Sample records for nai tl scintillation

  1. A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.

    2018-05-01

    Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.

  2. The quick and ultrasensitive determination of K in NaI using inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnquist, Isaac J.; Hoppe, Eric W.

    A highly sensitive, novel and quick assay method utilizing inductively coupled plasma mass spectrometry was developed for the determination of K in NaI powders and NaI(Tl) scintillator crystals for use in ultralow background applications. The determination of K (viz. 40K), as well as Th and U and their daughters, is important in ultralow background detector materials to ensure incorporation of materials of sufficiently high radiopurity. Through the use of improved instrumentation, cool plasma operating conditions, and meticulously clean sample preparations, detection limits of 11 fg natK∙g-1 (or 341 pBq 40K∙kg-1) was attained for K in pure water. Detection limits inmore » the sample matrix (i.e., NaI) were 0.529 ng natK∙g NaI-1 (or 16.4 Bq 40K∙kg NaI -1). A number of different precursor NaI powder samples and NaI(Tl) scintillator crystals were assayed for their K content. Determinations ranged from 0.757 – 31.4 ng natK∙g NaI-1. This method allows for the screening of materials to unprecedented levels in a fraction of the time compared to gamma counting techniques, providing a useful method for a more effective screening tool of K in ultralow background detector materials.« less

  3. Characterization of NaI crystal scintillators for the COHERENT collaboration

    NASA Astrophysics Data System (ADS)

    Erkela, Eric; Coherent Collaboration

    2017-09-01

    The COHERENT project aims to make a first observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) using a set of complimentary detector arrays located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Using NaI scintillators acquired from the DHS-ASP program, we plan to construct a multi-tonne array with the capacity to detect CEvNS even in the presence of moderate background. Such an array would also have sensitivity to charged-current scattering of the SNS' pion Decay-At-Rest neutrinos with potential application to neutrinoless double-beta decay nuclear matrix element calculations. Optimization of the array design requires detailed characterization of the NaI scintillators themselves. We will show results on measurements of the light response and its linearity, as well as the energy resolution as a function of detector voltage. We also measured detector thresholds, dynamic range, and spatial and temporal variation of the detector response. This work is supported by the University of Washington Royalty Research Fund.

  4. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  5. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  6. Kinetic Monte Carlo simulations of scintillation processes in NaI(Tl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Wang, Zhiguo; Williams, Richard

    2014-04-26

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this work to simulate the kinetics of scintillation for a range of temperaturesmore » and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.« less

  7. Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Kerisit, Sebastien; Wang, Zhiguo; Williams, Richard T.; Grim, Joel Q.; Gao, Fei

    2014-04-01

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this paper to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.

  8. A New Columnar CsI(Tl) Scintillator for iQID detectors

    PubMed Central

    Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.

    2015-01-01

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444

  9. A New Columnar CsI(Tl) Scintillator for iQID detectors.

    PubMed

    Han, Ling; Miller, Brian W; Barber, H Bradford; Nagarkar, Vivek V; Furenlid, Lars R

    2014-09-12

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.

  10. Characterization of Two Ton NaI Scintillator

    NASA Astrophysics Data System (ADS)

    Maier, Alleta; Coherent Collaboration

    2017-09-01

    The COHERENT collaboration is dedicated to measuring Coherent Elastic Neutrino-Nucleus Scattering (CE νNS), an interaction predicted by the standard model that ultimately serves as a background floor for dark matter detection. In the pursuit of observing the N2 scaling predicted, COHERENT is deploying two tons of NaI[Tl] detector to observe CE νNS recoils of sodium nuclei. Before the two tons of this NaI[Tl] scintillator are deployed, however, all crystals and PMTs must be characterized to understand the individual properties vital to precision in the measurement of CE νNS. This detector is also expected to allow COHERENT to observe charged current and CE νNS interactions with 127I. A standard operating procedure is developed to characterize each detector based on seven properties relevant to precision in the measurement of CE νNS: energy scale, energy resolution, low-energy light yield non-linearity, decay time energy dependence, position variance, time variance, and background levels. Crystals will be tested and characterized for these properties in the context of a ton-scale NaI[Tl] detector. Preliminary development of the SOP has allowed for greater understanding of optimization methods needed for characterization for the ton scale detector. TUNL, NSF, Duke University.

  11. TlBr[sub x]I[sub (1[minus]x)] photodetectors for scintillation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1994-12-01

    This paper reports on the evaluation of photodetectors fabricated from a ternary semiconductor, TlBr[sub x]I[sub 1[minus]x] for application in scintillation spectroscopy. These photodetectors are characterized in terms of their resistivity, charge transport parameters, quantum efficiency as a function of wavelength, and finally their performance as scintillation spectrometers. The details about TlBr[sub x]I[sub 1[minus]x] purification, crystal growth and device fabrication are also addressed.

  12. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Lin, Shaopeng; Wang, Biao

    2017-04-01

    The NaI(Tl) scintillator is widely used in gamma spectrometer with photomultiplier tube (PMT) readout. Recently developed silicon photomultiplier (SiPM) offers gain and efficiency similar to those of PMT, but with merits such as low bias voltage, compact volume, low cost, high ruggedness and magnetic resonance compatibility. In this study, 2-in. and 1-in. NaI(Tl) scintillators were readout with SiPM arrays, which were made by tiling multiple SiPMs each with an active area of 6×6 mm2 on a printed circuit board. The energy resolutions for 661.6 keV gamma rays, obtained with Φ2×2 in. scintillator coupled to 6×6 ch SiPM array and Φ1×1 in. scintillator coupled to 4×4 ch SiPM array were 7.6% and 7.8%, respectively, and were very close to the results obtained with traditional bialkali PMT (7.3% and 7.6%, respectively). Scintillator coupled to photodetector with smaller area was also studied by adding a light guide or using scintillator with tapered head. The latter showed better performance than using light guide. The 1-in. NaI(Tl) scintillator with tapered head coupled to 2×2 ch SiPM array achieved 7.7% energy resolution at 661.6 keV, the same as that obtained with standard Φ1×1 in. scintillator coupled to 4×4 ch SiPM array. While the 2-in. scintillator with similar geometry showed degraded energy resolution, 10.2% at 661.6 keV, but could still be used when high efficiency is preferred over energy resolution.

  13. Luminescence and radiation resistance of undoped NaI crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiran, N., E-mail: shiran@isc.kharkov.com; Boiaryntseva, I.; Gektin, A.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found thatmore » defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.« less

  14. Scintillation characterization of the pure Tl2LiGdBr6 single crystal

    NASA Astrophysics Data System (ADS)

    Jang, Jonghun; Rooh, Gul; Kim, Sunghwan; Kim, HongJoo

    2018-05-01

    A pure Tl2LiGdBr6 (TLGB) single crystal was developed. This scintillator was grown by the two-zone vertical Bridgman technique. Owing to the improvement in the crystal quality of TLGB, excellent scintillation properties were observed. The characterization of this scintillation material was carried out under X- and γ-ray excitations. In the X-ray excitation emission spectrum, the Tl+ ion emission band was observed between 390 and 550 nm and peaked at 435 nm. Under 662 keV γ-ray excitation, the energy resolution and light yield of the grown sample were measured to be 7.2% (FWHM) and 27,000 ± 2,700 ph/MeV, respectively. In addition, under the same γ-ray excitation, scintillation decay time was also measured at room temperature. Three decay time components were found to be 56 ns (24%), 105 ns (53%), and 1.5 µs (23%). Further improvements in scintillation properties are expected with the good quality crystal of this compound.

  15. Particle discrimination of NaI(Tl) scintillator under high-energy neutron field to measure the photon energy spectrum

    NASA Astrophysics Data System (ADS)

    Kamada, So; Takada, Masashi; Suzuki, Toshikazu

    2014-09-01

    Photons are measured separately from neutrons in high-energy neutron fields using a NaI(Tl) scintillator, 7.62 cm in diameter and 7.62 cm in length, combined with a pulse-shape discrimination method. The particle discrimination capability for this scintillator is confirmed using a time-of-flight method. Neutron fields were produced by irradiating Li targets with 40 and 80 MeV proton beams at the cyclotron facility in the National Institute of Radiological Sciences. Figures of merit corresponding to particle discrimination for the scintillator at the two neutron fields are improved with higher neutron energies. Photon energy spectra for energies over 6.5 MeV can be measured using the NaI(Tl) scintillator.

  16. Study of NaI(Tl) scintillator cooled down to liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Sibczyński, P.; Moszyński, M.; Szczęśniak, T.; Czarnacki, W.

    2012-11-01

    Since early 50's NaI(Tl) scintillators have been commonly used in many branches of physics and industry due to their relatively low price, high light output and fair energy resolution. Through this period of time, both spectroscopic and luminescence properties of NaI(Tl) were measured at room temperature. In this work, the gamma spectrometry and the luminescence properties of the NaI(Tl) at LN2 temperature were studied. The gamma spectrometry was carried out with the light readout by avalanche photodiodes cooled down together with the crystal in the cryostat. It was observed that non-proportionality measured at LN2 temperature is significantly better than that at room temperature. The energy resolution of the NaI(Tl) at 662 keV measured at LN2 temperature was estimated to be 6.57%, comparable to that measured commonly at RT with photomultipliers. A decay time measurement of the NaI(Tl) at LN2 showed a slower decay of 736±10 ns.

  17. Thin NaI(Tl) crystals to enhance the detection sensitivity for molten 241Am sources.

    PubMed

    Peura, Pauli; Bélanger-Champagne, Camille; Eerola, Paula; Dendooven, Peter; Huhtalo, Eero

    2018-04-26

    A thin 5-mm NaI(Tl) scintillator detector was tested with the goal of enhancing the detection efficiency of 241 Am gamma and X rays for steelworks operations. The performance of a thin (5 mm) NaI(Tl) detector was compared with a standard 76.2-mm thick NaI(Tl) detector. The 5-mm thick detector crystal results in a 55% smaller background rate at 60 keV compared with the thicker detector, translating into the ability to detect 30% weaker 241 Am sources. For a 5 mm thick and 76.2 mm diameter NaI detector in the ladle car tunnel at Outokumpu Tornio Works, the minimum activity of a molten 241 Am source that can be detected in 5 s with 95% probability is 9 MBq. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Tl2LiYCl6 (Ce3+): New Tl-based Elpasolite Scintillation Material

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Rooh, Gul; Park, H.; Kim, Sunghwan

    2016-04-01

    New single crystals of Ce-doped (1% and 10%) Tl2LiYCl6 (TLYC) were investigated under X-ray and -y-ray excitation. This material belongs to Chloro-elpasolite crystal family and was grown by the two-zone vertical Bridgman technique. X-ray-induced luminescence shows typical Ce3+ - ion emission between 350 and 530 nm peaking at 430 nm. Under 662 keV -y-rays excitation, best energy resolution of 4.8% (FWHM) was found for 1% Ce-concentration. For the same Ce-concentration, a maximum light yield of 30 500 ± 3500 ph/MeV was observed at room temperature. Under -y-ray excitation, three decay time components were observed for all Ce-doped samples. Effective Z-number and density of Tl2LiYCl6 were found to be 69 and 4.58 g/cm3, respectively. Due to highly hygroscopic nature of this compound, extra attention was devoted during handling and data taking processes. Overall, the scintillation properties confirm that this material is a promising candidate for medical imaging and radiation detection.

  19. Production and relevance of cosmogenic radionuclides in NaI(Tl) crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaré, J.; Cebrián, S.; Cuesta, C.

    2015-08-17

    The cosmogenic production of long-lived radioactive isotopes in materials is an hazard for experiments demanding ultra-low background conditions. Although NaI(Tl) scintillators have been used in this context for a long time, very few activation data were available. We present results from two 12.5 kg NaI(Tl) detectors, developed within the ANAIS project and installed at the Canfranc Underground Laboratory. The prompt data taking starting made possible a reliable quantification of production of some I, Te and Na isotopes with half-lives larger than ten days. Tnitial activities underground were measured and then production rates at sea level were estimated following the history ofmore » detectors; a comparison of these rates with calculations using typical cosmic neutron flux at sea level and a selected description of excitation functions was also carried out. After including the contribution from the identified cosmogenic products in the detector background model, we found that the presence of {sup 3}H in the crystal bulk would help to fit much better our background model and experimental data. We have analyzed the cosmogenic production of {sup 3}H in NaI, and although precise quantification has not been attempted, we can conclude that it could imply a very relevant contribution to the total background below 15 ke in NaI detectors.« less

  20. Excitons in scintillator materials: Optical properties and electron-energy loss spectra of NaI, LaBr 3, BaI 2, and SrI 2

    DOE PAGES

    Schleife, Andre; Zhang, Xiao; Li, Qi; ...

    2016-11-03

    In this paper, materials for scintillator radiation detectors need to fulfill a diverse set of requirements such as radiation hardness and highly specific response to incoming radiation, rendering them a target of current materials design efforts. Even though they are amenable to cutting-edge theoretical spectroscopy techniques, surprisingly many fundamental properties of scintillator materials are still unknown or not well explored. In this work, we use first-principles approaches to thoroughly study the optical properties of four scintillator materials: NaI, LaBr 3, BaI 2, and SrI 2. By solving the Bethe–Salpeter equation for the optical polarization function we study the influence ofmore » excitonic effects on dielectric and electron-energy loss functions. This work sheds light into fundamental optical properties of these four scintillator materials and lays the ground-work for future work that is geared toward accurate modeling and computational materials design of advanced radiation detectors with unprecedented energy resolution.« less

  1. Gamma ray detection with long NaI/Tl/ scintillator bars

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Tumer, O. T.; Dayton, B.

    1983-01-01

    Test measurements with a prototype NaI(Tl) scintillator for energy, position, and timing measurements in gamma ray astronomy are reported. The scintillator bar is 100 x 5 x 5 cu cm in size, and allows detection of the arrival times and pulse heights of signals from two photomultiplier tubes, one at each end of the bar. Data is gathered on the energy loss, linear position, and time-of-flight of gamma ray interactions within the bar over an energy range of 0.5-20 MeV. A mean attenuation coefficient of 0.015/cm has been determined, as have a FWHM resolution of 5 cm, 9.4%, and 10 nsec at an energy of 0.662 MeV. At 1.25 MeV the timing resolution was 6 nsec, and at 6.13 MeV the spatial resolution was 2.2 cm. The instrument is a prototype of a Compton scatter telescope being constructed for two balloon flights, one each in the Northern and Southern Hemispheres, in 1984.

  2. Development of a flexible γ-ray detector using a liquid scintillation light guide (LSLG).

    PubMed

    Nomura, Kiyoshi; Yunoki, Akira; Hara, Masayuki; Morito, Yuko; Fujishima, Akira

    2018-04-10

    A flexible γ detector using a liquid scintillation light guide (LSLG) was developed. The analyzed pulse height (PHA) spectrum depended on the diameter, length and scintillator concentration of the LSLG, and the distance of a γ ray irradiation point from the head of photomultiplier tube (PMT). From the analysis of PHA spectrum, it was found that the count ratio of two divided channel regions linearly decreases as the distance from the PMT head increases. It was further found that the radiation dose rate can be estimated by setting the flexible LSLG tube to a circular shape since the count rate is proportional to the dose rate measured by a conventional NaI (Tl) scintillation detector. Therefore, a flexible and long LSLG detector using a single PMT is useful for determination of the dose rate and has a potential to detect local contaminations in a certain narrow space. Copyright © 2018. Published by Elsevier Ltd.

  3. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  4. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  5. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jingke; Shields, Emily; Calaprice, Frank

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies butmore » fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.« less

  6. A new spectroscopic imager for X-rays from 0.5 keV to 150 keV combining a pnCCD and a columnar CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.

    2017-04-01

    By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.

  7. Comparison between Pixelated Scintillators: CsI(Tl), LaCl 3(Ce) and LYSO(Ce) when coupled to a Silicon Photomultipliers Array

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Van, Benjamin; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.

    2018-06-01

    A large area SiPM array is individually coupled to five different types of scintillators in and each is evaluated for the development of a coded aperture imaging system. In order to readout signals from the 144 pixel array, a resistor network with symmetric charge division circuitry was developed, which successfully provides a significant reduction in the multiplicity of the analog outputs and reduces the size of the accumulated data. Energy resolutions at 662 keV for pixelated arrays of dimensions and material types as follows: 3 × 3 × 20 mm3 CsI(Tl), 4 × 4 × 20 mm3 CsI(Tl), 4 × 4 × 5 mm3 LYSO(Ce), 4 × 4 × 10 mm3 LYSO(Ce), and 2 × 2 × 5 mm3 LaCl3(Ce) have been determined. In addition, sub-millimeter FWHM pixel-identification resolutions were acquired from all of the scintillators tested.

  8. DFT Studies of Semiconductor and Scintillator Detection Materials

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik

    2013-03-01

    Efficient radiation detection technology is dependent upon the development of new semiconductor and scintillator materials with advanced capabilities. First-principles based approaches can provide vital information about the structural, electrical, optical and defect properties that will help develop new materials. In addition to the predictive power of modern density functional methods, these techniques can be used to establish trends in properties that may lead to identifying new materials with optimum properties. We will discuss the properties of materials that are of current interest both in the field of scintillators and room temperature semiconductor detectors. In case of semiconductors, binary compounds such as TlBr, InI, CdTe and recently developed ternary chalcohalide Tl6SeI4 will be discussed. Tl6SeI4 mixes a halide (TlI) with a chalcogenide (Tl2Se), which results in an intermediate band gap (1.86 eV) between that of TlI (2.75 eV) and Tl2Se (0.6 eV). For scintillators, we will discuss the case of the elpasolite compounds whose rich chemical compositions should enable the fine-tuning of the band gap and band edges to achieve high light yield and fast scintillation response.

  9. First-principles study of complex halide scintillators for radiation detection

    NASA Astrophysics Data System (ADS)

    Feng, Qingguo; Kang, Byungkyun; Mize, Jonathan; Biswas, Koushik

    Current demands for cost-effective and high-performance scintillators have led to a discernible shift from simple binary halides (e.g., NaI, CsI) toward host compounds that are structurally and electronically more complex. Eu-doped SrI2 is a prominant example. Despite its advanced properties, improvements are needed for extensive deployment at low cost. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach we report on the influence of codoping with aliovalent and isovalent impurities. We find all codopants induce deep levels, show amphoteric character, and may bind with I-vacancy forming charge compensated donor-acceptor pairs. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed. We studied another set of stable monoclinic phase of ternary ns2 containing iodides, e.g. TlBa2I5. One objective is to explore them as scintillators where ns2 ions play a central role. Interestingly, we predict Eu2+ activation will be rendered ineffective in these compounds, caused by changes in the valence and conduction band edges. However, the prospect of fast electron capture at ns2 sites and self-activated scintillation could be important for detector applications. This material is based upon work supported by the US Department of Homeland Security under Grant Award Number, 2014-DN-077-ARI075-04.

  10. Clinical evaluation of pixellated NaI:Tl and continuous LaBr 3:Ce, compact scintillation cameras for breast tumors imaging

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Betti, M.; De Vincentis, G.; Cinti, M. N.; Bennati, P.; Vittorini, F.; Casali, V.; Mattioli, M.; Orsolini Cencelli, V.; Navarria, F.; Bollini, D.; Moschini, G.; Iurlaro, G.; Montani, L.; de Notaristefani, F.

    2007-02-01

    The principal limiting factor in the clinical acceptance of scintimammography is certainly its low sensitivity for cancers sized <1 cm, mainly due to the lack of equipment specifically designed for breast imaging. The National Institute of Nuclear Physics (INFN) has been developing a new scintillation camera based on Lanthanum tri-Bromide Cerium-doped crystal (LaBr 3:Ce), that demonstrating superior imaging performances with respect to the dedicated scintillation γ-camera that was previously developed. The proposed detector consists of continuous LaBr 3:Ce scintillator crystal coupled to a Hamamatsu H8500 Flat Panel PMT. One centimeter thick crystal has been chosen to increase crystal detection efficiency. In this paper, we propose a comparison and evaluation between lanthanum γ-camera and a Multi PSPMT camera, NaI(Tl) discrete pixel based, previously developed under "IMI" Italian project for technological transfer of INFN. A phantom study has been developed to test both the cameras before introducing them in clinical trials. High resolution scans produced by LaBr 3:Ce camera showed higher tumor contrast with a detailed imaging of uptake area than pixellated NaI(Tl) dedicated camera. Furthermore, with the lanthanum camera, the Signal-to-Noise Ratio ( SNR) value was increased for a lesion as small as 5 mm, with a consequent strong improvement in detectability.

  11. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  12. Novel laser-processed CsI:Tl detector for SPECT

    PubMed Central

    Sabet, H.; Bläckberg, L.; Uzun-Ozsahin, D.; El-Fakhri, G.

    2016-01-01

    Purpose: The aim of this work is to demonstrate the feasibility of a novel technique for fabrication of high spatial resolution CsI:Tl scintillation detectors for single photon emission computed tomography systems. Methods: The scintillators are fabricated using laser-induced optical barriers technique to create optical microstructures (or optical barriers) inside the CsI:Tl crystal bulk. The laser-processed CsI:Tl crystals are 3, 5, and 10 mm in thickness. In this work, the authors focus on the simplest pattern of optical barriers in that the barriers are created in the crystal bulk to form pixel-like patterns resembling mechanically pixelated scintillators. The monolithic CsI:Tl scintillator samples are fabricated with optical barrier patterns with 1.0 × 1.0 mm2 and 0.625 × 0.625 mm2 pixels. Experiments were conducted to characterize the fabricated arrays in terms of pixel separation and energy resolution. A 4 × 4 array of multipixel photon counter was used to collect the scintillation light in all the experiments. Results: The process yield for fabricating the CsI:Tl arrays is 100% with processing time under 50 min. From the flood maps of the fabricated detectors exposed to 122 keV gammas, peak-to-valley (P/V) ratios of greater than 2.3 are calculated. The P/V values suggest that regardless of the crystal thickness, the pixels can be resolved. Conclusions: The results suggest that optical barriers can be considered as a robust alternative to mechanically pixelated arrays and can provide high spatial resolution while maintaining the sensitivity in a high-throughput and cost-effective manner. PMID:27147372

  13. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  14. Timing Performance of TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Tada, Tsutomu; Onodera, Toshiyuki; Shoji, Tadayoshi; Kim, Seong-Yun; Xu, Yuanlai; Ishii, Keizo

    2013-08-01

    The timing performance of TlBr detectors was evaluated at room temperature (22 °C). 0.5-mm-thick planar TlBr detectors with Tl circular electrodes with a diameter of 3 mm were fabricated from TlBr crystals grown by the traveling molten zone method using a zone-purified material. The pulse rise time of the TlBr detector was measured using a digital oscilloscope as the cathode surface of the device was irradiated with a 22Na gamma-ray source. Coincidence timing spectra were obtained between the TlBr detector and a BaF2 scintillation detector when both detectors were irradiated with 511 keV positron annihilation gamma-rays. The timing resolution of the TlBr detector was found to be inversely proportional to the applied bias voltage. The TlBr detector, in coincidence with the BaF2 detector, exhibited timing resolutions characterized by a 6.5 ns full width at half maximum (FWHM) and an 8.5 ns FWHM with and without an energy window of 350 keV-560 keV, respectively.

  15. Crystal scintillators for use in check-light source for thermoluminescent systems

    NASA Astrophysics Data System (ADS)

    Nagpal, J. S.; Sabharwal, S. C.; Chougaonkar, M. P.; Godbole, S. V.

    1999-08-01

    Beta ( 63Ni, Emax 0.063 MeV) excited radioluminescence of indigenously grown crystal scintillators CsI(Tl), Bi 4Ge 3O 12 and CdWO 4 has been studied for its use in check-light source needed for thermoluminescence systems. Temperature coefficient of the light output over 298-323 K and the beta-induced TL of the scintillators over 298-553 K are reported.

  16. SABRE: A New NaI(T1) Dark Matter Direct Detection Experiment

    NASA Astrophysics Data System (ADS)

    Shields, Emily; Xu, Jingke; Calaprice, Frank

    SABRE (Sodium-iodide with Active Background REjection) is a new NaI(Tl) experiment designed to test the DAMA/LIBRA claim for a positive WIMP-dark matter annual modulation signal. SABRE will consist of highly pure NaI(Tl) crystals in an active liquid scintillator veto that will be placed deep underground. The scintillator vessel will provide a veto against external backgrounds and those arising from detector components, especially the 3 keV signature from the decay of 40K in the crystal. Through the use of crystal purification techniques and the veto, we aim for a 40K background significantly lower than that of the DAMA/LIBRA experiment. We present our work developing low-background NaI(Tl) crystals using a highly pure NaI powder and the development of the veto.

  17. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Heemskerk, Jan W. T.; Kreuger, Rob; Goorden, Marlies C.; Korevaar, Marc A. N.; Salvador, Samuel; Seeley, Zachary M.; Cherepy, Nerine J.; van der Kolk, Erik; Payne, Stephen A.; Dorenbos, Pieter; Beekman, Freek J.

    2012-07-01

    Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV (99mTc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these ‘slow’ dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.

  18. A comparative study of scintillator combining methods for flat-panel X-ray image sensors

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Lim, K. T.; Kim, G.; Cho, G.

    2018-02-01

    An X-ray transmission imaging based on scintillation detection method is the most widely used radiation technique particularly in the medical and industrial areas. As the name suggests, scintillation detection uses a scintillator as an intermediate material to convert incoming radiation into visible-light particles. Among different types of scintillators, CsI(Tl) in a columnar configuration is the most popular type used for applications that require an energy less than 150 keV due to its capability in obtaining a high spatial resolution with a reduced light spreading effect. In this study, different methods in combining a scintillator with a light-receiving unit are investigated and their relationships are given in terms of the image quality. Three different methods of combining a scintillator with a light-receiving unit are selected to investigate their performance in X-ray imaging: upward or downward oriented needles structure of CsI(Tl), coating layer deposition around CsI(Tl), and insertion of FOP. A charge-coupled device was chosen to serve as the light-receiving unit for the proposed system. From the result, the difference of needle directions in CsI(Tl) had no significant effects in the X-ray image. In contrast, deposition of the coating material around CsI(Tl) showed 17.3% reduction in the DQE. Insertion of the FOP increased the spatial resolution by 38%, however, it decreased the light yield in the acquired image by 56%. In order to have the maximum scintillation performance in X-ray imaging, not only the reflection material but also the bonding method must be considered when combining the scintillator with the light-receiving unit. In addition, the use of FOP should be carefully decided based on the purpose of X-ray imaging, e.g., image sharpness or SNR.

  19. Position measurements for heavy ion beams using a sodium iodide scintillator

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Lau, K.; Schindler, S. M.

    1981-01-01

    A 50 cm diameter, 1.7 cm thick disc of NaI scintillator has been mounted to permit edge viewing by four photomultipliers. Energetic heavy ions passing through the scintillator at different positions cause a variation in the division of light among the photomultipliers. A performance close to the expected limit for 670 MeV/n neon has been achieved. Calculations of expected response using an optical model agree well with the measurements.

  20. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  1. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  2. Direct detection of sub-GeV dark matter with scintillating targets

    DOE PAGES

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea; ...

    2017-07-28

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  3. Direct detection of sub-GeV dark matter with scintillating targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  4. New Developments in Scintillators for Security Applications

    NASA Astrophysics Data System (ADS)

    Glodo, Jarek; Wang, Yimin; Shawgo, Ryan; Brecher, Charles; Hawrami, Rastgo H.; Tower, Joshua; Shah, Kanai S.

    Radiation is an important part of security space: It is detected either passively in search of special nuclear materials or actively to monitor or interrogate objects of interest. Systems relying on radiation require adequate detectors. The most common radiation detectors are based on scintillating materials that convert hard (gamma, x-ray or neutron) radiation into visible light registered by a photodetector. The last decade has seen development of new materials driven by various security applications. This included the search for He-3 replacement technologies, which resulted in development of neutron sensing scintillators such as Ce-doped Cs2LiYCl6 (CLYC) or more recently Cs2LiLa(Br,Cl)6 (CLLBC). Since they are also good gamma-ray scintillators, they have also penetrated the detection market for passive dual-mode (gamma and neutron) detection systems, replacing scintillators such as NaI(Tl) or CsI(Tl) and competing with LaBr3(Ce). High-energy Non-Intrusive Inspection is another area where active research is being pursued in order to replace existing scintillator choices such as CdWO4, which is commonly used in simple radiography, and PbWO4, which is being studied for spectroscopic alternatives to radiography. For radiography, in particular, new ceramic scintillators such as Ce-doped GLuGAG (garnet) are considered, and for spectroscopy, Yb doped Lu2O3. In this paper we provide a short overview of these technologies.

  5. Recent Development of TlBr Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Tada, Tsutomu; Kim, Seong-Yun; Wu, Yan; Tanaka, Tomonobu; Shoji, Tadayoshi; Yamazaki, Hiromichi; Ishii, Keizo

    2011-08-01

    Planar detectors, strip detectors, and double-sided strip detectors were fabricated from TlBr crystals grown by the traveling molten zone method using zone-purified material. The detector performance including the leakage current, energy resolutions, and timing performance were evaluated in order to assess the capability of the detectors for PET and SPECT applications. The TlBr detectors exhibited excellent spectroscopic performance at room temperature. An energy resolution of 3.4% FWHM at 511 keV was obtained from a TlBr planar detector 1 mm thick. A TlBr strip detector 1 mm thick with four anode strip electrodes exhibited almost uniform detector performance over the strips with the average energy resolution of 4.4% FWHM at 511 keV. A TlBr double-sided strip detector exhibited an energy resolution of 6.3% FWHM for 122 keV gamma-rays. Coincidence timing spectra between a TlBr planar detector and a BaF2 scintillation detector were recorded at room temperature. Timing resolutions of 14 ns and 24 ns were obtained from TlBr detectors 0.5 mm and 1 mm thick, respectively. By cooling the detector to 0° C, an improved timing resolution of 12 ns was obtained from a TlBr detector 1 mm thick.

  6. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    PubMed

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. SABRE: Dark matter annual modulation detection in the northern and southern hemispheres

    NASA Astrophysics Data System (ADS)

    Tomei, C.

    2017-02-01

    SABRE (Sodium-iodide with Active Background REjection) is a new NaI(Tl) experiment designed to search for galactic Dark Matter through the annual modulation signature. SABRE will consist of highly pure NaI(Tl) crystals operated in an active liquid scintillator veto. The SABRE experiment will follow a two-phase approach. In the first phase, one high-purity NaI(Tl) crystal will be operated at LNGS in an active liquid scintillator veto with the goal of demonstrating backgrounds low enough for a sensitive test of the DAMA/LIBRA result. An unprecedented radio-purity for both the NaI powder and the crystal growth will be needed to achieve this goal. The second phase will consist in building two high-purity NaI(Tl) detector arrays, with a total mass of about 50 kg each, located at LNGS and in the Stawell Gold Mine in Australia. The operation of twin full-scale experiments in both the northern and the southern hemispheres will strengthen the reliability of the result against any possible seasonal systematic effect.

  8. Results from an investigation of the physical origins of nonproportionality in CsI(Tl)

    NASA Astrophysics Data System (ADS)

    Asztalos, S.; Hennig, W.; Warburton, W. K.

    2011-10-01

    The relative scintillation response per energy deposited by Compton electrons, or nonproportionality, has traditionally been considered an intrinsic scintillator property. However, such an interpretation is inconsistent with recent results that show nonproportionality to depend on external factors such as shaping time, temperature and supplier. Apparently, at least some of the overall nonproportionality has an extrinsic origin. In this work we describe the results from a suite of measurements designed to test the hypothesis that nonproportionality in CsI(Tl) material has an extrinsic component that correlates with impurity levels. Our choice of material was motivated by the excellent energy resolution observed in one bulk crystal (6.4%)—a marked departure from that measured with conventional CsI(Tl) stock (8-8.5%). Six bulk CsI(Tl) crystals were procured and diced into 44 wafers. Using X-ray fluorescence techniques no conclusive evidence for impurities was found in any of the wafers at the 1-50 ppm level. One crystal exhibited a distinct correlation among energy resolution, decay lifetimes, nonproportionality and a very low level of Tl doping.

  9. NAIS Member School Operations, 1982-83; NAIS Membership, 1983-84. NAIS Statistics, Spring 1984.

    ERIC Educational Resources Information Center

    National Association of Independent Schools, Boston, MA.

    This report shows responses to two National Association of Independent Schools (NAIS) surveys distributed in September 1983. Section I focuses on financial aid income for 593 schools, including those deriving income from one source, and on aid to students at 644 schools during 1982-83. Section II shows minority student enrollment in 784 United…

  10. High efficiency CsI(Tl)/HgI{sub 2} gamma ray spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    CsI(Tl)/HgI{sub 2} gamma-ray spectrometers have been constructed using 0.5 inch diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV {sup 137}Cs gamma-ray photons. Further efforts have been focused on optimization of larger size ({ge} 1 inch diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However, the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of includingmore » nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may be necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection for various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top-2 inch, bottom-1 inch, 2 inch high) CsI(Tl) scintillator coupled with a 1 inch HgI{sub 2} PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum.« less

  11. Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillation detectors.

    PubMed

    Casanovas, R; Morant, J J; Salvadó, M

    2013-10-01

    In this study, the implementation of gamma-ray spectrometry in two real-time water monitors using 2 in. × 2 in. NaI(Tl) scintillation detectors is described. These monitors collect the water from the river through a pump and it is analyzed in a vessel, which is shielded with Pb. The full calibration of the monitors was performed experimentally, except for the efficiency curve, which was set using validated Monte Carlo simulations with the EGS5 code system. After the calibration, the monitors permitted the identification and quantification of the involved isotopes in a possible radioactive increment and made it possible to discard possible leaks in the nuclear plants. As an example, a radiological increment during rain is used to show the advantages of gamma-ray spectrometry. To study the capabilities of the monitor, the minimum detectable activity concentrations for (131)I, (137)Cs and (40)K are presented for different integration times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Preparation of New Scintillation Imaging Material Composed of Scintillator-Silica Fine Powders and its Imaging of Tritium.

    PubMed

    Miyoshi, Hirokazu; Hiroura, Mitsunori; Tsujimoto, Kazunori; Irikura, Namiko; Otani, Tamaki; Shinohara, Yasuo

    2017-05-01

    A new scintillation imaging material [scintillator-silica fine powder (FP)] was prepared using silica FPs and scintillator-encapsulating silica nanoparticles (NPs) (scintillator-silica NPs). The wt% values of scintillator-silica NPs on the scintillator-silica FPs were 38, 43, 36 and 44%. Scintillation images of 3H, 63Ni, 35S, 33P, 204Tl, 89Sr and 32P dropped on the scintillator-silica FPs were obtained at about 37 kBq per 0.1-10 µl with a charge-coupled device (CCD) imager for a 5 min exposure. In particular, high-intensity CCD images of 35S were selectively obtained using the 2.25, 4.77 and 10 µm silica FPs with scintillator-silica NPs owing to the residual S of dimethyl sulfoxide in the preparation. Scintillation images of 3H at 1670 ± 9 Bq/0.5 µl and 347 ± 6 Bq/0.5 µl dropped in a 2 mm hole on the scintillator-silica FPs (6.78 and 10 µm) were also obtained using the CCD imager for a 2 h exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators.

    PubMed

    Bando, T; Ohdachi, S; Suzuki, Y

    2016-11-01

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will be covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.

  14. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bando, T., E-mail: bando.takahiro@nifs.ac.jp; Ohdachi, S.; Suzuki, Y.

    2016-11-15

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will bemore » covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.« less

  15. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.

    2015-08-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  16. The Scintillation and Tomography Receiver in Space (CITRIS) Instrument for Ionospheric Research

    DTIC Science & Technology

    2008-01-01

    Z39-18 220 2008 NRL REVIEW REMOTE SENSING The Scintillation and Tomography Receiver in Space (CITRIS) Instrument for Ionospheric Research P.A...Scintillation and Tomography Receiver in Space (CITRIS) is currently in orbit sam- pling the ionosphere . CITRIS was developed at NRL to (a) permit...Koch, T.L. MacDonald, M.R. Wilkens, and G.P. Landis, “ Ionospheric Applications of the Scintillation and Tomography Receiver in Space (CITRIS

  17. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Hans, S.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2013-08-01

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  18. Separation of gamma-ray and neutron events with CsI(Tl) pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Ashida, Y.; Nagata, H.; Koshio, Y.; Nakaya, T.; Wendell, R.

    2018-04-01

    Fast neutrons are a large background to measurements of gamma-rays emitted from excited nuclei, such that detectors that can efficiently distinguish between the two are essential. In this paper we describe the separation of gamma-rays from neutrons with the pulse shape information of the CsI(Tl) scintillator, using a fast neutron beam and several gamma-ray sources. We find that a figure of merit optimized for this separation takes on large and stable values (nearly 4) between 5 and 10 MeV of electron equivalent deposited energy, the region of most interest to the study of nuclear de-excitation gamma-rays. Accordingly, this work demonstrates the ability of CsI(Tl) scintillators to reject neutron backgrounds to gamma-ray measurements at these energies.

  19. Investigating the origins of double photopeaks in CsI:Tl samples through activator mapping

    NASA Astrophysics Data System (ADS)

    Onken, Drew R.; Gridin, Sergii; Williams, Richard T.; Williams, Charles B.; Donati, George L.; Gayshan, Vadim; Vasyukov, Sergey; Gektin, Alex

    2018-06-01

    Careful examination of the origins of double photopeaks in CsI:Tl provides a foundation for exploring the relationship between activator homogeneity and photopeak resolution in scintillators. In rare cases, certain CsI:Tl crystals exhibit a second photopeak in the pulse-height spectrum. A combination of optical mapping and ICP-MS measurements reveals the presence of two distinct regions with differing Tl concentrations in these crystals. The oscillator strength of the 299 nm absorption A-band of Tl in CsI was measured to be 0.0526 ± 0.0008; this parameter can be used to quantify activator concentration from the optical absorption. Using published measurements of luminescence intensity versus Tl concentration, the distributions of Tl measured from optical absorption maps of the samples were reconstructed into photopeaks in good agreement with experiment. The distribution of Tl concentrations in these particular crystals allowed examining luminescence pulse shape as a function of Tl concentration.

  20. The GSFC Advanced Compton Telescope (ACT)

    NASA Technical Reports Server (NTRS)

    Hartman, R.; Fichtel, C.; Kniffen, D.; Trombka, J.; Stacy, G.

    1983-01-01

    A new telescope is being developed at GSFC for the study of point sources of gamma rays in the energy range 1-30 MeV. Using the detection principle of a Compton scatter in a 2.5 cm thick NaI(Tl) detector followed by absorption in a 15 cm thick NaI(Tl) detector, the telescope uses a rocking collimator for field-of-view reduction and background subtraction. Background reduction techniques include lead-plastic scintillator shielding, pulse shape discrimination and Anger camera operation to both NaI detectors, as well as a time-of-flight measurement between them. The instrument configuration and status is described.

  1. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  2. Development of TlBr detectors for PET imaging.

    PubMed

    Ariño-Estrada, Gerard; Du, Junwei; Kim, Hadong; Cirignano, Leonard J; Shah, Kanai S; Cherry, Simon R; Mitchell, Gregory S

    2018-05-04

    Thallium bromide (TlBr) is a promising semiconductor detector material for positron emission tomography (PET) because it can offer very good energy resolution and 3-D segmentation capabilities, and it also provides detection efficiency surpassing that of commonly used scintillators. Energy, timing, and spatial resolution were measured for thin (<1 mm) TlBr detectors. The energy and timing resolution were measured simultaneously for the same planar 0.87 mm-thick TlBr device. An energy resolution of (6.41.3)% at 511 keV was achieved at -400 V bias voltage and at room temperature. A timing resolution of (27.84.1) ns FWHM was achieved for the same operating conditions when appropriate energy gating was applied. The intrinsic spatial resolution was measured to be 0.9 mm FWHM for a TlBr detector with metallic strip contacts of 0.5 mm pitch. As material properties improve, higher bias voltage should improve timing performance. A stack of thin detectors with finely segmented readout can create a modular detector with excellent energy and spatial resolution for PET applications. . © 2018 Institute of Physics and Engineering in Medicine.

  3. Scintillation properties of Pr-activated LuAlO 3

    NASA Astrophysics Data System (ADS)

    Drozdowski, Winicjusz; Wojtowicz, Andrzej J.; Wiśniewski, Dariusz; Łukasiewicz, Tadeusz; Kisielewski, Jarosław

    2006-01-01

    Praseodymium activated LuAlO 3 (LuAP) crystals have been grown using the Czochralski method at ITME, Warsaw. In this communication the measurements of radioluminescence (RL), low temperature thermoluminescence (TL), room temperature afterglow (AG), scintillation light yields (LY), and scintillation time profiles (STP), performed on polished 2 × 2 × 10 mm pixels with three Pr concentrations (0.003, 0.04, and 0.08 at.%), are reported. Two sets of samples are compared: (i) "as grown", and (ii) annealed in H 2 atmosphere.

  4. High resolution CsI(Tl)/Si-PIN detector development for breast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tull, C.R.

    High resolution multi-element (8x8) imaging arrays with collimators, size matched to discrete CsI(Tl) scintillator arrays and Si-PIN photodetector arrays (PDA`s) were developed as prototypes for larger arrays for breast imaging. Photodetector pixels were each 1.5 {times} 1.5 mm{sup 2} with 0.25 mm gaps. A 16-element quadrant of the detector was evaluated with a segmented CsI(Tl) scintillator array coupled to the silicon array. The scintillator thickness of 6 mm corresponds to >85% total gamma efficiency at 140 keV. Pixel energy resolution of <8% FWHM was obtained for Tc-99m. Electronic noise was 41 e{sup {minus}} RMS corresponding to a 3% FWHM contributionmore » to the 140 keV photopeak. Detection efficiency uniformity measured with a Tc-99m flood source was 4.3% for an {approximately}10% energy photopeak window. Spatial resolution was 1.53 mm FWHM and pitch was 1.75 mm as measured from the Co-57 (122 keV) line spread function. Signal to background was 34 and contrast was 0.94. The energy resolution and spatial characteristics of the new imaging detector exceed those of other scintillator based imaging detectors. A camera based on this technology will allow: (1) Improved Compton scatter rejection; (2) Detector positioning in close proximity to the breast to increase signal to noise; (3) Improved spatial resolution; and (4) Improved efficiency compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries.« less

  5. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    NASA Astrophysics Data System (ADS)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  6. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Payne, S. A.; Sturm, B. W.; O'Neal, S. P.; Seeley, Z. M.; Drury, O. B.; Haselhorst, L. K.; Rupert, B. L.; Sanner, R. D.; Thelin, P. A.; Fisher, S. E.; Hawrami, R.; Shah, K. S.; Burger, A.; Ramey, J. O.; Boatner, L. A.

    2011-09-01

    Recently discovered scintillators for gamma ray spectroscopy - single-crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics - offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu), offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single-crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  7. Rare isotope beam energy measurements and scintillator developments for ReA3

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Ying

    respect to the acceleration RF clock. The time-of-flight system can provide beam energy information with precision of <0.1%. Scintillators are widely used to reliably measure beam profiles and beam distributions. At low energies, scintillator-based diagnostic devices are more problematic because of their fast light yield degradation under ion bombardment. The degradation of the scintillation yield of single crystal YAG: Ce under He+ irradiation at low energies between 28 and 58 keV has been systematically studied. The scintillator was irradiated at the rare isotope ReAccelerator (ReA) facility. The scintillation emission is attributed to its rapid 5d-4f transition of Ce3+ ions. As the bombardment time increases, an exponential decay of the light output is observed due to the induced radiation damage of the crystal lattice. The decrease of the experimentally observed light yield as a function of particle fluence is found to be in fair agreement with the Birks model. Analysis indicates that the damage cross section of scintillation centers slightly decreases with the ion energy. The scintillator degrades slower under higher-energy irradiation. In order to investigate scintillation degradation over a wide range of irradiation energies and scintillator materials, the scintillation processes for KBr, YAG:Ce, CaF2:Eu and CsI:Tl crystals under H2 + irradiation in the energy range of 600-2150 keV/u have been investigated. The data indicates that YAG:Ce and CsI:Tl can maintain stable luminescence under continuous ion bombardment for at least a total fluence of 1.8x10 12 ions/mm2. On the other hand, the luminescence of CaF2:Eu shows a rapid initial decay but then maintains a nearly constant luminescence yield. The extraordinary scintillation response of KBr is initially enhanced under ion bombardment, approaches a maximum, and then eventually decays. The scintillation efficiency of the CsI:Tl scintillator is superior to the other materials. The low-energy H2+ bombardment (25 ke

  8. SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, S; Shrestha, S; Shi, L

    Purpose: To optimize the cesium iodide (CsI:Tl) scintillator thickness in a complimentary metal-oxide semiconductor (CMOS)-based detector for use in dedicated cone-beam breast CT. Methods: The imaging task considered was the detection of a microcalcification cluster comprising six 220µm diameter calcium carbonate spheres, arranged in the form of a regular pentagon with 2 mm spacing on its sides and a central calcification, similar to that in ACR-recommended mammography accreditation phantom, at a mean glandular dose of 4.5 mGy. Generalized parallel-cascades based linear systems analysis was used to determine Fourier-domain image quality metrics in reconstructed object space, from which the detectability indexmore » inclusive of anatomical noise was determined for a non-prewhitening numerical observer. For 300 projections over 2π, magnification-associated focal-spot blur, Monte Carlo derived x-ray scatter, K-fluorescent emission and reabsorption within CsI:Tl, CsI:Tl quantum efficiency and optical blur, fiberoptic plate transmission efficiency and blur, CMOS quantum efficiency, pixel aperture function and additive noise, and filtered back-projection to isotropic 105µm voxel pitch with bilinear interpolation were modeled. Imaging geometry of a clinical prototype breast CT system, a 60 kV Cu/Al filtered x-ray spectrum from 0.3 mm focal spot incident on a 14 cm diameter semi-ellipsoidal breast were used to determine the detectability index for 300–600 µm thick (75µm increments) CsI:Tl. The CsI:Tl thickness that maximized the detectability index was considered optimal. Results: The limiting resolution (10% modulation transfer function, MTF) progressively decreased with increasing CsI:Tl thickness. The zero-frequency detective quantum efficiency, DQE(0), in projection space increased with increasing CsI:Tl thickness. The maximum detectability index was achieved with 525µm thick CsI:Tl scintillator. Reduced MTF at mid-to-high frequencies for 600µm thick CsI:Tl

  9. Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Wang, Y.J.; Iwanczyk, J.S.

    A novel new semiconductor photodetector has been developed which utilizes large mercuric iodide photodetectors coupled to highly optimized CsI(T1) scintillators for gamma ray spectroscopy. With this new detector technology the authors have achieved energy resolution superior to that of any other scintillation detector. Furthermore, gamma probes based on the new HgI{sub 2}/CsI(Tl) detector can be highly miniaturized offering improved portability. A {1/2}-inch diameter HgI{sub 2} photodetector coupled with a {1/2}-inch diameter by {1/2}-inch high right-rectangular scintillator produced energy resolution of 4.58% FWHM for {sup 137}Cs (662 keV). This is perhaps the best result ever reported for room temperature scintillation spectroscopy.more » Evaluation of a prototype device with similar performance has been conducted at Los Alamos using Pu and U standard samples. Recently, Monte-Carlo simulations have been performed for co-optimization of the gamma-collection efficiency and light collection efficiency of the scintillator/photodetector pairs resulting in a new tapered scintillator geometry. Energy resolution of 5.69% FWHM at 662 keV was obtained for a 1-inch diameter photodetector coupled to a two-inch long conical CsI(Tl) scintillator; with dimensions: 1-inch diameter at the top tapered to 2-inch diameter at the bottom. The long term stability of the technology has been verified. Current efforts to optimize the detectors for specific applications in safeguards and in materials control and accountability are discussed.« less

  10. Measurements of NaI(Tl) Electron Response: Comparison of Different Samples

    NASA Astrophysics Data System (ADS)

    Hull, Giulia; Choong, Woon-Seng; Moses, William W.; Bizarri, Gregory; Valentine, John D.; Payne, Stephen A.; Cherepy, Nerine J.; Reutter, Bryan W.

    2009-02-01

    This paper measures the sample to sample variation in the light yield proportionality of NaI(Tl), and so explores whether this is an invariant characteristic of the material or whether it depends on the chemical and physical properties of the tested samples. We report on the electron response of nine crystals of NaI(Tl), differing in shape, volume, age, manufacturer and quality. The proportionality has been measured at the SLYNCI facility in the energy range between 3.5 to 460 keV. We observe that while samples produced by the same manufacturer at approximately the same time have virtually identical electron response curves, there are significant sample to sample variations among crystals produced by different manufacturers or at different times. In an effort to correlate changes in the electron response with details of the scintillation mechanism, we characterized other scintillation properties, including the gamma response and the x-ray excited emission spectra and decay times, for the nine crystals. While sample to sample differences in these crystals were observed, we have been unable to identify the underlying fundamental mechanisms that are responsible for these differences.

  11. NAI Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Grymes, Rose; Tsairides, Catherine

    2000-01-01

    The NAI's Education and Public Outreach Office is committed to building a strong partnership with each member institute to develop a comprehensive interest in educating the public and global community on the activities of the institute and the field of Astrobiology.

  12. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  13. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, N J; Payne, S A; Sturm, B W

    2011-08-30

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  14. Bright and ultra-fast scintillation from a semiconductor?

    PubMed Central

    Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew

    2015-01-01

    Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462

  15. Characterization of large TSV MPPC arrays (4 × 4 ch and 8 × 8 ch) in scintillation spectrometry

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Korolczuk, S.; Baszak, J.; Kapusta, M.

    2017-10-01

    The main objective of this work was to characterize the new multi-pixel photon counter (MPPC) arrays with a 12 × 12mm2 and a 24 × 24mm2 active area, made using through-silicon via (TSV) technology and with trenches introduced between the cells, in gamma-ray spectrometry with five different scintillators: CsI:Tl, NaI:Tl, LSO/LYSO, BGO, and LaBr3. The results of the study are compared to those obtained previously with the older sample of the 12 × 12mm2 MPPC array made as a monolithic device. TSV MPPC array with the size of 24 × 24mm2 is one of the first commercially available SiPM with such a large active area and with the dead space between channels minimized to only 0.2 mm. Moreover, in these devices, Hamamatsu introduced trenches between cells to reduce cross-talk. Hence excess noise factor (ENF) was also reduced from a value of 1.7 to 1.2 in comparison to the "old" monolithic sample (data for the same overvoltage of 1.3V). Whereby for the new MPPCs, the optimum operating voltage is higher by about 0.6V. In consequence, this higher optimal overvoltage means a higher photon detection efficiency (PDE) and number of photoelectrons, and leads to improved energy resolution. Energy resolution measured for the 662keV full energy peak in a 137 Csγ-source spectrum recorded with 12 × 12mm2 TSV MPPC and two CsI:Tl scintillators (12 × 12 × 12mm3 and 1 × 1 in) equals to 5.8% and 6.8%, respectively. For the "old" MPPC with the same CsI:Tl scintillators energy resolution is equal to 6.4% and 7.1%, respectively. These improved TSV MPPC arrays can be commercially used for scintillation light readout of "large" crystals with a diameter of 1 × 1 in or 2 × 2 in, suitable for gamma spectrometry in a wide range of applications. The combination of new 8 × 8 ch (24 × 24mm2) TSV MPPC and 2 × 2 in NaI:Tl gives an excellent energy resolution below 8%, despite the incomplete match of the scintillator surface to the active area of MPPC and loss of the part of the light.

  16. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and

  17. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.

    PubMed

    Nillius, Peter; Klamra, Wlodek; Sibczynski, Pawel; Sharma, Diksha; Danielsson, Mats; Badano, Aldo

    2015-02-01

    The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridmantis, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV -1 while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV -1 . The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the measured LR resulting in a bulk absorption

  18. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.

    PubMed

    Nillius, Peter; Klamra, Wlodek; Sibczynski, Pawel; Sharma, Diksha; Danielsson, Mats; Badano, Aldo

    2015-02-01

    The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridmantis, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV−1 while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV−1. The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the measured LR resulting in a bulk

  19. PREFACE: Applications of Novel Scintillators for Research and Industry (ANSRI 2015)

    NASA Astrophysics Data System (ADS)

    Roberts, O. J.

    2015-06-01

    Scintillator detectors are used widely in the field of γ- and X-ray spectroscopy, particularly in the mid 1900s when the invention of NaI(Tl) by nobel laureate Robert Hofstadter in 1948, spurred the creation of new scintillator materials. In the development of such new scintillators, important characteristics such as its intrinsic efficiency, position sensitivity, robustness, energy and timing response, light output, etc, need to be addressed. To date, these requirements cannot be met by a single type of scintillator alone and therefore the development of an ''ideal'' scintillator remains the holy grail of nuclear instrumentation. Consequently, the last two decades have seen significant progress in the development of scintillator crystals, driven largely by technological advances. Conventional inorganic scintillators such as NaI(Tl) and BGO are now being replaced with better, novel organic, inorganic, ceramic and plastic scintillators offering a wider variety of options for many applications. The workshop on the Applications of Novel Scintillators in Research and Industry was held at University College Dublin in January 2015 and covered a wide range of topics that characterise modern advances in the field of scintillator technology. This set of proceedings covers areas including the growth, production and characterisation of such contemporary scintillators, along with their applications in various fields, such as; Medical Imaging; Defence/Security; Astrophysics; and Nuclear/Particle Physics. We would like to thank all those who presented their recent results on their research at the workshop. These proceedings atest to the excitement and interest in such a broad field, that pervades the pursuit of the development of novel materials for future applications. We would also like to thank Professor Luigi Piro, for giving an interesting public talk during the conference, and to the Institute of Physics Ireland Group for supporting the event. We thank ORTEC for

  20. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  1. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  2. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  3. Spontaneous Tl(I)-to-Tl(III) oxidation in dynamic heterobimetallic Hg(II)/Tl(I) porphyrin complexes.

    PubMed

    Ndoyom, Victoria; Fusaro, Luca; Roisnel, Thierry; Le Gac, Stéphane; Boitrel, Bernard

    2016-01-11

    Strapped heterobimetallic Hg(II)/Tl(I) porphyrin complexes, with both metal ions bridged by the N-core in a dynamic way, undergo spontaneous Tl(I)-to-Tl(III) oxidation leading to a mono-Tl(III) complex and a mixed valence Tl(I)/Tl(III) bimetallic complex. It provides a new opportunity to tune metal ion translocations in bimetallic porphyrin systems.

  4. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  5. The puzzling interpretation of NIR indices: The case of NaI2.21

    NASA Astrophysics Data System (ADS)

    Röck, B.; Vazdekis, A.; La Barbera, F.; Peletier, R. F.; Knapen, J. H.; Allende-Prieto, C.; Aguado, D. S.

    2017-11-01

    We present a detailed study of the Na I line strength index centred in the K band at 22 100 Å (NaI2.21 hereafter) relying on different samples of early-type galaxies. Consistent with previous studies, we find that the observed line strength indices cannot be fit by state-of-the-art scaled-solar stellar population models, even using our newly developed models in the near infrared (NIR). The models clearly underestimate the large NaI2.21 values measured for most early-type galaxies. However, we develop an Na-enhanced version of our newly developed models in the NIR, which - together with the effect of a bottom-heavy initial mass function - yield NaI2.21 indices in the range of the observations. Therefore, we suggest a scenario in which the combined effect of [Na/Fe] enhancement and a bottom-heavy initial mass function are mainly responsible for the large NaI2.21 indices observed for most early-type galaxies. To a smaller extent, also [C/Fe] enhancement might contribute to the large observed NaI2.21 values.

  6. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    NASA Astrophysics Data System (ADS)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  7. Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping

    2016-05-01

    The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.

  8. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  9. Shape-Coexistence in ^191Tl and ^189Tl.

    NASA Astrophysics Data System (ADS)

    Reviol, W.; Riedinger, L. L.; Carpenter, M. P.; Fischer, S. M.; Janssens, R. V. F.; Nisius, D.; Moore, E. F.

    1997-10-01

    The Tl isotopes at A ~ 190 are, like the neighboring Hg and Pb nuclei, recognized for a multiplicity of shapes. These shapes reach from spherical or weakly deformed oblate to well-deformed and superdeformed prolate, as mainly inferred from γ -ray spectroscopic studies. We have previously reported on shape-coexistence phenomena in ^191Tl and ^189Tl(W. Reviol et al., Phys. Scr. T56, 167 (1995), and references therein.). Here, we will focus on new results on the ``normally" deformed states in both nuclei obtained from a recent and an upcoming experiment at GAMMASPHERE. The states in ^191Tl and ^189Tl are populated by the reactions ^159Tb(^36S,4n)^191Tl at E_lab = 165 MeV and ^156Gd(^37Cl,4n)^189Tl at E_lab = 171 MeV, respectively. One of the questions to be addressed is about the main level structure in the positive-parity branch of ^191Tl^2. Whether this structure is oblate-collective in nature, like the [505]9/2^- yrast band, we will try to answer on the basis of the available lifetime data.

  10. Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(Tl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Williams, Richard; Grim, Joel

    2013-08-15

    Nonlinear quenching of electron-hole pairs in the denser regions of ionization tracks created by γ-ray and high-energy electrons is a likely cause of the light yield nonproportionality of many inorganic scintillators. Therefore, kinetic Monte Carlo (KMC) simulations were carried out to investigate the scintillation properties of pure and thallium-doped CsI as a function of electron-hole pair density. The availability of recent experimental data on the excitation density dependence of the light yield of CsI following ultraviolet excitation allowed for an improved parameterization of the interactions between self-trapped excitons (STE) in the KMC model via dipole-dipole Förster transfer. The KMC simulationsmore » reveal that nonlinear quenching occurs very rapidly (within a few picoseconds) in the early stages of the scintillation process. In addition, the simulations predict that the concentration of thallium activators can affect the extent of nonlinear quenching as it has a direct influence on the STE density through STE dissociation and electron scavenging. This improved model will enable more realistic simulations of the nonproportional γ-ray and electron response of inorganic scintillators.« less

  11. A comparative study via Monte Carlo simulation of new inorganic scintillator Cs2HfCl6 for applications in nuclear medicine, security and defense, and astrophysics

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Raby, Paul

    2016-09-01

    Cs2HfCl6 (CHC) is one of the most promising recently discovered new inorganic single crystal scintillator that has high light output, non-hygroscopic, no self-activity, having energy resolution significantly better than NaI(Tl), even approaching that of LaBr3 yet can also potentially be at a much lower cost than LaBr3. This study attempts to use Monte Carlo simulation to examine the great potential offered by this new scintillator. CHC's detector performance is compared via simulation with that of 4 typical existing scintillators of the same size and same PMT readout. Two halide-scintillators: NaI(Tl) and LaBr3 and two oxide-scintillators: GSO and LSO were used in this simulation to compare their 122 keV and 511 keV gamma responses with that of CHC with both spectroscopy application and imaging applications in mind. Initial simulation results are very promising and consistent with reported experimental measurements. Beside detector energy resolution, image-quality measurement parameters commonly used to characterize imaging detectors as in nuclear medicine such as Light Response Function (LRF) which goes in parallel with spatial resolution and simulated position spectra will also be presented and discussed.

  12. Na(23)K(9)Tl(15.3): An Unusual Zintl Compound Containing Apparent Tl(5)(7)(-), Tl(4)(8)(-), Tl(3)(7)(-), and Tl(5)(-) Anions.

    PubMed

    Dong, Zhen-Chao; Corbett, John D.

    1996-05-22

    Reaction of the neat elements in tantalum containers at 400 degrees C and then 150 degrees C gives the pure title phase. X-ray crystallography shows that the hexagonal structure (P6(3)/mmc, Z = 2, a = 11.235(1) Å, b = 30.133(5) Å) contains relatively high symmetry clusters Tl(5)(7)(-) (D(3)(h)()), Tl(4)(8)(-) (C(3)(v)(), approximately T(d)), and the new Tl(3)(7)(-) (D(infinity)(h)()) plus Tl(5)(-), the last two disordered over the same elongated site in 1:2 proportions. Cation solvation of these anions is tight and specific, providing good Coulombic trapping of weakly bound electrons on the isolated cluster anions. The observed disorder makes the compound structurally a Zintl phase with a closed shell electron count. EHMO calculations on the novel Tl(3)(7)(-) reveal some bonding similarities with the isoelectronic CO(2), with two good sigma(s,p) bonding and two weakly bonding pi MO's. The Tl-Tl bond lengths therein (3.14 Å) are evidently consistent with multiple bonding. The weak temperature-independent paramagnetism and metallic conductivity (rho(293) approximately 90 &mgr;Omega.cm) of the phase are discussed.

  13. Uptake of Tl-201 in the testes: Implications for radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stabin, M.G.; Thomas, S.R.; Wilson, R.A.

    The radiation dose to the testes from Tl-201 chloride has been an outstanding question for a number of years. Previous studies have presented kinetic data for the testes with percentage uptake ranging over nearly an order of magnitude from 0.15% to 1.2%. Gupta et al. studied the uptake of Tl-201 in testes and reported an uptake of 0.9-1.2%, with no clearance to 24 hours. Use of the value reported by Gupta et al. results in an estimated dose to the testes in the adult of 0.82 mGy/MBq, and causes the testes to be identified as the highest dose organ. Inmore » our crossover study we evaluated Tl-201 uptake in the testes of 28 patients who received Tl-201 chloride plus D-Ribose, an experimental clearance agent, and Tl-201 chloride plus a placebo 7 to 14 days later. Quantitative measurements were made under a scintillation camera imaging protocol (following exercise and administration of D-Ribose or the placebo) at approximately 1.5, 4.5, 8, 24, and 48 hr, and 7 to 14 days post injection, during which the isolated testes were shielded from the body background. Images were acquired for 5 minutes at early times and 10 to 15 minutes at the latest time. The data were fit to a two component exponential curve. Uptake and clearance parameters were not significantly different between the two regimens. Mean uptake was 0.31 {plus_minus} 0.11%; the mean residence time in the testes was 0.26 {plus_minus}0.08 hr. The testes dose using this new residence time is about 0.20 mGy/MBq. This estimate should form the basis for testicular radiation dosimetry of Tl-201 chloride.« less

  14. Evaluation of GAGG:Ce scintillators for future space applications

    NASA Astrophysics Data System (ADS)

    Yoneyama, M.; Kataoka, J.; Arimoto, M.; Masuda, T.; Yoshino, M.; Kamada, K.; Yoshikawa, A.; Sato, H.; Usuki, Y.

    2018-02-01

    Cerium-doped Gd3(Ga, Al)5O12 (GAGG:Ce) is a promising novel scintillator for gamma-ray detectors. While GAGG:Ce has already been implemented in various commercial products, its detailed characteristics and response to high-energy particles and gamma rays remain unknown. In particular, knowledge is lacking on the radiation tolerance of this scintillator against the gamma-ray and proton irradiation expected in future space satellite mission applications. In this study, we first investigate the light-yield energy dependence, energy resolution, decay time, radiation tolerance, and afterglow of GAGG:Ce scintillators under various temperature conditions. We find excellent linearity of ±3% between light yields and deposited energy over a wide range of 30-1836 keV; however, a light-yield deficit of more than 10% is observed below 30 keV of deposited gamma ray energy. We confirm that the temperature dependence of the light yield, energy resolution, and scintillation decay time is within 5-20% between -20 and 20 oC. We also evaluate the GAGG:Ce activation characteristics under proton irradiation and the light-yield degradation by accumulated dose using a 60Co source. Moreover, we successfully identify various gamma-ray lines due to activation. Finally, we find a substantial afterglow for GAGG:Ce scintillators over a few hours; such an afterglow is only minimally observed in other scintillators such as CsI:Tl and Bi4Ge3O12 (BGO). However, the afterglow can be substantially reduced through additional co-doping with divalent metal ions, such as Mg ions. These results suggest that GAGG:Ce is a promising scintillator with potential application in space satellite missions in the near future.

  15. Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators.

    PubMed

    Wang, Yaxing; Yin, Xuemiao; Liu, Wei; Xie, Jian; Chen, Junfeng; Silver, Mark A; Sheng, Daopeng; Chen, Lanhua; Diwu, Juan; Liu, Ning; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2018-06-25

    The combination of high atomic number and high oxidation state in U VI materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that U VI materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  17. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  18. Crystal Growth and Scintillation Properties of $${\\rm Cs}_{2}{\\rm NaGdBr}_{6}{:}{\\rm Ce}^{3+}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Pin; Zhou, Xiaowang; Deng, Haoran

    2013-04-02

    Single crystals of Cs 2NaGdBr 6 with different Ce +3 activator concentrations were grown by a two-zone Bridgman method. This new compound belongs to a large elpasolite halide (A 2BLnX 6) family. Many of these elpasolite compounds have shown high luminosity, good energy resolution and excellent proportionality in comparison to traditional scintillators such as CsI and NaI; therefore, they are particularly attractive for gamma-ray spectroscopy applications. This study investigated the scintillator properties of Cs 2NaGdBr 6:Ce +3 crystals as a new material for radiation detection. Special focus has been placed on the effects of activator concentration (0 to 50 mol.%)more » on the photoluminescence responses. Results of structural refinement, photoluminescence, radioluminescence, lifetime and proportionality measurements for this new compound are reported.« less

  19. Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito

    Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less

  20. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Christini, David J.

    2017-09-01

    Accumulation of intracellular Na+ is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na+ concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na+ concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na+]i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na+]i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na+]i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na+]i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na+]i may play complex roles in cellular and tissue-level cardiac dynamics.

  1. Synthesis and reactivity of dimeric Ar'TlTlAr' and trimeric (Ar"T1)3 (Ar', Ar" = bulky terphenyl group) thallium(I) derivatives: Tl(I)-Tl(I) bonding in species ligated by monodentate ligands.

    PubMed

    Wright, Robert J; Phillips, Andrew D; Hino, Shirley; Power, Philip P

    2005-04-06

    The synthesis and characterization of three new organothallium(I) compounds are reported. Reaction of (Ar'Li)(2) (Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) and Ar"Li (Ar" = C(6)H(3)-2,6-(C(6)H(3)-2,6-Me(2))(2)) with TlCl in Et(2)O afforded (Ar'Tl)(2) (1) and (Ar' 'Tl)(3) (2). The "dithallene" 1 is the heaviest group 13 dimetallene and features a planar, trans-bent structure with Ar'Tl-Tl = 119.74(14) degrees and Tl-Tl = 3.0936(8) A. Compound 2 is the first structurally characterized neutral, three-membered ring species of formula c-(MR)(3) (M = Al-Tl; R = organo group). The Tl(3) ring has Tl-Tl distances in the range ca. 3.21-3.37 A as well as pyramidal Tl geometries. The Tl-Tl bonds in 1 and 2 are outside the range (2.88-2.97 A) of Tl-Tl single bonds in R(2)TlTlR(2) compounds. The weak Tl-Tl bonding in 1 and 2 leads to their dissociation into Ar'Tl and Ar' 'Tl monomers in hexane. The Ar'Tl monomer behaves as a Lewis base and readily forms a 1:1 donor-acceptor complex with B(C(6)F(5))(3) to give Ar'TlB(C(6)F(5))(3), 3. Adduct 3 features an almost linear thallium C(ipso)-Tl-B angle of 174.358(7) degrees and a Tl-B distance of 2.311(2) A, which indicates strong association. Treatment of 1 with a variety of reagents resulted in no reactions. The lower reactivity of 1 is in accord with the reluctance of Tl(I) to undergo oxidation to Tl(III) due to the unreactive character of the 6s(2) electrons.

  2. Optimization of the Performance of Segmented Scintillators for Radiotherapy Imaging through Novel Binning Techniques

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Choroszucha, Richard B.; Zhao, Qihua; Jiang, Hao; Liu, Langechuan

    2014-01-01

    Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the DQE. However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ~1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of MTF, NPS, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 8×8 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials that exhibit these properties as well as offer significantly higher light

  3. ANAIS: Status and prospects

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2016-04-01

    ANAIS (Annual modulation with NAI Scintillators) experiment aims to look for dark matter annual modulation with 250 kg of ultra-pure NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC), in order to confirm the DAMA/LIBRA positive signal in a model-independent way. The detector will consists in an array of close-packed single modules, each of them coupled to two high efficiency Hamamatsu photomultipliers. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra are currently taking data at the LSC. These modules have shown an outstanding light collection efficiency (12-16 phe/keV), about the double of that from DAMA/LIBRA phase 1 detectors, which could enable reducing the energy threshold down to 1 keVee. ANAIS crystal radiopurity goals are fulfilled for 232Th and 238U chains, assuming equilibrium, and in the case of 40K, present crystals activity (although not at the required 20 ppb level) could be acceptable. However, a 210Pb contamination out-of-equilibrium has been identified and its origin traced back, so we expect it will be avoided in next prototypes. Finally, current status and prospects of the experiment considering several exposure and background scenarios are presented.

  4. Non-Proportionality of Electron Response and Energy Resolution of Compton Electrons in Scintillators

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Szawlowski, M.; Moszynski, M.; Czarnacki, W.; Syntfeld-Kazuch, A.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-02-01

    Non-proportionality of light yield and energy resolution of Compton electrons in three scintillators (LaBr3:Ce, LYSO:Ce and CsI:Tl) were studied in a wide energy range from 10 keV up to 1 MeV. The experimental setup was comprised of a High Purity Germanium detector and tested scintillators coupled to a photomultiplier. Probing the non-proportionality and energy resolution curves at different energies was obtained by changing the position of various radioactive sources with respect to both detectors. The distance between both detectors and source was kept small to make use of Wide Angle Compton Coincidence (WACC) technique, which allowed us to scan large range of scattering angles simultaneously and obtain relatively high coincidence rate of 100 cps using weak sources of about 10 μCi activity. The results are compared with those obtained by direct irradiation of the tested scintillators with gamma-ray sources and fitting the full-energy peaks.

  5. Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Bizarri, G.; Cherepy, N. J.; Hull, G.; Moses, W. W.; Payne, S. A.

    2011-08-01

    We report on the first measurement of the decay times of NaI(Tl) as a function of the deposited electron energy. It has been suggested that the decay curve depends on the ionization density, which is correlated with the electron energy deposit in the scintillator. The ionization creates excitation states, which can decay radiatively and non-radiatively through a number of competing processes. As a result, the rate at which the excitation decays depends on the ionization density. A measurement of the decay curve as a function of the ionization density will allow us to probe the kinetic rates of the competing processes. The Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI) measures the electron response of scintillators utilizing fast sampling ADCs to digitize the raw signals from the detectors, and so can provide a measurement of the light pulse shape from the scintillator. Using data collected with the SLYNCI instrument, the intrinsic scintillation profile is extracted on an event-by-event basis by deconvolving the raw signal with the impulse response of the system. Scintillation profiles with the same electron energy deposit are summed to obtain decay curves as a function of the deposited electron energy. The decay time constants are obtained by fitting the decay curves with a two-component exponential decay. While a slight dependence of the decay time constants on the electron energy deposit is observed, the results are not statistically significant.

  6. Measurement of intrinsic radioactive backgrounds from the 137Cs and U/Th chains in CsI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Kui; Yue, Qian; Lin, Shin-Ted; Li, Yuan-Jing; Tang, Chang-Jian; Wong Tsz-King, Henry; Xing, Hao-Yang; Yang, Chao-Wen; Zhao, Wei; Zhu, Jing-Jun

    2015-04-01

    The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The timing, energy and spatial correlations, as well as the capability of pulse shape discrimination provide powerful methods for the measurement of intrinsic radiopurities. The experimental design, detector performance and event-selection algorithms are described. A total of 359×3 kg-days data from three prototypes of CsI(Tl) crystals were taken at China Jinping Underground Laboratory (CJPL), which offers a good shielding environment. The contamination levels of internal isotopes from 137Cs, 232Th and 238U series, as well as the upper bounds of 235U series are reported. Identification of the whole α peaks from U/Th decay chains and derivation of those corresponding quenching factors are achieved. Supported by National Natural Science Foundation of China (11275107, 11175099)

  7. Performance of a Facility for Measuring Scintillator Non-Proportionality

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng; Hull, Giulia; Moses, William W.; Vetter, Kai M.; Payne, Stephen A.; Cherepy, Nerine J.; Valentine, John D.

    2008-06-01

    We have constructed a second-generation Compton coincidence instrument, known as the Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI), to characterize the electron response of scintillating materials. While the SLYNCI design includes more and higher efficiency HPGe detectors than the original apparatus (five 25%-30% detectors versus one 10% detector), the most novel feature is that no collimator is placed in front of the HPGe detectors. Because of these improvements, the SLYNCI data collection rate is over 30 times higher than the original instrument. In this paper, we present a validation study of this instrument, reporting on the hardware implementation, calibration, and performance. We discuss the analysis method and present measurements of the electron response of two different NaI:Tl samples. We also discuss the systematic errors of the measurement, especially those that are unique to SLYNCI. We find that the apparatus is very stable, but that careful attention must be paid to the energy calibration of the HPGe detectors.

  8. Improved lithium iodide neutron scintillator with Eu 2+ activation: The elimination of Suzuki-Phase precipitates

    DOE PAGES

    Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...

    2017-02-21

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less

  9. Improved lithium iodide neutron scintillator with Eu2+ activation: The elimination of Suzuki-Phase precipitates

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.

    2017-05-01

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.

  10. Phase diagrams of the sections As/sub 2/S/sub 3/-Tl/sub 3/AsS/sub 4/, Tl/sub 3/AsS/sub 4/-S, and Tl/sub 3/AsS/sub 4/-Tl/sub 2/S of the ternary system As-Tl-S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob'ev, Yu.I.; Velikova, N.G.; Kirilenko, V.V.

    1987-12-01

    Using DTA and XPA methods, microstructural investigations, and microhardness measurements, phase diagrams of the quasibinary sections As/sub 2/S/sub 3/-Tl/sub 3/AsS/sub 4/, Tl/sub 3/AsS/sub 4/-S, and Tl/sub 3/AsS/sub 4/-Tl/sub 2/S, are characterized by five ternary compounds Tl/sub 3/As/sub 5/S/sub 10/, Tl/sub 9/As/sub 5/S/sub 15/, Tl/sub 9/As/sub 3/S/sub 13/, Tl/sub 3/AsS/sub 6/, and Tl/sub 8/As/sub 2/S/sub 9/, which decompose by peritectic reactions at 198, 307, 408, 362, and 318/degree/C, respectively. Interplanar spacings and line intensities are given for the detected compounds. Glass formation is considered in the Tl-As-S system.

  11. First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa de Souza, E.; Cherwinka, J.; Cole, A.

    The first search for a dark matter annual modulation signal with NaI(Tl) target material in the Southern Hemisphere conducted with the DM-Ice17 experiment is presented. DM-Ice17 consists of 17 kg of NaI(Tl) scintillating crystal under 2200 m.w.e. overburden of Antarctic glacial ice. The analysis presented here utilizes a 60.8 kg yr exposure. While unable to exclude the signal reported by DAMA/LIBRA, the DM-Ice17 data are consistent with no modulation in the energy range of 4-20 keV, providing the strongest limits on WIMP candidates from a direct detection experiment located in the Southern Hemisphere. Additionally, the successful deployment and stable operationmore » of 17 kg of NaI(Tl) crystal over 3.5 years establishes the South Pole ice as a viable location for future underground, low-background experiments.« less

  12. X-ray imaging performance of scintillator-filled silicon pore arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depthsmore » of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore

  13. A new large area scintillator screen for X-ray imaging

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Miller, S. R.; Tipnis, S. V.; Lempicki, A.; Brecher, C.; Lingertat, H.

    2004-01-01

    We report on the development of a new, large area, powdered scintillator screen based on Lu 2O 3(Eu). As reported earlier, the transparent ceramic form of this material has a very high density of 9.4 g/cm 3, a high light output comparable to that of CsI(Tl), and emits in a narrow spectral band centered at about 610 nm. Research into fabrication of this ceramic scintillator in a large area format is currently underway, however the process is not yet practical for large scale production. Here we have explored fabrication of large area screens using precursor powders from which the ceramics are fabricated. To date we have produced up to 16 × 16 cm 2 area screens with thickness in the range of 18 mg/cm 2. This paper outlines the screen fabrication technique and presents its imaging performance in comparison with a commercial Gd 2O 2S:Tb (GOS) screen.

  14. Aging effects in bulk and fiber TlBr-TlI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.A.; Wilson, R.G.; Standlee, A.G.

    1988-05-01

    A study of optical aging in bulk and extruded fibers of thallium bromo-iodide (TlBr-TlI) is presented. A variety of techniques including secondary ion mass spectrometry (SIMS), powder neutron and x-ray diffraction, infrared spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy are used to probe the chemical and structural properties of both pristine and aged material. High concentration levels of a hydrogen bearing impurity have been detected by SIMS and neutron scattering in aged TlBr-TlI, and have been shown to be localized in the surface layers of fibers as well as bulk samples. We present EPR evidence which indicates that the hydrogenmore » bearing impurity is water.« less

  15. Comparative study of perovskite-type scintillator materials CsCaI3 and KCaI3 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Feng, Qingguo; Biswas, Koushik

    2018-02-01

    Several members of a large family of perovskite-like halides with a common chemical formula, ABX3 (A  =  monovalent, B  =  divalent, and X  =  halogen ion), are being investigated for their interesting properties and potential technological applications. CsCaI3 and KCaI3 are two such ionic compounds who are of interest in the quest for superior and cost-effective alternatives to NaI or CsI based scintillators. They are the subject of this first-principles based computational study. Both are wide-gap materials having primarily I 5p and Ca 3d characters near the valence and conduction band edges, respectively. Although built from [CaI6] octahedral motifs, structural differences between the two compounds is reflected in anisotropic electron effective mass and distinctive formation and migration of self-trapped holes. We discuss these properties as they relate to scintillation decay and proportional light yield.

  16. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  17. Inorganic scintillating materials and scintillation detectors

    PubMed Central

    YANAGIDA, Takayuki

    2018-01-01

    Scintillation materials and detectors that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspection, are reviewed. The fundamental physics understood today is explained, and common scintillators and scintillation detectors are introduced. The properties explained here are light yield, energy non-proportionality, emission wavelength, energy resolution, decay time, effective atomic number and timing resolution. For further understanding, the emission mechanisms of scintillator materials are also introduced. Furthermore, unresolved problems in scintillation phenomenon are considered, and my recent interpretations are discussed. These topics include positive hysteresis, the co-doping of non-luminescent ions, the introduction of an aimed impurity phase, the excitation density effect and the complementary relationship between scintillators and storage phosphors. PMID:29434081

  18. Semiconductor quantum dot scintillation under gamma-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Wang, T

    2006-08-23

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well asmore » security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon

  19. Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Belichenko, S. G.; Bestaev, R. R.

    2016-04-01

    The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition [1]-[3]. The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the γ-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, LaBr3, LYSO, NaI(Tl), whose basic parameters are well known [4]-[7].

  20. Scaled Hartree-Fock force field calculations for organothallium compounds: Normal-mode analysis for TlCH sub 3 Tl(CH sub 3 ) sub 2 sup + , Tl(CH sub 3 ) sub 3 , Tl(CH sub 3 ) sub 2 Br, and Tl(CH sub 3 ) sub 4 sup minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, P.; Bowmaker, G.A.; Boyd, P.D.W.

    1990-02-01

    In a recent paper we presented Hartree-Fock (HF) calculations for aliphatic organothallium compounds. The diagonal HF force constants obtained from a Fletcher-Powell geometry optimization are now used for a normal-mode analysis of TlCH{sub 3}, Tl(CH{sub 3}){sub 2}{sup +}, Tl(CH{sub 3}){sub 3}, Tl(CH{sub 3}){sub 2}Br, and Tl(CH{sub 3}){sub 4}{sup {minus}}. In order to calculate frequencies comparable to experimental values, the HF force field has been scaled by using scaling factors obtained from experimental infrared and Raman measurements on Tl(CH{sub 3}){sub 2}{sup +} and TlBr. The vibrational spectra of Tl(CH{sub 3}){sub 2}{sup +} were remeasured (infrared and Raman) in order to obtainmore » an accurate force field. Predictions are made for the vibrational spectrum of the as yet undetected TlCH{sub 3} molecule. Experimental infrared and Raman results for Tl(CH{sub 3}){sub 3} compare reasonably well with our calculated frequencies. Relativistic and correlation effects are analyzed for the vibrational frequencies of Tl(CH{sub 3}){sub 2}{sup +}.« less

  1. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  2. The design of a Nai(Tl) crystal in a system optimised for high-throughput and emergency measurement of iodine 131 in the human thyroid

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Fojtik, Pavel

    2014-11-01

    In the case of an accidental release of 131I, a system for large-scale monitoring of the population for the radionuclide intake is needed. A monitoring system is required to be capable of measuring adult as well as child subjects across a wide range of ages. Such system has been developed by the National Radiation Protection Institute in Prague (NRPI) and the Evinet company (member of the Nuvia Group). This paper describes the optimisation of the NaI(Tl) detector chosen for this system. The design of the crystal was based on Monte Carlo (MC) simulations, and supported by literature. These simulations examined three different crystal shapes and several dimensions. Based on the MC study, two prototype detectors, with crystal diameters 80 and 73 mm, were manufactured and compared with the crystals having dimensions ∅45×40 mm used for thyroid measurement at NRPI and with a standard NaI(Tl) probe (∅76.2×76.2 mm). The detector with a crystal of 80 mm diameter gave the best results and was chosen for further production.

  3. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive

  4. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  5. Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Szawłowski, M.

    2017-12-01

    Majority of papers concerning scintillation detectors with light readout by means of silicon photomultipliers refer to nuclear medicine or radiation monitoring devices where energy of detected gamma rays do not exceed 2 MeV. Detection of gamma radiation with higher energies is of interest to e.g. high energy physics and plasma diagnostics. The aim of this paper is to study applicability (usefulness) of SiPM light readout in detection of gamma rays up to 6.1 MeV in combination with various scintillators. The reported measurements were made with 3 samples of one type of Hamamatsu TSV (Through-Silicon Via technology) MPPC arrays. These 4x4 channel arrays have a 50 × 50 μm2 cell size and 12 × 12 mm2 effective active area. The following scintillators were used: CeBr3, NaI:Tl, CsI:Tl. During all the tests detectors were located in a climatic chamber. The studies are focused on optimization of the MPPC performance for practical use in detection of high energy gamma rays. The optimization includes selection of the optimum operating voltage in respect to the required energy resolution, dynamic range, linearity and pulse amplitude. The presented temperature tests show breakdown voltage dependence on the temperature change and define requirements for a power supply and gain stabilization method. The energy spectra for energies between 511 keV and 6.1 MeV are also presented and compared with data acquired with a classic photomultiplier XP5212B readout. Such a comparison allowed study of nonlinearity of the tested MPPCs, correction of the energy spectra and proper analysis of the energy resolution.

  6. SoTL in Verse

    ERIC Educational Resources Information Center

    Gilpin, Lorraine S.

    2013-01-01

    This piece offers an overview of the Scholarship of Teaching and Learning (SoTL) in a nontraditional genre. It glances backward to the catalyst for the movement and traverses the context of SoTL today. Grounded in foundational literature of the field, it explores ideas about SoTL, including its purpose, nature, and characteristics. It underscores…

  7. (Tl, Sb) and (Tl, Bi) binary surface reconstructions on Ge(111) substrate

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Yakovlev, A. A.; Mihalyuk, A. N.; Zotov, A. V.; Saranin, A. A.

    2018-03-01

    2D compounds made of Group-III and Group-V elements on the surface of silicon and germanium attract considerable attention due to prospects of creating III-V binary monolayers, which are predicted to hold advanced physical properties. In the present work, we have investigated two such systems, (Tl, Sb)/Ge(111) and (Tl, Bi)/Ge(111) using scanning tunneling microscopy, low energy electron diffraction observations and density-functional-theory calculations. In addition to the previously reported surface structures of 2D (Tl, Sb) and (Tl, Bi) compounds on Si(111), we found new ones, namely, √{ 7} × √{ 7} and 3 × 3. Formation processes and plausible models of their atomic arrangements are discussed.

  8. GRAVIMETRIC DETERMINATION OF PLATINIUM, PALLADIUM, RUTHENIUM, RHODIUM AS TlPtS$sub 3$, TlPd$sub 2$S$sub 3$, TlRu$sub 2$S$sub 6$, TlRh$sub 2$S$sub 4$ (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudnev, N.A.; Malofeeva, G.I.

    1963-07-01

    Gravimetric methods were developed for the determination of microamounts of Ru, Rh, Pt, and Pd as TlRu/sub 2/S/sub 6/, TlRh/sub 2/S/sub 4/ TlPtS/sub 3/, and TlPd/sub 2/S/sub 3/. The methods are simpl e, rapid, and satisfactorily accurate. (auth)

  9. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  10. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    NASA Astrophysics Data System (ADS)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57Co, 109Cd, 125I, 152Eu and 192Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given.

  11. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  12. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method

    NASA Astrophysics Data System (ADS)

    Lindsey, Adam C.; Wu, Yuntao; Zhuravleva, Mariya; Loyd, Matthew; Koschan, Merry; Melcher, Charles L.

    2017-07-01

    We investigate the multi-ampoule growth at 25 mm diameter of ternary iodide single crystal scintillator KCaI3:Eu using the randomly oriented self-seeded Bridgman method. We compare scintillation performance between cubic inch scale crystals containing small variations of low nominal europium concentrations previously shown to balance light yield with self-absorption in the host crystal. Growth conditions were optimized in the developmental furnace and four 2 in3 KCaI3:Eu crystals were grown simultaneously producing a total of six 25 mm × 25 mm cylinders. Small variations in activator concentration did not result in significant performance differences among the six measured crystals. A range of energy resolutions of 3.5-4.7% at 662 keV was achieved, surpassing that of NaI:Tl crystals commonly used in spectroscopic detection applications. The function and basic design of the multi-ampoule furnace as well as the process of growing single crystals of KCaI3 is included here.

  13. Characterization of pixelated TlBr detectors with Tl electrodes

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo

    2014-05-01

    A 4.36-mm-thick pixelated thallium bromide (TlBr) detector with Tl electrodes was fabricated from a crystal grown by the traveling molten zone method using zone-purified material. The detector had four 1×1 mm2 pixelated anodes. The detector performance was characterized at room temperature. The mobility-lifetime products of electrons for each pixel of the TlBr detector were measured to be >2.8×10-3 cm2/V. The four pixelated anodes of the detector exhibited energy resolutions of 1.5-1.8% full width at half maximum (FWHM) for 662-keV gamma rays for single-pixel events with the depth correction method. An energy resolution of 4.5% FWHM for 662-keV gamma rays was obtained from a reconstructed energy spectrum using two-pixel events from the two pixelated anodes on the detector.

  14. Experimental validation and testing of a NaI boron-lined neutron detector

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Emam, Amira G.

    2018-05-01

    Effective neutron detection systems are critical in various nuclear fields. Most of the current detection systems rely on He-3 detectors due to their high neutron cross section. However, the limited sizes and worldwide scarcity of He-3 lead to major research efforts to find alternative neutron detectors. One of the proposed cost-effective alternatives is using boron-lined NaI detectors to detect the gamma ray resulting from the 10B(n,α)7Li reaction. The proposed detector assembly has been experimentally tested and its results were compared with those from a He-3 detector. In addition to detecting the gamma rays from the source and surrounding medium, the boron-lined NaI detector showed a good sensitivity to changes in neutron flux distributions and a higher efficiency when compared to the He-3 detector used.

  15. Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanzel, Cecilia Eliana; Verstraeten, Sandra Viviana

    2009-04-01

    Thallium (Tl) is a highly toxic metal though yet its mechanisms are poorly understood. Previously, we demonstrated that rat pheochromocytoma (PC12) cells exposure to thallous (Tl(I)) or thallic (Tl(III)) cations leads to mitochondrial damage and reduced cell viability. In the present work we comparatively characterized the possible pathways involved in Tl(I)- and Tl(III)- (10-100 {mu}M) mediated decrease in PC12 cells viability. We observed that these cations do not cause cell necrosis but significantly increased the number of cells with apoptotic features. Both cations lead to Bax oligomerization and caused apoptosis inducing factor (AIF), endonuclease G (Endo G), and cytochrome cmore » release from mitochondria, but they did not activate caspase dependent DNAse (CAD). Tl(I)- and Tl(III)-dependent caspases 9 and 3 activation followed similar kinetics, with maximal effects at 18 h of incubation. In addition, Tl(I) promoted phosphatidylserine (PS) exposure. Tl(III) induced 2- and 18-fold increase in Fas content and caspase 8 activity, respectively. Together, experimental results show that Tl(I) and Tl(III) induce PC12 cells apoptosis, although differential pathways are involved. While Tl(I)-mediated cell apoptosis was mainly associated with mitochondrial damage, Tl(III) showed a mixed effect triggering both the intrinsic and extrinsic pathways of apoptosis. These findings contribute to a better understanding of the mechanisms underlying Tl-induced loss of cell viability in PC12 cells.« less

  16. Neutron Capture Cross Sections of the s-Process Branching Points 147Pm, 171Tm, and 204Tl

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlos; Domingo-Pardo, Cesar; Lerendegui-Marco, Jorge; Casanovas, Adria; Cortes-Giraldo, Miguel A.; Dressler, Rugard; Halfon, Shlomi; Heinitz, Stephan; Kivel, Niko; Köster, Ulli; Paul, Michael; Quesada-Molina, Jose Manuel; Schumann, Dorothea; Tarifeño-Saldivia, Ariel; Tessler, Moshe; Weissman, Leo

    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm, 171Tm, and 204Tl have been produced by irradiation of stable isotopes (146Nd, 170Er, and 203Tl) at the Institut Laue-Langevin (ILL) high flux reactor. After breeding in the reactor and a certain cooling period, the resulting mixed 204Tl/203Tl sample was used directly while 147Pm and 171Tm were radiochemically separated in non-carrier-added quality at the Paul Scherrer Institut (PSI), then prepared as targets. A set of theses samples has been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines, during 2014 and 2015. The capture cascades were detected with a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross sections of 147Pm, 171Tm, and 204Tl. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity quasi-Maxwellian flux of neutrons have been performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The experimental setups are here described together with the first, preliminary results of the n_TOF measurement.

  17. Evaluation of absolute measurement using a 4π plastic scintillator for the 4πβ-γ coincidence counting method.

    PubMed

    Unno, Y; Sanami, T; Sasaki, S; Hagiwara, M; Yunoki, A

    2018-04-01

    Absolute measurement by the 4πβ-γ coincidence counting method was conducted by two photomultipliers facing across a plastic scintillator to be focused on β ray counting efficiency. The detector was held with a through-hole-type NaI(Tl) detector. The results include absolutely determined activity and its uncertainty especially about extrapolation. A comparison between the obtained and known activities showed agreement within their uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less

  19. AsS-Tl/sub 3/AsS/sub 4/ and AsS-Tl/sub 2/S systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob'ev, Yu.I.; Velikova, N.G.; Kirilenko, V.V.

    1987-11-01

    Using DTA and XPA as well as microstructural analysis and microhardness measurements, the AsS-Tl/sub 3/AsS/sub 4/ and AsS-Tl/sub 2/S phase diagrams are studied. Two new ternary compounds, Tl/sub 2/As/sub 3/S/sub 4/ and Tl/sub 2/As/sub 2/S/sub 3/, are revealed and their interplanar distances are calculated.

  20. Experimental Evaluation of a SiPM-Based Scintillation Detector for MR-Compatible SPECT Systems

    NASA Astrophysics Data System (ADS)

    Busca, Paolo; Occhipinti, Michele; Trigilio, Paolo; Cozzi, Giulia; Fiorini, Carlo; Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto; Nagy, Kálmán; Bükki, Tamás; Rieger, Jan

    2015-10-01

    In the present work we briefly describe the architecture of a photo-detection module, designed in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemoTherapy) project, supported by the European Community. We focus on two main elements of the module: the SiPM photo-detector unit and the multi-channel ASIC. These two components have been investigated with dedicated and independent setups to assess preliminary performance of INSERT architecture. In details, we designed a 25.30 mm ×25.85 mm tile, comprising 9 pixels, each one with an 8 mm ×8 mm active area. We developed an Anger camera to characterize the tile coupled to a CsI:Tl scintillator (6 mm thick). We measured an average spatial resolution (FWHM) of 2 mm in the central region of the Field of View and a 15.3% energy resolution using a 57Co source (122 keV), when the tile is cooled down to 0 ° C to reduce the impact of the dark count rate. Furthermore, we developed ANGUS, a 36-channels 0.35 μm CMOS technology ASIC designed to cope with input capacitance up to 5 nF, typical of large area SiPM pixels. The spectroscopic capability of single readout channels were evaluated by coupling an 8 mm ×8 mm pixel with a cylindrical CsI:Tl scintillator (8 mm diameter, 10 mm thickness). Energy resolution at room temperature provided values between 13% and 13.5% (FWHM) at the 122 keV line for the nine pixels.

  1. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  2. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    The principal gamma-ray emitting radioisotopes, produced in the body of astronauts by cosmic-ray bombardment, which have half-lives long enough to be useful for radiation dose evaluation, are Be-7, Na-22, and Na-24. The sodium isotopes were measured in the preflight and postflight urine and feces, and those feces specimens collected during the manned Apollo missions, by analysis of the urine salts and the raw feces in large crystal multidimensional gamma-ray spectrometers. The Be-7 was chemically separated, and its concentration measured in an all NaI (TL), anticoincidence shielded, scintillation well crystal. The astronaut radiation dose in millirads, as determined for the Apollo 7, 8, 9, 10, 11, 12, and 13 missions, was 330, 160, smaller than 315, 870 plus or minus 550, 31, 110, and smaller than 250, respectively.

  3. Improved plutonium identification and characterization results with NaI(Tl) detector using ASEDRA

    NASA Astrophysics Data System (ADS)

    Detwiler, R.; Sjoden, G.; Baciak, J.; LaVigne, E.

    2008-04-01

    The ASEDRA algorithm (Advanced Synthetically Enhanced Detector Resolution Algorithm) is a tool developed at the University of Florida to synthetically enhance the resolved photopeaks derived from a characteristically poor resolution spectra collected at room temperature from scintillator crystal-photomultiplier detector, such as a NaI(Tl) system. This work reports on analysis of a side-by-side test comparing the identification capabilities of ASEDRA applied to a NaI(Tl) detector with HPGe results for a Plutonium Beryllium (PuBe) source containing approximately 47 year old weapons-grade plutonium (WGPu), a test case of real-world interest with a complex spectra including plutonium isotopes and 241Am decay products. The analysis included a comparison of photopeaks identified and photopeak energies between the ASEDRA and HPGe detector systems, and the known energies of the plutonium isotopes. ASEDRA's performance in peak area accuracy, also important in isotope identification as well as plutonium quality and age determination, was evaluated for key energy lines by comparing the observed relative ratios of peak areas, adjusted for efficiency and attenuation due to source shielding, to the predicted ratios from known energy line branching and source isotopics. The results show that ASEDRA has identified over 20 lines also found by the HPGe and directly correlated to WGPu energies.

  4. Advances in TlBr detector development

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo

    2013-09-01

    Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.

  5. Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment

    NASA Astrophysics Data System (ADS)

    Martin, Loïc A.; Wissocq, Aubéry; Benedetti, M. F.; Latrille, Christelle

    2018-06-01

    Clay minerals play a relevant role in the transport and fate of trace elements in the environment. Though illite has been referred as an important Thallium (Tl) bearing phase in soils, mechanisms and affinity of thallium for clay minerals remain poorly known. This study investigated the sorption behavior of thallium as Tl(I) onto illite and smectite, two clay minerals occurring mainly in soils and sediments. Different sorption experiments were carried out under various pH conditions and Tl concentrations, in competition with sodium and calcium at a constant ionic strength of 0.01 mol L-1. Our results showed that illite displayed more affinity than smectite for thallium. With illite, the distribution coefficients (Kd in L kg-1) varied between 102.75 ± 0.17 and 104.0 ± 0.17 in Na solutions versus between 102.25 ± 0.17 and 103.0 ± 0.17 in Ca solutions, depending on pH. With smectite, Kd (in L kg-1) ranged between 102.50 ± 0.16 and 103.20 ± 0.16 and between 101.25 ± 0.16 and 101.95 ± 0.16 in Na and Ca solutions, respectively. Sorption behavior was described with the Multi-Site Ion Exchanger model and selectivity coefficients with respect to protons were calculated for the first time. In all cases, independently of clay mineral and background electrolyte, low capacity but highly reactive sites were dominant in thallium uptake, highlighting Tl affinity for those sites. Moreover, the exchangeable and reversible interactions between Tl+ and clays reactive sites suggested that in changing conditions, thallium could be released in solution. The role of clay minerals in thallium environmental cycle is evident and confirmed illite to be a dominant Tl bearing phase, in some environment competing with manganese oxides. Compared to others Tl bearing mineral phases, clays are ranked as follows: MnO2 > illite > smectite ∼ ferrihydrite ≥ Al2O3 ∼ goethite > SiO2. Finally, over the three monovalent cations (Tl, Rb, Cs) Tl is the one less sorbed on illite independently of

  6. TlBr and TlBr xI 1-x crystals for γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Churilov, Alexei V.; Ciampi, Guido; Kim, Hadong; Higgins, William M.; Cirignano, Leonard J.; Olschner, Fred; Biteman, Viktor; Minchello, Mark; Shah, Kanai S.

    2010-04-01

    TlBr and TlBr xI 1-x are wide bandgap semiconductor materials being investigated for applications in γ-ray spectroscopy. They have a good combination of density and atomic numbers, promising to make them very efficient detectors. Their low melting points and simple cubic and orthorhombic crystal structures are favorable for bulk crystal growth. However, these semiconductors need to be extremely pure to become useful as radiation detectors. Impurities can lead to charge trapping and scattering, reducing the charge transit lengths and limiting the detector thickness to <1 mm. Additional purification steps were implemented to improve the purity and mobility-lifetime product ( μτ) of electrons. Detector-grade TlBr with the electron μτ product of up to 6×10 -3 cm 2/V has been produced, which allowed operation of detectors up to 15 mm thickness. The ternary TlBr xI 1-x was investigated at different compositions to vary the bandgap and explore the effect of added TlI on the long term stability of detectors. The material analysis and detector characterization results are included.

  7. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells

    PubMed Central

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-01-01

    Abstract Objectives To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time–kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. PMID:29092042

  8. Pressure and temperature dependences of the ionic conductivities of the thallous halidesTlCl, TlBr, and TlI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, G.A.

    1981-01-15

    Detailed studies of the pressure and temperature dependences of the ionic conductivities of TlCl and TlBr have allowed determination of the lattice volume relaxations and energies associated with the formation and motion of Schottky defects in these crystals. The volume relaxations deduced from the conductivity are found to be comparable in magnitude with values calculated from the strain energy model and a dynamical model. The association energy of Tl/sup +/ vacancies and divalent impurities was also determined for TlBr. A particularly important result is the finding that for these CsCl-type crystals the relaxation of the lattice associated with vacancy formationmore » is outward. Earlier studies on ionic crystals having the NaCl structure have yielded a similar result. This outward relaxation thus appears to be a general result for ionic crystals of both the NaCl and CsCl types (and possibly other ionic lattice types), in disagreement with earlier theoretical calculations which show that the relaxation should be inward for all models of ionic vacancies investigated. The conductivity of TlI was studied in both the (low temperature and pressure) orthorhombic phase as well as in the cubic CsCl-type phase. There is a large electronic contribution to the conductivity in the orthorhombic phase. An interesting result for all three materials is the observation in the cubic phase of a pressure-induced transition from ionic to electronic conduction. This is in qualitative agreement with what is known about the pressure dependences of the electronic structure of these materials.« less

  9. Equatorial secondary cosmic ray observatory to study space weather and terrestrial events

    NASA Astrophysics Data System (ADS)

    Vichare, Geeta; Bhaskar, Ankush; Datar, Gauri; Raghav, Anil; Nair, K. U.; Selvaraj, C.; Ananthi, M.; Sinha, A. K.; Paranjape, M.; Gawade, T.; Anil Kumar, C. P.; Panneerselvam, C.; Sathishkumar, S.; Gurubaran, S.

    2018-05-01

    Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth's atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62 cm × 7.62 cm and another one is rectangular cuboid of 10.16 cm × 10.16 cm × 40.64 cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events. For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector's response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors

  10. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    PubMed

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  11. Syntheses, crystal structures, and characterization of two new Tl+-Cu2+-Te6+ oxides: Tl4CuTeO6 and Tl6CuTe2O10

    NASA Astrophysics Data System (ADS)

    Yeon, Jeongho; Kim, Sang-Hwan; Green, Mark A.; Bhatti, Kanwal Preet; Leighton, C.; Shiv Halasyamani, P.

    2012-12-01

    Crystals and polycrystalline powders of two new oxide materials, Tl4CuTeO6 and Tl6CuTe2O10, have been synthesized by hydrothermal and solid-state methods. The materials were structurally characterized by single-crystal X-ray diffraction. Tl4CuTeO6 and Tl6CuTe2O10 exhibit one dimensional anionic slabs of [CuTeO6]4- and [CuTe2O10]6-, respectively. Common to both slabs is the occurrence of Cu2+O4 distorted squares and Te6+O6 octahedra. The slabs are separated by Tl+ cations. For Tl4CuTeO6, magnetic measurements indicate a maximum at ∼8 K in the temperature dependence of the susceptibility. Low temperature neutron diffraction data confirm no long-range magnetic ordering occurs and the susceptibility was adequately accounted for by fits to a Heisenberg alternating chain model. For Tl6CuTe2O10 on the other hand, magnetic measurements revealed paramagnetism with no evidence of long-range magnetic ordering. Infrared, UV-vis spectra, thermogravimetric, and differential thermal analyses are also reported. Crystal data: Tl4CuTeO6, Triclinic, space group P-1 (No. 2), a=5.8629(8) Å, b=8.7848(11) Å, c=9.2572(12) Å, α=66.0460(10), β=74.2010(10), γ=79.254(2), V=417.70(9) Å3, and Z=2; Tl6CuTe2O10, orthorhombic, space group Pnma (No. 62), a=10.8628(6) Å, b=11.4962(7) Å, c=10.7238(6) Å, V=1339.20(13) Å3, and Z=4.

  12. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    PubMed

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  14. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignell, L. J.; Diwan, M. V.; Hans, S.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  15. Subnanosecond Scintillation Detector

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  16. The low-temperature scintillation properties of bismuth germanate and its application to high-energy gamma radiation imaging devices.

    PubMed

    Piltingsrud, H V

    1979-12-01

    Bismuth germanate is a scintillation material with very high z, and high density (7.13 g/cm3). It is a rugged, nonhygroscopic, crystalline material with room-temperature scintillation properties described by previous investigators as having a light yield approximately 8% of that of NaI(Tl), emission peak at approximately 480 nm, decay constant of 0.3 microsec, and energy resolution congruent to 15% (FWHM) for Cs-137 gamma radiations. These properties make it an excellent candidate for applications involving the detection of high-energy gamma photons and positron annihilation radiation, particularly when good spatial resolution is desired. At room temperature, however, the application of this material is somewhat limited by low light output and poor energy resolution. This paper presents new data on the scintillation properties of bismuth germanate as a function of temperature from -- 196 degrees C to j0 degrees C. Low-temperature use of the material is shown to greatly improve its light yield and energy resolution. The implications of this work to the design of imaging devices for high-energy radiation in health physics and nuclear medicine are discussed.

  17. Optical and Scintillation Properties of Polydimethyl-Diphenylsiloxane Based Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Quaranta, Alberto; Carturan, Sara Maria; Marchi, Tommaso; Kravchuk, Vladimir L.; Gramegna, Fabiana; Maggioni, Gianluigi; Degerlier, Meltem

    2010-04-01

    Polysiloxane based scintillators with high light yield have been synthesized. The polymer consists in cross-linked polydimethyl-co-diphenylsiloxane with different molar percentages of phenyl units. 2,5-diphenyl oxazole (PPO) and 2,5-bis(5-ter-butyl-2-benzoxazolyl)thiophene (BBOT) have been dispersed in the polymer as dopants. The energy transfer and scintillation capabilities have been investigated, for two different amounts of phenyl groups in the polymer network and for different concentrations of dye molecules, by means of fluorescence spectroscopy, ion beam induced luminescence (IBIL) and scintillation yield measurements with ¿ particles from an 241Am source. The luminescence features and the scintillation yields have been correlated to the composition of the scintillators.

  18. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  20. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  1. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  2. Electromodulation spectroscopy of excitons in simple cubic TlCl and TlBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, J.F.; Lynch, D.W.

    1979-03-15

    Transmission and electromodulated transmission spectra have been measured in the direct Wannier exciton region for TlCl and TlBr. The spectra were obtained at a sample temperature between 5 and 6 K for a range of applied electric fields. The data have been reduced to obtain the electric-field-induced changes in the dielectric function and compared in detail to the calculations of Blossey. The experimental results support the trends predicted by the calculations.

  3. Ecophysiology of Nais elinguis (Oligochaeta) in a brackish-water lagoon

    NASA Astrophysics Data System (ADS)

    Little, Colin

    1984-02-01

    Population densities of Nais elinguis Müller were determined in Swanpool, a brackish-water lagoon at Falmouth, Cornwall, U.K., over a four-year period. High densities were found only from January to May, usually with a peak in March. Significant negative correlations were shown between population density and both salinity and temperature. In laboratory tests, feeding rates remained unchanged from freshwater to 20‰ salinity (S), but declined above this salinity. Nais elinguis was shown to be a good osmoregulator, remaining hyperosmotic below 7‰ S, and hypo-osmotic above this. Feeding rate showed a Q 10 of approximately 2 from 1 to 25°C, but above this the rate declined. Feeding rate was unaffected between pH 6 and 11. Increased salinity to (10‰ S) did not influence the effect of temperature on feeding rate. This high salinity did reduce feeding rate at a pH of 10 and above. It is concluded that the physical and chemical variables considered are unlikely to be direct causal factors limiting populations of N. elinguis in Swanpool. The influence of food supply, competition, predation and changes in reproductive mode are discussed as possible controlling factors. It is shown that the population decline of N. elinguis in early summer usually coincides with the rise of populations of chironomid larvae.

  4. Scintillation properties of selected oxide monocrystals activated with Ce and Pr

    NASA Astrophysics Data System (ADS)

    Wojtowicz, Andrzej J.; Drozdowski, Winicjusz; Wisniewski, Dariusz; Lefaucheur, Jean-Luc; Galazka, Zbigniew; Gou, Zhenhui; Lukasiewicz, Tadeusz; Kisielewski, Jaroslaw

    2006-01-01

    In the last 10-15 years there has been a significant effort toward development of new, more efficient and faster materials for detection of ionizing radiation. A growing demand for better scintillator crystals for detection of 511 keV gamma particles has been due mostly to recent advances in modern imaging systems employing positron emitting radionuclides for medical diagnostics in neurology, oncology and cardiology. While older imaging systems were almost exclusively based on BGO and NaI:Tl crystals the new systems, e.g., ECAT Accel, developed by Siemens/CTI, are based on recently discovered and developed LSO (Lu 2SiO 5:Ce, Ce-activated lutetium oxyorthosilicate) crystals. Interestingly, despite very good properties of LSO, there still is a strong drive toward development of new scintillator crystals that would show even better performance and characteristics. In this presentation we shall review spectroscopic and scintillator characterization of new complex oxide crystals, namely LSO, LYSO, YAG, LuAP (LuAlO 3, lutetium aluminate perovskite) and LuYAP activated with Ce and Pr. The LSO:Ce crystals have been grown by CTI Inc (USA), LYSO:Ce, LuAP:Ce and LuYAP:Ce crystals have been grown by Photonic Materials Ltd., Scotland (PML is the only company providing large LuAP:Ce crystals on a commercial scale), while YAG:Pr and LuAP:Pr crystals have been grown by Institute of Electronic Materials Technology (Poland). All these crystals have been characterized at Institute of Physics, N. Copernicus University (Poland). We will review and compare results of measurements of radioluminescence, VUV spectroscopy, scintillation light yields, scintillation time profiles and low temperature thermoluminescence performed on these crystals. We will demonstrate that all experiments clearly indicate that there is a significant room for improvement of LuAP, LuYAP and YAG. While both Ce-activated LSO and LYSO perform very well, we also note that LuYAP:Ce, LuAP:Ce and YAG:Pr offer some

  5. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  6. [Tl(III)(dota)](-): An Extraordinarily Robust Macrocyclic Complex.

    PubMed

    Fodor, Tamás; Bányai, István; Bényei, Attila; Platas-Iglesias, Carlos; Purgel, Mihály; Horváth, Gábor L; Zékány, László; Tircsó, Gyula; Tóth, Imre

    2015-06-01

    The X-ray structure of {C(NH2)3}[Tl(dota)]·H2O shows that the Tl(3+) ion is deeply buried in the macrocyclic cavity of the dota(4-) ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) with average Tl-N and Tl-O distances of 2.464 and 2.365 Å, respectively. The metal ion is directly coordinated to the eight donor atoms of the ligand, which results in a twisted square antiprismatic (TSAP') coordination around Tl(3+). A multinuclear (1)H, (13)C, and (205)Tl NMR study combined with DFT calculations confirmed the TSAP' structure of the complex in aqueous solution, which exists as the Λ(λλλλ)/Δ(δδδδ) enantiomeric pair. (205)Tl NMR spectroscopy allowed the protonation constant associated with the protonation of the complex according to [Tl(dota)](-) + H(+) ⇆ [Tl(Hdota)] to be determined, which turned out to be pK(H)Tl(dota) = 1.4 ± 0.1. [Tl(dota)](-) does not react with Br(-), even when using an excess of the anion, but it forms a weak mixed complex with cyanide, [Tl(dota)](-) + CN(-) ⇆ [Tl(dota)(CN)](2-), with an equilibrium constant of Kmix = 6.0 ± 0.8. The dissociation of the [Tl(dota)](-) complex was determined by UV-vis spectrophotometry under acidic conditions using a large excess of Br(-), and it was found to follow proton-assisted kinetics and to take place very slowly (∼10 days), even in 1 M HClO4, with the estimated half-life of the process being in the 10(9) h range at neutral pH. The solution dynamics of [Tl(dota)](-) were investigated using (13)C NMR spectroscopy and DFT calculations. The (13)C NMR spectra recorded at low temperature (272 K) point to C4 symmetry of the complex in solution, which averages to C4v as the temperature increases. This dynamic behavior was attributed to the Λ(λλλλ) ↔ Δ(δδδδ) enantiomerization process, which involves both the inversion of the macrocyclic unit and the rotation of the pendant arms. According to our calculations, the arm-rotation process limits the Λ(λλλλ) ↔

  7. Control of photodissociation and photoionization of the NaI molecule by dynamic Stark effect.

    PubMed

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Cong, Shu-Lin

    2009-01-28

    The diabatic photodissociation and photoionization processes of the NaI molecule are studied theoretically using the quantum wave packet method. A pump laser pulse is used to prepare a dissociation wave packet that propagates through both the ionic channel (NaI-->Na(+)+I(-)) and the covalent channel (NaI-->Na+I). A Stark pulse is used to control the diabatic dissociation dynamics and a probe pulse is employed to ionize the products from the two channels. Based on the first order nonresonant nonperturbative dynamic Stark effect, the dissociation probabilities and the branching ratio of the products from the two channels can be controlled. Moreover the final photoelectron kinetic energy distribution can also be affected by the Stark pulse. The influences of the delay time, intensity, frequency, and carrier-envelope phase of the Stark pulse on the dissociation and ionization dynamics of the NaI molecule are discussed in detail.

  8. Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7

    NASA Astrophysics Data System (ADS)

    Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.

    2018-06-01

    The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.

  9. Troublesome Knowledge of SoTL

    ERIC Educational Resources Information Center

    Manarin, Karen; Abrahamson, Earle

    2016-01-01

    This study explores the Scholarship of Teaching and Learning (SoTL) as a form of troublesome knowledge (Perkins 1999) that continues to trouble its practitioners. Forty-eight higher education professionals from six countries described their understanding of SoTL in an online survey; ten individuals participated in follow-up interviews to consider…

  10. Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17

    DOE PAGES

    Cherwinka, J.; Grant, D.; Halzen, F.; ...

    2016-02-01

    We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93±0.04 μ/crystal/day with a modulation amplitude of 12.3±1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5±0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons.more » These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keV ee. Furthermore, while the properties of phosphorescence vary among individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.« less

  11. Principles of Good Practice in SoTL

    ERIC Educational Resources Information Center

    Felten, Peter

    2013-01-01

    For the Scholarship of Teaching and Learning (SoTL) to be understood as significant intellectual work in the academy, SoTL practitioners need to identify shared principles of good practice. While honoring the diversity of SoTL in its many forms across the globe, such principles can serve as a heuristic for assessing work in our field. These…

  12. Plastic Organic Scintillator Chemistry

    NASA Astrophysics Data System (ADS)

    Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.

    2017-09-01

    Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.

  13. Composition-property relationships in (Gd3-xLux)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) multicomponent garnet scintillators

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Wu, Yuntao; Zhang, Guoqing; Zhang, Huaijin; Ren, Guohao

    2013-12-01

    The (LuxGd3-x)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) scintillating polycrystalline powders were prepared by high temperature solid state reaction method. A pure cubic phase was confirmed in all samples by X-ray diffraction (XRD). X-ray excited luminescence (XEL), photoluminescence excitation and emission spectra were employed to study the influence of Gd3+-Ga3+ admixture on the luminescent mechanism of Ce3+ as well as the energy transfer from Gd3+ to Ce3+. The band-gap structures with varying Gd3+ and Ga3+ content were constructed to understand the luminescence behaviors. In addition, thermoluminescence spectra (TL) were utilized to identify the moving of conduction band (CB) by monitoring the shift of the corresponding TL peaks. Finally, it was found that incorporation of 40 mol% (y = 2) Ga3+ and 33.3-66.7 mol% (x = 1-2) Gd3+ could secure enough energy-separation between CB and 5d1 of Ce3+ avoiding thermal ionization effect at utmost, and bury the antisite defect traps into CB, and in turn achieving the optimum scintillation efficiency.

  14. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    NASA Astrophysics Data System (ADS)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik

    2014-09-01

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.

  15. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of

  16. NAIplot: An opensource web tool to visualize neuraminidase inhibitor (NAI) phenotypic susceptibility results using kernel density plots.

    PubMed

    Lytras, Theodore; Kossyvakis, Athanasios; Mentis, Andreas

    2016-02-01

    The results of neuraminidase inhibitor (NAI) enzyme inhibition assays are commonly expressed as 50% inhibitory concentration (IC50) fold-change values and presented graphically in box plots (box-and-whisker plots). An alternative and more informative type of graph is the kernel density plot, which we propose should be the preferred one for this purpose. In this paper we discuss the limitations of box plots and the advantages of the kernel density plot, and we present NAIplot, an opensource web application that allows convenient creation of density plots specifically for visualizing the results of NAI enzyme inhibition assays, as well as for general purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evaluation of [(201)Tl](III) Vancomycin in normal rats.

    PubMed

    Jalilian, Amir Reza; Hosseini, Mohammad Amin; Majdabadi, Abbas; Saddadi, Fariba

    2008-01-01

    Tl-201 has potential in the preparation of radiolabelled compounds similar to its homologues, like In-111 and radiogallium. In this paper, recently prepared [(201)Tl](III) vancomycin complex ([(201)Tl](III)VAN) has been evaluated for its biological properties. [(201)Tl](III)VAN was prepared according to the optimized conditions followed by biodistribution studies in normal rats for up to 52 h. The Staphylococcus aurous specific binding was checked in vitro. The complex was finally injected to normal rats. Tracer SPECT images were obtained in normal animals and compared to those of (67)Ga-citrate. Freshly-prepared [(201)Tl](III)VAN batches (radiochemical yield > 99%, radiochemical purity > 98%, specific activity approximately 1.2 Ci/mmol) showed a similar biodistribution to that of unlabeled vancomycin. The microorganism binding ratios were 3 and 9 for tracer (201)Tl(3+) and tracer (201)Tl(III)DTPA, respectively, suggesting the preservation of the tracer bioactivity. As a nonspecific cell penetrating tracer, [(201)Tl](III)DTPA was used.

  18. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongliang; Du, Mao-Hua

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  19. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE PAGES

    Shi, Hongliang; Du, Mao-Hua

    2015-05-12

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  20. Tl And Osl Response Of Turquoise For Dosimetric Application

    NASA Astrophysics Data System (ADS)

    Subedi, B.; Afouxenidis, D.; Polymeris, G. S.; Tsirlignanis, N.; Paraskevopoulos, K. M.; Kitis, G.

    Turquoise is one of the amongst first gem stones used in jewelry and possessing cultural value since 2000 BC (at least). This work attempts characterize this stone scientifically using both thermally (TL) and optically stimulated luminescence (OSL) techniques. The experimental investigation included 1) the study of the natural TL and OSL signals, 2) the reproducibility of TL sensitivity over repeated irradiation and TL readout cycles, 3) dependence of sensitivity on annealing temperatures and 4) the TL and OSL dose response curves. The potential use of the TL and OSL techniques in determination of provenance, accidental dosimetry and probably to authenticity and dating purposes are then discussed.

  1. Navigating the IRB: The Ethics of SoTL

    ERIC Educational Resources Information Center

    Martin, Ryan C.

    2013-01-01

    This chapter discusses Institutional Review Boards (IRBs) as they apply to the SoTL. Specifically, it describes when SoTL projects must receive IRB approval, why they must get IRB approval, the review process, and some special issues of concern with regard to SoTL.

  2. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  3. Molecular origins of scintillation in organic scintillators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feng, Patrick; Mengesha, Wondwosen; Myllenbeck, Nicholas

    2016-09-01

    Organic-based scintillators are indispensable materials for radiation detection owing to their high sensitivity to fast neutrons, low cost, and tailorable properties. There has been a recent resurgence of interest in organic scintillators due to exciting discoveries related to neutron discrimination and gamma-ray spectroscopy, which represent capabilities previously thought not possible in these materials. I will discuss our development of crystalline and polymer-based scintillators for these applications. Structure-property relationships related to intermolecular interactions and host-guest electronic exchange will be discussed in the context of energy-transfer pathways relevant to scintillation. An emphasis will be placed on the rational design of these materials, as guided by first principles and DFT calculations. Two related topics will be discussed: 1) Incorporation of organometallic triplet-harvesting additives to plastic scintillator matrices to confer a 'two-state' (singlet and triplet) luminescence signature to different types of ionizing radiation. This approach relies upon energetic and spatial overlap between the donor and acceptor excited states for efficient electronic exchange. Key considerations also include synthetic modification of the luminescence spectra and kinetics, as well as the addition of secondary additives to increase the recombination efficiency. 2) Design of organotin-containing plastic scintillators as a route towards gamma-ray spectroscopy. Organometallic compounds were selected on the basis of distance-dependent quenching relationships, phase compatibility with the polymer matrix, and the gamma-ray cross sections. This approach is guided by molecular modeling and radiation transport modeling to achieve the highest possible detection sensitivity luminescence intensity.

  4. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  5. First-Principles Study of Impurities in TlBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Mao-Hua

    2012-01-01

    TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.

  6. First-principles study of impurities in TlBr

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2012-04-01

    TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.

  7. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  8. Equatorial scintillation and systems support

    NASA Astrophysics Data System (ADS)

    Groves, K. M.; Basu, S.; Weber, E. J.; Smitham, M.; Kuenzler, H.; Valladares, C. E.; Sheehan, R.; MacKenzie, E.; Secan, J. A.; Ning, P.; McNeill, W. J.; Moonan, D. W.; Kendra, M. J.

    1997-09-01

    The need to nowcast and forecast scintillation for the support of operational systems has been recently identified by the interagency National Space Weather Program. This issue is addressed in the present paper in the context of nighttime irregularities in the equatorial ionosphere that cause intense amplitude and phase scintillations of satellite signals in the VHF/UHF range of frequencies and impact satellite communication, Global Positioning System navigation, and radar systems. Multistation and multifrequency satellite scintillation observations have been used to show that even though equatorial scintillations vary in accordance with the solar cycle, the extreme day-to-day variability of unknown origin modulates the scintillation occurrence during all phases of the solar cycle. It is shown that although equatorial scintillation events often show correlation with magnetic activity, the major component of scintillation is observed during magnetically quiet periods. In view of the day-to-day variability of the occurrence and intensity of scintillating regions, their latitude extent, and their zonal motion, a regional specification and short-term forecast system based on real-time measurements has been developed. This system, named the Scintillation Network Decision Aid, consists of two latitudinally dispersed stations, each of which uses spaced antenna scintillation receiving systems to monitor 250-MHz transmissions from two longitudinally separated geostationary satellites. The scintillation index and zonal irregularity drift are processed on-line and are retrieved by a remote operator on the Internet. At the operator terminal the data are combined with an empirical plasma bubble model to generate three-dimensional maps of irregularity structures and two-dimensional outage maps for the region.

  9. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  10. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO{sub 4}:Dy TL material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik

    2014-09-03

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less

  11. Scintillator Design Via Codoping

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.; Koschan, M.; Zhuravleva, M.; Wu, Y.; Rothfuss, H.; Meng, F.; Tyagi, M.; Donnald, S.; Yang, K.; Hayward, J. P.; Eriksson, L.

    Scintillation materials that lack intrinsic luminescence centers must be doped with optically active ions in order to provide luminescent centers that radiatively de-excite as the final step of the scintillation process. Codoping, on the other hand, can be defined as the incorporation of additional specific impurity species usually for the purpose of modifying the scintillation properties, mechanical properties, or the crystal growth behavior. In recent years codoping has become an increasingly popular approach for engineering scintillators with optimal performance for targeted applications. This report reviews several successful examples and its effect on specific properties.

  12. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  13. Electro-migration of impurities in TlBr

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hyun; Kim, Eunlim; Kim, H.; Tappero, R.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Cirignano, L.; James, R. B.

    2013-10-01

    We observed the electro-migration of Cu, Ag, and Au impurities that exist in positive-ion states in TlBr detectors under electric field strengths typically used for device operation. The migration occurred predominantly through bulk- and specific-channels, which are presumed to be a network of grain and sub-grain boundaries. The electro-migration velocity of Cu, Ag, and Au in TlBr is about 4-8 × 10-8 cm/s at room temperature under an electric field of 500-800 V/mm. The instability and polarization effects of TlBr detectors might well be correlated with the electro-migration of residual impurities in TlBr, which alters the internal electric field over time. The effect may also have been due to migration of the electrode material itself, which would allow for the possibility of a better choice for contact material and for depositing an effective diffusion barrier. From our findings, we suggest that applying our electro-migration technique for purifying material is a promising new way to remove electrically active metallic impurities in TlBr crystals, as well as other materials.

  14. Interaction of Tl +3 with mononucleotides: metal ion binding and sugar conformation

    NASA Astrophysics Data System (ADS)

    Nafisi, Sh.; Mohajerani, N.; Hadjiakhoondi, A.; Monajemi, M.; Garib, F.

    2001-05-01

    The interaction of Tl 3+ with sodium salts of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), cytidine-5'-monophosphate (5'-CMP), thymidine 5'-monophosphate (5'-dTMP) in ratios 1 and 2 have been studied in neutral pH. The solid complexes were isolated and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. In the Tl 2(AMP) 3, Tl 3+ binds directly to N-7 and indirectly to the N-1 position of the pyrimidine ring and phosphate group with sugar moiety in C2'-endoanti. The crystalline salt of Tl 2(GMP) 3 show direct Tl-N-7 and Tl-PO 3(inner-sphere) binding. The conformation of ribose moiety in Tl 2(GMP) 3 is C3'-endoanti. In the Tl 2(CMP) 3, Tl 3+ bind directly to N-3 and PO32- (inner-sphere). The conformation of ribose moiety in Tl 2(CMP) 3 is C2'-endoanti. In the Tl 2(dTMP) 3, Tl 3+ bind indirectly to carbonyl group. The sugar moiety in Tl 2(dTMP) 3 is C3'-endoanti.

  15. Ab initio calculations of the electron spectrum and density of states of TlFeS{sub 2} and TlFeSe{sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismayilova, N. A., E-mail: ismayilova-narmin-84@mail.ru; Orudjev, H. S.; Jabarov, S. H.

    2017-04-15

    The results of ab initio calculations of the electron spectrum of TlFeS{sub 2} and TlFeSe{sub 2} crystals in the antiferromagnetic phase are reported. Calculations are carried out in the context of the density functional theory. The origin of the bands of s, p, and d electron states of Tl, Fe, S, and Se atoms is studied. It is established that, in the antiferromagnetic phase, the crystals possess semiconductor properties. The band gaps are found to be 0.05 and 0.34 eV for TlFeS{sub 2} and TlFeSe{sub 2} crystals, respectively.

  16. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  17. High-nuclearity Pt-Tl-Fe complexes: structural, electrochemistry, and spectroelectrochemistry studies.

    PubMed

    Díez, Alvaro; Fernández, Julio; Lalinde, Elena; Moreno, M Teresa; Sánchez, Sergio

    2010-12-20

    A series of heteropolynuclear Pt-Tl-Fe complexes have been synthesized and structurally characterized. The final structures strongly depend on the geometry of the precursor and the Pt/Tl ratio used. Thus, the anionic heteroleptic cis-configured [cis-Pt(C(6)F(5))(2)(C≡CFc)(2)](2-) and [Pt(bzq)(C≡CFc)(2)](-) (Fc = ferrocenyl) complexes react with Tl(+) to form discrete octanuclear (PPh(3)Me)(2)[{trans,cis,cis-PtTl(C(6)F(5))(2)(C≡CFc)(2)}(2)] (1), [PtTl(bzq)(C≡CFc)(2)](2) (5; bzq = benzoquinolate), and decanuclear [trans,cis,cis-PtTl(2)(C(6)F(5))(2)(C≡CFc)(2)](2) (3) derivatives, stabilized by both Pt(II)···Tl(I) and Tl(I)···η(2)(alkynyl) bonds. By contrast, Q(2)[trans-Pt(C(6)F(5))(2)(C≡CFc)(2)] (Q = NBu(4)) reacts with Tl(+) to give the one-dimensional (1-D) anionic [(NBu(4)){trans,trans,trans-PtTl(C(6)F(5))(2)(C≡CFc)(2)}](n) (2) and neutral [trans,trans,trans-PtTl(2)(C(6)F(5))(2)(C≡CFc)(2)](n) (4) polymeric chains based on [PtFc(2)](2-) platinate fragments and Tl(+) (2) or [Tl···Tl](2+) (4) units, respectively, connected by Pt(II)···Tl(I) and secondary weak κ-η(1) (2) or η(2) (4) alkynyl···Tl(I) bonding. The formation of 1-4 is reversible, and thus treatment of neutral 3 and 4 with PPh(3)MeBr causes the precipitation of TlBr, returning toward the formation of the anionic 1 and 2' (Q = PPh(3)Me). Two slightly different pseudopolymorphs were found for 2', depending on the crystallization solvent. Finally, the reaction of the homoleptic [Pt(C≡CFc)(4)](2-) with 2 equiv of Tl(+) affords the tetradecanuclear sandwich type complex [Pt(2)Tl(4)(C≡CFc)(8)] (6). Electrochemical, spectroelectrochemical, and theoretical studies have been carried out to elucidate the effect produced by the interaction of the Tl(+) with the Pt-C≡CFc fragments. The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) of 1-5 reveal that, in general, neutralization of the anionic fragments increases the stability of the fully oxidized species and

  18. Assessment of scintillation proxy maps for a scintillation study during geomagnetically quiet and disturbed conditions over Uganda

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2017-02-01

    The objective of this paper is demonstrate the validity and usefulness of scintillation proxies derived from IGS data, through its comparison with data from dedicated scintillation monitors and its application to GNSS scintillation patterns. The paper presents scintillation patterns developed by using data from the dedicated scintillation monitors of the scintillation network decision aid (SCINDA) network, and proxy maps derived from IGS GPS data for 2011 and 2012 over low latitude stations in Uganda. The amplitude and phase scintillation indicies (S4 and σΦ) were obtained from the Novatel GSV4004B ionospheric scintillation and total electron content (TEC) monitor managed by SCINDA at Makerere (0.340N, 32.570E). The corresponding IGS GPS proxy data were obtained from the receivers at Entebbe (0.040N, 32.440E) and Mbarara (0.600S, 30.740E). The derived amplitude (S4p) and phase (sDPR) scintillation proxy maps were compared with maps of S4 and σΦ during geomagnetic storms (moderate and strong) and geomagnetically quiet conditions. The scintillation patterns using S4 and σΦ and their respective proxies revealed similar diurnal and seasonal patterns of strong scintillation occurrence. The peaks of scintillation occurrence with mean values in the range 0.3 < (S4p , sDPR) ≤ 0.6 were observed during nighttime (17:00-22:00 UT) and in the months of March-April and September-October. The results also indicate that high level scintillations occur during geomagnetically disturbed (moderate and strong) and quiet conditions over the Ugandan region. The results show that SCINDA and IGS based scintillation patterns reveal the same nighttime and seasonal occurrence of irregularities over Uganda irrespective of the geomagnetic conditions. Therefore, the amplitude and phase scintillation proxies presented here can be used to fill gaps in low-latitude data where there are no data available from dedicated scintillation receivers, irrespective of the geomagnetic conditions.

  19. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  20. Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo

    2017-01-01

    Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.

  1. Cherenkov and scintillation light separation in organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Yeh, M.; Orebi Gann, G. D.

    2017-12-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36± 5% and 38± 4%. LAB/PPO data is consistent with a rise time of τ _r=0.72± 0.33 ns.

  2. Alteration of mineral crystallinity and collagen cross-linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor-1

    NASA Technical Reports Server (NTRS)

    Wojtowicz, A.; Dziedzic-Goclawska, A.; Kaminski, A.; Stachowicz, W.; Wojtowicz, K.; Marks, S. C. Jr; Yamauchi, M.

    1997-01-01

    A common feature of various types of mammalian osteopetroses is a marked increase in bone mass accompanied by spontaneous bone fractures. The toothless (tl/tl) rat osteopetrotic mutation is characterized by drastically reduced bone resorption due to a profound deficiency of osteoclasts and their precursors. An altered bone morphology has also been observed. The mutants cannot be cured by bone marrow transplantation, but skeletal defects are greatly reduced after treatment with colony stimulating factor 1 (CSF-1). The objectives of this study were to characterize mineral and collagen matrices in cancellous and compact bone isolated from long bones of 6-week-old normal littermates, tl/tl osteopetrotic mutants and mutants (tl/tl) treated with CSF-1. There were no differences in bone mineral content, but a significant decrease in the crystallinity of mineral evaluated by the method based on electron paramagnetic resonance spectrometry was observed in all bones of tl/tl mutants as compared to that of controls. Within the collagen matrix, slight decreases in the labile cross-links, but significant increases in the content of the stable cross-links, pyridinoline, and deoxypyridinoline, were observed in both cancellous and compact bone of osteopetrotic mutants. In tl/tl mutants treated with human recombinant CSF-1, the normalization of the crystallinity of bone mineral as well as collagen cross-links was found. Our results indicate that remodeling of bone matrix in tl/tl mutants is highly suppressed, but that after treatment with CSF-1, this activity recovers significantly. Taken together, these data provide further support for the hypothesis that CSF-1 is an essential factor for normal osteoclast differentiation and bone remodelling.

  3. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  4. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  5. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  6. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  7. Cherenkov and scintillation light separation in organic liquid scintillators

    DOE PAGES

    Caravaca, J.; Descamps, F. B.; Land, B. J.; ...

    2017-11-29

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63 ± 8 % for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5 % andmore » 38 ± 4 %. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns.« less

  8. Cherenkov and scintillation light separation in organic liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caravaca, J.; Descamps, F. B.; Land, B. J.

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63 ± 8 % for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5 % andmore » 38 ± 4 %. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns.« less

  9. Study of the cosmogenic activation in NaI(Tl) crystals within the ANAIS experiment

    NASA Astrophysics Data System (ADS)

    Villar, P.; Amaré, J.; Cebrián, S.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.

    2018-03-01

    The direct detection of galactic dark matter particles requires ultra-low background conditions. NaI(Tl) crystals are applied in the search for these dark matter particles through their interactions in the detector by measuring the scintillation signal produced. The production of long-lived isotopes in materials due to the exposure to cosmic rays on Earth’s surface can be an hazard for these ultra-low background demanding experiments, typically performed underground. Therefore, production rates of cosmogenic isotopes in all the materials present in the experimental set-up, as well as the corresponding cosmic rays exposure history, must be both well-known in order to assess the relevance of this effect in the achievable sensitivity of a given experiment. Here, analysis of the cosmogenic studies developed from the ANAIS experiment NaI(Tl) detectors are presented. Installed inside a convenient shielding at the Canfranc Underground Laboratory just after finishing surface exposure to cosmic rays and thanks to the prompt data taking developed, identification and quantification of isotopes with half-lives of the order of tens of days were allowed, and thanks to the long-term operation of the detectors long-lived isotopes have been also identified and quantified. Main results for the activation yields of iodine and tellurium isotopes, 22Na, 113Sn, 109Cd, and tritium are presented in this work, together with the estimate of the production rates for their activation by cosmic nucleons while on Earth’s surface based on a selection of excitation functions over the entire energy range of cosmic nucleons.

  10. Hole doping and structural transformation in CsTl1-xHgxCl3.

    PubMed

    Retuerto, Maria; Yin, Zhiping; Emge, Thomas J; Stephens, Peter W; Li, Man-Rong; Sarkar, Tapati; Croft, Mark C; Ignatov, Alexander; Yuan, Z; Zhang, S J; Jin, Changqing; Paria Sena, Robert; Hadermann, Joke; Kotliar, Gabriel; Greenblatt, Martha

    2015-02-02

    CsTlCl(3) and CsTlF(3) perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl(3) in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF(3) as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl(3) with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl(1-x)HgxCl(3) (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl(0.9)Hg(0.1)Cl(3) is tetragonal as the more stable phase of CsTlCl(3). However, CsTl(0.8)Hg(0.2)Cl(3) is already cubic with the space group Fm3̅m and with two different positions for Tl(+) and Tl(3+). For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl(+), Tl(3+), and Hg(2+). All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl(+) and Tl(3+). Raman spectroscopy shows the presence of the active Tl-Cl-Tl stretching mode over the whole series and the intensity of the Tl-Cl-Hg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.

  11. Application of TlBr to nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard; Kim, Hadong; Kargar, Alireza; Churilov, Alexei V.; Ciampi, Guido; Higgins, William; Kim, Suyoung; Barber, Bradford; Haston, Kyle; Shah, Kanai

    2012-10-01

    Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 °C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (μeτe) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).

  12. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy.

    PubMed

    Ingram, W Scott; Robertson, Daniel; Beddar, Sam

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  13. The electronic structure and thermoelectric properties of BiTl{sub 9}Te{sub 6} and SbTl{sub 9}Te{sub 6}: First-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li Bin; Ye, Lingyun; Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn

    2015-12-21

    The electronic structure and thermoelectric properties of MTl{sub 9}Te{sub 6} (M = Bi, Sb) were studied using density functional theory and the semiclassical Boltzmann theory. It is found that the band gaps of BiTl{sub 9}Te{sub 6} and SbTl{sub 9}Te{sub 6} are equal to 0.59 eV and 0.72 eV, respectively. The relative large band gap and strong coupling between Sb s and Te p are helpful to the thermoelectric properties of SbTl{sub 9}Te{sub 6}. Near the bottom of the conduction bands, the number of band valleys of SbTl{sub 9}Te{sub 6} is four and is larger than that of BiTl{sub 9}Te{sub 6} (two band valleys),more » which will increase its Seebeck coefficient. Although BiTl{sub 9}Te{sub 6} has a larger electrical conductivity relative to relaxation time (σ/τ) along the z-direction than that of SbTl{sub 9}Te{sub 6}, the results show that the transport properties of SbTl{sub 9}Te{sub 6} are better than those of BiTl{sub 9}Te{sub 6} possibly due to its large Seebeck coefficient. The maximum value of power factor relative to relaxation time (S{sup 2}σ/τ) for SbTl{sub 9}Te{sub 6} reaches 4.30 × 10{sup 11 }W/K{sup 2} m s at 900 K, that is, originated from its relatively large Seebeck coefficient, suggesting its promising thermoelectric performance at high temperature.« less

  14. SoTL Champions: Leveraging Their Lessons Learned

    ERIC Educational Resources Information Center

    Marcketti, Sara; VanDerZanden, Ann Marie; Leptien, Jennifer R.

    2015-01-01

    The benefits of conducting SoTL impact individual faculty, staff, students, as well as disciplines, departments, and institutions. In spite of these benefits, colleges and universities, as well as faculty members, do not consistently embrace a broader vision of scholarship, including SoTL. This research explored individual experiences within the…

  15. Constitution diagram on the system TlSe-Tb-Se

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseinov, G.D.; Kerimova, E.M.; Agamaliev, D.G.

    1988-03-01

    The constitution diagram of the system TlSe-TbSe was constructed based on the results of differential-thermal, x-ray phase, and microstructural analyses and measurements of the microhardness. The compound TlTbSe/sub 2/, forming by a peritectic reaction, was observed. It was established that the solubility of TbSe in TlSe at room temperature equals 4.0 mole %.

  16. Auger compositional depth profiling of the metal contact-TlBr interface

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.

    2015-08-01

    Degradation of room temperature operation of TlBr radiation detectors with time is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. Scanning Auger electron spectroscopy (AES) in combination with sputter depth profiling was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage and create a TlBr1-xClx surface layer prior to metal contact deposition. Auger compositional depth profiling results reveal non-equilibrium interfacial diffusion after device operation in both air and N2 at ambient temperature. These results improve our understanding of contact/device degradation versus operating environment for further enhancing radiation detector performance.

  17. Studies on 66,67Ga- and 199Tl-poly(N-vinylpyrrolidone) complexes.

    PubMed

    Lahiri, Susanta; Sarkar, Soumi

    2007-03-01

    Gallium and thallium radionuclides have both diagnostic and therapeutic applications in the field of nuclear medicine. Poly(N-vinylpyrrolidone) (PVP) is routinely used as a drug base because of its excellent biocompatibility. In this paper, complex formation abilities between no-carrier-added (66,)(67)Ga/(199)Tl radionuclides and PVP have been studied. It has been found that aqueous 5% PVP solution can almost quantitatively back extract (66,)(67)Ga/(199)Tl radionuclides from an organic phase, which proves the complexing ability of PVP with (66,)(67)Ga/(199)Tl. Tl(3+) is more efficient to form Tl-PVP complexes than Tl(+). However, Tl(3+)-PVP complexes are less stable than Ga(3+)-PVP complexes.

  18. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  19. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  20. Detailed α -decay study of 180Tl

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.

    2017-11-01

    A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.

  1. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  2. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  3. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    PubMed Central

    Ingram, W. Scott; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent. PMID:25705066

  4. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  5. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  6. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  7. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  8. Lone pair effect, structural distortions, and potential for superconductivity in Tl perovskites.

    PubMed

    Schoop, Leslie M; Müchler, Lukas; Felser, Claudia; Cava, R J

    2013-05-06

    Drawing the analogy to BaBiO3, we investigate via ab initio electronic structure calculations potential new superconductors of the type ATlX3 with A = Rb and Cs and X = F, Cl, and Br, with a particular emphasis on RbTlCl3. On the basis of chemical reasoning, supported by the calculations, we show that Tl-based perovskites have structural and charge instabilities driven by the lone pair effect, similar to the case of BaBiO3, effectively becoming A2Tl(+)Tl(3+)X6. We find that upon hole doping of RbTlCl3, structures without Tl(+) and Tl(3+) charge disproportionation become more stable, although the ideal cubic perovskite, often viewed as the best host for superconductivity, should not be the most stable phase in the system. The known superconductor (Sr,K)BiO3 and hole doped RbTlCl3, predicted to be most stable in the same tetragonal structure, display highly analogous calculated electronic band structures.

  9. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  10. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  11. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  12. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  13. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  14. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  15. Temperature dependence of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  16. Prediction of Phase Separation of Immiscible Ga-Tl Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho

    2017-06-01

    Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.

  17. Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions

    NASA Astrophysics Data System (ADS)

    Gaikwad, Dhammajyot Kundlik; Pawar, Pravina P.; Selvam, T. Palani

    2017-09-01

    The mass attenuation coefficients (μ/ρ) for some enzymes, proteins, amino acids and fatty acids were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies, by performing transmission experiments using 57Co, 133Ba, 137Cs, 60Co and 22Na sources collimated to produce 0.52 cm diameter beams. A NaI (Tl) scintillation detector with energy resolution 8.2% at 663 keV was used for detection. The experimental values of (μ/ρ) were then used to determine the atomic cross section (σa), electronic cross section (σe), effective atomic number (Zeff) and electron density (Neff). It was observed that (μ/ρ), σa and σe decrease initially and then tends to be almost constant at higher energies. Values of Zeff and Neff were observed roughly constant with energy. The deviations in experimental results of radiological parameters were believed to be affected by physical and chemical environments. Experimental results of radiological parameters were observed in good agreement with WinXCom values.

  18. Neutron position-sensitive scintillation detector

    DOEpatents

    Strauss, Michael G.; Brenner, Raul

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  19. Diagnosis of malignant change in Paget's disease by Tl-201.

    PubMed

    Colarinha, P; Fonseca, A T; Salgado, L; Vieira, M R

    1996-04-01

    Scintigraphy using Tc-99m MDP and Tl-201 was performed in a patient with polyostotic Paget's disease and sarcomatous degeneration in the right iliac bone. Tc-99m MDP imaging showed abnormal uptake in both types of lesions. Tl-201 imaging showed increased uptake in the sarcomatous lesion and absent uptake in pagetic lesions. This result supports the idea that Tl-201 scintigraphy may have a potential role to play in the differentiation of Paget's disease from malignancy. To the authors' knowledge, Tl-201 has never been reported for the detection of sarcomatous change of pagetic bone.

  20. (Tl, Au)/Si(1 1 1){\\sqrt7 \\times \\sqrt7} 2D compound: an ordered array of identical Au clusters embedded in Tl matrix

    NASA Astrophysics Data System (ADS)

    Mihalyuk, A. N.; Hsing, C. R.; Wei, C. M.; Eremeev, S. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.

    2018-01-01

    Formation of the highly-ordered \\sqrt7 × \\sqrt7 -periodicity 2D compound has been detected in the (Tl, Au)/Si(1 1 1) system as a result of Au deposition onto the Tl/Si(1 1 1) surface, its composition, structure and electronic properties have been characterized using scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and density-functional-theory calculations. On the basis of these data, the structural model of the Tl-Au compound has been proposed, which adopts 12 Tl atoms and 10 Au atoms (in total, 22 atoms) per \\sqrt7 × \\sqrt7 unit cell, i.e.  ˜1.71 ML of Tl and  ˜1.43 ML of Au (in total, ˜3.14 ML). Qualitatively, the model can be visualized as consisting of truncated-pyramid-like Au clusters with a Tl atom on top, while the other Tl atoms form a double layer around the Au clusters. The (Tl, Au)/Si(1 1 1)\\sqrt7 × \\sqrt7 compound has been found to exhibit pronounced metallic properties at least down to temperatures as low as  ˜25 K, which makes it a promising object for studying electrical transport phenomena in the 2D metallic systems.

  1. Electronic Structure of TlBa2CaCu2O(7-Delta)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1997-01-01

    The core levels of TlBa2CaCu2O(7-delta) (Tl-1212) epitaxial films have been measured with X-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (E(sub F)) for the stoichiometric compound (delta = 0.5), while for 50% oxygen vacancies in the Tl-O layer (delta = 0.5) E(sub F) is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher T(sub c), consistent with a shift of E(sub F) closer to the VHS. Comparisons are made to the core levels and valence bands of Tl2Ba2CaCu2O(8 + delta)(Tl-2212) and HgBa2CaCu2O)6 + delta) (Hg- 1212). The similarity of the Cu 2p(sub 3/2) spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p(sub 3/2) signals exhibit differences which suggest that the replacement of T(sup 3+) with Hg(sup 2+) results in a decrease in the O 2p right arrow Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states.

  2. A Review of Ionospheric Scintillation Models.

    PubMed

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  3. Segmented scintillation antineutrino detector

    DOEpatents

    Reyna, David

    2017-05-09

    The various technologies presented herein relate to incorporating a wavelength-shifting material in a scintillator to facilitate absorption of a first electromagnetic particle (e.g., a first photon) having a first wavelength and subsequent generation and emission of a second electromagnetic particle (e.g., a second photon) having a second wavelength. The second electromagnetic particle can be emitted isotropically, with a high probability that the direction of emission of the second electromagnetic particle is disparate to the direction of travel of the first electromagnetic particle (and according angle of incidence). Isotropic emission of the second electromagnetic particle enables the second electromagnetic particle to be retained in the scintillator owing to internal reflection. Accordingly, longer length scintillators can be constructed, and accordingly, the scintillator array has a greater area (and volume) over which to detect electromagnetic particles (e.g., antineutrinos) being emitted from a nuclear reaction.

  4. Evidence for topologically protected surface states and a superconducting phase in [Tl4](Tl(1-x)Sn(x))Te3 using photoemission, specific heat, and magnetization measurements, and density functional theory.

    PubMed

    Arpino, K E; Wallace, D C; Nie, Y F; Birol, T; King, P D C; Chatterjee, S; Uchida, M; Koohpayeh, S M; Wen, J-J; Page, K; Fennie, C J; Shen, K M; McQueen, T M

    2014-01-10

    We report the discovery of surface states in the perovskite superconductor [Tl4]TlTe3 (Tl5Te3) and its nonsuperconducting tin-doped derivative [Tl4](Tl0.4Sn0.6)Te3 as observed by angle-resolved photoemission spectroscopy. Density functional theory calculations predict that the surface states are protected by a Z2 topology of the bulk band structure. Specific heat and magnetization measurements show that Tl5Te3 has a superconducting volume fraction in excess of 95%. Thus Tl5Te3 is an ideal material in which to study the interplay of bulk band topology and superconductivity.

  5. SPECT imaging with Tl-201 and Ga-67 in myocardial sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurata, C.; Sakata, K.; Taguchi, T.

    1990-06-01

    Two patients with myocardial sarcoidosis are presented, both of whom underwent SPECT imaging with Tl-201 and Ga-67. The first had Ga-67 myocardial uptake with a Tl-201 defect, which disappeared with corticosteroid therapy. The second had multiple Tl-201 defects without Ga-67 uptake, which persisted despite corticosteroid therapy. Therefore, the combination of Tl-201 and Ga-67 imaging may be useful for recognizing myocardial sarcoidosis and for predicting the response to corticosteroid therapy.

  6. Semiconductor radiation detector with internal gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  7. Magnetism and superconductivity of some Tl-Cu oxides

    NASA Technical Reports Server (NTRS)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  8. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI 2:Eu 2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI 2:Eu 2+ has the potential to exceed the excellent scintillation performance of SrI 2:Eu 2+. In fact, theoretical predictions for the light yield of CaI2:Eu 2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI 2:Eu 2+ scintillator, themore » performance of CaI 2:Eu 2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI 2:Eu 2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI 2:Eu 2+ and pure CaI 2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI 2:Eu 2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI 2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI 2:Eu 2+ and un-doped CaI 2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI 2:Eu 2+ and pure CaI 2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  9. Normalization of energy-dependent gamma survey data.

    PubMed

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  10. Neutron crosstalk between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  11. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  12. Electronic effects of Se and Pb dopants in TlBr

    NASA Astrophysics Data System (ADS)

    Smith, Holland M.; Phillips, David J.; Sharp, Ian D.; Beeman, Jeffrey W.; Chrzan, Daryl C.; Haegel, Nancy M.; Haller, Eugene E.; Ciampi, Guido; Kim, Hadong; Shah, Kanai S.

    2012-05-01

    Deep levels in Se- and Pb-doped bulk TlBr detectors were characterized with photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL). Se-doped TlBr revealed two traps with energies of 0.35 and 0.45 eV in PICTS spectra. The Pb-doped material revealed three levels with energies of 0.11, 0.45, and 0.75 eV. CL measurements in both materials correlate with optical transitions involving some of the identified levels. The ambipolar carrier lifetimes of Se-doped and Pb-doped TlBr were measured with microwave reflectivity transients and found to be significantly lower than the lifetime of undoped TlBr.

  13. Plastic scintillator enhancement through Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael

    2017-08-01

    Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.

  14. Ionospheric Scintillation Activity Over Ilorin, Nigeria

    NASA Astrophysics Data System (ADS)

    Oladipo, O. A.; Adeniyi, J. O.; Doherty, P. H.; Radicella, S. M.; Adimula, I. A.; Olawepo, A. O.

    2018-02-01

    Scintillation of radio waves in the L-band frequency is a regular occurrence at the equatorial and auroral regions at night most especially during high solar activity periods. Scintillation is caused by plasma density irregularities, and this could cause loss of lock of Global Navigation Satellite System (GNSS) signals leading to impairment of the applications that rely on this system. A study on the occurrence of scintillation activity over Ilorin (latitude = 8.48°N, longitude = 4.67°W, and geomagnetic latitude = 1.89°S), Nigeria was done using S4 index data from NovAtel GPStation-2 receiver (2009-2012) and NovAtel GPStation-6 receiver (August 2013 to December 2016) which are both located at this station. The solar maximum period of the solar cycle 24 is located well within the period of this investigation; hence, this study provides opportunity to see the occurrence pattern of scintillation during different seasons as well as the pattern from low solar activity to solar maximum. The results obtained showed that scintillation occurs between 21:00 LT and 04:00 LT at the peak of the occurrence in 2014. The time window of occurrence decreases with decrease in solar activity. Similarly, scintillation activity was observed to be more regular during high solar activity and it has two peaks of occurrence in March and October. A solar activity trend was observed in scintillation occurrence; scintillation activity increases with increase in the level of solar activity.

  15. Characterization of Thallium Bromide (TlBr) for Room Temperature Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Smith, Holland McTyeire

    Thallium bromide (TlBr) has emerged as a remarkably well-suited material for room temperature radiation detection. The unique combination of high-Z elements, high density, suitable band gap, and excellent electrical transport properties present in TlBr have brought device performance up to par with CdZnTe (CZT), the current market-leading room temperature radiation detector material. TlBr research is at an earlier stage than that of CZT, giving hope that the material will see even further improvement in electronic properties. Improving a resistive semiconductor material requires knowledge of deep levels present in the material and the effects of these deep levels on transport properties. Very few deep level studies have been conducted on TlBr, and none with the depth required to generate useful growth suggestions. In this dissertation, deep levels in nominally undoped and doped TlBr samples are studied with electrical and optical methods. Photo-Induced Conductivity Transient Spectroscopy (PICTS) is used to discover many deep levels in TlBr electrically. These levels are compared to sub-band gap optical transitions originating from defects observed in emission spectra. The results of this research indicate that the origin of resistivity in TlBr is likely due to deep level defects pinning the Fermi level at least ˜0.7 eV from either the conduction or valence band edge. The effect of dopants and deep levels on transport in TlBr is assessed with microwave photoconductivity decay analysis. It is found that Pb-, Se-, and O-doping decreases carrier lifetime in TlBr, whereas C-doping does not. TlBr exhibits weak ionic conductivity at room temperature, which both negatively affects the leakage current of detectors and leads to device degradation over time. Researchers are actively looking for ways to reduce or eliminate the ionic conductivity, but are faced with an intriguing challenge of materials engineering: is it possible to mitigate the ionic conduction of Tl

  16. High-efficiency organic glass scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.; Carlson, Joseph S.

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-castingmore » distinguishes the developed organic glasses from existing scintillators.« less

  17. Magnetism and superconductivity of some Tl-Cu oxides

    NASA Technical Reports Server (NTRS)

    Datta, Timir

    1990-01-01

    Many copper oxide based Thallium compounds have now been discovered. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; viz., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are evidenced, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance as high as 125K has been observed. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in the conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) accurate thermal measurement of important parameters such as the sp. heat jump, electronic density of states, D(Ef) and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO, 120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the TlCuO HTSC, but technological aspects are also pointed out.

  18. Indirect radioimmunoassay for thymus leukemia (TL) antigens. [Mice, /sup 125/I tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmon, N.L.; Little, J.R.

    1976-09-01

    An indirect radioimmunoassay for thymus leukemia TL antigens has been developed and its specificity documented. The assay makes use of anti-TL antibodies produced in congenic mice (A-Tla/sup b/) and radioiodinated purified rabbit anti-mouse IgG. Using this assay, differences can be detected in the amounts of antigen expressed on thymocytes of the three known phenotypes (TL.1,2,3; TL.2; TL/sup -/) of inbred mouse strains. Significant differences are also detected in comparison of the thymocytes from homozygous TL.1,2,3 mice (A-Tla/sup a/) and heterozygotes from Tla/sup a/ and Tla/sup b/ parents. Optimum conditions for the assay have been established. Its ability to detect antigensmore » on glutaraldehyde-fixed cells and the binding of noncytolytic antibodies on both viable and fixed cells are documented. The assay has also been used to quantitate the changes in TL antigen expression on cells incubated in anti-TL antisera under conditions of antigenic modulation.« less

  19. Polarization effect in the Ionic conductor TlBr

    NASA Astrophysics Data System (ADS)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2012-02-01

    TlBr is an ionic crystal that in recent years has been standing out as one of the most promising materials for effective room temperature radiation detection. However, its exceptional performance invariably degrades after operation times that vary from hours to several weeks. This phenomenon, known as polarization, is assigned to the undesirable ionic current that sets in the crystal under an applied bias, leading to the accumulation of oppositely charged Tl+ and Br- ions at the electric contacts of the device. This charge build up induces a field that opposes the applied bias, impairing the collection of the photo-induced carriers. In this presentation, we use parameter free quantum mechanical simulations to discuss the possible origins of the polarization effect in TlBr, showing that ionic mobility in the intrinsic material is not enough to account for effects reported by several groups. We then discuss other possible causes for the degradation of biased TlBr and propose ways to prevent its occurrence, via careful co-doping as well as a judicious choice of the metal contacts to be employed.

  20. Annual dose measurements and TL-dating of ancient Egyptian pottery

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, M. S.; El-Fiki, S. A.; El-Fiki, M. A.; Gomaa, M.; Abdel-Kariem, S.; El-Faramawy, N.

    1996-05-01

    In the course of the dating of ancient Egyptian pottery, pottery sherds were collected from three archaeological tombs in Nazlet El Samman region, Giza zone (Egypt). The annual dose from natural background was measured by gamma spectroscopic technique as well as thermoluminescence (TL) measurements. The results of both methods are in good agreement with a consistency of 99.69%. The extracted quartz exhibited TL dating peaks at about(305 ± 5|4)°C. The TL dating shows an age of 4301 ± 100 years for the examined pottery which belongs to the "Fourth Dynasty" in the "Old Kingdom". The uncertainties in TL dating using the additive method are much lower than that of archeologists.

  1. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark

  2. L-moments and TL-moments of the generalized lambda distribution

    USGS Publications Warehouse

    Asquith, W.H.

    2007-01-01

    The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.

  3. Leading the Charge for SoTL--Embracing Collaboration

    ERIC Educational Resources Information Center

    Cassard, Anita; Sloboda, Brian

    2014-01-01

    The scholarship of teaching and learning (SoTL) enables colleges and universities to assess student learning and measure the outcomes by engaging in meaningful research, and to disseminate this research. The objective of this paper is to give a snapshot of and assess the current thinking behind this scholarship by presenting examples of SoTL, and…

  4. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  5. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  6. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  7. Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications

    PubMed Central

    Rozler, Mike; Liang, Haoning; Chang, Wei

    2013-01-01

    A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436

  8. Radiopure Metal-Loaded Liquid Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  9. Radiopure metal-loaded liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang, E-mail: yeh@bnl.gov

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  10. Personal Reflection: SoTL and Don't Perish!

    ERIC Educational Resources Information Center

    Goh, Gerald Guan Gan

    2010-01-01

    This reflection describes my early encounters with SoTL as I went through a critical period questioning my role and responsibilities as an academic and my journey with a cohort of students who made me realise that there is indeed a dire need for SoTL to bridge the nexus between a university academic's teaching responsibilities as well as the…

  11. Impurity-induced deep centers in Tl 6SI 4

    DOE PAGES

    Shi, Hongliang; Lin, Wenwen; Kanatzidis, Mercouri G.; ...

    2017-04-13

    Tl 6SI 4 is a promising material for room-temperature semiconductor radiation detection applications. The history of the development of semiconductor radiation detection materials has demonstrated that impurities strongly affect the carrier transport and that material purification is a critically important step in improving the carrier transport and thereby the detector performance. Here, we report combined experimental and theoretical studies of impurities in Tl 6SI 4. Impurity concentrations in Tl 6SI 4 were analyzed by glow discharge mass spectrometry. Purification of the raw material by multi-pass vertical narrow zone refining was found to be effective in reducing the concentrations of mostmore » impurities. Density functional theory calculations were also performed to study the trapping levels introduced by the main impurities detected in experiments. We show that, among dozens of detected impurities, most are either electrically inactive or shallow. In the purified Tl 6SI 4 sample, only Bi has a significant concentration (0.2 ppm wt) and introduces deep electron trapping levels in the band gap. Lastly, improvement of the purification processes is expected to further reduce the impurity concentrations and their impact on carrier transport in Tl 6SI 4, leading to improved detector performance.« less

  12. Metal-loaded organic scintillators for neutrino physics

    DOE PAGES

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can bemore » used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.« less

  13. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were

  14. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  15. Dielectric and Raman spectroscopy of TlSe thin films

    NASA Astrophysics Data System (ADS)

    Ozel, Aysen E.; Deger, Deniz; Celik, Sefa; Yakut, Sahin; Karabak, Binnur; Akyüz, Sevim; Ulutas, Kemal

    2017-12-01

    In this report, the results of Dielectric and Raman spectroscopy of TlSe thin films are presented. The films were deposited in different thicknesses ranging from 290 Å to 3200 Å by thermal evaporation method. The relative permittivity (dielectric constant εr‧) and dielectric loss (εr″) of TlSe thin films were calculated by measuring capacitance (C) and dielectric loss factor (tan δ) in the frequencies ranging between 10-2 Hz-107 Hz and in the temperature ranging between 173 K and 433 K. In the given intervals, both the dielectric constant and the dielectric loss of TlSe thin films decrease with increasing frequency, but increase with increasing temperature. This behavior can be explained as multicomponent polarization in the structure. The ac conductivity obeys the ωs law when s (s < 1). The dielectric constant of TlSe thin films is determined from Dielectric and Raman spectroscopy measurements. The results obtained by two different methods are in agreement with each other.

  16. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  17. Pentavalent and tetravalent uranium selenides, Tl3Cu4USe6 and Tl2Ag2USe4: syntheses, characterization, and structural comparison to other layered actinide chalcogenide compounds.

    PubMed

    Bugaris, Daniel E; Choi, Eun Sang; Copping, Roy; Glans, Per-Anders; Minasian, Stefan G; Tyliszczak, Tolek; Kozimor, Stosh A; Shuh, David K; Ibers, James A

    2011-07-18

    The compounds Tl(3)Cu(4)USe(6) and Tl(2)Ag(2)USe(4) were synthesized by the reaction of the elements in excess TlCl at 1123 K. Both compounds crystallize in new structure types, in space groups P2(1)/c and C2/m, respectively, of the monoclinic system. Each compound contains layers of USe(6) octahedra and MSe(4) (M = Cu, Ag) tetrahedra, separated by Tl(+) cations. The packing of the octahedra and the tetrahedra within the layers is compared to the packing arrangements found in other layered actinide chalcogenides. Tl(3)Cu(4)USe(6) displays peaks in its magnetic susceptibility at 5 and 70 K. It exhibits modified Curie-Weiss paramagnetic behavior with an effective magnetic moment of 1.58(1) μ(B) in the temperature range 72-300 K, whereas Tl(2)Ag(2)USe(4) exhibits modified Curie-Weiss paramagnetic behavior with μ(eff) = 3.4(1) μ(B) in the temperature range 100-300 K. X-ray absorption near-edge structure (XANES) results from scanning transmission X-ray spectromicroscopy confirm that Tl(3)Cu(4)USe(6) has Se bonding characteristic of discrete Se(2-) units, Cu bonding generally representative of Cu(+), and U bonding consistent with a U(4+) or U(5+) species. On the basis of these measurements, as well as bonding arguments, the formal oxidation states for U may be assigned as +5 in Tl(3)Cu(4)USe(6) and +4 in Tl(2)Ag(2)USe(4).

  18. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  19. Biochemical and Structural Characterization of the Human TL1A Ectodomain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, C.; Yan, Q; Patskovsky, Y

    TNF-like 1A (TL1A) is a newly described member of the TNF superfamily that is directly implicated in the pathogenesis of autoimmune diseases, including inflammatory bowel disease, atherosclerosis, and rheumatoid arthritis. We report the crystal structure of the human TL1A extracellular domain at a resolution of 2.5 {angstrom}, which reveals a jelly-roll fold typical of the TNF superfamily. This structural information, in combination with complementary mutagenesis and biochemical characterization, provides insights into the binding interface and the specificity of the interactions between TL1A and the DcR3 and DR3 receptors. These studies suggest that the mode of interaction between TL1A and DcR3more » differs from other characterized TNF ligand/receptor complexes. In addition, we have generated functional TL1A mutants with altered disulfide bonding capability that exhibit enhanced solution properties, which will facilitate the production of materials for future cell-based and whole animal studies. In summary, these studies provide insights into the structure and function of TL1A and provide the basis for the rational manipulation of its interactions with cognate receptors.« less

  20. Native defects in Tl 6SI 4: Density functional calculations

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  1. One-atom-layer 4×4 compound in (Tl, Pb)/Si(111) system

    NASA Astrophysics Data System (ADS)

    Mihalyuk, A. N.; Hsing, C. R.; Wei, C. M.; Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Zotov, A. V.; Saranin, A. A.

    2017-03-01

    An ordered 4×4-periodicity 2D compound has been found in the (Tl, Pb)/Si(111) system and its composition, structure and electronic properties have been characterized using low-energy electron diffraction, scanning tunneling microscopy observations and density-functional-theory calculations. The compound has been concluded to contain 9 Tl atoms and 12 Pb atoms per 4×4 unit cell, i.e., 0.56 ML of Tl and 0.75 ML of Pb. Structural model was proposed for the 4×4-(Tl, Pb) compound where building blocks are a hexagonal array of 12 Pb atoms, a triangular array of 6 Tl atoms and a Tl trimer. The proposed structure has a C3 symmetry and occurs in the two equivalent orientations. The electron band structure of the compound contains two metallic spin-split surface-state bands. Bearing in mind the advanced properties of the known √{ 3 } ×√{ 3 } 2D compound in the same (Tl, Pb)/Si(111) system (i.e., combination of giant Rashba effect and superconductivity), the found 4×4-(Tl, Pb) compound is believed to be a promising object for exploration of its superconductive properties.

  2. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  3. Preparation of paper scintillator for detecting 3H contaminant.

    PubMed

    Miyoshi, Hirokazu; Ikeda, Toshiji

    2013-09-01

    Liquid scintillator (LS)-encapsulated silica was prepared by the sol-gel method and then was added dropwise onto a wipe paper to form a paper scintillator. First, the efficiencies of wipe were determined for both the paper scintillator and the wipe paper using a liquid scintillation counter (LSC). The efficiencies of wipe using the paper scintillator and the wipe paper were 88 and 36 %, respectively. The detection efficiencies were 5.5 % for the paper scintillator, 46 % for the wipe paper using an LS and 0.08 % for the (3)H/(14)C survey meter, respectively, compared with that of a melt-on scintillator of 47 %. Second, an (3)H contaminant on the paper scintillator was successfully detected using a photomultiplier without an LSC or an (3)H/(14)C survey meter. Finally, the paper scintillator was able to detect beta rays of the (3)H contaminant easily without an LS.

  4. Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya

    2016-12-01

    We researched the process of ultraviolet (UV) irradiation for the crystals of AgBr-TlI and AgBr-TlBr0.46I0.54 systems. It was found that on the surface of irradiated crystals, the film is formed and film grain size depends on exposure time and crystal composition. This film proved to gain the transmission by reducing the reflection from its surface within the 8.0-27.0 μm range.

  5. Effect of chlorination on the TlBr band edges for improved room temperature radiation detectors: Effect of chlorination on the TlBr band edges for radiation detectors

    DOE PAGES

    Varley, J. B.; Conway, A. M.; Voss, L. F.; ...

    2015-02-09

    Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less

  6. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water.

    PubMed

    Besemer, Matthieu; Bloemenkamp, Rob; Ariese, Freek; van Manen, Henk-Jan

    2016-02-11

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable frequency-doubled optical parametric oscillator system were used to achieve excitation wavelengths between 785 and 374 nm. Focusing on NaI solutions, the relative enhancement of the water bending vibration was found to increase strongly with excitation photon energy, in line with a preresonance effect from the iodide-water charge-transfer transition. We used multivariate curve resolution (MCR) to decompose the measured Raman spectra of NaI solutions into three interconverting spectral components assigned to bulk water and water molecules interacting with one (X···H-O-H···O) and two (X···H-O-H···X) iodide ions (X = I(-)). The Raman spectrum of solid sodium iodide dihydrate supports the assignment of the latter. Using the MCR results, relative Raman scattering cross sections of 4.0 ± 0.6 and 14.0 ± 0.1 were calculated for the mono- and di-iodide species, respectively (compared to that of bulk water set to unity). In addition, it was found that at relatively low concentrations each iodide ion affects the Raman spectrum of roughly 22 surrounding water molecules, indicating that the influence of iodide extends beyond the first solvation shell. Our results demonstrate that the Raman bending vibration of water is a sensitive probe, providing new insights into anion solvation in aqueous environments.

  7. Morphology of auroral zone radio wave scintillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.« less

  8. Absolute measurement of (198)Au activity in gold foil using plastic scintillators and a well-type NaI(Tl) detector.

    PubMed

    Kim, Yun Ho; Kim, Jungho; Lee, Jong-Man; Park, Hyeonseo

    2016-03-01

    A beta-gamma coincidence system has been developed for measuring (198)Au activity in gold foils. The system was validated by Monte Carlo simulations and by measuring the activity of a (60)Co point-source. To study effects such as self-shielding of beta particles in gold foils, (198)Au activity measurements and simulations were performed for various scintillators and foil sizes. The measured (198)Au activities were ~1% above the reference activity, which might be due to self-shielding of beta particles. The measured and simulated (198)Au activities agreed, suggesting feasibility of precise activity measurement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. RETRACTED: Neutron detection by large NaI crystal

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.

    2016-07-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor. The article includes many textual similarities with a work that had already appeared in Nuclear Instruments and Methods in Physics Research A, Volume 697, January 2013, p. 59-63 (10.1016/j.nima.2012.09.010), as well as the Master thesis Neutron detection with high-energy photons using NaI portal monitor, Aalto University, 2012 (https://aaltodoc.aalto.fi/bitstream/handle/123456789/5206/master_holm_philip_2012.pdf?isAllowed=y&sequence=1). One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  10. Secondary interactions in thallium(I) coordination, [Tl 2(DBM) 2] n, DBM - = 1,3-diphenylpropane-1,3-dionate (dibenzoylmethanide)

    NASA Astrophysics Data System (ADS)

    Askarinejad, Azadeh; Morsali, Ali; Zhu, Long-Guan

    2006-05-01

    The Tl I complex of 1,3-diphenylpropane-1,3-dionate (dibenzoylmethanide, DBM -), [Tl 2(DBM) 2] n, has been synthesized and characterized. The single-crystal X-ray data show there are two different Tl environments. One type of Tl-atom in the TlO 4C 6Tl 2 environment is twelve-coordinated, with two weak Tl⋯Tl and hexahapto ( η) interactions, TlC 6. The other type of Tl-atom in the TlO 4C 2Tl 2 units is eight-coordinated, with two weak Tl⋯Tl and dihapto ( η) interactions, TlC 2. The dimeric units [Tl 2(DBM) 2] linked through Tl⋯Tl and polyhapto interactions, TlC 6 and TlC 2, and produce the 1D polymeric chains. Comparison with the analogous Pb(II) compound indicates that Tl I may also act as both a Lewis acid and a Lewis base.

  11. Regional analysis of annual maximum rainfall using TL-moments method

    NASA Astrophysics Data System (ADS)

    Shabri, Ani Bin; Daud, Zalina Mohd; Ariff, Noratiqah Mohd

    2011-06-01

    Information related to distributions of rainfall amounts are of great importance for designs of water-related structures. One of the concerns of hydrologists and engineers is the probability distribution for modeling of regional data. In this study, a novel approach to regional frequency analysis using L-moments is revisited. Subsequently, an alternative regional frequency analysis using the TL-moments method is employed. The results from both methods were then compared. The analysis was based on daily annual maximum rainfall data from 40 stations in Selangor Malaysia. TL-moments for the generalized extreme value (GEV) and generalized logistic (GLO) distributions were derived and used to develop the regional frequency analysis procedure. TL-moment ratio diagram and Z-test were employed in determining the best-fit distribution. Comparison between the two approaches showed that the L-moments and TL-moments produced equivalent results. GLO and GEV distributions were identified as the most suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation was used for performance evaluation, and it showed that the method of TL-moments was more efficient for lower quantile estimation compared with the L-moments.

  12. Cardiac sarcoidosis demonstrated by Tl-201 and Ga-67 SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, J.; Nakajima, K.; Bunko, H.

    1990-09-01

    Ga-67 and Tl-201 SPECT was performed to evaluate cardiac sarcoidosis in a 15-year-old boy. Tl-201 SPECT imaging showed decreased uptake in the inferior to lateral wall and Ga-67 accumulation in the area of decreased Tl-201 uptake. These findings suggested cardiac sarcoidosis, and cardiac biopsy confirmed this diagnosis. After corticosteroid therapy, myocardial uptake of Ga-67 disappeared and myocardial TI-201 uptake became more homogeneous.

  13. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  14. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  15. Synthesis and in vivo evaluation of 201Tl(III)-DOTA complexes for applications in SPECT imaging.

    PubMed

    Hijnen, Nicole M; de Vries, Anke; Blange, Roy; Burdinski, Dirk; Grüll, Holger

    2011-05-01

    The aim of this study was to assess the use of (201)thallium(3+) ((201)Tl(3+)) as a radiolabel for nuclear imaging tracers. Methods for labeling of 1,4,7,10-tetraazacyclododecane-N,N',N″,N'″ tetraacetic acid (DOTA) and diethylenetriaminepentaacetic acid (DTPA) chelators with (201)Tl(3+) were investigated, and the levels of stability of these chelates were tested in vitro and in vivo. (201)Tl(I)Cl was treated with hydrochloric acid and ozone to form (201)Tl(III)Cl(3). The procedure for labeling of DOTA and DTPA was optimized, testing different buffer solutions and pH values. The stability levels of (201)Tl(III)-DOTA and (201)Tl(III)-DTPA were assessed in buffer, mouse serum and human serum (1:1, v/v) at a temperature of 310 K for 48 h. Subsequently, in vivo stability studies with (201)Tl(III)-DOTA were performed, comparing the biodistribution of (201)Tl(III)-DOTA with that of (201)Tl(I)Cl in a single-isotope study and with that of (177)Lu(III)-DOTA in a dual-isotope single photon emission computed tomography study. (201)Tl(III)-DTPA, (201)Tl(III)-DOTA and (177)Lu(III)-DOTA were prepared with >95% radiochemical purity. While (201)Tl(III)-DOTA showed a prolonged level of stability in buffer and serum, (201)Tl was quickly released from DTPA in serum. Apart from some urinary excretion, the biodistribution of DOTA-chelated (201)Tl(3+) was similar to that of free (ionic) (201)Tl(+) and did not match the biodistribution of (177)Lu(III)-DOTA. This indicated a limited stability of (201)Tl(III)-DOTA complexes in vivo. Despite promising results on the labeling and in vitro stability of (201)Tl(III)-DOTA, our in vivo results indicate that the integrity of (201)Tl(III)-DOTA decreases to <20% during the time required for urinary excretion, thereby limiting the use of (201)Tl(3+) as a radiolabel for tracer imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Electronic structure and dissociation curves for the ground states of Tl/sub 2/ and Tl/sub 2//sup +/ from relativistic effective potential calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, P.A.; Pitzer, K.S.

    The dissociation curves for the ground states of Tl/sub 2/ and Tl/sub 2//sup +/ were computed using a generalization of the molecular relativistic ..omega..--..omega.. coupling formalism of Lee, Ermler, and Pitzer. Relativistic effects, as represented by the Dirac equation, were introduced using effective potentials generated from atomic Dirac--nFock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. Our calculations show that the ground state of Tl/sub 2//sup +/ is 1/2/sub g/ with computed D/sub e/ and R/sub e/ values of 0.58 eV and 3.84 A. For Tl/sub 2/ we find that the groundmore » state is 0/sub u//sup -/ but the 0/sub g//sup +/ and the 1/sub u/ states are only slightly higher in energy; the potential curves for these states are repulsive to about 3.5 A and then essentially flat beyond that radius. While corrections for correlation will increase D/sub e/ somewhat, Tl/sub 2/ is only weakly bound in any of these states which dissociate to normal atoms. The cause is undoubtedly related to the large spin-orbit splitting between the 6p/sub 1/2/ and 6p/sub 3/2/ thallium spinors.« less

  17. SANTPEN's SoTL Journey: Building and Using a SoTL Approach across Institutions

    ERIC Educational Resources Information Center

    West, Deborah; Stephenson, Helen

    2016-01-01

    In the current higher education environment, providing high quality teaching and learning experiences to students has moved beyond desirable to essential. Quality improvement takes many forms, but one core aspect to ensure sustainable improvement is the development of a culture of scholarship of teaching and learning (SoTL). Developing such an…

  18. Method of forming superconducting Tl-Ba-Ca-Cu-O films

    DOEpatents

    Wessels, Bruce W.; Marks, Tobin J.; Richeson, Darrin S.; Tonge, Lauren M.; Zhang, Jiming

    1993-01-01

    A method of forming a superconducting Tl-Ba-Ca-Cu-O film is disclosed, which comprises depositing a Ba-Ca-Cu-O film on a substrate by MOCVD, annealing the deposited film and heat-treating the annealed film in a closed circular vessel with TlBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x and cooling to form said superconducting film of TlO.sub.m Ba.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2, wherein m=1,2 and n=1,2,3.

  19. Branching ratios for TlBr photodissociation with 2660 A radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.C.; Zdasiuk, G.A.

    1978-09-01

    Radiation from a Nd:YAG laser was used to study the selective photodissociation of TlBr into the Tl metastable state, 6p/sup 2/P/sub 3/2/, as a potential candidate for stimulated Roman up-converters.(AIP)

  20. Modeling and prediction of ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.

    1974-01-01

    Scintillation modeling performed thus far is based on the theory of diffraction by a weakly modulating phase screen developed by Briggs and Parkin (1963). Shortcomings of the existing empirical model for the scintillation index are discussed together with questions of channel modeling, giving attention to the needs of the communication engineers. It is pointed out that much improved scintillation index models may be available in a matter of a year or so.

  1. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F Patrick [Livermore, CA

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  2. Developing Scholarly Teachers through an SoTL Faculty Fellowship

    ERIC Educational Resources Information Center

    Fisher, Beth A.; Repice, Michelle D.; Dufault, Carolyn L.; Leonard, Denise A.; Frey, Regina F.

    2014-01-01

    The increasing interest in incorporating evidenced-based teaching in higher education has created a pronounced need for faculty to learn the theory and practice of the Scholarship of Teaching and Learning (SoTL). This article describes a program designed to prepare faculty to (a) draw on existing SoTL studies when designing and implementing…

  3. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  4. Scintillation imaging of tritium radioactivity distribution during tritiated thymidine uptake by PC12 cells using a melt-on scintillator.

    PubMed

    Irikura, Namiko; Miyoshi, Hirokazu; Shinohara, Yasuo

    2017-02-01

    A scintillation image of tritium fixed in a melt-on scintillator was obtained using a charged-coupled device (CCD) imager, and a linear relationship was observed between the intensity of the scintillation image and the radioactivity of tritium. In a [ 3 H]thymidine uptake experiment, a linear correlation between the intensity of the CCD image and the dilution ratio of cells was confirmed. Scintillation imaging has the potential for use in direct observation of tritium radioactivity distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A novel intra-operative positron imager for rapid localization of tumor margins

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.

    2014-03-01

    We have developed an intra-operative and compact imaging tool for surgeons to detect PET- positive lesions. Currently, most such probes on the market are non-imaging, and provide no ancillary information of surveyed areas, such as clear delineations of malignant tissues. Our probe consists of a novel hybrid scintillator coupled to a compact silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The hybrid scintillator consists of a 0.4 mm thick layer of CsI:Tl scintillator coupled to a 1 mm thick LYSO crystal. To achieve high spatial resolution, CsI:Tl is pixelated to 0.5×0.5 mm2 pixels using laser ablation technique. While CsI:Tl act as beta-sensitive scintillator, LYSO senses the gamma radiation and can be used to navigate the probe to the locations of interest. The gamma response is also subtracted from the beta image for improved SNR and contrast. To achieve accurate centroid position estimation and uniform beta sensitivity over the entire imaging area, the LYSO thickness is optimized such that it acts as scintillation light diffuser by spreading CsI:Tl light over multiple SiPM pixels. The results show that the response of the two scintillators exposed to radiation could be easily distinguished based on their pulse shapes. The probe's spatial resolution is <1.5 mm FWHM in its 10×10 mm2 effective imaging area. The probe can rapidly detect and localize nCi levels of F-18 beta radiation even in presence of strong gamma background.

  6. Soluble TL1A is sufficient for activation of death receptor 3.

    PubMed

    Bittner, Sebastian; Knoll, Gertrud; Füllsack, Simone; Kurz, Maria; Wajant, Harald; Ehrenschwender, Martin

    2016-01-01

    Death receptor 3 (DR3) is a typical member of the tumor necrosis factor receptor family, and was initially identified as a T-cell co-stimulatory molecule. However, further studies revealed a more complex and partly dichotomous role for DR3 and its ligand TL1A under (patho)physiological conditions. TL1A and DR3 are not only a driving force in the development of autoimmune and inflammatory diseases, but also play an important role in counteracting these processes through an increase in the number of regulatory T cells. Ligands of the tumor necrosis factor family typically occur in two forms, membrane-bound and soluble, that can differ strikingly with respect to their efficacy in activating their corresponding receptor(s). Ligand-based approaches to activate the TL1A-DR3 pathway therefore require understanding of the molecular prerequisites of TL1A-based DR3 activation. To date, this has not been addressed. Here, we show that recombinant soluble trimeric TL1A is fully sufficient to strongly activate DR3-associated pro- and anti-apoptotic signaling pathways. In contrast to the TRAIL death receptors, which are much better activated by soluble TRAIL upon secondary ligand oligomerization, but similarly to the death receptor tumor necrosis factor receptor 1, DR3 is efficiently activated by soluble TL1A trimers. Additionally, we have measured the affinity of TL1A-DR3 interaction in a cell-based system, and demonstrated TL1A-induced DR3 internalization. Identification of DR3 as a tumor necrosis factor receptor that responds to soluble ligand trimers without further oligomerization provides a basis for therapeutic exploitation of the TL1A-DR3 pathway. © 2015 FEBS.

  7. Ionospheric scintillation observations over Kenyan region - Preliminary results

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  8. Ionospheric scintillation effects on single frequency GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C. G.; Groves, K. M.

    2008-04-01

    Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active within, although not limited to, a belt encircling the Earth within 20 degrees of the geomagnetic equator. As GPS applications and users increase, so does the potential for degraded precision and availability from scintillation. We examined amplitude scintillation data spanning 7 years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/American longitudinal sector as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K. in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at 1 min resolution. We examine diurnal, seasonal, and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  9. Systematic studies of small scintillators for new sampling calorimeter

    NASA Astrophysics Data System (ADS)

    Jacosalem, E. P.; Iba, S.; Nakajima, N.; Ono, H.; Sanchez, A. L. C.; Bacala, A. M.; Miyata, H.

    2007-12-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R&D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated ^{90}Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.

  10. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    NASA Astrophysics Data System (ADS)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  11. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  12. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  13. Photonic crystal scintillators and methods of manufacture

    DOEpatents

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  14. Electromodulation spectroscopy of sc and fcc phase TlCl and TlBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, J.F.

    1976-06-01

    Electromodulation measurements were made on these compounds and the spectra were reduced to the electric field induced changes in the dielectric function. The results indicate the importance of photocarrier effects in both theory and experiment in the electromodulation of exciton states. In the future, calculations should include the effect of photocarriers on the field seen by the exciton and experimentally samples should be developed with known and reproducible photocarrier properties with temperature control between liquid helium and nitrogen temperatures and bipolar modulation fields. The abnormal (fcc) phase electroabsorption (EA) measurements have demonstrated the usefulness of the modulation method in resolvingmore » exciton states by determining the n = 2 energy in TlBr. This has enabled a number of quantities to be calculated from the Wannier exciton model. The resolution of the n = 2 energy in TlCl is probably also possible with an EA measurement and patience with the signal to noise problem. The ..cap alpha.. and ..beta.. features are still unassigned but the unusual EA lineshape and sample preparation sensitivity found in this investigation may prove useful in making definitive assignments in conjunction with future work.« less

  15. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  16. Long-term room temperature stability of TlBr gamma detectors

    NASA Astrophysics Data System (ADS)

    Conway, A. M.; Voss, L. F.; Nelson, A. J.; Beck, P. R.; Graff, R. T.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.

    2011-09-01

    TlBr is a material of interest for use in room temperature gamma ray detector applications due to is wide bandgap 2.7 eV and high average atomic number (Tl 81, Br 35). Researchers have achieved energy resolutions of 1.3 % at 662 keV, demonstrating the potential of this material system. However, these detectors are known to polarize using conventional configurations, limiting their use. Continued improvement of room temperature, high-resolution gamma ray detectors based on TlBr requires further understanding of the degradation mechanisms. While high quality material is a critical starting point for excellent detector performance, we show that the room temperature stability of planar TlBr gamma spectrometers can be significantly enhanced by treatment with both hydrofluoric and hydrochloric acid. By incorporating F or Cl into the surface of TlBr, current instabilities are eliminated and the longer term current of the detectors remains unchanged. 241Am spectra are also shown to be more stable for extended periods; detectors have been held at 2000 V/cm for 52 days with less than 10% degradation in peak centroid position. In addition, evidence for the long term degradation mechanism being related to the contact metal is presented.

  17. Cosmic-ray cascades photographed in scintillator

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.

    1974-01-01

    Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.

  18. Personal Reflection: Lessons from My Students and Other Reflections on SoTL

    ERIC Educational Resources Information Center

    McKinney, Kathleen

    2009-01-01

    This personal reflection describes the author's 25-year relationship with the scholarship of teaching and learning. Her thoughts wander to influences on her career in SoTL, the impact SoTL has had on her professional life, the dilemmas in the field that continue to be pondered, ways to advocate for and support SoTL work, and her hopes for the…

  19. Oxidation/reduction reactions at the metal contact-TlBr interface: an x-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.

    2014-09-01

    TlBr radiation detector operation degrades with time at room temperature and is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. X-ray photoemission spectroscopy (XPS) was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage prior to Mo or Pt contact deposition. High-resolution photoemission measurements on the Tl 4f, Br 3d, Cl 2p, Mo 3d and Pt 4f core lines were used to evaluate surface chemistry and non-equilibrium interfacial diffusion. Results indicate that anion substitution at the TlBr surface due to the HCl etch forms TlBr1-xClx with consequent formation of a shallow heterojunction. In addition, a reduction of Tl1+ to Tl0 is observed at the metal contacts after device operation in both air and N2 at ambient temperature. Understanding contact/device degradation versus operating environment is useful for improving radiation detector performance.

  20. Experimental Determination of the Ionization Energy in TlBr

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo

    2015-06-01

    The average ionization energy required to excite an electron-hole pair in TlBr was estimated to be 5.50 ± 0.05 eV by comparing the peak position of 59.5-keV gamma rays obtained from four pixels of a pixelated TlBr detector to the peak position obtained from a Si PIN photodiode at room temperature.

  1. Geophysical analysis of coherent satellite scintillation data

    NASA Astrophysics Data System (ADS)

    Fremouw, E. J.; Lansinger, J. M.; Miller, D. A.

    1981-11-01

    In May of 1976, Air Force Satellite P76-5 was launched with the Defense Nuclear Agency's Wideband beacon, DNA-002, as its sole payload. Several researchers have employed the resulting data in studies of ionospheric structure and its effect on transionospheric radio communications. In the present work, recordings of amplitude and phase scintillation imposed on Wideband's VHF and UHF signals by the ionosphere have been used to study medium-scale structures in the auroral-zone F layer. Results include quantitative identification of a very close relationship between scintillation and solar/geomagnetic activity, together with lack of a seasonal variation in scintillation activity in the Alaskan sector. A surprisingly high correlation (90%) was found between monthly means of phase-scintillation index, on the one hand, and sunspot number and 10-cm solar radio flux, on the other. The high-latitude scintillation boundary was found to be very similar to the soft-electron precipitation boundary, including similarity in expansion rates with increasing magnetic activity. Interestingly, it is systematically shifted poleward of the precipitation boundary on the day side of the earth and equatorward on the night side. Taken together, the results of this research disclose a rather direct relationship between scintillation and soft-electron precipitation, with plasma convection likely playing an important role in generation of the scintillation-producing irregularities.

  2. Ultrasonic and elastic properties of Tl- and Hg-Based cuprate superconductors: a review

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.

    2018-01-01

    This review is regarding the ultrasonic and elastic properties of Tl- and Hg-based cuprate superconductors. The objectives of this paper were to review the ultrasonic attenuation above the transition temperature ?, and sound velocity and elastic anomalies at ? in the Tl- and Hg-based cuprate superconductors. A discontinuity in the sound velocity and elastic moduli is observed near ? for the Hg-based and other cuprate high temperature superconductor but not the Tl-based superconductor. Ultrasonic attenuation peaks are observed between 200 and 250 K in almost all Tl- and Hg-based cuprate superconductors reported. These peaks were attributed to lattice stepping and oxygen ordering in the Tl-O and Hg-O layers. Some Tl- and Hg-based superconductors show attenuation peak near ?. However, this is not a common feature for the cuprate superconductors. The ultrasonic attenuation decrease rate below ? is slower than that expected from a Bardeen-Cooper-Schrieffer (BCS) and pseudo-gapped superconductor.

  3. Biochemical and Structural Characterization of the Human TL1A Ectodomain†¶

    PubMed Central

    Zhan, Chenyang; Yan, Qingrong; Patskovsky, Yury; Li, Zhenhong; Toro, Rafael; Meyer, Amanda; Cheng, Huiyong; Brenowitz, Michael; Nathenson, Stanley G; Almo, Steven C

    2009-01-01

    TNF-like 1A (TL1A) is a newly described member of the TNF superfamily that is directly implicated in the pathogenesis of autoimmune diseases, including inflammatory bowel disease, atherosclerosis and rheumatoid arthritis. We report the crystal structure of the human TL1A extracellular domain at a resolution of 2.5 Å, which reveals a jelly-roll fold typical of the TNF superfamily. This structural information, in combination with complementary mutagenesis and biochemical characterization, provides insights into the binding interface and the specificity of the interactions between TL1A and the DcR3 and DR3 receptors. These studies suggest that the mode of interaction between TL1A and DcR3 differs from other characterized TNF ligand/receptor complexes. In addition, we have generated functional TL1A mutants with altered disulfide bonding capability that exhibit enhanced solution properties, which will facilitate the production of materials for future cell-based and whole animal studies. In summary, these studies provide insights into the structure and function of TL1A and provide the basis for the rational manipulation of its interactions with cognate receptors. PMID:19522538

  4. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  5. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators

    PubMed Central

    Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G.; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm. PMID:29176834

  6. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators.

    PubMed

    Wieczorek, Anna; Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.

  7. Study on Effects of Gamma-Ray Irradiation on TlBr Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy.

  8. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  9. The stability of TlBr detectors at low temperature

    NASA Astrophysics Data System (ADS)

    Dönmez, Burçin; He, Zhong; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.

    2010-11-01

    Thallium bromide (TlBr) is a promising semiconductor detector material due to its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm 3) and wide band gap (2.68 eV). Current TlBr detectors suffer from polarization, which causes performance degradation over time when high voltage is applied. A 4.6-mm thick TlBr detector with pixellated anodes made by Radiation Monitoring Devices Inc. was used in the experiments. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0-mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board for pulse shaping. Several experiments were carried out at -20 °C while the detector was under bias for over a month. No polarization effect was observed and the detector's spectroscopic performance improved over time. Energy resolution of 1.5% FWHM at 662 keV has been measured without depth correction at -2000 V cathode bias. Average electron mobility-lifetime of (5.7±0.8) ×10 -3 cm 2/V has been measured from four anode pixels.

  10. Upconverting nanoparticles for optimizing scintillator based detection systems

    DOEpatents

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  11. Exploring the SoTL Landscape at the University of Saskatchewan

    ERIC Educational Resources Information Center

    Wuetherick, Brad; Yu, Stan; Greer, Jim

    2016-01-01

    This paper presents the results of a quantitative study that comprehensively assessed the level and extent to which the Scholarship of Teaching and Learning (SoTL) was being conducted amongst faculty and staff at the University of Saskatchewan, and identifies the barriers and challenges faced by SoTL practitioners.

  12. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  13. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  14. Liquid scintillator tiles for calorimetry

    DOE PAGES

    Amouzegar, M.; Belloni, A.; Bilki, B.; ...

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  15. Liquid scintillator tiles for calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amouzegar, M.; Belloni, A.; Bilki, B.

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  16. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  17. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  18. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  19. Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7

    NASA Astrophysics Data System (ADS)

    Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.

    1997-02-01

    The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.

  20. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.

    PubMed

    Nariyama, N; Konnai, A; Ohnishi, S; Odano, N; Yamaji, A; Ozasa, N; Ishikawa, Y

    2006-01-01

    To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.

  1. Development of europium doped BaSO4 TL OSL dual phosphor for radiation dosimetry applications

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2015-08-01

    This paper presents the results on the preparation and characterization of Europium-doped Barium sulfate (BaSO4: Eu) TL /OSL dual phosphor. The OSL sensitivity was found to be 11% of the commercially available Al2O3: C, using area integration method. The sample also shows good TL sensitivity and the dosimetric peak appears around 190°C with a shoulder at 282°C. After OSL readout, No change in the TL glow curve is observed. Since the observed TL peaks are not responsible for the observed OSL, good OSL as well as TL sensitivity and low fading will make this phosphor suitable for applications in radiation dosimetry using OSL as well as TL.

  2. Plastic scintillators with efficient neutron/gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia; Rupert, Benjamin L.; PaweŁczak, Iwona; Glenn, Andrew; Martinez, H. Paul; Carman, Leslie; Faust, Michelle; Cherepy, Nerine; Payne, Stephen

    2012-03-01

    A possibility of manufacturing plastic scintillators with efficient neutron/gamma pulse shape discrimination (PSD) is demonstrated using a system of a polyvinyltoluene (PVT) polymer matrix loaded with a scintillating dye, 2,5-diphenyloxazole (PPO). Similarities and differences of conditions leading to the rise of PSD in liquid and solid organic scintillators are discussed based on the classical model of excited state interaction and delayed light formation. First characterization results are presented to show that PSD in plastic scintillators can be of the similar magnitude or even higher than in standard commercial liquid scintillators.

  3. Scintillator Detector Development at Central Michigan University

    NASA Astrophysics Data System (ADS)

    McClain, David; Estrade, Alfredo; Neupane, Shree

    2017-09-01

    Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.

  4. TL-OSL correlation studies of LiMgPO4:Tb,B dosimetric phosphor

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Mayya, Y. S.

    2012-03-01

    The recently synthesized LiMgPO4:Tb,B (LMP) is a highly sensitive Optically Stimulated Luminescence (OSL) phosphor for dosimetric applications. Studies were carried out to assess the correlation between thermoluminescence (TL) and OSL of this phosphor. Measurements like Residual TL (R-TL), Continuous Wave OSL (CW-OSL) and Linearly Modulated OSL (LM-OSL) of LMP were carried out and various curves thus obtained were de-convolved using Computerized Curve Deconvolution (CCD) program. The deconvolution of CW-OSL and LM-OSL curves showed five different first order components in LMP. It was observed that OSL signal of LMP has its origin from five traps having different photo-ionization cross-sections. Same traps were found to be responsible for both TL and OSL in this phosphor. Bleaching decay rates were calculated for each R-TL glow peaks and compared with the decay rates of individual OSL components. The value of decay rates of R-TL and OSL matches well. Experimental verification of presence of individual OSL components using tbleach-tmax method was carried out.

  5. Measurement of the 1s Hyperfine Transition of Two Tl^80+ Isotopes

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Utter, S. B.; Wong, K. L.; Crespo López-Urrutia, J. R.; Britten, J. A.; Chen, H.; Thoe, R. S.; Thorn, D. B.; Träbert, E.; Gustavsson, M. G. H.; Forssén, C.; Mårtenson-Pendrill, A.-M.; Harris, C. L.

    2001-05-01

    The hyperfine splitting of the 1s ground state has been measured for the two stable isotopes of hydrogen-like Tl using emission spectroscopy in the SuperEBIT electron beam ion trap. The results are 3858.22± 0.30 Åfor ^203Tl^80+ and 3821.84± 0.34 Åfor ^205Tl^80+. These differ by about 60 Å from recent and about 19 Å from very recent calculations, illustrating unsolved issues affecting these transitions in hydrogen-like ions. The wavelength difference Δλ = 36.38± 0.35 Å is consistent with estimates based on hyperfine anomaly data for neutral Tl. By using previously determined nuclear magnetic moments and applying appropriate corrections for the nuclear charge distribution and radiative effects, the experimental splittings can be interpreted in terms of nuclear magnetization radii < r^2_m>^1/2= 5.83(14) fm for ^203Tl and < r^2_m>^1/2= 5.89(14) fm for ^205Tl. These values are 10% larger than derived from single-particle nuclear magnetization models, and are slightly larger than the corresponding charge distributions. *Work performed under the auspices of DOE by UCLLNL under contract W-7405-ENG-48 and supported by the Office of Basic Energy Sciences.

  6. Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.

    2016-07-01

    The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.

  7. Hybrid scintillators for neutron discrimination

    DOEpatents

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  8. Comparison of multifrequency equatorial scintillation - American and Pacific sectors

    NASA Astrophysics Data System (ADS)

    Livingston, R. C.

    1980-08-01

    In this paper we examine the severity of radio wave amplitude scintillation measured at two stations near the equator but far separated in longitude: Kwajelein, Marshall Islands (167 E), and Ancon, Peru (-77 E). The data used are long-term observations of the Defense Nuclear Agency (DNA) Wideband satellite signal intensity at VHF, UHF, and L band frequencies. The seasonal behavior of the scintillation at the two stations is similar; each shows a broad 8- to 9-month disturbed season centered about local summer. There is short-term variability in the scintillation occurrence statistics but no clear equinoctial maxima. Little difference is observed in the occurrence or severity of L band scintillation at the two stations, although a systematic difference in the frequency dependence of the scintillation produces significantly stronger VHF and UHF scintillation at Ancon. The VHF and UHF latitudinal distributions of scintillation are asymmetric about the geomagnetic equator at both stations.

  9. Positive Selection of γδ CTL by TL Antigen Expressed in the Thymus

    PubMed Central

    Tsujimura, Kunio; Takahashi, Toshitada; Morita, Akimichi; Hasegawa-Nishiwaki, Hitomi; Iwase, Shigeru; Obata, Yuichi

    1996-01-01

    To elucidate the function of the mouse TL antigen in the thymus, we have derived two TL transgenic mouse strains by introducing Tla a -3 of A strain origin with its own promoter onto a C3H background with no expression of TL in the thymus. These transgenic mouse strains, both of which express high levels of Tlaa-3-TL antigen in their thymus, were analyzed for their T cell function with emphasis on cytotoxic T lymphocyte (CTL) generation. A T cell response against TL was induced in Tg.Tlaa-3-1, Tg.Tlaa-3-2, and control C3H mice by skin grafts from H-2K b/T3 b transgenic mice, Tg.Con.3-1, expressing T3b-TL ubiquitously. Spleen cells from mice that had rejected the T3b-TL positive skin grafts were restimulated in vitro with Tg.Con.3-1 irradiated spleen cells. In mixed lymphocyte cultures (MLC), approximately 20% and 15% of Thy-1+ T cells derived from Tg.Tlaa-3-1 and Tg.Tlaa-3-2, respectively, expressed TCRγδ, whereas almost all those from C3H expressed TCRαβ. The MLC from Tg.Tlaa-3-2 and C3H demonstrated high CTL activity against TL, while those from Tg.Tlaa-3-1 had little or none. The generation of γδ CTL recognizing TL in Tg.Tlaa-3-2, but not C3H mice, was confirmed by the establishment of CTL clones. A total of 14 γδ CTL clones were established from Tg.Tlaa-3-2, whereas none were obtained from C3H. Of the 14 γδ CTL clones, 8 were CD8+ and 6 were CD4−CD8− double negative. The CTL activity of all these clones was TL specific and inhibited by anti-TL, but not by anti-H-2 antibodies, demonstrating that they recognize TL directly without antigen presentation by H-2. The CTL activity was blocked by antibodies to TCRγδ and CD3, and also by antibodies to CD8α and CD8β in CD8+ clones, showing that the activity was mediated by TCRγδ and coreceptors. The thymic origin of these γδ CTL clones was indicated by the expression of Thy-1 and Ly-1 (CD5), and also CD8αβ heterodimers in CD8+ clones on their surfaces and by the usage of TCR Vγ4 chains in 12 of

  10. Electronic Structure of Tl2Ba2CuO(6+Delta) Epitaxial Films Measured by X-Ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Ren, Z. F.; Wang, J. H.

    1996-01-01

    The valence electronic structure and core levels of Tl2Ba2CuO(6 + delta) (Tl-2201) epitaxial films have been measured with X-ray photoelectron spectroscopy and are compared to those of Tl2Ba2CaCu2O(8 + delta) (Tl-2212). Changes in the Tl-2201 core-level binding energies with oxygen doping are consistent with a change in the chemical potential. Differences between the Tl-2201 and Tl-2212 measured densities of states are consistent with the calculated Cu 3d and Tl 6s partial densities of states.

  11. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  12. First-principles study of giant thermoelectric power in incommensurate TlInSe2

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Nakayama, T.; Wakita, K.; Shim, Y. G.; Mamedov, N.

    2018-04-01

    Ternary thallium compound TlInSe2 exhibits a giant Seebeck effect below around 410 K, where Tl atoms form one dimensional incommensurate (IC) arrays. To clarify the origin of large thermoelectric power in the IC phase, the electronic properties of Tl-atom super-structured TlInSe2 were studied using the first-principles calculations. It was shown that the super-structures induce strong binding states between Se-p orbitals in the nearest neighboring layers and produce large density of states near lower conduction bands, which might be one of the origins to produce large thermoelectric power.

  13. Scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Radermacher, T.; Weingarten, S.; Weinstock, L.

    2015-10-01

    A detector prototype based on a fast plastic scintillator read out with silicon photomultipliers is presented. All studies have been done with cosmic muons and focus on parameter optimization such as coupling the SiPM to the scintillator or wrapping the scintillator with reflective material. The prototype shows excellent results regarding the light-yield and offers a detection efficiency of 99.5% with a signal purity of 99.9% for cosmic muons.

  14. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  15. Plastic scintillators modifications for a selective radiation detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Matthieu; Bertrand, Guillaume H.V.; Carrel, Frederick

    2015-07-01

    Recent developments of plastic scintillators are reviewed, from January 2000 to June 2015. All examples are distributed into the main application, i.e. how the plastic scintillator was modified to enhance the detection towards a given radiation particle. The main characteristics of these newly created scintillators and their detection properties are given. (authors)

  16. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  17. Automation of TL brick dating by ADAM-1

    NASA Astrophysics Data System (ADS)

    Čechák, T.; Gerndt, J.; Hiršl, P.; Jiroušek, P.; Kanaval, J.; Kubelík, M.; Musílek, L.

    2001-06-01

    A specially adapted machine ADAM-1 for the thermoluminescence fine grain dating of bricks was constructed in an interdisciplinary research project, undertaken by a team recruited from three faculties of the Czech Technical University in Prague. This TL-reader is able to measure and evaluate automatically numerous samples. The sample holder has 60 sample positions, which allow the irradiation and evaluation of samples taken from two locations. All procedures of alpha and beta irradiation by varying doses and the TL-signal measurement as also the age evaluation and error assessment are programmable and fully automated.

  18. TL and OSL properties of beta irradiated Y2O3 nanocrystal

    NASA Astrophysics Data System (ADS)

    Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Tatumi, S. H.; Rocca, R. R.; Singh, Fouran

    2017-05-01

    Nanocrystalline yttrium oxide (Y2O3) is synthesized by low temperature sol-gel technique and synthesized material is annealed at 900°C. The annealed β-rayed Y2O3 two TL glows with prominent peak at 407 K and weak glow peak at 643 K were observed in all irradiated samples. It is found that TL glow peaks intensity linearly increases with increase in β-dose from 0.813 - 40.625 Gy. The TL kinetic parameters are calculated using glow curve deconvoluted (GCD) method. The TL glows exhibits general order kinetics. Intense optical stimulated luminescence (OSL) is observed in the Y2O3 sample. These material exhibits linearity and reproducibility and hence, it suggests that this material may be used as dosimetric applications.

  19. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    DOE PAGES

    Schuster, P.; Brubaker, E.

    2016-11-23

    This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects duemore » to the molecular or crystal structure and not an external effect on the measurement system.« less

  20. Estimating distribution parameters of annual maximum streamflows in Johor, Malaysia using TL-moments approach

    NASA Astrophysics Data System (ADS)

    Mat Jan, Nur Amalina; Shabri, Ani

    2017-01-01

    TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments ( t 1,0), t 1 = 1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments ( t 1,0), t 1 = 1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.

  1. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermalmore » neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.« less

  2. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  3. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  4. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  5. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE PAGES

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    2018-05-03

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  6. Double-atomic layer of Tl on Si(111): Atomic arrangement and electronic properties

    NASA Astrophysics Data System (ADS)

    Mihalyuk, Alexey N.; Bondarenko, Leonid V.; Tupchaya, Alexandra Y.; Gruznev, Dimitry V.; Chou, Jyh-Pin; Hsing, Cheng-Rong; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.

    2018-02-01

    Metastable double-atomic layer of Tl on Si(111) has recently been found to display interesting electric properties, namely superconductivity below 0.96 K and magnetic-field-induced transition into an insulating phase intermediated by a quantum metal state. In the present work, using a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, in a combination with density-functional-theory calculations, we have characterized atomic and electronic properties of the Tl double layer on Si(111). The double Tl layer has been concluded to contain ∼ 2.4 monolayer of Tl. A top Tl layer has a '1 × 1' basic structure and displays 6 × 6 moiré pattern which originates from various residence sites of Tl atoms. Upon cooling below ∼ 140 K, the 6 × 6 moiré pattern changes to that having a 6√{ 3} × 6√{ 3} periodicity. However, the experimentally determined electron band dispersions show a 1 × 1 periodicity. The calculated band structure unfolded into the 1 × 1 surface Brillouin zone reproduces well the main features of the photoelectron spectra.

  7. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  8. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  9. Scintillator for low accelerating voltage scanning electron microscopy imaging

    NASA Astrophysics Data System (ADS)

    Bowser, Christopher; Tzolov, Marian; Barbi, Nicholas

    Scintillators are essential in detecting electrons in SEM. The conventional scintillators such as YAP and YAG have poor response at low accelerating voltages due to a top conductive layer of ITO or Al. We have developed a thin film ZnWO4 scintillator with high photoluminescence quantum efficiency of 60% with enough electrical conductivity to prevent charging. We are showing that the ZnWO4 films are effective in detecting electrons at low accelerating voltages. This makes it a good option for a top layer on crystalline scintillators and we have integrated ZnWO4 with YAP to explore the high response of YAP at high electron energies and the effective response of ZnWO4 at low electron energies. We will compare the spectral intensities over a range of accelerating voltages between 1 and 30kV between the conventional and coupled thin film scintillator. The results are interpreted using a simulation of the depth profile of the electron penetration in the scintillator using CASINO. We have verified the absence of charging by measuring the sum of the secondary and backscattered electron coefficients. We have built detectors with the combined scintillators and we will compare SEM images recorded simultaneously by conventional and ZnWO4-based scintillators.

  10. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Bircher, Chad; Shao, Yiping

    2012-02-01

    Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm(2) cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function

  11. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bircher, Chad; Shao Yiping

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method couldmore » be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can

  12. On the Constitution of SoTL: Its Domains and Contexts

    ERIC Educational Resources Information Center

    Booth, S.; Woollacott, L. C.

    2018-01-01

    In this paper, we present an analysis of the Scholarship of Teaching and Learning in Higher Education (SoTL) which contributes to SoTL both as a field of research practice and as a background to professional development in higher education. We analyse and describe the constitution of the field, and in so doing address its nature in the face of the…

  13. Emergency OSL/TL dosimetry with integrated circuits from mobile phones

    NASA Astrophysics Data System (ADS)

    Sholom, S.; McKeever, S. W. S.

    2014-09-01

    Integrated circuits (ICs) from several mobile phones were studied as possible emergency dosimeters using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques. Measurement protocols were developed for ICs that take into consideration the effect of sensitization of the samples with increasing dose as well as fading of the signals after sample exposure. It was found that the OSL technique has a higher sensitivity with ICs when compared to TL, while the TL signals were characterized by better stability with time after exposure. Values of minimum measurable doses were found to be in the range between a few tens of mGy and several tens of mGy for the tested samples. It was concluded that ICs from mobile phones could be used for emergency dose reconstruction.

  14. Alkali metal hafnium oxide scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A 2HfO 3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  15. Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions.

    PubMed

    Rajasekaran, Ganesan; Kamalakannan, Radhakrishnan; Shin, Song Yub

    2015-10-01

    Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL. TL-1 and TL-4 showed a little increase in antimicrobial selectivity, while TL-2 and TL-3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti-inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor-α (TNF-α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti-inflammatory activity is as follows: TL-2 ≈ TL-3 ≈ TL-4 > TL-1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti-inflammatory activity. These results apparently suggest that the anti-inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti-inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram-negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  16. YAP:Ce scintillator characteristics for neutron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viererbl, L.; Klupak, V.; Vins, M.

    2015-07-01

    YAP:Ce (YAlO{sub 3}:Ce{sup +}, Yttrium Aluminum Perovskite, Ce{sup +} doped) crystals with appropriate converters seem like prospective scintillators for neutron detection. An important aspect for neutron detection with inorganic scintillators is the ability to discriminate neutron radiation from gamma radiation by pulse height of signals. For a detailed measurement of the aspect, a YAP:Ce crystal scintillator with lithium or hydrogen converters and a photomultiplier was used. A plutonium-beryllium neutron source and horizontal neutron channel beams of the LVR-15 research reactor were used as neutron sources. The measurement confirmed the possibility to use the YAP:Ce scintillator for neutron radiation detection. Themore » degree of discrimination between neutron and gamma radiation for different detection configurations was studied. (authors)« less

  17. Radar detection during scintillation. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepp, D.L.; Reinking, J.T.

    1990-04-01

    Electromagnetic signals that propagate through a disturbed region of the ionosphere can experience scattering which can cause fluctuations in the received amplitude, phase, and angle-of-arrival. This report considers the performance of a radar that must operate through a disturbed propagation environment such as might occur during strong equatorial scintillation, during a barium release experiment or after a high altitude nuclear detonation. The severity of the channel disturbance is taken to range from weak scattering where the signal quadrature components are uncorrelated Gaussian variates. The detection performance of noncoherent combining is compared to that of double threshold (M out of N)more » combining under various levels of scintillation disturbance. Results are given for detection sensitivity as a function of the scintillation index and the ratio of the radar hopping bandwidth to the channel bandwidth. It is shown that both types of combining can provide mitigation of fading, and that noncoherent combining generally enjoys an advantage in detection sensitivity of about 2 dB. This work serves as a quantitative guideline to the advantages and disadvantages of certain types of detection strategies during scintillation and is, therefore, useful in the radar design process. However, a detailed simulation of the radar detection algorithms is necessary to evaluate a radar design strategy to predict performance under scintillation conditions.« less

  18. The Ionospheric Scintillation Effects on the BeiDou Signal Receiver

    PubMed Central

    He, Zhijun; Zhao, Hongbo; Feng, Wenquan

    2016-01-01

    Irregularities in the Earth’s ionosphere can make the amplitude and phase of radio signals fluctuate rapidly, which is known as ionospheric scintillation. Severe ionospheric scintillation could affect the performance of the Global Navigation Satellite System (GNSS). Currently, the Multiple Phase Screen (MPS) technique is widely used in solving problems caused by weak and strong scintillations. Considering that Southern China is mainly located in the area where moderate and intense scintillation occur frequently, this paper built a model based on the MPS technique and discussed the scintillation impacts on China’s BeiDou navigation system. By using the BeiDou B1I signal, this paper analyzed the scintillation effects on the receiver, which includes the acquisition and tracking process. For acquisition process, this paper focused on the correlation peak and acquisition probability. For the tracking process, this paper focused on the carrier tracking loop and the code tracking loop. Simulation results show that under high scintillation intensity, the phase fluctuation could be −1.13 ± 0.087 rad to 1.40 ± 0.087 rad and the relative amplitude fluctuation could be −10 dB to 8 dB. As the scintillation intensity increased, the average correlation peak would decrease more than 8%, which could thus degrade acquisition performance. On the other hand, when the signal-to-noise ratio (SNR) is comparatively lower, the influence of strong scintillation on the phase locked loop (PLL) is much higher than that of weak scintillation. As the scintillation becomes more intense, PLL variance could consequently results in an error of more than 2.02 cm in carrier-phase based ranging. In addition, the delay locked loop (DLL) simulation results indicated that the pseudo-range error caused by strong scintillation could be more than 4 m and the consequent impact on positioning accuracy could be more than 6 m. PMID:27834867

  19. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  20. An analysis of annual maximum streamflows in Terengganu, Malaysia using TL-moments approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Ummi Nadiah; Shabri, Ani; Zakaria, Zahrahtul Amani

    2013-02-01

    TL-moments approach has been used in an analysis to determine the best-fitting distributions to represent the annual series of maximum streamflow data over 12 stations in Terengganu, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: generalized pareto (GPA), generalized logistic, and generalized extreme value distribution. The influence of TL-moments on estimated probability distribution functions are examined by evaluating the relative root mean square error and relative bias of quantile estimates through Monte Carlo simulations. The boxplot is used to show the location of the median and the dispersion of the data, which helps in reaching the decisive conclusions. For most of the cases, the results show that TL-moments with one smallest value was trimmed from the conceptual sample (TL-moments (1,0)), of GPA distribution was the most appropriate in majority of the stations for describing the annual maximum streamflow series in Terengganu, Malaysia.

  1. Complex Dynamics of Equatorial Scintillation

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio

    2017-04-01

    Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.

  2. High-pressure synthesis, crystal structure and magnetic properties of TlCrO3 perovskite.

    PubMed

    Yi, Wei; Matsushita, Yoshitaka; Katsuya, Yoshio; Yamaura, Kazunari; Tsujimoto, Yoshihiro; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Lekina, Yuliya O; Tsujii, Naohito; Nimori, Shigeki; Takehana, Kanji; Imanaka, Yasutaka; Belik, Alexei A

    2015-06-21

    TlMO(3) perovskites (M(3+) = transition metals) are exceptional members of trivalent perovskite families because of the strong covalency of Tl(3+)-O bonds. Here we report on the synthesis, crystal structure and properties of TlCrO(3) investigated by Mössbauer spectroscopy, specific heat, dc/ac magnetization and dielectric measurements. TlCrO(3) perovskite is prepared under high pressure (6 GPa) and high temperature (1500 K) conditions. The crystal structure of TlCrO(3) is refined using synchrotron X-ray powder diffraction data: space group Pnma (no. 62), Z = 4 and lattice parameters a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å at 293 K. No structural phase transitions are found between 5 and 300 K. TlCrO(3) crystallizes in the GdFeO(3)-type structure similar to other members of the perovskite chromite family, ACrO(3) (A(3+) = Sc, In, Y and La-Lu). The unit cell volume and Cr-O-Cr bond angles of TlCrO(3) are close to those of DyCrO(3); however, the Néel temperature of TlCrO(3) (TN≈ 89 K) is much smaller than that of DyCrO(3) and close to that of InCrO(3). Isothermal magnetization studies show that TlCrO(3) is a fully compensated antiferromagnet similar to ScCrO(3) and InCrO(3), but different from RCrO(3) (R(3+) = Y and La-Lu). Ac and dc magnetization measurements with a fine step of 0.2 K reveal the existence of two Néel temperatures with very close values at T(N2) = 87.0 K and T(N1) = 89.3 K. Magnetic anomalies near T(N2 )are suppressed by static magnetic fields and by 5% iron doping.

  3. Rapid method for determination of 90Sr in seawater by liquid scintillation counting with an extractive scintillator.

    PubMed

    Uesugi, Masaki; Watanabe, Ryosuke; Sakai, Hiroaki; Yokoyama, Akihiko

    2018-02-01

    A rapid determination method of 90 Sr is developed for the monitoring of seawater around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Three ideas of chemical separation and measurements to accelerate 90 Sr analysis are investigated. Strontium is co-precipitated in a two-step procedure with hydroxyapatite after the removal of magnesium phosphate in the presence of citric acid. The purification process of strontium is in combination with solid phase extraction disks. One or two sheets of Sr Rad disk and cyclic operations are examined to eliminate interfering substances and secure the exchange capacity. The suitable conditions of adsorption and stripping are determined with a 85 Sr tracer. Seawater samples up to 1L can be analyzed within 4h. Additionally, the appropriate pH conditions to extract strontium to the scintillator are studied, and the 90 Sr activity is assessed via liquid scintillation counting using an extractive scintillator based on the di-(2-etyl hexyl)-phosphoric acid (HDEHP) extraction method. The new scintillation counting method involves a small quenching effect and a low background compared to the conventional emulsion scintillator method. The minimum detectable activity (MDA) is 35mBq/L of 90 Sr in 180min of counting. The proposed method provides analytical results within a day after receipt of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Scintillator Development for the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Yeh, Minfang

    2014-03-01

    Doped scintillator is the target material of choice for antineutrino detection as it utilizes the time-delayed coincidence signature of the positron annihilation and neutron capture resulting from the Inverse Beta Decay (IBD) interaction. Additionally, the multiple gamma rays or heavy ions emitted after neutron capture on either Gd or 6Li respectively provide a distinct signal for the identification of antineutrino events and therefore significantly enhance accidental background reduction. The choice of scintillator and dopant depends on the detector requirements and scintillator performance criteria. Both Gd and 6Li doped scintillators have been used in past reactor antineutrino experiments such as Double Chooz, Daya Bay, RENO, and Bugey3 and are currently under investigation by the PROSPECT collaboration. Their properties in terms of light yield, optical transparency, chemical stability and background rejection efficiency using Pulse Shape Discrimination (PSD) will be reported. Research sponsored by the U.S. Department of Energy, Office of Nuclear Physics and Office of High Energy Physics, under contract with Brookhaven National Laboratory-Brookhaven Science Associates.

  5. Development of europium doped BaSO{sub 4} TL OSL dual phosphor for radiation dosimetry applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patle, Anita, E-mail: patle.anita25@gmail.com; Patil, R. R.; Kulkarni, M. S.

    This paper presents the results on the preparation and characterization of Europium-doped Barium sulfate (BaSO{sub 4}: Eu) TL /OSL dual phosphor. The OSL sensitivity was found to be 11% of the commercially available Al{sub 2}O{sub 3}: C, using area integration method. The sample also shows good TL sensitivity and the dosimetric peak appears around 190°C with a shoulder at 282°C. After OSL readout, No change in the TL glow curve is observed. Since the observed TL peaks are not responsible for the observed OSL, good OSL as well as TL sensitivity and low fading will make this phosphor suitable formore » applications in radiation dosimetry using OSL as well as TL.« less

  6. EPR and TL correlation in some powdered Greek white marbles.

    PubMed

    Baïetto, V; Villeneuve, G; Guibert, P; Schvoerer, M

    2000-02-01

    Thermoluminescence of white powdered marble samples, chosen to display different EPR spectra, were studied. Two peaks at 280 degrees C and 360 degrees C can be observed among the TL glow curves while the EPR spectra exhibit two signals: the A signal with g perpendicular = 2.0038 and g parallel = 2.0024 due to the SO3- centre and the B one with g1 = 2.0005; g2 = 2.0001; g3 = 1.9998 due to mechanical powder reduction (drilling). Owing to heating and simultaneous experiments, a correlation have been established: the 280 degrees C TL peak is associated to the A signal and thus to the SO3- centre and the 360 degrees C TL peak is caused by mechanical treatment corresponding to the B EPR signal.

  7. Advanced plastic scintillators for fast neutron discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L; Anstey, Mitchell; Doty, F. Patrick

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  8. Performance evaluation of NCDOT w-beam guardrails under MASH TL-2 conditions.

    DOT National Transportation Integrated Search

    2013-11-01

    This report summarizes the research efforts of using finite element modeling and simulations to evaluate the performance : of W-beam guardrails for different heights under MASH Test Level 2 (TL-2) and Test Level 3 (TL-3) impact conditions. A : litera...

  9. New Organic Scintillators for Neutron Detection

    DTIC Science & Technology

    2016-03-01

    highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are...New Organic Scintillators for Neutron Detection Distribution Statement A. Approved for public release; distribution is unlimited. March...Title: New Organic Scintillators for Neutron Detection I. Abstract In this project, Radiation Monitoring Devices (RMD) proposes to develop novel

  10. Binderless composite scintillator for neutron detection

    DOEpatents

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  11. Scintillator Non-Proportionality: Present Understanding and Future Challenges

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Payne, S. A.; Choong, W.-S.; Hull, G.; Reutter, B. W.

    2008-06-01

    Scintillator non-proportionality (the fact that the conversion factor between the energy deposited in a scintillator and the number of visible photons produced is not constant) has been studied both experimentally and theoretically for 50 years. Early research centered on the dependence of the conversion factor on the species of the ionizing radiation (gamma, alpha, beta, proton, etc.), and researchers during the 1960s discovered a strong correlation between the scintillation efficiency and the ionization density. In more recent years, non-proportionality has been proposed as the reason why the energy resolution of most scintillators is worse than that predicted by counting statistics. While much progress has been made, there are still major gaps in our understanding of both the fundamental causes of non-proportionality and their quantitative link to scintillator energy resolution. This paper summarizes the present state of knowledge on the nature of the light-yield non-proportionality and its effect on energy resolution.

  12. Interstellar scintillation observations for PSR B0355+54

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Lee, K. J.; Hao, L. F.; Wang, H. G.; Liu, Z. Y.; Yue, Y. L.; Yuan, J. P.; Li, Z. X.; Wang, M.; Dong, J.; Tan, J. J.; Chen, W.; Bai, J. M.

    2018-06-01

    In this paper, we report our investigation of pulsar scintillation phenomena by monitoring PSR B0355+54 at 2.25 GHz for three successive months using the Kunming 40-m radio telescope. We measured the dynamic spectrum, the two-dimensional correlation function and the secondary spectrum. These observations have a high signal-to-noise ratio (S/N ≥ 100). We detected scintillation arcs, which are rarely observable using such a small telescope. The sub-microsecond scale width of the scintillation arc indicates that the transverse scale of the structures on the scattering screen is as compact as astronomical unit size. Our monitoring shows that the scintillation bandwidth, the time-scale and the arc curvature of PSR B0355+54 were varying temporally. A plausible explanation would need to invoke a multiple-scattering-screen or multiple-scattering-structure scenario, in which different screens or ray paths dominate the scintillation process at different epochs.

  13. Studies on scintillating fiber response

    NASA Astrophysics Data System (ADS)

    Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Müller, M.; Münstermann, M.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1996-02-01

    Scintillating fibers of type Bicron BCF-12 with 2 × 2 mm 2 cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760.

  14. Expanding the Teaching Commons: Making the Case for a New Perspective on SoTL

    ERIC Educational Resources Information Center

    Case, Kim A.

    2013-01-01

    As a reflection on O'Meara, Terosky, and Neumann's (2011) work on scholarship of teaching and learning (SoTL) faculty development, this essay describes the benefits of SoTL to individual faculty and university goals. In support and expansion of arguments advanced by O'Meara et al., this work calls for the use of SoTL faculty…

  15. Designing SoTL Studies--Part II: Practicality

    ERIC Educational Resources Information Center

    Bartsch, Robert A.

    2013-01-01

    This chapter suggests solutions to common practical problems in designing SoTL studies. In addition, the advantages and disadvantages of different types of designs are discussed. [Part I available at EJ1029363.

  16. Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2015-08-01

    Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.

  17. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  18. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  19. Radiation damage effects on the optical properties of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mdhluli, J. E.; Sideras-Haddad, E.; Mellado, B.; Erasmus, R.; Madhuku, M.

    2017-10-01

    We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a 6 MeV proton beam produced by the 6 MV tandem accelerator of iThemba LABS, Gauteng. A comparative is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208, EJ260 and BC408 as well as polystyrene based scintillator UPS923A and scintillators manufactured for the Tile Calorimeter. Results on the proton induced damage indicate a reduction in the light output and transmission capability of the plastics. Scintillators containing a larger Stokes shift, i.e. EJ260 and EJ208 exhibit the most radiation hardness. The EJ208 is recommended as a candidate to be considered for the replacement of Gap scintillators in the Tile Calorimeter for the 2018 upgrade.

  20. A Hand-Held, Intra-Operative Positron Imaging Probe for Surgical Applications

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.

    2015-10-01

    We have developed a prototype intra-operative β+ imaging probe to help tumor removal and malignant tissue resection. The probe can be used during surgery to provide clear delineation of malignant tissues. Our probe consists of a hybrid scintillator coupled to a silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic aluminum housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The field of view of the probe is 10 ×10 mm2 realized by a 0.4 mm thick CsI:Tl scintillator coupled to a 1 mm thick LYSO. While CsI:Tl layer acts as β+ sensitive detector, LYSO detects gamma radiation where the gamma response can be subtracted from the total signal to improve SNR and contrast. The thickness of the LYSO scintillator is optimized such that it acts as light diffuser to spread the scintillation light generated in CsI:Tl over multiple SiPM pixels for accurate estimation of the β+ interaction location. The probe shows FWHM spatial resolution in the presence of large background radiation. The probe was used to study rabbits with tongue tumors. The experimental results show that the probe can successfully locate the tongue tumors in its active imaging area.

  1. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    PubMed

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  2. How Experienced SoTL Researchers Develop the Credibility of Their Work

    ERIC Educational Resources Information Center

    Billot, Jennie; Rowland, Susan; Carnell, Brent; Amundsen, Cheryl; Evans, Tamela

    2017-01-01

    Teaching and learning research in higher education, often referred to as the Scholarship of Teaching and Learning (SoTL), is still relatively novel in many academic contexts compared to the mainstay of disciplinary research. One indication of this is the challenges those who engage in SoTL report in terms of how this work is valued or considered…

  3. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.

    2017-12-01

    Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.

  4. Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay.

    PubMed

    Kasar, Sharayu; Kumar, Sumit; Bajpai, R K; Tomar, B S

    2016-01-01

    Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay, proposed as a backfill material in the Indian geological repository, was studied using the out-diffusion method. Radiotracers (22)Na, (137)Cs, (85)Sr and (154)Eu were used; the first three are carrier-free enabling experimental work at sub-micromolar metal ion concentration, and Eu(III) tracer (154)Eu was used at sub millimolar concentration. An out-diffusion methodology, wherein a thin planar source of radioactivity placed between two clay columns diffuses out, was used to obtain the apparent diffusion coefficient (Da) values. This methodology enabled determination of diffusion coefficient even for strongly sorbing (154)Eu. Da values for (22)Na, (137)Cs, (85)Sr and (154)Eu were 2.35 (±0.14) × 10(-11), 2.65 (±0.09) × 10(-12), 3.32 (±0.15) × 10(-11) and 1.23 (±0.15) × 10(-13) m(2) s(-1), respectively. Da values were found to be in fair agreement with literature data reported for similar mineralogical sediments. Sorption of radionuclides on the clay was also determined in the present study and differences in Da values were rationalized on the basis of sorption data. Distribution ratios (Kd) for Cs(I) and Eu(III) were higher than that for Sr(II), which in turn was higher than that for Na(I). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    PubMed Central

    Bircher, Chad; Shao, Yiping

    2012-01-01

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be

  6. Seasonal ionospheric scintillation analysis during increasing solar activity at mid-latitude

    NASA Astrophysics Data System (ADS)

    Ahmed, Wasiu Akande; Wu, Falin; Agbaje, Ganiyu Ishola; Ednofri, Ednofri; Marlia, Dessi; Zhao, Yan

    2017-09-01

    Monitoring of ionospheric parameters (such as Total Electron Content and scintillation) is of great importance as it affects and contributes to the errors encountered by radio signals. It thus requires constant measurements to avoid disastrous situation for space agencies, parastatals and departments that employ GNSS applications in their daily operations. The research objective is to have a better understanding of the behaviour of ionospheric scintillation at midlatitude as it threatens the performances of satellite communication, navigation systems and military operations. This paper adopts seasonal ionospheric scintillation scenario. The mid-latitude investigation of ionospheric effect of scintillation was conducted during the increasing solar activity from 2011-2015. Ionospheric scintillation data were obtained from four ionospheric monitoring stations located at mid-latitude (i.e Shenzhen North Station, Beijing Changping North Station Branch, Beijing North Station and Beijing Miyun ground Station). The data was collected from January 2011 to December 2015. There were absence of data due to software problem or system failure at some locations. The scintillation phenomenon was computed using Global Ionospheric Scintillation and TEC Monitoring Model. There are four seasons which existed in China namely: Spring, Summer, Autumn and Winter. The relationship between TEC, amplitude and phase scintillation were observed for each of these seasons. The results indicated that the weak amplitude scintillation was observed as against phase scintillation which was high. Phase scintillation was gradually enhanced from 2011 to 2012 and later declined till 2014. TEC was also at peak around 00:00-10:00 UT (08:00-18:00 LT). The seasonal events temporal density characteristics comply with solar cycle prediction as such it ascended from 2011 to 2013 and then scintillation parameters declined significantly afterwards.

  7. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less

  8. Measurement of tritium with high efficiency by using liquid scintillation counter with plastic scintillator.

    PubMed

    Furuta, Etsuko; Ohyama, Ryu-ichiro; Yokota, Shigeaki; Nakajo, Toshiya; Yamada, Yuka; Kawano, Takao; Uda, Tatsuhiko; Watanabe, Yasuo

    2014-11-01

    The detection efficiencies of tritium samples by using liquid scintillation counter with hydrophilic plastic scintillator (PS) was approximately 48% when the sample of 20 μL was held between 2 PS sheets treated by plasma. The activity and count rates showed a good relationship between 400 Bq to 410 KBq mL(-1). The calculated detection limit of 2 min measurement by the PS was 13 Bq mL(-1) when a confidence was 95%. The plasma method for PS produces no radioactive waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Experiment to demonstrate separation of Cherenkov and scintillation signals

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.

    2017-05-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .

  10. Scintillation of rare earth doped fluoride nanoparticles

    NASA Astrophysics Data System (ADS)

    Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Yukihara, E. G.; DeVol, T. A.; Ballato, J.

    2011-09-01

    The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

  11. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions

  12. Distribution of OV-TL 3 and MOv18 in normal and malignant ovarian tissue.

    PubMed

    Buist, M R; Molthoff, C F; Kenemans, P; Meijer, C J

    1995-07-01

    To analyse the distribution of OV-TL 3 and MOv18 in normal ovarian tissue to determine which antibody is most suitable for (radio)immunotherapy of ovarian carcinoma. The distribution of OV-TL 3 and MOv18 was determined using immunohistochemistry and flow cytometry. Epithelial and other cells in many tissues, and leucocytes in peripheral blood, bone marrow and spleen stained positively with OV-TL 3. The staining pattern of MOv18 in normal tissues was more restricted and was confined to epithelial cells in the lung, kidney, pancreas, salivary gland, ovary, Fallopian tubes, and cervix. Reactivity was also observed with pneumocytes in the lung, tubuli in the kidney, acinar cells in the salivary gland and pancreas, in the placenta, and with Kupffer cells in the liver. The staining pattern of chimeric MOv18 was identical with the murine form. OV-TL 3 and MOv18 reacted with 100% and 98% (45/46) of the 46 tested epithelial ovarian cancers, respectively. In ovarian carcinoma tissue homogeneous staining of epithelial cells was observed with OV-TL 3 and more heterogeneous staining with MOv18. In 12 and nine patients, respectively, a difference in staining intensity for OV-TL 3 and MOv18 was observed between various tumour samples from the same patient. MOv18 has greater therapeutic potential because of its restricted reactivity with normal tissues and especially, in contrast to OV-TL 3, its lack of reactivity with haematopoietic cells.

  13. Effect of beam types on the scintillations: a review

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian

    2009-02-01

    When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam

  14. Probing Cherenkov and Scintillation Light Separation for Next-Generation Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Orebi Gann, G. D.; Wallig, J.; Yeh, M.

    2017-09-01

    The ability to separate Cherenkov and scintillation signals in liquid scintillator detectors would enable outstanding background rejection for next-generation neutrino experiments. Reconstruction of directional information, ring imaging, and sub-Cherenkov threshold detection all have the potential to substantially improve particle and event identification. The Cherenkov-Scintillation Separation (CHESS) experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium based on photon hit times and detected charge. This setup has been used to characterize the ability to detect Cherenkov light in a range of target media. We show results with pure organic scintillator (LAB) and the prospects with scintillators with a secondary fluor (LAB/PPO). There are future plans to deploy the newly developed water-based liquid scintillator, a medium with a higher Cherenkov/Scintillation light yield ratio than conventional pure liquid scintillators, enhancing the visibility of the less abundant Cherenkov light in the presence of scintillation light. These results can inform the development of future large-scale detectors, such as the proposed Theia experiment, or other large detectors at underground laboratories such as the far-site of the new Long Baseline Neutrino Facility at the Sanford Underground Research Facility. CHESS detector calibrations and commissioning will be discussed, and the latest results will be presented.

  15. Challenges to Disciplinary Knowing and Identity: Experiences of Scholars in a SoTL Development Program

    ERIC Educational Resources Information Center

    Miller-Young, Janice E.; Yeo, Michelle; Manarin, Karen

    2018-01-01

    Faculty members from five years of an annual Scholarship of Teaching and Learning (SoTL) development program were invited to participate in a study about the impact of SoTL on their teaching, scholarship, and career trajectory. During semi-structured interviews, many expressed feeling discomfort during their journey into SoTL. A qualitative…

  16. In-situ determination of residual specific activity in activated concrete walls of a PET-cyclotron room

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Toyoda, A.; Masumoto, K.; Yoshida, G.; Yagishita, T.; Nakabayashi, T.; Sasaki, H.; Matsumura, K.; Yamaya, Y.; Miyazaki, Y.

    2018-06-01

    In the decommissioning work for concrete walls of PET-cyclotron rooms, an in-situ measurement is expected to be useful for obtaining a contour map of the specific activity on the walls without destroying the structure. In this study, specific activities of γ-ray-emitting radionuclides in concrete walls were determined by using an in-situ measurement method employing a portable Ge semiconductor detector, and compared with the specific activity obtained using the sampling measurement method, at the Medical and Pharmacological Research Center Foundation in Hakui, Ishikawa, Japan. Accordingly, the specific activity could be determined by the in-situ determination method. Since there is a clear correlation between the total specific activity of γ-ray-emitting radionuclides and contact dose rate, the specific activity can be determined approximately by contact dose-rate measurement using a NaI scintillation survey meter. The specific activity of each γ-ray-emitting radionuclide can also be estimated from the contact dose rate using a NaI scintillation survey meter. The in-situ measurement method is a powerful tool for the decommissioning of the PET cyclotron room.

  17. An efficient energy response model for liquid scintillator detectors

    NASA Astrophysics Data System (ADS)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  18. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  19. Progress in Studying Scintillator Proportionality: Phenomenological Model

    NASA Astrophysics Data System (ADS)

    Bizarri, G.; Cherepy, N. J.; Choong, W. S.; Hull, G.; Moses, W. W.; Payne, S. A.; Singh, J.; Valentine, J. D.; Vasilev, A. N.; Williams, R. T.

    2009-08-01

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  20. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2014-03-01

    Pulse shape discrimination is a well-established technique for background rejection in liquid scintillator detectors. It is particularly effective in separating heavy particles from light particles, but not in distinguishing electrons from positrons. This inefficiency can be overtaken by exploiting the formation of ortho-positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants used in neutrino-less double beta decay experiments (Nd and Te) and in anti-neutrino and neutron detection (Gd and Li respectively). We found that the o-Ps properties are similar in all the tested scintillators, with a lifetime around 3 ns and a formation probability of about 50%. This result indicates that an o-Ps-enhanced pulse shape discrimination can be applied in liquid scintillator detectors for neutrino and anti-neutrino detection and for neutrino-less double beta decay search.

  1. Cherenkov and scintillation light separation on the TheiaR &D experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin

    2016-03-01

    Identifying by separate the scintillation and Cherenkov light produced in a scintillation medium enables outstanding capabilities for future particle detectors, being the most relevant: allowing particle directionality information in a low energy threshold detector and improved particle identification. The TheiaR &D experiment uses an array of small and fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium, based on the number of produced photoelectrons and the timing information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by <1ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WBLS) provides a medium with a tunable Cherenkov/Scintillation light yield ratio, enhancing the visibility of the dimer Cherenkov light in presence of the scintillation light. Description of the experiment, details of the analysis and preliminary results of the first months of running will be discussed.

  2. Scintillation Reduction using Conjugate-Plane Imaging

    NASA Astrophysics Data System (ADS)

    Vander Haagen, Gary A.

    2017-06-01

    All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30 cm amateur telescope. It is well known that these disturbances are caused by wind and temperature driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80 mm, f-7 telescope.

  3. Ionic current and polarization effect in TlBr

    NASA Astrophysics Data System (ADS)

    Leão, Cedric Rocha; Lordi, Vincenzo

    2013-02-01

    Thallium bromide (TlBr) is an ionic semiconductor that has shown great capacity for accurate radiation detection. Its application to this end, however, has been hampered by degradation of performance over time, in a process called polarization. This effect has been traditionally assigned to a build-up of ions at the electrodes, which would counteract an applied electrical bias field. Here, we estimate the ionic mobility in TlBr and its possible association with the polarization effect using parameter-free quantum simulations. Our results indicate that in samples with up to moderate levels of impurities, ions cannot traverse distances large enough to generate zones of accumulation and depletion in the crystal, suggesting different causes for the polarization effect.

  4. Characterizing Properties and Performance of 3D Printed Plastic Scintillators

    NASA Astrophysics Data System (ADS)

    McCormick, Jacob

    2015-10-01

    We are determining various characteristics of the performance of 3D printed scintillators. A scintillator luminesces when an energetic particle raises electrons to an excited state by depositing some of its energy in the atom. When these excited electrons fall back down to their stable states, they emit the excess energy as light. We have characterized the transmission spectrum, emission spectrum, and relative intensity of light produced by 3D printed scintillators. We are also determining mechanical properties such as tensile strength and compressibility, and the refractive index. The emission and transmission spectra were measured using a monochromator. By observing the transmission spectrum, we can see which optical wavelengths are absorbed by the scintillator. This is then used to correct the emission spectrum, since this absorption is present in the emission spectrum. Using photomultiplier tubes in conjunction with integration hardware (QDC) to measure the intensity of light emitted by 3D printed scintillators, we compare with commercial plastic scintillators. We are using the characterizations to determine if 3D printed scintillators are a viable alternative to commercial scintillators for use at Jefferson Lab in nuclear and accelerated physics detectors. I would like to thank Wouter Deconinck, as well as the Parity group at the College of William and Mary for all advice and assistance with my research.

  5. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  6. A compound crystal with film scintillator for electron detection

    NASA Astrophysics Data System (ADS)

    McKinney, George; McDonnald, Warren; Tzolov, Marian

    2015-03-01

    Yttrium Aluminum Garnets (YAG) and Yttrium Aluminum Perovskite (YAP) are widely used as electron detectors. This application requires a top conducting layer which hinders their application at low electron energies. We have developed a layer of zinc tungstate which delivers conductivity large enough to prevent charging while still being an efficient scintillator. For better coupling between the two systems we have studied their optical properties. Ce doping is an essential element in YAP and YAG in order for them to be efficient scintillators. We have studied the Ce content and we show that higher Ce content leads to reabsorption in the YAP scintillators. These details were revealed by using photoluminescence emission and excitation spectroscopy. The absorption spectrum for the YAG scintillators coincides with the excitation for the main emission lines. The optical studies of the zinc tungstate films and a single crystal have shown that the films are more efficient light emitters. We have integrated the zinc tungstate films with YAG scintillators and we will report on the performance of this compound scintillator. It is expected that it will perform well at low and high electron energies, which makes it a very cost effective platform for electron detectors.

  7. Experiment to demonstrate separation of Cherenkov and scintillation signals

    DOE PAGES

    Caravaca, J.; Descamps, F. B.; Land, B. J.; ...

    2017-05-05

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less

  8. Fabrication and chemical composition of RF magnetron sputtered Tl-Ca-Ba-Cu-O high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.

    1990-01-01

    The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.

  9. Perovskite-structure TlMnO₃: a new manganite with new properties.

    PubMed

    Yi, Wei; Kumagai, Yu; Spaldin, Nicola A; Matsushita, Yoshitaka; Sato, Akira; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Belik, Alexei A

    2014-09-15

    We synthesize a new member of the AMnO3 perovskite manganite family (where A is a trivalent cation)--thallium manganite, TlMnO3--under high-pressure (6 GPa) and high-temperature (1500 K) conditions and show that the structural and magnetic properties are distinct from those of all other AMnO3 manganites. The crystal structure of TlMnO3 is solved and refined using single-crystal X-ray diffraction data. We obtain a triclinically distorted structure with space group P1̅ (No. 2), Z = 4, and lattice parameters a = 5.4248(2) Å, b = 7.9403(2) Å, c = 5.28650(10) Å, α = 87.8200(10)°, β = 86.9440(10)°, and γ = 89.3130(10)° at 293 K. There are four crystallographic Mn sites in TlMnO3 forming two groups based on the degree of their Jahn-Teller distortions. Physical properties of insulating TlMnO3 are investigated with Mössbauer spectroscopy and resistivity, specific heat, and magnetization measurements. The orbital ordering, which persists to the decomposition temperature of 820 K, suggests A-type antiferromagnetic ordering with the ferromagnetic planes along the [-101] direction, consistent with the measured collinear antiferromagnetism below the Néel temperature of 92 K. Hybrid density functional calculations are consistent with the experimentally identified structure, insulating ground state, and suggested magnetism, and show that the low symmetry originates from the strongly Jahn-Teller distorted Mn(3+) ions combined with the strong covalency of the Tl(3+)-O bonds.

  10. 1D-TlInSe2: Band Structure, Dielectric Function and Nanorods

    NASA Astrophysics Data System (ADS)

    Mamedov, Nazim; Wakita, Kazuki; Akita, Seiji; Nakayama, Yoshikazu

    2005-01-01

    Linear combination of atomic orbitals (LCAO) analysis of the electronic band states has been completed for one-dimensional (1D) TlInSe2 having rod-like ground state shape of bulky crystal. The total scenario of the occurrence of the band states from the atomic states has been established. According to this scenario, in dipole approximation the optical transitions at band gap (point T of Brillouin zone) are either entirely forbidden or allowed for T2-T10 transitions in e\\perpc configuration provided that either initial or terminate state has T2 symmetry and both are Se-like. As a whole, the obtained results on the electronic spectrum, including dielectric function, are applicable to all obtained 1D-TlInSe2 nanorods which were as thin as 30--50 nm in cross-section, and apparently preserved tetragonal crystal structure of bulky material. The thermal instabilities developing already in bulky samples of 1D-TlInSe2 are considered to be an ultimate source of the nanoparticles emerging in plenty during nanorods preparation. The nanoplates of a chemically similar but 2D material, TlInS2, are demonstrated for comparison to show the absence of nanoparticles in that case. A possibility of nanoparticle preparation using laser excited coherent phonon trains in the nanorods of 1D-TlInSe2 is figured out.

  11. DOSIMETRIC MEASUREMENTS ON THE SECOND SOVIET SPACESHIP SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savenko, I.A.; Pisarenko, N.F.; Shavrin, P.I.

    1963-02-01

    Readings of counters placed inside Sputnik II are given for one portion of its trajectory. The readings were taken by a gas-discharge counter STS-5 and a NaI crystal scintillator counter that registered gamma quanta, charged particles with a 25-kev counting threshold, and the aggregate energy liberation of ionizing radiations in the crystal. (C.E.S.)

  12. Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation.

    PubMed

    Hansman, Jan; Mrdja, Dusan; Slivka, Jaroslav; Krmar, Miodrag; Bikit, Istvan

    2015-05-01

    The activity of environmental samples is usually measured by high resolution HPGe gamma spectrometers. In this work a set-up with a 9in.x9in. NaI well-detector with 3in. thickness and a 3in.×3in. plug detector in a 15-cm-thick lead shielding is considered as an alternative (Hansman, 2014). In spite of its much poorer resolution, it requires shorter measurement times and may possibly give better detection limits. In order to determine the U-238, Th-232, and K-40 content in the samples by this NaI(Tl) detector, the corresponding photopeak efficiencies must be known. These efficiencies can be found for certain source matrix and geometry by Geant4 simulation. We found discrepancy between simulated and experimental efficiencies of 5-50%, which can be mainly due to effects of light collection within the detector volume, an effect which was not taken into account by simulations. The influence of random coincidence summing on detection efficiency for radionuclide activities in the range 130-4000Bq, was negligible. This paper describes also, how the efficiency in the detector depends on the position of the radioactive point source. To avoid large dead time, relatively weak Mn-54, Co-60 and Na-22 point sources of a few kBq were used. Results for single gamma lines and also for coincidence summing gamma lines are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric

  14. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters o protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and dicult problem. In this article,more » we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements to predictions from different quenching models. We and that a modified Birks' model whose denominator is quadratic in dE=dx best describes the measurements, with χ 2/NDF = 1:6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  15. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section ofmore » $$^{10}$$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $$^{10}$$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $$\\chi^2$$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  16. Large-size TlBr single crystal growth and defect study

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun

    2018-04-01

    Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.

  17. The Origins of Scintillator Non-Proportionality

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.

    2012-10-01

    Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.

  18. Conflicts and Configurations in a Liminal Space: SoTL Scholars' Identity Development

    ERIC Educational Resources Information Center

    Simmons, Nicola; Abrahamson, Earle; Deshler, Jessica M.; Kensington-Miller, Barbara; Manarin, Karen; Morón-García, Sue; Oliver, Carolyn; Renc-Roe, Joanna

    2013-01-01

    Although academic identity has received attention in the literature, there have been few attempts to understand the influence on identity from engagement with the Scholarship of Teaching and Learning (SoTL). In this paper, we (a group of eight scholars from five different countries) describe how our interactions with SoTL have impacted the shaping…

  19. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  20. Structural behavior of Tl-exchanged natrolite at high pressure depending on the composition of pressure-transmitting medium

    NASA Astrophysics Data System (ADS)

    Seryotkin, Yu. V.; Bakakin, V. V.; Likhacheva, A. Yu.; Dementiev, S. N.; Rashchenko, S. V.

    2017-10-01

    The structural evolution of Tl-exchanged natrolite with idealized formula Tl2[Al2Si3O10]·2H2O, compressed in penetrating (water:ethanol 1:1) and non-penetrating (paraffin) media, was studied up to 4 GPa. The presence of Tl+ with non-bonded electron lone pairs, which can be either stereo-chemically active or passive, determines distinctive features of the high-pressure behavior of the Tl-form. The effective volume of assemblages Tl+(O,H2O) n depends on the E-pairs activity: single-sided coordination correlates with smaller volumes. At ambient conditions, there are two types of Tl positions, only one of them having a nearly single-sided coordination as a characteristic of stereo-activity of the Tl+ E pair. Upon the compression in paraffin, a phase transition occurs: a 5% volume contraction of flexible natrolite framework is accompanied by the conversion of all the Tl+ cations into stereo-chemically active state with a single-sided coordination. This effect requires the reconstruction of all the extra-framework subsystems with the inversion of the cation and H2O positions. The compression in water-containing medium leads to the increase of H2O content up to three molecules pfu through the filling of partly vacant positions. This hinders a single-sided coordination of Tl ions and preserves the configuration of their ion-molecular subsystem. It is likely that the extra-framework subsystem is responsible for the super-structure modulation.

  1. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  2. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.

    PubMed

    Moore, Simon J; Lai, Hung-En; Needham, Hannah; Polizzi, Karen M; Freemont, Paul S

    2017-04-01

    Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  4. Characterizing Daytime GHZ Scintillation at Equatorial Regions Using Gnss Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Seif, A.; Zhang, K.; Tsunoda, R. T.; Abdullah, M.; Carter, B. A.; Norman, R.; Wu, S.

    2015-12-01

    Ionospheric scintillation of radio waves can behave differently at different locations with a strong diurnal dependence; particularly in the equatorial regions. Ionospheric scintillations at gigahertz (GHz) frequencies have been observed during both daytime and nighttime. It is believed that daytime scintillation is associated with blanketing sporadic E (Esb), whereas nighttime scintillation is attributed to F layer irregularities. Scintillation events associated with Esbduring daytime are of our primary interest. Recent studies show that in the ionosphere, electron density profiles from Global Navigation Satellite System (GNSS) Radio Occultation (RO) provide valuable information to help better understand the physics of the ionosphere. In particular, GNSS RO observations of GHz scintillation in the proximity of the E-layer have been interpreted as being caused by sporadic E. In this paper the characteristics of daytime scintillations at 1.5 GHz recorded simultaneously from two stations (i) Universiti Kebangsaan Malaysia (UKM) (2.55°N, 101.461°E; dip latitude 5.78°S), and (ii) Langkawi (6.19°N, 99.51°E; dip latitude 1.90°S) during November and December 2010 are analyzed. The characteristics of daytime GHz scintillation and its relationship with E region irregularities at equatorial regions are investigated. Ground-based scintillation and Total Electron Content (TEC) data recorded by the GSV4004 receivers were utilized in combination with the amplitude scintillation measurements in terms of GPS C/A code SNR fluctuations during a ground-based GPS and space-borne GNSS RO experiment at the two equatorial stations. Scintillation activity was found to be more prominent at UKM. Moreover, strong scintillation with the S4 index exceeding 0.6 has only been observed at UKM, while at Langkawi the scintillation intensity (S4 index) did not exceed 0.3. Signal-to-noise measurements obtained from GNSS RO indicate that daytime scintillations are very likely caused by Esb. Our

  5. Photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Lee, J.-S.; Stanford, J. A.; Grant, W. K.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Swanberg, E. L.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.

    2013-09-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. Samples of as polished TlBr were treated separately with 2%Br:MeOH, 10%HF, 10%HCl and 96%SOCl2 solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry. Results suggest anion substitution at the surface with subsequent shallow heterojunction formation. Surface chemistry and valence band electronic structure were further correlated with the goal of optimizing the long-term stability and radiation response.

  6. Ionic Conductivity of TlBr1-xIx(x = 0, 0.2, 1): Candidate Gamma Ray Detector

    NASA Astrophysics Data System (ADS)

    Bishop, S. R.; Ciampi, G.; Lee, C. D.; Kuhn, M.; Tuller, H. L.; Higgins, W.; Shah, K. S.

    2012-10-01

    The ionic conductivity of TlBr, TlI and their solid solutions, candidates for high energy radiation detection, was examined using impedance spectroscopy. The orthorhombic to cubic phase change in TlI was observed via a steep change in conductivity with increasing temperature, whereas the TlBr-TlI solid solution was cubic throughout the measured temperature range, in agreement with the literature. The intrinsic conductivity of the cubic phase of each material showed nearly identical behavior, indicating that I substitution for Br has little to no effect on the combined defect formation and transport parameters in the studied range. Additionally, optical transmission was correlated with I concentration.

  7. Neutron flux measurements using scintillator-photodiode-preamplifier system and new types of scintillators

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Burachas, S. F.; Volkov, V. G.; Danshin, Evgeniy A.; Lisetskaya, Elena K.; Piven, L. A.; Svishch, Vladimir M.; Chernikov, Vyacheslav V.; Filimonov, A. E.

    1997-02-01

    After the Chernobyl catastrophe among the problems of current concern a question arose of detection of 'hot' particles formed from plutonium alloys with carbon, nitrogen, silicon, etc. For this purpose, the instruments are needed, which would be able to detect not only alpha- particles and low energy gamma-radiation, but also neutrons and high energy gamma-quanta from ((alpha) , n(gamma) ) - reactions. At present for each kind of radiation detectors of different types are used. A general drawback of all these instruments is their narrow dynamic range of dose rates and energies, and especially impossibility to registrate n-flux in condition large background activity gamma-rays nuclei, which makes each of them applicable only under certain specific conditions. For detection of 'hot' particles, oxide and semiconductor scintillators were used, which contained elements with large capture cross section for thermal neutrons. In this paper we try to determine possibilities and limitations of solid-state neutron detectors based on CdS(Te), ZnSe(Te), CdWO4 (CWO), Gd2SiO5 (GSO) scintillators developed and produced by the Science and Technology Center for Radiation Instruments of the Institute for Single Crystals. The instruments developed by Center are based preferable on a very promising system 'scintillator- photodiode-preamplifier' matched with modern computer data processing techniques.

  8. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil whenmore » it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI

  9. Postcards from the Edge of SoTL: A View from Faculty Development

    ERIC Educational Resources Information Center

    Hodges, Linda C.

    2013-01-01

    As a past SoTL scholar turned faculty developer, I have come to realize that SoTL is a mindset: one of questioning old assumptions about what teaching entails and how our students learn, gathering and examining evidence of the effects of our approaches, and reflecting on and sharing insights gained. This perspective changed my own teaching. Now it…

  10. Forecasting Ionospheric Real-time Scintillation Tool (FIRST)

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Redmon, R.; Bullett, T.; Caton, R. G.; Retterer, J. M.

    2009-05-01

    It is well-known that the generation of equatorial, F-region plasma density irregularities, via the Generalized Rayleigh-Taylor instability mechanism is critically dependent on the magnitude of the pre-reversal enhancement (PRE) in upward ExB drift velocity after sunset. These plasma density bubbles that are generated after sunset lead to the scintillation of trans-ionospheric radio wave signals that pass through these bubbles and is commonly referred to as scintillation activity. Communication and Navigation systems can be severely disrupted by these plasma density irregularities. A measure of scintillation activity is given by the S4 Index and a network of Air Force, ground-based UHF and L-band receivers measuring the S4 Index is called the SCIntillation Network Decision Aid (SCINDA) network. After sunset, the height-rise with time of the bottom- side of the F-layer reflects the magnitude of the upward ExB drift velocity. The value of the ionospheric parameter, h'F (the virtual height of the bottom-side F-layer) at 1930 LT reflects the integrated ExB drift effect on lifting the F-layer to an altitude where the Rayleigh-Taylor (R-T) instability mechanism becomes important. It is found that there exists a threshold in the h'F value at 1930 LT and the onset of scintillation activity as measured by the S4 Index value in the Peruvian longitude sector. This h'F threshold value is found to decrease with decreasing F10.7 cm fluxes in a linear manner (R = 0.99). T o examine this relationship, theoretically, we incorporate a suite of first-principle models of the ambient ionosphere (PBMOD) developed at the Air Force Research Lab (AFRL) to investigate R-T growth rates and threshold h'F (1930 LT) values as a function of solar cycle activity. In addition, this paper describes a technique for automatically forecasting, in real-time, the occurrence or non-occurrence of scintillation activity that relies on real-time data from a ground-based ionospheric sounder at or near the

  11. Tumor and infection localization in AIDS patients: Ga-67 and Tl-201 findings.

    PubMed

    Turoglu, H T; Akisik, M F; Naddaf, S Y; Omar, W S; Kempf, J S; Abdel-Dayem, H M

    1998-07-01

    Examples of Ga-67 and Tl-201 scans in AIDS patients performed at St. Vincent's Hospital and Medical Center of New York are presented. Use of these methods is the adopted approach at this institution in AIDS patients for localizing sites of tumor or infection involvement. A Ga-67 scan is the most common nuclear medicine examination performed on AIDS patients. Sequential Tl-201 and Ga-67 scans have a role in differentiating Kaposi's sarcoma from malignant lymphoma and opportunistic infections. For intracranial lesions, Tc-99m MIBI or Tl-201-201-201-201 chloride can differentiate malignant from benign inflammatory lesions.

  12. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  13. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  14. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  15. Tl{sub 10}Hg{sub 3}Cl{sub 16}: Single crystal growth, electronic structure and piezoelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua; Piasecki, M.; Kityk, I.V.

    Single crystal of the ternary halide Tl{sub 10}Hg{sub 3}Cl{sub 16} was grown using Bridgman-Stockbarger method. For the Tl{sub 10}Hg{sub 3}Cl{sub 16} crystal, we have measured X-ray photoelectron spectra for both pristine and Ar{sup +} ion-bombarded surfaces and additionally investigated photoinduced piezoelectricity. Our data indicate that the Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface is very sensitive with respect to Ar{sup +} ion-bombardment. In particular, Ar{sup +} ion-bombardment with energy of 3.0 keV over 5 min at an ion current density of 14 μA/cm{sup 2} causes significant changes of the elemental stoichiometry of the Tl{sub 10}Hg{sub 3}Cl{sub 16} surface resulting inmore » an abrupt decrease of the mercury content in the top surface layers of the studied single crystal. As a result of the treatment, the mercury content becomes nil in the top surface layers. In addition, the present XPS measurements allow for concluding about very low hygroscopicity of the Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface. The property is extremely important for the crystal handling in optoelectronic or nano-electronic devices working at ambient conditions. The photoinduced piezoelectricity has been explored for Tl{sub 10}Hg{sub 3}Cl{sub 16} depending on nitrogen (λ=371 nm) laser power density and temperature. - Graphical abstract: As-grown single crystal boule of Tl{sub 10}Hg{sub 3}Cl{sub 16}; dependence of the effective piezoelecric coefficient d{sub 33} versus the photoinducing nitrogen laser power density, I, at different temperatures, T; and packing of the polyhedra of halide atoms around Hg atoms in the Tl{sub 10}Hg{sub 3}Cl{sub 16} structure. - Highlights: • High-quality Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal has been grown by Bridgman-Stockbarger method. • Electronic structure of Tl{sub 10}Hg{sub 3}Cl{sub 16} is studied by the XPS method. • Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface is sensitive with respect to Ar{sup +} ion

  16. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  17. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE PAGES

    Westerdale, S.; Xu, J.; Shields, E.; ...

    2017-08-03

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  18. Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains

    NASA Astrophysics Data System (ADS)

    Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar

    2015-02-01

    Temporal variation of secondary cosmic rays (SCR) flux was measured during the full and new moon and days close to them at Department of Physics, University of Mumbai, Mumbai (Geomagnetic latitude: 10.6 °N), India. The measurements were done by using NaI (Tl) scintillation detector with energy threshold of 200 keV. The SCR flux showed sudden enhancement for approximately about 2 hour during few days out of all observations. The maximum enhancement in SCR flux is about 200 % as compared to the diurnal trend of SCR temporal variations. Weather parameters (temperature and relative humidity) were continuously monitored during all observations. The influences of geomagnetic field, interplanetary parameters and tidal effect on SCR flux have been considered. Summed spectra corresponding to enhancement duration indicates appearance of atmospheric radioactivity which shows single gamma ray line. Detail investigation revealed the presence of radioactive Ar41. Present study indicates origin of Ar41 could be due to anthropogenic source or due to gravitational tidal forces. This measurements point out limitations on low energy SCR flux monitoring. This study will help many researchers in measurements of SCR flux during eclipses and to find unknown mechanism behind decrease/increase in SCR flux during solar/lunar eclipse.

  19. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Swanberg, E. L.; Beck, P. R.; Schneberk, D. J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S. E.; Hunter, S. L.; Thelin, P. A.; Thompson, R. R.; Harvey, N. M.; Stefanik, T.; Kindem, J.

    2015-09-01

    We report on the development of two new mechanically rugged, high light yield transparent ceramic scintillators: (1) Ce-doped Gd-garnet for gamma spectroscopy, and (2) Eu-doped Gd-Lu-bixbyite for radiography. GYGAG(Ce) garnet transparent ceramics offer ρ = 5.8g/cm3, Zeff = 48, principal decay of <100 ns, and light yield of 50,000 Ph/MeV. Gdgarnet ceramic scintillators offer the best energy resolution of any oxide scintillator, as good as R(662 keV) = 3% (Si-PD readout) for small sizes and typically R(662 keV) < 5% for cubic inch sizes. For radiography, the bixbyite transparent ceramic scintillator, (Gd,Lu,Eu)2O3, or "GLO," offers excellent x-ray stopping, with ρ = 9.1 g/cm3 and Zeff = 68. Several 10" diameter by 0.1" thickness GLO scintillators have been fabricated. GLO outperforms scintillator glass for high energy radiography, due to higher light yield (55,000 Ph/MeV) and better stopping, while providing spatial resolution of >8 lp/mm.

  20. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  1. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  2. TL and OSL characterization of Eu3+ doped Y2O3: Application in dosimetry

    NASA Astrophysics Data System (ADS)

    Shivaramu, N. J.; Coetsee, E.; Swart, H. C.

    2018-05-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of beta irradiated Eu3+ doped Y2O3 nanophosphor have been investigated in this paper. The Eu3+ doped Y2O3 nanophosphor was synthesized by solution combustion technique and synthesized material was annealed at 900°C. The annealed materials were exposed to β-ray for various dose. TL glow with prominent peak at 403 K and weak glow peak at 660 K were observed in all irradiated samples. It is found that TL glow peaks intensity linearly increases with increase in β-dose from 8.125 - 40.625 Gy. The TL kinetic parameters were calculated using glow curve deconvoluted (GCD) and peak shape methods. The TL glows exhibits general order kinetics. Intense continuous wave optical stimulated luminescence (CW-OSL) was observed in the sample. These material exhibits linearity at low dose, good reproducibility and response of intense OSL and hence, these results suggests that this material may be suitable for dosimetry applications.

  3. Scintillation properties of dark hollow beams in a weak turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Cai, Y.; Eyyuboğlu, H. T.; Baykal, Y.

    2008-01-01

    The on-axis scintillation index for a circular dark hollow beam (DHB) propagating in a weak turbulent atmosphere is formulated, and the scintillation properties of a DHB are investigated in detail. The scintillation index for a DHB reduces to the scintillation index for a Gaussian beam, an annular beam and a flat-topped beam under certain conditions. It is found that the scintillation index of a DHB is closely related to the beam parameters and can be lower than that of a Gaussian beam, an annular beam and a flat-topped beam in a weak turbulent atmosphere at smaller waist sizes and longer propagation lengths.

  4. Synthesizing SoTL Institutional Initiatives toward National Impact

    ERIC Educational Resources Information Center

    Simmons, Nicola

    2016-01-01

    This chapter draws on other authors' ideas in this issue, describing parallels and outlining distinctions toward a synthesized model for the development of SoTL initiatives at the institutional level and beyond.

  5. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  6. Predicting ionospheric scintillation: Recent advancements and future challenges

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  7. Scintillation statistics measured in an earth-space-earth retroreflector link

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1977-01-01

    Scintillation was measured in a vertical path from a ground-based laser transmitter to the Geos 3 satellite and back to a ground-based receiver telescope and, the experimental results were compared with analytical results presented in a companion paper (Bufton, 1977). The normalized variance, the probability density function and the power spectral density of scintillation were all measured. Moments of the satellite scintillation data in terms of normalized variance were lower than expected. The power spectrum analysis suggests that there were scintillation components at frequencies higher than the 250 Hz bandwidth available in the experiment.

  8. Resolution and prevention of feline immunodeficiency virus-induced neurological deficits by treatment with the protease inhibitor TL-3.

    PubMed

    Huitron-Resendiz, Salvador; De Rozières, Sohela; Sanchez-Alavez, Manuel; Bühler, Bernd; Lin, Ying-Chuan; Lerner, Danica L; Henriksen, Nicholas W; Burudi, Mboya; Fox, Howard S; Torbett, Bruce E; Henriksen, Steven; Elder, John H

    2004-05-01

    In vivo tests were performed to assess the influence of the protease inhibitor TL-3 on feline immunodeficiency virus (FIV)-induced central nervous system (CNS) deficits. Twenty cats were divided into four groups of five animals each. Group 1 received no treatment, group 2 received TL-3 only, group 3 received FIV strain PPR (FIV-PPR) only, and group 4 received FIV-PPR and TL-3. Animals were monitored for immunological and virological status, along with measurements of brain stem auditory evoked potential (BAEP) changes. Groups 1 and 2 remained FIV negative, and groups 3 and 4 became virus positive and seroconverted by 3 to 5 weeks postinoculation. No adverse effects were noted with TL-3 only. The average peak viral load for the virus-only group 3 animals was 1.32 x 10(6) RNA copies/ml, compared to 6.9 x 10(4) copies/ml for TL-3-treated group 4 cats. Group 3 (virus-only) cats exhibited marked progressive delays in BAEPs starting at 2 weeks post virus exposure, which is typical of infection with FIV-PPR. In contrast, TL-3-treated cats of group 4 exhibited BAEPs similar to those of control and drug-only cats. At 97 days postinfection, treatments were switched; i.e., group 4 animals were taken off TL-3 and group 3 animals were treated with TL-3. BAEPs in group 3 animals returned to control levels, while BAEPs in group 4 animals remained at control levels. After 70 days on TL-3, group 3 was removed from the drug treatment regimen. Delays in BAEPs immediately increased to levels observed prior to TL-3 treatment. The findings show that early TL-3 treatment can effectively eliminate FIV-induced changes in the CNS. Furthermore, TL-3 can counteract FIV effects on the CNS of infected cats, although continued treatment is required to maintain unimpaired CNS function.

  9. Resolution and Prevention of Feline Immunodeficiency Virus-Induced Neurological Deficits by Treatment with the Protease Inhibitor TL-3

    PubMed Central

    Huitron-Resendiz, Salvador; de Rozières, Sohela; Sanchez-Alavez, Manuel; Bühler, Bernd; Lin, Ying-Chuan; Lerner, Danica L.; Henriksen, Nicholas W.; Burudi, Mboya; Fox, Howard S.; Torbett, Bruce E.; Henriksen, Steven; Elder, John H.

    2004-01-01

    In vivo tests were performed to assess the influence of the protease inhibitor TL-3 on feline immunodeficiency virus (FIV)-induced central nervous system (CNS) deficits. Twenty cats were divided into four groups of five animals each. Group 1 received no treatment, group 2 received TL-3 only, group 3 received FIV strain PPR (FIV-PPR) only, and group 4 received FIV-PPR and TL-3. Animals were monitored for immunological and virological status, along with measurements of brain stem auditory evoked potential (BAEP) changes. Groups 1 and 2 remained FIV negative, and groups 3 and 4 became virus positive and seroconverted by 3 to 5 weeks postinoculation. No adverse effects were noted with TL-3 only. The average peak viral load for the virus-only group 3 animals was 1.32 × 106 RNA copies/ml, compared to 6.9 × 104 copies/ml for TL-3-treated group 4 cats. Group 3 (virus-only) cats exhibited marked progressive delays in BAEPs starting at 2 weeks post virus exposure, which is typical of infection with FIV-PPR. In contrast, TL-3-treated cats of group 4 exhibited BAEPs similar to those of control and drug-only cats. At 97 days postinfection, treatments were switched; i.e., group 4 animals were taken off TL-3 and group 3 animals were treated with TL-3. BAEPs in group 3 animals returned to control levels, while BAEPs in group 4 animals remained at control levels. After 70 days on TL-3, group 3 was removed from the drug treatment regimen. Delays in BAEPs immediately increased to levels observed prior to TL-3 treatment. The findings show that early TL-3 treatment can effectively eliminate FIV-induced changes in the CNS. Furthermore, TL-3 can counteract FIV effects on the CNS of infected cats, although continued treatment is required to maintain unimpaired CNS function. PMID:15078933

  10. Kinetics of Schottky defect formation and annihilation in single crystal TlBr.

    PubMed

    Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S

    2013-07-28

    The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.

  11. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  12. Tl sub 1-x Pr sub x Sr sub 2-y Pr sub y CuO sub 5-. delta. : First member of the family TlA sub 2 Ca sub m-1 Cu sub m O sub 2m+3 (A = Ba, Sr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgault, D.; Martin, C.; Michel, C.

    1989-02-01

    The synthesis, structure, and superconducting properties of the first member obtained during the investigation of the Tl-Sr-Cu-O and Tl-Sr-Pr-Cu-O systems are described. In order to check out the structural model corresponding to the first member of the series, TlSr{sub 2}Ca{sub m-1}Cu{sub m}O{sub 2m+3}, structure calculations were performed from x-ray powder data of the oxide Tl{sub 0.8}Sr{sub 1.6}Pr{sub 0.6}CuO{sub 5}. Magnetic measurements show only traces of diamagnetism for Tl{sub 0.7}Pr{sub 0.3}Sr{sub 2}CuO{sub 5-{delta}} and TlSr{sub 2}CuO{sub 5-{delta}}; however, Tl{sub 0.8}Pr{sub 0.6}Sr{sub 1.6}Cu{sub 5-{delta}} exhibits diamagnetism below 40K. 21 refs., 2 figs.

  13. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  14. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  15. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  16. Neutron-gamma discrimination with UGAB scintillator using zero-crossing method.

    PubMed

    Divani-Vais, N; Bayat, E; Firoozabadi, M M; Ghal-Eh, N

    2013-01-01

    The new-type scintillator, Ultima Gold Alpha-Beta (UGAB), was studied for its neutron-gamma discrimination capability. The figure-of-merit and peak-to-valley values for the neutron-gamma discrimination spectra of UGAB scintillator when exposed to (241)Am-Be neutron source were presented. The results show that this new-type scintillator can efficiently be used in neutron-gamma discrimination experiments.

  17. Structural Origins of Scintillation: Metal Organic Frameworks as a Nanolaboratory

    DTIC Science & Technology

    2016-06-01

    scintillation response and thus the ability to perform neutron/gamma particle discrimination via pulse-shape discrimination ( PSD ). Unfortunately, the...defined an alternative approach towards particle discrimination that addresses the limitations of conventional PSD organic scintillators. This approach...discrimination ( PSD ), for which the prompt component of the scintillation response is quenched for high specific energy loss (dE/dX) particles such as protons

  18. Detection of ionospheric scintillation effects using LMD-DFA

    NASA Astrophysics Data System (ADS)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  19. Multisector scintillation detector with fiber-optic light collection

    NASA Astrophysics Data System (ADS)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  20. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  1. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  2. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    PubMed

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2017-09-01

    A thin plate of a plastic scintillator for detecting a beta-ray was developed. The plastic scintillator was made using epoxy resin and organic scintillators such as 2.5-diphenyloxazole (PPO) and 1,4-bis [5-phenyl-2-oxazole] benzene (POPOP). The mixture ratio of epoxy resin and the organic scintillators was determined using their absorbance, transmittance, emission spectra, and transparency. Their optimal weight percentage of PPO and POPOP in the organic scintillators was adjusted to 0.2 wt%:0.01 wt%. The prepared plastic scintillator was used to measure the standard source of Sr-90. The pulse height spectra and total counts of the prepared plastic scintillator were similar to a commercial plastic scintillator. Based on the above results, a large-area plastic scintillator was prepared for rapid investigation of a site contaminated with Sr-90. The prepared large-area plastic scintillator was evaluated for the characteristics in the laboratory. The evaluation results are expected to be usefully utilized in the development of a large-area plastic scintillation detector. The large-area plastic scintillation detector developed on the basis of the evaluation results is expected to be utilized to quickly measure the contamination of Sr-90 in the grounds used as a nuclear power facility.

  4. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  5. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  6. Recent developments in plastic scintillators with pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.

    2018-05-01

    The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.

  7. Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy

    NASA Technical Reports Server (NTRS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2008-01-01

    New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.

  8. Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity

    NASA Astrophysics Data System (ADS)

    Seif, Aramesh; Abdullah, Mardina; Marie Hasbi, Alina; Zou, Yuhua

    2012-12-01

    In this paper the investigation of the occurrence of ionospheric scintillation with S4≥0.2 was conducted by using a dual-frequency GISTM (GPS Ionospheric Scintillation and TEC monitor) at Universiti Kebangsaan Malaysia station, Malaysia (2.55°N, 101.46°E; geomagnetic: 7.39°S, 173.63°E) between September 2009 and December 2010. The study shows that significant nighttime amplitude scintillation event with 0.4≤S4<0.6 mainly occurred in the months of March, September and October, while significant daytime amplitude scintillation activity took place in November and December with 0.3≤S4<0.5. Moreover, nighttime amplitude scintillation observed at UKM station always occurred with phase scintillations, total electron content (TEC) depletions, rate of change of TEC (ROT) fluctuations and the enhancement of rate of TEC index (ROTI). Nevertheless, during daytime amplitude scintillation, TEC depletions and ROT fluctuations were much weaker than those that occurred during nighttime and this may be caused by small scale irregularities in the E region, called sporadic-E (Es), while the occurrences of nighttime amplitude scintillation maybe caused by the ionospheric irregularities in the F region.

  9. Equatorial Scintillation Study at Ilorin and Nsukka, Nigeria during Year 2011-2012

    NASA Astrophysics Data System (ADS)

    Akala, A.

    2017-12-01

    This study presents GNSS scintillations over Ilorin (8.48 oN, 4.54 oE, and mag lat: 1.83oS) and Nsukka (6.84 oN, 7.37 oE, and mag lat: 2.94oS), Nigeria during year 2011-2012. The two stations are located within the inner flank of the equatorial ionization anomaly. Firstly, we investigated the climatology of equatorial scintillations at the two stations. We suppressed multipath effects on the data by imposing a 300 elevation masking on the data. In addition, we investigated scintillation occurrences at the two locations on a satellite-by-satellite basis at varying elevation angles. The source of scintillation records at low-elevation angle is attributed to multipath, while that at high-elevation angle is attributed to ionospheric irregularities. Seasonally, scintillations recorded highest occurrences during March equinox, and the least during June solstice. The trend of scintillations, at both low- and high-elevation angles at the two stations were almost the same. EGNOS satellites signals scintillated at the two locations during the time intervals when GPS satellites signals experienced scintillations. These results could support the development of scintillation models for equatorial Africa, and could also be of benefit to GPS and EGNOS service providers and designers, with a view to providing robust services for GNSS user community in Africa.

  10. Developing SoTL through Organized Scholarship Institutes

    ERIC Educational Resources Information Center

    Marquis, Elizabeth

    2015-01-01

    The need to further integrate SoTL into college and university cultures has been discussed relatively frequently in recent teaching and learning literature. While a number of useful strategies to assist in this task have been advanced, one especially promising suggestion is the development of organized, institutionally-recognized scholarship…

  11. First-principle calculation of the electronic structure, DOS and effective mass TlInSe2

    NASA Astrophysics Data System (ADS)

    Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.

    2017-05-01

    The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.

  12. Near-infrared scintillation of liquid argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7more » $$\\mu$$m < $$\\lambda$$; < 1.5$$\\mu$$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.« less

  13. Influence of depth of interaction upon the performance of scintillator detectors.

    PubMed

    Brown, Mark S; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis

    2014-01-01

    The uncertainty in time of particle detection within a scintillator detector, characterised by the coincidence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no relationship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%.

  14. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  15. Electron response of some low-Z scintillators in wide energy range

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  16. TH-C-19A-11: Toward An Optimized Multi-Point Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duguay-Drouin, P; Delage, ME; Centre Hospitalier University de Quebec, Quebec, QC

    Purpose: The purpose of this work is to characterize a 2-points mPSDs' optical chain using a spectral analysis to help selecting the optimal components for the detector. Methods: Twenty different 2-points mPSD combinations were built using 4 plastic scintillators (BCF10, BCF12, BCF60, BC430; St-Gobain) and quantum dots (QDs). The scintillator is said to be proximal when near the photodetector, and distal otherwise. A 15m optical fiber (ESKA GH-4001) was coupled to the scintillating component and connected to a spectrometer (Shamrock, Andor and QEPro, OceanOptics). These scintillation components were irradiated at 125kVp; a spectrum for each scintillator was obtained by irradiationmore » of individual scintillator and shielding the second component, thus talking into account light propagation in all components and interfaces. The combined total spectrum was also acquired and involved simultaneous irradiation of the two scintillators for each possible combination. The shape and intensity were characterized. Results: QDs in proximal position absorb almost all the light signal from distal plastic scintillators and emit in its own emission wavelength, with 100% of the signal in the QD range (625–700nm) for the combination BCF12/QD. However, discrimination is possible when QD is in distal position in combination with blue scintillators, total signal being 73% in the blue range (400-550nm) and 27% in QD range. Similar results are obtained with the orange scintillator (BC430). For optimal signal intensity, BCF12 should always be in proximal position, e.g. having 50% more intensity when coupled with BCF60 in distal position (BCF12/BCF60) compared to the BCF60/BCF12 combination. Conclusion: Different combinations of plastic scintillators and QD were built and their emission spectra were studied. We established a preferential order for the scintillating components in the context of an optimized 2-points mPSD. In short, the components with higher wavelength emission

  17. Dissolved oxygen control strategy for improvement of TL1-1 production in submerged fermentation by Daldinia eschscholzii.

    PubMed

    Wei, Xing-Chen; Tang, Liu; Lu, Yan-Hua

    2017-01-01

    2,3-Dihydro-5-hydroxy-2-methylchromen-4-one (TL1-1) is a phenolic compound with significant anti-fungal and anti-cancer activities produced by Daldinia eschscholzii ( D. eschscholzii ). However, studies have rarely been reported on the fermentation process of D. eschscholzii due to the urgent demand for its pharmaceutical researches and applications. In this work, the optimal fermentation medium for improved TL1-1 yield was first obtained in a shake flask. As the fermentation process was scaling up, the marked effects of dissolved oxygen (DO) on cell growth and TL1-1 biosynthesis were observed and confirmed. Controlling a suitable DO level by the adjustment of agitation speed and aeration rate remarkably enhanced TL1-1 production in a lab-scale bioreactor. Moreover, the fermentation of D. eschscholzii was successfully applied in 500-L bioreactor, and TL1-1 production has achieved 873.63 mg/L, approximately 15.4-fold than its initial production (53.27 mg/L). Dissolved oxygen control strategy for enhancing TL1-1 production was first proposed. Furthermore, control of the appropriate DO level has successfully performed for improving TL1-1 yield and scale-up of D. eschscholzii fermentation process.

  18. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island.

    PubMed

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-12

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island's GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.

  19. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    NASA Astrophysics Data System (ADS)

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-11-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even-even and even-odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  20. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    DOE PAGES

    Benouaret, N.; Beller, J.; Pai, H.; ...

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. Lastly, the measured strength distribution of 205Tl were discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.