial and auroral regions at night most especially during high solar activity periods. Scintillation is caused by plasma density irregularities, and this could cause loss of lock of Global Navigation Satellite System (GNSS) signals leading to impairment of the applications that rely on this system. A study on the occurrence of scintillation activity over Ilorin (latitude = 8.48°N, longitude = 4.67°W, and geomagnetic latitude = 1.89°S), Nigeria was done using S4 index data from NovAtel GPStation-2 receiver (2009-2012) and NovAtel GPStation-6 receiver (August 2013 to December 2016) which are both located at this station. The solar maximum period of the solar cycle 24 is located well within the period of this investigation; hence, this study provides opportunity to see the occurrence pattern of scintillation during different seasons as well as the pattern from low solar activity to solar maximum. The results obtained showed that scintillation occurs between 21:00 LT and 04:00 LT at the peak of the occurrence in 2014. The time window of occurrence decreases with decrease in solar activity. Similarly, scintillation activity was observed to be more regular during high solar activity and it has two peaks of occurrence in March and October. A solar activity trend was observed in scintillation occurrence; scintillation activity increases with increase in the level of solar activity.

  15. Liquid argon scintillation light studies in LArIAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryczynski, Pawel

    2016-10-12

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkovmore » counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.« less

  16. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI 2:Eu 2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI 2:Eu 2+ has the potential to exceed the excellent scintillation performance of SrI 2:Eu 2+. In fact, theoretical predictions for the light yield of CaI2:Eu 2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI 2:Eu 2+ scintillator, themore » performance of CaI 2:Eu 2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI 2:Eu 2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI 2:Eu 2+ and pure CaI 2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI 2:Eu 2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI 2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI 2:Eu 2+ and un-doped CaI 2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI 2:Eu 2+ and pure CaI 2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  17. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    PubMed Central

    Ingram, W. Scott; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent. PMID:25705066

  18. Plastic Organic Scintillator Chemistry

    NASA Astrophysics Data System (ADS)

    Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.

    2017-09-01

    Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.

  19. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of

  20. NAIplot: An opensource web tool to visualize neuraminidase inhibitor (NAI) phenotypic susceptibility results using kernel density plots.

    PubMed

    Lytras, Theodore; Kossyvakis, Athanasios; Mentis, Andreas

    2016-02-01

    The results of neuraminidase inhibitor (NAI) enzyme inhibition assays are commonly expressed as 50% inhibitory concentration (IC50) fold-change values and presented graphically in box plots (box-and-whisker plots). An alternative and more informative type of graph is the kernel density plot, which we propose should be the preferred one for this purpose. In this paper we discuss the limitations of box plots and the advantages of the kernel density plot, and we present NAIplot, an opensource web application that allows convenient creation of density plots specifically for visualizing the results of NAI enzyme inhibition assays, as well as for general purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    :Ce and CsI:Na. We also found an empirical relationship between the Fano factor and the covariance as a function of time between two detectors looking at the same scintillation pulse. This empirical model was used to estimate the Fano factor of LaBr3:Ce and YAP:Ce using the experimentally measured timing-covariance. The estimates of the Fano factor from the time-covariance results were consistent with the estimates of the correlation between the integral signals. We found scintillation light from some scintillators to be sub-Poisson. For the same mean number of total scintillation photons, sub-Poisson light has lower noise. We then conducted a simulation study to investigate whether this low-noise sub-Poisson light can be used to improve spatial resolution. We calculated the Cramer-Rao bound for dierent detector geometries, position of interactions and Fano factors. The Cramer-Rao calculations were veried by generating simulated data and estimating the variance of the maximum likelihood estimator. We found that the Fano factor has no impact on the spatial resolution in gamma-ray imaging systems.

  2. A comparative study of scintillator combining methods for flat-panel X-ray image sensors

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Lim, K. T.; Kim, G.; Cho, G.

    2018-02-01

    An X-ray transmission imaging based on scintillation detection method is the most widely used radiation technique particularly in the medical and industrial areas. As the name suggests, scintillation detection uses a scintillator as an intermediate material to convert incoming radiation into visible-light particles. Among different types of scintillators, CsI(Tl) in a columnar configuration is the most popular type used for applications that require an energy less than 150 keV due to its capability in obtaining a high spatial resolution with a reduced light spreading effect. In this study, different methods in combining a scintillator with a light-receiving unit are investigated and their relationships are given in terms of the image quality. Three different methods of combining a scintillator with a light-receiving unit are selected to investigate their performance in X-ray imaging: upward or downward oriented needles structure of CsI(Tl), coating layer deposition around CsI(Tl), and insertion of FOP. A charge-coupled device was chosen to serve as the light-receiving unit for the proposed system. From the result, the difference of needle directions in CsI(Tl) had no significant effects in the X-ray image. In contrast, deposition of the coating material around CsI(Tl) showed 17.3% reduction in the DQE. Insertion of the FOP increased the spatial resolution by 38%, however, it decreased the light yield in the acquired image by 56%. In order to have the maximum scintillation performance in X-ray imaging, not only the reflection material but also the bonding method must be considered when combining the scintillator with the light-receiving unit. In addition, the use of FOP should be carefully decided based on the purpose of X-ray imaging, e.g., image sharpness or SNR.

  3. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  4. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  5. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  6. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  7. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  8. Molecular origins of scintillation in organic scintillators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feng, Patrick; Mengesha, Wondwosen; Myllenbeck, Nicholas

    2016-09-01

    Organic-based scintillators are indispensable materials for radiation detection owing to their high sensitivity to fast neutrons, low cost, and tailorable properties. There has been a recent resurgence of interest in organic scintillators due to exciting discoveries related to neutron discrimination and gamma-ray spectroscopy, which represent capabilities previously thought not possible in these materials. I will discuss our development of crystalline and polymer-based scintillators for these applications. Structure-property relationships related to intermolecular interactions and host-guest electronic exchange will be discussed in the context of energy-transfer pathways relevant to scintillation. An emphasis will be placed on the rational design of these materials, as guided by first principles and DFT calculations. Two related topics will be discussed: 1) Incorporation of organometallic triplet-harvesting additives to plastic scintillator matrices to confer a 'two-state' (singlet and triplet) luminescence signature to different types of ionizing radiation. This approach relies upon energetic and spatial overlap between the donor and acceptor excited states for efficient electronic exchange. Key considerations also include synthetic modification of the luminescence spectra and kinetics, as well as the addition of secondary additives to increase the recombination efficiency. 2) Design of organotin-containing plastic scintillators as a route towards gamma-ray spectroscopy. Organometallic compounds were selected on the basis of distance-dependent quenching relationships, phase compatibility with the polymer matrix, and the gamma-ray cross sections. This approach is guided by molecular modeling and radiation transport modeling to achieve the highest possible detection sensitivity luminescence intensity.

  9. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  10. Study of compact radio sources using interplanetary scintillations at 111 MHz. The Pearson-Readhead sample

    NASA Astrophysics Data System (ADS)

    Tyul'Bashev, S. A.

    2009-01-01

    A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.

  11. A study on multifrequency scintillations near the EIA crest of the Indian zone

    NASA Astrophysics Data System (ADS)

    Chakraborty, S. K.; Chatterjee, S.; Jana, Debasis

    2017-10-01

    Occurrence features of ionospheric scintillations at S band (2492.028 MHz) are reported for the first time. The same have been explored in the context of scintillations at VHF (250.650 MHz) and L5 (1176.45 MHz) bands. Observations were carried out during the period April-December, 2015 at Raja Peary Mohan College Centre (RPMC: 22.66° N, 88.4° E), located near the equatorial ionization anomaly (EIA) crest of the Indian longitude zone. Mostly weak (<10 dB), short duration, slow fading rate with shallower slope power spectra characterize the S band scintillations compared to VHF and L5 band. In the severe scintillation conditions of VHF frequent loss of lock in L5 channel is reflected. Fade depth of 4.2 ± 1.3 dB and fade rate ∼9 fades/minute at S band mostly precede the loss of lock at L5 channel. A good correspondence between fade rates at multi frequency band is reflected irrespective of phases of scintillation. Spectral analysis reveals weak scattering is the dominating mechanism for scintillation at S band while VHF and L5 band scintillations are mostly attributed to multiple scattering. The estimated threshold coherence length of <23 m at VHF may be suggested to be a good indicator for occurrence of L5 and S band scintillations. Occurrence of simultaneous multi-satellite multi-frequency scintillations leads to speculation over the failsafe navigation using available IRNSS constellation. The results are discussed in terms of existing theory of evolution, structure and dynamics of electron density irregularities in the low latitude region.

  12. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  13. Equatorial scintillation and systems support

    NASA Astrophysics Data System (ADS)

    Groves, K. M.; Basu, S.; Weber, E. J.; Smitham, M.; Kuenzler, H.; Valladares, C. E.; Sheehan, R.; MacKenzie, E.; Secan, J. A.; Ning, P.; McNeill, W. J.; Moonan, D. W.; Kendra, M. J.

    1997-09-01

    The need to nowcast and forecast scintillation for the support of operational systems has been recently identified by the interagency National Space Weather Program. This issue is addressed in the present paper in the context of nighttime irregularities in the equatorial ionosphere that cause intense amplitude and phase scintillations of satellite signals in the VHF/UHF range of frequencies and impact satellite communication, Global Positioning System navigation, and radar systems. Multistation and multifrequency satellite scintillation observations have been used to show that even though equatorial scintillations vary in accordance with the solar cycle, the extreme day-to-day variability of unknown origin modulates the scintillation occurrence during all phases of the solar cycle. It is shown that although equatorial scintillation events often show correlation with magnetic activity, the major component of scintillation is observed during magnetically quiet periods. In view of the day-to-day variability of the occurrence and intensity of scintillating regions, their latitude extent, and their zonal motion, a regional specification and short-term forecast system based on real-time measurements has been developed. This system, named the Scintillation Network Decision Aid, consists of two latitudinally dispersed stations, each of which uses spaced antenna scintillation receiving systems to monitor 250-MHz transmissions from two longitudinally separated geostationary satellites. The scintillation index and zonal irregularity drift are processed on-line and are retrieved by a remote operator on the Internet. At the operator terminal the data are combined with an empirical plasma bubble model to generate three-dimensional maps of irregularity structures and two-dimensional outage maps for the region.

  14. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  15. Geophysical analysis of coherent satellite scintillation data

    NASA Astrophysics Data System (ADS)

    Fremouw, E. J.; Lansinger, J. M.; Miller, D. A.

    1981-11-01

    In May of 1976, Air Force Satellite P76-5 was launched with the Defense Nuclear Agency's Wideband beacon, DNA-002, as its sole payload. Several researchers have employed the resulting data in studies of ionospheric structure and its effect on transionospheric radio communications. In the present work, recordings of amplitude and phase scintillation imposed on Wideband's VHF and UHF signals by the ionosphere have been used to study medium-scale structures in the auroral-zone F layer. Results include quantitative identification of a very close relationship between scintillation and solar/geomagnetic activity, together with lack of a seasonal variation in scintillation activity in the Alaskan sector. A surprisingly high correlation (90%) was found between monthly means of phase-scintillation index, on the one hand, and sunspot number and 10-cm solar radio flux, on the other. The high-latitude scintillation boundary was found to be very similar to the soft-electron precipitation boundary, including similarity in expansion rates with increasing magnetic activity. Interestingly, it is systematically shifted poleward of the precipitation boundary on the day side of the earth and equatorward on the night side. Taken together, the results of this research disclose a rather direct relationship between scintillation and soft-electron precipitation, with plasma convection likely playing an important role in generation of the scintillation-producing irregularities.

  16. Scintillator Design Via Codoping

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.; Koschan, M.; Zhuravleva, M.; Wu, Y.; Rothfuss, H.; Meng, F.; Tyagi, M.; Donnald, S.; Yang, K.; Hayward, J. P.; Eriksson, L.

    Scintillation materials that lack intrinsic luminescence centers must be doped with optically active ions in order to provide luminescent centers that radiatively de-excite as the final step of the scintillation process. Codoping, on the other hand, can be defined as the incorporation of additional specific impurity species usually for the purpose of modifying the scintillation properties, mechanical properties, or the crystal growth behavior. In recent years codoping has become an increasingly popular approach for engineering scintillators with optimal performance for targeted applications. This report reviews several successful examples and its effect on specific properties.

  17. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    PubMed

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  19. Study of the activities of MSTIDs, FAIs, and scintillations in middle latitudes

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Kil, H.; Kwak, Y. S.; Tae-yong, Y.

    2017-12-01

    We investigate the role of medium-scale traveling ionospheric disturbances (MSTIDs) in the creation of field-aligned irregularities (FAIs) and scintillations in middle latitudes. The occurrences of MSTIDs, FAIs, and scintillations are monitored using the total electron content perturbation maps over Japan, observations of VHF radar at Daejeon in South Korea, and observations of scintillation monitors over South Korea, respectively. The observations of the electron density by Swarm satellites are used for the investigation of the conjugate property in MSTIDs and FAIs.

  20. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  1. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  2. Study of equatorial plasma bubbles using all sky imager and scintillation technique from Kolhapur station: a case study

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Gurav, O. B.; Gaikwad, H. P.; Chavan, G. A.; Nade, D. P.; Nikte, S. S.; Ghodpage, R. N.; Patil, P. T.

    2018-04-01

    The nightglow observations of OI 630.0 nm emission carried out from low latitude station Kolhapur using All Sky Imager (ASI) with 140° field of view (FOV) for the month of April 2011 are used. The images were processed to study the field aligned irregularities often called as equatorial plasma bubbles (EPBs). The present study focuses on the occurrence of scintillation during the traversal of EPBs over ionospheric pierce point (IPP). Here we dealt with the depletion level (depth) of the EPB structures and its effect on VHF signals. We compared VHF scintillation data with airglow intensities at Ionospheric pierce point (IPP) from the same location and found that the largely depleted EPBs make stronger scintillation. From previous literature, it is believed that the small scale structures are present near the steeper walls of EPBs which often degrades the communication, the analysis presented in this paper confirms this belief.

  3. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  4. Preparation of New Scintillation Imaging Material Composed of Scintillator-Silica Fine Powders and its Imaging of Tritium.

    PubMed

    Miyoshi, Hirokazu; Hiroura, Mitsunori; Tsujimoto, Kazunori; Irikura, Namiko; Otani, Tamaki; Shinohara, Yasuo

    2017-05-01

    A new scintillation imaging material [scintillator-silica fine powder (FP)] was prepared using silica FPs and scintillator-encapsulating silica nanoparticles (NPs) (scintillator-silica NPs). The wt% values of scintillator-silica NPs on the scintillator-silica FPs were 38, 43, 36 and 44%. Scintillation images of 3H, 63Ni, 35S, 33P, 204Tl, 89Sr and 32P dropped on the scintillator-silica FPs were obtained at about 37 kBq per 0.1-10 µl with a charge-coupled device (CCD) imager for a 5 min exposure. In particular, high-intensity CCD images of 35S were selectively obtained using the 2.25, 4.77 and 10 µm silica FPs with scintillator-silica NPs owing to the residual S of dimethyl sulfoxide in the preparation. Scintillation images of 3H at 1670 ± 9 Bq/0.5 µl and 347 ± 6 Bq/0.5 µl dropped in a 2 mm hole on the scintillator-silica FPs (6.78 and 10 µm) were also obtained using the CCD imager for a 2 h exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Liquid scintillator tiles for calorimetry

    DOE PAGES

    Amouzegar, M.; Belloni, A.; Bilki, B.; ...

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  6. Liquid scintillator tiles for calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amouzegar, M.; Belloni, A.; Bilki, B.

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  7. Scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Radermacher, T.; Weingarten, S.; Weinstock, L.

    2015-10-01

    A detector prototype based on a fast plastic scintillator read out with silicon photomultipliers is presented. All studies have been done with cosmic muons and focus on parameter optimization such as coupling the SiPM to the scintillator or wrapping the scintillator with reflective material. The prototype shows excellent results regarding the light-yield and offers a detection efficiency of 99.5% with a signal purity of 99.9% for cosmic muons.

  8. Cherenkov and scintillation light separation in organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Yeh, M.; Orebi Gann, G. D.

    2017-12-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36± 5% and 38± 4%. LAB/PPO data is consistent with a rise time of τ _r=0.72± 0.33 ns.

  9. Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.

    2016-07-01

    The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.

  10. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  11. A study of multi-GNSS ionospheric scintillation and cycle-slip over Hong Kong region for moderate solar flux conditions

    NASA Astrophysics Data System (ADS)

    Luo, Xiaomin; Liu, Zhizhao; Lou, Yidong; Gu, Shengfeng; Chen, Biyan

    2017-09-01

    This study presents the characteristics of Multiple Global Navigation Satellite System (Multi-GNSS) ionospheric scintillation and cycle-slip occurrence through the analysis of Multi-GNSS data collected by a newly installed receiver located at Sha Tin of Hong Kong from 6 October 2015 to 31 December 2016. This period of time was under a moderate solar activity condition with average sunspot number and F10.7 as 44 and 92, respectively. Considering the frequent occurrence of loss of lock in satellites measurements in the presence of ionospheric scintillation, a rate of geometry-free (ROGF) combination is proposed to take the time gap size between two data arcs into account in the cycle-slip detection. The results show that most ionospheric scintillation events and cycle-slips are observed from 20:00 LT to 0:00 LT. Under the strong scintillation (S4 > 0.6) conditions, it is found that the time series of wide-land (WL) ambiguity NWL and ROGF vary significantly and their range can reach more than 50 cycles and 0.1 m/s, respectively. However, the variations of the NWL and ROGF are generally small under weak scintillation (0.2 < S4 ≤ 0.6) or non-scintillation (S4 ≤ 0.2) conditions. A strong correlation of scintillation and cycle-slip occurrence is also verified by the daily and spatial statistics results. In addition, it is found that on average every 1000 strong scintillation events can result in 200, 124, and 171 cycle-slip occurrences in GPS, GLONASS, and BDS, respectively, whereas these values are 7, 12, and 12 per 1000 under weak scintillation conditions. This study suggests that cautions be taken when GNSS measurements are contaminated by the strong ionospheric scintillation in GNSS applications such as real-time kinematic (RTK) and precise point positioning (PPP).

  12. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water.

    PubMed

    Besemer, Matthieu; Bloemenkamp, Rob; Ariese, Freek; van Manen, Henk-Jan

    2016-02-11

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable frequency-doubled optical parametric oscillator system were used to achieve excitation wavelengths between 785 and 374 nm. Focusing on NaI solutions, the relative enhancement of the water bending vibration was found to increase strongly with excitation photon energy, in line with a preresonance effect from the iodide-water charge-transfer transition. We used multivariate curve resolution (MCR) to decompose the measured Raman spectra of NaI solutions into three interconverting spectral components assigned to bulk water and water molecules interacting with one (X···H-O-H···O) and two (X···H-O-H···X) iodide ions (X = I(-)). The Raman spectrum of solid sodium iodide dihydrate supports the assignment of the latter. Using the MCR results, relative Raman scattering cross sections of 4.0 ± 0.6 and 14.0 ± 0.1 were calculated for the mono- and di-iodide species, respectively (compared to that of bulk water set to unity). In addition, it was found that at relatively low concentrations each iodide ion affects the Raman spectrum of roughly 22 surrounding water molecules, indicating that the influence of iodide extends beyond the first solvation shell. Our results demonstrate that the Raman bending vibration of water is a sensitive probe, providing new insights into anion solvation in aqueous environments.

  13. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  14. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  15. Ionospheric scintillation observations over Kenyan region - Preliminary results

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  16. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Bircher, Chad; Shao, Yiping

    2012-02-01

    Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm(2) cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function

  17. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bircher, Chad; Shao Yiping

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method couldmore » be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can

  18. Cherenkov and scintillation light separation in organic liquid scintillators

    DOE PAGES

    Caravaca, J.; Descamps, F. B.; Land, B. J.; ...

    2017-11-29

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63 ± 8 % for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5 % andmore » 38 ± 4 %. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns.« less

  19. Cherenkov and scintillation light separation in organic liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caravaca, J.; Descamps, F. B.; Land, B. J.

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63 ± 8 % for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5 % andmore » 38 ± 4 %. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns.« less

  20. Complex Dynamics of Equatorial Scintillation

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio

    2017-04-01

    Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.

  1. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    DOE PAGES

    Schuster, P.; Brubaker, E.

    2016-11-23

    This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects duemore » to the molecular or crystal structure and not an external effect on the measurement system.« less

  2. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  3. DETECTORS AND EXPERIMENTAL METHODS: Studies of a scintillator-bar detector for a neutron wall at an external target facility

    NASA Astrophysics Data System (ADS)

    Yu, Yu-Hong; Xu, Hua-Gen; Xu, Hu-Shan; Zhan, Wen-Long; Sun, Zhi-Yu; Guo, Zhong-Yan; Hu, Zheng-Guo; Wang, Jian-Song; Chen, Jun-Ling; Zheng, Chuan

    2009-07-01

    To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR, we have carried out a detailed study of the photomultiplier, the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.

  4. Laser pixelation of thick scintillators for medical imaging applications: x-ray studies

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Kudrolli, Haris; Marton, Zsolt; Singh, Bipin; Nagarkar, Vivek V.

    2013-09-01

    To achieve high spatial resolution required in nuclear imaging, scintillation light spread has to be controlled. This has been traditionally achieved by introducing structures in the bulk of scintillation materials; typically by mechanical pixelation of scintillators and fill the resultant inter-pixel gaps by reflecting materials. Mechanical pixelation however, is accompanied by various cost and complexity issues especially for hard, brittle and hygroscopic materials. For example LSO and LYSO, hard and brittle scintillators of interest to medical imaging community, are known to crack under thermal and mechanical stress; the material yield drops quickly with large arrays with high aspect ratio pixels and therefore the pixelation process cost increases. We are utilizing a novel technique named Laser Induced Optical Barriers (LIOB) for pixelation of scintillators that overcomes the issues associated with mechanical pixelation. In this technique, we can introduce optical barriers within the bulk of scintillator crystals to form pixelated arrays with small pixel size and large thickness. We applied LIOB to LYSO using a high-frequency solid-state laser. Arrays with different crystal thickness (5 to 20 mm thick), and pixel size (0.8×0.8 to 1.5×1.5 mm2) were fabricated and tested. The width of the optical barriers were controlled by fine-tuning key parameters such as lens focal spot size and laser energy density. Here we report on LIOB process, its optimization, and the optical crosstalk measurements using X-rays. There are many applications that can potentially benefit from LIOB including but not limited to clinical/pre-clinical PET and SPECT systems, and photon counting CT detectors.

  5. A compound crystal with film scintillator for electron detection

    NASA Astrophysics Data System (ADS)

    McKinney, George; McDonnald, Warren; Tzolov, Marian

    2015-03-01

    Yttrium Aluminum Garnets (YAG) and Yttrium Aluminum Perovskite (YAP) are widely used as electron detectors. This application requires a top conducting layer which hinders their application at low electron energies. We have developed a layer of zinc tungstate which delivers conductivity large enough to prevent charging while still being an efficient scintillator. For better coupling between the two systems we have studied their optical properties. Ce doping is an essential element in YAP and YAG in order for them to be efficient scintillators. We have studied the Ce content and we show that higher Ce content leads to reabsorption in the YAP scintillators. These details were revealed by using photoluminescence emission and excitation spectroscopy. The absorption spectrum for the YAG scintillators coincides with the excitation for the main emission lines. The optical studies of the zinc tungstate films and a single crystal have shown that the films are more efficient light emitters. We have integrated the zinc tungstate films with YAG scintillators and we will report on the performance of this compound scintillator. It is expected that it will perform well at low and high electron energies, which makes it a very cost effective platform for electron detectors.

  6. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  7. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  8. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  9. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Hans, S.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2013-08-01

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  10. YAP:Ce scintillator characteristics for neutron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viererbl, L.; Klupak, V.; Vins, M.

    2015-07-01

    YAP:Ce (YAlO{sub 3}:Ce{sup +}, Yttrium Aluminum Perovskite, Ce{sup +} doped) crystals with appropriate converters seem like prospective scintillators for neutron detection. An important aspect for neutron detection with inorganic scintillators is the ability to discriminate neutron radiation from gamma radiation by pulse height of signals. For a detailed measurement of the aspect, a YAP:Ce crystal scintillator with lithium or hydrogen converters and a photomultiplier was used. A plutonium-beryllium neutron source and horizontal neutron channel beams of the LVR-15 research reactor were used as neutron sources. The measurement confirmed the possibility to use the YAP:Ce scintillator for neutron radiation detection. Themore » degree of discrimination between neutron and gamma radiation for different detection configurations was studied. (authors)« less

  11. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy.

    PubMed

    Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A

    2016-08-23

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  12. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  13. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    PubMed Central

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-01-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials. PMID:27550235

  14. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  15. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  16. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  17. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    PubMed Central

    Bircher, Chad; Shao, Yiping

    2012-01-01

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be

  18. Studies of air showers produced by primaries 10(16) eV using a combined scintillation and water-Cerenkov array

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Perrett, J. C.; Watson, A. A.

    1986-01-01

    An array of 8 x 1.0 sq m plastic scintillation counters and 13 water-Cerenkov detectors (1 to 13.5 sq m) were operated at the center of the Haverah Park array to study some features of air showers produced by 10(16) eV primaries. Measurements of the scintillator lateral distribution function, the water-Cerenkov lateral distribution function, and of the distance dependence of the Cerenkov/scintillator ratio are described.

  19. Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay.

    PubMed

    Kasar, Sharayu; Kumar, Sumit; Bajpai, R K; Tomar, B S

    2016-01-01

    Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay, proposed as a backfill material in the Indian geological repository, was studied using the out-diffusion method. Radiotracers (22)Na, (137)Cs, (85)Sr and (154)Eu were used; the first three are carrier-free enabling experimental work at sub-micromolar metal ion concentration, and Eu(III) tracer (154)Eu was used at sub millimolar concentration. An out-diffusion methodology, wherein a thin planar source of radioactivity placed between two clay columns diffuses out, was used to obtain the apparent diffusion coefficient (Da) values. This methodology enabled determination of diffusion coefficient even for strongly sorbing (154)Eu. Da values for (22)Na, (137)Cs, (85)Sr and (154)Eu were 2.35 (±0.14) × 10(-11), 2.65 (±0.09) × 10(-12), 3.32 (±0.15) × 10(-11) and 1.23 (±0.15) × 10(-13) m(2) s(-1), respectively. Da values were found to be in fair agreement with literature data reported for similar mineralogical sediments. Sorption of radionuclides on the clay was also determined in the present study and differences in Da values were rationalized on the basis of sorption data. Distribution ratios (Kd) for Cs(I) and Eu(III) were higher than that for Sr(II), which in turn was higher than that for Na(I). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  1. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  2. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  3. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  4. Neutron position-sensitive scintillation detector

    DOEpatents

    Strauss, Michael G.; Brenner, Raul

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  5. A study of simultaneous scintillation observations by Chinese FY-2 geostationary meteorological satellite and VHF coherent radar measurements over South China

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Yu, T.; Xia, C.

    2016-12-01

    It's a good place for South China to monitor ionospheric scintillation, which are situated near the northern crest of the equatorial ionosphere anomaly. The temporal variation characteristics of Amplitude scintillations of Chinese FY-2 geostationary meteorological satellite (86.5°E) observed at Guangzhou (23.2°N, 113.3°E, dip 18°N) during the period from July 2011 to June 2013 are present. The scintillation occurrence and intensity increase dramatically at September and October in FY-2 satellite link. The scintillation observations of FY-2 geostationary satellite observed at Guangzhou and simultaneous VHF (47.5MHz) coherent radar measurements from Sanya (18.3°N, 109.6°E, dip 13°N) during equinoctial months of 2011 and 2012 are used for a coordinated study for the relationship between the L-band scintillation patches on the propagation path of FY-2 satellite and the extended 3-m irregularity structures known as plumes over South China. The results showed good coincidence of the plumes with scintillation patches in most events. In case study, the zonal drift velocity of the irregularities was estimated by comparison of the onset times of the scintillation and plume and the irregularities were found to drift eastwards at a speed ranging about tens of meters to one hundred meters per second. From the derived value of drift speed and duration of scintillation events, the irregularity patches were found to have east-west extent about a few hundred kilometers. On the other hand, if the plumes on the radar maps occurred at lower altitudes, the associated irregularities would not be able to reach the IPP of the satellite and generate L-band scintillations there. Weak scintillations were observed on FY-2 link without any plume structure on radar backscatter maps occasionally.

  6. A Review of Ionospheric Scintillation Models.

    PubMed

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  7. Segmented scintillation antineutrino detector

    DOEpatents

    Reyna, David

    2017-05-09

    The various technologies presented herein relate to incorporating a wavelength-shifting material in a scintillator to facilitate absorption of a first electromagnetic particle (e.g., a first photon) having a first wavelength and subsequent generation and emission of a second electromagnetic particle (e.g., a second photon) having a second wavelength. The second electromagnetic particle can be emitted isotropically, with a high probability that the direction of emission of the second electromagnetic particle is disparate to the direction of travel of the first electromagnetic particle (and according angle of incidence). Isotropic emission of the second electromagnetic particle enables the second electromagnetic particle to be retained in the scintillator owing to internal reflection. Accordingly, longer length scintillators can be constructed, and accordingly, the scintillator array has a greater area (and volume) over which to detect electromagnetic particles (e.g., antineutrinos) being emitted from a nuclear reaction.

  8. Scintillator Non-Proportionality: Present Understanding and Future Challenges

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Payne, S. A.; Choong, W.-S.; Hull, G.; Reutter, B. W.

    2008-06-01

    Scintillator non-proportionality (the fact that the conversion factor between the energy deposited in a scintillator and the number of visible photons produced is not constant) has been studied both experimentally and theoretically for 50 years. Early research centered on the dependence of the conversion factor on the species of the ionizing radiation (gamma, alpha, beta, proton, etc.), and researchers during the 1960s discovered a strong correlation between the scintillation efficiency and the ionization density. In more recent years, non-proportionality has been proposed as the reason why the energy resolution of most scintillators is worse than that predicted by counting statistics. While much progress has been made, there are still major gaps in our understanding of both the fundamental causes of non-proportionality and their quantitative link to scintillator energy resolution. This paper summarizes the present state of knowledge on the nature of the light-yield non-proportionality and its effect on energy resolution.

  9. Normalization of energy-dependent gamma survey data.

    PubMed

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  10. Neutron crosstalk between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  11. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  12. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    PubMed

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  13. Plastic scintillator enhancement through Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael

    2017-08-01

    Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.

  14. Rapid method for determination of 90Sr in seawater by liquid scintillation counting with an extractive scintillator.

    PubMed

    Uesugi, Masaki; Watanabe, Ryosuke; Sakai, Hiroaki; Yokoyama, Akihiko

    2018-02-01

    A rapid determination method of 90 Sr is developed for the monitoring of seawater around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Three ideas of chemical separation and measurements to accelerate 90 Sr analysis are investigated. Strontium is co-precipitated in a two-step procedure with hydroxyapatite after the removal of magnesium phosphate in the presence of citric acid. The purification process of strontium is in combination with solid phase extraction disks. One or two sheets of Sr Rad disk and cyclic operations are examined to eliminate interfering substances and secure the exchange capacity. The suitable conditions of adsorption and stripping are determined with a 85 Sr tracer. Seawater samples up to 1L can be analyzed within 4h. Additionally, the appropriate pH conditions to extract strontium to the scintillator are studied, and the 90 Sr activity is assessed via liquid scintillation counting using an extractive scintillator based on the di-(2-etyl hexyl)-phosphoric acid (HDEHP) extraction method. The new scintillation counting method involves a small quenching effect and a low background compared to the conventional emulsion scintillator method. The minimum detectable activity (MDA) is 35mBq/L of 90 Sr in 180min of counting. The proposed method provides analytical results within a day after receipt of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Recent developments in plastic scintillators with pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.

    2018-05-01

    The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.

  16. High-efficiency organic glass scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.; Carlson, Joseph S.

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-castingmore » distinguishes the developed organic glasses from existing scintillators.« less

  17. New Developments in Scintillators for Security Applications

    NASA Astrophysics Data System (ADS)

    Glodo, Jarek; Wang, Yimin; Shawgo, Ryan; Brecher, Charles; Hawrami, Rastgo H.; Tower, Joshua; Shah, Kanai S.

    Radiation is an important part of security space: It is detected either passively in search of special nuclear materials or actively to monitor or interrogate objects of interest. Systems relying on radiation require adequate detectors. The most common radiation detectors are based on scintillating materials that convert hard (gamma, x-ray or neutron) radiation into visible light registered by a photodetector. The last decade has seen development of new materials driven by various security applications. This included the search for He-3 replacement technologies, which resulted in development of neutron sensing scintillators such as Ce-doped Cs2LiYCl6 (CLYC) or more recently Cs2LiLa(Br,Cl)6 (CLLBC). Since they are also good gamma-ray scintillators, they have also penetrated the detection market for passive dual-mode (gamma and neutron) detection systems, replacing scintillators such as NaI(Tl) or CsI(Tl) and competing with LaBr3(Ce). High-energy Non-Intrusive Inspection is another area where active research is being pursued in order to replace existing scintillator choices such as CdWO4, which is commonly used in simple radiography, and PbWO4, which is being studied for spectroscopic alternatives to radiography. For radiography, in particular, new ceramic scintillators such as Ce-doped GLuGAG (garnet) are considered, and for spectroscopy, Yb doped Lu2O3. In this paper we provide a short overview of these technologies.

  18. Neutron-gamma discrimination with UGAB scintillator using zero-crossing method.

    PubMed

    Divani-Vais, N; Bayat, E; Firoozabadi, M M; Ghal-Eh, N

    2013-01-01

    The new-type scintillator, Ultima Gold Alpha-Beta (UGAB), was studied for its neutron-gamma discrimination capability. The figure-of-merit and peak-to-valley values for the neutron-gamma discrimination spectra of UGAB scintillator when exposed to (241)Am-Be neutron source were presented. The results show that this new-type scintillator can efficiently be used in neutron-gamma discrimination experiments.

  19. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  20. In-situ determination of residual specific activity in activated concrete walls of a PET-cyclotron room

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Toyoda, A.; Masumoto, K.; Yoshida, G.; Yagishita, T.; Nakabayashi, T.; Sasaki, H.; Matsumura, K.; Yamaya, Y.; Miyazaki, Y.

    2018-06-01

    In the decommissioning work for concrete walls of PET-cyclotron rooms, an in-situ measurement is expected to be useful for obtaining a contour map of the specific activity on the walls without destroying the structure. In this study, specific activities of γ-ray-emitting radionuclides in concrete walls were determined by using an in-situ measurement method employing a portable Ge semiconductor detector, and compared with the specific activity obtained using the sampling measurement method, at the Medical and Pharmacological Research Center Foundation in Hakui, Ishikawa, Japan. Accordingly, the specific activity could be determined by the in-situ determination method. Since there is a clear correlation between the total specific activity of γ-ray-emitting radionuclides and contact dose rate, the specific activity can be determined approximately by contact dose-rate measurement using a NaI scintillation survey meter. The specific activity of each γ-ray-emitting radionuclide can also be estimated from the contact dose rate using a NaI scintillation survey meter. The in-situ measurement method is a powerful tool for the decommissioning of the PET cyclotron room.

  1. Measurement of seeing and the atmospheric time constant by differential scintillations.

    PubMed

    Tokovinin, Andrei

    2002-02-20

    A simple differential analysis of stellar scintillations measured simultaneously with two apertures opens the possibility to estimate seeing. Moreover, some information on the vertical turbulence distribution can be obtained. A general expression for the differential scintillation index for apertures of arbitrary shape and for finite exposure time is derived, and its applications are studied. Correction for exposure time bias by use of the ratio of scintillation indices with and without time binning is studied. A bandpass-filtered scintillation in a small aperture (computed as the differential-exposure index) provides a reasonably good estimate of the atmospheric time constant for adaptive optics.

  2. Light Collection Efficiency in Thin Strip Plastic Scintillator for the Study of ISGMR in Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Shafer, Jacob

    2011-10-01

    The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.

  3. Ionospheric Scintillation Induced by Solar Wind Dynamic Pressure Enhancements in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Coppeans, T.; Zou, S.; Weatherwax, A. T.; Coster, A. J.

    2017-12-01

    Ionospheric scintillation is the random fluctuation in GPS signal radio waves passing through the ionosphere, a phenomenon that can result in the loss of GPS tracking, but can also reveal information about plasma structures in the ionosphere. Sudden compression of the Earth's magnetosphere by a solar wind dynamic pressure enhancement can cause dramatic changes in the E and F region ionospheric plasma. In this study, we investigate the possible ionospheric scintillation induced by solar wind pressure enhancements using ground-based scintillation receivers located at the McMurdo station and the South Pole station in Antarctica. Various studies of scintillation effects have been carried out, mainly in the northern hemisphere, while the southern hemisphere remains less studied. A pool of storm sudden commencements occurring between Jan. 2011 and Dec. 2014 were sorted based on solar wind dynamic pressure enhancement, background conditions, availability of data, and magnitude of scintillation response. Among the 89 events examined, 14 of them exhibited enhanced scintillation and were selected for detailed examination. Besides the scintillation receivers, other datasets have also been used to carry out the above study, including field-aligned currents from AMPERE, and global GPS TEC. Effects of FACs and TEC/TEC gradients on the generation of these scintillations are studied.

  4. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2014-03-01

    Pulse shape discrimination is a well-established technique for background rejection in liquid scintillator detectors. It is particularly effective in separating heavy particles from light particles, but not in distinguishing electrons from positrons. This inefficiency can be overtaken by exploiting the formation of ortho-positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants used in neutrino-less double beta decay experiments (Nd and Te) and in anti-neutrino and neutron detection (Gd and Li respectively). We found that the o-Ps properties are similar in all the tested scintillators, with a lifetime around 3 ns and a formation probability of about 50%. This result indicates that an o-Ps-enhanced pulse shape discrimination can be applied in liquid scintillator detectors for neutrino and anti-neutrino detection and for neutrino-less double beta decay search.

  5. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  6. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island.

    PubMed

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-12

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island's GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.

  7. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  8. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  9. Comparative study of nondoped and Eu-doped SrI2 scintillator

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Koshimizu, Masanori; Okada, Go; Kojima, Takahiro; Osada, Junya; Kawaguchi, Noriaki

    2016-11-01

    Optical and scintillation properties of nondoped and Eu 3% doped SrI2 crystals grown by the Vertical Bridgman method were investigated. Eu-doped crystal showed an intense single band emission at 430 nm due to the Eu2+ 5d-4f transitions in both photoluminescence and scintillation while the nondoped crystal had a complex spectral shape. The latter emission consists of mainly four bands: 360 nm, 540 nm, 410 nm and 430 nm. The origins of 360 nm and 540 nm were self-trapped exciton and unexpected impurity, respectively. The origins of 410 and 430 nm lines were ascribed to F center in different I sites. Under 137Cs γ-ray irradiations, both crystals showed a clear photoabsorption peak. The scintillation light yields of the nondoped and Eu-doped SrI2 resulted 33,000 ph/MeV and 82,000 ph/MeV, respectively. The energy resolution at 662 keV of Eu-doped was 4% while that of the non-doped SrI2 was 8%.

  10. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions

  11. Radiopure Metal-Loaded Liquid Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  12. Radiopure metal-loaded liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang, E-mail: yeh@bnl.gov

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  13. Metal-loaded organic scintillators for neutrino physics

    DOE PAGES

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can bemore » used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.« less

  14. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were

  15. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  16. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  17. Ionospheric scintillation detection based on GPS observations, a case study over Iran

    NASA Astrophysics Data System (ADS)

    Sobhkhiz Miandehi, Sahar; Alizadeh Elizei, M. Mahdi; Schuh, Harald

    2017-04-01

    Global Positioning System (GPS) which is used extensively for various purposes such as navigation, surveying, remote sensing and telecommunication, is strongly affected by the earth's upper atmosphere, the ionosphere. Ionosphere is a highly variable region with complex physical characteristics in which the density of free electrons are large enough to have considerable effects on signals' propagation travelling through this dispersive medium. As GPS signals travel through the ionosphere, they may experience rapid amplitude fluctuations or unexpected phase changes. This is referred to as ionospheric scintillation. Ionospheric scintillation which is caused by small scale irregularities in the electron density, is one of the dominant propagation disturbances at radio frequency signals. These irregularities severely affect the accuracy and reliability of GPS measurements. Therefore it is necessary to investigate ionospheric scintillation and its effects on GPS observations. The focus of this paper is to detect ionospheric scintillations over Iran's region, during different periods of solar activity and to investigate these effects on GPS observations in more detail. Furthermore the effects of these irregularities on regional modeling of ionosphere over Iran is also investigated. The results show that effectiveness of this phenomenon depends on geographic location, local time and global geomagnetic storm index (kp index). The required data for this investigation are ground based measurements of permanent GPS stations over Iran, established by the National Cartographic Center of Iran (NCC).

  18. Performance studies towards a TOF-PET sensor using Compton scattering at plastic scintillators

    NASA Astrophysics Data System (ADS)

    Kuramoto, M.; Nakamori, T.; Gunji, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.; Aoki, T.

    2018-01-01

    We have developed a sensor head for a time-of-flight (TOF) PET scanner using plastic scintillators that have a very fast timing property. Given the very small cross section of photoelectric absorption in plastic scintillators at 511 keV, we use Compton scattering in order to compensate for detection efficiency. The detector will consist of two layers of scatterers and absorbers which are made of plastic and inorganic scintillators such as GAGG:Ce, respectively. Signals are read by monolithic Multi Pixel Photon Counters, and with energy deposits and interaction time stamps are being acquired. The scintillators are built to be capable of resolving interaction position in three dimensions, so that our system has also a function of depth-of-interaction (DOI) PET scanners. TOF resolution of ~ 200 ps (FWHM) is achieved in both cases of using the leading-edge discriminator and time-walk correction and using a configuration sensitive to DOI. Both the position resolution and spectroscopy are demonstrated using the prototype data acquisition system, with Compton scattering events subsequently being obtained. We also demonstrated that the background rejection technique using the Compton cone constraint could be valid with our system.

  19. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  20. PTR, PCR and Energy Resolution Study of GAGG:Ce Scintillator

    NASA Astrophysics Data System (ADS)

    Limkitjaroenporn, Pruittipol; Hongtong, Wiraporn; Kim, Hong Joo; Kaewkhao, Jakrapong

    2018-03-01

    In this paper, the peak to total ratio (PTR), the peak to Compton ratio (PCR) and the energy resolution of cerium doped gadolinium aluminium gallium garnet (GAGG:Ce) scintillator are measured in the range of energy from 511 keV to 1332 keV using the radioactive source Na-22, Cs-137 and Co-60. The crystal is coupled with the PMT number R1306 and analyzed by the nuclear instrument module (NIM). The results found that the PTR and PCR of GAGG:Ce scintillator decrease with the increasing of energy. The results of energy resolution show the trend is decrease with the increasing of energy which corresponding to the higher energy resolution at higher energy. Moreover the energy resolution found to be linearly with.

  1. Preparation of paper scintillator for detecting 3H contaminant.

    PubMed

    Miyoshi, Hirokazu; Ikeda, Toshiji

    2013-09-01

    Liquid scintillator (LS)-encapsulated silica was prepared by the sol-gel method and then was added dropwise onto a wipe paper to form a paper scintillator. First, the efficiencies of wipe were determined for both the paper scintillator and the wipe paper using a liquid scintillation counter (LSC). The efficiencies of wipe using the paper scintillator and the wipe paper were 88 and 36 %, respectively. The detection efficiencies were 5.5 % for the paper scintillator, 46 % for the wipe paper using an LS and 0.08 % for the (3)H/(14)C survey meter, respectively, compared with that of a melt-on scintillator of 47 %. Second, an (3)H contaminant on the paper scintillator was successfully detected using a photomultiplier without an LSC or an (3)H/(14)C survey meter. Finally, the paper scintillator was able to detect beta rays of the (3)H contaminant easily without an LS.

  2. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  3. Morphology of auroral zone radio wave scintillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.« less

  4. Growth of L-band scintillation at anomaly crest station in association with strong TEC gradient: A study covering wide solar activity period

    NASA Astrophysics Data System (ADS)

    Pathak, K.; Devi, M.; Barbara, A. K.; Zahan, Y.

    2018-01-01

    The paper aims at to study the sources associated with growth of L band scintillation over Guwahati, an Appleton anomaly region. Starting with the analysis of diurnal and seasonal characteristic features of scintillation from a minimum sunspot number (Rz) of 10 to a maximum of 140, the paper shows that scintillations are more likely to develop during high solar activity period. It also highlights the explosive increase in occurrence of scintillation from post sunset to pre midnight hours in vernal equinoctial months when the background TEC is 50% more than on a normal day, accompanied by enhanced TEC decay rate. The role of equatorial anomaly effects through EXB drift processes are brought into discussion as possible sources on the growth of small scale irregularities leading to such scintillations.

  5. Growth of L-band scintillation at anomaly crest station in association with strong TEC gradient: A study covering wide solar activity period

    NASA Astrophysics Data System (ADS)

    Pathak, K.; Devi, M.; Barbara, A. K.; Zahan, Y.

    2018-07-01

    The paper aims at to study the sources associated with growth of L band scintillation over Guwahati, an Appleton anomaly region. Starting with the analysis of diurnal and seasonal characteristic features of scintillation from a minimum sunspot number (Rz) of 10 to a maximum of 140, the paper shows that scintillations are more likely to develop during high solar activity period. It also highlights the explosive increase in occurrence of scintillation from post sunset to pre midnight hours in vernal equinoctial months when the background TEC is 50% more than on a normal day, accompanied by enhanced TEC decay rate. The role of equatorial anomaly effects through EXB drift processes are brought into discussion as possible sources on the growth of small scale irregularities leading to such scintillations.

  6. RETRACTED: Neutron detection by large NaI crystal

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.

    2016-07-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor. The article includes many textual similarities with a work that had already appeared in Nuclear Instruments and Methods in Physics Research A, Volume 697, January 2013, p. 59-63 (10.1016/j.nima.2012.09.010), as well as the Master thesis Neutron detection with high-energy photons using NaI portal monitor, Aalto University, 2012 (https://aaltodoc.aalto.fi/bitstream/handle/123456789/5206/master_holm_philip_2012.pdf?isAllowed=y&sequence=1). One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  7. Method for measuring multiple scattering corrections between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  8. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  9. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  10. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  11. Modeling and prediction of ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.

    1974-01-01

    Scintillation modeling performed thus far is based on the theory of diffraction by a weakly modulating phase screen developed by Briggs and Parkin (1963). Shortcomings of the existing empirical model for the scintillation index are discussed together with questions of channel modeling, giving attention to the needs of the communication engineers. It is pointed out that much improved scintillation index models may be available in a matter of a year or so.

  12. Electron response of some low-Z scintillators in wide energy range

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  13. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F Patrick [Livermore, CA

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  14. Scintillation imaging of tritium radioactivity distribution during tritiated thymidine uptake by PC12 cells using a melt-on scintillator.

    PubMed

    Irikura, Namiko; Miyoshi, Hirokazu; Shinohara, Yasuo

    2017-02-01

    A scintillation image of tritium fixed in a melt-on scintillator was obtained using a charged-coupled device (CCD) imager, and a linear relationship was observed between the intensity of the scintillation image and the radioactivity of tritium. In a [ 3 H]thymidine uptake experiment, a linear correlation between the intensity of the CCD image and the dilution ratio of cells was confirmed. Scintillation imaging has the potential for use in direct observation of tritium radioactivity distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    NASA Astrophysics Data System (ADS)

    Kamińska, D.; Gajos, A.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-08-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the { o-Ps }→ 3γ decays with angular and energy resolution equal to σ (θ ) ≈ {0.4°} and σ (E) ≈ 4.1 {keV}, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

  16. Luminescent and scintillation properties of composites based on sol-gel SiO2 matrices and organic scintillators

    NASA Astrophysics Data System (ADS)

    Vyagin, O. G.; Bespalova, I. I.; Masalov, A. A.; Zelenskaya, O. V.; Tarasov, V. A.; Malyukin, Yu. V.

    2014-11-01

    Luminescent composites based on SiO2 matrices synthesized using the sol-gel method and organic scintillators PPO and o-POPOP are produced, and their optical, luminescent, and scintillation characteristics are studied. It is shown that these composites generate an intense photoluminescence signal, possess a nanosecond decay time, and have a transparency in the range of 400-700 nm of no less than 70%. The absolute light output during excitation by α radiation with an energy of 5.46 MeV is 4400-5100 photon/MeV, and the amplitude resolution is 27-32%.

  17. Study of the peak shape in alpha spectra measured by liquid scintillation

    NASA Astrophysics Data System (ADS)

    Vera Tomé, F.; Gómez Escobar, V.; Martín Sánchez, A.

    2002-06-01

    Liquid-scintillation counting allows the measurement of alpha and beta activities jointly or only of the alpha-emitting nuclides in a sample. Although the resolution of the alpha spectra is poorer than that attained with semiconductor detectors, it is still an attractive alternative. We describe here attempts to fit a peak shape to experimental liquid-scintillation alpha spectra and discuss the parameters affecting this shape, such as the PSA (pulse-shape analyser) level, vial type, shaking the sample, etc. Spectral analysis has been applied for complex alpha spectra.

  18. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips

    NASA Astrophysics Data System (ADS)

    Smyrski, J.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Jasińska, B.; Kajetanowicz, M.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Wojnarska, J.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-04-01

    The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a 22Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.

  19. Ionospheric scintillation effects on single frequency GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C. G.; Groves, K. M.

    2008-04-01

    Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active within, although not limited to, a belt encircling the Earth within 20 degrees of the geomagnetic equator. As GPS applications and users increase, so does the potential for degraded precision and availability from scintillation. We examined amplitude scintillation data spanning 7 years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/American longitudinal sector as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K. in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at 1 min resolution. We examine diurnal, seasonal, and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  20. A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.

    2014-02-01

    Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.

  1. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    NASA Astrophysics Data System (ADS)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  2. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  3. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  4. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay

    PubMed Central

    Stockinger, Walter; Castoreno, Adam B.; Wang, Yan; Pagnon, Joanne C.; Nohturfft, Axel

    2007-01-01

    A scintillation proximity assay has been developed to study the endosomal trafficking of radiolabeled cholesterol in living cells. Mouse macrophages were cultured in the presence of tritiated cholesterol and scintillant microspheres. Microspheres were taken up by phagocytosis and stored in phagolysosomes. Absorption of tritium β particles by the scintillant produces light signals that can be measured in standard scintillation counters. Because of the short range of tritium β particles and for geometric reasons, scintillant microspheres detect only that fraction of tritiated cholesterol localized inside phagolysosomes or within a distance of ~600 nm. By incubating cultures in a temperature-controlled microplate reader, the kinetics of phagocytosis and cholesterol transport could be analyzed in near-real time. Scintillation signals were significantly increased in response to inhibitors of lysosomal cholesterol export. This method should prove a useful new tool for the study of endosomal trafficking of lipids and other molecules. PMID:15314094

  5. Photonic crystal scintillators and methods of manufacture

    DOEpatents

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  6. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  7. Cosmic-ray cascades photographed in scintillator

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.

    1974-01-01

    Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.

  8. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  9. Temperature dependence of the plastic scintillator detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling

    2017-01-01

    The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS

  10. Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity

    NASA Astrophysics Data System (ADS)

    Seif, Aramesh; Abdullah, Mardina; Marie Hasbi, Alina; Zou, Yuhua

    2012-12-01

    In this paper the investigation of the occurrence of ionospheric scintillation with S4≥0.2 was conducted by using a dual-frequency GISTM (GPS Ionospheric Scintillation and TEC monitor) at Universiti Kebangsaan Malaysia station, Malaysia (2.55°N, 101.46°E; geomagnetic: 7.39°S, 173.63°E) between September 2009 and December 2010. The study shows that significant nighttime amplitude scintillation event with 0.4≤S4<0.6 mainly occurred in the months of March, September and October, while significant daytime amplitude scintillation activity took place in November and December with 0.3≤S4<0.5. Moreover, nighttime amplitude scintillation observed at UKM station always occurred with phase scintillations, total electron content (TEC) depletions, rate of change of TEC (ROT) fluctuations and the enhancement of rate of TEC index (ROTI). Nevertheless, during daytime amplitude scintillation, TEC depletions and ROT fluctuations were much weaker than those that occurred during nighttime and this may be caused by small scale irregularities in the E region, called sporadic-E (Es), while the occurrences of nighttime amplitude scintillation maybe caused by the ionospheric irregularities in the F region.

  11. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  12. Characterizing Daytime GHZ Scintillation at Equatorial Regions Using Gnss Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Seif, A.; Zhang, K.; Tsunoda, R. T.; Abdullah, M.; Carter, B. A.; Norman, R.; Wu, S.

    2015-12-01

    Ionospheric scintillation of radio waves can behave differently at different locations with a strong diurnal dependence; particularly in the equatorial regions. Ionospheric scintillations at gigahertz (GHz) frequencies have been observed during both daytime and nighttime. It is believed that daytime scintillation is associated with blanketing sporadic E (Esb), whereas nighttime scintillation is attributed to F layer irregularities. Scintillation events associated with Esbduring daytime are of our primary interest. Recent studies show that in the ionosphere, electron density profiles from Global Navigation Satellite System (GNSS) Radio Occultation (RO) provide valuable information to help better understand the physics of the ionosphere. In particular, GNSS RO observations of GHz scintillation in the proximity of the E-layer have been interpreted as being caused by sporadic E. In this paper the characteristics of daytime scintillations at 1.5 GHz recorded simultaneously from two stations (i) Universiti Kebangsaan Malaysia (UKM) (2.55°N, 101.461°E; dip latitude 5.78°S), and (ii) Langkawi (6.19°N, 99.51°E; dip latitude 1.90°S) during November and December 2010 are analyzed. The characteristics of daytime GHz scintillation and its relationship with E region irregularities at equatorial regions are investigated. Ground-based scintillation and Total Electron Content (TEC) data recorded by the GSV4004 receivers were utilized in combination with the amplitude scintillation measurements in terms of GPS C/A code SNR fluctuations during a ground-based GPS and space-borne GNSS RO experiment at the two equatorial stations. Scintillation activity was found to be more prominent at UKM. Moreover, strong scintillation with the S4 index exceeding 0.6 has only been observed at UKM, while at Langkawi the scintillation intensity (S4 index) did not exceed 0.3. Signal-to-noise measurements obtained from GNSS RO indicate that daytime scintillations are very likely caused by Esb. Our

  13. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators

    PubMed Central

    Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G.; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm. PMID:29176834

  14. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators.

    PubMed

    Wieczorek, Anna; Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.

  15. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  16. Upconverting nanoparticles for optimizing scintillator based detection systems

    DOEpatents

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  17. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  18. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  19. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  20. Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio

    NASA Astrophysics Data System (ADS)

    Sibczynski, Pawel; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Szawłowski, Marek; Grodzicka, Martyna; Szczęśniak, Tomasz; Kamada, Kei; Yoshikawa, Akira

    2015-02-01

    We have studied the scintillation properties of cerium doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillators with various Al-to-Ga ratio. Having many advantages, like high density (6.63 g/cm3), high light output, fair energy resolution and quite fast decay time, the scintillators are an excellent solution for gamma rays detection. In this paper performance of the GAGG:1%Ce crystals with different Al-to-Ga ratios is presented. The study covered measurements of emission spectra, light output, energy resolution and non-proportionality for each crystal. It was observed that the light output of the recently obtainable crystals varies from 40,000 to 55,000 ph/MeV. Maximum emission wavelength of about 520 nm promotes silicon based photodetectors for use with these scintillators. The best energy resolution of 3.7% at 662 keV, measured with Hamamatsu S8664-1010 APD, was obtained for the sample with the minimum gallium content. This result is close to these obtained with the group of scintillators retaining very good energy resolution, like LaCl3 and CeBr3.

  1. Bright and ultra-fast scintillation from a semiconductor?

    PubMed Central

    Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew

    2015-01-01

    Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462

  2. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  3. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  4. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  5. Evaluation of GAGG:Ce scintillators for future space applications

    NASA Astrophysics Data System (ADS)

    Yoneyama, M.; Kataoka, J.; Arimoto, M.; Masuda, T.; Yoshino, M.; Kamada, K.; Yoshikawa, A.; Sato, H.; Usuki, Y.

    2018-02-01

    Cerium-doped Gd3(Ga, Al)5O12 (GAGG:Ce) is a promising novel scintillator for gamma-ray detectors. While GAGG:Ce has already been implemented in various commercial products, its detailed characteristics and response to high-energy particles and gamma rays remain unknown. In particular, knowledge is lacking on the radiation tolerance of this scintillator against the gamma-ray and proton irradiation expected in future space satellite mission applications. In this study, we first investigate the light-yield energy dependence, energy resolution, decay time, radiation tolerance, and afterglow of GAGG:Ce scintillators under various temperature conditions. We find excellent linearity of ±3% between light yields and deposited energy over a wide range of 30-1836 keV; however, a light-yield deficit of more than 10% is observed below 30 keV of deposited gamma ray energy. We confirm that the temperature dependence of the light yield, energy resolution, and scintillation decay time is within 5-20% between -20 and 20 oC. We also evaluate the GAGG:Ce activation characteristics under proton irradiation and the light-yield degradation by accumulated dose using a 60Co source. Moreover, we successfully identify various gamma-ray lines due to activation. Finally, we find a substantial afterglow for GAGG:Ce scintillators over a few hours; such an afterglow is only minimally observed in other scintillators such as CsI:Tl and Bi4Ge3O12 (BGO). However, the afterglow can be substantially reduced through additional co-doping with divalent metal ions, such as Mg ions. These results suggest that GAGG:Ce is a promising scintillator with potential application in space satellite missions in the near future.

  6. Kinetic Monte Carlo simulations of scintillation processes in NaI(Tl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Wang, Zhiguo; Williams, Richard

    2014-04-26

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this work to simulate the kinetics of scintillation for a range of temperaturesmore » and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.« less

  7. Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Kerisit, Sebastien; Wang, Zhiguo; Williams, Richard T.; Grim, Joel Q.; Gao, Fei

    2014-04-01

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this paper to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.

  8. Fast scintillation counter system and performance

    NASA Technical Reports Server (NTRS)

    Sasaki, H.; Nishioka, A.; Ohmori, N.; Kusumose, M.; Nakatsuka, T.; Horiki, T.; Hatano, Y.

    1985-01-01

    An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations.

  9. Plastic scintillators with efficient neutron/gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia; Rupert, Benjamin L.; PaweŁczak, Iwona; Glenn, Andrew; Martinez, H. Paul; Carman, Leslie; Faust, Michelle; Cherepy, Nerine; Payne, Stephen

    2012-03-01

    A possibility of manufacturing plastic scintillators with efficient neutron/gamma pulse shape discrimination (PSD) is demonstrated using a system of a polyvinyltoluene (PVT) polymer matrix loaded with a scintillating dye, 2,5-diphenyloxazole (PPO). Similarities and differences of conditions leading to the rise of PSD in liquid and solid organic scintillators are discussed based on the classical model of excited state interaction and delayed light formation. First characterization results are presented to show that PSD in plastic scintillators can be of the similar magnitude or even higher than in standard commercial liquid scintillators.

  10. Scintillator Detector Development at Central Michigan University

    NASA Astrophysics Data System (ADS)

    McClain, David; Estrade, Alfredo; Neupane, Shree

    2017-09-01

    Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.

  11. Radio-scintillation observations of interplanetary disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Kakinuma, T.

    1984-01-01

    Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less

  12. Medical imaging scintillators from glass-ceramics using mixed rare-earth halides

    NASA Astrophysics Data System (ADS)

    Beckert, M. Brooke; Gallego, Sabrina; Ding, Yong; Elder, Eric; Nadler, Jason H.

    2016-10-01

    Recent years have seen greater interest in developing new luminescent materials to replace scintillator panels currently used in medical X-ray imaging systems. The primary areas targeted for improvement are cost and image resolution. Cost reduction is somewhat straightforward in that less expensive raw materials and processing methods will yield a less expensive product. The path to improving image resolution is more complex because it depends on several properties of the scintillator material including density, transparency, and composition, among others. The present study focused on improving image resolution using composite materials, known as glass-ceramics that contain nanoscale scintillating crystallites formed within a transparent host glass matrix. The small size of the particles and in-situ precipitation from the host glass are key to maintaining transparency of the composite scintillator, which ensures that a majority of the light produced from absorbed X-rays can actually be used to create an image of the patient. Because light output is the dominating property that determines the image resolution achievable with a given scintillator, it was used as the primary metric to evaluate performance of the glass-ceramics relative to current scintillators. Several glass compositions were formulated and then heat treated in a step known as "ceramization" to grow the scintillating nanocrystals, whose light output was measured in response to a 65 kV X-ray source. Performance was found to depend heavily on the thermal history of the glass and glass-ceramic, and so additional studies are required to more precisely determine optimal process temperatures. Of the compositions investigated, an alumino-borosilicate host glass containing 56mol% scintillating rare-earth halides (BaF2, GdF3, GdBr3, TbF3) produced the highest recorded light output at nearly 80% of the value recorded using a commercially-available GOS:Tb panel as a reference.

  13. Optimum design calculations for detectors based on ZnSe(Те,О) scintillators

    NASA Astrophysics Data System (ADS)

    Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.

    2013-06-01

    Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillator—Si-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.

  14. Hybrid scintillators for neutron discrimination

    DOEpatents

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  15. Studies of neutron-γ pulse shape discrimination in EJ-309 liquid scintillator using charge integration method

    NASA Astrophysics Data System (ADS)

    Pawełczak, I. A.; Ouedraogo, S. A.; Glenn, A. M.; Wurtz, R. E.; Nakae, L. F.

    2013-05-01

    Pulse shape discrimination capability based on the charge integration has been investigated for liquid scintillator EJ-309. The effectiveness of neutron-γ discrimination in 4-in. diameter and 3-in. thick EJ-309 cells coupled with 3-in. photomultiplier tubes has been carefully studied in the laboratory environment and compared to the commonly used EJ-301 liquid scintillator formulation. Influences of distortions in pulse shape caused by 13.7-m long cables necessary for some remote operations have been examined. The parameter space for an effective neutron-γ discrimination for these assays, such as position and width of a gate used for integration of the delayed light, has been explored.

  16. Distance dependent quenching and gamma-ray spectroscopy in tin-loaded polystyrene scintillators

    DOE PAGES

    Feng, Patrick L; Mengesha, Wondwosen; Anstey, Mitchell R.; ...

    2016-02-01

    In this study, we report the synthesis and inclusion of rationally designed organotin compounds in polystyrene matrices as a route towards plastic scintillators capable of gamma-ray spectroscopy. Tin loading ratios of up to 15% w/w have been incorporated, resulting in photopeak energy resolution values as low as 10.9% for 662 keV gamma-rays. Scintillator constituents were selected based upon a previously reported distance-dependent quenching mechanism. Data obtained using UV-Vis and photoluminescence measurements are consistent with this phenomenon and are correlated with the steric and electronic properties of the respective organotin complexes. We also report fast scintillation decay behavior that is comparablemore » to the quenched scintillators 0.5% trans-stilbene doped bibenzyl and the commercial plastic scintillator BC-422Q-1%. These observations are discussed in the context of practical considerations such as optical transparency, ease-of-preparation/scale-up, and total scintillator cost.« less

  17. Comparison of multifrequency equatorial scintillation - American and Pacific sectors

    NASA Astrophysics Data System (ADS)

    Livingston, R. C.

    1980-08-01

    In this paper we examine the severity of radio wave amplitude scintillation measured at two stations near the equator but far separated in longitude: Kwajelein, Marshall Islands (167 E), and Ancon, Peru (-77 E). The data used are long-term observations of the Defense Nuclear Agency (DNA) Wideband satellite signal intensity at VHF, UHF, and L band frequencies. The seasonal behavior of the scintillation at the two stations is similar; each shows a broad 8- to 9-month disturbed season centered about local summer. There is short-term variability in the scintillation occurrence statistics but no clear equinoctial maxima. Little difference is observed in the occurrence or severity of L band scintillation at the two stations, although a systematic difference in the frequency dependence of the scintillation produces significantly stronger VHF and UHF scintillation at Ancon. The VHF and UHF latitudinal distributions of scintillation are asymmetric about the geomagnetic equator at both stations.

  18. A New Columnar CsI(Tl) Scintillator for iQID detectors

    PubMed Central

    Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.

    2015-01-01

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444

  19. A New Columnar CsI(Tl) Scintillator for iQID detectors.

    PubMed

    Han, Ling; Miller, Brian W; Barber, H Bradford; Nagarkar, Vivek V; Furenlid, Lars R

    2014-09-12

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.

  20. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  1. Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens

    NASA Astrophysics Data System (ADS)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui

    2015-10-01

    The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.

  2. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  3. Temperature response of several scintillator materials to light ions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, M.; Jiménez-Ramos, M. C.; García-Muñoz, M.; García López, J.

    2017-07-01

    Ion beam induced luminescence has been used to study the response of scintillator screens of Y2O3:Eu3+ (P56) and SrGa2S4:Eu2+ (TG-Green) when irradiated with light ions (protons, deuterium and helium particles). The absolute efficiency of the samples has been studied as a function of the ion energy (with energies up to 3.5 MeV), the beam current and the operating temperature. The evolution of the scintillator yield with ion fluence has been carried out for all the scintillators to estimate radiation damage. Finally, measurements of the decay time of these materials using a system of pulsed beam accelerated particles have been done. Among the screens under study, the TG-Green is the best suited material, in terms of absolute efficiency, temporal response and degradation with ion dose, for fast-ion loss detectors in fusion devices.

  4. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2010-06-18

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.

  5. Plastic scintillators modifications for a selective radiation detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Matthieu; Bertrand, Guillaume H.V.; Carrel, Frederick

    2015-07-01

    Recent developments of plastic scintillators are reviewed, from January 2000 to June 2015. All examples are distributed into the main application, i.e. how the plastic scintillator was modified to enhance the detection towards a given radiation particle. The main characteristics of these newly created scintillators and their detection properties are given. (authors)

  6. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermalmore » neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.« less

  7. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    DOE PAGES

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; ...

    2017-12-20

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. Here, these results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less

  8. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less

  9. Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems

    NASA Astrophysics Data System (ADS)

    Beznosko, Dmitriy; Batyrkhanov, Ayan; Iakovlev, Alexander; Yelshibekov, Khalykbek

    2017-06-01

    The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ˜1016 eV (˜1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.

  10. TH-C-19A-11: Toward An Optimized Multi-Point Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duguay-Drouin, P; Delage, ME; Centre Hospitalier University de Quebec, Quebec, QC

    Purpose: The purpose of this work is to characterize a 2-points mPSDs' optical chain using a spectral analysis to help selecting the optimal components for the detector. Methods: Twenty different 2-points mPSD combinations were built using 4 plastic scintillators (BCF10, BCF12, BCF60, BC430; St-Gobain) and quantum dots (QDs). The scintillator is said to be proximal when near the photodetector, and distal otherwise. A 15m optical fiber (ESKA GH-4001) was coupled to the scintillating component and connected to a spectrometer (Shamrock, Andor and QEPro, OceanOptics). These scintillation components were irradiated at 125kVp; a spectrum for each scintillator was obtained by irradiationmore » of individual scintillator and shielding the second component, thus talking into account light propagation in all components and interfaces. The combined total spectrum was also acquired and involved simultaneous irradiation of the two scintillators for each possible combination. The shape and intensity were characterized. Results: QDs in proximal position absorb almost all the light signal from distal plastic scintillators and emit in its own emission wavelength, with 100% of the signal in the QD range (625–700nm) for the combination BCF12/QD. However, discrimination is possible when QD is in distal position in combination with blue scintillators, total signal being 73% in the blue range (400-550nm) and 27% in QD range. Similar results are obtained with the orange scintillator (BC430). For optimal signal intensity, BCF12 should always be in proximal position, e.g. having 50% more intensity when coupled with BCF60 in distal position (BCF12/BCF60) compared to the BCF60/BCF12 combination. Conclusion: Different combinations of plastic scintillators and QD were built and their emission spectra were studied. We established a preferential order for the scintillating components in the context of an optimized 2-points mPSD. In short, the components with higher wavelength emission

  11. Chloride, bromide and iodide scintillators with europium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, Mariya; Yang, Kan

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has beenmore » studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.« less

  12. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  13. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  14. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE PAGES

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    2018-05-03

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  15. Bright Eu2+-activated polycrystalline ceramic neutron scintillators

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Paranthaman, M. P.; Riedel, R. A.; Hodges, J. P.; Karlic, J. J.; Veatch, R. A.; Li, L.; Bridges, C. A.

    2018-03-01

    Scintillation properties of Eu2+-doped CaF2-AlF3-6LiF (Eu:CALF) polycrystalline ceramic thermal-neutron scintillators as a function of AlF3 concentration have been studied. The emission band peaked at a wavelength of 425-431 nm is due to the presence of Eu:CaF2 micro-crystallites. The highest light output from these samples is approximately 20,000 photons per thermal neutron, which is 3 times that of a GS20 6Li-glass scintillator. The pulse-decay lifetime and light output vs. AlF3 concentration may be understood using a radiation trapping model and the formation of a Li3AlF6 phase. At lower AlF3 concentration, Al3+ ions in Eu:CaF2 passivate the hole-trapping defects and enhance the light output; whereas at higher AlF3 concentration, Al3+ ions lead to the formation of electron trapping centers in Eu:CaF2 and the Li3AlF6 phase is formed, which reduces the light output. A neutron-gamma-discrimination (NGD) ratio of 9 × 108 was obtained from Principal Component Analysis (PCA) of digital waveforms, while Fisher Linear Discriminant Analysis (FLDA) can completely separate the thermal neutrons from 60Co gamma rays within the limit of gamma event statistics used in this work. Our results suggest that Eu:CALF scintillators can potentially replace the GS20 scintillator used for thermal and cold neutron detection systems.

  16. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  17. Scintillator for low accelerating voltage scanning electron microscopy imaging

    NASA Astrophysics Data System (ADS)

    Bowser, Christopher; Tzolov, Marian; Barbi, Nicholas

    Scintillators are essential in detecting electrons in SEM. The conventional scintillators such as YAP and YAG have poor response at low accelerating voltages due to a top conductive layer of ITO or Al. We have developed a thin film ZnWO4 scintillator with high photoluminescence quantum efficiency of 60% with enough electrical conductivity to prevent charging. We are showing that the ZnWO4 films are effective in detecting electrons at low accelerating voltages. This makes it a good option for a top layer on crystalline scintillators and we have integrated ZnWO4 with YAP to explore the high response of YAP at high electron energies and the effective response of ZnWO4 at low electron energies. We will compare the spectral intensities over a range of accelerating voltages between 1 and 30kV between the conventional and coupled thin film scintillator. The results are interpreted using a simulation of the depth profile of the electron penetration in the scintillator using CASINO. We have verified the absence of charging by measuring the sum of the secondary and backscattered electron coefficients. We have built detectors with the combined scintillators and we will compare SEM images recorded simultaneously by conventional and ZnWO4-based scintillators.

  18. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Lin, Shaopeng; Wang, Biao

    2017-04-01

    The NaI(Tl) scintillator is widely used in gamma spectrometer with photomultiplier tube (PMT) readout. Recently developed silicon photomultiplier (SiPM) offers gain and efficiency similar to those of PMT, but with merits such as low bias voltage, compact volume, low cost, high ruggedness and magnetic resonance compatibility. In this study, 2-in. and 1-in. NaI(Tl) scintillators were readout with SiPM arrays, which were made by tiling multiple SiPMs each with an active area of 6×6 mm2 on a printed circuit board. The energy resolutions for 661.6 keV gamma rays, obtained with Φ2×2 in. scintillator coupled to 6×6 ch SiPM array and Φ1×1 in. scintillator coupled to 4×4 ch SiPM array were 7.6% and 7.8%, respectively, and were very close to the results obtained with traditional bialkali PMT (7.3% and 7.6%, respectively). Scintillator coupled to photodetector with smaller area was also studied by adding a light guide or using scintillator with tapered head. The latter showed better performance than using light guide. The 1-in. NaI(Tl) scintillator with tapered head coupled to 2×2 ch SiPM array achieved 7.7% energy resolution at 661.6 keV, the same as that obtained with standard Φ1×1 in. scintillator coupled to 4×4 ch SiPM array. While the 2-in. scintillator with similar geometry showed degraded energy resolution, 10.2% at 661.6 keV, but could still be used when high efficiency is preferred over energy resolution.

  19. Measurement of wavelength-dependent refractive indices of liquid scintillation cocktails.

    PubMed

    Kossert, Karsten

    2013-12-01

    Refractive indices of several commercial liquid scintillation cocktails were measured by means of an automatic critical-angle dispersion refractometer in the wavelength range from 404.7 nm to 706.5 nm. The results are needed for various applications. In particular, detailed Monte Carlo simulations of liquid scintillation counters that include the computation of optical light require these data. In addition, the refractive index is an important parameter for studies of micelle sizes by means of dynamic light scattering. In this work, the refractive indices were determined for Ultima Gold™, Ultima Gold™ F, Ultima Gold™ LLT, Ultima Gold™ AB, Hionic Fluor™, Permafluor(®)E+, Mineral Oil Scintillator, Insta-Gel Plus, OptiPhase HiSafe 2, OptiPhase HiSafe 3, Ultima Gold™ XR, Insta-Gel Plus, AquaLight, MaxiLight and Ultima Gold™ MV at 16°C, 18°C, 20°C and 22°C. The carbon dioxide absorber Carbo-Sorb(®)E was also analyzed. For some scintillators, various batches were compared and mixtures with water or nitromethane were studied. © 2013 Published by Elsevier Ltd.

  20. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators.

    PubMed

    Bando, T; Ohdachi, S; Suzuki, Y

    2016-11-01

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will be covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.

  1. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bando, T., E-mail: bando.takahiro@nifs.ac.jp; Ohdachi, S.; Suzuki, Y.

    2016-11-15

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will bemore » covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.« less

  2. Alkali metal hafnium oxide scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A 2HfO 3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  3. Radar detection during scintillation. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepp, D.L.; Reinking, J.T.

    1990-04-01

    Electromagnetic signals that propagate through a disturbed region of the ionosphere can experience scattering which can cause fluctuations in the received amplitude, phase, and angle-of-arrival. This report considers the performance of a radar that must operate through a disturbed propagation environment such as might occur during strong equatorial scintillation, during a barium release experiment or after a high altitude nuclear detonation. The severity of the channel disturbance is taken to range from weak scattering where the signal quadrature components are uncorrelated Gaussian variates. The detection performance of noncoherent combining is compared to that of double threshold (M out of N)more » combining under various levels of scintillation disturbance. Results are given for detection sensitivity as a function of the scintillation index and the ratio of the radar hopping bandwidth to the channel bandwidth. It is shown that both types of combining can provide mitigation of fading, and that noncoherent combining generally enjoys an advantage in detection sensitivity of about 2 dB. This work serves as a quantitative guideline to the advantages and disadvantages of certain types of detection strategies during scintillation and is, therefore, useful in the radar design process. However, a detailed simulation of the radar detection algorithms is necessary to evaluate a radar design strategy to predict performance under scintillation conditions.« less

  4. Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleg A. Grachov et al.

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  5. The Ionospheric Scintillation Effects on the BeiDou Signal Receiver

    PubMed Central

    He, Zhijun; Zhao, Hongbo; Feng, Wenquan

    2016-01-01

    Irregularities in the Earth’s ionosphere can make the amplitude and phase of radio signals fluctuate rapidly, which is known as ionospheric scintillation. Severe ionospheric scintillation could affect the performance of the Global Navigation Satellite System (GNSS). Currently, the Multiple Phase Screen (MPS) technique is widely used in solving problems caused by weak and strong scintillations. Considering that Southern China is mainly located in the area where moderate and intense scintillation occur frequently, this paper built a model based on the MPS technique and discussed the scintillation impacts on China’s BeiDou navigation system. By using the BeiDou B1I signal, this paper analyzed the scintillation effects on the receiver, which includes the acquisition and tracking process. For acquisition process, this paper focused on the correlation peak and acquisition probability. For the tracking process, this paper focused on the carrier tracking loop and the code tracking loop. Simulation results show that under high scintillation intensity, the phase fluctuation could be −1.13 ± 0.087 rad to 1.40 ± 0.087 rad and the relative amplitude fluctuation could be −10 dB to 8 dB. As the scintillation intensity increased, the average correlation peak would decrease more than 8%, which could thus degrade acquisition performance. On the other hand, when the signal-to-noise ratio (SNR) is comparatively lower, the influence of strong scintillation on the phase locked loop (PLL) is much higher than that of weak scintillation. As the scintillation becomes more intense, PLL variance could consequently results in an error of more than 2.02 cm in carrier-phase based ranging. In addition, the delay locked loop (DLL) simulation results indicated that the pseudo-range error caused by strong scintillation could be more than 4 m and the consequent impact on positioning accuracy could be more than 6 m. PMID:27834867

  6. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  7. Optimization of scintillator loading with the tellurium-130 isotope for long-term stability

    NASA Astrophysics Data System (ADS)

    Duhamel, Lauren; Song, Xiaoya; Goutnik, Michael; Kaptanoglu, Tanner; Klein, Joshua; SNO+ Collaboration

    2017-09-01

    Tellurium-130 was selected as the isotope for the SNO + neutrinoless double beta decay search, as 130Te decays to 130Xe via double beta decay. Linear alkyl benzene(LAB) is the liquid scintillator for the SNO + experiment. To load tellurium into scintillator, it is combined with 1,2-butanediol to form an organometallic complex, commonly called tellurium butanediol (TeBD). This study focuses on maximizing the percentage of tellurium loaded into scintillator and evaluates the complex's long-term stability. Studies on the effect of nucleation due to imperfections in the detector's surface and external particulates were employed by filtration and induced nucleation. The impact of water on the stability of TeBD complex was evaluated by liquid-nitrogen sparging, variability in pH and induced humidity. Alternative loading methods were evaluated, including the addition of stability-inducing organic compounds. Samples of tellurium-loaded scintillator were synthesized, treated, and consistently monitored in a controlled environment. It was found that the hydronium ions cause precipitation in the loaded scintillator, demonstrating that water has a detrimental effect on long-term stability. Optimization of loaded scintillator stability can contribute to the SNO + double beta decay search.

  8. Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics

    NASA Astrophysics Data System (ADS)

    Hutcheson, Anthony L.; Simonson, Duane L.; Christophersen, Marc; Phlips, Bernard F.; Charipar, Nicholas A.; Piqué, Alberto

    2013-05-01

    Pulse shape discrimination (PSD) is a common method to distinguish between pulses produced by gamma rays and neutrons in scintillator detectors. This technique takes advantage of the property of many scintillators that excitations by recoil protons and electrons produce pulses with different characteristic shapes. Unfortunately, many scintillating materials with good PSD properties have other, undesirable properties such as flammability, toxicity, low availability, high cost, and/or limited size. In contrast, plastic scintillator detectors are relatively low-cost, and easily handled and mass-produced. Recent studies have demonstrated efficient PSD in plastic scintillators using a high concentration of fluorescent dyes. To further investigate the PSD properties of such systems, mixed plastic scintillator samples were produced and tested. The addition of up to 30 wt. % diphenyloxazole (DPO) and other chromophores in polyvinyltoluene (PVT) results in efficient detection with commercial detectors. These plastic scintillators are produced in large diameters up to 4 inches by melt blending directly in a container suitable for in-line detector use. This allows recycling and reuse of materials while varying the compositions. This strategy also avoids additional sample handling and polishing steps required when using removable molds. In this presentation, results will be presented for different mixed-plastic compositions and compared with known scintillating materials

  9. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    NASA Astrophysics Data System (ADS)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  10. Buried plastic scintillator muon telescope

    NASA Astrophysics Data System (ADS)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  11. Scintillator Development for the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Yeh, Minfang

    2014-03-01

    Doped scintillator is the target material of choice for antineutrino detection as it utilizes the time-delayed coincidence signature of the positron annihilation and neutron capture resulting from the Inverse Beta Decay (IBD) interaction. Additionally, the multiple gamma rays or heavy ions emitted after neutron capture on either Gd or 6Li respectively provide a distinct signal for the identification of antineutrino events and therefore significantly enhance accidental background reduction. The choice of scintillator and dopant depends on the detector requirements and scintillator performance criteria. Both Gd and 6Li doped scintillators have been used in past reactor antineutrino experiments such as Double Chooz, Daya Bay, RENO, and Bugey3 and are currently under investigation by the PROSPECT collaboration. Their properties in terms of light yield, optical transparency, chemical stability and background rejection efficiency using Pulse Shape Discrimination (PSD) will be reported. Research sponsored by the U.S. Department of Energy, Office of Nuclear Physics and Office of High Energy Physics, under contract with Brookhaven National Laboratory-Brookhaven Science Associates.

  12. Advanced plastic scintillators for fast neutron discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L; Anstey, Mitchell; Doty, F. Patrick

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  13. Test bench for measurements of NOvA scintillator properties at JINR

    NASA Astrophysics Data System (ADS)

    Velikanova, D. S.; Antoshkin, A. I.; Anfimov, N. V.; Samoylov, O. B.

    2018-04-01

    The NOvA experiment was built to study oscillation parameters, mass hierarchy, CP- violation phase in the lepton sector and θ23 octant, via vɛ appearance and vμ disappearance modes in both neutrino and antineutrino beams. These scientific goals require good knowledge about NOvA scintillator basic properties. The new test bench was constructed and upgraded at JINR. The main goal of this bench is to measure scintillator properties (for solid and liquid scintillators), namely α/β discrimination and Birk's coefficients for protons and other hadrons (quenching factors). This knowledge will be crucial for recovering the energy of the hadronic part of neutrino interactions with scintillator nuclei. α/β discrimination was performed on the first version of the bench for LAB-based and NOvA scintillators. It was performed again on the upgraded version of the bench with higher statistic and precision level. Preliminary result of quenching factors for protons was obtained. A technical description of both versions of the bench and current results of the measurements and analysis are presented in this work.

  14. Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Kveton, A.; Tomsa, J.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Patil, M.; Sarkar, T.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Sekmen, S.; Medvedeva, T.; Rumerio, P.; Adiguzel, A.; Bakirci, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dölek, F.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Işik, C.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Atakisi, I. O.; Gülmez, E.; Kaya, M.; Kaya, O.; Koseyan, O. K.; Ozcelik, O.; Ozkorucuklu, S.; Tekten, S.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Flacher, H.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Buccilli, A.; Cooper, S. I.; Henderson, C.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Yu, D. R.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Nguyen, T.; Spiropulu, M.; Winn, D.; Abdullin, S.; Apresyan, A.; Apyan, A.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Calderon, J. D.; Eno, S. C.; Feng, Y. B.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Yang, Z. S.; Yao, Y.; Brandt, S.; D'Alfonso, M.; Hu, M.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Amouzegar, M.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.

    2018-01-01

    We study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing for blue and green scintillators.

  15. New Organic Scintillators for Neutron Detection

    DTIC Science & Technology

    2016-03-01

    highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are...New Organic Scintillators for Neutron Detection Distribution Statement A. Approved for public release; distribution is unlimited. March...Title: New Organic Scintillators for Neutron Detection I. Abstract In this project, Radiation Monitoring Devices (RMD) proposes to develop novel

  16. Binderless composite scintillator for neutron detection

    DOEpatents

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  17. Interstellar scintillation observations for PSR B0355+54

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Lee, K. J.; Hao, L. F.; Wang, H. G.; Liu, Z. Y.; Yue, Y. L.; Yuan, J. P.; Li, Z. X.; Wang, M.; Dong, J.; Tan, J. J.; Chen, W.; Bai, J. M.

    2018-06-01

    In this paper, we report our investigation of pulsar scintillation phenomena by monitoring PSR B0355+54 at 2.25 GHz for three successive months using the Kunming 40-m radio telescope. We measured the dynamic spectrum, the two-dimensional correlation function and the secondary spectrum. These observations have a high signal-to-noise ratio (S/N ≥ 100). We detected scintillation arcs, which are rarely observable using such a small telescope. The sub-microsecond scale width of the scintillation arc indicates that the transverse scale of the structures on the scattering screen is as compact as astronomical unit size. Our monitoring shows that the scintillation bandwidth, the time-scale and the arc curvature of PSR B0355+54 were varying temporally. A plausible explanation would need to invoke a multiple-scattering-screen or multiple-scattering-structure scenario, in which different screens or ray paths dominate the scintillation process at different epochs.

  18. Studying the response of a plastic scintillator to gamma rays using the Geant4 Monte Carlo code.

    PubMed

    Ghadiri, Rasoul; Khorsandi, Jamshid

    2015-05-01

    To determine the gamma ray response function of an NE-102 scintillator and to investigate the gamma spectra due to the transport of optical photons, we simulated an NE-102 scintillator using Geant4 code. The results of the simulation were compared with experimental data. Good consistency between the simulation and data was observed. In addition, the time and spatial distributions, along with the energy distribution and surface treatments of scintillation detectors, were calculated. This simulation makes us capable of optimizing the photomultiplier tube (or photodiodes) position to yield the best coupling to the detector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Neutron spectroscopy with scintillation detectors using wavelets

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  20. Climatology of the scintillation onset over southern Brazil

    NASA Astrophysics Data System (ADS)

    Sousasantos, Jonas; de Oliveira Moraes, Alison; Sobral, José H. A.; Muella, Marcio T. A. H.; de Paula, Eurico R.; Paolini, Rafael S.

    2018-04-01

    This work presents an analysis of the climatology of the onset time of ionospheric scintillations at low latitude over the southern Brazilian territory near the peak of the equatorial ionization anomaly (EIA). Data from L1 frequency GPS receiver located in Cachoeira Paulista (22.4° S, 45.0° W; dip latitude 16.9° S), from September 1998 to November 2014, covering a period between solar cycles 23 and 24, were used in the present analysis of the scintillation onset time. The results show that the start time of the ionospheric scintillation follows a pattern, starting about 40 min earlier, in the months of November and December, when compared to January and February. The analyses presented here show that such temporal behavior seems to be associated with the ionospheric prereversal vertical drift (PRVD) magnitude and time. The influence of solar activity in the percentage of GPS links affected is also addressed together with the respective ionospheric prereversal vertical drift behavior. Based on this climatological study a set of empirical equations is proposed to be used for a GNSS alert about the scintillation prediction. The identification of this kind of pattern may support GNSS applications for aviation and oil extraction maritime stations positioning.

  1. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy.

    PubMed

    Bruza, Petr; Gollub, Sarah L; Andreozzi, Jacqueline M; Tendler, Irwin I; Williams, Benjamin B; Jarvis, Lesley A; Gladstone, David J; Pogue, Brian W

    2018-05-02

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  2. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    NASA Astrophysics Data System (ADS)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  3. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  4. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  5. Radiation damage effects on the optical properties of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mdhluli, J. E.; Sideras-Haddad, E.; Mellado, B.; Erasmus, R.; Madhuku, M.

    2017-10-01

    We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a 6 MeV proton beam produced by the 6 MV tandem accelerator of iThemba LABS, Gauteng. A comparative is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208, EJ260 and BC408 as well as polystyrene based scintillator UPS923A and scintillators manufactured for the Tile Calorimeter. Results on the proton induced damage indicate a reduction in the light output and transmission capability of the plastics. Scintillators containing a larger Stokes shift, i.e. EJ260 and EJ208 exhibit the most radiation hardness. The EJ208 is recommended as a candidate to be considered for the replacement of Gap scintillators in the Tile Calorimeter for the 2018 upgrade.

  6. Seasonal ionospheric scintillation analysis during increasing solar activity at mid-latitude

    NASA Astrophysics Data System (ADS)

    Ahmed, Wasiu Akande; Wu, Falin; Agbaje, Ganiyu Ishola; Ednofri, Ednofri; Marlia, Dessi; Zhao, Yan

    2017-09-01

    Monitoring of ionospheric parameters (such as Total Electron Content and scintillation) is of great importance as it affects and contributes to the errors encountered by radio signals. It thus requires constant measurements to avoid disastrous situation for space agencies, parastatals and departments that employ GNSS applications in their daily operations. The research objective is to have a better understanding of the behaviour of ionospheric scintillation at midlatitude as it threatens the performances of satellite communication, navigation systems and military operations. This paper adopts seasonal ionospheric scintillation scenario. The mid-latitude investigation of ionospheric effect of scintillation was conducted during the increasing solar activity from 2011-2015. Ionospheric scintillation data were obtained from four ionospheric monitoring stations located at mid-latitude (i.e Shenzhen North Station, Beijing Changping North Station Branch, Beijing North Station and Beijing Miyun ground Station). The data was collected from January 2011 to December 2015. There were absence of data due to software problem or system failure at some locations. The scintillation phenomenon was computed using Global Ionospheric Scintillation and TEC Monitoring Model. There are four seasons which existed in China namely: Spring, Summer, Autumn and Winter. The relationship between TEC, amplitude and phase scintillation were observed for each of these seasons. The results indicated that the weak amplitude scintillation was observed as against phase scintillation which was high. Phase scintillation was gradually enhanced from 2011 to 2012 and later declined till 2014. TEC was also at peak around 00:00-10:00 UT (08:00-18:00 LT). The seasonal events temporal density characteristics comply with solar cycle prediction as such it ascended from 2011 to 2013 and then scintillation parameters declined significantly afterwards.

  7. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less

  8. Measurement of tritium with high efficiency by using liquid scintillation counter with plastic scintillator.

    PubMed

    Furuta, Etsuko; Ohyama, Ryu-ichiro; Yokota, Shigeaki; Nakajo, Toshiya; Yamada, Yuka; Kawano, Takao; Uda, Tatsuhiko; Watanabe, Yasuo

    2014-11-01

    The detection efficiencies of tritium samples by using liquid scintillation counter with hydrophilic plastic scintillator (PS) was approximately 48% when the sample of 20 μL was held between 2 PS sheets treated by plasma. The activity and count rates showed a good relationship between 400 Bq to 410 KBq mL(-1). The calculated detection limit of 2 min measurement by the PS was 13 Bq mL(-1) when a confidence was 95%. The plasma method for PS produces no radioactive waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Experiment to demonstrate separation of Cherenkov and scintillation signals

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.

    2017-05-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .

  10. Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam

    DOE PAGES

    Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.; ...

    2018-01-05

    Here, we study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing formore » blue and green scintillators.« less

  11. Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.

    Here, we study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing formore » blue and green scintillators.« less

  12. Scintillation of rare earth doped fluoride nanoparticles

    NASA Astrophysics Data System (ADS)

    Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Yukihara, E. G.; DeVol, T. A.; Ballato, J.

    2011-09-01

    The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

  13. SU-F-J-50: Study On the Magnetic Field Effect On the Exradin W1 Plastic Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Z; Therriault-Proulx, F; Owens, C

    2016-06-15

    Purpose: To study the response of the Exradin W1 plastic scintillator detector to a 6 MV photon field in the presence of a strong magnetic field (B). Methods: An Exradin W1 scintillator detector coupled to a SuperMax two-channel electrometer, both manufactured by Standard Imaging, Inc., was first calibrated in a Co-60 beam. The Cerenkov Light Ratio (CLR) was obtained following the procedure recommended by the manufacturer. Subtracting signal in channel 2 multiplied by CLR from the signal in channel 1 should lead to a Cerenkov-free signal. The W1 scintillator was placed in a plastic phantom inside a dipole electromagnet (GMWmore » Associates) that could produce a strong B field, and irradiated using a 6 MV beam from an Elekta Versa HD LINAC. Signals from both channels of the W1 scintillator were acquired as a function of B (0 - 1.5 T). Results: The signals from both channels increased as a function of the B field strength. At 1.5 T, channel 1 increased by 11% compared to the baseline (B=0 T), while channel 2 increased by 22%. Applying the recommended Cerenkov correction led to a 2% difference between dose measurement with and without a magnetic field. The values between B=0.3 T and B=1.5 T remained constant. Conclusion: Signals from the Exradin W1 plastic scintillation detector increased as the B field increased. This increase mainly comes from a change in the amount of Cerenkov light coupled within the optical fiber. Removing the Cerenkov component following the procedure recommended by the manufacturer showed to be an effective way to measure dose accurately in strong magnetic fields. The cause for the residual 2% difference is currently under investigation. We acknowledge research support from Elekta AB.« less

  14. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator.

    PubMed

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2014-03-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF 3 :Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd 3+ and Tb 3+ ions in the nanocrystals enhances the scintillation efficiency.

  15. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator

    PubMed Central

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2014-01-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF3:Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd3+ and Tb3+ ions in the nanocrystals enhances the scintillation efficiency. PMID:24610960

  16. Effect of geomagnetic storms on VHF scintillations observed at low latitude

    NASA Astrophysics Data System (ADS)

    Singh, S. B.; Patel, Kalpana; Singh, A. K.

    2018-06-01

    A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.

  17. Plastic Scintillators for Pulse Shape Discrimination of Particle Types in Radiation Detection

    NASA Astrophysics Data System (ADS)

    Hajagos, Tibor Jacob

    Organic scintillators have a long history in the field of radiation detection, dating back to some of the earliest studies of organic photophysics and optoelectronic properties. In particular, plastics have come to dominate the commercial market for organic scintillators, due to their low cost and ease of use and manufacturing, and more notably in spite of their poorer performance in many metrics. While there has been decades of active research since their inception, little progress has been made to improve upon the now well established compositions of commercial plastics, a notable exception being the recent development of plastic scintillators capable of pulse shape discrimination (PSD) of n/gamma radiation, which is of particular interest among governments and industry for the detection of illicit nuclear material and weapons. In recent years, much attention has been paid towards the study of luminescent organic materials, in particular due to the invention and widespread adoption of organic light emitting diode (OLED) based electronic devices, and the knowledge and lessons that have been fundamental to such fields have recently begun to be adopted by the organic scintilator community. In this work, new approaches to the design of both plastic scintillator components, and of the materials as a whole, are described, with particular emphasis paid towards the design and synthesis of small molecule scintillating dyes that are specifically tailored towards the development of PSD-capable plastic scintilators. In the first of these approaches, the design and synthesis of a highly soluble and polymerizable derivative of 9,10-diphenylanthracene is described, and the properties of plastic scintilators fabricated from this dye when copolymerized with poly(vinyl toluene) were investigated. This particular approach was used to demonstrate a proof-of-concept of PSD in highly loaded plastics stabilized through copolymerization of the primary dye, a strategy conceived to

  18. Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas

    2018-07-01

    A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.

  19. Chloride, bromide and iodide scintillators with europium doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, Mariya; Yang, Kan

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has beenmore » studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.« less

  20. R&D of the CEPC scintillator-tungsten ECAL

    NASA Astrophysics Data System (ADS)

    Dong, M. Y.

    2018-03-01

    The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.

  1. Effect of beam types on the scintillations: a review

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian

    2009-02-01

    When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam

  2. Probing Cherenkov and Scintillation Light Separation for Next-Generation Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Orebi Gann, G. D.; Wallig, J.; Yeh, M.

    2017-09-01

    The ability to separate Cherenkov and scintillation signals in liquid scintillator detectors would enable outstanding background rejection for next-generation neutrino experiments. Reconstruction of directional information, ring imaging, and sub-Cherenkov threshold detection all have the potential to substantially improve particle and event identification. The Cherenkov-Scintillation Separation (CHESS) experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium based on photon hit times and detected charge. This setup has been used to characterize the ability to detect Cherenkov light in a range of target media. We show results with pure organic scintillator (LAB) and the prospects with scintillators with a secondary fluor (LAB/PPO). There are future plans to deploy the newly developed water-based liquid scintillator, a medium with a higher Cherenkov/Scintillation light yield ratio than conventional pure liquid scintillators, enhancing the visibility of the less abundant Cherenkov light in the presence of scintillation light. These results can inform the development of future large-scale detectors, such as the proposed Theia experiment, or other large detectors at underground laboratories such as the far-site of the new Long Baseline Neutrino Facility at the Sanford Underground Research Facility. CHESS detector calibrations and commissioning will be discussed, and the latest results will be presented.

  3. East-west asymmetric of scintillation occurrence in Indonesia using GPS and GLONASS observations

    NASA Astrophysics Data System (ADS)

    Abadi, P.; Otsuka, Y.; Shiokawa, K.; Saito, S.; Husin, A.; Dear, V.; Anggarani, S.

    2015-12-01

    By using GNSS (Global Navigation Satellite Systems) receiver to collect amplitude scintillation at L1 frequency from GPS and GLONASS, we investigated ionospheric scintillation occurrence at equator anomaly in Indonesia from July 2014 to June 2015. The receiver is installed at Bandung (6.9 deg S, 107.6 deg E; 9.9 deg S mag. latitude), Indonesia. In this study, we grouped our analysis into two groups based on duration of observation, (1) July-December 2014 (monthly F10.7 ranged from 124.7-158.7) which is named autumn equinox and (2) January-June 2015 (monthly F10.7 ranged from 120.1-141.7) which is named spring equinox. Our preliminary results can be summarized as follows; (1) the intensity of scintillations at spring equinox is higher than at autumn equinox although solar activity at autumn equinox is higher than at spring equinox, see Figure 1 and (2) as shown in Figure 2, the directional distribution of scintillation occurrences at spring equinox mostly concentrate in the western sky, so we see east-west asymmetric, but the distribution at autumn equinox doesn't show clearly east-west asymmetric. Previous studies have reported that occurrence rate of the scintillation at spring equinox season is higher than at autumn equinox. Our results suggest that equinoctial asymmetry of scintillation occurrence can be also as an asymmetric of scintillation intensity and east-west asymmetric of scintillation occurrence between spring and autumn equinox. In general, plasma bubble is tilted westward as it vertically develop due to vertical shear in the eastward plasma drift in F region, and consequently, it will be tilted westward as it extends in latitude. Scintillation intensity will be stronger when signal propagation tend to be parallel with structure of the plasma bubble. Figure 2 also imply that the latitudinal extension of plasma bubble is higher at spring equinox than at autumn equinox. More the bubble extends in latitude, more the bubble structure exists in the western

  4. An efficient energy response model for liquid scintillator detectors

    NASA Astrophysics Data System (ADS)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  5. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  6. Statistical evaluation of GLONASS amplitude scintillation over low latitudes in the Brazilian territory

    NASA Astrophysics Data System (ADS)

    de Oliveira Moraes, Alison; Muella, Marcio T. A. H.; de Paula, Eurico R.; de Oliveira, César B. A.; Terra, William P.; Perrella, Waldecir J.; Meibach-Rosa, Pâmela R. P.

    2018-04-01

    The ionospheric scintillation, generated by the ionospheric plasma irregularities, affects the radio signals that pass through it. Their effects are widely studied in the literature with two different approaches. The first one deals with the use of radio signals to study and understand the morphology of this phenomenon, while the second one seeks to understand and model how much this phenomenon interferes in the radio signals and consequently in the services to which these systems work. The interest of several areas, particularly to those that are life critical, has increased using the concept of satellite multi-constellation, which consists of receiving, processing and using data from different navigation and positioning systems. Although there is a vast literature analyzing the effects of ionospheric scintillation on satellite navigation systems, the number of studies using signals received from the Russian satellite positioning system (named GLONASS) is still very rare. This work presents for the first time in the Brazilian low-latitude sector a statistical analysis of ionospheric scintillation data for all levels of magnetic activities obtained by a set of scintillation monitors that receive signals from the GLONASS system. In this study, data collected from four stations were used in the analysis; Fortaleza, Presidente Prudente, São José dos Campos and Porto Alegre. The GLONASS L-band signals were analyzed for the period from December 21, 2012 to June 20, 2016, which includes the peak of the solar cycle 24 that occurred in 2014. The main characteristics of scintillation presented in this study include: (1) the statistical evaluation of seasonal and solar activity, showing the chances that an user on similar geophysical conditions may be susceptible to the effects of ionospheric scintillation; (2) a temporal analysis based on the local time distribution of scintillation at different seasons and intensity levels; and (3) the evaluation of number of

  7. On the relation between GNSS phase scintillation and auroral brightness around satellite's IPP

    NASA Astrophysics Data System (ADS)

    Spanswick, E.; Mushini, S. C.; Skone, S.; Donovan, E.

    2017-12-01

    Aurora occurs in different well-known morphologies, or types, including arcs and patchy-pulsating aurora (PPA). Previous observational studies have demonstrated that global navigation satellite system (GNSS) signals transiting the ionosphere in regions of aurora can contain varying levels of scintillation. These scintillations are often attributed to the ionospheric disturbances associated with auroral precipitation, which in extreme cases can affect the accuracy of these systems. One question that remains unanswered is whether a satellite's line of sight transmission through the aurora is a sufficient condition for signal scintillation. Previous studies have used "level" or "strength" of auroral emission as a proxy indicator for scintillation using limited datasets. In general, these results are mixed and inconclusive. In this study, we use a large data set (700 Auroral arc events) to statistically study the relationship between aurora and scintillation of GPS signals. This is one of the largest datasets used in this type of studies. We utilize the THEMIS (Time History of Events and Macroscale Interactions during Substorms) All-Sky Imagers (ASIs) located at Fort Smith (59.9 N, 248.1 E geog.) and Gillam (56.5 N, 265.4 E geog.), Canada. Corresponding GPS data were obtained from CHAIN (Canadian High Arctic Ionospheric Network) GPS receivers collocated with the ASIs. These GPS receivers are custom made receivers capable of providing high rate GPS signal power and phase observations as well as scintillation indices. To obtain information how aurora is affecting the signal, brightness around satellite's Ionospheric Pierce Point (IPP) was calculated and correlated with sigma phi from the satellite's signal. A very low correlation of 0.003 was observed between them. Correlation between the rate of change of brightness around the satellite's IPP and sigma phi was also calculated and a correlation coefficient of 0.7 was observed between them. These results indicate that GPS

  8. Cherenkov and scintillation light separation on the TheiaR &D experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin

    2016-03-01

    Identifying by separate the scintillation and Cherenkov light produced in a scintillation medium enables outstanding capabilities for future particle detectors, being the most relevant: allowing particle directionality information in a low energy threshold detector and improved particle identification. The TheiaR &D experiment uses an array of small and fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium, based on the number of produced photoelectrons and the timing information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by <1ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WBLS) provides a medium with a tunable Cherenkov/Scintillation light yield ratio, enhancing the visibility of the dimer Cherenkov light in presence of the scintillation light. Description of the experiment, details of the analysis and preliminary results of the first months of running will be discussed.

  9. Scintillation Reduction using Conjugate-Plane Imaging

    NASA Astrophysics Data System (ADS)

    Vander Haagen, Gary A.

    2017-06-01

    All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30 cm amateur telescope. It is well known that these disturbances are caused by wind and temperature driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80 mm, f-7 telescope.

  10. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase.

    PubMed

    Liu, Yang; Fu, Lianjie; Wang, Jinling; Zhang, Chunxi

    2017-09-25

    One of the adverse impacts of scintillation on GNSS signals is the loss of lock status, which can lead to GNSS geometry and visibility reductions that compromise the accuracy and integrity of navigation performance. In this paper the loss of lock based on ionosphere scintillation in this solar maximum phase has been well investigated with respect to both temporal and spatial behaviors, based on GNSS observatory data collected at Weipa (Australia; geographic: 12.45° S, 130.95° E; geomagnetic: 21.79° S, 214.41° E) from 2011 to 2015. Experiments demonstrate that the percentage of occurrence of loss of lock events under ionosphere scintillation is closely related with solar activity and seasonal shifts. Loss of lock behaviors under ionosphere scintillation related to elevation and azimuth angles are statistically analyzed, with some distinct characteristics found. The influences of daytime scintillation and geomagnetic storms on loss of lock have also been discussed in details. The proposed work is valuable for a deeper understanding of theoretical mechanisms of-loss of lock under ionosphere scintillation in global regions, and provides a reference for GNSS applications in certain regions at Australian low latitudes.

  11. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase

    PubMed Central

    Liu, Yang; Fu, Lianjie; Wang, Jinling; Zhang, Chunxi

    2017-01-01

    One of the adverse impacts of scintillation on GNSS signals is the loss of lock status, which can lead to GNSS geometry and visibility reductions that compromise the accuracy and integrity of navigation performance. In this paper the loss of lock based on ionosphere scintillation in this solar maximum phase has been well investigated with respect to both temporal and spatial behaviors, based on GNSS observatory data collected at Weipa (Australia; geographic: 12.45° S, 130.95° E; geomagnetic: 21.79° S, 214.41° E) from 2011 to 2015. Experiments demonstrate that the percentage of occurrence of loss of lock events under ionosphere scintillation is closely related with solar activity and seasonal shifts. Loss of lock behaviors under ionosphere scintillation related to elevation and azimuth angles are statistically analyzed, with some distinct characteristics found. The influences of daytime scintillation and geomagnetic storms on loss of lock have also been discussed in details. The proposed work is valuable for a deeper understanding of theoretical mechanisms of—loss of lock under ionosphere scintillation in global regions, and provides a reference for GNSS applications in certain regions at Australian low latitudes. PMID:28946676

  12. Boron codoping of Czochralski grown lutetium aluminum garnet and the effect on scintillation properties

    NASA Astrophysics Data System (ADS)

    Foster, Camera; Koschan, Merry; Wu, Yuntao; Melcher, Charles L.

    2018-03-01

    Many single crystal scintillators, such as Lu3Al5O12, have intrinsic defects that impede their performance. In addition to doping with activators such as cerium, codoping can be used to improve the scintillation properties of a variety of scintillators. In particular, boron has been shown to improve the light yield, energy resolution, and self-absorption of other garnet scintillators, such as GGAG, when incorporated into the lattice via codoping. In this study, single crystals of LuAG: 0.2 at.% Ce codoped with varying concentrations of boron were grown via the Czochralski method at a rate of 1.2 mm/h. Results will show the effect boron codoping has on the scintillation properties of LuAG: Ce, including light yield, decay time, and self-absorption.

  13. Characterizing Properties and Performance of 3D Printed Plastic Scintillators

    NASA Astrophysics Data System (ADS)

    McCormick, Jacob

    2015-10-01

    We are determining various characteristics of the performance of 3D printed scintillators. A scintillator luminesces when an energetic particle raises electrons to an excited state by depositing some of its energy in the atom. When these excited electrons fall back down to their stable states, they emit the excess energy as light. We have characterized the transmission spectrum, emission spectrum, and relative intensity of light produced by 3D printed scintillators. We are also determining mechanical properties such as tensile strength and compressibility, and the refractive index. The emission and transmission spectra were measured using a monochromator. By observing the transmission spectrum, we can see which optical wavelengths are absorbed by the scintillator. This is then used to correct the emission spectrum, since this absorption is present in the emission spectrum. Using photomultiplier tubes in conjunction with integration hardware (QDC) to measure the intensity of light emitted by 3D printed scintillators, we compare with commercial plastic scintillators. We are using the characterizations to determine if 3D printed scintillators are a viable alternative to commercial scintillators for use at Jefferson Lab in nuclear and accelerated physics detectors. I would like to thank Wouter Deconinck, as well as the Parity group at the College of William and Mary for all advice and assistance with my research.

  14. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  15. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  16. Experiment to demonstrate separation of Cherenkov and scintillation signals

    DOE PAGES

    Caravaca, J.; Descamps, F. B.; Land, B. J.; ...

    2017-05-05

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less

  17. Simulating Silicon Photomultiplier Response to Scintillation Light

    PubMed Central

    Jha, Abhinav K.; van Dam, Herman T.; Kupinski, Matthew A.; Clarkson, Eric

    2015-01-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators. PMID:26236040

  18. DOSIMETRIC MEASUREMENTS ON THE SECOND SOVIET SPACESHIP SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savenko, I.A.; Pisarenko, N.F.; Shavrin, P.I.

    1963-02-01

    Readings of counters placed inside Sputnik II are given for one portion of its trajectory. The readings were taken by a gas-discharge counter STS-5 and a NaI crystal scintillator counter that registered gamma quanta, charged particles with a 25-kev counting threshold, and the aggregate energy liberation of ionizing radiations in the crystal. (C.E.S.)

  19. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric

  20. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters o protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and dicult problem. In this article,more » we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements to predictions from different quenching models. We and that a modified Birks' model whose denominator is quadratic in dE=dx best describes the measurements, with χ 2/NDF = 1:6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  1. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section ofmore » $$^{10}$$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $$^{10}$$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $$\\chi^2$$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  2. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less

  3. The Origins of Scintillator Non-Proportionality

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.

    2012-10-01

    Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.

  4. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  5. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  6. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  7. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  8. Optimisation of nasal swab analysis by liquid scintillation counting.

    PubMed

    Dai, Xiongxin; Liblong, Aaron; Kramer-Tremblay, Sheila; Priest, Nicholas; Li, Chunsheng

    2012-06-01

    When responding to an emergency radiological incident, rapid methods are needed to provide the physicians and radiation protection personnel with an early estimation of possible internal dose resulting from the inhalation of radionuclides. This information is needed so that appropriate medical treatment and radiological protection control procedures can be implemented. Nasal swab analysis, which employs swabs swiped inside a nostril followed by liquid scintillation counting of alpha and beta activity on the swab, could provide valuable information to quickly identify contamination of the affected population. In this study, various parameters (such as alpha/beta discrimination, swab materials, counting time and volume of scintillation cocktail etc) were evaluated in order to optimise the effectiveness of the nasal swab analysis method. An improved nasal swab procedure was developed by replacing cotton swabs with polyurethane-tipped swabs. Liquid scintillation counting was performed using a Hidex 300SL counter with alpha/beta pulse shape discrimination capability. Results show that the new method is more reliable than existing methods using cotton swabs and effectively meets the analysis requirements for screening personnel in an emergency situation. This swab analysis procedure is also applicable to wipe tests of surface contamination to minimise the source self-absorption effect on liquid scintillation counting.

  9. Neutron flux measurements using scintillator-photodiode-preamplifier system and new types of scintillators

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Burachas, S. F.; Volkov, V. G.; Danshin, Evgeniy A.; Lisetskaya, Elena K.; Piven, L. A.; Svishch, Vladimir M.; Chernikov, Vyacheslav V.; Filimonov, A. E.

    1997-02-01

    After the Chernobyl catastrophe among the problems of current concern a question arose of detection of 'hot' particles formed from plutonium alloys with carbon, nitrogen, silicon, etc. For this purpose, the instruments are needed, which would be able to detect not only alpha- particles and low energy gamma-radiation, but also neutrons and high energy gamma-quanta from ((alpha) , n(gamma) ) - reactions. At present for each kind of radiation detectors of different types are used. A general drawback of all these instruments is their narrow dynamic range of dose rates and energies, and especially impossibility to registrate n-flux in condition large background activity gamma-rays nuclei, which makes each of them applicable only under certain specific conditions. For detection of 'hot' particles, oxide and semiconductor scintillators were used, which contained elements with large capture cross section for thermal neutrons. In this paper we try to determine possibilities and limitations of solid-state neutron detectors based on CdS(Te), ZnSe(Te), CdWO4 (CWO), Gd2SiO5 (GSO) scintillators developed and produced by the Science and Technology Center for Radiation Instruments of the Institute for Single Crystals. The instruments developed by Center are based preferable on a very promising system 'scintillator- photodiode-preamplifier' matched with modern computer data processing techniques.

  10. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil whenmore » it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI

  11. Crystal scintillators for use in check-light source for thermoluminescent systems

    NASA Astrophysics Data System (ADS)

    Nagpal, J. S.; Sabharwal, S. C.; Chougaonkar, M. P.; Godbole, S. V.

    1999-08-01

    Beta ( 63Ni, Emax 0.063 MeV) excited radioluminescence of indigenously grown crystal scintillators CsI(Tl), Bi 4Ge 3O 12 and CdWO 4 has been studied for its use in check-light source needed for thermoluminescence systems. Temperature coefficient of the light output over 298-323 K and the beta-induced TL of the scintillators over 298-553 K are reported.

  12. Forecasting Ionospheric Real-time Scintillation Tool (FIRST)

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Redmon, R.; Bullett, T.; Caton, R. G.; Retterer, J. M.

    2009-05-01

    It is well-known that the generation of equatorial, F-region plasma density irregularities, via the Generalized Rayleigh-Taylor instability mechanism is critically dependent on the magnitude of the pre-reversal enhancement (PRE) in upward ExB drift velocity after sunset. These plasma density bubbles that are generated after sunset lead to the scintillation of trans-ionospheric radio wave signals that pass through these bubbles and is commonly referred to as scintillation activity. Communication and Navigation systems can be severely disrupted by these plasma density irregularities. A measure of scintillation activity is given by the S4 Index and a network of Air Force, ground-based UHF and L-band receivers measuring the S4 Index is called the SCIntillation Network Decision Aid (SCINDA) network. After sunset, the height-rise with time of the bottom- side of the F-layer reflects the magnitude of the upward ExB drift velocity. The value of the ionospheric parameter, h'F (the virtual height of the bottom-side F-layer) at 1930 LT reflects the integrated ExB drift effect on lifting the F-layer to an altitude where the Rayleigh-Taylor (R-T) instability mechanism becomes important. It is found that there exists a threshold in the h'F value at 1930 LT and the onset of scintillation activity as measured by the S4 Index value in the Peruvian longitude sector. This h'F threshold value is found to decrease with decreasing F10.7 cm fluxes in a linear manner (R = 0.99). T o examine this relationship, theoretically, we incorporate a suite of first-principle models of the ambient ionosphere (PBMOD) developed at the Air Force Research Lab (AFRL) to investigate R-T growth rates and threshold h'F (1930 LT) values as a function of solar cycle activity. In addition, this paper describes a technique for automatically forecasting, in real-time, the occurrence or non-occurrence of scintillation activity that relies on real-time data from a ground-based ionospheric sounder at or near the

  13. Radon gamma-ray spectrometry with YAP:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Plastino, Wolfango; De Felice, Pierino; de Notaristefani, Francesco

    2002-06-01

    The detection properties of a YAP:Ce scintillator (YAlO 3:Ce crystal) optically coupled to a Hamamatsu H5784 photomultiplier with standard bialkali photocathode have been analyzed. In particular, the application to radon and radon-daughters gamma-ray spectrometry was investigated. The crystal response has been studied under severe extreme conditions to simulate environments of geophysical interest, particularly those found in geothermal and volcanic areas. Tests in water up to a temperature of 100°C and in acids solutions such as HCl (37%), H 2SO 4 (48%) and HNO 3 (65%) have been performed. The measurements with standard radon sources provided by the National Institute for Metrology of Ionizing Radiations (ENEA) have emphasized the non-hygroscopic properties of the scintillator and a small dependence of the light yield on temperature and HNO 3. The data collected in this first step of our research have pointed out that the YAP:Ce scintillator can allow high response stability for radon gamma-ray spectrometry in environments with large temperature gradients and high acid concentrations.

  14. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  15. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  16. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  17. High fluence neutron radiation of plastic scintillators for the TileCal of the ATLAS detector.

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Erasmus, R.; Jivan, H.; Khanye, N.; Tlou, H.; Tjale, B.; Starchenko, J.; Solovyanov, O.; Mellado, B.; Sideras-Haddad, E.

    2017-09-01

    We report on structural and optical properties of neutron irradiated plastic scintillators. These scintillators were subjected to a neutron beam with wide energy range of up to 10MeV and a neutron flux range of 1.2 × 1012 - 9.4 × 1012 n/cm 2 using the IBR-2 pulsed reactor at the Joint Institute for Nuclear Research in Dubna. A study between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov is conducted. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests performed indicate no change in the optical and structural properties of the scintillators. The polystyrene based scintillators were further subjected to a higher neutron flux range of 3.8 × 1012 - 1.8 × 1014 n/cm 2 using the IBR-2 pulsed reactor.

  18. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  19. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE PAGES

    Westerdale, S.; Xu, J.; Shields, E.; ...

    2017-08-03

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  20. Comparative estimations of 137Cs distribution in a boreal forest in northern Sweden using a traditional sampling approach and a portable NaI detector.

    PubMed

    Plamboeck, A H; Nylén, T; Agren, G

    2006-01-01

    Field-portable detectors have been frequently used in routine monitoring and hazard assessment studies. However, there have been few thorough attempts to evaluate their potential as an alternative to the traditional procedure of collecting samples and analysing them in the laboratory. Thus, in this study the two approaches were compared in terms of their utility for monitoring (137)Cs activity in the Nyänget catchment in northern Sweden. The objectives were: (i) to determine the (137)Cs activity in soils associated with three types of vegetation, (ii) to map the geographical distribution of (137)Cs using the portable NaI detector connected to a GPS system (GDM-40), (iii) to identify (137)Cs anomalies in the catchment, and (iv) to compare the measurements obtained with the NaI detector and traditional sampling followed by laboratory analysis. Our results demonstrate that the GDM-40 has very good potential for making (137)Cs inventories and for detecting (137)Cs anomalies within large areas. The GDM-40 measurements identified differences between different hydrological areas that were not determined with the soil sampling method. The GDM-40 method is much faster than a traditional soil sampling method. However, soil sampling cannot be totally excluded because it is needed to calibrate the GDM-40. The agreement between the (137)Cs activity values obtained by the two approaches was 20% which is good in the field where so many factors vary.

  1. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Swanberg, E. L.; Beck, P. R.; Schneberk, D. J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S. E.; Hunter, S. L.; Thelin, P. A.; Thompson, R. R.; Harvey, N. M.; Stefanik, T.; Kindem, J.

    2015-09-01

    We report on the development of two new mechanically rugged, high light yield transparent ceramic scintillators: (1) Ce-doped Gd-garnet for gamma spectroscopy, and (2) Eu-doped Gd-Lu-bixbyite for radiography. GYGAG(Ce) garnet transparent ceramics offer ρ = 5.8g/cm3, Zeff = 48, principal decay of <100 ns, and light yield of 50,000 Ph/MeV. Gdgarnet ceramic scintillators offer the best energy resolution of any oxide scintillator, as good as R(662 keV) = 3% (Si-PD readout) for small sizes and typically R(662 keV) < 5% for cubic inch sizes. For radiography, the bixbyite transparent ceramic scintillator, (Gd,Lu,Eu)2O3, or "GLO," offers excellent x-ray stopping, with ρ = 9.1 g/cm3 and Zeff = 68. Several 10" diameter by 0.1" thickness GLO scintillators have been fabricated. GLO outperforms scintillator glass for high energy radiography, due to higher light yield (55,000 Ph/MeV) and better stopping, while providing spatial resolution of >8 lp/mm.

  2. Scintillation properties of dark hollow beams in a weak turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Cai, Y.; Eyyuboğlu, H. T.; Baykal, Y.

    2008-01-01

    The on-axis scintillation index for a circular dark hollow beam (DHB) propagating in a weak turbulent atmosphere is formulated, and the scintillation properties of a DHB are investigated in detail. The scintillation index for a DHB reduces to the scintillation index for a Gaussian beam, an annular beam and a flat-topped beam under certain conditions. It is found that the scintillation index of a DHB is closely related to the beam parameters and can be lower than that of a Gaussian beam, an annular beam and a flat-topped beam in a weak turbulent atmosphere at smaller waist sizes and longer propagation lengths.

  3. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  4. Predicting ionospheric scintillation: Recent advancements and future challenges

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  5. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  6. Photodisintegration cross section of the reaction (4)He(γ,p)(3)H between 22 and 30 MeV.

    PubMed

    Raut, R; Tornow, W; Ahmed, M W; Crowell, A S; Kelley, J H; Rusev, G; Stave, S C; Tonchev, A P

    2012-01-27

    The two-body photodisintegration cross section of (4)He into a proton and triton was measured with monoenergetic photon beams in 0.5 MeV energy steps between 22 and 30 MeV. High-pressure (4)He-Xe gas scintillators of various (4)He/Xe ratios served as targets and detectors. Pure Xe gas scintillators were used for background studies. A NaI detector together with a plastic scintillator paddle was employed for determining the incident photon flux. Our comprehensive data set follows the trend of the theoretical calculations of the Trento group very well, although our data are consistently lower in magnitude by about 5%. However, they differ significantly from the majority of the previous data, especially from the recent data of Shima et al. The latter data had put into question the validity of theoretical approaches used to calculate core-collapse supernova explosions and big-bang nucleosynthesis abundances of certain light nuclei.

  7. Scintillation statistics measured in an earth-space-earth retroreflector link

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1977-01-01

    Scintillation was measured in a vertical path from a ground-based laser transmitter to the Geos 3 satellite and back to a ground-based receiver telescope and, the experimental results were compared with analytical results presented in a companion paper (Bufton, 1977). The normalized variance, the probability density function and the power spectral density of scintillation were all measured. Moments of the satellite scintillation data in terms of normalized variance were lower than expected. The power spectrum analysis suggests that there were scintillation components at frequencies higher than the 250 Hz bandwidth available in the experiment.

  8. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  9. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  10. Structural Origins of Scintillation: Metal Organic Frameworks as a Nanolaboratory

    DTIC Science & Technology

    2016-06-01

    scintillation response and thus the ability to perform neutron/gamma particle discrimination via pulse-shape discrimination ( PSD ). Unfortunately, the...defined an alternative approach towards particle discrimination that addresses the limitations of conventional PSD organic scintillators. This approach...discrimination ( PSD ), for which the prompt component of the scintillation response is quenched for high specific energy loss (dE/dX) particles such as protons

  11. Detection of ionospheric scintillation effects using LMD-DFA

    NASA Astrophysics Data System (ADS)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  12. Multisector scintillation detector with fiber-optic light collection

    NASA Astrophysics Data System (ADS)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  13. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  14. Comparative study of optical and scintillation properties of Tm3+:YAG, and Tm3+:LuAG single crystals

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Sugiyama, Makoto; Yanagida, Takayuki; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke; Chani, Valery; Yoshikawa, Akira

    2013-09-01

    The optical and scintillation properties of Tm3+-doped yttrium aluminum garnet Y3Al5O12 (YAG) and Tm3+-doped lutetium aluminum garnet Lu3Al5O12 (LuAG) are compared. The Tm3+-doped single crystals were grown by the micro-pulling down (μ-PD) technique. Both crystals demonstrated some emission peaks originated from 4f-4f forbidden transition of Tm3+ under 241Am alpha-ray excitation. The scintillation decay time of Tm3+-doped YAG was similar to that of LuAG. When irradiated by the gamma-rays from a 137Cs source, the relative scintillation light yields of Tm:YAG was 90% greater than that of Tm:LuAG.

  15. Countering Beam Divergence Effects with Focused Segmented Scintillators for High DQE Megavoltage Active Matrix Imagers

    PubMed Central

    Liu, Langechuan; Antonuk, Larry E; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-01-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ~1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ~130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs. PMID:22854009

  16. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    NASA Astrophysics Data System (ADS)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  17. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    PubMed

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  19. Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy

    NASA Technical Reports Server (NTRS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2008-01-01

    New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.

  20. Broadband Ionospheric Scintillation Measurements from Space

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  1. The Equatorial Scintillations and Space Weather Effects on its Generation during Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    Great diversity of the ionospheric phenomena leads to a variety of irregularity types with spatial size from many thousands of kilometers to few centimeters and lifetimes from days to fractions of second. Since the ionosphere strongly influences the propagation of radio waves, signal distortions caused by these irregularities affect short-wave transmissions on Earth, transiono-spheric satellite communications and navigation. In this work the solar wind and the equatorial ionosphere parameters, Kp, Dst, AU, AL indices characterized contribution of different mag-netospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the space weather effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict scintil-lations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of elec-tron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind -magnetosphere -ionosphere during magnetic storms have progressed greatly. We have examined scintillation relation to magnetospheric and ionospheric currents and show that the factor, which presents during magnetic storms to fully inhibit scin-tillation, is the positive Bz-component of the IMF. During the positive Bz IMF F layer cannot raise altitude where scintillations are formed. The auroral indices and Kp do better for the prediction of the ionospheric scintillations at the equator. The interplanetary magnetic field data and models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere cur-rents and

  2. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector.

    PubMed

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2015-08-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams.

  3. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector

    PubMed Central

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2016-01-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams. PMID:27274863

  4. Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira

    2017-01-01

    Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd3Ga3Al2O12 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd3Al2Ga3O12 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator -GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.

  5. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study.

    PubMed

    Li, Guang; Luo, Shouhua; Yan, Yuling; Gu, Ning

    2015-01-01

    The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion.

  6. Near-infrared scintillation of liquid argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7more » $$\\mu$$m < $$\\lambda$$; < 1.5$$\\mu$$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.« less

  7. Influence of depth of interaction upon the performance of scintillator detectors.

    PubMed

    Brown, Mark S; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis

    2014-01-01

    The uncertainty in time of particle detection within a scintillator detector, characterised by the coincidence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no relationship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%.

  8. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  9. Lithium indium diselenide: A new scintillator for neutron imaging

    DOE PAGES

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; ...

    2016-05-20

    Lithium indium diselenide, 6LiInSe 2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. The 24% atomic density of 6Li yields a thermal neutron mean free path of only 920 μm. This paper reports on the performance of LISe crystals in scintillation mode for its potential use as a converter screen for thermal/cold neutron imaging. The spatial resolution of LISe, determined using a 10% value of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatialmore » resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu): 6LiF scintillation screen (100 μm) by more than a factor of three. For the thicknesses considered in this study, it has been found that the light yield of LISe did not scale with its thickness, suggesting the need for optimizing the synthesis to enhance the scintillation mechanism. Absorption measurements indicate that the 6Li concentration is uniform throughout the samples and its absorption efficiency as a function of thickness follows general nuclear theory, indicating that the variation in apparent brightness is likely due to a combination of particle escape, light transport, and activation of the scintillation mechanisms. As a result, the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential for using LISe for imaging transient systems.« less

  10. Doping of polysiloxane rubbers for the production of organic scintillators

    NASA Astrophysics Data System (ADS)

    Quaranta, A.; Carturan, S.; Marchi, T.; Cinausero, M.; Scian, C.; Kravchuk, V. L.; Degerlier, M.; Gramegna, F.; Poggi, M.; Maggioni, G.

    2010-08-01

    Polysiloxane rubbers have been produced with different concentrations of phenyl groups and of dye molecules in order to find the best synthesis conditions for reaching a high light yield. In particular, two different polymer compositions were examined, namely with 15% and 22% of phenyl units in the starting resin. 2,5-Diphenyl oxazole (PPO) as a primary dopant and Lumogen F Violet 570 as secondary dopant were dispersed in the polysiloxane. Ion beam induced luminescence (IBIL) technique was employed for studying radioluminescence and radiation hardness properties. The α and γ scintillation yields were analyzed by measuring the pulse height spectra from 241Am and 60Co radioactive sources. First tests on the suitability of these materials to the detection of fast neutrons were also performed with a TOF procedure. Preliminary results indicate that these materials exhibit a scintillation yield comparable with NE102 plastic scintillator.

  11. Boron loaded scintillator

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Brown, Gilbert Morris [Knoxville, TN; Maya, Leon [Knoxville, TN; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor [Oak Ridge, TN

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  12. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  13. Influence of Depth of Interaction upon the Performance of Scintillator Detectors

    PubMed Central

    Brown, Mark S.; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis

    2014-01-01

    The uncertainty in time of particle detection within a scintillator detector, characterised by the coinci- dence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no rela- tionship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%. PMID:24875832

  14. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  15. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.

    2016-06-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.

  16. Physiological sodium concentrations enhance the iodide affinity of the Na+/I- symporter

    NASA Astrophysics Data System (ADS)

    Nicola, Juan P.; Carrasco, Nancy; Mario Amzel, L.

    2014-06-01

    The Na+/I- symporter (NIS) mediates active I- transport—the first step in thyroid hormonogenesis—with a 2Na+:1I- stoichiometry. NIS-mediated 131I- treatment of thyroid cancer post-thyroidectomy is the most effective targeted internal radiation cancer treatment available. Here to uncover mechanistic information on NIS, we use statistical thermodynamics to obtain Kds and estimate the relative populations of the different NIS species during Na+/anion binding and transport. We show that, although the affinity of NIS for I- is low (Kd=224 μM), it increases when Na+ is bound (Kd=22.4 μM). However, this Kd is still much higher than the submicromolar physiological I- concentration. To overcome this, NIS takes advantage of the extracellular Na+ concentration and the pronounced increase in its own affinity for I- and for the second Na+ elicited by binding of the first. Thus, at physiological Na+ concentrations, ~79% of NIS molecules are occupied by two Na+ ions and ready to bind and transport I-.

  17. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS).

    PubMed

    Paroder-Belenitsky, Monika; Maestas, Matthew J; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L Mario; Carrasco, Nancy

    2011-11-01

    I(-) uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na(+)/I(-) symporter (NIS) with an electrogenic 2Na(+):1I(-) stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I(-) transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the K(m) for the anion substrates. Unlike WT NIS, which mediates symport of Na(+) and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 21 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na(+)/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot.

  18. Design and Prototyping of a High Granularity Scintillator Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zutshi, Vishnu

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  19. Digital instrumentation and management of dead time: first results on a NaI well-type detector setup.

    PubMed

    Censier, B; Bobin, C; Bouchard, J; Aubineau-Lanièce, I

    2010-01-01

    The LNE-LNHB is engaged in a development program on digital instrumentation, the first step being the instrumentation of a NaI well-type detector set-up. The prototype acquisition card and its technical specifications are presented together with the first comparison with the classical NIM-based acquisition chain, for counting rates up to 100 kcps. The digital instrumentation is shown to be counting-loss free in this range. This validates the main option adopted in this project, namely the implementation of an extending dead time with live-time measurement already successfully used in the MTR2 NIM module developed at LNE-LNHB. Copyright 2010. Published by Elsevier Ltd.

  20. The improved scintillation crystal lead tungstate scintillation for PET

    NASA Astrophysics Data System (ADS)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can

  1. Photodisintegration cross section of the reaction 4He(γ,n)3He at the giant dipole resonance peak

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Kelley, J. H.; Raut, R.; Rusev, G.; Tonchev, A. P.; Ahmed, M. W.; Crowell, A. S.; Stave, S. C.

    2012-06-01

    The photodisintegration cross section of 4He into a neutron and helion was measured at incident photon energies of 27.0, 27.5, and 28.0 MeV. A high-pressure 4He-Xe gas scintillator served as target and detector while a pure Xe gas scintillator was used for background measurements. A NaI detector in combination with the standard HIγS scintillator paddle system was employed for absolute photon-flux determination. Our data are in good agreement with the theoretical prediction of the Trento group and the recent data of Nilsson [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.014007 75, 014007 (2007)] but deviate considerably from the high-precision data of Shima [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.72.044004 72, 044004 (2005)].

  2. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Mg and Ca co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by micro pulling down method with a wide concentration range 0-1000 ppm of the codopants. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg and Ca co-doping. The scintillation decays were accelerated by both Mg and Ca codopants. Comparing to Ca co-doping, the Mg co-doped samples showed much faster decay and comparatively smaller light output decrease with increasing Mg dopant concentration.

  3. L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Pelgrum, W.; van Graas, F.

    2011-12-01

    As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  4. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  5. A multi-channel setup to study fractures in scintillators

    NASA Astrophysics Data System (ADS)

    Tantot, A.; Bouard, C.; Briche, R.; Lefèvre, G.; Manier, B.; Zaïm, N.; Deschanel, S.; Vanel, L.; Di Stefano, P. C. F.

    2016-12-01

    To investigate fractoluminescence in scintillating crystals used for particle detection, we have developed a multi-channel setup built around samples of double-cleavage drilled compression (DCDC) geometry in a controllable atmosphere. The setup allows the continuous digitization over hours of various parameters, including the applied load, and the compressive strain of the sample, as well as the acoustic emission. Emitted visible light is recorded with nanosecond resolution, and crack propagation is monitored using infrared lighting and camera. An example of application to \\text{B}{{\\text{i}}4}\\text{G}{{\\text{e}}3}{{\\text{O}}12} (BGO) is provided.

  6. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    NASA Technical Reports Server (NTRS)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  7. High-Z Sensitized Plastic Scintillators: A Review.

    PubMed

    Hajagos, Tibor Jacob; Liu, Chao; Cherepy, Nerine J; Pei, Qibing

    2018-05-07

    The need for affordable and reliable radiation detectors has prompted significant investment in new radiation detector materials, due to concerns about national security and nuclear nonproliferation. Plastic scintillators provide an affordable approach to large volume detectors, yet their performance for high-energy gamma radiation is severely limited by the small radiation stopping power inherent to their low atomic number. Although some sensitization attempts with organometallics were made in the 1950s to 1960s, the concomitant decrease in light yield has limited the usefulness of these sensitized detectors. Recently, with new knowledge gained during the rapid development of organic optoelectronics and nanotechnology, there has been a revived interest in the field of heavy element sensitized plastic scintillators. Here, the recent efforts on sensitized plastic scintillators are summarized. Basic scintillator physics is first reviewed. The discussion then focuses on two major thrusts in the field: sensitization with: (1) organometallics and (2) oxide and fluoride nanoparticles. The design rationales and major results are examined in detail, with existing limitations and possible future pathways discussed. Special attention is paid to the underlying energy deposition and transfer processes, as these determine the key performance metrics such as light yield and radioluminescence decay lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection

    DOEpatents

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.

    2016-03-01

    In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.

  9. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  10. Equatorial Scintillation of Satellite Signals and some Drift Characteristics of the Scintillation.

    DTIC Science & Technology

    1983-10-15

    of the main objectives of the program was to investigate the ~. drift characteristics of equatorial scintillation, other aspects of the scin ...Maximum scin - tillation intensity frequently occurred long after the maximum drift vel oci ty. The amount of delay was quite variable, however. It could

  11. The timing resolution of scintillation-detector systems: Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng

    2009-11-01

    decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.

  12. The timing resolution of scintillation-detector systems: Monte Carlo analysis.

    PubMed

    Choong, Woon-Seng

    2009-11-07

    decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.

  13. Barium iodide and strontium iodide crystals and scintillators implementing the same

    DOEpatents

    Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold

    2016-11-29

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.

  14. Scintillation Reduction using Conjugate-Plane Imaging (Abstract)

    NASA Astrophysics Data System (ADS)

    Vander Haagen, G. A.

    2017-12-01

    (Abstract only) All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30-cm amateur telescope. It is well known that these disturbances are caused by wind and temperature-driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80-mm, f7 telescope.

  15. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.

    2018-05-01

    A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.

  16. Novel Scintillating Materials Based on Phenyl-Polysiloxane for Neutron Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Degerlier, M.; Carturan, S.; Gramegna, F.; Marchi, T.; Palma, M. Dalla; Cinausero, M.; Maggioni, G.; Quaranta, A.; Collazuol, G.; Bermudez, J.

    Neutron detectors are extensively used at many nuclear research facilities across Europe. Their application range covers many topics in basic and applied nuclear research: in nuclear structure and reaction dynamics (reaction reconstruction and decay studies); in nuclear astrophysics (neutron emission probabilities); in nuclear technology (nuclear data measurements and in-core/off-core monitors); in nuclear medicine (radiation monitors, dosimeters); in materials science (neutron imaging techniques); in homeland security applications (fissile materials investigation and cargo inspection). Liquid scintillators, widely used at present, have however some drawbacks given by toxicity, flammability, volatility and sensitivity to oxygen that limit their duration and quality. Even plastic scintillators are not satisfactory because they have low radiation hardness and low thermal stability. Moreover organic solvents may affect their optical properties due to crazing. In order to overcome these problems, phenyl-polysiloxane based scintillators have been recently developed at Legnaro National Laboratory. This new solution showed very good chemical and thermal stability and high radiation hardness. The results on the different samples performance will be presented, paying special attention to a characterization comparison between synthesized phenyl containing polysiloxane resins where a Pt catalyst has been used and a scintillating material obtained by condensation reaction, where tin based compounds are used as catalysts. Different structural arrangements as a result of different substituents on the main chain have been investigated by High Resolution X-Ray Diffraction, while the effect of improved optical transmittance on the scintillation yield has been elucidated by a combination of excitation/fluorescence measurements and scintillation yield under exposure to alpha and γ-rays.

  17. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  18. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  19. Monitoring Energy Calibration Drift Using the Scintillator Background Radiation

    NASA Astrophysics Data System (ADS)

    Conti, Maurizio; Eriksson, Lars; Hayden, Charles

    2011-06-01

    Scintillating materials commonly used in nuclear medicine can contain traces of isotopes that naturally emit gamma or beta radiation. Examples of these are 138La contained in LaBr3 and other Lanthanum based scintillators, and 176Lu contained in LSO, LYSO, LuYAP and other Lutetium based scintillators. In particular,176Lu decays into 176Hf and emits a beta particle with maximum energy 589 keV, and a cascade of gamma rays of energies 307 keV, 202 keV and 88 keV. We propose to use the background radiation for monitoring of detector calibration drift and for self-calibration of detectors in complex detector systems. A calibration drift due to random or systematic changes in photomultiplier tube (PMT) gain was studied in a Siemens PET scanner, based on LSO blocks. Both a conventional radioactive source (68Ge, 511 keV photons from electron-positron annihilation) and the LSO background radiation were used for calibration. The difference in the calibration peak shift at 511 keV estimated with the two methods was less than 10%.

  20. Ternary liquid scintillator for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  1. Defect Engineering in SrI 2:Eu 2+ Single Crystal Scintillators

    DOE PAGES

    Wu, Yuntao; Boatner, Lynn A.; Lindsey, Adam C.; ...

    2015-06-23

    Eu 2+-activated strontium iodide is an excellent single crystal scintillator used for gamma-ray detection and significant effort is currently focused on the development of large-scale crystal growth techniques. A new approach of molten-salt pumping or so-called melt aging was recently applied to optimize the crystal quality and scintillation performance. Nevertheless, a detailed understanding of the underlying mechanism of this technique is still lacking. The main purpose of this paper is to conduct an in-depth study of the interplay between microstructure, trap centers and scintillation efficiency after melt aging treatment. Three SrI 2:2 mol% Eu2+ single crystals with 16 mm diametermore » were grown using the Bridgman method under identical growth conditions with the exception of the melt aging time (e.g. 0, 24 and 72 hours). Using energy-dispersive X-ray spectroscopy, it is found that the matrix composition of the finished crystal after melt aging treatment approaches the stoichiometric composition. The mechanism responsible for the formation of secondary phase inclusions in melt-aged SrI 2:Eu 2+ is discussed. Simultaneous improvement in light yield, energy resolution, scintillation decay-time and afterglow is achieved in melt-aged SrI 2:Eu 2+. The correlation between performance improvement and defect structure is addressed. The results of this paper lead to a better understanding of the effects of defect engineering in control and optimization of metal halide scintillators using the melt aging technique.« less

  2. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  3. Scintillation index of higher order mode laser beams in strong turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2017-03-01

    The scintillation index of higher order laser modes is examined in strong atmospheric turbulence. In our formulation, modified Rytov theory is employed with the inclusion of existing modified turbulence spectrum which presents the atmospheric turbulence spectrum as a linear filter having refractive and diffractive spatial frequency cutoffs. Variations of the scintillation index in strong atmospheric turbulence are shown against the weak turbulence plane wave scintillation index for various higher order laser modes of different sizes. Use of higher order modes in optical wireless communication links operating in strongly turbulent atmosphere is found to be advantageous in reducing the scintillation noise.

  4. Effect of spatial coherence on the scintillation properties of a dark hollow beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Yangsheng; Chen, Yahong; Liang, Chunhao; Cai, Yangjian; Baykal, Yahya

    2013-03-01

    With the help of a tensor method, we derive an explicit expression for the on-axis scintillation index of a circular partially coherent dark hollow (DH) beam in weakly turbulent atmosphere. The derived formula can be applied to study the scintillation properties of a partially coherent Gaussian beam and a partially coherent flat-topped (FT) beam. The effect of spatial coherence on the scintillation properties of DH beam, FT beam and Gaussian beam is studied numerically and comparatively. Our results show that the advantage of a DH beam over a FT beam and a Gaussian beam for reducing turbulence-induced scintillation increases particularly at long propagation distances with the decrease of spatial coherence or the increase of the atmospheric turbulence, which will be useful for long-distance free-space optical communications.

  5. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy

    PubMed Central

    Sengupta, Debanti; Miller, Stuart; Marton, Zsolt; Chin, Frederick; Nagarkar, Vivek

    2015-01-01

    We investigate the performance of a new thin-film Lu2O3:Eu scintillator for single-cell radionuclide imaging. Imaging the metabolic properties of heterogeneous cell populations in real time is an important challenge with clinical implications. We have developed an innovative technique called radioluminescence microscopy, to quantitatively and sensitively measure radionuclide uptake in single cells. The most important component of this technique is the scintillator, which converts the energy released during radioactive decay into luminescent signals. The sensitivity and spatial resolution of the imaging system depend critically on the characteristics of the scintillator, i.e. the material used and its geometrical configuration. Scintillators fabricated using conventional methods are relatively thick, and therefore do not provide optimal spatial resolution. We compare a thin-film Lu2O3:Eu scintillator to a conventional 500 μm thick CdWO4 scintillator for radioluminescence imaging. Despite its thinness, the unique scintillation properties of the Lu2O3:Eu scintillator allow us to capture single positron decays with over fourfold higher sensitivity, a significant achievement. The thin-film Lu2O3:Eu scintillators also yield radioluminescence images where individual cells appear smaller and better resolved on average than with the CdWO4 scintillators. Coupled with the thin-film scintillator technology, radioluminescence microscopy can yield valuable and clinically relevant data on the metabolism of single cells. PMID:26183115

  6. A study of time over threshold (TOT) technique for plastic scintillator counter

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Jie; Heng, Yue-Kun; Sun, Zhi-Jia; Wu, Chong; Zhao, Yu-Da; Yang, Gui-An; Jiang, Chun-Hua

    2008-03-01

    A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. Here TOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics. Supported by BEPCII Project, CAS Knowledge Innovation Program U602 and U-34 (IHEP)

  7. Experimental study of the influence of the counter and scintillator on the universal curves in the cross-efficiency method in LSC.

    PubMed

    Cassette, P; Tartès, I

    2014-05-01

    The cross-efficiency method in LSC is one of the approaches proposed for the extension of the Système International de Référence (SIR) to radionuclides emitting no gamma radiation. This method is based on a so-called "universal cross-efficiency curve", establishing a relationship between the detection efficiency of the radionuclide to be measured and the detection efficiency of a suitable tracer. This paper reports a study at LNHB on the influence of the scintillator and of the LS counter on the cross-efficiency curves. This was done by measuring the cross-efficiency curves obtained for (63)Ni and (55)Fe vs. (3)H, using three different commercial LS counters (Guardian 1414, Tricarb 3170 and Quantulus 1220), three different liquid scintillator cocktails (Ultima Gold, Hionic Fluor and PicoFluor 15 from Perkin Elmer(®)), and for chemical and colour-quenched sources. This study shows that these cross-efficiency curves are dependent on the scintillator, on the counter used and on the nature of the quenching phenomenon, and thus cannot definitively be considered as "universal". © 2013 Published by Elsevier Ltd.

  8. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong

    2014-04-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.

  9. A comparative study via Monte Carlo simulation of new inorganic scintillator Cs2HfCl6 for applications in nuclear medicine, security and defense, and astrophysics

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Raby, Paul

    2016-09-01

    Cs2HfCl6 (CHC) is one of the most promising recently discovered new inorganic single crystal scintillator that has high light output, non-hygroscopic, no self-activity, having energy resolution significantly better than NaI(Tl), even approaching that of LaBr3 yet can also potentially be at a much lower cost than LaBr3. This study attempts to use Monte Carlo simulation to examine the great potential offered by this new scintillator. CHC's detector performance is compared via simulation with that of 4 typical existing scintillators of the same size and same PMT readout. Two halide-scintillators: NaI(Tl) and LaBr3 and two oxide-scintillators: GSO and LSO were used in this simulation to compare their 122 keV and 511 keV gamma responses with that of CHC with both spectroscopy application and imaging applications in mind. Initial simulation results are very promising and consistent with reported experimental measurements. Beside detector energy resolution, image-quality measurement parameters commonly used to characterize imaging detectors as in nuclear medicine such as Light Response Function (LRF) which goes in parallel with spatial resolution and simulated position spectra will also be presented and discussed.

  10. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  11. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  12. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  13. Modelling ionospheric scintillation under the crest of the equatorial anomaly

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Wernik, A. W.; Materassi, M.; Spogli, L.

    2017-10-01

    WAM is realized making use of the plasma density data collected via the retarding potential analyser on board the Dynamics Explorer 2 spacecraft, capable to model the scintillation climatology over the northern hemisphere high latitude ionosphere. More recently, WAM has been tuned to model the ionospheric scintillations also over the equatorial latitudes. The effort has been done to support the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project in the assessment of the scintillations climatology over Latin America. The concept of the new release of WAM is the same already adopted for the high latitudes: the in situ measurements, supplemented with an ionospheric model and with the irregularity anisotropy model, are treated to describe the morphology of scintillation, provided a suitable propagation model is used. Significant differences have been included in the low latitudes release to account for the anisotropy of the irregularities and for strong scattering regime. The paper describes the new WAM formulation and presents comparisons of the model predictions with the actual measurements collected in Brazil.

  14. 64-element photodiode array for scintillation detection of x-rays

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Wolski, Dariusz; Bar, Jan; Budzyński, Tadeusz; Chłopik, Arkadiusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Piotrowski, Tadeusz; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new, silicon 64-element linear photodiode array developed at the Institute of Electron Technology (ITE) for the detection of scintillations emitted by CsI scintillators (λ≈550 nm). The arrays are used in a device for examining the content of containers at border crossings under development at the National Centre for Nuclear Research. Two arrays connected with a scintillator block (128 CsI scintillators) form a 128-channel detection module. The array consists of 64 epiplanar photodiode structures (5.1 × 7.2 mm) and a 5.3 mm module. p+-ν-n+ photodiode structures are optimised for the detection of radiation of λ≈ 550 nm wavelength with no voltage applied (photovoltaic mode). The structures are mounted on an epoxy-glass laminate substrate, copper-clad on both sides, on which connections with a common anode and separate cathode leads are located. The photosensitive surface of photodiodes is covered with a special silicone gel, which protects photodiodes against the mechanical impact of scintillators

  15. Determining Light Decay Curves in a Plastic Scintillator using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Wakwella, Praveen; Mandanas, Sarah; Wilson, John; Visca, Hannah; Padalino, Stephen; Sangster, T. Craig; Regan, Sean P.

    2017-10-01

    Plastic scintillators are used in ICF research to measure neutron energies via their time of flight (nToF). The energy resolution and sensitivity of an nToF system is directly correlated with the scintillation decay time of the plastic. To decrease the decay time, some scintillators are quenched with oxygen. Consequently, they become less efficient at producing light. As time passes, oxygen defuses out of the scintillator this in turn increases light production and the decay time. Mono-energetic calibration neutrons produced at accelerator facilities can be used to monitor the decreased oxygen content, however this is a time consuming process and requires that the scintillators be removed from the ICF facilities on a regular basis. Here, a possible method for cross calibrating accelerator neutrons with cosmic ray muons is presented. This method characterizes the scintillator with accelerator-generated neutrons and then cross calibrates them with cosmic ray muons. Once the scintillators are redeployed at the ICF facility the oxygen level can be regularly monitored using muons in situ. Funded in part by the United States Department of Energy through a Grant from the Laboratory for Laser Energetics.

  16. High-latitude analytical formulas for scintillation levels

    NASA Astrophysics Data System (ADS)

    Aarons, J.; MacKenzie, E.; Bhavnani, K.

    The paper deals with the seasonal, solar flux, and magnetic dependence at auroral and subauroral latitudes as well as at a mid-latitude station. Analytical formulas are developed from a large data base. The data base used is a series of measurements of the scintillations of one synchronous satellite beacon, ATS 3, transmitting at 137 MHz. The analytical terms provide mean scintillation excursions as a function of time of day, month, solar flux, and magnetic index.

  17. Angular sensitivities of scintillator slab configurations for location of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1976-01-01

    Thin flat scintillator slabs are a useful means of measuring the angular location of gamma ray fluxes of astronomical interest. A statistical estimate of position error was made of two scintillator systems suitable for gamma ray burst location from a balloon or satellite platform. A single rotating scintillator with associated flux monitor is compared with a pair of stationary orthogonal scintillators. Position error for a strong burst is of the order of a few arcmin if systematic errors are ignored.

  18. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET.

    PubMed

    Gundacker, Stefan; Auffray, Etiennette; Pauwels, Kristof; Lecoq, Paul

    2016-04-07

    resolution (SPTR) of the photodetector and the photon travel spread (PTS) in the crystal. The timing benefits of prompt photons at the beginning of the scintillation process (Cherenkov etc) are further studied, which leads to the conclusion that the scintillation rise time, SPTR and PTS have to be lowered simultaneously to fully profit from these fast photons in order to improve the CTR significantly.

  19. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET

    NASA Astrophysics Data System (ADS)

    Gundacker, Stefan; Auffray, Etiennette; Pauwels, Kristof; Lecoq, Paul

    2016-04-01

    single photon time resolution (SPTR) of the photodetector and the photon travel spread (PTS) in the crystal. The timing benefits of prompt photons at the beginning of the scintillation process (Cherenkov etc) are further studied, which leads to the conclusion that the scintillation rise time, SPTR and PTS have to be lowered simultaneously to fully profit from these fast photons in order to improve the CTR significantly.

  20. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  1. Rare isotope beam energy measurements and scintillator developments for ReA3

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Ying

    respect to the acceleration RF clock. The time-of-flight system can provide beam energy information with precision of <0.1%. Scintillators are widely used to reliably measure beam profiles and beam distributions. At low energies, scintillator-based diagnostic devices are more problematic because of their fast light yield degradation under ion bombardment. The degradation of the scintillation yield of single crystal YAG: Ce under He+ irradiation at low energies between 28 and 58 keV has been systematically studied. The scintillator was irradiated at the rare isotope ReAccelerator (ReA) facility. The scintillation emission is attributed to its rapid 5d-4f transition of Ce3+ ions. As the bombardment time increases, an exponential decay of the light output is observed due to the induced radiation damage of the crystal lattice. The decrease of the experimentally observed light yield as a function of particle fluence is found to be in fair agreement with the Birks model. Analysis indicates that the damage cross section of scintillation centers slightly decreases with the ion energy. The scintillator degrades slower under higher-energy irradiation. In order to investigate scintillation degradation over a wide range of irradiation energies and scintillator materials, the scintillation processes for KBr, YAG:Ce, CaF2:Eu and CsI:Tl crystals under H2 + irradiation in the energy range of 600-2150 keV/u have been investigated. The data indicates that YAG:Ce and CsI:Tl can maintain stable luminescence under continuous ion bombardment for at least a total fluence of 1.8x10 12 ions/mm2. On the other hand, the luminescence of CaF2:Eu shows a rapid initial decay but then maintains a nearly constant luminescence yield. The extraordinary scintillation response of KBr is initially enhanced under ion bombardment, approaches a maximum, and then eventually decays. The scintillation efficiency of the CsI:Tl scintillator is superior to the other materials. The low-energy H2+ bombardment (25 ke

  2. New prototype scintillator detector for the Tibet ASγ experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Gou, Q.-B.; Cai, H.; Chen, T.-L.; Danzengluobu; Feng, C.-F.; Feng, Y.-L.; Feng, Z.-Y.; Gao, Q.; Gao, X.-J.; Guo, Y.-Q.; Guo, Y.-Y.; Hou, Y.-Y.; Hu, H.-B.; Jin, C.; Li, H.-J.; Liu, C.; Liu, M.-Y.; Qian, X.-L.; Tian, Z.; Wang, Z.; Xue, L.; Zhang, X.-Y.; Zhang, Xi-Ying

    2017-11-01

    The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m2 underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m2 as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for γ-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m2 by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. {This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of ~2.2 ns, and dynamic range from 1 to 500 minimum ionization particles}.

  3. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  4. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  5. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study

    PubMed Central

    2015-01-01

    Background The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. Methods In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. Results By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. Conclusions The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion. PMID:25602532

  6. Interstellar scintillations of PSR B1919+21: space-ground interferometry

    NASA Astrophysics Data System (ADS)

    Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.

    2017-07-01

    We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.

  7. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    NASA Astrophysics Data System (ADS)

    Carlson, Joseph S.; Feng, Patrick L.

    2016-10-01

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.

  8. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  9. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  10. A flexible scintillation light apparatus for rare events searches

    NASA Astrophysics Data System (ADS)

    Gironi, L.; Baldazzi, G.; Bonvicini, V.; Campana, R.; Capelli, S.; Evangelista, Y.; Fasoli, M.; Feroci, M.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Previtali, E.; Riganese, L.; Rashevsky, A.; Sisti, M.; Vacchi, A.; Vedda, A.; Zampa, G.; Zampa, N.; Zuffa, M.

    2016-05-01

    FLARES (a Flexible scintillation Light Apparatus for Rare Event Searches) is a project for an innovative detector technology to be applied to rare event searches, and in particular to neutrinoless double beta decay experiments. Its novelty is the enhancement and optimization of the collection of the scintillation light emitted by ultra-pure crystals through the use of arrays of high performance silicon photodetectors cooled to 120 K. This would provide scintillation detectors with ~1% level energy resolution, with the advantages of a technology offering relatively simple low cost mass scalability and powerful background reduction handles, as requested by future neutrinoless double beta decay experimental programs.

  11. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, M.; Miller, E. C.; Thompson, Alan K.; Kowler, A. L.; Vest, Robert E.; Yue, A. T.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-01

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B4C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched 10B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  12. Laser-beam scintillations for weak and moderate turbulence

    NASA Astrophysics Data System (ADS)

    Baskov, R. A.; Chumak, O. O.

    2018-04-01

    The scintillation index is obtained for the practically important range of weak and moderate atmospheric turbulence. To study this challenging range, the Boltzmann-Langevin kinetic equation, describing light propagation, is derived from first principles of quantum optics based on the technique of the photon distribution function (PDF) [Berman et al., Phys. Rev. A 74, 013805 (2006), 10.1103/PhysRevA.74.013805]. The paraxial approximation for laser beams reduces the collision integral for the PDF to a two-dimensional operator in the momentum space. Analytical solutions for the average value of PDF as well as for its fluctuating constituent are obtained using an iterative procedure. The calculated scintillation index is considerably greater than that obtained within the Rytov approximation even at moderate turbulence strength. The relevant explanation is proposed.

  13. A comparative study of the luminescence properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO single crystal scintillators for use in medical X-ray imaging.

    PubMed

    Valais, I; Michail, C; David, S; Nomicos, C D; Panayiotakis, G S; Kandarakis, I

    2008-06-01

    The present study is a comparative investigation of the luminescence properties of (Lu,Y)(2)SiO(5):Ce (LYSO:Ce), Lu(2)SiO(5):Ce (LSO:Ce), Gd(2)SiO(5):Ce (GSO:Ce) and (Bi(4)Ge(3)O(12)) BGO single crystal scintillators under medical X-ray excitation. All scintillating crystals have dimensions of 10 x 10 x 10 mm(3) are non-hygroscopic exhibiting high radiation absorption efficiency in the energy range used in medical imaging applications. The comparative investigation was performed by determining the absolute luminescence efficiency (emitted light flux over incident X-ray exposure) in X-ray energies employed in general X-ray imaging (40-140 kV) and in mammographic X-ray imaging (22-49 kV). Additionally, light emission spectra of crystals at various X-ray energies were measured, in order to determine the spectral compatibility to optical photon detectors incorporated in medical imaging systems and the overall efficiency (effective efficiency) of a scintillator-optical detector combination. The light emission performance of LYSO:Ce and LSO:Ce scintillators studied was found very high for X-ray imaging.

  14. Analysis of strong scintillation events by using GPS data at low latitudes

    NASA Astrophysics Data System (ADS)

    Forte, Biagio; Jakowski, Norbert; Wilken, Volker

    2010-05-01

    Drifting structures charaterised by inhomogeneities in the spatial electron density distribution at ionospheric heights originate scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Strong scintillation events have disruptive effects on a number of technological applications. In particular, operations and services based on GPS signals and receivers may experience severe disruption due to a significant degradation of the signal-to-noise ratio, eventually leading to signal loss of lock. Experimental scintillation data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2006) have been analysed. The GPS receiver is particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity is recorded in the post-sunset period (saturating S4 and SI as high as 20 dB). An overview of these events is presented, by taking into account scintillation impact on the signal intensity, phase, and dynamics. In particular, the interpretation of these events based on a refined scattering theory is provided with possible consequences for standard scintillation models.

  15. Signal pulse emulation for scintillation detectors using Geant4 Monte Carlo with light tracking simulation.

    PubMed

    Ogawara, R; Ishikawa, M

    2016-07-01

    The anode pulse of a photomultiplier tube (PMT) coupled with a scintillator is used for pulse shape discrimination (PSD) analysis. We have developed a novel emulation technique for the PMT anode pulse based on optical photon transport and a PMT response function. The photon transport was calculated using Geant4 Monte Carlo code and the response function with a BC408 organic scintillator. The obtained percentage RMS value of the difference between the measured and simulated pulse with suitable scintillation properties using GSO:Ce (0.4, 1.0, 1.5 mol%), LaBr3:Ce and BGO scintillators were 2.41%, 2.58%, 2.16%, 2.01%, and 3.32%, respectively. The proposed technique demonstrates high reproducibility of the measured pulse and can be applied to simulation studies of various radiation measurements.

  16. Continuous depth-of-interaction encoding using phosphor-coated scintillators.

    PubMed

    Du, Huini; Yang, Yongfeng; Glodo, Jarek; Wu, Yibao; Shah, Kanai; Cherry, Simon R

    2009-03-21

    We investigate a novel detector using a lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium-aluminum-gallium oxide:cerium, Y(3)(Al,Ga)(5)O(12):Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of approximately 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5 x 1.5 x 20 mm(3) LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 x 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be approximately 8 mm for this 2 cm thick array.

  17. Continuous Depth-of-Interaction Encoding Using Phosphor-Coated Scintillators

    PubMed Central

    Du, Huini; Yang, Yongfeng; Glodo, Jarek; Wu, Yibao; Shah, Kanai; Cherry, Simon R.

    2009-01-01

    We investigate a novel detector using lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium aluminum gallium oxide:cerium, Y3(Al,Ga)5O12:Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of ∼ 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5×1.5×20 mm3 LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 by 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be ∼8 mm for this 2 cm thick array. PMID:19258685

  18. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  19. Design Study of the Absorber Detector of a Compton Camera for On-Line Control in Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Richard, M.-H.; Dahoumane, M.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Krimmer, J.; Letang, J. M.; Lojacono, X.; Maxim, V.; Montarou, G.; Ray, C.; Roellinghoff, F.; Testa, E.; Walenta, A. H.

    2012-10-01

    The goal of this study is to tune the design of the absorber detector of a Compton camera for prompt γ-ray imaging during ion beam therapy. The response of the Compton camera to a photon point source with a realistic energy spectrum (corresponding to the prompt γ-ray spectrum emitted during the carbon irradiation of a water phantom) is studied by means of Geant4 simulations. Our Compton camera consists of a stack of 2 mm thick silicon strip detectors as a scatter detector and of a scintillator plate as an absorber detector. Four scintillators are considered: LYSO, NaI, LaBr3 and BGO. LYSO and BGO appear as the most suitable materials, due to their high photo-electric cross-sections, which leads to a high percentage of fully absorbed photons. Depth-of-interaction measurements are shown to have limited influence on the spatial resolution of the camera. In our case, the thickness which gives the best compromise between a high percentage of photons that are fully absorbed and a low parallax error is about 4 cm for the LYSO detector and 4.5 cm for the BGO detector. The influence of the width of the absorber detector on the spatial resolution is not very pronounced as long as it is lower than 30 cm.

  20. PREFACE: Applications of Novel Scintillators for Research and Industry (ANSRI 2015)

    NASA Astrophysics Data System (ADS)

    Roberts, O. J.

    2015-06-01

    Scintillator detectors are used widely in the field of γ- and X-ray spectroscopy, particularly in the mid 1900s when the invention of NaI(Tl) by nobel laureate Robert Hofstadter in 1948, spurred the creation of new scintillator materials. In the development of such new scintillators, important characteristics such as its intrinsic efficiency, position sensitivity, robustness, energy and timing response, light output, etc, need to be addressed. To date, these requirements cannot be met by a single type of scintillator alone and therefore the development of an ''ideal'' scintillator remains the holy grail of nuclear instrumentation. Consequently, the last two decades have seen significant progress in the development of scintillator crystals, driven largely by technological advances. Conventional inorganic scintillators such as NaI(Tl) and BGO are now being replaced with better, novel organic, inorganic, ceramic and plastic scintillators offering a wider variety of options for many applications. The workshop on the Applications of Novel Scintillators in Research and Industry was held at University College Dublin in January 2015 and covered a wide range of topics that characterise modern advances in the field of scintillator technology. This set of proceedings covers areas including the growth, production and characterisation of such contemporary scintillators, along with their applications in various fields, such as; Medical Imaging; Defence/Security; Astrophysics; and Nuclear/Particle Physics. We would like to thank all those who presented their recent results on their research at the workshop. These proceedings atest to the excitement and interest in such a broad field, that pervades the pursuit of the development of novel materials for future applications. We would also like to thank Professor Luigi Piro, for giving an interesting public talk during the conference, and to the Institute of Physics Ireland Group for supporting the event. We thank ORTEC for

  1. Scintillating glasses for total absorption dual readout calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonvicini, V.; Driutti, A.; Cauz, D.

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional andmore » silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.« less

  2. Improved proton CT imaging using a bismuth germanium oxide scintillator.

    PubMed

    Tanaka, Sodai; Nishio, Teiji; Tsuneda, Masato; Matsushita, Keiichiro; Kabuki, Shigeto; Uesaka, Mitsuru

    2018-02-02

    Range uncertainty is among the most formidable challenges associated with the treatment planning of proton therapy. Proton imaging, which includes proton radiography and proton computed tomography (pCT), is a useful verification tool. We have developed a pCT detection system that uses a thick bismuth germanium oxide (BGO) scintillator and a CCD camera. The current method is based on a previous detection system that used a plastic scintillator, and implements improved image processing techniques. In the new system, the scintillation light intensity is integrated along the proton beam path by the BGO scintillator, and acquired as a two-dimensional distribution with the CCD camera. The range of a penetrating proton is derived from the integrated light intensity using a light-to-range conversion table, and a pCT image can be reconstructed. The proton range in the BGO scintillator is shorter than in the plastic scintillator, so errors due to extended proton ranges can be reduced. To demonstrate the feasibility of the pCT system, an experiment was performed using a 70 MeV proton beam created by the AVF930 cyclotron at the National Institute of Radiological Sciences. The accuracy of the light-to-range conversion table, which is susceptible to errors due to its spatial dependence, was investigated, and the errors in the acquired pixel values were less than 0.5 mm. Images of various materials were acquired, and the pixel-value errors were within 3.1%, which represents an improvement over previous results. We also obtained a pCT image of an edible chicken piece, the first of its kind for a biological material, and internal structures approximately one millimeter in size were clearly observed. This pCT imaging system is fast and simple, and based on these findings, we anticipate that we can acquire 200 MeV pCT images using the BGO scintillator system.

  3. Improved proton CT imaging using a bismuth germanium oxide scintillator

    NASA Astrophysics Data System (ADS)

    Tanaka, Sodai; Nishio, Teiji; Tsuneda, Masato; Matsushita, Keiichiro; Kabuki, Shigeto; Uesaka, Mitsuru

    2018-02-01

    Range uncertainty is among the most formidable challenges associated with the treatment planning of proton therapy. Proton imaging, which includes proton radiography and proton computed tomography (pCT), is a useful verification tool. We have developed a pCT detection system that uses a thick bismuth germanium oxide (BGO) scintillator and a CCD camera. The current method is based on a previous detection system that used a plastic scintillator, and implements improved image processing techniques. In the new system, the scintillation light intensity is integrated along the proton beam path by the BGO scintillator, and acquired as a two-dimensional distribution with the CCD camera. The range of a penetrating proton is derived from the integrated light intensity using a light-to-range conversion table, and a pCT image can be reconstructed. The proton range in the BGO scintillator is shorter than in the plastic scintillator, so errors due to extended proton ranges can be reduced. To demonstrate the feasibility of the pCT system, an experiment was performed using a 70 MeV proton beam created by the AVF930 cyclotron at the National Institute of Radiological Sciences. The accuracy of the light-to-range conversion table, which is susceptible to errors due to its spatial dependence, was investigated, and the errors in the acquired pixel values were less than 0.5 mm. Images of various materials were acquired, and the pixel-value errors were within 3.1%, which represents an improvement over previous results. We also obtained a pCT image of an edible chicken piece, the first of its kind for a biological material, and internal structures approximately one millimeter in size were clearly observed. This pCT imaging system is fast and simple, and based on these findings, we anticipate that we can acquire 200 MeV pCT images using the BGO scintillator system.

  4. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less

  5. Triple-Label β Liquid Scintillation Counting

    PubMed Central

    Bukowski, Thomas R.; Moffett, Tyler C.; Revkin, James H.; Ploger, James D.; Bassingthwaighte, James B.

    2010-01-01

    The detection of radioactive compounds by liquid scintillation has revolutionized modern biology, yet few investigators make full use of the power of this technique. Even though multiple isotope counting is considerably more difficult than single isotope counting, many experimental designs would benefit from using more than one isotope. The development of accurate isotope counting techniques enabling the simultaneous use of three β-emitting tracers has facilitated studies in our laboratory using the multiple tracer indicator dilution technique for assessing rates of transmembrane transport and cellular metabolism. The details of sample preparation, and of stabilizing the liquid scintillation spectra of the tracers, are critical to obtaining good accuracy. Reproducibility is enhanced by obtaining detailed efficiency/quench curves for each particular set of tracers and solvent media. The numerical methods for multiple-isotope quantitation depend on avoiding error propagation (inherent to successive subtraction techniques) by using matrix inversion. Experimental data obtained from triple-label β counting illustrate reproducibility and good accuracy even when the relative amounts of different tracers in samples of protein/electrolyte solutions, plasma, and blood are changed. PMID:1514684

  6. Study of properties of the plastic scintillator EJ-260 under irradiation with 150 MeV protons and 1.2MeV gamma-rays

    NASA Astrophysics Data System (ADS)

    Dormenev, V.; Brinkmann, K.-T.; Korjik, M.; Novotny, R. W.

    2017-11-01

    One of the most critical aspects for the application of a scintillation material in high energy physics is the degradation of properties of the material in an environment of highly ionizing particles in particular due to hadrons. There are presently several detector concepts in consideration being based on organic scintillator material for fast timing of charged particles or sampling calorimeters. We have tested different samples of the organic plastic scintillator EJ-260 produced by the company Eljen Technology (Sweetwater, TX, USA). The ongoing activity has characterized the relevant parameters such as light output, kinetics and temperature dependence. The study has focused on the change of performance after irradiation with 150 MeV protons up to an integral fluence of 5·1013 protons/cm2 as well as with a strong 60Co γ-source accumulating an integral dose of 100 Gy. The paper will report on the obtained results.

  7. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  8. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    DOE PAGES

    Carlson, Joseph S.; Feng, Patrick L.

    2016-06-24

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less

  9. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Heemskerk, Jan W. T.; Kreuger, Rob; Goorden, Marlies C.; Korevaar, Marc A. N.; Salvador, Samuel; Seeley, Zachary M.; Cherepy, Nerine J.; van der Kolk, Erik; Payne, Stephen A.; Dorenbos, Pieter; Beekman, Freek J.

    2012-07-01

    Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV (99mTc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these ‘slow’ dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.

  10. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  11. Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.

    2017-01-01

    Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.

  12. Background characterization of an ultra-low background liquid scintillation counter

    DOE PAGES

    Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.; ...

    2017-01-26

    The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.

  13. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  14. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  15. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS)

    PubMed Central

    Paroder-Belenitsky, Monika; Maestas, Matthew J.; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L. Mario; Carrasco, Nancy

    2011-01-01

    I- uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na+/I- symporter (NIS) with an electrogenic 2Na+ : 1I- stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I- transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the Km for the anion substrates. Unlike WT NIS, which mediates symport of Na+ and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 2∶1 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na+/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot. PMID:22011571

  16. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  17. Seeing the invisible: direct visualization of therapeutic radiation beams using air scintillation.

    PubMed

    Fahimian, Benjamin; Ceballos, Andrew; Türkcan, Silvan; Kapp, Daniel S; Pratx, Guillem

    2014-01-01

    To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300-430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r(2) = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r(2) = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

  18. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.

    PubMed

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  19. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    PubMed Central

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-01-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors. PMID:21731108

  20. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    NASA Astrophysics Data System (ADS)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  1. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    DOEpatents

    Goodman, Charles D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time.

  2. X-ray detection properties of plastic scintillators containing surface-modified Bi2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-05-01

    Plastic scintillators containing Bi2O3 nanoparticles (NPs) were developed as detectors for X-ray synchrotron radiation. A hydrothermal method was used to synthesize the NPs that had average particle sizes of less than 10 nm. Higher NP concentration led to a higher detection efficiency at 67.4 keV. The light yield of the scintillator containing 5 wt % Bi2O3 NPs was comparable with or higher than that of the commercially available plastic scintillator, EJ 256. The time resolution of the developed scintillation detector equipped with each sample scintillator was approximately 0.6 ns. Dispersion of nanoparticles within plastic scintillators is generally applicable and has wide application as a method for preparation of plastic scintillators for detecting X-ray synchrotron radiation.

  3. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  4. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target

  5. Neutron/ γ-ray digital pulse shape discrimination with organic scintillators

    NASA Astrophysics Data System (ADS)

    Kaschuck, Y.; Esposito, B.

    2005-10-01

    Neutrons and γ-rays produce light pulses with different shapes when interacting with organic scintillators. This property is commonly used to distinguish between neutrons (n) and γ-rays ( γ) in mixed n/ γ fields as those encountered in radiation physics experiments. Although analog electronic pulse shape discrimination (PSD) modules have been successfully used for many years, they do not allow data reprocessing and are limited in count rate capability (typically up to 200 kHz). The performance of a n/ γ digital pulse shape discrimination (DPSD) system by means of a commercial 12-bit 200 MSamples/s transient recorder card is investigated here. Three organic scintillators have been studied: stilbene, NE213 and anthracene. The charge comparison method has been used to obtain simultaneous n/ γ discrimination and pulse height analysis. The importance of DPSD for high-intensity radiation field measurements and its advantages with respect to analog PSD are discussed. Based on post-experiment simulations with acquired data, the requirements for fast digitizers to provide DPSD with organic scintillators are also analyzed.

  6. CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.

    PubMed

    Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong

    2016-09-01

    Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Energy calibration of organic scintillation detectors for. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Jiahui; Xiao Genlai; Liu Jingyi

    1988-10-01

    An experimental method of calibrating organic detectors is described. A NaI(T1) detector has some advantages of high detection efficiency, good energy resolution, and definite position of the back-scattering peak. The precise position of the Compton edge can be determined by coincidence measurement between the pulse of an organic scintillation detector and the pulse of the back-scattering peak from NaI(T1) detector. It can be used to calibrate various sizes and shapes of organic scintillation detectors simply and reliably. The home-made plastic and organic liquid scintillation detectors are calibrated and positions of the Compton edge as a function of ..gamma..-ray energies aremore » obtained.« less

  8. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  9. X-ray Scintillation in Lead Halide Perovskite Crystals

    PubMed Central

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications. PMID:27849019

  10. An assessment of the application of in situ ion-density data from DMSP to modeling of transionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Secan, James A.; Reinleitner, Lee A.; Bussey, Robert M.

    1990-03-01

    Modern military communication, navigation, and surveillance systems depend on reliable, noise-free transionospheric radio frequency channels. They can be severely impacted by small scale electron-density irregularities in the ionosphere, which cause both phase and amplitude scintillation. Basic tools used in planning and mitigation schemes are climatological in nature and thus may greatly over- and under-estimate the effects of scintillation in a given scenario. The results are summarized of a 3 year investigation into the feasibility of using in-situ observations of the ionosphere from the USAF DMSP satellite to calculate estimates of irregularity parameters that could be used to update scintillation models in near real time. Estimates for the level of intensity and phase scintillation on a transionospheric UHF radio link in the early evening auroral zone were calculated from DMSP Scintillation Meter (SM) data and compared to the levels actually observed. The intensity scintillation levels predicted and observed compared quite well, but the comparison with the phase scintillation data was complicated by low-frequency phase noise on the UHF radio link. Results are presented from analysis of DMSP SSIES data collected near Kwajalein Island in conjunction with a propagation-effects experiment. Preliminary conclusions to the assessment study are: (1) the DMSP SM data can be used to make quantitative estimates of the level of scintillation at auroral latitudes, and (2) it may be possible to use the data as a qualitative indicator of scintillation activity levels at equatorial latitudes.

  11. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.

    PubMed

    Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu

    2016-08-16

    The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Signal pulse emulation for scintillation detectors using Geant4 Monte Carlo with light tracking simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawara, R.; Ishikawa, M., E-mail: masayori@med.hokudai.ac.jp

    The anode pulse of a photomultiplier tube (PMT) coupled with a scintillator is used for pulse shape discrimination (PSD) analysis. We have developed a novel emulation technique for the PMT anode pulse based on optical photon transport and a PMT response function. The photon transport was calculated using Geant4 Monte Carlo code and the response function with a BC408 organic scintillator. The obtained percentage RMS value of the difference between the measured and simulated pulse with suitable scintillation properties using GSO:Ce (0.4, 1.0, 1.5 mol%), LaBr{sub 3}:Ce and BGO scintillators were 2.41%, 2.58%, 2.16%, 2.01%, and 3.32%, respectively. The proposedmore » technique demonstrates high reproducibility of the measured pulse and can be applied to simulation studies of various radiation measurements.« less

  13. Neutron detection with noble gas scintillation: a review of recent results

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, Michael; Miller, Eric C.; Thompson, Alan K.; Kowler, Alex; Vest, Rob; Yue, Andrew; Koeth, Tim; Al-Sheikhly, Mohammad; Clark, Charles

    2015-08-01

    Thermal neutron detection is of vital importance to many disciplines, including neutron scattering, workplace monitoring, and homeland protection. We survey recent results from our collaboration which couple low-pressure noble gas scintillation with novel approaches to neutron absorbing materials and geometries to achieve potentially advantageous detector concepts. Noble gas scintillators were used for neutron detection as early as the late 1950's. Modern use of noble gas scintillation includes liquid and solid forms of argon and xenon in the dark matter and neutron physics experiments and commercially available high pressure applications have achieved high resolution gamma ray spectroscopy. Little attention has been paid to the overlap between low pressure noble gas scintillation and thermal neutron detection, for which there are many potential benefits.

  14. A scintillator purification plant and fluid handling system for SNO+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Richard J., E-mail: ford@snolab.ca

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPOmore » and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.« less

  15. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C.; Coplan, M.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portionmore » of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.« less

  16. Very fast doped LaBr.sub.3 scintillators and time-of-flight PET

    DOEpatents

    Shah, Kanai S.

    2006-10-31

    The present invention concerns very fast scintillator materials capable of resolving the position of an annihilation event within a portion of a human body cross-section. In one embodiment, the scintillator material comprises LaBr.sub.3 doped with cerium. Particular attention is drawn to LaBr.sub.3 doped with a quantity of Ce that is chosen for improving the timing properties, in particular the rise time and resultant timing resolution of the scintillator, and locational capabilities of the scintillator.

  17. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  18. Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Fusco, Thierry; Vedrenne, Nicolas

    2006-03-01

    Adaptive optics provides a real-time compensation for atmospheric turbulence that severely limits the resolution of ground-based observation systems. The correction quality relies on a key component, that is, the wavefront sensor (WFS). When observing extended sources, WFS precision is limited by anisoplanatism effects. Anisoplanatism induces a variation of the turbulent phase and of the collected flux in the field of view. We study the effect of this phase and scintillation anisoplanatism on wavefront analysis. An analytical expression of the error induced is given in the Rytov regime. The formalism is applied to a solar and an endoatmospheric observation. Scintillation effects are generally disregarded, especially in astronomical conditions. We shall prove that this approximation is not valid with extended objects.

  19. Day and nighttime L-Band amplitude scintillations during low solar activity at a low latitude station in the South Pacific region

    NASA Astrophysics Data System (ADS)

    Prasad, Ramendra; Kumar, Sushil

    2017-12-01

    A morphological study of GPS L-band amplitude scintillations observed at a low latitude station, Suva (18.1°S, 178.4°E), Fiji, during low solar activity year 2010 of solar cycle 24, has been presented. Out of a total of 480 scintillation events recorded during 2010, 84.4% were weak (0.2 ≤ S4 < 0.3), 14.6% moderate (0.3 ≤ S4 < 0.45) and only 1% strong (0.45 ≤ S4). The amplitude scintillations were most pronounced in the local daytime with January registering the highest occurrence. Seasonal analysis revealed maximum scintillation occurrence during summer as compared to winter and equinox seasons. The daytime scintillation with a maximum in the summer is consistent with localized blanketing sporadic E observations and could also be possibly due to lightning activity around the observing station. Annual percentage occurrence shows that scintillations occurred mostly in the daytime with peak occurrence at around 05:00-09:00 LT. The daytime strong scintillation events were not associated with vTEC depletions and phase scintillations, but the signal to noise ratio during the scintillation events decreased with increase in scintillation index (S4). However, the post-midnight strong amplitude scintillations were associated with vTEC depletions and phase scintillations indicative of large scale irregularities (spread-F). The geomagnetic activity effect showed enhanced occurrence on geomagnetically disturbed days as compared to quite conditions. The geomagnetic storm effect on scintillations for 17 storms of different strengths (Dst ≤ 50 nT) during 2010-2011 showed an increase in the occurrence of post-storm scintillations, on the days following the storm.

  20. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  1. The uniformity and imaging properties of some new ceramic scintillators

    NASA Astrophysics Data System (ADS)

    Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford

    2012-10-01

    Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.

  2. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Deng, Cheng; Jiang, Huimin; Zheng, Zhanlong; Gong, Rui; Bi, Yutie; Zhang, Lin; Lin, Runxiong

    2016-11-01

    To investigate the influence of both the first luminescent additive and the wavelength-shifter on the performance of plastic scintillator, a series of polystyrene-based scintillator had been prepared by thermal polymerization. Three first luminescent additives (PPO, p-TP and b-PBD) and four wavelength-shifters (POPOP, Bis-MSB, Me-MSB and DPA) were added to the scintillators respectively. The comparison results showed that PPO and POPOP were the most adequate fluorescent dyes for the polystyrene-based plastic scintillator. Moreover, with the increase of the concentration of PPO and POPOP, the fluorescence intensity and light yield were increased firstly and then decreased. The plastic scintillator containing 2% PPO and 0.02% POPOP had the highest fluorescence intensity and light yield.

  3. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  4. Neutron induced radiation damage of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector.

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Jivan, H.; Erasmus, R.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Mellado, B.; Sideras-Haddad, E.; Solovyanov, O.; Sandrock, C.; Peter, G.; Tlou, S.; Khanye, N.; Tjale, B.

    2017-07-01

    With the prediction that the plastic scintillators in the gap region of the Tile Calorimeter will sustain a significantly large amount of radiation damage during the HL-LHC run time, the current plastic scintillators will need to be replaced during the phase 2 upgrade in 2018. The scintillators in the gap region were exposed to a radiation environment of up to 10 kGy/year during the first run of data taking and with the luminosity being increased by a factor of 10, the radiation environment will be extremely harsh. We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a neutron beam of the IBR-2 pulsed reactor in Joint Institute for Nuclear Research (JINR), Dubna. A comparison is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov. The samples were subjected to irradiation with high energy neutrons and a flux density range of 1 × 106-7.7 × 106. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests done indicate a minute change in the optical properties of the scintillators with further studies underway to gain a better understanding of the interaction between neutrons with plastic scintillators.

  5. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  6. SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.

    PubMed

    Cho, S; Lee, S; Shin, J; Min, B; Chung, K; Shin, D; Lim, Y; Park, S

    2012-06-01

    To analyze Bragg-peak beams in SOBP (spread-out Bragg-peak) beam using CCD (charge-coupled device) camera - scintillation screen system. We separated each Bragg-peak beam using light output of high sensitivity scintillation material acquired by CCD camera and compared with Bragg-peak beams calculated by Monte Carlo simulation. In this study, CCD camera - scintillation screen system was constructed with a high sensitivity scintillation plate (Gd2O2S:Tb) and a right-angled prismatic PMMA phantom, and a Marlin F-201B, EEE-1394 CCD camera. SOBP beam irradiated by the double scattering mode of a PROTEUS 235 proton therapy machine in NCC is 8 cm width, 13 g/cm 2 range. The gain, dose rate and current of this beam is 50, 2 Gy/min and 70 nA, respectively. Also, we simulated the light output of scintillation plate for SOBP beam using Geant4 toolkit. We evaluated the light output of high sensitivity scintillation plate according to intergration time (0.1 - 1.0 sec). The images of CCD camera during the shortest intergration time (0.1 sec) were acquired automatically and randomly, respectively. Bragg-peak beams in SOBP beam were analyzed by the acquired images. Then, the SOBP beam used in this study was calculated by Geant4 toolkit and Bragg-peak beams in SOBP beam were obtained by ROOT program. The SOBP beam consists of 13 Bragg-peak beams. The results of experiment were compared with that of simulation. We analyzed Bragg-peak beams in SOBP beam using light output of scintillation plate acquired by CCD camera and compared with that of Geant4 simulation. We are going to study SOBP beam analysis using more effective the image acquisition technique. © 2012 American Association of Physicists in Medicine.

  7. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    NASA Technical Reports Server (NTRS)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  8. Organic scintillators with pulse shape discrimination for detection of radiation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew; Carman, M. Leslie; Glenn, Andrew M.; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-09-01

    The detection of neutrons in the presence of gamma-ray fields has important applications in the fields of nuclear physics, homeland security, and medical imaging. Organic scintillators provide several attractive qualities as neutron detection materials including low cost, fast response times, ease of scaling, and the ability to implement pulse shape discrimination (PSD) to discriminate between neutrons and gamma-rays. This talk will focus on amorphous organic scintillators both in plastic form and small-molecule organic glass form. The first section of this talk will describe recent advances and improvements in the performance of PSD-capable plastic scintillators. The primary advances described in regard to modification of the polymer matrix, evaluation of new scintillating dyes, improved fabrication conditions, and implementation of additives which impart superior performance and mechanical properties to PSD-capable plastics as compared to commercially-available plastics and performance comparable to PSD-capable liquids. The second section of this talk will focus on a class of small-molecule organic scintillators based on modified indoles and oligophenylenes which form amorphous glasses as PSD-capable neutron scintillation materials. Though indoles and oligophenylenes have been known for many decades, their PSD properties have not been investigated and their scintillation properties only scantily investigated. Well-developed synthetic methodologies have permitted the synthesis of a library of structural analogs of these compounds as well as the investigation of their scintillation properties. The emission wavelengths of many indoles are in the sensitive region of common photomultiplier tubes, making them appropriate to be used as scintillators in either pure or doped form. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work has been supported by the U

  9. Observations of Global and Regional Ionospheric Irregularities and Scintillation Using GNSS Tracking Networks

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Valant-Spaight, Bonnie; Bar-Sever, Yoaz; Romans, Larry J.; Skone, Susan; Sparks, Lawrence; Hall, G. Martin

    2013-01-01

    The rate of TEC index (ROTI) is a measurement that characterizes ionospheric irregularities. It can be obtained from standard GNSS dual-frequency phase data collected using a geodetic type of GNSS receiver. By processing GPS data from ground-based networks of International GNSS Service and Continuously Operating Reference Station (CORS), ROTI maps have been produced to observe global and regional scintillation activities. A major mid-latitude scintillation event in the contiguous United States is reported here that was captured in ROTI maps produced using CORS GPS data collected during a space weather storm. The analyses conducted in this work and previously by another group indicate that ROTI is a good occurrence indicator of both amplitude and phase scintillations of GPS L-band signals, even though the magnitudes of ROTI, S4, and sigma(sub phi) can be different. For example, our analysis indicates that prominent ROTI and the L1 phase scintillation (sigma(sub phi)) are well correlated temporally in the polar region while L1 amplitude scintillation rarely occurs. The differences are partially attributed to physics processes in different latitude regions, such as high-speed plasma convection in the polar region that can suppress the amplitude scintillation. An analysis of the impact of ionospheric scintillation on precise positioning, which requires use of dual-frequency phase data, is also conducted. The results indicate that significant (more than an order of magnitude) positioning errors can occur under phase scintillation conditions.

  10. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  11. Zonal Drift Variations and Suppression of Ionospheric Scintillation During St. Patrick's Day Storm Observed by Pingtung SCINDA Station in Taiwan

    NASA Astrophysics Data System (ADS)

    Su, S. Y.; Nayak, C.; Tsai, L. C.; Caton, R. G.; Groves, K. M.

    2016-12-01

    Variations of zonal drift and ionospheric VHF scintillations observed by a SCINDA station in Southern Taiwan during the St. Patrick's day geomagnetic storm are studied. Although scintillations were observed for 6 consecutive days before the storm, they were absence during the storm period. Data from VHF receivers, ionosonde and in situ plasma density observations from ESA's SWARM constellation are used to study the ionospheric irregularity/scintillation events in the Taiwanese sector to compare with what happened in the Indian sectors. The absence of scintillation in the Taiwanese sector during the storm period seems to be caused by a reduced pre-reversal enhancement (PRE) electric field from a westward prompt-penetration electric field (PPEF) during the storm. A low post-sunset ionosphere thus becomes unfavorable for the Rayleigh-Taylor instability to occur. On the contrary, the PPEFs were found to strongly enhance the PRE electric field in the Indian sector to cause the ionospheric irregularities/scintillations in the post-sunset sector. Zonal drift variations during the storm time are also discussed in conjunction with the irregularity/scintillation occurrences.

  12. Doped Lanthanum Hafnates as Scintillating Materials for High-Energy Photon Detection

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Recent years have seen the emergence of nanocrystalline complex oxide scintillators for use in X-ray and gamma-ray detection. In this study, we investigate the structural and optical properties of La2Hf2O7 nanoparticles doped with varying levels of Eu3+ or Ce3+ by use of X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and optical photoluminescence. In addition, scintillation response under X-ray and gamma-ray exposure is reported. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  13. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    PubMed

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  14. Scintillator performance considerations for dedicated breast computed tomography

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2017-09-01

    Dedicated breast computed tomography (BCT) is an emerging clinical modality that can eliminate tissue superposition and has the potential for improved sensitivity and specificity for breast cancer detection and diagnosis. It is performed without physical compression of the breast. Most of the dedicated BCT systems use large-area detectors operating in cone-beam geometry and are referred to as cone-beam breast CT (CBBCT) systems. The large-area detectors in CBBCT systems are energy-integrating, indirect-type detectors employing a scintillator that converts x-ray photons to light, followed by detection of optical photons. A key consideration that determines the image quality achieved by such CBBCT systems is the choice of scintillator and its performance characteristics. In this work, a framework for analyzing the impact of the scintillator on CBBCT performance and its use for task-specific optimization of CBBCT imaging performance is described.

  15. A study on the radiation resistance of CdWO4 thin-film scintillators deposited by using an electron-beam physical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Park, Seyong; Yoon, Young Soo

    2016-09-01

    In this paper, we report the first successful fabrication of CdWO4 thin film scintillators deposited on quartz glass substrates by using an electron-beam physical vapor deposition method. The films were dense, uniform, and crack-free. CdWO4 thin-film samples of varying thicknesses were investigated by using structural and optical characterization techniques. An optimized thickness for the CdWO4 thin-film scintillators was discovered. The scintillation and the optical properties were found to depend strongly on the annealing process. The annealing process resulted in thin films with a distinct crystal structure and with improved transparency and scintillation properties. For potential applications in gamma-ray energy storage systems, photoluminescence measurements were performed using gamma rays at a dose rate of 10 kGy h-1.

  16. Calibration of a stack of NaI scintillators at the Berkeley Bevalac

    NASA Technical Reports Server (NTRS)

    Schindler, S. M.; Buffington, A.; Lau, K.; Rasmussen, I. L.

    1983-01-01

    An analysis of the carbon and argon data reveals that essentially all of the charge-changing fragmentation reactions within the stack can be identified and removed by imposing the simple criteria relating the observed energy deposition profiles to the expected Bragg curve depositions. It is noted that these criteria are even capable of identifying approximately one-third of the expected neutron-stripping interactions, which in these cases have anomalous deposition profiles. The contribution of mass error from uncertainty in delta E has an upper limit of 0.25 percent for Mn; this produces an associated mass error for the experiment of about 0.14 amu. It is believed that this uncertainty will change little with changing gamma. Residual errors in the mapping produce even smaller mass errors for lighter isotopes, whereas photoelectron fluctuations and delta-ray effects are approximately the same independent of the charge and energy deposition.

  17. A systematic characterization of the low-energy photon response of plastic scintillation detectors.

    PubMed

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-07

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  18. Radioactivity observed in scintillation counters during the HEAO-1 mission

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; Jung, G. V.; Matteson, J. L.

    1989-01-01

    Results are reported from an analysis of radioactivity induced in the NaI medium-energy detector of the hard X-ray and low-energy gamma-ray experiment during the HEAO-1 satellite mission (1977-1978). Consideration is given to the instrument characteristics, the origin and variability of background, and the separation of cosmic-ray activity from the internal activity due to South Atlantic Anomaly trapped protons. Energy spectra and tables listing the nuclide identifications are provided.

  19. Next generation molten NaI batteries for grid scale energy storage

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Eccleston, Alexis; Lamb, Joshua; Read, Andrew C.; Robins, Matthew; Meaders, Thomas; Ingersoll, David; Clem, Paul G.; Bhavaraju, Sai; Spoerke, Erik D.

    2017-08-01

    Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3-xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120-180 °C) and boasts an energy density of >150 Wh kg-1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.

  20. Gamma-ray spectroscopy and pulse shape discrimination with a plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, E.; Markosyan, G.; Shirwadkar, U.; McClish, M.; Shah, K.

    2015-07-01

    The scintillation properties of a novel plastic scintillator loaded with an organolead compound are presented. Under X-ray and gamma-ray excitation, emission is observed peaking at 435 nm. The scintillation light output is 9000 ph/MeV. An energy resolution (full width at half maximum over the peak position) of about 16% was observed for the 662 keV full absorption peak. Excellent pulse shape discrimination between neutrons and gamma-rays with a Figure of Merit of 2.6 at 1 MeVee was observed.