Science.gov

Sample records for nano pedagoog ja

  1. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  2. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  3. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  4. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  5. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds.

    PubMed

    Faridi Esfanjani, Afshin; Jafari, Seid Mahdi

    2016-10-01

    Phenolic compounds are major micronutrients in our diet,(1) and evidence for their role in the prevention of degenerative diseases such as cancer, inflammation and neurodegenerative diseases is emerging. The easily destruction against environment stresses and low bioavailability of phenolics are main limitations of their application. Therefore, nano-encapsulated phenolics as a fine delivery system can solve their restrictions. Polymeric nanoparticles and natural nano-carriers are one of the most effective and industrial techniques which can be used for protection and delivery of phenolics. In this review, preparation, application and characterization of polymeric based nano-capsules and natural nano-carriers for phenolics have been considered and discussed including polymeric nanoparticles, polymeric complex nanoparticles, cyclodextrins, nano-caseins, nanocrystals, electrospun nano-fibers, electro-sprayed nano-particles, and nano-spray dried particles. Our main goal was to cover the relevant recent studies in the past few years. Although a number of different types of polymeric and natural based nano-scale delivery systems have been developed, there are relatively poor quantitative understanding of their in vivo absorption, permeation and release. Also, performing toxicity experiments, residual solvent analysis and studying their biological fate during digestion, absorption, and excretion of polymeric nanoparticle and natural nano-carriers containing phenolics should be considered in future researches. In addition, future investigations could focus on application of phenolic nano-scale delivery systems in pharmaceuticals and functional foods. PMID:27419648

  6. Nano-Bioelectronics.

    PubMed

    Zhang, Anqi; Lieber, Charles M

    2016-01-13

    Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed. PMID:26691648

  7. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  8. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  9. PREFACE: Nano- and microfluidics Nano- and microfluidics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  10. Nano-CT Scanning

    NASA Astrophysics Data System (ADS)

    Masschaele, B.

    Tomography is a non-destructive research technique which allows investigating the internal structure of objects in 3D . The "centre for X-ray tomography (UGCT)" of the Ghent University has developed a modular X-ray micro/nanoCT scanner which is used for multi-disciplinary research. In this paper we give an overview of the different components of the UGCT scanner with special attention to the X-ray imaging detectors. Also the software tools for data reconstruction and analysis and some obtained results are discussed.

  11. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  12. Nano-PIV for flows near nano-structured surfaces

    NASA Astrophysics Data System (ADS)

    Parikesit, Gea; Lindken, Ralph; Westerweel, Jerry

    2008-11-01

    Previous studies have shown that nano-structured surfaces can exhibit different wetting characteristics and higher slip-length values compared to smooth (i.e. non-structured) surfaces. In order to quantitatively measure the flows near such nano-structured surfaces, a Nano-PIV method with high spatial and temporal resolution is required. The TIRF-based PIV is a good candidate because it has been successfully applied for 3D nano-velocimetry near smooth surfaces, but it cannot be applied in a simple and direct manner since the nano-structures optically complicates the measurements: (i) they spatially influence and modulate the TIRF illumination, and (ii) they increase the probability of obtaining errors caused by the tracers' own emitted evanescent-waves. For fabricated periodic nano-structures with known dimensions and geometry, however, the spatially modulated TIRF illumination can be very useful for (i) a simple estimation of the illumination depth directly inside the microfluidic channels, and (ii) detection and measurement of the thin layer of air bubbles trapped at the nano-structures in the `Cassie-Baxter' wetting mode.

  13. Nano-JASMINE: a nano size astrometry satellite

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Yano, Taihei; Gouda, Naoteru; Yamada, Yoshiyuki; Takato, Naruhisa; Miyazaki, Satoshi; Suganuma, Masahiro; Ueda, Seiji; Nakasuka, Shin'ichi; Jasmine Working Group

    2005-04-01

    We present the outline and current status of the nano-JASMINE project. Nano-JASMINE is a nano size astrometry satellite (the total payload mass is between 1 kg and 10 kg), which is expected to be launched in 2006. The main purpose of the project is to prove and demonstrate the key technologies required for JASMINE (Japanese Astrometry Satellite Mission for Infrared Exploration) in a real space environment Gouda et. al. (2002). Nano-JASMINE will measure annual parallaxes of bright stars (7 mag) with an accuracy greater than 1 milliarcsecond after two years of operation. This is comparable to the accuracy of the Hipparcos catalog. Currently, the subject of major research and development of the project is to build optical and telescope structures using new material, and to establish a data acquisition and control system.

  14. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  15. Greener routes to organics and nanomaterials: Sustainable applications of nano-catalysts (JA)

    EPA Science Inventory

    Sustainable synthetic activity involving alternate energy input and greener reaction medium in aqueous or under solvent-free conditions is summarized. This includes the synthesis of heterocyclic compounds, coupling reactions, and a variety of reactions catalyzed by basic water o...

  16. Plasmon nano-optical tweezers

    NASA Astrophysics Data System (ADS)

    Juan, Mathieu L.; Righini, Maurizio; Quidant, Romain

    2011-06-01

    Conventional optical tweezers, formed at the diffraction-limited focus of a laser beam, have become a powerful and flexible tool for manipulating micrometre-sized objects. Extending optical trapping down to the nanometre scale would open unprecedented opportunities in many fields of science, where such nano-optical tweezers would allow the ultra-accurate positioning of single nano-objects. Among the possible strategies, the ability of metallic nanostructures to control light at the subwavelength scale can be exploited to engineer such nano-optical traps. This Review summarizes the recent advances in the emerging field of plasmon-based optical trapping and discusses the details of plasmon tweezers along with their potential applications to bioscience and quantum optics.

  17. Nano Materials Under High Pressures

    SciTech Connect

    Karmakar, S.; Garg, Nandini; Sharma, Surinder M.

    2010-12-01

    Materials comprising of units or particles of the size of a few nano-meters have significantly different high pressure behavior than their bulk counterparts. This is abundantly elucidated in our studies on transition metals encapsulated in carbon nanotubes. Carbon nanotubes filled with Argon also show that it affects the behavior of tubes as well as argon. Studies on nano-crystalline Si displays an interesting crystalline-amorphous reversible transition, unique of its kind in elemental solids. We also demonstrate that in some cases of nanocrystalline samples, a phase perceived to be an intermediate-transient may be actually realized.

  18. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  19. Nano copper based high temperature solder alternative

    NASA Astrophysics Data System (ADS)

    Sharma, Akshay

    Nano Cu an alternative to high temperature solder is developed by the Advance Technological Center at the Lockheed Martin Corporation. A printable paste of Cu nano particles is developed with an ability to fuse at 200°C in reflow oven. After reflow the deposited material has nano crystalline and nano porous structure which affects its properties. Accelerated test are performed on nano Cu deposition having nano porous and nano crystalline structure for assessment and prediction of reliability. Nano Cu assemblies with different bond layer thickness are sheared to calculate the strength of the material and are correlated with the porous and crystalline structure of nano Cu. Thermal and isothermal fatigue test are performed on nano Cu to see the dependency of life on stress and further surface of failed assemblies were observed to determine the type of failure. Creep test at RT are performed to find the type of creep mechanism and how they are affected when subjected to high temperature. TEM, SEM, X-ray, C-SAM and optical microscopy is done on the nano Cu sample for structure and surface analysis.

  20. Nano-JASMINE Data Analysis and Publication

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Hara, T.; Yoshioka, S.; Kobayashi, Y.; Gouda, N.; Miyashita, H.; Hatsutori, Y.; Lammers, U.; Michalik, D.

    2012-09-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). A collaboration between the Gaia AGIS and Nano-JASMINE teams on the Nano-JASMINE data reduction started in 2007. The Nano-JASMINE team writes codes to generate AGIS input, and this is called Initial Data Treament (IDT). Identification of observed stars and their observed field of view, getting color index, are different from those of Gaia because Nano-JASMINE is ultra small satellite. For converting centroiding results on detector to the celestial sphere, orbit and attitude data of the satellite are used. In Nano-JASMINE, orbit information is derived from on board GPS data and attitude is processed from on-board star sensor data and on-ground Kalman filtering. We also show the Nano-JASMINE goals, status of the data publications and utilizations, and introduce the next Japanese space astrometric mission.

  1. Metallic nano-particles for trapping light

    PubMed Central

    2013-01-01

    We study metallic nano-particles for light trapping by investigating the optical absorption efficiency of the hydrogenated amorphous silicon thin film with and without metallic nano-particles on its top. The size and shape of these nano-particles are investigated as to their roles of light trapping: scattering light to the absorption medium and converting light to surface plasmons. The optical absorption enhancement in the red light region (e.g., 650nm) due to the light trapping of the metallic nano-particles is observed when a layer of metallic nano-particle array has certain structures. The investigation of the light with incident angles shows the importance of the coupling efficiency of light to surface plasmons in the metallic nano-particle light trapping. PACS 73.20.Mf, 42.25.s, 88.40.hj PMID:23391493

  2. Synthesis and Characterisation of Nano Lanthana

    NASA Astrophysics Data System (ADS)

    Moothedan, Marymol; Sherly, K. B.

    2011-10-01

    Nano sized oxide materials have gained an immense importance due to their unque electrical and magnetic properties. Nano Lanthana has various applications in solide oxide fuel cells, catalytic exhaust gas converters, magnetic data storage, water treatment and also as a nano catalyst. The performance of the nano Lanthana depends on the particle size, morphology, crystalline nature etc which in tern depends on the method of preparation and pre-treatment conditions. In this study nano Lanthana was prepared by using the natural polymer Starch as the template. The effect of reaction condition and concentration of starch on the formation, particle size, crystalline nature, and morphology of nano lanthana was also investigated. The phase composition, crystallinine character and particle size were obtained from XRD. The surface morphology of the prepared sample was investigated by SEM. Elemental analysis using SEM-EDAX confirmed the stochiometry of the sample..

  3. Broadband monopole optical nano-antennas

    NASA Astrophysics Data System (ADS)

    Zhou, Rongguo; Ding, Jun; Arigong, Bayaner; Lin, Yuankun; Zhang, Hualiang

    2014-03-01

    In this paper, a novel design of broadband monopole optical nano-antennas is proposed. It consists of a corrugated halfelliptical patch inside an elliptical aperture. Full-wave electromagnetic simulations have been used to investigate the performance of the nano-antenna. The predicted performance of the proposed monopole nano-antenna is remarkably broadband. Moreover, the proposed broadband nano-antenna can respond to light waves with different polarizations. The proposed optical antenna will pave the way towards the development of high performance optical antennas and optical systems.

  4. Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2.

    PubMed

    Montazer, M; Morshedi, S

    2012-05-01

    Photo catalytic action of nano TiO(2) for decomposing of some organic compounds is a well known phenomenon. This can be extended to the application on nano TiO(2) on the desized cotton fabric to decompose the hydrophobic impurities and coloring matters of the fabric. This can be nominating as a replacement for the conventional scouring and bleaching processes on cotton fabric producing the hydrophilic white cotton fabric. The photo activities of the nano TiO(2) on the desized cotton through decomposition of the cotton impurities compared for two different light exposures: UV rays and daylight. The desized cotton fabrics treated in the ultrasonic bath containing a colloidal aqueous solution of nano TiO(2)/citric acid (CA)/sodium hypophosphite (SHP). Incorporating CA in the treatment bath enhanced the treatment durability against washing, created a durable hydrophilic white cotton fabric even after several successive washings. Increasing the nano TiO(2) content enhanced the fabric hydrophilicity and whiteness features. Overall, the nano photo scouring and nano photo bleaching on the cotton fabric introduced and thoroughly discussed. This gains the application of nano TiO(2) on textile materials besides the other well known characteristics obtained on the textiles including self-cleaning, antibacterial and UV protection. PMID:22390850

  5. Design Documentation for JaWE2Openflow Project

    SciTech Connect

    Mehta, N; Barter, R H

    2004-07-29

    Lawrence Livermore National Laboratory (LLNL) has chosen CIGNEX Technologies, Inc. (CIGNEX) to design and develop the JaWE2Openflow conversion software. This document was created by CIGNEX as a project deliverable.

  6. Nano-Particles in Cosmic Plasma Environments

    SciTech Connect

    Mann, Ingrid

    2008-09-07

    Astronomical observations and in-situ measurements point to the existence of cosmic nano-particles, but in most cases their material composition and structure are not known. Nano-dust interacts differently than larger dust with the cosmic radiation and plasma environment. Its dynamics and behavior upon collision is not well studied.

  7. Multifunctional carbon nano-paper composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong

    2013-08-01

    Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.

  8. Coloration of cotton fibers using nano chitosan.

    PubMed

    Wijesena, Ruchira N; Tissera, Nadeeka D; de Silva, K M Nalin

    2015-12-10

    A method of coloration of cotton fabrics with nano chitosan is proposed. Nano chitosan were prepared using crab shell chitin nanofibers through alkaline deacetylation process. Average nano fiber diameters of nano chitosan were 18 nm to 35 nm and the lengths were in the range of 0.2-1.3 μm according to the atomic force microscope study. The degree of deacetylation of the material was found to be 97.3%. The prepared nano chitosan dyed using acid blue 25 (2-anthraquinonesulfonic acid) and used as the coloration agent for cotton fibers. Simple wet immersion method was used to color the cotton fabrics by nano chitosan dispersion followed by acid vapor treatment. Scanning electron microscope and atomic force microscope study of the treated cotton fiber revealed that the nano chitosan were consistently deposited on the cotton fiber surface and transformed in to a thin polymer layer upon the acid vapor treatment. The color strength of the dyed fabrics could be changed by changing the concentration of dyed nano chitosan dispersion. PMID:26428115

  9. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; dle Castillo, L.; White, V.

    2002-01-01

    This poster describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through a microcolumn containing nano-fabricated features will have characteristics elution times that directly correlate to molecular weight.

  10. Dipole nano-laser: Theory and properties

    SciTech Connect

    Ghannam, T.

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  11. RuBPCase activase mediates growth-defense tradeoffs: Silencing RCA redirects JA flux from JA-Ile to MeJA to attenuate induced defense responses in Nicotiana attenuata

    PubMed Central

    Mitra, Sirsha; Baldwin, Ian T.

    2014-01-01

    Summary RuBPCase activase (RCA), an abundant photosynthetic protein is strongly down-regulated in response to Manduca sexta’s oral secretion (OS) in Nicotiana attenuata. RCA-silenced plants are impaired not only in photosynthetic capacity and growth, but also in jasmonic acid (JA)-isoleucine (Ile) signaling, and herbivore resistance mediated by JA-Ile dependent defense traits. These responses are consistent with a resource-based growth-defense trade-off. Since JA+Ile-supplementation of OS restored WT levels of JA-Ile, defenses and resistance to M. sexta, but OS supplemented individually with JA- or Ile did not, the JA-Ile deficiency of RCA-silenced plants could not be attributed to lower JA or Ile pools or JAR4/6 conjugating activity. Similar levels of JA-Ile derivatives after OS elicitation indicated unaltered JA-Ile turnover and lower levels of other JA-conjugates ruled out competition from other conjugation reactions. RCA-silenced plants accumulated more methyl jasmonate (MeJA) after OS elicitation, which corresponded with increased jasmonate methyltransferase (JMT) activity. RCA-silencing phenocopies JMT over-expression, wherein elevated JMT activity redirects OS-elicited JA flux towards inactive MeJA, creating a JA sink which depletes JA-Ile and its associated defense responses. Hence RCA plays an additional non-photosynthetic role in attenuating JA-mediated defenses and their associated costs potentially allowing plants to anticipate resource-based constraints on growth before they actually occur. PMID:24491116

  12. Influence of Hydroxyapatite Nano-particles on the Mechanical and Tribological Properties of Orthopedic Cement-Based Nano-composites Measured by Nano-indentation and Nano-scratch Experiments

    NASA Astrophysics Data System (ADS)

    Asgharzadeh Shirazi, H.; Ayatollahi, M. R.; Naimi-Jamal, M. R.

    2015-09-01

    The aim of this study was to examine the mechanical and tribological properties of a commercially available bone cement by incorporating nano-sized hydroxyapatite using nano-indentation and nano-scratch experiments. In order to achieve this goal, the nano-composite cement samples with different amounts of commercial nano-hydroxyapatite (HAc), as a bone compatible nano-filler, were prepared via vacuum mixing method. The results indicated that nano-indentation and nano-scratch experiments are acceptable methods for measuring the mechanical and tribological properties of orthopedic cement-based nano-composites. Moreover, it was found that the nano-composite of 10 wt.% HAc exhibits the optimum performance compared to the other nano-composite samples in terms of mechanical and tribological properties. These findings can play an important role in achieving the goal of clinical and biomechanical function optimization of bone cement, especially in the field of orthopedic surgery.

  13. The nano-BIon in nanostructure

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza

    2016-04-01

    Recently, some authors have considered the superconductivity in nano-cubes and shown that by decreasing the size of these systems, superconductivity order parameter increases. In this research, we show that the same result can be obtained in a nano-BIon which is a configuration of two layers of cuprates connected by an electronic tube. This tube is a channel for transporting energy and matter inside a superconductor and acts as a wormhole in this system. This wormhole-like-tube is formed by decreasing the separation distance between layers of nano-cuprate and enhancing the cooper hopping pairing between layers. We estimate the critical temperature of superconductor and find that it depends on the size of nano-BIon and coupling between atoms in a layer. Also, we observe that external magnetic field generates a new tube which causes losing the energy density of nano-BIon between two layers and decreasing critical temperature of superconductor.

  14. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  15. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    NASA Astrophysics Data System (ADS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Vezir Kahraman, Memet

    2014-08-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased.

  16. Nano-laser on silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d < 3 nm) can make the localized states into band gap. The emission energy of nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  17. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  18. Attostreaking with metallic nano-objects

    NASA Astrophysics Data System (ADS)

    Borisov, A. G.; Echenique, P. M.; Kazansky, A. K.

    2012-02-01

    The application of atto-second streaking spectroscopy (ASS) to direct time-domain studies of the plasmonic excitations in metallic nano-objects is addressed theoretically. The streaking spectrograms for a rectangular gold nano-antenna and spherical gold clusters are obtained within strong field approximation using classical electron trajectory calculations. The results reported here for spherical clusters are also representative of spherical nano-shells. This study demonstrates that ASS allows for detailed characterization of plasmonic modes, including near-field enhancement, frequency and decay rate. The role of the inhomogeneity of the induced electric fields is also demonstrated.

  19. Comparison of dielectric properties of polydimethylsiloxane (PDMS) grafted polyacrylates/nano alumina and nano silica composites

    NASA Astrophysics Data System (ADS)

    Murudkar, Vrishali V.; Gaonkar, Amita A.; Deshpande, V. D.; Mhaske, S. T.

    2016-05-01

    Polydimethylsiloxane possess very poor mechanical properties. However, typically the initial modulus and durability of material is low and to improve this aspect a reinforcement phase is required. For the composite to be effective the filler must be with large aspect ratio i.e. with large surface area to volume ratio. Nano alumina (Al2O3) and nano silica (SiO2) are materials of choice for nanocomposite design. Grafted Polydimethylsiloxane (G-PDMS) and nano alumina and nano Silica composites have been prepared, by solvent casting method. FTIR study reveals that there is bonding overlap in G-PDMS/SiO2 nano composites. In dielectric study, it is observed that G-PDMS/SiO2 nano composites were more conducting in nature than G-PDMS/ Al2O3 nano composites. G-PDMS/ Al2O3 nano composites showed enhanced dielectric constant and less loss of energy than G-PDMS/SiO2 nano composites.

  20. Synthesis and characterization of nano ZnO, nano Ag/ZnO composite & nano-particles embedded polymers

    NASA Astrophysics Data System (ADS)

    Are, Thilak Reddy

    Zinc oxide and silver/zinc oxide nano particles were synthesized by a simple precipitation method in the presence of polyvinylpyrrolidone (PVP). The presence of polyvinylpyrrolidone prevents agglomeration and allows the formation of nano sized particles. Characterization of synthesized nano particles were carried out using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and the average sizes were determined by zeta seizer. The X-ray diffraction shows that the prepared particles were poorly crystalline. The DSC results show that the prepared particles are highly stable and no phase changes were observed when heated from room temperature to 500°C. Scanning electron microscopic observation shows that the particles are uniformly distributed with similar shape. Zeta seizer results show that the prepared particles are nano-particles with average size of about 100 nm. The prepared Zinc oxide nano particles were embedded into the polycaprolactone (PCL) polymer to study the effect of embedding zinc oxide nanoparticle on PCL crystallinity and mechanical properties. ZnO nano particles were successfully embedded into the polymer using in-situ and non-in-situ embedding processes. Characterization of PCL embedded with ZnO nanoparticles was performed by X-ray diffraction technique and scanning electron microscope. Crystallinity studies were done by using differential scanning calorimetry and the results show that the polymer embedded using an in situ process showed a decrease in crystallinity compared to the polymer embedded using a non-insitu process.

  1. DNA Assembly Line for Nano-Construction

    SciTech Connect

    Oleg Gang

    2009-03-25

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  2. Nano-Electronics and Bio-Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Viewgraph presentation on Nano-Electronics and Bio-Electronics is discussed. Topics discussed include: NASA Ames nanotechnology program, Potential Carbon Nanotube (CNT) application, CNT synthesis,Computational Nanotechnology, and protein nanotubes.

  3. Characterization of Vapor Deposited Nano Structured Membranes

    SciTech Connect

    Jankowski, A; Cherepy, N; Ferreira, J; Hayes, J

    2004-03-25

    The vapor deposition methods of planar magnetron sputtering and electron-beam evaporation are used to synthesize materials with nano structured morphological features that have ultra-high surface areas with continuous open porosity at the nano scale. These nano structured membranes are used in a variety of fuel cells to provide electrode and catalytic functions. Specifically, stand alone and composite nickel electrodes for use in thin film solid-oxide, and molten carbonate fuel cells are formed by sputter deposition and electron bean evaporation, respectively. Also, a potentially high-performance catalyst material for the direct reformation of hydrocarbon fuels at low temperatures is deposited as a nano structure by the reactive sputtering of a copper-zinc alloy using a partial pressure of oxygen at an elevated substrate temperature.

  4. DNA Assembly Line for Nano-Construction

    ScienceCinema

    Oleg Gang

    2010-01-08

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  5. 'Chrysanthemum petal' arrangements of silver nano wires.

    PubMed

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2014-12-01

    Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films. PMID:25397618

  6. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  7. Lipid bilayers on nano-templates

    DOEpatents

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  8. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  9. NanoSWARM: A Nano-satellite Mission to Measure Particles and Fields Around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, I.

    2015-12-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<1 km altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade. NanoSWARM was proposed as a NASA Discovery mission in February 2015.

  10. NanoSWARM - A nano-satellite mission to measure particles and fields around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Russell, Christopher; Pieters, Carle; Weiss, Benjamin; Halekas, Jasper; Poppe, Andrew; Larson, Davin; Lawrence, David; Elphic, Richard; Hayne, Paul; Blakely, Richard; Kim, Khan-Hyuk; Choi, Young-Jun; Jin, Ho; Hemingway, Doug; Nayak, Michael; Puig-Suari, Jordi; Jaroux, Belgacem; Warwick, Steven

    2015-04-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<500 m altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade, and expand the cubesat paradigm into deep space. NanoSWARM will be proposed as a NASA Discovery mission in early 2015.

  11. Employing Carbon Nano-Tubes in New Nano-Structured Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Ambrosio, A.; Ambrosio, M.; Aramo, C.; Carillo, V.; Guarino, F.; Maddalena, P.; Grossi, V.; Passacantando, M.; Santucci, S.; Valentini, A.

    2010-04-01

    So far, electronics has growth up together with the possibility of designing electronic circuits based on the semi conductive properties of silicon. However, the last two decades has been characterized by the explosion of techniques allowing the observation and manipulation of materials at the nanometric length scale. For many applications, the role of silicon is thus turning towards that of a well known substrate whose surface is modified and decorated, at the nano-scale, with other materials. This configuration often represents a nano-structured material. Among all the materials involved in nano-science and nano-technology, Carbon Nano-Tubes (CNTs) have already been employed into a huge number of applications. Here we report the last results in designing a new radiation detector based on CNTs that appears promising for the aim of broadening the detection range of solid state radiation detectors.

  12. In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites

    NASA Astrophysics Data System (ADS)

    Sullivan, Kyle T.; Chiou, Wen-An; Fiore, Richard; Zachariah, Michael R.

    2010-09-01

    The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 106 K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO3 composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring for the nano-Al/WO3 thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.

  13. Infrared nano-imaging of plasmonic hotspots on graphene nano-bubbles

    NASA Astrophysics Data System (ADS)

    Fei, Zhe; Foley, Jonathan; Gannett, Will; Zettl, Alex; Liu, Mengkun; Ni, Guangxin; Dai, Siyuan; Keilmann, Fritz; Castro Neto, Antonio; Gray, Stephen; Wiederrecht, Gary; Fogler, Michael; Basov, Dimitri

    2015-03-01

    One of the major goals of plasmonics is to achieve strong enhancement of electromagnetic energy by forming plasmonic hot spots for various applications including bio-sensing, single molecule fingerprinting, surface enhanced spectroscopy, and etc. Here, we demonstrate by infrared nano-imaging that nano-bubbles formed on graphene/hexagonal boron nitride heterostructures are ideal for trapping electromagnetic energy thus forming ultra-confined plasmonic hot spots. The distributions of these hot spots are sensitively dependent on the size and shape of these nano-bubbles as well as the ingredients inside. Further analysis indicates that the observed plasmonic hotspots are formed due to a significant enhancement of the plasmon wavelength and intensity above graphene nano-bubbles filled with air or other low-k dielectric materials. Our work presents a novel scheme for plasmonic hot spots formation and sheds light on future applications of graphene nano-bubbles for plasmon-enhanced single molecule characterization.

  14. Opening Up the Optical Imaging Window Using Nano-Luciferin

    PubMed Central

    Patel, Apurva R.; Lim, Ed; Francis, Kevin P.; Singh, Mandip

    2014-01-01

    The objective of this study was to formulate nanoparticles of D-luciferin (Nano-Luc), DiR (Nano-DiR) and dual functional nanoparticles with DiR and luciferin (Nano-LucDiR) for in-vivo imaging as well as tracking of the nanoparticles in tumors. Nano-Luc and Nano-LucDiR were prepared using different lipids, and subsequently characterized for loading and entrapment efficiency, physical properties, release profile, toxicity and stability. We utilized Response Surface Methodology (RSM) to optimize the nanoparticles using design of experiment (DOE Vr.8.0). Nano-Luc was evaluated against free luciferin to establish its pharmacokinetic parameters in mice. In-vivo imaging of tumors and tracking of nanoparticles was carried out with an IVIS® Spectrum-CT (Caliper) using xenograft, orthotopic and metastatic tumor models in BALB/c nude mice with different cell lines and different routes of nanoparticle administration (subcutaneous, intraperitoneal and intravenous). Particle size of both Nano-Luc and Nano-LucDiR were found to be <200 nm. Nano-Luc formulation showed a slow and controlled release upto 72h (90%) in vitro. The optimized Nano-Luc had loading efficiency of 5.0 mg/ml with 99% encapsulation efficiency. Nano-Luc and Nano-LucDiR formulations had good shelf stability. Nano-Luc and Nano-LucDiR enhanced plasma half-life of luciferin compared to free luciferin thus providing longer circulation of luciferin in plasma enabling imaging of tumors for more than 24h. Nano-LucDiR allowed simultaneous bioluminescent and fluorescent imaging to be conducted, with three-dimensional reconstruct of tumors without losing either signal during the acquisition time. Nano-Luc and Nano-LucDiR allowed prolonged reproducible in-vivo imaging of tumors, especially during multimodality 3D imaging. PMID:24831312

  15. The Petrography of Meteoritic Nano-Diamonds

    NASA Technical Reports Server (NTRS)

    Dai, Z. R.; Bradley, J. P.; Brownlee, D. E.; Joswiak, D. J.

    2003-01-01

    At least some meteoritic nanodiamonds are likely of presolar origin because of their association with anomalous Xe-HL and Te isotopic components indicative of a supernova (SN) origin. But the abundance of Xe is such that only approx. 1 in 10(exp 6) nano-diamonds contains a Xe atom, and the bulk C-13/C-12 composition of nano-diamond acid residues is chondritic (solar). Therefore, it is possible that a significant fraction of meteoritic nano-diamonds formed within the solar nebula. Nano-diamonds have recently been detected for the first time within the accretion discs of young stars by the Infrared Space Observatory (ISO). No comparable evidence of nanodiamonds in the interstellar medium has yet been found. We have identified nano-diamonds in acid etched thin-sections of meteorites, polar micrometeorites, and interplanetary dust particles (IDPs) with the goal of determining their distribution as a function of heliocentric distance. (It is assumed the meteorites and the polar micrometeorites are from asteroids at 2-4 AU and at least some of the IDPs are from comets at >50AU). We found that nano-diamonds are heterogeneously distributed throughout carbon-rich meteoritic materials (we identified them in some IDPs and not in others), and that their abundance may actually decrease with heliocentric distance, consistent with the hypothesis that some of them formed within the inner solar system and not in a presolar (SN) environment. In order to gain further insight about the origins of meteoritic nano-diamonds we are currently investigating their distribution in unetched thin-sections. We have examined a chondritic cluster IDP (U220GCA), fragments of the Tagish Lake (CM1) meteorite, and a SN graphite spherule (KE3d8) isolated from the Murchison (CM) meteorite. We selected U220GCA because its nano-diamond abundance (in acid etched thin-sections) appears to be as much as approx. 10X higher than in Murchison matrix, Tagish Lake because it has a higher reported nano

  16. Nano-plasmonic phenomena in graphene

    NASA Astrophysics Data System (ADS)

    Basov, Dimitri

    2014-03-01

    Infrared nano-spectroscopy and nano-imaging experiments have uncovered a rich variety of optical effects associated with the Dirac plasmons of graphene [Fei et al. Nano Lett. 11, 4701 (2011)]. We were able to directly image Dirac plasmons propagating over sub-micron distances [Fei et al. Nature 487, 82 (2012)]. We have succeeded in altering both the amplitude and wavelength of these plasmons by gate voltage in common graphene/SiO2/Si back-gated structures. Scanning plasmon interferometry has allowed us to visualize grain boundaries in CVD graphene. These latter experiments revealed that the grain boundaries tend to form electronic barriers that impede both electrical transport and plasmon propagation. Our results attest to the feasibility of using these electronic barriers to realize tunable plasmon reflectors: a precondition for implementation of various metamaterials concepts [Fei et al. Nature Nano 8, 821 (2013)]. Finally, we have carried out pump-probe experiments interrogating ultra-fast dynamics of plasmons in exfoliated graphene with the nano-scale spatial resolution [Wagner et al. (under review)].

  17. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data. PMID:26337600

  18. Preparation of nano fluids by mechanical method

    NASA Astrophysics Data System (ADS)

    Boopathy, J.; Pari, R.; Kavitha, M.; Angelo, P. C.

    2012-07-01

    Nanofluids are conventional heat transfer fluids that contain nano particles of metals, oxides, carbides, nitrides, or nanotubes. Nanofluids exhibit enhanced thermal conductivity and heat transfer coefficients compared to the base fluids. This paper presents the procedure for preparing nanofluids consisting of Copper and Aluminium nano powders in base fluids. Copper and Aluminium nano powders were produced by planetary ball wet milling at 300rpm for 50hrs. Toluene was added to ensure wet milling. These powders were characterized in XRD and SEM for their purity, particle size and shape. The XRD results confirmed the final particle sizes of Copper and Aluminium in the nano range. Then the 0.01 gm of nano metal powders was added in 150 ml of double distilled water and magnetic stirring was done at 1500 rpm for 15 minutes. Sodium lauryl sulphate (0.05%) was added in water as surfactant to ensure the stability of the dispersion. Ultrasonication in the 3000 watts bath was done for 10 minutes to enhance the uniform dispersion of metal powders in water. The pH, dynamic viscosity, ionic conductivity and the stability of the fluids were determined for further usage of synthesized nanofluids as coolant during grinding operation.

  19. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications. PMID:23059655

  20. Rotation Motion of Designed Nano-Turbine

    NASA Astrophysics Data System (ADS)

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-07-01

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called ``dragging effect''. Moreover, counterintuitively, the ratio of ``effective'' driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.

  1. Diblock Copolymers under Nano-Confinement

    NASA Astrophysics Data System (ADS)

    Meng, Dong; Yin, Yuhua; Wang, Qiang

    2009-03-01

    Nano-confinement strongly affects and can thus be used to control the self-assembled morphology of block copolymers. Understanding such effects is of both fundamental and practical interest. In this work, we use real-space self-consistent field calculations with high accuracy to study the self-assembled morphology of diblock copolymers (DBC) under nano-confinement for several systems, including 1D lamellae-forming DBC confined between two homogeneous and parallel surfaces, in nano-pores, and on topologically patterned substrates; 2D cylinder-forming DBC on chemically strip-patterned substrates; and 3D gyroid- forming DBC confined between two homogeneous and parallel surfaces. The stable phases are identified through free-energy comparison, and our SCF results are compared with available experiments and Monte Carlo simulations in each case.

  2. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  3. Nano-donuts on metal surfaces

    NASA Astrophysics Data System (ADS)

    Rai, Abhishek; Nayak, Jayita; Roy Barman, Sudipta

    2015-03-01

    Nano-structures comprising of a pit surrounded by a circular ridge that resemble nano-donuts have been observed on flat terraces of both Au(1 1 1) and Al(1 0 0) surfaces after low energy (1.5-2 keV) rare gas (rg) ion implantation. From time lapse scanning tunneling microscopy, we demonstrate that these donuts originate from the rg bubbles that migrate out from the sub-surface region. The circular shape of the donuts is observed for both Ar and Ne bubbles. The donuts and the related nano-structures represent different stages of large time scale co-operative relaxation of Au atoms by long range elastic interaction after the rg bubbles leave the metal.

  4. Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers.

    PubMed

    Marus, Mikita; Hubarevich, Aliaksandr; Wang, Hong; Stsiapanau, Andrei; Smirnov, Aliaksandr; Sun, Xiao Wei; Fan, Weijun

    2015-10-01

    The comparison of optical and electronic properties between squarely and hexagonally arranged nano-porous layers and uniformly arranged nano-wired layers of aluminium and silver was presented. The nano-wired configuration exhibit 20 and 10% higher average transmittance in visible wavelength range in comparison to square and hexagonal nano-porous designs, respectively. The insignificant difference of the transmittance for aluminium and silver nano-porous and nano-wired layers is observed, when interpore/interwire distance is larger than wavelengths of incoming light. This difference becomes considerable at the interpore/interwire distance less than wavelengths of incoming light: silver nano-porous and nano-wired layers possess up to 27% higher transmittance in comparison to aluminium layers. PMID:26480190

  5. "Nano": the new nemesis of cancer.

    PubMed

    Hede, Shantesh; Huilgol, Nagraj

    2006-01-01

    Materials at nano dimensions exhibit totally different properties compared to their bulk and atomic states. This feature has been harnessed by scientists from various disciplines, to develop functional nanomaterials for cancer diagnosis and therapeutics. The success stories range from delivering chemotherapeutic molecules in nano-sized formulations to functional nanomaterials, which deliver thermal and radiotherapy at specific targeted sites. This brief review summarizes the recent developments of various nanotechnologies in cancer therapy and diagnostics, both from the research sector and the upcoming products in pipeline on its route to commercialization. Supportive engineering innovations and frontiers in nanomolecular research, with a potential to revolutionize cancer therapy, have been discussed in brief. PMID:17998702

  6. Magnetic bead detection using nano-transformers.

    PubMed

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level. PMID:20972313

  7. A new approach to synthesize nano WC

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Pandey, O. P.

    2013-06-01

    Tungsten carbide (WC) is extensively used in cutting and mining tools, dies and in wear resistance parts. The recent application of WC as electrocatalyst in fuel cells to replace costly nobel metal platinum (Pt) has further increased its demand. Its catalytic and mechanical properties are improved with the reduction of particle size in a nanometric range. The nano WC is synthesized from the pure precursor(s) which makes its production costly. In this work, we report a new process to get nano WC directly from the scheelite (CaWO4) ore. The powders were characterized by XRD, SEM and HRTEM.

  8. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  9. Nano-material and method of fabrication

    DOEpatents

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  10. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  11. Catalytic wateroxidation on derivatized nanoITO

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier J; Hull, Jonathan F; Hoertz, Paul G.; Meyer, Thomas J.

    2010-06-22

    Electrocatalytic water oxidation occurs on high surface area, nanocrystalline ITO (nanoITO) surface-derivatized by phosphonate-binding of the catalyst [Ru(Mebimpy)(4,4'-((HO)2OPCH2)2bpy)(OH2)]2+ (Mebimpy is 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy is 2,2'-bipyridine). With nanoITO, spectral data can be acquired on electrochemically generated intermediates and voltammograms monitored spectrophotometrically.

  12. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers. PMID:25647481

  13. Nanodevices for studying nano-pathophysiology.

    PubMed

    Cabral, Horacio; Miyata, Kanjiro; Kishimura, Akihiro

    2014-07-01

    Nano-scaled devices are a promising platform for specific detection of pathological targets, facilitating the analysis of biological tissues in real-time, while improving the diagnostic approaches and the efficacy of therapies. Herein, we review nanodevice approaches, including liposomes, nanoparticles and polymeric nanoassemblies, such as polymeric micelles and vesicles, which can precisely control their structure and functions for specifically interacting with cells and tissues. These systems have been successfully used for the selective delivery of reporter and therapeutic agents to specific tissues with controlled cellular and subcellular targeting of biomolecules and programmed operation inside the body, suggesting a high potential for developing the analysis for nano-pathophysiology. PMID:24993612

  14. Hybrid nano ridge plasmonic polaritons waveguides

    NASA Astrophysics Data System (ADS)

    Mu, Jianwei; Chen, Lin; Li, Xun; Huang, Wei-Ping; Kimerling, Lionel C.; Michel, Jurgen

    2013-09-01

    We demonstrate an ultra-subwavelength surface plasmonic polaritons waveguide, which can confine light in the nano-scale region with comparable low propagation loss. The mode can be squeezed to one thousandth of the diffraction spot size with micro-meter scale propagation distance and is highly sensitive to the buffer layer materials and geometric parameters. This design improves the performance of previous surface plasmonic polaritons waveguides and lends itself to complementary metal-oxide-semiconductor compatible fabrication. These waveguides can be used as a platform for active devices as well as for nano-sensing applications.

  15. Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing

    NASA Astrophysics Data System (ADS)

    Murugan, S.; Prasad, M. V. N.; Jayakumar, K.

    2016-05-01

    An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.

  16. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications. PMID:25321039

  17. Formation of nano-phase hydroxyapatite film on TiO2 nano-network.

    PubMed

    Lee, Kang; Ko, Yeong-Mu; Choe, Han-Cheol; Kim, Byung-Hoon

    2012-01-01

    Nano- and micro-phase HA film formed on TiO2 nano-network surface by simple electrochemical treatment. The range of lateral pore size of the network specimen was about 10-120 nm on Ti surface by anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by this anodization step which acted as templates and anchorage for growth of the HA during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of deposits HA were influenced by the electrolyte concentration. The nano needle-like precipitates formed under low SBF concentration were identified to be HA crystals orientated parallel to the c-axis direction. Increasing electrolyte concentration, needle-like deposits transferred to the plate-like and micro plate like precipitates in the case of high SBF concentration. PMID:22524064

  18. Report of International NanoSPD Steering Committee and statistics on recent NanoSPD activities

    NASA Astrophysics Data System (ADS)

    2014-08-01

    Abstract. The Université de Lorraine in Metz, France, is the selected site for the 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6) following a series of five earlier conferences. This introductory paper reports on several major developments in NanoSPD activities as well as on very recent NanoSPD citation data which confirm the continued growth and expansion of this important research area. Close attention is given to the topics of workshops, conferences and seminars organized during these last three years as well as on books and reviews published prior to the NanoSPD6 conference. A special concern of the committee is in introducing and discussing the appropriate terminology to be applied in this new field of materials science and engineering.

  19. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases

    PubMed Central

    Turjeman, Keren; Bavli, Yaelle; Kizelsztein, Pablo; Schilt, Yaelle; Allon, Nahum; Katzir, Tamar Blumenfeld; Sasson, Efrat; Raviv, Uri; Ovadia, Haim; Barenholz, Yechezkel

    2015-01-01

    The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs’ unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage). We designed two different liposomal nano-drugs, i.e., nano sterically stabilized liposomes (NSSL), remote loaded with: (a) a “water-soluble” amphipathic weak acid glucocorticosteroid prodrug, methylprednisolone hemisuccinate (MPS) or (b) the amphipathic weak base nitroxide, Tempamine (TMN). For the NSSL-MPS we also compared the effect of passive targeting alone and of active targeting based on short peptide fragments of ApoE or of β-amyloid. Our results clearly show that for NSSL-MPS, active targeting is not superior to passive targeting. For the NSSL-MPS and the NSSL-TMN it was demonstrated that these nano-drugs ameliorate the clinical signs and the pathology of EAE. We have further investigated the MPS nano-drug’s therapeutic efficacy and its mechanism of action in both the acute and the adoptive transfer EAE models, as well as optimizing the perfomance of the TMN nano-drug. The highly efficacious anti-inflammatory therapeutic feature of these two nano-drugs meets the criteria of disease-modifying drugs and supports further development and evaluation of these nano-drugs as potential therapeutic agents for diseases with an inflammatory component. PMID:26147975

  20. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases.

    PubMed

    Turjeman, Keren; Bavli, Yaelle; Kizelsztein, Pablo; Schilt, Yaelle; Allon, Nahum; Katzir, Tamar Blumenfeld; Sasson, Efrat; Raviv, Uri; Ovadia, Haim; Barenholz, Yechezkel

    2015-01-01

    The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs' unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage). We designed two different liposomal nano-drugs, i.e., nano sterically stabilized liposomes (NSSL), remote loaded with: (a) a "water-soluble" amphipathic weak acid glucocorticosteroid prodrug, methylprednisolone hemisuccinate (MPS) or (b) the amphipathic weak base nitroxide, Tempamine (TMN). For the NSSL-MPS we also compared the effect of passive targeting alone and of active targeting based on short peptide fragments of ApoE or of β-amyloid. Our results clearly show that for NSSL-MPS, active targeting is not superior to passive targeting. For the NSSL-MPS and the NSSL-TMN it was demonstrated that these nano-drugs ameliorate the clinical signs and the pathology of EAE. We have further investigated the MPS nano-drug's therapeutic efficacy and its mechanism of action in both the acute and the adoptive transfer EAE models, as well as optimizing the perfomance of the TMN nano-drug. The highly efficacious anti-inflammatory therapeutic feature of these two nano-drugs meets the criteria of disease-modifying drugs and supports further development and evaluation of these nano-drugs as potential therapeutic agents for diseases with an inflammatory component. PMID:26147975

  1. Green Chemistry by Nano-Catalysis

    EPA Science Inventory

    The approach of using MW technique with nano-catalysis and benign aqueous reaction medium can offer an extraordinary synergistic effect with greater potential than these three individual components in isolation. To illustrate the ‘‘proof-of-concept’’ of this “Green and Sustainabl...

  2. We Scream for Nano Ice Cream

    ERIC Educational Resources Information Center

    Jones, M. Gail; Krebs, Denise L.; Banks, Alton J.

    2011-01-01

    There is a wide range of new products emerging from nanotechnology, and "nano ice cream" is an easy one that you can use to teach topics from surface area to volume applications. In this activity, students learn how ice cream can be made smoother and creamier tasting through nanoscience. By using liquid nitrogen to cool the cream mixture, students…

  3. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  4. Optical properties of silver nano-cubes

    NASA Astrophysics Data System (ADS)

    Das, Ratan; Sarkar, Sumit

    2015-10-01

    Here in this work we are interested in the optical properties of uniform sized cubic silver nano-crystals. These silver nano-crystals are prepared by simple chemical reduction method using PVP as a capping agent. High Resolution Transmission Electron Microscopy (HRTEM) images and X-ray diffraction (XRD) analysis reveal that the produced nano-crystals are FCC in structure with a cubic morphology having an average size of 100 nm approximately. Further High Performance Liquid Chromatography (HPLC) study reveals the monodispersity of the prepared sample. UV/Vis study shows an absorption peak due to surface plasmon resonance (SPR) in the visible range which remains steady for more than two months and after that absorption peak position gets red shifted slowly as samples becomes more aged, confirming the agglomeration after two months. Most important optical property shown by the sample is the photoluminescence (PL), which gives an emission spectra in the visible range, confirming a band gap in the silver nano-cubes. It has been observed that the different PL spectra show an emission peak at 482 nm with different intensity for different excitation wavelength.

  5. Superconducting nano-strip particle detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Casaburi, A.; Zen, N.; Ohkubo, M.

    2015-12-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2-5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications.

  6. Synthesis and characterization of struvite nano particles

    NASA Astrophysics Data System (ADS)

    Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.

    2015-06-01

    Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.

  7. Biomedical applications of nano-antioxidant.

    PubMed

    Watal, Geeta; Watal, Aparna; Rai, Prashant Kumar; Rai, Devendra Kumar; Sharma, Gaurav; Sharma, Bechan

    2013-01-01

    For centuries now, antioxidants have been known to provide better health by neutralizing the free radicals which are continuously produced in the human body. In normal circumstances, self-antioxidant defense system of the human body is capable of quantitatively managing the free radicals. However, in certain cases, which are at the threshold of developing diseases like diabetes and Alzheimer's, the human body calls for an external source of antioxidants. Since orally delivered antioxidants are easily destroyed by acids and enzymes present in the human system, only a small portion of what is consumed actually gets absorbed. Hence, there is a recognized and urgent need to develop effective methods for efficiently delivering antioxidants to the required sites. This chapter provides an in-depth overview and analysis of two such methods and processes-nano-encapsulation and nano-dendrimers. Among the various nanoscale delivery mechanisms, nano-encapsulation has emerged as a key and efficient delivery process. Designed as a spongelike polymer, nano-encapsulated antioxidants provide a protective vehicle which keeps antioxidants from being destroyed in the human gut and ensures their better absorption in the digestive tract. In fact, the nano-capsules bind themselves to the intestinal walls and pour antioxidants directly into the intestinal cells, which allow them to be absorbed directly into the blood stream. Another distinguished and popular mode for delivering antioxidants is that of nano-polymers known as dendrimers. Dendrimers involve multiple branches and sub-branches of atoms radiating out from a central core. Dendrimers afford a high level of control over their architectural design, including their size, shape, branching length or density, and surface functionality. Such flexibility makes these nanostructures ideal carriers in biomedical applications such as drug delivery, gene transfection, and imaging. Antioxidant dendrimers, made out of numerous units of

  8. Experimental evidence of a single nano-graphene

    NASA Astrophysics Data System (ADS)

    Affoune, A. M.; Prasad, B. L. V.; Sato, Hirohiko; Enoki, Toshiaki; Kaburagi, Yutaka; Hishiyama, Yoshihiro

    2001-11-01

    A single nano-sized graphene sheet is prepared by a combination of electrophoretic deposition (EPD) and heat-treatment of diamond nano-particles on a highly oriented pyrolytic graphite (HOPG) substrate. Heat-treatment at 1600 °C converts diamond nano-particles to single nano-graphenes, where the mean in-plane size and the inter-layer distance from the substrate are estimated at 10-15 and 0.35-0.37 nm, respectively. The considerably large inter-layer distance compared to bulk graphite suggests a large reduction of inter-layer interaction, although a nano-graphene is placed epitaxially on the substrate. The isolated single nano-graphene provides an important model of nano-sized π-electron system, for which recent theory predicts unconventional electronic structure of edge-inherited non-bonding state.

  9. Investigating the optical XNOR gate using plasmonic nano-rods

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Kaboli, Milad

    2016-04-01

    In this paper, a coherent perfect absorption (CPA)-type XNOR gate based on plasmonic nano particle is proposed. It consists of two plasmonic nano rod arrays on top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particles waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rod and the nano rod location, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the 'off' state and the minimum absorption coefficient in the 'on' state. In Binary PSO (BPSO), a group of birds consists a matrix with binary entries, control the presence ('1‧) or the absence ('0‧) of nano rod in the array.

  10. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  11. A NANO enhancement to Moore's law

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Shen, Yin-Lin; Reinhardt, Kitt; Szu, Harold

    2012-06-01

    In the past 46 years, Intel Moore observed an exponential doubling in the number of transistors in every 18 months through the size reduction of individual transistor components since 1965. In this paper, we are exploring the nanotechnology impact upon the Law. Since we cannot break down the atomic size barrier, the fact implies a fundamental size limit at the atomic or Nanotechnology scale. This means, no more simple 18 month doubling as in Moore's Law, but other forms of transistor doubling may happen at a different slope in new directions. We are particularly interested in the Nano enhancement area. (i) 3-D: If the progress in shrinking the in-plane dimensions (2D) is to slow down, vertical integration (3D) can help increasing the areal device transistor density and keep us on the modified Moore's Law curve including the 3rd dimension. As the devices continue to shrink further into the 20 to 30 nm range, the consideration of thermal properties and transport in such nanoscale devices becomes increasingly important. (ii) Carbon Computing: Instead of traditional Transistors, the other types of transistors material are rapidly developed in Laboratories Worldwide, e.g. IBM Spintronics bandgap material and Samsung Nano-storage material, HD display Nanotechnology, which are modifying the classical Moore's Law. We shall consider the overall limitation of phonon engineering, fundamental information unit 'Qubyte' in quantum computing, Nano/Micro Electrical Mechanical System (NEMS), Carbon NanoTubes (CNTs), single layer Graphemes, single strip Nano-Ribbons, etc., and their variable degree of fabrication maturities for the computing and information processing applications.

  12. Coordinate expression of AOS genes and JA accumulation: JA is not required for initiation of closing layer in wound healing tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wounding induces a series of coordinated physiological responses essential for protection and healing of the damaged tissue. Wound-induced formation of jasmonic acid (JA) is important in defense responses in leaves, but comparatively little is known about the induction of JA biosynthesis and its ro...

  13. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-08-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30° and 70° incidence angles and at different azimuthal angles ( φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70° incidence angle.

  14. Advanced nano lithography via soft materials-derived and reversible nano-patterning methodology for molding of infrared nano lenses

    NASA Astrophysics Data System (ADS)

    Park, Jae Hong; Jang, Hyun Ik; Park, Jun Yong; Jeon, Seok Woo; Kim, Woo Choong; Kim, Hee Yeoun; Ahn, Chi Won

    2015-03-01

    The methodology suggested in this research provides the great possibility of creating nanostructures composed of various materials, such as soft polymer, hard polymer, and metal, as well as Si. Such nanostructures are required for a vast range of optical and display devices, photonic components, physical devices, energy devices including electrodes of secondary batteries, fuel cells, solar cells, and energy harvesters, biological devices including biochips, biomimetic or biosimilar structured devices, and mechanical devices including micro- or nano-scale sensors and actuators.

  15. Effect of nano-SiO II on bismaleimide composite

    NASA Astrophysics Data System (ADS)

    Geng, Dongbing; Zeng, Liming; Li, Yi; Fu, Qiuzhou; Hu, Bing

    2007-07-01

    This paper is concerned with the effect of nano-SiO II particles on the thermal stability and mechanical behavior of composite materials. A nano-composite of three components is prepared by polymerizing nano-SiO II, chopped carbon fiber and bismalemide resin. The investigation's basic approach involves a blend of experimental and analytical studies to determine structure/property relationship. Nano-composite structures are characterized by dynamic mechanical analysis, and contents of nano-SiO II are subsequently correlated with mechanical properties such as tensile and flexural strength also the modulus. The results indicate that the content of nano-SiO II exhibits significant improvement on glass transition temperature (Tg) with Tg elevation by increasing concentration of nano-SiO II. The higher Tg is the result of steric hindrance by nano-SiO II particles in the nano-composite. The mechanical properties of the tensile and flexural strength are raised at first and followed by decreasing as the amount of nano-SiO II particles increased. All the modulus values mimic the tensile and flexural strength.

  16. Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinery of cells

    PubMed Central

    Yanamala, Naveena; Kagan, Valerian E.; Shvedova, Anna A.

    2013-01-01

    Over the past two decades, nanotechnology has emerged as a key player in various disciplines of science and technology. Some of the most exciting applications are in the field of biomedicine – for theranostics (for combined diagnostic and therapeutic purposes) as well as for exploration of biological systems. A detailed understanding of the molecular details of interactions between nanoparticles and biological nano-machinery – macromolecules, membranes, and intracellular organelles - is crucial for obtaining adequate information on mechanisms of action of nanomaterials as well as a perspective on the long term effects of these materials and their possible toxicological outcomes. This review focuses on the use of structure-based computational molecular modeling as a tool to understand and to predict the interactions between nanomaterials and nano-biosystems. We review major approaches and provide examples of computational analysis of the structural principles behind such interactions. A rationale on how nanoparticles of different sizes, shape, structure and chemical properties can affect the organization and functions of nano-machinery of cells is also presented. PMID:23726945

  17. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  18. Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit.

    PubMed

    Cao, Shifeng; Cai, Yuting; Yang, Zhenfeng; Joyce, Daryl C; Zheng, Yonghua

    2014-02-15

    The effect of methyl jasmonate (MeJA) on changes in polyamines content and energy status and their relation to disease resistance was investigated. Freshly harvested loquat fruit were treated with 10 μmol l(-1) MeJA and wound inoculated with Colletotrichum acutatum spore suspension (1.0 × 10(5) spores ml(-1)) after 24h, and then stored at 20 °C for 6 days. MeJA treatment significantly reduced decay incidence. MeJA treated fruit manifested higher contents of polyamines (putrescine, spermidine and spermine) compared with the control fruit, during storage. MeJA treatment also maintained higher levels of adenosine triphosphate, and suppressed an increase in adenosine monophosphate content in loquat fruit. These results suggest that MeJA treatment may inhibit anthracnose rot by increasing polyamine content and maintaining the energy status. PMID:24128452

  19. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  20. Performance Evaluation of Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Hatsutori, Y.; Kobayashi, Y.; Gouda, N.; Yano, T.; Murooka, J.; Niwa, Y.; Yamada, Y.

    2011-02-01

    We report the results of performance evaluation of the first Japanese astrometry satellite, Nano-JASMINE. It is a very small satellite and weighs only 35 kg. It aims to carry out astrometry measurement of nearby bright stars (z ≤ 7.5 mag) with an accuracy of 3 milli-arcseconds. Nano-JASMINE will be launched by Cyclone-4 rocket in August 2011 from Brazil. The current status is in the process of evaluating the performances. A series of performance tests and numerical analysis were conducted. As a result, the engineering model (EM) of the telescope was measured to be achieving a diffraction-limited performance and confirmed that it has enough performance for scientific astrometry.

  1. Nano-photonics: past and present

    NASA Astrophysics Data System (ADS)

    Szu, Harold

    2010-04-01

    Nanotech is at the scale of 10-9 meters, located at the mesocopic transition phase, which can take both classical mechanics (CM) and quantum mechanics (QM) descriptions bridging ten orders of magnitude phenomena, between the microscopic world of a single atom at 10-10 meters with the macroscopic world at meters. However, QM principles aid the understanding of any unusual property at the nanotech level. The other major difference between nano-photonics and other forms of optics is that the nano-scale is not very 'hands on'. For the most part, we will not be able to see the components with our naked eyes, but will be required to use some nanotech imaging tools, as follows:

  2. New method for fabricating nano oxide materials

    NASA Astrophysics Data System (ADS)

    El-Hofy, M.; El-Roby, M. G.; Elkhatib, M.

    2015-09-01

    Nano Co3O4 has been fabricated by co-precipitation of 0.1 M cobalt chloride with 0.1 M oxalic acid. During precipitation, high-frequency signal (9 V) was applied to the precipitation bath. Three samples were prepared at three different frequencies (0 Hz, 400 KHz, 1 MHz). The samples were dried at 120 °C for 20 h, and then calcined at 700 °C for 5 h to obtain the nano Co3O4. The prepared samples were investigated via XRD and TEM studies. According to the present data the particle size decreases from about 164 to 80 nm and the width of the particle size distribution decreases to half of its value with increasing frequency from 0 Hz to 1 MHz.

  3. Ultimate computing. Biomolecular consciousness and nano Technology

    SciTech Connect

    Hameroff, S.R.

    1987-01-01

    The book advances the premise that the cytoskeleton is the cell's nervous system, the biological controller/computer. If indeed cytoskeletal dynamics in the nanoscale (billionth meter, billionth second) are the texture of intracellular information processing, emerging ''NanoTechnologies'' (scanning tunneling microscopy, Feynman machines, von Neumann replicators, etc.) should enable direct monitoring, decoding and interfacing between biological and technological information devices. This in turn could result in important biomedical applications and perhaps a merger of mind and machine: Ultimate Computing.

  4. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  5. Reversible nano-lithography for commercial approaches

    NASA Astrophysics Data System (ADS)

    Park, Jae Hong; Jang, Hyun Ik; Kim, Woo Choong; Yun, Hae S.; Park, Jun Yong; Jeon, Seok Woo; Kim, Hee Yeoun; Ahn, Chi Won

    2016-04-01

    The methodology suggested in this research provides the great possibility of creating nanostructures composed of various materials, such as soft polymer, hard polymer, and metal, as well as Si. Such nanostructures are required for a vast range of optical and display devices, photonic components, physical devices, energy devices including electrodes of secondary batteries, fuel cells, solar cells, and energy harvesters, biological devices including biochips, biomimetic or biosimilar structured devices, and mechanical devices including micro- or nano-scale sensors and actuators.

  6. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium.

    PubMed

    Tay, Chor Yong; Fang, Wanru; Setyawati, Magdiel Inggrid; Chia, Sing Ling; Tan, Kai Soo; Hong, Catherine Hsu Ling; Leong, David Tai

    2014-05-14

    Nanomaterials (NMs) such as titanium dioxide (nano-TiO2) and hydroxyapatite (nano-HA) are widely used in food, personal care, and many household products. Due to their extensive usage, the risk of human exposure is increased and may trigger NMs specific biological outcomes as the NMs interface with the cells. However, the interaction of nano-TiO2 and nano-HA with cells, their uptake and subcellular distribution, and the cytotoxic effects are poorly understood. Herein, we characterized and examined the cellular internalization, inflammatory response and cytotoxic effects of nano-TiO2 and nano-HA using TR146 human oral buccal epithelial cells as an in vitro model. We showed both types of NMs were able to bind to the cellular membrane and passage into the cells in a dose dependent manner. Strikingly, both types of NMs exhibited distinct subcellular distribution profile with nano-HA displaying a higher preference to accumulate near the cell membrane compared to nano-TiO2. Exposure to both types of NMs caused an elevated reactive oxygen species (ROS) level and expression of inflammatory transcripts with increasing NMs concentration. Although cells treated with nano-HA induces minimal apoptosis, nano-TiO2 treated samples displayed approximately 28% early apoptosis after 24 h of NMs exposure. We further showed that nano-TiO2 mediated cell death is independent of the classical p53-Bax apoptosis pathway. Our findings provided insights into the potential cellular fates of human oral epithelial cells as they interface with industrial grade nano-HA and nano-TiO2. PMID:24734929

  7. Scientific goals of Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Fujita, Sho; Gouda, Naoteru; Kobayashi, Yukiyasu; Hara, Takuji; Nishi, Ryoichi; Yoshioka, Satoshi; Hozumi, Shunsuke

    2013-02-01

    Nano-JASMINE is an ultrasmall Japanese satellite (with a weight of 35 kg), designed to carry out an astrometric mission. The target accuracy is 3 milliarcseconds (mas) for stars brighter than magnitude 7.5 at zw-band wavelengths of 0.6-1.0 μm. The observational strategy is the same as that of Gaia and Hipparcos. The time span of 20 years since the Hipparcos mission will enable us to update the proper motion data obtained at that time. With the help of these updated measurements, we expect that some stars will be resolved into multiple stars. In addition, taking advantage of the small primary mirror (with a diameter of 5 cm), we can measure bright stars which cannot be observed with Gaia because of saturation limits. The core data reduction for the Nano-JASMINE mission will use Gaia's Astrometric Global Iterative Solution (agis). A collaboration between the Gaia agis and Nano-JASMINE teams was initiated in 2007.

  8. Magnetite nano-islands on Graphene

    NASA Astrophysics Data System (ADS)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  9. Hybrid nano plasmonics for integrated biosensor

    NASA Astrophysics Data System (ADS)

    Lin, Chii-Wann; Lee, Jun-Haw; Chiu, Nan-Fu; Lee, Szu-Yuan; Liu, Kou-Chen; Tsai, Feng-Yu; Yen, Chia-Yu; Lee, Chun-Nan

    2009-11-01

    SPR biosensor with OLED and nano-grating for HBV LAMP product detection is reported. Directional emissions by grating-coupler match the resonant condition of SP modes. Concentration changes result in color shift at specific angle. Real time detection of virus load down to 5 copies/25 ul can be achieved in 30 minutes. Surface plasmon Resonant (SPR) biosensor has been used for quantitative measurement of molecular interactions for its advantages of high sensitivity, label-free and real-time detection. In this paper, we report recent efforts on further enhancement of SPR biosensors by the heterogeneous integration of organic electroluminescence light source and nano-grating structure for the feasibility study on the fast and high sensitivity detection of HBV isothermal amplification products, Mg2P2O7. We demonstrated the surface plasmon coupled through hybrid nano-grating structure has highly directional emissions corresponding to the resonant condition of surface plasmon modes on the Au/air interface and controllable plasmonics band-gap by pitch modulation. SPGCE resulted in color change from yellowish green to orange at a certain viewing angle, when contacting glucose with concentration increasing from 10 to 40%.

  10. Nano-education from a European perspective

    NASA Astrophysics Data System (ADS)

    Malsch, I.

    2008-03-01

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps.

  11. Space Environmental NanoSat Experiment (SENSE)

    NASA Astrophysics Data System (ADS)

    Kalamaroff, K. I.; Thompson, D. C.; Gentile, L. C.; Cooke, D. L.; Bonito, N.; La Tour, P.

    2012-12-01

    The Space Environmental NanoSat Experiment (SENSE) program is a rapid development effort of the USAF Space and Missiles Center Development Planning Directorate (SMC/XR) which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner. The three primary objectives for the SENSE mission are: 1) to develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations; 2) to mature CubeSat bus and sensor component technology readiness levels; and 3) to demonstrate the operational utility of CubeSat measurements by flowing validated, low-latency data into operational space weather models. SENSE consists of two 3-U CubeSats scheduled for launch in summer 2013. Both satellites are 3-axis stabilized with star cameras for attitude determination and are equipped with a Compact Total Electron Density Sensor (CTECS) to provide radio occultation measurements of total electron content and L-band scintillation. One satellite has a Cubesat Tiny Ionospheric Photometer (CTIP) monitoring 135.6 nm photons produced by the recombination of O+ ions and electrons. The other satellite has a Wind Ion Neutral Composite Suite (WINCS) to acquire simultaneous co-located, in situ measurements of atmospheric and ionospheric density, composition, temperature and winds/drifts. Mission data will be used to improve current and future space weather models and demonstrate the utility of data from CubeSats for operational weather requirements.

  12. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones.

    PubMed

    Jimenez-Aleman, Guillermo H; Machado, Ricardo A R; Görls, Helmar; Baldwin, Ian T; Boland, Wilhelm

    2015-06-01

    Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ω-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature. PMID:25806705

  13. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk

    PubMed Central

    Zhang, Peng-Jun; Huang, Fang; Zhang, Jin-Ming; Wei, Jia-Ning; Lu, Yao-Bin

    2015-01-01

    Induced plant defenses against herbivores are modulated by jasmonic acid-, salicylic acid-, and ethylene-signaling pathways. Although there is evidence that some pathogens suppress plant defenses by interfering with the crosstalk between different signaling pathways, such evidence is scarce for herbivores. Here, we demonstrate that the mealybug Phenacoccus solenopsis suppresses the induced defenses in tomato. We found that exogenous JA, but not SA, significantly decreased mealybug feeding time and reduced nymphal performance. In addition, constitutive activation of JA signaling in 35s::prosys plants reduced mealybug survival. These data indicate that the JA signaling pathway plays a key role in mediating the defense responses against P. solenopsis. We also found that mealybug feeding decreased JA production and JA-dependent defense gene expression, but increased SA accumulation and SA-dependent gene expression. In SA-deficient plants, mealybug feeding did not suppress but activated JA accumulation, indicating that the suppression of JA-regulated defenses depends on the SA signaling pathway. Mealybugs benefit from suppression of JA-regulated defenses by exhibiting enhanced nymphal performance. These findings confirm that P. solenopsis manipulates plants for its own benefits by modulating the JA-SA crosstalk and thereby suppressing induced defenses. PMID:25790868

  14. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  15. NanoXCT: development of a laboratory nano-CT system

    NASA Astrophysics Data System (ADS)

    Nachtrab, F.; Firsching, M.; Uhlmann, N.; Speier, C.; Takman, P.; Tuohimaa, T.; Heinzl, C.; Kastner, J.; Larsson, D. H.; Holmberg, A.; Berti, G.; Krumm, M.; Sauerwein, C.

    2014-09-01

    The NanoXCT project aims at developing a laboratory nano-CT system for non-destructive testing applications in the micro- and nano-technology sector. The system concept omits the use of X-ray optics, to be able to provide up to 1 mm FOV (at 285 nm voxel size) and down to 50 nm voxel size (at 0.175 mm FOV) while preserving the flexibility of stateof- the-art micro-CT systems. Within the project a suitable X-ray source, detector and manipulation system are being developed. To cover the demand for elemental analysis, the project will additionally include X-ray spectroscopic techniques. These will be reported elsewhere while this paper is focused on the imaging part of the project. We introduce the system concept including design goals and constraints, and the individual components. We present the current state of the prototype development including first results.

  16. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    NASA Astrophysics Data System (ADS)

    Parab, Pradnya; Kumar, Sanjeev; Bhui, Prabhjyot; Bagwe, Vivas; Bose, Sangita

    2016-05-01

    The evolution of the superconducting transition temperature (Tc) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (Tc) of ~ 7.2±0.5K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperature growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a Tc of 3.2K.

  17. Nano-scale Cu 6Sn 5 anodes

    NASA Astrophysics Data System (ADS)

    Wolfenstine, J.; Campos, S.; Foster, D.; Read, J.; Behl, W. K.

    Nano-scale (<100 nm) Cu 5Sn 6 powders were prepared by a chemical method that used a NaBH 4 solution to reduce the metal ions. A significant improvement in capacity retention was obtained in the nano-scale Cu 6Sn 5 alloy, compared to the alloy having micron-sized particles. The volumetric capacity of the nano-scale Cu 6Sn 5 alloy at 100 cycles was almost twice the theoretical capacity of graphite.

  18. Nano composite phase change materials microcapsules

    NASA Astrophysics Data System (ADS)

    Song, Qingwen

    MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive

  19. A nano-cheese-cutter to directly measure interfacial adhesion of freestanding nano-fibers

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Najem, Johnny F.; Wong, Shing-Chung; Wan, Kai-tak

    2012-01-01

    A nano-cheese-cutter is fabricated to directly measure the adhesion between two freestanding nano-fibers. A single electrospun fiber is attached to the free end of an atomic force microscope cantilever, while a similar fiber is similarly prepared on a mica substrate in an orthogonal direction. External load is applied to deform the two fibers into complementary V-shapes, and the force measurement allows the elastic modulus to be determined. At a critical tensile load, "pull-off" occurs when the adhering fibers spontaneously detach from each other, yielding the interfacial adhesion energy. Loading-unloading cycles are performed to investigate repeated adhesion-detachment and surface degradation.

  20. Nano-based PCMs for building energy efficiency

    SciTech Connect

    Biswas, Kaushik

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  1. Gaseous detonation synthesis and characterization of nano-oxide

    NASA Astrophysics Data System (ADS)

    Yan, Honghao; Wu, Linsong; Li, Xiaojie; Wang, Xiaohong

    2015-07-01

    Gaseous detonation is a new method of heating the precursor of nanomaterials into gas, and integrating it with combustible gas as mixture to be detonated for the synthesis of nanomaterials. In this paper, the mixed gas of oxygen and hydrogen is used as the source for detonation, to synthesize nano TiO2, nano SiO2 and nano SnO2 through gaseous detonation method, characterization and analysis of the products, it was found that the products from gaseous detonation method were of high purity, good dispersion, smaller particle size and even distribution. It also shows that for the synthesis of nano-oxides, gaseous detonation is universal.

  2. Synthesis and Characterization of Carbon Metal Nano Tubes

    NASA Astrophysics Data System (ADS)

    Tiwari, B.; Tripathi, I. P.; Saxena, Sanjay; Singh, Sudhanshu; Haribhushan

    2010-11-01

    Nano technology is emerging as the latest technology these days. It is proving its importance in every sphere of life. Metal carbon nano tube due to their vast applications is being used very frequently. So to prepare CNTs a new method is developed. In this methods Complexes of transition metal Ni(II) with amino acids present in egg albumin have been synthesized. The complex is analyzed on the basis of spectroscopic methods of UV, IR, and NMR Spectroscopy. The amino acid metal Complex is decomposed at higher temperature to obtain metal carbon nano tubes. These metal carbon nano tubes are characterized using scanning probe instruments like DLS.

  3. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  4. Design of a new broadband monopole optical nano-antenna

    NASA Astrophysics Data System (ADS)

    Zhou, Rongguo; Ding, Jun; Arigong, Bayaner; Lin, Yuankun; Zhang, Hualiang

    2013-11-01

    In this paper, we propose a novel design of broadband monopole optical nano-antennas. It is consisted of a corrugated half elliptical patch inside an elliptical aperture. By adjusting the dimensions of the elliptical patch and the elliptical aperture, the overall performance of the proposed monopole nano-antenna can be made remarkable broadband. Full wave electromagnetic simulations have been used to investigate the effects of different parameters on the nano-antenna performance. Moreover, the proposed broadband nano-antenna can support light waves with different polarizations. It is expected that the new optical antenna will pave the way towards the development of high performance optical antennas and optical systems.

  5. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  6. WO3 nano-spheres into W18O49 one-dimensional nano-structures through thermal annealing.

    PubMed

    Mwakikunga, B W; Sideras-Haddad, E; Arendse, C; Witcomb, M J; Forbes, A

    2009-05-01

    We elaborate the size controlled synthesis of nano-spheres and nano-crystals of WO3 by ultrasonic spray pyrolysis. The as-deposited particles are predominantly spherical in shape and tend to exhibit less agglomeration and a decrease in diameter as the process temperature is increased. Characterization was carried out using transmission (TEM) and scanning (SEM) electron microscopy, energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). One-dimensional nano-structures with the highest yield of WOx nano-wires were observed in a sample synthesized at 500 degrees C but only after thermal annealing of this sample at 500 degrees C for 17 hour in flowing argon. XRD revealed a high deficiency in oxygen in all samples suggesting that the nano-structures are transformed to sub-oxides of tungsten. Micro-diffraction patterns of a typical nano-wire reveal the monoclinic phase of W18O49. PMID:19453005

  7. Ultrafast Nonlinear Plasmonics of Single Nano-Objects

    NASA Astrophysics Data System (ADS)

    Del Fatti, Natalia

    Investigating, understanding and modeling the physical properties of nano-objects are intense fields of research. Of particular interest are metal-based nano-objects, where their morphology and environment dependent surface plasmon resonances (SPR) have been extensively exploited to design new optical systems. As a SPR is associated to electromagnetic local field enhancement in the nano-object, it also leads to enhancement of its optical nonlinearity, opening many possibilities for investigating fundamental processes at nanoscale. Most of these studies were performed on large ensembles of nano-objects, providing mean information which impedes detailed comparison between experimental data and theoretical models. With the advance of single nanoparticle spectroscopy methods, the linear and nonlinear responses of a single nano-object can now be addressed, which, associated to determination of its morphology by electron microscopy, opens the way to their quantitative modeling. In this context we discuss experimental and theoretical investigations of the ultrafast response of individual model nano-objects, either formed by a single particle (gold nanorod) or by two particles at a nanometric distance (gold-silver nano-dimer). Results obtained in gold nanorods are in excellent quantitative agreement with a model computing the change of the metal dielectric function due to ultrafast electron heating and relaxation. This shows that the nonlinear response of a metal nano-object can be fully described as that of the bulk metal enhanced by plasmonic effects. Extension of these studies to more complex nano-objects, as nano-dimers formed by two different materials, permits analysis of the impact of their interaction. We demonstrate here the existence of Fano effect in the absorption of a single Ag-Au dimer, experimentally proving previous theoretical predictions. Furthermore, we show that ultrafast pump-probe nonlinear spectroscopy permits to selectively address at nanoscale only

  8. System Design for Nano-Network Communications

    NASA Astrophysics Data System (ADS)

    ShahMohammadian, Hoda

    The potential applications of nanotechnology in a wide range of areas necessities nano-networking research. Nano-networking is a new type of networking which has emerged by applying nanotechnology to communication theory. Therefore, this dissertation presents a framework for physical layer communications in a nano-network and addresses some of the pressing unsolved challenges in designing a molecular communication system. The contribution of this dissertation is proposing well-justified models for signal propagation, noise sources, optimum receiver design and synchronization in molecular communication channels. The design of any communication system is primarily based on the signal propagation channel and noise models. Using the Brownian motion and advection molecular statistics, separate signal propagation and noise models are presented for diffusion-based and flow-based molecular communication channels. It is shown that the corrupting noise of molecular channels is uncorrelated and non-stationary with a signal dependent magnitude. The next key component of any communication system is the reception and detection process. This dissertation provides a detailed analysis of the effect of the ligand-receptor binding mechanism on the received signal, and develops the first optimal receiver design for molecular communications. The bit error rate performance of the proposed receiver is evaluated and the impact of medium motion on the receiver performance is investigated. Another important feature of any communication system is synchronization. In this dissertation, the first blind synchronization algorithm is presented for the molecular communication channels. The proposed algorithm uses a non-decision directed maximum likelihood criterion for estimating the channel delay. The Cramer-Rao lower bound is also derived and the performance of the proposed synchronization algorithm is evaluated by investigating its mean square error.

  9. Bio-inspired nano tools for neuroscience.

    PubMed

    Das, Suradip; Carnicer-Lombarte, Alejandro; Fawcett, James W; Bora, Utpal

    2016-07-01

    Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience. PMID:27107796

  10. Cathodoluminescence nano-characterization of semiconductors

    NASA Astrophysics Data System (ADS)

    Edwards, Paul R.; Martin, Robert W.

    2011-06-01

    We give an overview of the use of cathodoluminescence (CL) in scanning electron microscopy (SEM) for the nano-scale characterization of semiconducting materials and devices. We discuss the technical aspects of the measurement, such as factors limiting the spatial resolution and design considerations for efficient collection optics. The advantages of more recent developments in the technique are outlined, including the use of the hyperspectral imaging mode and the combination of CL and other SEM-based measurements. We illustrate these points with examples from our own experience of designing and constructing CL systems and applying the technique to the characterization of III-nitride materials and nanostructures.

  11. Nano-JASMINE: Simulation of Data Outputs

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Yano, T.; Hatsutori, Y.; Gouda, N.; Murooka, J.; Niwa, Y.; Yamada, Y.

    2011-02-01

    We simulated the data outputs of the first Japanese astrometry satellite Nano-JASMINE, which is scheduled to be launched by the Cyclone-4 rocket in August 2011. The simulations were carried out using existing stellar catalogues such as the Hipparcos catalogue, the Tycho catalogue, and the Guide Star catalogue version 2.3. Several statics are shown such as the number of stars those will be measured distances using annual aberration observations. The method for determining the initial direction of the satellite's spin axis has also been discussed. In this case, the frequency of bright stars observed by the satellite is an important factor.

  12. Reactive Magnetospinning of Nano- and Microfibers.

    PubMed

    Tokarev, Alexander; Trotsenko, Oleksandr; Asheghali, Darya; Griffiths, Ian M; Stone, Howard A; Minko, Sergiy

    2015-11-01

    Reactive spinning of nano- and microfibers that involves very fast chemical reactions and ion exchange is a challenge for the common methods for nanofiber formation. Herein, we introduce the reactive magnetospinning method. This procedure is based on the magnetic-field-directed collision of ferrofluid droplets with liquid droplets that contain complementary reactants. The collision, start of the chemical reaction, and the fiber drawing are self-synchronized. The method is used to synthesize, cross-link, and chemically modify fiber-forming polymers in the stage of fiber formation. The method provides new opportunities for the fabrication of nanofibers for biomedical applications. PMID:26403723

  13. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  14. Cloning and characterization of nanos gene in silkworm Bombyx mori.

    PubMed

    Zhao, Guoli; Chen, Keping; Yao, Qin; Wang, Weihua

    2008-02-01

    Gene nanos is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nanos-related genes is associated with the germ line in a broad variety of other taxa. In this study, the 5'-RACE method and the in silico cloning method are used to isolate the new nanos-like gene of Bombyx mori and the gene obtained is analyzed with bioinformatics tools. The putative protein is expressed in Escherichia coli and the antiserum has been produced in New Zealand white rabbits. The result shows that the nanos cDNA is 1,913 bp in full length and contains a 954 bp open reading frame. The deduced protein has 317 amino acid residues, with a predicted molecular weight of 35 kDa, isoelectric point of 5. 38, and contains a conserved nanos RNA binding domain. The conserved region of the deduced protein shares 73% homology with the nanos protein conserved region of Honeybee (Apis mellifera). This gene has been registered in the GenBank under the accession number EF647589. One encoding sequence of the nanos fragment has been successfully expressed in E. coli. Western blotting analysis indicates that homemade antiserum can specifically detect nanos protein expressed in prokaryotic cells. PMID:18407054

  15. Nano-Bio Quantum Technology for Device-Specific Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  16. Nano-superconducting quantum interference devices with suspended junctions

    SciTech Connect

    Hazra, D.; Hasselbach, K.; Kirtley, J. R.

    2014-04-14

    Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5 K and magnetic flux densities up to over 20 mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.

  17. Photo-nano immunotherapy for metastatic cancers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan

    2016-03-01

    We constructed a multifunction nano system SWNT-GC and investigated the synergize photothermal and immunological effects. Here, we improve the SWNT-GC nano system and design a new synergistic nano-particle, both have the photothermal effects and immunological effects. We investigate the therapeutic effects and detect the immune response with metastatic mouse tumor models. We also study the therapeutic mechanism after treatment in vitro and in vivo. With the enhancement of nano-materials on photothermal effects, laser treatment could destroy primary tumor and protect normal tissue with low dose laser irradiation. With the immunological effects of nano-materials, the treatment could trigger specific antitumor immune response, to eliminate the metastasis tumor. It is providing a promising treatment modality for the metastatic cancers.

  18. Towards future systems with nano-optics contributions

    NASA Astrophysics Data System (ADS)

    Kaminska, Bozena; Najiminaini, Mohamadreza; Chuo, Yindar; Landrock, Clint; Omrane, Badr; Carson, Jeffrey J. L.

    2013-03-01

    The long anticipated deployment of nano-optics that can enable next generation computing has encountered several practical impediments that have delayed widespread adoption in commercial processes. However, the global market in nano-enabled products is expected to grow to over $80B USD within the next 3 years. In response, the research community is creating solutions to overcome challenging issues such as reliability and cost-effective fabrication. New approaches in sensing, continuous uptime powering, and post silicon manufacturing will maximize overall performance and allow unprecedented commercial applications. This paper reviews present limitations of nano-optics and then considers the new generation of devices and their manufacturing that may turn promises into reality. We highlight several recent innovations: high sensitivity/selectivity nano-optical sensing devices; sustainable power from polymer energy harvesting and storage; optical variable devices for visual authentication of secure documents; and nano-template masters for high-volume manufacturing.

  19. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. PMID:24797905

  20. Measuring Understanding of Nanoscience and Nanotechnology: Development and Validation of the Nano-Knowledge Instrument (NanoKI)

    ERIC Educational Resources Information Center

    Schönborn, K. J.; Höst, G. E.; Lundin Palmerius, K. E.

    2015-01-01

    As the application of nanotechnology in everyday life impacts society, it becomes critical for citizens to have a scientific basis upon which to judge their perceived hopes and fears of 'nano'. Although multiple instruments have been designed for assessing attitudinal and affective aspects of nano, surprisingly little work has focused on…

  1. Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution.

    PubMed

    Dumont, Egon; Johnson, Andrew C; Keller, Virginie D J; Williams, Richard J

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ~6 x 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production.Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L(-1) nano silver and 1.5 ng L(-1) nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L(-1) and 150 ng L(-1), respectively. Predicted concentrations were usually highest in July. PMID:25463731

  2. Spiders spinning electrically charged nano-fibres

    PubMed Central

    Kronenberger, Katrin; Vollrath, Fritz

    2015-01-01

    Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland–duct–spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. PMID:25631231

  3. Nano watermill driven by revolving charge

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Yan; Kou, Jian-Long; Nie, Xue-Chuan; Wu, Feng-Min; Liu, Yang; Lu, Hang-Jun

    2015-07-01

    A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube (SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale system, a revolving charge is introduced to drive a water chain confined inside the SWNT, the charge and the tube together serving as a nano waterwheel and nano engine. A resonance-like phenomenon is found, and the revolving frequency of the charge plays a key role in pumping the water chain. The water flux across the SWNT increases with respect to the revolving frequency of the external charge and it reaches its maximum when the frequency is 4 THz. Correspondingly, the number of hydrogen bonds in the water chain inside the SWNT decreases dramatically as the frequency increases from 4 THz to 25 THz. The mechanism behind the resonance phenomenon has been investigated systematically. Our findings are helpful for the design of nanoscale fluidic devices and energy converters. Project supported by the National Natural Science Foundation of China (Grant Nos. 11005093 and 61274099), the Research Fund of Education Department of Zhejiang Province, China (Grant No. Y201223336), the Zhejiang Provincial Science and Technology Key Innovation Team, China (Grant No. 2011R50012), the Key Laboratory of Zhejiang Province, China (Grant No. 2013E10022), and the Hong Kong Polytechnic University, China (Grant No. G-YL41).

  4. Low Energy Dissipation Nano Device Research

    NASA Astrophysics Data System (ADS)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  5. Computer simuations for the nano-scale

    NASA Astrophysics Data System (ADS)

    Štich, I.

    2007-02-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nanotechnology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations.

  6. In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites

    SciTech Connect

    Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An; Fiore, Richard

    2010-09-27

    The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring for the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.

  7. The Nano-Micro Interface: Bridging the Micro and Nano Worlds

    NASA Astrophysics Data System (ADS)

    Fecht, Hans-Jörg; Werner, Matthias

    2003-09-01

    Two exciting worlds of science and technology - the nano and micro dimensions. The former is a booming new field of research, the latter the established size range for electronics, and for mutual technological benefit and future commercialization, suitable junctions need to be found. Functional nanostructures such as DNA computers, sensors, neural interfaces, nanooptics or molecular electronics need to be wired to their 'bigger' surroundings. Coming from the opposite direction, microelectronics have experienced an unprecedented miniaturization drive in the last decade, pushing ever further down through the micro size scale towards submicron circuitry. Bringing these two worlds together is a new interdisciplinary challenge for scientists and engineers alike - recognized and substantially funded by the European Commission and other major project initiators worldwide. This book offers a wide range of information from technologies to materials and devices as well as from research to administrative know-how collected by the editors from renowned key members of the nano/micro community.

  8. The Nano-Micro Interface: Bridging the Micro and Nano Worlds

    NASA Astrophysics Data System (ADS)

    Fecht, Hans-Jörg; Werner, Matthias

    2004-12-01

    Two exciting worlds of science and technology - the nano and micro dimensions. The former is a booming new field of research, the latter the established size range for electronics, and for mutual technological benefit and future commercialization, suitable junctions need to be found. Functional nanostructures such as DNA computers, sensors, neural interfaces, nanooptics or molecular electronics need to be wired to their 'bigger' surroundings. Coming from the opposite direction, microelectronics have experienced an unprecedented miniaturization drive in the last decade, pushing ever further down through the micro size scale towards submicron circuitry. Bringing these two worlds together is a new interdisciplinary challenge for scientists and engineers alike - recognized and substantially funded by the European Commission and other major project initiators worldwide. This book offers a wide range of information from technologies to materials and devices as well as from research to administrative know-how collected by the editors from renowned key members of the nano/micro community.

  9. Effects of nano-fluid and surfaces with nano structure on the increase of CHF

    SciTech Connect

    Kim, Seontae; Kim, Hyung Dae; Kim, Hyungmo; Ahn, Ho Seon; Jo, Hangjin; Kim, Joonwon; Kim, Moo Hwan

    2010-05-15

    Critical heat flux (CHF) has necessitated inconvenient compromises between economy and safety in most industries related to thermal systems. Recent development of nanotechnology has enabled synthesis of nano-sized particles and development of new heat transfer fluids with suspended nano-sized particles, i.e., nanofluids. When nanofluids were used in boiling heat transfer cooling, anomalous increase of CHF was reported. Subsequently, nanoparticle deposition on the boiling surface was revealed to contribute to CHF enhancement. Research on surface characteristics determined that three major characteristics affect CHF: wettability, liquid spreadability and multi-scale geometry. We fabricated artificially modified surfaces with arrays of octagonal micro-posts, or ZnO nanorods, or both, and measured their performance in enhancing CHF. The presence of three major characteristics enhanced CHF most. (author)

  10. Characterization of individual nano-objects with nanoprojectile-SIMS

    PubMed Central

    Liang, C.-K.; Verkhoturov, S. V.; Bisrat, Y.; Dikler, S.; DeBord, J. D.; Fernandez-Lima, F. A.; Schweikert, E. A.; Della-Negra, S.

    2013-01-01

    Secondary ion mass spectrometry (SIMS) applied in the event-by-event bombardment/detection mode is uniquely suited for the characterization of individual nano-objects. In this approach, nano-objects are examined one-by-one, allowing for the detection of variations in composition. The validity of the analysis depends upon the ability to physically isolate the nano-objects on a chemically inert support. This requirement can be realized by deposition of the nano-objects on a Nano-Assisted Laser Desorption/Ionization (NALDI™) plate. The featured nanostructured surface provides a support where nano-objects can be isolated if the deposition is performed at a proper concentration. We demonstrate the characterization of individual nano-objects on a NALDI™ plate for two different types of nanometric bacteriophages: Qβ and M13. Scanning electron microscope (SEM) images verified that the integrity of the phages is preserved on the NALDI™ substrate. Mass spectrometric data show secondary ions from the phages are identified and resolved from those from the underlying substrate. PMID:24163487

  11. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  12. Maize MeJA-responsive proteins identified by high-resolution 2-DE PAGE.

    PubMed

    Zhang, Yuliang; Pennerman, Kayla K; Yang, Fengshan; Yin, Guohua

    2015-12-01

    Exogenous methyl jasmonate (MeJA) is well-known to induce plant defense mechanisms effective against a wide variety of insect and microbial pests. High-resolution 2-DE gel electrophoresis was used to discover changes in the leaf proteome of maize exposed to MeJA. We sequenced 62 MeJA-responsive proteins by tandem mass spectroscopy, and deposited the mass spectra and identities in the EMBL-EBI PRIDE repository under reference number PXD001793. An analysis and discussion of the identified proteins in relation to maize defense against Asian corn borer is published by Zhang et al. (2015) [1]. PMID:26509185

  13. Computational Nano-materials Design for Spin-Currents Control in Semiconductor Nano-spintronics

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Fukushima, Tetsuya; Dinh, Van An; Sato, Kazunori

    2008-03-01

    We design the different exchange mechanism like Zener's double exchange, Zener's p-d exchange and super-exchange in dilute magnetic semiconductors (DMS) by ab initio calculations. We obtain a universal trend for the exchange interactions [1]. We show that self-organized spinodal nano-decomposition (Dairiseki- Phase) offers the functionality to have high Curie temperatures[2]. We show that spinodal nano-decomposition under layer-by-layer crystal growth condition (2D) leads to quasi-one dimensional nano-structures (Konbu-Phase) with highly anisotropic shape and high TC[2]. We design a spin-currents- controlled 100 Tera bits/icnh^2, Tera Hz switching, and non- volatile MRAM without Si-CMOS based on Konbu-Phase [2]. In addition to the conventional Peltier effect, we propose a colossal thermoelectric-cooling power based on the adiabatic spin-entropy expansion in a Konbu-Phase [3]. [1] B. Belhadaji et al., J. Phys.-Condens. Matter, 19 (2007) 436227. [2] H. Katayama-Yoshida et al., Phys. stat. sol. (a) 204 (2007) 15. [3] H. Katayama-Yoshida et al., Jpn. J. Appl. Phys. 46 (2007) L777.

  14. Template synthesized chitosan nano test tubes for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Perry, Jillian L. Moulton

    There is tremendous current interest in developing nanoscale drug delivery vehicles. Though intensive efforts have focused on developing spherical drug delivery vehicles, cylindrically shaped vehicles such as nanotubes offer many advantages. Typically, nanotubes can carry a larger inner payload than nanoparticles of the same diameter. Also, we can prepare nanotubes in templates whose geometries can be controlled, in turn allowing precise control over the length and diameter of the tubes. In addition, template synthesized nanotubes can be differentially functionalized on the inner and outer surfaces. Furthermore, templates that are closed on one end can be used to fabricate nano test tubes (closed on one end). The geometry of these nano test tubes allows them to be easily filled with a payload, the open end sealed with a nanoparticle to protect the payload from leaking out, and then the exterior of the tube can be functionalized with a targeting moiety. In an effort to develop such a system, we explored the fabrication of chitosan nano test tubes. Defect-free, chitosan nano test tubes of uniform size were synthesized within the pores of a nanoporous alumina template membrane. While the nano test tubes remained within the template membrane, their inner cavities were filled with a model payload. The payload was then trapped inside the nano test tubes by sealing the open ends of the tubes with latex nanoparticle caps. For proof-of-principle studies, imine linkages were used to attach the caps to the nano test tubes. To create a self-disassembling system, disulfide chemistry was used to covalently cap the nano test tubes. Once removed from the template, the exterior of the nano test tubes were modified with a targeting moiety, allowing them to be targeted to pathological sites. We have also shown that the chitosan nano test tubes are biodegradable by two systems: enzymatic cleavage by lysozymes and disulfide cleavage of the crosslinker by reducing environments

  15. Carbon nanotube-based nano-fluidic devices

    NASA Astrophysics Data System (ADS)

    Masoud Seyyed Fakhrabadi, Mir; Rastgoo, Abbas; Taghi Ahmadian, Mohammad

    2014-02-01

    The paper investigates the influences of fluid flow on static and dynamic behaviours of electrostatically actuated carbon nanotubes (CNTs) using strain gradient theory. This nonclassical elasticity theory is applied in order to obtain more accurate results possessing higher agreement with the experimental data. The effects of various fluid parameters such as the fluid viscosity, velocity, mass and temperature on the pull-in properties of the CNTs with two cantilever and doubly clamped boundary conditions are studied. The results reveal the applicability of the proposed nano-system as nano-valves or nano-fluidic sensors.

  16. Theoretical estimation of surface Debye temperature of nano structured material

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar; Sarkar, A.

    2016-05-01

    The estimation of Debye temperature (TD) exploiting phonon is very important. In this work an attempt has been made to estimate TD for solids in a simple phenomenological approach. The ultimate goal is to estimate TD for nano structured material. The objective of this present work is to extend Debye model for nano-structured material and hence to extract the contribution to surface specific heat and surface Debye temperature. An empirical relation between TD and surface Debye temperature (TDS) is proposed. Lindemann melting criterion is also extended towards nano structure. The overall results obtained are compared and found to be in good agreement.

  17. Plasmon hybridization in parallel nano-wire systems

    SciTech Connect

    Moradi, Afshin

    2011-06-15

    We apply the plasmon hybridization method to a double-nano-wire system, providing a simple and intuitive description of the plasmon excitations in the system. We apply the two-center cylindrical coordinate system for mathematical convenience and find an explicit form of the surface plasmon oscillations, in terms of the interaction between the bare plasmon modes of the individual surfaces of the nano-wires. We present numerical results to display how the plasmon excitations of the system depend on nano-wire separation when there is no angular momentum transfer, i.e., when m = 0.

  18. Method of producing nano-scaled inorganic platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  19. Steroid nanocrystals prepared using the nano spray dryer B-90.

    PubMed

    Baba, Koichi; Nishida, Kohji

    2013-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrystals have recently been considered as a novel type of drug formulation for drug delivery systems, this study will be useful for nano-medical applications. PMID:24300400

  20. Steroid Nanocrystals Prepared Using the Nano Spray Dryer B-90

    PubMed Central

    Baba, Koichi; Nishida, Kohji

    2013-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrystals have recently been considered as a novel type of drug formulation for drug delivery systems, this study will be useful for nano-medical applications. PMID:24300400

  1. Hybrid nanoimprint for micro-nano mixture structure

    NASA Astrophysics Data System (ADS)

    Okuda, Keisuke; Niimi, Naoyuki; Kawata, Hiroaki; Hirai, Yoshihiko

    2007-02-01

    Hybrid patterning by thermal and UV nanoimprint lithography is newly proposed to fabricate micro-nano mixture structures. The SU-8 resist is thermally imprinted using the quartz mold, which has fine nano structures and micro Cr blank patterns. After the thermal nanoimprint, UV is exposed keeping the mold on the resist through the mold. Then, the mold is detached and the resist is developed to fabricate micro structures. Using this process, micro gratings having 40 μm in width and 20 μm in depth nano dots pattern, which has 200 nm feature size is successfully demonstrated.

  2. FORMATION AND ACCELERATION OF NANO DUST IN THE INNER HELIOSPHERE

    SciTech Connect

    Czechowski, A.; Mann, I.

    2010-05-01

    We study the dynamics of nano dust grains in the region inward from 1 AU. Assuming that the grains are created with the velocities close to Keplerian, we find that, despite the strong coupling to magnetic field, there is a population of trapped nano grains within about 0.2 AU from the Sun. The nano dust grains produced outside of the trapped region are accelerated to high velocities, of the order of 300 km s{sup -1}, provided that the charge to mass ratio is not much less than 10{sup -5} e/m{sub p}. These values correspond to dust sizes equal or smaller than approximately 10 nm.

  3. Thermo-responsive mechano-optical plasmonic nano-antenna

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Park, Younggeun; Lee, Somin Eunice

    2016-07-01

    We propose and theoretically demonstrate a mechano-optical nano-antenna over a broad temperature range. We show that there is a tunable, temperature-dependent plasmonic resonance associated with the nano-antenna geometry. We also theoretically demonstrate a matching condition for mechanical properties that is essential for maximizing thermal expansion differences across a broad temperature range. We expect that mechano-optical nano-antennas should allow for spatiotemporal temperature mapping in applications where precise measurement of local temperature is needed in real time.

  4. Nano bubbles in liquid of a noble-gas mixture.

    PubMed

    Yamamoto, Takenori; Ohnishi, Shuhei

    2010-02-01

    Large-scale molecular dynamics (MD) simulations with over one million atoms are used to investigate nano bubbles in Ar-Ne liquid. The simulations demonstrate cavitations in the stretched liquid, and bubble creation and collapse. We find that a small cavity created in the stretched liquid spontaneously transforms into a nano bubble with the homogeneous vapor region. The equilibrium spherical bubble of 11.4 nm in radius is obtained after the long-time MD run. The surface tension of the nano bubble is found to be larger than that of the flat surface. PMID:20094667

  5. Novel nano bearings constructed by physical adsorption

    PubMed Central

    Zhang, Yongbin

    2015-01-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488

  6. Novel nano bearings constructed by physical adsorption.

    PubMed

    Zhang, Yongbin

    2015-01-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488

  7. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  8. Nano oxide-dispersed nickel composite plating

    NASA Astrophysics Data System (ADS)

    Park, So-Yeon; Jung, Myung-Won; Lee, Jae-Ho

    2013-11-01

    In this study, nickel based composite coatings were prepared by electroplating in baths with two different types of nano oxide powder, 20 nm SiO2 and 50 nm TiO2. The effects of pH, zeta potential, and current density on dispersing the nanopowder in the electroplated composite layer were studied. Zeta potential values were measured at different values of pH in the bath. The surface charge of the silica nanopowder increased negatively with an increasing pH value. The most effective current density for the surface morphology was 20 mA/cm2 for a NiFe-SiO2 composite coating and 40 mA/cm2 for a Ni-TiO2 composite coating. The surface hardness of the composite coating increased with addition of the nanopowder.

  9. Novel nano bearings constructed by physical adsorption

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin

    2015-09-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film.

  10. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  11. Nano-ADEPT Aeroloads Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Cassell, A.; Yount, B.; Kruger, C.; Brivkalns, C.; Makino, A.; Zarchi, K.; McDaniel, R.; Venkatapathy, E.; Swanson, G.

    2015-01-01

    Analysis completed since the test suggests that all test objectives were met– This claim will be verified in the coming weeks as the data is examined further– Final disposition of test objective success will be documented in a final reportsubmitted to NASA stakeholders (early August 2015)– Expect conference paper in early 2016• Data products and observations made during testing will be used to refinecomputational models of Nano-ADEPT• Carbon fabric relaxed from its pre-test state during the test– System-level tolerance for relaxation will be driven by destination-specific andmission-specific aerothermal and aerodynamic requirements• Bonus experiment of asymmetric shape demonstrates that an asymmetricdeployable blunt body can be used to generate measureable lift– With a strut actuation system and a robust GN&C algorithm, this effect could beused to steer a blunt body at hypersonic speeds to aid precision landing

  12. Nano-encapsulated PCM via Pickering Emulsification

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Zhang, Lecheng; Yu, Yi-Hsien; Jia, Lisi; Sam Mannan, M.; Chen, Ying; Cheng, Zhengdong

    2015-08-01

    We designed a two-step Pickering emulsification procedure to create nano-encapsulated phase changing materials (NEPCMs) using a method whose simplicity and low energy consumption suggest promise for scale-up and mass production. Surface-modified amphiphilic zirconium phosphate (ZrP) platelets were fabricated as the Pickering emulsifiers, nonadecane was chosen as the core phase change material (PCM), and polystyrene, the shell material. The resultant capsules were submicron in size with remarkable uniformity in size distribution, which has rarely been reported. Differential scanning calorimetry (DSC) characterization showed that the capsulation efficiency of NEPCMs, and they were found to be thermal stable, as characterized by the DSC data for the sample after 200 thermal cycles. NEPCMs exhibit superior mechanical stability and mobility when compared with the well-developed micro-encapsulated phase change materials (MEPCMs). NEPCMs find useful applications in thermal management, including micro-channel coolants; solar energy storage media; building temperature regulators; and thermal transfer fabrics.

  13. Hierarchical Micro-Nano Coatings by Painting

    NASA Astrophysics Data System (ADS)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  14. Advanced fabrication technologies for nano-electronics

    SciTech Connect

    Simmons, J.A.; Weckwerth, M.V.; Baca, W.E.

    1996-03-01

    Three novel fabrication technologies are presented which greatly increase the tools available for the realization of nano-electronic devices. First, a sub-micron area post structure descending from a metallic airbridge allows gating of regions as small as 0.1 {mu}m in diameter. This has enabled the study of such quantum phenomena as coupling of parallel quantum point contacts, and electron focusing around a tunable quantum antidot. We also describe two new techniques for backgating multiquantum well structures with submicron lateral resolution. These techniques enable separate ohmic contacts to individual quantum wells spaced as closely as 100 {Angstrom}, and thus allow the fabrication of novel quantum tunneling devices. The first technique uses regrowth over a patterned ion-implanted substrate. The second involves a novel epoxy-bond-and-stop-etch (EBASE) processing scheme, whereby the original substrate is etched away and the backside then patterned using conventional methods.

  15. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  16. Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion.

    PubMed

    Lo, H M; Chiu, H Y; Lo, S W; Lo, F C

    2012-06-01

    This study aims at investigating the effects of micro-nano municipal solid waste (MSW) incinerator (MSWI) fly ash (FA) and bottom ash (BA) on the MSW anaerobic digestion. Results showed that suitable micro-nano and non micro-nano MSWI ashes addition (FA/MSW 3, 6, 18 and 30 g g(-1) VS and BA/MSW 12, 36, 60 and 120 g g(-1) VS) could enhance the biogas production compared to the control. It was particularly found to have the highest biogas production at the micro-nano MSWI BA/MSW ratio of 36 g g(-1) VS (∼193 mL g(-1) VS MSW, ∼3.5 times to the control). Micro-nano MSWI FA and BA added bioreactors had the higher biogas production than the corresponding non micro-nano MSWI FA and BA added ones. Suitable MSWI ashes addition could improve the biogas production due to the released metals levels suitable for the MSW anaerobic digestion particularly found in the micro-nano added bioreactors. PMID:22449987

  17. Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana.

    PubMed

    Poudel, Arati N; Zhang, Tong; Kwasniewski, Misha; Nakabayashi, Ryo; Saito, Kazuki; Koo, Abraham J

    2016-09-01

    Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the regulation of the JA pathway are still not well understood. One key unknown is the inactivation mechanism of the JA pathway and its relationship with plant response to wounding. Arabidopsis cytochrome P450 enzymes in the CYP94 clade metabolize jasmonoyl-L-isoleucine (JA-Ile), a major metabolite of JA responsible for many biological effects attributed to the JA signaling pathway; thus, CYP94s are expected to contribute to the attenuation of JA-Ile-dependent wound responses. To directly test this, we created the double and triple knock-out mutants of three CYP94 genes, CYP94B1, CYP94B3, and CYP94C1. The mutations blocked the oxidation steps and caused JA-Ile to accumulate 3-4-fold the WT levels in the wounded leaves. Surprisingly, over accumulation of JA-Ile did not lead to a stronger wound response. On the contrary, the mutants displayed a series of symptoms reminiscent of JA-Ile deficiency, including resistance to wound-induced growth inhibition, decreased anthocyanin and trichomes, and increased susceptibility to insects. The mutants, however, responded normally to exogenous JA treatments, indicating that JA perception or signaling pathways were intact. Untargeted metabolite analyses revealed >40% reduction in wound-inducible metabolites in the mutants. These observations raise questions about the current JA signaling model and point toward a more complex model perhaps involving JA derivatives and/or feedback mechanisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26968098

  18. Continuous Dust Formation in SNe 2010jl and 2011ja

    NASA Astrophysics Data System (ADS)

    Krafton, Kelsie; Clayton, Geoffrey; Andrews, Jennifer; Barlow, Michael; De Looze, Ilse

    2016-08-01

    Studies in the last 10 years of dust formation in core-collapse supernovae (CCSNe) have found only small amounts, ~0.001 solar masses. This is far less than the amount needed to account for the large masses of dust seen in some high redshift galaxies. However, the recent discovery of ~1 solar mass of cold dust in the ejecta of SN 1987A has has caused a complete re-evaluation of dust formation in CCSNe. It has been suggested that the CCSNe are continuously forming dust so that by the time they are about 25 years old they will have dust masses similar to SN 1987A. However, there is a wide time gap between the CCSNe that have been studied recently and SN 1987A. We plan to use the sensitivity of Spitzer to detect dust emission from CCSNe 5 or more years after explosion. Radiative transfer models will be used to estimate the dust masses. This proposal is to continue our study of two interesting SNe 2010jl and 2011ja. These observations are part of a long term study requiring multiple epochs of Spitzer observations to look for evidence of continuous dust formation. These observations will help shed light on the mystery of dust in SN 1987A.

  19. 1-dimension nano-material-based flexible device

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong

    2009-11-01

    1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.

  20. Using nano-chitosan for harvesting microalga Nannochloropsis sp.

    PubMed

    Farid, Mohammad Sadegh; Shariati, Ahmad; Badakhshan, Amir; Anvaripour, Bagher

    2013-03-01

    In this study, chitosan and nano-chitosan were used as flocculants agents for harvesting microalga Nannochloropsis sp. chitosan was modified to nano-chitosan by crosslinking with sodium tripolyphosphate. The effects of type and dosage of flocculants and the pH of the culture were investigated on biomass recovery. Optimum dosages for both bio-flocculants were found. The results showed that the dosage of flocculant consumption decreases by 40% and biomass recovery increases by 9% when nano-chitosan instead of chitosan is used as flocculant agent. Also, the recycled water from the harvesting process was reused which increases the growth of microalgae by about 7%. Finally, the cost analysis of harvesting process showed the feasibility of using nano-chitosan as flocculation agent. PMID:23415940

  1. Nano-JASMINE: current status and data output

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Yano, Taihei; Gouda, Naoteru; Niwa, Yoshito; Murooka, Jyunpei; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    2010-07-01

    The current status of the Nano-JASMINE project is reported. Nano-JASMINE is a very small-sized (50 cm cubic form) satellite that is expected to carry out astrometric observations of nearby bright stars. The satellite will determine distances of more than 8000 stars by performing annual parallax measurements, which is the only direct method to measure the distance of an astronomical object. The mission is required to continue for more than two years to obtain reliable annual parallax measurements. In addition, Nano-JASMINE will serve as a preliminary to the main JASMINE mission. We expect that Nano-JASMINE will be launched in August 2011 from the Alcantara Space Center in Brazil using the Cyclone-4 rocket.

  2. National solar technology roadmap: Nano-architecture PV

    SciTech Connect

    Zhang, Yong

    2007-06-01

    This roadmap addresses nano-architecture solar cells that use nanowires, nanotubes, and nanocrystals, including single-component, core-shell, embedded nanowires or nanocrystals either as absorbers or transporters.

  3. "Nano" Scale Biosignatures and the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Robert, F.; Meibom, A.; Mostefaoui, S.; Selo, M.; Walter, M. R.; Sugitani, K.; Allwood, A.; Mimura, K.; Gibson, E. K.

    2008-01-01

    A critical step in the search for remnants of potential life forms on other planets lies in our ability to recognize indigenous fragments of ancient microbes preserved in some of Earth's oldest rocks. To this end, we are building a database of nano-scale chemical and morphological characteristics of some of Earth's oldest organic microfossils. We are primarily using the new technology of Nano-Secondary ion mass spectrometry (NanoSIMS) which provides in-situ, nano-scale elemental analysis of trace quantities of organic residues. The initial step was to characterize element composition of well-preserved, organic microfossils from the late Proterozoic (0.8 Ga) Bitter Springs Formation of Australia. Results from that work provide morphologic detail and nitrogen/carbon ratios that appear to reflect the well-established biological origin of these 0.8 Ga fossils.

  4. Micro-nano Structurized Gold Chip for SPR Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Pang, Kai; Shi, Chunfei; Sun, Yi; Dong, Wei; Wang, Xiaoping

    2016-01-01

    A micro-nano structurized gold chip was developed and applied to a surface plasmon resonance imaging (SPRi) sensor with polarization contrast method. Compared with the planar gold film, a total sensitivity enhancement (SEF=287%) was obtained.

  5. Near-field NanoThermoMechanical memory

    SciTech Connect

    Elzouka, Mahmoud; Ndao, Sidy

    2014-12-15

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer.

  6. Nano-fiber diameters as liquid concentration sensors

    NASA Astrophysics Data System (ADS)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    2013-05-01

    Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  7. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  8. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  9. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).

    PubMed

    Coll, Claudia; Notter, Dominic; Gottschalk, Fadri; Sun, Tianyin; Som, Claudia; Nowack, Bernd

    2016-01-01

    The environmental risks of five engineered nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) were quantified in water, soils, and sediments using probabilistic Species Sensitivity Distributions (pSSDs) and probabilistic predicted environmental concentrations (PECs). For water and soil, enough ecotoxicological endpoints were found for a full risk characterization (between 17 and 73 data points per nanomaterial for water and between 4 and 20 for soil) whereas for sediments, the data availability was not sufficient. Predicted No Effect Concentrations (PNECs) were obtained from the pSSD and used to calculate risk characterization ratios (PEC/PNEC). For most materials and environmental compartments, exposure and effect concentrations were separated by several orders of magnitude. Nano-ZnO in freshwaters and nano-TiO2 in soils were the combinations where the risk characterization ratio was closest to one, meaning that these are compartment/ENM combinations to be studied in more depth with the highest priority. The probabilistic risk quantification allows us to consider the large variability of observed effects in different ecotoxicological studies and the uncertainty in modeled exposure concentrations. The risk characterization results presented in this work allows for a more focused investigation of environmental risks of nanomaterials by consideration of material/compartment combinations where the highest probability for effects with predicted environmental concentrations is likely. PMID:26554717

  10. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins.

    PubMed

    Herrero, S; González-Cabrera, J; Tabashnik, B E; Ferré, J

    2001-12-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far. PMID:11722929

  11. Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

    PubMed Central

    Herrero, Salvador; González-Cabrera, Joel; Tabashnik, Bruce E.; Ferré, Juan

    2001-01-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far. PMID:11722929

  12. Update from the Japanese Center for the Validation of Alternative Methods (JaCVAM).

    PubMed

    Kojima, Hajime

    2013-12-01

    The Japanese Center for the Validation of Alternative Methods (JaCVAM) was established in 2005 to promote the use of alternatives to animal testing in regulatory studies, thereby replacing, reducing, or refining the use of animals, according to the Three Rs principles. JaCVAM assesses the utility, limitations and suitability for use in regulatory studies, of test methods needed to determine the safety of chemicals and other materials. JaCVAM also organises and performs validation studies of new test methods, when necessary. In addition, JaCVAM co-operates and collaborates with similar organisations in related fields, both in Japan and internationally, which also enables JaCVAM to provide input during the establishment of guidelines for new alternative experimental methods. These activities help facilitate application and approval processes for the manufacture and sale of pharmaceuticals, chemicals, pesticides, and other products, as well as for revisions to standards for cosmetic products. In this manner, JaCVAM plays a leadership role in the introduction of new alternative experimental methods for regulatory acceptance in Japan. PMID:24512226

  13. ‘Chrysanthemum petal’ arrangements of silver nano wires

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2014-12-01

    Highly ordered ‘Chrysanthemum petal’ arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these ‘Chrysanthemum petal’ arrangements was discussed specifically. These ‘Chrysanthemum petal’ arrangements will be helpful to increase the electrical conductivity of silver nano wires films.

  14. Simple route for nano-hydroxyapatite properties expansion.

    PubMed

    Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L

    2015-09-01

    Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed. PMID:26481455

  15. Application of Gaia Analysis Software AGIS to Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Lammers, U.; Gouda, N.

    2011-07-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). Nano-JASMINE is an ultra small (35 kg) satellite for astrometry observations in Japan and Gaia is ESA's large (over 1000 kg) next-generation astrometry mission. The accuracy of Nano-JASMINE is about 3 mas, comparable to the Hipparcos mission, Gaia's predecessor some 20 years ago. It is challenging that such a small satellite can perform real scientific observations. The collaboration for sharing software started in 2007. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for the Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.

  16. Nano-aggregates: emerging delivery tools for tumor therapy.

    PubMed

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents. PMID:24099399

  17. Stability of magnetic nano-structures against erroneous shape modifications

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2016-04-01

    Magnetic nano-structures can be used in various applications. Due to their possible utilization in data storage media, examinations of nano-structured systems often aim at decreasing the pattern size, in order to enhance the possible information density in a given area. Since this scaling process is limited by the resolution of the lithography process which is used to produce the nano-particles, it is important to determine the influence of erroneous shape modifications on the magnetic properties, such as magnetization reversal processes and coercive fields. For this, a square nano-wire system from permalloy has been simulated using Magpar. In a former work, changes of the wire diameter have been shown to result in different magnetization reversal mechanisms and significantly altered coercive fields. In a new project, the intersections of the wires - which are most susceptible to undesired shape modifications - have been changed by adding or subtracting parts. Additionally, the wire intersections have been separated step by step, resulting in a qualitatively changed angular dependence of the coercive fields. Similar experiments have been performed for nano-squares with walls of rectangular cross-section. This study allows for estimation of the reliability of magnetic properties of nano-structures with respect to undesired shape modifications in the lithography process.

  18. Ginzburg-Landau modeling of Nano-SQUIDs

    NASA Astrophysics Data System (ADS)

    Kirtley, John; Hazra, Dibyendu; Hasselbach, Klaus; Buisson, Olivier

    2014-03-01

    NanoSQUIDs are micron-sized Superconducting Quantum Interference Devices with narrow (50 nm) sized constrictions as weak links. They are used for, e.g., studying switching dynamics in magnetic nanoparticles and high spatial resolution magnetic microscopy. When the constriction dimensions become comparable to or larger than the superconducting coherence length, the current-phase relations become non-sinusoidal, reducing the flux modulation depth and increasing the thermally activated flux noise. We have numerically solved the Ginzburg-Landau (GL) equations for the nanoSQUID geometry to obtain current-phase relations, the dependence of critical current on magnetic flux, and the thermally activated escape rates. We predict NanoSQUIDs with short coherence lengths to have critical current distribution widths, and therefore flux noises, proportional to T1/2, as opposed to tunnel junction SQUIDs, which are proportional to T2/3. Our GL simulations predict that the ultimate noise performance of Al nanoSQUIDs, with their longer coherence lengths, should be better than Nb nanoSQUIDs, with suspended bridge Al/Nb nanoSQUIDs intermediate between the two.

  19. Synthesis and characterization of monosodium urate (MSU) nano particles

    NASA Astrophysics Data System (ADS)

    Tank, Nirali S.; Rathod, K. R.; Parekh, B. B.; Parikh, K. D.; Joshi, M. J.

    2016-05-01

    In Gout the deposition of crystals of Monosodium Urate (MSU) in various connective tissues and joints occurs, which is very painful with immflamation. The deposition likely to begin with nano particles form and expected to grow in to micro-paricles and hence it is important to synthesize and characrterize MSU nano-particles. The MSU nano particles were synthesized by wet chemical method using NaOH and uric acid (C5H4N4O3) and then characterized by powder XRD, TEM, FT-IR and thermal analysis. From the powder XRD the triclinic structure was found and 40 nm average particle size was estimated by using Scherrer's formula. From TEM the particle size was found to be in the range of 20 to 60 nm. The FT-IR spectrum for the MSU nano particles confirmed the presence of O-H stretching, N-H stretching, N-H rocking, C = O, C = C Enol or Keto and C = N vibrations. The thermal analysis was carried out from room temperature to 900°C. With comparison to the bulk MSU the thermal stability of MSU nano particles was slightly higher and 1.5 water molecules were found to be associated with MSU nano particles. Present results are compared with the bulk MSU.

  20. Modelling of nano-silica in cement paste

    NASA Astrophysics Data System (ADS)

    Rupasinghe, Madhuwanthi; Mendis, Priyan; Sofi, Massoud; Ngo, Tuan

    2013-08-01

    Recently published experimental evidence shows that nano-silica is a material that can be used to enhance the strength and durability characteristics of concrete. Engineered concrete at the nano-scale is achieved through the integration of nano-materials in suitable proportions and relevant mixing methods. Being a pozzolanic and reactive material along with nucleation effects and miniature particle size, nano-silica has been found to significantly improve the micro-structural characteristics of concrete making it denser and more uniform. The ongoing research work at the University of Melbourne is based on a novel modelling approach to further investigate the performance characteristics of nano-silica on cement paste at the micro-meter scale. The volumetric proportions of different phases present in concrete are computed considering hydration characteristics of cement and those of nanosilica. A Representative Volume Element (RVE) of the cement paste at micro scale is developed considering the hydrated gel as the matrix material while other phases present are integrated as randomly distributed spherical particles. Constitutive material models for these phases are assumed. The stress-strain relationship for the RVE is then generated using COMSOL Multiphysics software. The approach proposed in this paper is an initiation towards developing an acute and compressive model to predict the performance characteristics of nano-engineered concrete.

  1. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  2. DNA damage due to perfluorooctane sulfonate based on nano-gold embedded in nano-porous poly-pyrrole film

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Xu, Laihui; Kang, Tianfang; Cheng, Shuiyuan

    2013-11-01

    DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system.

  3. Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, Arunachala M.; Munukutla, Lakshmi

    Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack ® carbon) and carbon nano-fibers. The GDL samples' characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.

  4. Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions.

    PubMed

    Chin, Suk Fun; Iyer, K Swaminathan; Raston, Colin L

    2008-03-01

    Ultra fine (2-3 nm) magnetite (Fe(3)O(4)) nano-particles are uniformly deposited on single-walled carbon nano-tubes (SWCNTs) pre-functionalised with carboxylic acid groups using microwave radiation. The deposition process involves chemical precipitation associated with continuous flow spinning disc processing (SDP), as a rapid, environmentally friendly approach which is readily scalable for large scale synthesis. The resulting decorated SWCNTs are superparamagnetic with specific saturated magnetization of 30 emu g(-1). PMID:18305862

  5. Mirror Metrology Using Nano-Probe Supports

    NASA Technical Reports Server (NTRS)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to

  6. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    SciTech Connect

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-07-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  7. Influence factors and gene expression patterns during MeJa-induced gummosis in peach.

    PubMed

    Li, Minji; Liu, Meiyan; Peng, Futian; Fang, Long

    2015-06-15

    Jasmonates (JAs) play important roles in gummosis in peach. Mechanical damage, methyl jasmonate (MeJa), and ethylene can induce gummosis on peach shoots in the field. In this study, we used MeJa (2%, w/w) to induce gummosis on current-year shoots in peach on high temperature (35°C). Based on the experimental model, we studied the influence of factors on the development of peach gummosis. Our experimental results showed that high temperature could promote gummosis development induced by MeJa. Exogenous CaCl2 treatment reduced the degree of gummosis by increasing the calcium content in shoots, which is conducive to the synthesis and maintenance of the cell wall. Using digital gene expression (DGE), 3831 differentially expressed genes were identified in the MeJa treatment versus the control. By analyzing changes in gene expression associated with cell wall degradation, genes encoding pectin methylesterase (PME) and endo-polygalacturonase (PG) were found to be significantly induced, suggesting that they are key enzymes in cell wall degradation that occurs during MeJa-induced gummosis. Genes for glycosyltransferase (GT) and cellulose synthase (CS) were also significantly upregulated by MeJa. This result suggests that MeJa treatment not only promotes the degradation of polysaccharides to destroy the cell wall, but also promotes the synthesis of new polysaccharides. We also analyzed changes in gene expression associated with sugar metabolism, senescence, and defense. MeJa treatment affected the expression of genes related to sugar metabolism and promoted plant senescence. Among the defense genes, the expression pattern of phenylalanine ammonium lyase (PAL) suggested that PAL may play an important role in protecting against the effects of MeJa treatment. Our experimental results showed that MeJa treatment can promote the biosynthesis and signal transduction of ethylene in peach shoots; they can induce gummosis on peach shoots respectively, and there are overlaps between

  8. Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation

    NASA Astrophysics Data System (ADS)

    Santra, Tuhin Subhra; Wang, Pen-Cheng; Chang, Hwan-You; Tseng, Fan-Gang

    2013-12-01

    Interaction of electric field with biological cells is an important phenomenon for field induced drug delivery system. We demonstrate a selective and localized single cell nano-electroporation (LSCNEP) by applying an intense electric field on a submicron region of the single cell membrane, which can effectively allow high efficient molecular delivery but low cell damage. The delivery rate is controlled by adjusting transmembrane potential and manipulating membrane status. Thermal and ionic influences are deteriorated from the cell membrane by dielectric passivation. Either reversible or irreversible by LSCNEP can fully controlled with potential applications in medical diagnostics and biological studies.

  9. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

    NASA Astrophysics Data System (ADS)

    Saha, Biswajit; Toh, Wei Quan; Liu, Erjia; Beng Tor, Shu; Hardt, David E.; Lee, Junghoon

    2016-01-01

    Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes.

  10. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  11. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    NASA Astrophysics Data System (ADS)

    Chang, W. S.; Kim, J. W.; Choi, D. G.; Han, C. S.

    2011-01-01

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  12. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. PMID:26143307

  13. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  14. Where bone meets implant: the characterization of nano-osseointegration

    NASA Astrophysics Data System (ADS)

    Grandfield, Kathryn; Gustafsson, Stefan; Palmquist, Anders

    2013-05-01

    The recent application of electron tomography to the study of biomaterial interfaces with bone has brought about an awareness of nano-osseointegration and, to a further extent, demanded increasingly advanced characterization methodologies. In this study, nanoscale osseointegration has been studied via laser-modified titanium implants. The micro- and nano-structured implants were placed in the proximal tibia of New Zealand white rabbits for six months. High-resolution transmission electron microscopy (HRTEM), analytical microscopy, including energy dispersive X-ray spectroscopy (EDXS) and energy-filtered TEM (EFTEM), as well as electron tomography studies were used to investigate the degree of nano-osseointegration in two- and three-dimensions. HRTEM indicated the laser-modified surface encouraged the formation of crystalline hydroxyapatite in the immediate vicinity of the implant. Analytical studies suggested the presence of a functionally graded interface at the implant surface, characterized by the gradual intermixing of bone with oxide layer. Yet, the most compelling of techniques, which enabled straightforward visualization of nano-osseointegration, proved to be segmentation of electron tomographic reconstructions, where thresholding techniques identified bone penetrating into the nanoscale roughened surface features of laser-modified titanium. Combining high-resolution, analytical and three-dimensional electron microscopy techniques has proven to encourage identification and understanding of nano-osseointegration.The recent application of electron tomography to the study of biomaterial interfaces with bone has brought about an awareness of nano-osseointegration and, to a further extent, demanded increasingly advanced characterization methodologies. In this study, nanoscale osseointegration has been studied via laser-modified titanium implants. The micro- and nano-structured implants were placed in the proximal tibia of New Zealand white rabbits for six months

  15. Nano photoconductive switches for microwave applications

    NASA Astrophysics Data System (ADS)

    Tripon-Canseliet, C.; Faci, S.; Decoster, D.; Pagies, A.; Yoon, S. F.; Pey, K. L.; Chazelas, J.

    2013-01-01

    This paper addresses the interaction between light wave technologies and semiconductors devices at the nanoscale. Research works aiming at the development of emerging 1D and 2D nano materials such as nanodots, nanowires, nanotubes and nanoribbons open the way to overcome the performances bottleneck of conventional microwave photoconductive switches. Such new materials offer new opportunities for the confinement of light/matter interaction and exhibit interesting energy band diagram in an optical wavelength spectrum covering visible to NIR. Strong material interests stays for the generation of very high local density of carriers in contrast with a high dark resistivity, in association with a high carrier mobility. These challenges can be reached today thanks to nanotechnology processes with a high compatibility constraint with submicrometer light coupling solutions and microwave devices and circuits technologies. Modeling and design tools dedicated to photoconductive effect description at nanometer scale, for its implementation in passive and active components must be set up in order to exalt this effect for microwave signal processing functionalities such as switching, generation, amplification and emission over a large frequency bandwidth. This paper will report on latest demonstrations of high performance photoconductive switches for high frequency applications at 0.8μm and 1.5μm based on LT-GaAs, GaAs nanowires and GaInAsSb semiconductor materials.

  16. Spin nano-oscillator-based wireless communication

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Seok; Kang, Sun Yool; Cho, Seong Jun; Oh, Inn-Yeal; Shin, Mincheol; Park, Hyuncheol; Jang, Chaun; Min, Byoung-Chul; Kim, Sang-Il; Park, Seung-Young; Park, Chul Soon

    2014-06-01

    Spin-torque nano-oscillators (STNOs) have outstanding advantages of a high degree of compactness, high-frequency tunability, and good compatibility with the standard complementary metal-oxide-semiconductor process, which offer prospects for future wireless communication. There have as yet been no reports on wireless communication using STNOs, since the STNOs also have notable disadvantages such as lower output power and poorer spectral purity in comparison with those of LC voltage-controlled oscillators. Here we show that wireless communication is achieved by a proper choice of modulation scheme despite these drawbacks of STNOs. By adopting direct binary amplitude shift keying modulation and non-coherent demodulation, we demonstrate STNO-based wireless communication with 200-kbps data rate at a distance of 1 m between transmitter and receiver. It is shown, from the analysis of STNO noise, that the maximum data rate can be extended up to 1.48 Gbps with 1-ns turn-on time. For the fabricated STNO, the maximum data rate is 5 Mbps which is limited by the rise time measured in the total system. The result will provide a viable route to real microwave application of STNOs.

  17. Framing the nano-biointeractions by proteomics

    NASA Astrophysics Data System (ADS)

    Sabella, S.; Maiorano, G.; Rizzello, L.; Kote, S.; Cingolani, R.; Pompa, P. P.

    2012-03-01

    Knowledge of the molecular mechanisms underlying the interactions between nanomaterials and living systems is fundamental for providing more effective products for nanomedicine and drug delivery. Controlling the response of cells/bacteria (such as activation of inflammatory processes or apoptosis/necrosis in tumor cells or pathogenic bacteria) by tuning specific properties of the nanomaterials is ultimately the challenging goal. Notably, this may also provide crucial information in the assessment of any toxic risks induced by nanoparticles on humans. However, in studying the nano-biointeractions, it is imperative to take into account the dynamic evolutions of nanoparticles in the biological environments (in terms of protein corona formation, size and charge changes) in synergy with the dynamic events occurring in cells, including signal transduction, metabolic processes, homeostasis and membrane trafficking. In this context, we discuss the impact of analytical technologies, especially in the field of proteomics, which can provide major insights into the processes affecting the NPs surface as well as the cells and bacteria functionalities. In particular, we show that a precise control of the chemical-physical characteristics of the interacting nanoparticles or nanostructures may impact the cells by inducing changes in the proteomic profiles with direct consequences on their viability.

  18. Nano-encapsulated PCM via Pickering Emulsification.

    PubMed

    Wang, Xuezhen; Zhang, Lecheng; Yu, Yi-Hsien; Jia, Lisi; Sam Mannan, M; Chen, Ying; Cheng, Zhengdong

    2015-01-01

    We designed a two-step Pickering emulsification procedure to create nano-encapsulated phase changing materials (NEPCMs) using a method whose simplicity and low energy consumption suggest promise for scale-up and mass production. Surface-modified amphiphilic zirconium phosphate (ZrP) platelets were fabricated as the Pickering emulsifiers, nonadecane was chosen as the core phase change material (PCM), and polystyrene, the shell material. The resultant capsules were submicron in size with remarkable uniformity in size distribution, which has rarely been reported. Differential scanning calorimetry (DSC) characterization showed that the capsulation efficiency of NEPCMs, and they were found to be thermal stable, as characterized by the DSC data for the sample after 200 thermal cycles. NEPCMs exhibit superior mechanical stability and mobility when compared with the well-developed micro-encapsulated phase change materials (MEPCMs). NEPCMs find useful applications in thermal management, including micro-channel coolants; solar energy storage media; building temperature regulators; and thermal transfer fabrics. PMID:26278332

  19. Nano-encapsulated PCM via Pickering Emulsification

    PubMed Central

    Wang, Xuezhen; Zhang, Lecheng; Yu, Yi-Hsien; Jia, Lisi; Sam Mannan, M.; Chen, Ying; Cheng, Zhengdong

    2015-01-01

    We designed a two-step Pickering emulsification procedure to create nano-encapsulated phase changing materials (NEPCMs) using a method whose simplicity and low energy consumption suggest promise for scale-up and mass production. Surface-modified amphiphilic zirconium phosphate (ZrP) platelets were fabricated as the Pickering emulsifiers, nonadecane was chosen as the core phase change material (PCM), and polystyrene, the shell material. The resultant capsules were submicron in size with remarkable uniformity in size distribution, which has rarely been reported. Differential scanning calorimetry (DSC) characterization showed that the capsulation efficiency of NEPCMs, and they were found to be thermal stable, as characterized by the DSC data for the sample after 200 thermal cycles. NEPCMs exhibit superior mechanical stability and mobility when compared with the well-developed micro-encapsulated phase change materials (MEPCMs). NEPCMs find useful applications in thermal management, including micro-channel coolants; solar energy storage media; building temperature regulators; and thermal transfer fabrics. PMID:26278332

  20. Nano-Aramid Fiber Reinforced Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  1. Nano-Enabled SERS Reporting Photosensitizers

    PubMed Central

    Farhadi, Arash; Roxin, Áron; Wilson, Brian C.; Zheng, Gang

    2015-01-01

    To impart effective cellular damage via photodynamic therapy (PDT), it is vital to deliver the appropriate light dose and photosensitizer concentration, and to monitor the PDT dose delivered at the site of interest. In vivo monitoring of photosensitizers has in large part relied on their fluorescence emission. Palladium-containing photosensitizers have shown promising clinical results by demonstrating near full conversion of light to PDT activity at the cost of having undetectable fluorescence. We demonstrate that, through the coupling of plasmonic nanoparticles with palladium-photosensitizers, surface-enhanced Raman scattering (SERS) provides both reporting and monitoring capability to otherwise quiescent molecules. Nano-enabled SERS reporting of photosensitizers allows for the decoupling of the therapeutic and imaging mechanisms so that both phenomena can be optimized independently. Most importantly, the design enables the use of the same laser wavelength to stimulate both the PDT and imaging features, opening the potential for real-time dosimetry of photosensitizer concentration and PDT dose delivery by SERS monitoring. PMID:25767614

  2. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. PMID:26052107

  3. Next generation nano-contamination monitoring

    NASA Astrophysics Data System (ADS)

    Kochevar, Steven; Pietrykowski, Thomas; Rodier, Dan

    2012-10-01

    Current particle counting techniques employ common technologies: lasers, detectors, and optics. The theory of light scattering and particles is well known, and is standard in most particle counters. However, the need to detect smaller particles (nanoparticles) challenges the technological limits of traditional light-scattering techniques. Counting nanoparticles in liquids offers unique problems because of the intensity of scattered light from the particles relative to the light scattered by the fluid and flow cell. Consequently, the particle may be lost in the background noise. New technologies employ sophisticated detection elements and high-powered lasers to provide three-dimensional particle signatures and real-time videos as the particle passes through the laser. Aerosol nanoparticle counting offers the challenge of light scatter in an open sample chamber. Simply, the nanoparticles are too small to be effectively illuminated by lasers, so a new technique employs dynamic mobility to classify specific particle sizes. This technique can provide particle counting - and accurate particle size classification - down to 5 nm. Employing traditional optical particle counting technology is not efficient for detecting nanoparticles, but new technologies can meet these challenges. When combined with other support equipment (e.g. WiFi, software, etc.), new technologies provide innovative techniques for monitoring nanoparticles and managing nano-contamination in clean environments.

  4. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  5. Gold coated nano gratings for atom optics

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Perreault, John; Kornilov, Oleg; Cronin, Alex

    2007-06-01

    The Van der Waals (VdW) interaction between neutral atoms is important to the dynamics of mechanical systems on nanometer scales. We used diffraction of sodium atoms from nano gratings to measure the Van der Waals potentials for atoms and different surfaces with improved precision. Atoms passing through the grating acquire an additional phase shift due to the attractive potential between the atoms and the grating bars, causing the diffraction pattern to be modified [1]. Previous measurements reported the VdW coefficient for sodium atoms and a silicon-nitride(SiNx) surface [2]. In our experiment we used a SiNx grating coated with a 2 nm layer of gold and we were able to measure a 40% increase in the VdW coefficient due to the gold. We also improved precision by combing results from the sodium diffraction experiment with results from a diffraction experiment with helium atoms on the same gratings. [1] R. E. Grisenti, W. Schollkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Kohler. Phys. Rev. Lett., 83(9):1755, 1999. [2] J. D. Perreault, A. D. Cronin, and T. A. Savas. Phys. Rev. A, 71(5):053612, 2005.

  6. Nano-ART and NeuroAIDS.

    PubMed

    Das, Malay K; Sarma, Anupam; Chakraborty, Tapash

    2016-10-01

    Human immunodeficiency virus (HIV) is a neurotropic virus that enters the central nervous system (CNS) early in the course of infection. Although highly active antiretroviral therapy (HAART) has resulted in remarkable decline in the morbidity and mortality in AIDS patients, controlling HIV infections still remains a global health priority. HIV access to the CNS serves as the natural viral preserve because most antiretroviral (ARV) drugs possess inadequate or zero delivery across the brain barriers. The structure of the blood-brain barrier (BBB), the presence of efflux pumps, and the expression of metabolic enzymes pose hurdles for ARV drug-brain entry. Thus, development of target-specific, effective, safe, and controllable drug delivery approach is an important health priority for global elimination of AIDS progression. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release, and ingress across the barrier. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This review focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed NanoART, across the BBB and affect the biodistribution and clinical benefit for NeuroAIDS. PMID:27137528

  7. Lipids, curvature, and nano-medicine*

    PubMed Central

    Mouritsen, Ole G

    2011-01-01

    The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature. Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy. PMID:22164124

  8. Characterization of Nano-Structured Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Beladi, Hossein; Timokhina, Ilana B.; Hodgson, Peter D.; Adachi, Yoshitaka

    A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to produce a nano-structured bainitic steel. The microstructure consisted of nanobainitic ferrite laths with a high dislocation density and retained austenite films having extensive twins. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with their parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. Atom Probe Tomography (APT) revealed that the carbon content of nanobainitic ferrite laths was much higher than expected from the para-equilibrium level. This was explained due to the long heat treatment time, which led to the formation of fine Fe-C clusters on areas with high dislocation densities in bainitic ferrite laths.

  9. Using Modified J-A model in MMM detection at elastic stress stage

    NASA Astrophysics Data System (ADS)

    Xu, MingXiu; Xu, MinQiang; Li, JianWei; Xing, HaiYan

    2012-06-01

    In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, a modified Jiles-Atherton (J-A) model is constructed to describe MMM mechanism in elastic stress stage. The MMM phenomenon is discussed from the view of energy minimum theory and equivalent magnetic field theory, the modified J-A model is constructed based on the energy balance in the process of magnetisation and the idea of J-A model, and the new model is used to simulate magnetomechanical effect by Matlab and compare with experimental results. It is shown that the forming process of MMM field is cyclic magnetisation in the range of equivalent magnetic field and the MMM field moves irreversibly towards a local equilibrium state ? . ? is the intermediate state with some pinning before M reaches the anhysteretic magnetisation state ? . The ? curve is a loop around the ? curve, and it changes with ? , H and the type of stress cycle. The modified J-A model that is suited for MMM detection is constructed by replacing ? in J-A model with ? and changing some parameters, and it can describe magnetisation features in tension, release processes better and explain the changes in the sign of ? that have been observed in experiments more reasonably. The modified J-A model can simulate the process of MMM field to become steady and the MMM field variation at fatigue process theoretically by changing model parameters, which is confirmed by experimental results. The results of theoretical research, simulation analysis and experiment verification all indicate that the modified J-A model can be used to describe MMM mechanism in elastic stress stage and analyse MMM field changes at fatigue process.

  10. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    NASA Astrophysics Data System (ADS)

    Golovin, Alexander A.; Nepomnyashchy, Alexander A.

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale -- one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004.

  11. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    SciTech Connect

    Moslem, W. M.; El-Said, A. S.

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  12. Dynamic Mechanochemistry of Seismic Slip -Nano Spherules Lubrication

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Chen, W.; Chen, Y.; Song, Y.; Ma, K.

    2007-12-01

    The Chelungpu fault, which was activated during 1999Chi-Chi Earthquake, had been drilled (Hole A, B and C) to recover the earthquake slip zone materials. We present here the results of nano-scale observations for identified slip zone materials (Ma, Tanaka et al., 2006) by using HR-TEM and TXM technique. Minimum size of grains observed under HR-TEM is 3 nm. The grain size distribution for grains larger than 100 nm in diameter follows the fractal law and grain shape is highly irregular. Grains smaller than100 nm show some specific characteristics, that is, smaller the grains, more the spherical shapes and more equi-granular. Thus, the grains smaller than 100 nm are no longer described by fractal distribution model. By SAD and EDX analysis under HR-TEM, the nano spherules are mainly composed of crystallized quartz associated with minor amounts of carbonates and amorphous materials. Results of observations lead following three conclusions, (1) nano spherules are not generated just by fracturing based on their shapes and grain size distributions. (2) nano spherules would compose viscous materials enveloping larger fractured grains from SEM observations. (3) Mica clay minerals and feldspars are disappeared in ultra-fine grained layer. This implies that chemical process of dissolution - elements dissipation - SiO2 precipitation occurred associated with mechanical fracturing. Therefore nano spherules would be generated through mechano-chemical process during co-seismic slip. Dynamic shear strength drop by rapid slip experimentsare and formation of gelled materials are recently reported. Large differences of ultra-fine products between previous reports and our observations are existence of nano spherules and their crystallinity. If the nano- spherules are generated during seismic slip, dynamic weakening would be expected because mode of friction turns into rolling friction by huge amounts of equigranular and spherical grains. This may be alternative explanations for dynamic

  13. Feasibility study for a future Austrian lightning nano-satellite

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Jaffer, Ghulam; Koudelka, O.; Khan, S.; Grant, C.; Unterberger, M.; Lichtenegger, Herbert; Macher, W.; Hausleitner, W.

    A feasibility study for an Austrian lightning nano-satellite is presented. The satellite will carry a radio-frequency receiver payload for the investigation of electromagnetic signatures produced by lightning strokes. A special emphasis will be on the investigation of transient electromagnetic waves in VHF range (20-40MHz) known as sferics. The onboard RF lightning triggering system will be a special capability of the nano-satellite. The lightning experiment will also observe VHF signals of ionospheric and magnetospheric origin. Adaptive filters will be developed to differentiate terrestrial electromagnetic impulsive signals from ionospheric or magnetospheric signals. One of the major problems using a nano-satellite is to integrate the lightning experiment antenna, receiver and data acquisition unit into the nano-satellite structure. Using a gravity gradient boom as a lightning antenna can increase the sensitivity and directional capability. A major part of this study is devoted to the design of a combined gravity-gradient boom and a sferics antenna. The compact structure of a nano-satellite faces special EMC issues e.g., impulsive electromagnetic events from DC converters. The low power and mass budget of a nano-satellite requires merging of the satellite housekeeping and lightning experiment units. The Lightning nano-satellite team has participated in various space missions (HUYGENS, DEMETER, PHOBOS, CLUSTER) investigating electromagnetic phenomena. The data of these missions will be used to test the hardand software of the lightning experiment before the launch. Further tests with a satellite mock-up, high frequency electronics and gravity gradient boom acting as lightning antenna will be carried out in a high voltage chamber, where artificial lightning can be generated. Additionally ground based and balloon-borne tests are planned with the satellite engineering model using terrestrial lightning.

  14. The eNanoMapper database for nanomaterial safety information

    PubMed Central

    Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    Summary Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state transfer

  15. Fabrication of nano ion-electron sources and nano-probes by local electron bombardment

    NASA Astrophysics Data System (ADS)

    Rezeq, Moh'd.; Ali, Ahmed; Barada, Hassan

    2015-04-01

    A new method for fabricating nano ion-electron sources and nano probes with an apex in the range of 1 nm is introduced. The method is based on bombarding a regular tip apex with electrons extracted and accelerated from a nearby source by the electric field. This can be achieved by placing a metal ring around a precursor metal tip at a level below the tip apex in a field ion microscope (FIM). The metal ring is then heated, by a grounded DC power source, to a temperature below the thermionic emission value. The electric field between the tip and the hot ring is high enough to cause electrons to be extracted from the metal ring, i.e. Schottky field emission, and then accelerated to the shank with energy sufficient to dislodge atoms from the shank. An atomic scale apex with a single atom end can be obtained by monitoring the evolution of the tip apex due to the movement of mobile atoms while adjusting the tip electric field and the temperature of the metal ring. As this method depends only on the electron bombardment mechanism, this makes it a clean process that can be applied to any metal or heavily doped semiconductor materials appropriate for generating a high electric field for FIM applications.

  16. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  17. Graphene nano-ribbon with nano-breaks as efficient thermoelectric device

    NASA Astrophysics Data System (ADS)

    Hossain, Md Sharafat; Al-Dirini, Feras; Jiang, Liming; Hossain, Faruque M.; Skafidas, Efstratios

    2015-12-01

    It has been well established that delta-like transport distribution of electron gives the best thermoelectric performance. On another front, it has been experimentally verified that graphene nano-ribbon with nano-break in the channel region exhibits tunnelling. Here, we utilize the tunnelling phenomena observed in graphene break junctions to achieve delta like transport distribution. Indeed our device exhibit record ZT ranging from 10 to 100. This high ZT can be attributed to complete blockage of phonon transport due to the break. The electrical conductance also goes very low, however, near the tunnelling energy it becomes significant, giving rise to an enhanced ZT value. In this report we investigate the effect edge orientation and the width of the ribbon on thermoelectric property. Moreover, we investigate the effect of temperature on tunnelling and how it affect thermoelectric performance. We find that there is an optimal temperature at which the device performs best. In the simulations, we assumed ballistic transport and used first principle approach to obtain the electrical properties. The phononic system was characterized by a Tersoff empirical potential model. The proposed device structure has potential applications as a two-dimensional nanoscale local cooler and as a thermoelectric power generator when connected in arrays.

  18. Characterization of nano-scaled metal-hydrides confined in nano-porous carbon frameworks

    NASA Astrophysics Data System (ADS)

    Peaslee, David Edward

    Metal hydrides are currently being studied to provide hydrogen for use in fuel cells and for transportation applications. Hydrogen can be stored in chemical compounds at higher density and lower volume than liquid H2 or compressed gas. Thermodynamic properties of metal hydrides differ between bulk and nano-sized particles. Many metal hydrides with useful volumetric and gravimetric capacities have high decomposition temperatures, but when placed in nano-sized frameworks (or templates) desorption and adsorption temperatures can be fine-tuned to meet engineering requirements for real-world systems. Additionally, some metal hydrides have shown a change in the decomposition pathway when infiltrated into these frameworks, thereby reducing the amount of unwanted byproducts, and potentially improving the cyclability of the material. The Temperature Programmed Decomposition Mass Spectrum Residual Gas Analyzer can be used to characterize gas desorption, decomposition temperatures, picogram changes in mass, and ionization energies for a variety of materials and gasses. The goal of the system is to characterize desorption of the hydrogen (including byproduct gasses) and the decomposition of the metal hydrides. The experimental apparatus is composed of four main components: the residual gas analyzer (RGA), the low temperature stage quartz crystal microbalance (QCM), the high temperature heating stage, and two vacuum chambers separated by a small flow hole which allows a direct line-of-site to the RGA.

  19. Frank Isakson Prize for Optical Effects in Solids Lecture: Infrared nano-spectroscopy and nano-imaging of Dirac plasmons in graphene

    NASA Astrophysics Data System (ADS)

    Basov, Dmitri

    2012-02-01

    We have applied antenna-based infrared (IR) nano-spectroscopy and nano-imaging to investigate Dirac plasmons in monolayer graphene. This experimental technique enables IR imaging with nano-scale spatial resolution, and also allows one to investigate electromagnetic phenomena at wave-vectors on the order of the Fermi wave-vector in gated graphene. Nano-spectroscopy and nano-imaging experiments have uncovered rich optical effects associated with the Dirac plasmons of graphene [Fei et al. Nano Letters 2011]. We were able to directly image Dirac plasmons propagating over sub-micron distances and reflecting from the edges of graphene flakes, all with a spatial resolution far exceeding the plasmon wavelength. Furthermore, we employed new IR nano-optics capabilities to demonstrate the gate-tunable plasmonic properties of graphene and to investigate the coupling between Dirac plasmons and the phonon modes of polar substrates.

  20. Modeling and control for micro and nano manipulation

    NASA Astrophysics Data System (ADS)

    Wejinya, Uchechukwu C.

    Manipulation of micro and nano entities implies the movement of micro and nano entities from an initial position (location) to the desire position (location). This operation is not only necessary, but a required task with great precision. The tools needed for the manipulation needs to be chosen properly because the capabilities of the human hand are very restricted. Smart micro and nano manipulation are becoming of great interest in many applications including medicine and industry. In industry, high precision manipulation systems are especially needed for mass production of both micro and nano systems which consist of different component in respective scales. The transition from assembling and manipulating micro and nano entities manually to mass products with high quality is only attainable by automated assembly and manipulation systems. An example is the testing of integrated circuits which can be carried out by exchanging the manipulation tool by an electric probe. Furthermore, in medical research it is customary to pick up a single cell (human, plant, or animal), and carry it to another device which is used to further analyze the cell. Consequently, the cell of interest has to be separated from the other cells and picked up using the appropriate micro/nano tool. Hence it becomes absolutely necessary that the appropriate tool be used for specific micro or nano entity manipulation and assembly. In this research, we focus on developing micro tool for manipulating micro and nano entities in liquid environment using a micro fluidic end effector system with in-situ Polyvinylidene Fluoride (PVDF) sensing. The microfluidic end effector system consists of a DC micro-diaphragm pump and compressor, one region of flexible latex tube, a Polyvinylidene Fluoride (PVDF) sensor for in-situ measurement of micro drag force, and a micro pipette. The micro pipette of the novel microfluidic end effector system has an internal diameter (ID) smaller than 20mum used for microfluidic

  1. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  2. Leaching of nano-ZnO in municipal solid waste.

    PubMed

    Sakallioglu, T; Bakirdoven, M; Temizel, I; Demirel, B; Copty, N K; Onay, T T; Uyguner Demirel, C S; Karanfil, T

    2016-11-01

    Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix. PMID:27318728

  3. Ecological assessment of nano-enabled supercapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  4. Phase Transitions of 2-Decanol in Nano Pores

    NASA Astrophysics Data System (ADS)

    Amanuel, Samuel; Turner, Jason; Novins, Caleb; Clain, Alexander

    We studied the melting of 2-decanol confined in nano pores, 10-100 nm, using a power-compensated Differential Scanning Calorimeter (DSC). The melting temperature of the nano confined 2-decanol decreases as pore size decreases and a linear relationship is observed between the melting temperature and the inverse of the pore size. This is in agreement with the Gibbs-Thomson prediction. In addition, the apparent heat of fusion of the 2-decanol confined in the nano pores appears to decrease as the size of the pores decreases. However, the apparent heat of fusion of the nano confined 2-decanol may not necessarily be its true heat of fusion. Annealing, for instance, increases the apparent heat of fusion by as much as 26%. A correction or alternate procedure should be employed to extract the true heat of fusion from DSC measurements, especially when the physical size of the sample is in nano scale or the sample possesses a large surface area to volume ratio. This work was partially supported by NSF-DMR: 1229142.

  5. NanoSail - D Orbital and Attitude Dynamics

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  6. Nano-LISA for in vitro diagnostic applications

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Glickman, Randolph D.; Elliott, Rowe; Barsalou, Norman

    2011-03-01

    We previously reported the detection of bacterial antigen with immunoaffinity reactions using laser optoacoustic spectroscopy and antibody-coupled gold nanorods (Ab-NR) as a contrast agent specifically targeted to the antigen of interest. The Nano-LISA (Nanoparticle Linked Immunosorbent Assay) method has been adapted to detect three very common blood-borne viral infectious agents, i.e. human T-lymphotropic virus (HTLV), human immunodeficiency virus (HIV) and hepatitis-B (Hep-B). These agents were used in a model test panel to illustrate the performance of the Nano-LISA technique. A working laboratory prototype of a Nano-LISA microplate reader-sensor was assembled and tested against the panel containing specific antigens of each of the infectious viral agents. Optoacoustic (OA) responses generated by the samples were detected using the probe beam deflection technique, an all-optical, non-contact technique. A LabView graphical user interface was developed for control of the instrument and real-time display of the test results. The detection limit of Nano-LISA is at least 1 ng/ml of viral antigen, and can reach 10 pg/ml, depending on the binding affinity of the specific detection antibody used to synthesize the Ab-NR. The method has sufficient specificity, i.e. the detection reagents do not cross-react with noncomplementary antigens. Thus, the OA microplate reader, incorporating NanoLISA, has adequate detection sensitivity and specificity for use in clinical in vitro diagnostic testing.

  7. CdTe nano-structures for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Corregidor, V.; Alves, L. C.; Franco, N.; Barreiros, M. A.; Sochinskii, N. V.; Alves, E.

    2013-07-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200-600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orientation and thickness of CdTe nano-structured layers is investigated by means of IBA techniques, SEM and X-ray diffraction. It was shown that the formed CdTe nano-layers have a cubic structure, mainly oriented towards the [1 1 1] crystallographic direction, except for those grown on ZAO layer where the X-ray diffraction signal is very weak to be associated to any crystallographic form. The RBS spectra recorded on different areas of each sample type showed an almost constant thickness and SEM images revealed an homogeneous and dense distribution of the structures. It was also possible to study the first stage of the nano-structures grown on the Bi2Te3 seeds.

  8. [Raman spectrum of nano-graphite synthesized by explosive detonation].

    PubMed

    Wen, Chao; Li, Xun; Sun, De-Yu; Guan, Jin-Qing; Liu, Xiao-Xin; Lin, Ying-Rui; Tang, Shi-Ying; Zhou, Gang; Lin, Jun-De; Jin, Zhi-Hao

    2005-01-01

    The nano-graphite powder synthesized by the detonation of explosives with negative oxygen balance is a new powder material with potential applications. In this work, the preparation of nano-graphite powder in steel chamber by pure TNT (trinitrotoluene) explosives has been introduced. In the synthesis process, the protective gases in the steel chamber are N2, CO2 and Ar, and the pressure is 0.25-2 atm. Raman spectrum of the nano-graphite was measured. The characteristic Raman band assigned to sp2 of graphite has been observed at about 1 585 cm(-1) with half-peak width of 22 cm(-1). The peak shifted to a higher frequency by 5 cm(-1) compared with that of bulk graphite. The authors explain this blue shift phenomenon by size effect. The average size of nanographite from Raman measurement is 2.97-3.97 nm. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to measure the structure and particle size of the nano-graphite. The crystallite size of nano-graphite estimated from XRD andTEM are 2.58 nm (acid untreated) and 1.86 nm (acid treated) respectively, which is in accord with the results of the measurement approximately. PMID:15852818

  9. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    NASA Astrophysics Data System (ADS)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  10. Nano zinc oxide-sodium alginate antibacterial cellulose fibres.

    PubMed

    Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Seo, Jongchul

    2016-01-01

    In the present study, antibacterial cellulose fibres were successfully fabricated by a simple and cost-effective procedure by utilizing nano zinc oxide. The possible nano zinc oxide was successfully synthesized by precipitation technique and then impregnated effectively over cellulose fibres through sodium alginate matrix. XRD analysis revealed the 'rod-like' shape alignment of zinc oxide with an interplanar d-spacing of 0.246nm corresponding to the (101) planes of the hexagonal wurtzite structure. TEM analysis confirmed the nano dimension of the synthesized zinc oxide nanoparticles. The presence of nano zinc oxide over cellulose fibres was evident from the SEM-EDS experiments. FTIR and TGA studies exhibited their effective bonding interaction. The tensile stress-strain curves data indicated the feasibility of the fabricated fibres for longer duration utility without any significant damage or breakage. The antibacterial studies against Escherichia coli revealed the excellent bacterial devastation property. Further, it was observed that when all the parameters remained constant, the variation of sodium alginate concentration showed impact in devastating the E. coli. In overall, the fabricated nano zinc oxide-sodium alginate cellulose fibres can be effectively utilized as antibacterial fibres for biomedical applications. PMID:26453887

  11. He bubble growth and interaction in W nano-tendrils

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2015-11-01

    Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.

  12. Nano-ADEPT Aeroloads Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; Venkatapathy, Ethiraj; Swanson, Gregory; Gold, Nili

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  13. X-ray Studies of Nano Composites

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander

    Nano composite materials are an exciting and fast expanding field. X-ray scattering has been used in order to study the structure properties relation. During the last few years the field has expanded more towards the field of thin films where there's been a dramatic increase in the use of grazing incidence small angle X-ray scattering (GISAXS). The main issue of GISAXS has been the complex analysis framework necessary for simulating and fitting. In addition, existing software has restricted the scientist in systems that can be simulated and the speed to analyze large amounts of data. Over the last few years we have worked closely with our computational research and supercomputer division to enable the use of supercomputers to simulate at scattering data. We have developed a comprehensive analysis framework to simulate and fit a wide variety of materials and morphologies. The framework is designed to supply scientists with close to real-time feedback during beam times. Therefore, HipGISAXS (High Performance GISAXS) has been developed to run simulations on massively parallel platforms such as the Oak Ridge Supercomputer Titan (OLCF). Further, with inverse modeling algorithms for fitting available in HipGISAXS, such as particle swarm optimization, it can handle a large number of parameters during the structure fitting process. In September of 2014, HipGISAXS was used in a real time demonstration that married the SAXS/WAXS beamline at the ALS with the data handling and processing capabilities at NERSC, and simulation capabilities of running at-scale simulations on Titan at OLCF. Doe Early Carrier Award, SPOT and CAMERA.

  14. Nano-FTIR for Geochemical Sample Analysis

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; McCleod, A.; Gainsforth, Z.; Keilmann, F.; Westphal, A.; Thiemens, M. H.; Basov, D.

    2014-12-01

    Infrared (IR) spectroscopy is considered by many to be the "gold standard" for chemical identification, providing a direct connection between chemical compounds found in the laboratory and those found in natural samples including remote astrophysical environments. However, a well known limitation of using conventional IR spectroscopy is its spatial resolution determined by the wavelength of IR photons. Thus, while other techniques such as XANES and micro-Raman are capable of limited functional group mapping at tens to hundreds of nanometers, their use is limited by accessibility (the need for synchrotron beamlines) or the need for intense irradiation conditions (Raman) that can lead to sample alteration. These limitations and the wealth of information that can be extracted from detailed studies of unique micron-sized samples brought back by recent sample return missions such as NASA's Stardust mission, have motivated the development of a novel infrared mapping technique that is capable of mapping the chemical functional properties of geochemical samples with submicron resolutions. Here we describe our nano-FTIR imaging and analysis technique that allows us to bypass diffraction limited sample imaging in the infrared. Here we show, for the first time, that 1) the combination of an atomic-force microscope (AFM) and laser can be used to obtain the FTIR-equivalent spectra on spatial scales that are much smaller than the wavelength of IR radiation used 2) this technique responds to subtle shifts in cation concentrations as evidenced by changes in the frequencies of phonons at sub-micron scales 3) this technique can be used to identify regions of crystalline and semi-crystalline materials as demonstrated in our analysis of a cometary dust grain Iris. This work has clear implications for interpretations of astronomical observations and adds a new technique for the non-destructive characterization of terrestrial and extraterrestrial samples.

  15. Electro- and nonlinear optics of liquid crystals with nano-dopants and nano-structures

    NASA Astrophysics Data System (ADS)

    Williams, Yana Zhang

    Nano materials are useful materials with interesting optical and electronic properties. When combined with liquid crystals, they can improve the optical performance of liquid crystals. On the other hand, liquid crystals are very versatile materials which can be easily incorporated with nanoscale materials, or encapsulated inside nanoscale structures. Combining nano materials with liquid crystals, and studying the optical properties of these composites for the purpose of discovering new materials for low optical power, high resolution, and fast response, is the driving force behind our research. The motivation of this work is presented in Chapter 1 and a brief introduction of liquid crystals and nano materials is presented in Chapter 2. In Chapter 3, we blended photosensitive cadmium selenide (CdSe) nanorods (7nm in diameter, 40nm in length) inside a nematic liquid crystal system. The effective intensity dependent refractive index coefficients are on the order of 10-2 (cm2/ Watt). This is at least 10 times larger than that of undoped liquid crystals. Most importantly, it is a transient process. We also observed one of the lowest electro-optical (E-O) switching threshold voltages from this doped system Vth = 0.78 ( Volts). It is postulated that the photosensitive CdSe nanorods improved the charge generation and charge transportation, as well as permittivity and conductivity anisotropy, of the liquid crystal system. In Chapter 4, a unique 4-beam holographic method in an umbrella configuration is used to successfully fabricate three dimensional photonic structures within polymer dispersed liquid crystals. The resultant 3D structures exhibit multicolor reflection, and are optically characterized by taking transmission spectrum, as well as Bragg diffraction. An electro-optical switching time of tens of milliseconds is obtained from the structures. This tuning ability is achieved by the encapsulated liquid crystal droplets at the nodes of the structures. The fabrication

  16. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  17. Liquid-bridging in particle self-assemblies toward constructing periodic nano-mesh structures and nano-dot arrays

    NASA Astrophysics Data System (ADS)

    Chul Park, Seung; Lee, In-Ho; Na, Jun-Hee; Lee, Sin-Doo

    2013-10-01

    We demonstrate a simple generic principle of constructing periodic nano-mesh structures and nano-dot arrays by liquid-bridging in particle self-assemblies. A self-assembly of nano- to micro-sized spheres of polystyrene, produced in a close-packed monolayer on a substrate by a convective method, is used as a template for liquid-bridging of a functional fluid in the pores among the neighboring particles. After the solidification of the fluid, followed by the detachment of the particles from the substrate, a periodic mesh structure is directly obtained. Moreover, deposition of a desired substance onto such mesh structure made of a sacrificial material, which is subsequently removable through a lift-off process, enables to produce a periodic dot array of the substance. Depending on the size of the particle and the nature of liquid bridging in the particle assembly, a variety of nano-mesh structures of silver-ink and nano-dot arrays of gold are constructed. This simple liquid bridging-based methodology is easily applicable for different classes of functional fluids such as soluble organic semiconductors.

  18. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    PubMed

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. PMID:27596403

  19. A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode

    NASA Astrophysics Data System (ADS)

    Hosseini, Mir Ghasem; Ahadzadeh, Iraj

    2012-12-01

    In this research, Ti/nano-TiO2/Pd nano-structure electrode is prepared, characterized and applied as cathode electrode in a dual-chambered microbial fuel cell with graphite anode and Flemion cation exchange membrane. Prepared nano-structured electrode morphology and mixed-culture biofilm formed on the anode are studied by scanning electron microscopy (SEM). Cell performance is investigated by polarization, cyclic voltammetery (CV) and electrochemical impedance spectroscopy (EIS) methods. Results show that Ti/nano-TiO2/Pd electrode exhibits satisfactory long term performance as a cathode to reduce water dissolved oxygen. The maximum output power of the cell is about 200 mW m-2 normalized to the cathode surface area. Open circuit potential (OCP) of the cell is about 480 mV and value of the short circuit current is 0.21 mA cm-2 of the cathode geometric surface area. Thus this nano-structure cathode can produce comparable output power to that of platinum-based cathodes such as Pt-doped carbon paper; therefore due to the ease of preparation and low cost, this electrode can be applied as alternative to platinum-based cathodes in microbial fuel cells.

  20. Auxeticity in nano/microtubes produced from orthorhombic crystals

    NASA Astrophysics Data System (ADS)

    Goldstein, Robert V.; Gorodtsov, Valentin A.; Lisovenko, Dmitry S.; Volkov, Mikhail A.

    2016-05-01

    A solution for the tension and torsion problems for the curvilinearly anisotropic nano/microtubes made of orthorhombic crystals in the framework of the Saint-Venant’s approach is given. We find that the number of partial auxetics among the tubes is twice as frequent among the rectilinearly anisotropic crystals, at the same time about one third of 136 orthorhombic crystals are auxetics. It is shown that the torsion causes extension of the nano/microtubes even in the absence of a longitudinal tensile force. This Poynting’s effect substantially depends on the chiral angle, and in particular, it disappears when the chiral angle vanishes. We also investigate an inverse Poynting’s effect when the extension of the nano/microtubes is accompanied by their twisting. It is shown that the signs of Poynting’s effect and Poisson’s ratio are changed several times with the change of the chiral angle.

  1. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  2. About Nano-JASMINE Satellite System and Project Status

    NASA Astrophysics Data System (ADS)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  3. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  4. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    PubMed

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy. PMID:26698997

  5. Near-Infrared Fluorescent NanoGUMBOS for Biomedical Imaging

    SciTech Connect

    Bwambok, David; El-Zahab, Bilal; Challa, Santhosh; Li, Min; Chandler, Lin; Baker, Gary A; Warner, Isiah M

    2009-01-01

    Herein, we report on near-infrared (NIR) fluorescent nanoparticles generated from an emergent class of materials we refer to as a Group of Uniform Materials Based on Organic Salts (GUMBOS). GUMBOS are largely frozen ionic liquids, although the concept is more general and is also easily applied to solid ionic materials with melting points in excess of 100 C. Nanoparticles based on GUMBOS (nanoGUMBOS) derived from a NIR fluorophore are prepared using a reprecipitation method and evaluated for in vivo fluorescence imaging. Due to their uniformity, single-step preparation, and composite nature, nanoGUMBOS help to resolve issues with dye leakage problems innate to alternate cellular stains and unlock a myriad of applications for these materials, highlighting exciting possibilities for multifunctional nanoGUMBOS.

  6. Evaluation the pozzolanic reactivity of sonochemically fabricated nano natural pozzolan.

    PubMed

    Askarinejad, Azadeh; Pourkhorshidi, Ali Reza; Parhizkar, Tayebeh

    2012-01-01

    Natural pozzolans are appropriate supplementary cementitious materials in cement and concrete industry. A simple sonochemical method was developed to synthesize nanostructures of natural pozzolan. Chemical composition, crystallinity, morphology and reactivity of the natural pozzolan samples were compared before and after the sonochemical process, by using powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermal Gravimetry and Differential Thermal Analysis (TG/DTA). Compressive strength tests were performed to evaluate the properties of blended cements incorporating nano natural pozzolan. Under optimized conditions, the nano natural pozzolans showed a superior reactivity as compared with the bulk natural pozzolan. Also higher compressive strength was obtained for the cement specimen incorporating nano natural pozzolan. PMID:21636307

  7. Characteristics of Nano-emulsion for Cold Thermal Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  8. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed. PMID:25655465

  9. Tuning Fano resonances with a nano-chamber of air.

    PubMed

    Chen, Jianjun; He, Keke; Sun, Chengwei; Wang, Yujia; Li, Hongyun; Gong, Qihuang

    2016-05-15

    By designing a polymer-film-coated asymmetric metallic slit structure that only contains one nanocavity side-coupled with a subwavelength plasmonic waveguide, the Fano resonance is realized in the experiment. The Fano resonance originates from the interference between the narrow resonant spectra of the radiative light from the nanocavity and the broad nonresonant spectra of the directly transmitted light from the slit. The lateral dimension of the asymmetric slit is only 825 nm. Due to the presence of the soft polymer film, a nano-chamber of air is constructed. Based on the opto-thermal effect, the air volume in the nano-chamber is expanded by a laser beam, which blueshifts the Fano resonance. This tunable Fano resonance in such a submicron slit structure with a nano-chamber is of importance in the highly integrated plasmonic circuits. PMID:27176948

  10. Origami NanoSat Telescopes: Planetary Astronomy's Future unfolds

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Castillo-Rogez, J.; Jenkins, J.; Dissly, R.; Klesh, A.

    2013-09-01

    We will present a concept to develop a key technology to expand the application of NanoSats to astronomy. The NanoSat size intrinsically constrains the aperture diameter of an onboard telescope to a few centimeters; consequently it limits the sensitivity of the instruments and the scientific return of the mission. An obvious but challenging solution is to encapsulate a deployable telescope in a NanoSat platform and deploy it in space after launch. A revolutionary advance is to add state-of-the-art wavefront sensing and control to a large deployable aperture, and then combine this with excellent pointing stability on such a small platform. We focus this study on a few significant science drivers, which appear to be the most beneficial to the planetary science science decadal survey, the astrophysics decadal survey NASA Strategic goals and plans, and will drive the design of the satellite.

  11. Control and Manipulation of Nano Cracks Mimicking Optical Wave

    NASA Astrophysics Data System (ADS)

    Suh, Young D.; Yeo, Junyeob; Lee, Habeom; Hong, Sukjoon; Kwon, Jinhyeong; Kim, Kyunkyu; Ko, Seung Hwan

    2015-11-01

    Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area. Interestingly, various nano-cracks behaved similar to optical wave including refraction, total internal reflection and evanescent wave. This novel phenomena of controlled cracking was used to fabricate sophisticated nano/micro patterns in large area which cannot be obtained even with conventional nanofabrication methods. We also have showed that the cracks are directly implementable into a nano/micro-channel application since the cracks naturally have a form of channel-like shape.

  12. Organic nano-floating-gate transistor memory with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Van Tho, Luu; Baeg, Kang-Jun; Noh, Yong-Young

    2016-04-01

    Organic non-volatile memory is advanced topics for various soft electronics applications as lightweight, low-cost, flexible, and printable solid-state data storage media. As a key building block, organic field-effect transistors (OFETs) with a nano-floating gate are widely used and promising structures to store digital information stably in a memory cell. Different types of nano-floating-gates and their various synthesis methods have been developed and applied to fabricate nanoparticle-based non-volatile memory devices. In this review, recent advances in the classes of nano-floating-gate OFET memory devices using metal nanoparticles as charge-trapping sites are briefly reviewed. Details of device fabrication, characterization, and operation mechanisms are reported based on recent research activities reported in the literature.

  13. Control and Manipulation of Nano Cracks Mimicking Optical Wave

    PubMed Central

    Suh, Young D.; Yeo, Junyeob; Lee, Habeom; Hong, Sukjoon; Kwon, Jinhyeong; Kim, Kyunkyu; Ko, Seung Hwan

    2015-01-01

    Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area. Interestingly, various nano-cracks behaved similar to optical wave including refraction, total internal reflection and evanescent wave. This novel phenomena of controlled cracking was used to fabricate sophisticated nano/micro patterns in large area which cannot be obtained even with conventional nanofabrication methods. We also have showed that the cracks are directly implementable into a nano/micro-channel application since the cracks naturally have a form of channel-like shape. PMID:26612107

  14. Hyperspectral characterization of the adjustable nano-coating systems

    NASA Astrophysics Data System (ADS)

    Murzina, Marina V. A.; Farrell, J. Paul; Aktsipetrov, Oleg A.; Murzina, Tatyana V.

    2005-05-01

    Nano-coatings with adjustable optical features is one of the revolutionary technologies of today. In this work, we investigate how hyperspectral imaging can detect adjustable nano-surfaces used, for example, for active camouflage. The distinct attributes of the nano-coating spectra are discussed. Fast algorithms of utilizing hyperspectral information for recognizing these attributes are suggested. The research applies to both recognizing the camouflaged objects and to building unrecognizable camouflage technology. In the context of tracking active camouflage, the identification of characteristic spectral attributes is especially important. Active spectra can constantly change, therefore confusing traditional hyperspectral classification. In contrast, the identified general spectral attributes stay the same allowing for robust identification and reliable tracking of the camouflaged objects.

  15. Light focusing by the unique dielectric nano-waveguide array.

    PubMed

    Zhao, Lihua; Li, Yudong; Qi, Jiwei; Xu, Jingjun; Sun, Qian

    2009-09-14

    The light focusing by using dielectric nano-waveguides array with its length in micron is investigated via the finite-difference time domain (FDTD) method. Simulated results show that the focal length depends on the length and the total width of the arrays and can be altered from tens of micron to wavelength order. Both TM and TE mode incident light can be focused by the array. The wavelength-order focal length is achieved by employing the dielectric nano-waveguide array with variant separations. The unique focusing behavior is contributed to the radiation mode with longer decay length and the large evanescent field which appears in the nano-waveguide array. We believe this simulation results can be a promising guidance for the experiments. PMID:19770931

  16. Gas sensing performance of nano zinc oxide sensors

    NASA Astrophysics Data System (ADS)

    Sharma, Shiva; Chauhan, Pratima

    2016-04-01

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH3) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 sec respectively.

  17. Crystalline silicon solar cells with micro/nano texture

    NASA Astrophysics Data System (ADS)

    Dimitrov, Dimitre Z.; Du, Chen-Hsun

    2013-02-01

    Crystalline silicon solar cells with two-scale texture consisting of random upright pyramids and surface nanotextured layer directly onto the pyramids are prepared and reflectance properties and I-V characteristics measured. Random pyramids texture is produced by etching in an alkaline solution. On top of the pyramids texture, a nanotexture is developed using an electroless oxidation/etching process. Solar cells with two-scale surface texturization are prepared following the standard screen-printing technology sequence. The micro/nano surface is found to lower considerably the light reflectance of silicon. The short wavelengths spectral response (blue response) improvement is observed in micro/nano textured solar cells compared to standard upright pyramids textured cells. An efficiency of 17.5% is measured for the best micro/nano textured c-Si solar cell. The efficiency improvement is found to be due to the gain in both Jsc and Voc.

  18. Friction Properties of Bio-mimetic Nano-fibrillar Arrays

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Hua; Mi, Chun-Hui

    2009-10-01

    Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300nm. Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°. Nanoscale friction properties are mainly focused on. It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces. The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed. An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.

  19. Near Infrared Fluorescent NanoGUMBOS for Biomedical Imaging

    PubMed Central

    Bwambok, David K.; El-Zahab, Bilal; Challa, Santhosh K.; Li, Min; Chandler, Lin; Baker, Gary A.; Warner, Isiah M.

    2009-01-01

    Herein, we report on near infrared (NIR) fluorescent nanoparticles generated from an emergent class of materials we refer to as a Group of Uniform Materials Based on Organic Salts (GUMBOS). GUMBOS are largely frozen ionic liquids, although the concept is more general and is also easily applied to solid ionic materials with melting points in excess of 100 °C. Nanoparticles based on GUMBOS (nanoGUMBOS) derived from a NIR fluorophore are prepared using a reprecipitation method and evaluated for in vivo fluorescence imaging. Due to their uniformity, single-step preparation, and composite nature, nanoGUMBOS help to resolve issues with dye leakage problems innate to alternate cellular stains and unlock a myriad of applications for these materials, highlighting exciting possibilities for multifunctional nanoGUMBOS. PMID:19928781

  20. A triple quantum dot based nano-electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-01

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, "ON" and "OFF" states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  1. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  2. Nano forsterite biocomposites for medical applications: Mechanical properties and bioactivity.

    PubMed

    Furtos, Gabriel; Naghiu, Marieta-Adriana; Declercq, Heidi; Gorea, Maria; Prejmerean, Cristina; Pana, Ovidiu; Tomoaia-Cotisel, Maria

    2016-10-01

    The aim of the present study was to obtain and to investigate nano forsterite and nano forsterite biocomposites for biomedical application. New self-curing forsterite biocomposites were obtained by mixing nano forsterite powder (5, 15, 30, 50, 70 wt %) with 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. The new nano forsterite biocomposites were investigated for mechanical properties: compressive strength (CS) (143-147.12 MPa), compressive modulus (CM) (1.67-2.75 GPa), diametral tensile strength (DTS) (27.33-31.55 MPa), flexural strength (FS) (59.47-83.20 MPa) and flexural modulus (FM) (2.05-8.60 GPa). Increases of CS, DTS, FS with increasing amount of forsterite were observed up to 50 wt %. The highest CM and FM values were registered for 70 wt % and a direct correlation between the forsterite volume fraction (%) was observed. SEM micrographs revealed the morphology of surface of fractured biocomposites after CS test. XPS indicated that these biocomposites promoted the hydroxyapatite formation on their surface immersed in simulated body fluid (SBF). AFM images showed that the growth of the hydroxyapatite layer occurs with a preferred orientation on the surface of forsterite biocomposites after immersion in SBF. Incorporation of nano forsterite in the polymer matrix (bis-GMA/TEGDMA) did show osteoblast adhesion and proliferation was improved on nano forsterite biocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1290-1301, 2016. PMID:26108448

  3. Damping Behavior of Alumina Epoxy Nano-Composites

    NASA Astrophysics Data System (ADS)

    Katiyar, Priyanka; Kumar, Anand

    2016-05-01

    Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.

  4. Diffraction-limited ultrasensitive molecular nano-arrays with singular nano-cone scattering.

    PubMed

    Wang, Yunshan; Chang, Ting-Chou; Stoddart, Paul R; Chang, Hsueh-Chia

    2014-03-01

    Large-library fluorescent molecular arrays remain limited in sensitivity (1 × 10(6) molecules) and dynamic range due to background auto-fluorescence and scattering noise within a large (20-100 μm) fluorescent spot. We report an easily fabricated silica nano-cone array platform, with a detection limit of 100 molecules and a dynamic range that spans 6 decades, due to point (10 nm to 1 μm) illumination of preferentially absorbed tagged targets by singular scattering off wedged cones. Its fluorescent spot reaches diffraction-limited submicron dimensions, which are 10(4) times smaller in area than conventional microarrays, with comparable reduction in detection limit and amplification of dynamic range. PMID:24738011

  5. Plasmon Nano-Optics: Designing Novel Nano-Tools for Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Quidant, Romain

    Light plays a growing role in health science especially with the recent developments of new optical techniques that enable imaging biological processes down to the molecular scale and monitor dynamically physiological mechanisms in patients. In parallel, recent groundbreaking advances in nanotechnologies have opened new perspectives in medicine, for instance in creating new therapies or designing novel compact and highly sensitive diagnostic platforms. In this chapter, the aim is to discuss recent research that sits at the convergence of photonics, nanotechnology, and health. This research is based on the extraordinary optical properties of metallic nanoparticles (MNP) supporting Localized Surface Plasmon (LSP) (see Chap. 4 10.1007/978-3-642-28079-5_4".. We discuss how plasmonic MNP can be used as nano-sources of either light or heat for biological and medical applications.

  6. Thick multilayered (silica/gold) dipole nano-antenna.

    PubMed

    Khaleque, Abdul; Mironov, Evgeny G; Liu, Liming; Hattori, Haroldo T

    2015-12-01

    Nano-antennas are the optical equivalent of antennas that are used to transmit and receive information at radio frequencies. These antennas have been used in different applications in photonics such as optical imaging, particle manipulation, bio-sensing, and improvement of the performance of solar cells. In this article we study composite nano-antennas made of alternating layers of silica and gold. We show that a 50% filling factor leads to a 2.0 times increase in the electric-field enhancement factor when compared with a pure-gold antenna. PMID:26836661

  7. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    NASA Astrophysics Data System (ADS)

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y. M.; Wang, Y.; Nie, J. F.

    2015-11-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications.

  8. Electrical properties of epoxy resin based nano-composites

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Paranthaman, Mariappan Parans; Aytug, Tolga; Sathyamurthy, Srivatsan; More, Karren Leslie; Li, Jing; Goyal, Amit

    2007-01-01

    We investigate the electrical properties of composite materials prepared as nano and sub-micro scale metal-oxide particles embedded in a commercial resin. The filler particles are barium titanate and calcium copper titanate. The physical and structural characteristics of constituents and the fabricated composites are reported. The electrical characterization of the composite samples are performed with the time- and frequency-domain dielectric spectroscopy techniques. The electrical breakdown strength of samples with nano and sub-micron size particles have better electrical insulation properties than the unfilled resin.

  9. Catalytic water oxidation on derivatized nanoITO

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier J; Hull, Jonathan Frazer; Hoertz, Paul G.; Meyer, Thomas J.

    2010-01-01

    Electrocatalytic water oxidation occurs on high surface area, nanocrystalline ITO (nanoITO) surface-derivatized by phosphonate-binding of the catalyst [Ru(Mebimpy)(4,4'-((HO)2OPCH2)2bpy)(OH2)]2+ (Mebimpy is 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy is 2,2'-bipyridine). With nanoITO, spectral data can be acquired on electrochemically generated intermediates and voltammograms monitored spectrophotometrically.

  10. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  11. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  12. Nanoconstriction-based spin-Hall nano-oscillator

    NASA Astrophysics Data System (ADS)

    Demidov, V. E.; Urazhdin, S.; Zholud, A.; Sadovnikov, A. V.; Demokritov, S. O.

    2014-10-01

    We experimentally demonstrate magnetic nano-oscillators driven by pure spin current produced by the spin Hall effect in a bow tie-shaped nanoconstriction. These devices exhibit single-mode auto-oscillation and generate highly-coherent electronic microwave signals with a significant power and the spectral linewidth as low as 6.2 MHz at room temperature. The proposed simple and flexible device geometry is amenable to straightforward implementation of advanced spintronic structures such as chains of mutually coupled spin-Hall nano-oscillators.

  13. Plasmonic "nano-fingers on nanowires" as SERS substrates.

    PubMed

    Sharma, Yashna; Dhawan, Anuj

    2016-05-01

    A surface-enhanced Raman scattering (SERS) substrate based on plasmonics-active metallic nano-finger arrays grown on arrays of triangular-shaped metal-coated silicon nanowire arrays is proposed. Finite-difference time-domain modeling is employed to numerically calculate the effect of the inter-finger gap and the growth angle of the nano-fingers on the magnitude of SERS enhancement and the plasmon resonance wavelength. Additionally, the polarization dependence of the SERS signals from these novel substrates has been studied. A protocol for the fabrication of the proposed SERS substrate is also discussed. PMID:27128080

  14. A nano-silver enzyme electrode for organophosphorus pesticide detection.

    PubMed

    Zheng, Qiqi; Yu, Yonghua; Fan, Kai; Ji, Feng; Wu, Jian; Ying, Yibin

    2016-08-01

    A nano-silver electrode immobilizing acetylcholinesterase (AChE) for the detection of organophosphorus (OPPs) pesticides is reported. Scanning electron microscopy (SEM) was used to characterize the surface structure of two kinds of electrodes fabricated with different sizes of silver powders and the interface between chitosan layer and nano-silver powder layer. Cyclic voltammetry was carried out to characterize the response of silver/chitosan electrode in the absence and in the presence of thiocholine (TCh). It was also used to evaluate the insulativity of the chitosan layer. An amperometric method was performed to measure the response of the electrode to TCh, which is the product of the enzymatic reaction for detecting organophosphorus pesticides indirectly. Although there are many kinds of nanoparticles, silver was chosen for its internal advantage in detecting TCh at low potential without further modification. The result shows nano-silver powder has better performance than usual silver powder, and the limit of detection of paraoxon is 4 ppb under optimized conditions. One percent (w/v) chitosan solution was used as binder for the immobilization of nano-silver powder and AChE, which made it possible for independent electrode fabrication at room temperature, whereas 3% (w/v) chitosan solution was used as insulating compound for controlling the electrode area. Unlike traditional organic insulating ink, chitosan is safe and environmentally friendly, and it is used as insulating material for the first time. The flexible nano-silver/AChE/chitosan electrode was evaluated in Chinese chives and cabbage, and the recoveries of standard addition were 105.11 and 96.41%, respectively. Owing to the antibacterial property of nano-silver and the biocompatibility, safety, and biodegradability of chitosan, the proposed method is safe, facile, environmentally friendly, and has great potential in organophosphorus pesticide detection for food safety. Graphical Abstract Current

  15. Magnetic Micro/Nano Structures for Biological Manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Hsieh, Teng-Fu; Chang, Wei-Chieh; Yeh, Kun-Chieh; Hsu, Ming-Shinn; Chang, Ching-Ray; Chen, Jiann-Yeu; Wei, Zung-Hang

    2016-05-01

    Biomanipulation based on micro/nano structures is an attractive approach for biotechnology. To manipulate biological systems by magnetic forces, the magnetic labeling technology utilized magnetic nanoparticles (MNPs) as a common rule. Ferrofluid, well-dispersed MNPs, can be used for magnetic modification of the surface or as molds to form organized microstructures. For magnetic-based micro/nano structures, different methods to modulate magnetic field at the microscale have been developed. Specifically, this review focused on a new strategy which uses the concept of micromagnetism of patterned magnetic thin film with specific domain walls configurations to generate stable magnetic poles for cell patterning.

  16. Nanoconstriction-based spin-Hall nano-oscillator

    SciTech Connect

    Demidov, V. E.; Urazhdin, S.; Zholud, A.; Sadovnikov, A. V.; Demokritov, S. O.

    2014-10-27

    We experimentally demonstrate magnetic nano-oscillators driven by pure spin current produced by the spin Hall effect in a bow tie-shaped nanoconstriction. These devices exhibit single-mode auto-oscillation and generate highly-coherent electronic microwave signals with a significant power and the spectral linewidth as low as 6.2 MHz at room temperature. The proposed simple and flexible device geometry is amenable to straightforward implementation of advanced spintronic structures such as chains of mutually coupled spin-Hall nano-oscillators.

  17. Method for nano-pumping using carbon nanotubes

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  18. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    PubMed Central

    2012-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death ‘apoptosis’ is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer’s disease and Parkinson’s disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter. PMID:22863139

  19. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Nishida, Kohji

    2012-08-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death `apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter.

  20. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90.

    PubMed

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death 'apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter. PMID:22863139

  1. Raman spectroscopy of polyhedral carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Codorniu Pujals, Daniel; Arias de Fuentes, Olimpia; Desdín García, Luis F.; Cazzanelli, Enzo; Caputi, Lorenzo S.

    2015-09-01

    The Raman spectra of polyhedral carbon nano-onions (PCO), obtained by underwater arc discharge of graphite electrodes, are studied. While the general Raman spectrum of PCO is very similar to those of other carbon nanostructures, including spherical nano-onions, the fine structure of the G and 2D bands gives valuable information that allows using Raman spectroscopy for differentiating the PCO from other carbon structures. The interpretation of the features of the fine structure of the spectra is supported by evidences obtained by TEM.

  2. Mechanical, Electrical, and Environmental Evaluation of Nano-Miniature Connectors

    SciTech Connect

    Hilton, J.W.

    2001-07-30

    Because of their small size (0.025-inch spacing), nano-miniature connectors have been chosen for JTA telemetry applications. At the time they were chosen, extensive testing had not been done to determine the mechanical, electrical, and environmental characteristics of these connectors at the levels required for use by weapon systems. Since nano-miniature connectors use some unique plating and wire crimping processes not used in most design agency connectors, it was decided that these properties should be tested thoroughly. This report describes the results of that testing.

  3. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    PubMed Central

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y.M.; Wang, Y.; Nie, J.F.

    2015-01-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications. PMID:26559002

  4. Reliability analysis of fault-tolerant reconfigurable nano-architectures

    SciTech Connect

    Bhaduri, D.; Graham, P. S.; Shukla, S. K.

    2004-01-01

    Manufacturing defects and transient errors will be abundant in high - density reconfigurable nano-scale designs. Recently, we have automated a computational scheme based on Markov Random Field (MRF) and Belief Propagation algorithms in a tool named NANOLAB to evaluate the reliability of nano architectures. In this paper, we show how our methodology can be exploited to design defect- and fault-tolerant programmable logic architectures. The effectiveness of such automation is illustrated by analyzing reconfigurable Boolean networks formed using different industry-based configurable logic blocks (CLBs), both in the presence of thermal perturbations and signal noise.

  5. Surgical Materials: Current Challenges and Nano-enabled Solutions

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Shin, Su Ryon; Ghaemmaghami, Amir M.; Peppas, Nicholas A.; Khademhosseini, Ali

    2014-01-01

    Surgical adhesive biomaterials have emerged as substitutes to sutures and staples in many clinical applications. Nano-enabled materials containing nanoparticles or having a distinct nanotopography have been utilized for generation of a new class of surgical materials with enhanced functionality. In this review, the state of the art in the development of conventional surgical adhesive biomaterials is critically reviewed and their shortcomings are outlined. Recent advancements in generation of nano-enabled surgical materials with their potential future applications are discussed. This review will open new avenues for the innovative development of the next generation of tissue adhesives, hemostats, and sealants with enhanced functionality for various surgical applications. PMID:25530795

  6. Anti-flammable vinyl ester resin nano-composite with nano-titania

    NASA Astrophysics Data System (ADS)

    Das, Rajib

    Anti-flammable material is a common expectation for any industry and household applications to protect the material from fire accident. Polymer composites also play a significant role in preparing anti flammable materials. Vinyl ester resins (VERs) are thermosetting resins that have excellent mechanical and thermal properties of epoxy resins and Nanotitania is an inexpensive, nontoxic and biocompatible inorganic material. In this paper to investigate the flame retardency of polymer nanocomposites VER is used as polymer matrix and TiO2 is used as inorganic nanofiller.3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (TATMS), a kind of silane is used as a coupling agent to functionalize the surface of nanoTiO2 to improve its flame retardency by adding Si and N2 group. TGA test and FTIR test have been performed and different peaks for Si and N2 in the modified nanofiller and weight loss of fabricated nanofiller confirmed that fabrication method was successful. After that, nanocomposite sample of VERs reinforced with nano TiO2 prepared and the effects of different loadings on mechanical and flame retardant properties are investigated after and before the modification of nanofillers. From tensile test result it is found that up to 5% loading of modified nanofiller the tensile strength is 62 MPa that is almost as same as pure VER and the tensile strength of unmodified nanofiller based PNC is 68 MPa which is not significant improvement in its mechanical property. From MCC test of flame retardancy it is found that the normalized heat release capacity of modified nanofiller based nanocomposite is decreased by 27.7% than unmodified nanofiller based PNC that is 9.8%. Also the normalized total heat release of modified nanofiller based PNC is 21.4% than unmodified PNC that is 12.4%.

  7. Infrared Nano-Spectroscopy and Nano-Imaging of Graphene Plasmons

    NASA Astrophysics Data System (ADS)

    Fei, Zhe

    This dissertation presents infrared nano-spectroscopy and nano-imaging studies of graphene plasmons using scattering-type scanning near-field microscope---a unique technique allowing efficient excitation and high-resolution imaging of graphene plasmons. With this technique, we show in real space that common graphene/SiO2/Si back-gated structure support propagating surface plasmons in the infrared frequencies. The observed plasmons are highly confined surface modes with a wavelength around 200 nm that are conveniently tunable by the back gate voltages. In addition, we perform spectroscopic studies on graphene by varying the probing frequencies. The spectroscopy results not only show direct signature of graphene plasmons but also provide evidence of strong coupling between graphene plasmons and SiO2 optical phonons. Furthermore, we investigate the plasmonic properties of bernal-stacking bilayer graphene (BLG) and find that BLG supports gate-tunable infrared plasmons with higher confinement compared to graphene and randomly stacked graphene layers. Moreover, BLG plasmons can be turned off completely in wide gate voltage close to the charge neutrality point. Those unique plasmonic properties are attributed to both interlayer tunneling and bandgap opening inBLG. Finally, we are able to map and characterize grain boundaries inside graphene film fabricated with chemical vapor deposition (CVD) method by launching surface plasmons. We found grain boundaries, as well as other line defects in CVD graphene, trigger distinct plasmonic twin fringes patterns due to plasmon interference. Theoretical modeling and analysis unveil unique electronic properties associated with grain boundaries.

  8. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

  9. Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...

  10. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance. PMID:25950271

  11. Laboratory Assessment of Nano-Silver Transport in Sand Columns Using Complex Conductivity Measurements

    EPA Science Inventory

    Nano-materials are emerging into the global marketplace. Nano-particles, and other throwaway nano-devices may constitute a whole new class of non-biodegradable pollutants of which scientists have very little understanding. Therefore, the production of significant quantities of n...

  12. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide

    EPA Science Inventory

    Nano-titanium dioxide (nano-Ti02) catalyzes many reactions under UV radiation and is hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six different samples of nano-Ti02 and exposed to UVA radiation. The Ti02 ...

  13. Thermite at the Nano-Scale

    NASA Astrophysics Data System (ADS)

    Mily, Edward Joseph, Jr.

    Physical vapor deposition of thin film thermites allow for a clean avenue for probing fundamental properties of nanoenergetic materials that prove difficult for traditional powder processing. Precise control over diffusion dimensions, microstructure, and total amount of material are able to be realized with this fabrication technique and the testing of such materials provide valuable insight into how oxidation occurs. This thesis provides several examples of how existing PVD techniques can be coupled with thermite constituents to further the energetic community's understanding of how oxidation occurs in the solid state with the variation of geometric and chemical alterations. The goal of these investigations was to elucidate which material properties and mechanisms drive exothermic activity. The thermite thin films of Al/CuO, Zr/CuO, and Mg/Cuo with varied reducing metal constituents were tested under slow heating conditions. The trend of the metal variation demonstrated the importance of terminal oxide diffusion properties in either impeding or enhancing oxygen exchange. When the reducing metal forms a terminal oxide with limited oxygen diffusivity, exothermicity requires elevated activation energies to commence self-sustaining reaction. In addition to the effects of chemical variation, bilayer thicknesses were varied and found to decrease exothermic peak temperatures similar to the trends found in intermetallic thin film energetics and powder energetic materials. The thin film thermites were also subjected to extreme initiation methods via laser driven flyer plate impact ignition and high heating rate heat treatment (105 K/s). General insight into nano thermite behavior at environments characteristic of applications was sought, and similar trends discovered among slow vs rapid testing. Decreasing reaction dimensions yielded higher reactivity and diffusion barrier properties role in impacting exothermic behavior persist to into the microsecond regime. Ultimately

  14. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  15. Dermal sensitization potential of ja-2 solid propellant in guinea pigs. Report for 4 April-9 May 1986

    SciTech Connect

    Lewis, C.M.; Brown, L.D.; Korte, D.W.

    1989-11-01

    JA-2 Solid Propellant was evaluated for its potential to produce dermal sensitization in male guinea pigs. The Buehler test, which utilizes repeated closed patch inductions with the test compound, was used for this evaluation. No evidence that JA-2 Solid Propellant induced sensitization was obtained in the study.

  16. Size dependent fluorescence tuning of naturally occurring betacyanin with silver nano particles

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam; Thankappan, Aparna; Nampoori, V. P. N.

    2014-10-01

    Light absorption and scattering of metal nano partilces occur in very narrow range of wavelengths. This is also dependent on the geometry and shape of metal nano particles. It is also known that scattering is related to (volume)2 and absorption is related to the volume of the spherical metal nano particles. In our work we show that using this principle metal nano particles enable fluorescence tuning of dyes. In our experiment we show such tuning in naturally occurring betacyanin extracted from red beetroot. We also show that such tuning is dependent on the size variation of the silver nano particles.

  17. High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Arora, Harpreet Singh; Lefebvre, Joseph; Bhowmick, Sanjit; Mukherjee, Sundeep

    2016-05-01

    The mechanical behavior of nano-scale metallic glasses was investigated by in situ compression tests in a scanning electron microscope. Platinum-based metallic glass nano-pillars were fabricated by thermoplastic forming. The nano-pillars and corresponding bulk substrate were tested in compression over the range of room temperature to glass transition. Stress-strain curves of the nano-pillars were obtained along with in situ observation of their deformation behavior. The bulk substrate as well as nano-pillars showed an increase in elastic modulus with temperature which is explained by diffusive rearrangement of atomic-scale viscoelastic units.

  18. Prospects of nano-material in breast cancer management.

    PubMed

    Singh, A K; Pandey, A; Tewari, M; Kumar, R; Sharma, A; Pandey, H P; Shukla, H S

    2013-04-01

    Breast cancer evaluation and early diagnosis are core complexity worldwide and an ambiguity for scientists till date. Nano-materials are innovative tools for rapid diagnosis and therapy, which may induce an immense result in the field of oncology. Their exceptional size-dependent properties make them special and superior materials and quite indispensable in several fields of the human activities. The major obstacle in finding cure for malignant breast cancer is to increase in development of resistances for tumors to the therapeutic treatments. The widespread mammo-graph particle is being developed by nations to diagnosis disease in primitive stage to decline the mortality rates caused by breast carcinoma. The advancement of nano-particle based diagnostic tools facilitates in evaluation and provides encouraging development in breast cancer therapeutics. In this compact review, efforts have been made to compose the current advancements in the area of functional nano-particles. Furthermore, in vivo and in vitro applications of nano-materials in breast cancer management are also discussed. PMID:23435835

  19. Effect of temperature on rotational viscosity in magnetic nano fluids.

    PubMed

    Patel, R

    2012-10-01

    Flow behavior of magnetic nano fluids with simultaneous effect of magnetic field and temperature is important for its application for cooling devices such as transformer, loud speakers, electronic cooling and for its efficiency in targeted drug delivery and hyperthermia treatment. Using a specially designed horizontal capillary viscometer, temperature-sensitive and non-temperature-sensitive magnetic nano fluids are studied. In both these case the temperature-dependent rotational viscosity decreases, but follows a quite different mechanism. For temperature-sensitive magnetic nano fluids, the reduction in rotational viscosity is due to the temperature dependence of magnetization. Curie temperature ((T)(c)) and pyromagnetic coefficient are extracted from the study. A fluid with low T(c) and high pyromagnetic coefficient is useful for thermo-sensitive cooling devices and magnetic hyperthermia. For non-temperature-sensitive magnetic nano fluids, reduction in rotational viscosity is due to removal of physisorbed secondary surfactant on the particle because of thermal and frictional effects. This can be a good analogy for removal of drug from the magnetic particles in the case of targeted drug delivery. PMID:23096152

  20. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  1. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-10-14

    The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.

  2. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  3. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-Pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration. PMID:26907415

  4. Nano-structured magnetic metamaterial with enhanced nonlinear properties

    PubMed Central

    Kobljanskyj, Yuri; Melkov, Gennady; Guslienko, Konstantin; Novosad, Valentyn; Bader, Samuel D.; Kostylev, Michael; Slavin, Andrei

    2012-01-01

    Nano-structuring can significantly modify the properties of materials. We demonstrate that size-dependent modification of the spin-wave spectra in magnetic nano-particles can affect not only linear, but also nonlinear magnetic response. The discretization of the spectrum removes the frequency degeneracy between the main excitation mode of a nano-particle and the higher spin-wave modes, having the lowest magnetic damping, and reduces the strength of multi-magnon relaxation processes. This reduction of magnon-magnon relaxation for the main excitation mode leads to a dramatic increase of its lifetime and amplitude, resulting in the intensification of all the nonlinear processes involving this mode. We demonstrate this experimentally on a two-dimensional array of permalloy nano-dots for the example of parametric generation of a sub-harmonic of an external microwave signal. The characteristic lifetime of this sub-harmonic is increased by two orders of magnitude compared to the case of a continuous magnetic film, where magnon-magnon relaxation limits the lifetime. PMID:22745899

  5. Analytical Model of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

    NASA Astrophysics Data System (ADS)

    Han, Boram; Choi, Woo Young

    The fringe field effects of nano-electromechanical (NEM) nonvolatile memory cells have been investigated analytically for the accurate evaluation of NEM memory cells. As the beam width is scaled down, fringe field effect becomes more severe. It has been observed that pull-in, release and hysteresis voltage decrease more than our prediction. Also, the fringe field on cell characteristics has been discussed.

  6. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  7. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  8. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    NASA Astrophysics Data System (ADS)

    William, R. V.; Marikani, A.; Madhavan, D.

    2016-05-01

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO3 nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO3 nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO3 nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm2 at the frequency 4 kHz. The coercivity of BiFeO3 nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  9. Secondary NanoSpacecraft Survey of the Martian Moons

    NASA Astrophysics Data System (ADS)

    Klesh, A. T.; Castillo-Rogez, J. C.

    2012-06-01

    We propose the deployment of multiple NanoSats at Phobos with an ESPA-ring class mothership to provide a massive spectrum of investigations at a very low cost. PIs could fly focused missions with miniaturized instruments for targeted science.

  10. Nano- and microfabrication for overcoming drug delivery challenges

    PubMed Central

    Kam, Kimberly R.

    2013-01-01

    This highlight article describes current nano- and microfabrication techniques for creating drug delivery devices. We first review the main physiological barriers to delivering therapeutic agents. Then, we describe how novel fabrication methods can be utilized to combine many features into a single physiologically relevant device to overcome drug delivery challenges. PMID:23730504

  11. Synthesis and Properties of Nano Zeolitic Imidazolate Frameworks

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; Dohnalkova, Alice; Wang, Chong M.; Liu, Jun; Exarhos, Gregory J.

    2010-07-21

    Nano sized zeolitic imidazolate frameworks [nZIF-8] with excellent chemical and thermal stability has been synthesized at room temperature by simple mixing of 2-methylimidazole and zinc nitrate hexahydrate in methanol/ 1% high molecular weight poly(diallyldimethylammonium chloride) solution for 24 hrs

  12. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  13. Examining the Societal Impacts of Nanotechnology through Simulation: NANO SCENARIO

    ERIC Educational Resources Information Center

    Jarmon, Leslie; Keating, Elizabeth; Toprac, Paul

    2008-01-01

    This article describes a university-sponsored experiential-based simulation, the NANO SCENARIO, to increase the public's awareness and affect attitudes on the societal implications of nanoscience and nanotechnology by bringing together diverse stakeholders' perspectives in a participatory learning environment. Nanotechnology has the potential for…

  14. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  15. Trends in the micro- and nano-CT literature

    NASA Astrophysics Data System (ADS)

    Stock, S. R.

    2008-08-01

    Trends in the type and distribution of published micro- and nano-CT studies are reviewed in this paper. The focus is on the temporal evolution of the literature over the last decade and on the distribution of study types and on the distribution of locations where such studies have appeared. Data analysis and representations are also briefly considered.

  16. Investigation on nano-modified phostocatalytic ultra-smooth concrete

    NASA Astrophysics Data System (ADS)

    Shen, Weigo; Shi, Hua; Shui, Zhonghe; Wang, Guiming; Zhang, Wengsheng

    2013-12-01

    How far the concrete can be used as finishing material depends on how smooth and functional it can be. In this work an ultra smooth surfaced photocatalytic concrete is fabricated with a method taking use of the nano granular nature of the main hydration product of cement Calcium Silicate Hydrate (C-S-H) and the photocatalysis of nano TiO2. The surface of this concrete is covered with nano particles of Calcium Silicate Hydrates (C-S-H) sized around several 10 nm when characterized by FSEM and AFM, the nano TiO2 covers on the surface of the concrete also . The roughness of the concrete surface is arond 10 nm when quantified with AFM in a scanning area of 1.0×1.0μm2, ultra smooth surfaced photocatalytic concrete can degrade MB blue obviously. Due to its ultra smooth and photocatalytic, this concrete is promising to be a new self cleaning finishing material for the modern building.

  17. Silicon nano-carbide in strengthening and ceramic technologies

    NASA Astrophysics Data System (ADS)

    Rudneva, V. V.; Galevsky, G. V.; Kozyrev, N. A.

    2015-09-01

    Technological advantages and conditions of new quality assurance of coatings and products, provided by silicon nano-carbide, have been ascertained in the course of composite electrodeposition of coatings, structural ceramics patterning, and surface hardening of steels via electro-explosive alloying. Silicon nano-carbide has been recommended to be used as a component of wear and corrosion resistant chromium carbide electrodeposited coatings, which can be operated at high temperatures and used for strengthening tools and equipment including those with a complex microrelief of functional surfaces. Silicon nano-carbide as a component of composite “silicon carbide - boron - carbon” can be applied to produce ceramic half products via solid phase sintering in argon under pressure of 0.1 MPa and temperature 2273 K. Application of silicon nano-carbide in technology of tool steel surface hardening via electroexplosive alloying ensures obtaining of a high micro-hard, wear and heat resistant shielding layer which is about 20 μm deep.

  18. Decitabine Nano-conjugate Sensitizing Human Glioblastoma Cells to Temozolomide

    PubMed Central

    Cui, Yi; Naz, Asia; Thompson, David H.; Irudayaraj, Joseph

    2015-01-01

    In this study we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based nano-conjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells. After synthesis, the highly efficient uptake process and intracellular dynamics of this nano-conjugate was monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nano-vector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing a “positive feedback” to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to excellent internalization and endo-lysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than free drug molecules. Hence, the synthesized nano-conjugate and temozolomide could act in synergy to deliver a more potent and long-term anti-proliferation effect against malignant GBM cells. PMID:25751281

  19. Osteoconductivity and Osteoinductivity of NanoFUSE® DBM

    PubMed Central

    Kirk, James F.; Ritter, Gregg; Waters, Chad; Narisawa, Sonoko; Millán, José Luis; Talton, James D.

    2012-01-01

    Bone graft substitutes have become an essential component in a number of orthopedic applications. Autologous bone has long been the gold standard for bone void fillers. However, the limited supply and morbidity associated with using autologous graft material has led to the development of many different bone graft substitutes. Allogeneic demineralized bone matrix (DBM) has been used extensively to supplement autograft bone because of its inherent osteoconductive and osteoinductive properties. Synthetic and natural bone graft substitutes that do not contain growth factors are considered to be osteoconductive only. Bioactive glass has been shown to facilitate graft containment at the operative site as well as activate cellular osteogenesis. In the present study, we present the results of a comprehensive in vitro and in vivo characterization of a combination of allogeneic human bone and bioactive glass bone void filler, NanoFUSE® DBM. NanoFUSE® DBM is shown to be biocompatible in a number of different assays and has been approved by the FDA for use in bone filling indications. Data are presented showing the ability of the material to support cell attachment and proliferation on the material thereby demonstrating the osteoconductive nature of the material. NanoFUSE® DBM was also shown to be osteoinductive in the mouse thigh muscle model. These data demonstrate that the DBM and bioactive glass combination, NanoFUSE® DBM, could be an effective bone graft substitute. PMID:22323112

  20. Rapid fabrication of nano-structured quartz stamps.

    PubMed

    Chuo, Yindar; Landrock, Clint; Omrane, Badr; Hohertz, Donna; Grayli, Sasan V; Kavanagh, Karen; Kaminska, Bozena

    2013-02-01

    Replication of surface nano-structures from a master stamp allows large-area volume production that is otherwise cost prohibitive through conventional direct-write methods, such as electron beam lithography and focused ion beam milling. However, the creation of a master stamp containing sophisticated patterns still requires significant time on such direct-write tools. We demonstrate a method for reducing this tool time by patterning smaller nano-structures, and then enlarging them to the desired size through isotropic etching. We can create circular structures of any arrangement and size, down to the patterning limits of the direct-write tools. Subsequent metal mask deposition, lift-off, and anisotropic etching transforms the circular patterns to out-of-plane pillar structures for the final stamp. A 1 cm(2) area filled with a pattern of 200 nm diameter nano-holes spaced 520 nm apart, requires only 21 h to complete using our process, compared to 75 h using conventional fabrication. We demonstrate the utility and practicality of the quartz stamps through polymer embossing and replication. Embossed polymer nano-hole arrays are coated with a Cr/Au (5/100 nm) film to create surface plasmon resonance structures. Extraordinary optical transmission spectra from the metallized arrays show the expected spectral features when compared to focused ion beam milled structures. PMID:23324651

  1. Nano-subgrain Strengthening in Ball-milled Iron

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2006-03-23

    The strength and deformation behavior of ball-milled, iron-base materials containing nano-scale subgrains have been evaluated. As reported by several authors, nanosubgrains form during the early stages of ball milling as a result of severe plastic deformation inherent in the ball milling process. The strength for these nano-scale subgrains are compared with the strength of larger-scale subgrains in iron and iron-base alloys produced by traditional mechanical working. The data covers over 2 orders of magnitude in subgrain size (from 30 nm to 6 {micro}m) and shows a continuous pattern of behavior. For all materials studied, the strength varied as {lambda}{sup -1}, where {lambda} is the subgrain size. Strengthening from subgrains was found to breakdown at a much smaller subgrain size than strengthening from grains. In addition, the ball-milled materials showed significant strengthening contributions from nano-scale oxide particles. Shear bands are developed during testing of ball-milled materials containing ultra-fine subgrains. A model for shear band development in nano-scale subgrains during deformation has also been developed. The model predicts a strain state of uniaxial compression in the shear band with a strain of -1.24. Subgrains are shown to offer the opportunity for high strength and good work hardening with the absence of yield point behavior.

  2. Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters.

    PubMed

    Geissler, Andreas; Chen, Longquan; Zhang, Kai; Bonaccurso, Elmar; Biesalski, Markus

    2013-05-28

    Robust, superhydrophobic and self-cleaning films were fabricated using nano- or microstructured cellulose fatty acid esters, which were prepared via nanoprecipitation. The superhydrophobic films could be coated on diverse surfaces with non-uniform shapes by distinct coating techniques. PMID:23609473

  3. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA)

    PubMed Central

    Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis. PMID:26484871

  4. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis. PMID:26484871

  5. Draft Genome Sequence of Klebsiella pneumoniae UCD-JA29 Isolated from a Patient with Sepsis

    PubMed Central

    Alexiev, Alexandra; Coil, David A.; Jospin, Guillaume; Adams, Jason Y.

    2016-01-01

    Here, we present the 6,155,188-bp draft genome sequence of Klebsiella pneumoniae UCD-JA29, isolated from blood cultures from a patient with sepsis at the University of California, Davis Medical Center in Sacramento, California, USA. PMID:27151785

  6. Integrated metabolomic and proteomic analysis reveals systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress.

    PubMed

    Mujahid, Md; Prasuna, M Lakshmi; Sasikala, Ch; Ramana, Ch Venkata

    2015-02-01

    Aromatic amines are widely distributed in the environment and are major environmental pollutants. Although degradation of aromatic amines is well studied in bacteria, physiological adaptations and stress response to these toxic compounds is not yet fully understood. In the present study, systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress were deciphered using metabolite and iTRAQ-labeled protein profiling. Strain JA2 tolerated high concentrations of aniline (30 mM) with trace amounts of aniline being transformed to acetanilide. GC-MS metabolite profiling revealed aniline stress phenotype wherein amino acid, carbohydrate, fatty acid, nitrogen metabolisms, and TCA (tricarboxylic acid cycle) were modulated. Strain JA2 responded to aniline by remodeling the proteome, and cellular functions, such as signaling, transcription, translation, stress tolerance, transport and carbohydrate metabolism, were highly modulated. Key adaptive responses, such as transcription/translational changes, molecular chaperones to control protein folding, and efflux pumps implicated in solvent extrusion, were induced in response to aniline stress. Proteo-metabolomics indicated extensive rewiring of metabolism to aniline. TCA cycle and amino acid catabolism were down-regulated while gluconeogenesis and pentose phosphate pathways were up-regulated, leading to the synthesis of extracellular polymeric substances. Furthermore, increased saturated fatty acid ratios in membranes due to aniline stress suggest membrane adaptation. The present study thus indicates that strain JA2 employs multilayered responses: stress response, toxic compound tolerance, energy conservation, and metabolic rearrangements to aniline. PMID:25388363

  7. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    NASA Technical Reports Server (NTRS)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  8. Data Encoding using Periodic Nano-Optical Features

    NASA Astrophysics Data System (ADS)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  9. High Temperature Tribological Properties of Modified Nano-diamond Additive in Lubricating Oil

    NASA Astrophysics Data System (ADS)

    Sun, X. F.; Qiao, Y. L.; Song, W.; Ma, S. N.; Hu, C. H.

    The high temperature tribological properties of surface-modified nano-diamond in colza oil were tested with SRV machine, and wear surface morphology was observed by using three dimension profiler. The results show that the modified nano-diamond by dimer ester possesses excellent anti-wear and friction reducing properties as lubricating oil additive. The friction coefficients of the modified nano-diamond by dimer ester are lower than those of nano-daimond and the modified nano-diamond by oleic ester when the temperature is lower than 200 °C, and its friction coefficients are very similar to nano-diamond's when the temperature is higher than 200 °C, but are better than that of the modified nano-diamond by oleic ester. The wear volume of the modified nano-diamond by dimer ester is far-forth lower than that of nano-daimond and the modified nano-diamond by oleic ester after the continuously heating test, and the wear volume decrease 60% than nano-diamond's.

  10. Heat dissipation from carbon nano-electronics

    NASA Astrophysics Data System (ADS)

    Ong, Zhun Yong

    2011-12-01

    The incorporation of graphitic compounds such as carbon nanotubes (CNTs) and graphene into nano-electronic device packaging holds much promise for waste heat management given their high thermal conductivities. However, as these graphitic materials must be used in together with other semiconductor/insulator materials, it is not known how thermal transport is affected by the interaction. Using different simulation techniques, in this thesis, we evaluate the thermal transport properties --- thermal boundary conductance (TBC) and thermal conductivity --- of CNTs and single-layer graphene in contact with an amorphous SiO2 (a-SiO2) substrate. First, the theoretical methodologies and concepts used in our simulations are presented. In particular, two concepts are described in detail as they are necessary for the understanding of the subsequent chapters. The first is the linear response Green-Kubo (GK) theory of thermal boundary conductance (TBC), which we develop in this thesis, and the second is the spectral energy density method, which we use to directly compute the phonon lifetimes and thermal transport coefficients. After we set the conceptual foundations, the TBC of the CNT-SiO 2 interface is computed using non-equilibrium molecular dynamics (MD) simulations and the new Green-Kubo method that we have developed. Its dependence on temperature, the strength of the interaction with the substrate, and tube diameter are evaluated. To gain further insight into the phonon dynamics in supported CNTs, the scattering rates are computed using the spectral energy density (SED) method. With this method, we are able to distinguish the different scattering mechanisms (boundary and CNT-substrate phonon-phonon) and rates. The phonon lifetimes in supported CNTs are found to be reduced by contact with the substrate and we use that lifetime reduction to determine the change in CNT thermal conductivity. Next, we examine thermal transport in graphene supported on SiO 2. The phonon

  11. Photonic Interrogation and Control of Nano Processes

    NASA Technical Reports Server (NTRS)

    Jassemnejad, Baha

    2003-01-01

    My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were

  12. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  13. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry.

    PubMed

    Charlier, N; Driesschaert, B; Wauthoz, N; Beghein, N; Préat, V; Amighi, K; Marchand-Brynaert, J; Gallez, B

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected. PMID:19128993

  14. Binary TLBO algorithm assisted to investigate the supper scattering plasmonic nano tubes

    NASA Astrophysics Data System (ADS)

    Balvasi, Mohsen; Akhlaghi, Majid; Shahmirzaee, Hossein

    2016-01-01

    One of the most promising plasmonics nano-particle platforms is studying the effect of non-periodic structure of nano-particles on transmitted light. Since properties of transmitted light strongly depend on the localized positions of plasmonic nano particles, a new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nano tubes in order to achieve maximum scattering coefficient spectrum. In binary TLBO (BTLBO), a group of learners consisting of a matrix with binary entries controls the presence ('1') or the absence ('0') of nano tubes in the array. Simulation results show that scattering coefficient strongly depends on the localized position of nano particles and non-periodic structures have more appropriate response in term of scattering coefficient. This approach can be useful in optical applications such as plasmonic nano antenna.

  15. A very small astrometry satellite mission: Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Gouda, G.; Tsujimoto, T.; Yano, T.; Suganuma, M.; Yamauchi, M.; Takato, N.; Miyazaki, S.; Yamada, Y.; Sako, N.; Nakasuka, S.

    2006-08-01

    The current status of the nano-JASMINE project is presented. Nano-JASMINE--a very small satellite weighing less than 10 kg--aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90 degrees are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites--the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey-Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15um. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is [S: scheduled for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (mz< 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  16. Nano-JASMINE: a 10-kilogram satellite for space astrometry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Gouda, Naoteru; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Yamauchi, Masahiro; Takato, Naruhisa; Miyazaki, Satoshi; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    2006-06-01

    The current status of the nano-JASMINE project is presented. Nano-JASMINE - a very small satellite weighing less than 10 kg - aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90° are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites-the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey- Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15μm. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is hoped for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (m z < 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  17. A very small astrometry satellite mission: Nano-JASMINE .

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Gouda, Naoteru; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Yamauchi, Masahiro; Takato, Naruhisa; Miyazaki, Satoshi; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    The current status of the nano-JASMINE project is presented. Nano-JASMINE-a very small satellite weighing less than 10 kg-aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90 degrees are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites-the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We have developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey-Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15um. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is scheduled for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (mz < 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  18. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  19. Nano(Q)SAR: Challenges, pitfalls and perspectives.

    PubMed

    Tantra, Ratna; Oksel, Ceyda; Puzyn, Tomasz; Wang, Jian; Robinson, Kenneth N; Wang, Xue Z; Ma, Cai Y; Wilkins, Terry

    2015-01-01

    Regulation for nanomaterials is urgently needed, and the drive to adopt an intelligent testing strategy is evident. Such a strategy will not only provide economic benefits but will also reduce moral and ethical concerns arising from animal testing. For regulatory purposes, such an approach is promoted by REACH, particularly the use of quantitative structure-activity relationships [(Q)SAR] as a tool for the categorisation of compounds according to their physicochemical and toxicological properties. In addition to compounds, (Q)SAR has also been applied to nanomaterials in the form of nano(Q)SAR. Although (Q)SAR in chemicals is well established, nano(Q)SAR is still in early stages of development and its successful uptake is far from reality. This article aims to identify some of the pitfalls and challenges associated with nano-(Q)SARs in relation to the categorisation of nanomaterials. Our findings show clear gaps in the research framework that must be addressed if we are to have reliable predictions from such models. Three major barriers were identified: the need to improve quality of experimental data in which the models are developed from, the need to have practical guidelines for the development of the nano(Q)SAR models and the need to standardise and harmonise activities for the purpose of regulation. Of these three, the first, i.e. the need to improve data quality requires immediate attention, as it underpins activities associated with the latter two. It should be noted that the usefulness of data in the context of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, consistency and accessibility of those data. PMID:25211549

  20. Mechanistic Study and Characterization of Cold-Sprayed Ultra-High Molecular Weight Polyethylene-Nano-ceramic Composite Coating

    NASA Astrophysics Data System (ADS)

    Ravi, Kesavan; Ichikawa, Yuji; Ogawa, Kazuhiro; Deplancke, Tiana; Lame, Olivier; Cavaille, Jean-Yves

    2016-01-01

    The cold spray deposition of ultra-high molecular weight polyethylene (UHMWPE) powder mixed with nano-alumina, fumed nano-alumina, and fumed nano-silica was attempted on two different substrates namely polypropylene and aluminum. The coatings with UHMWPE mixed with nano-alumina, fumed nano-alumina, and fumed nano-silica were very contrasting in terms of coating thickness. Nano-ceramic particles played an important role as a bridge bond between the UHMWPE particles. Gas temperature and pressure played an important role in the deposition. The differential scanning calorimetry results of the coatings showed that UHMWPE was melt-crystallized after the coating.

  1. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  2. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  3. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.

    PubMed

    Fransman, Wouter; Bekker, Cindy; Tromp, Peter; Duis, Willem B

    2016-08-01

    Increasing production and applications of manufactured nano objects (MNOs) have become a source for human exposure and therefore raise concerns and questions about the possible health effects. In this study, the potential release of nano objects, their agglomerates, and aggregates (NOAA) as a result of sanding of hardwood treated with MNOs-containing coating was examined. Two types of MNO-containing coating were compared with untreated hardwood that allowed the evaluation of the influence of the chemical composition on the release of particles. Furthermore, the rotation speed of the sander and the grit size of the sanding paper were varied in order to assess their influence on the release of particles.Measurements were conducted in a gas-tight chamber with a volume of 19.5 m(3) in which ventilation was minimized during experiments. Particle size distributions were assessed by scanning mobility particle sizer , aerodynamic particle sizer, and electrical low pressure impactor. Furthermore, aerosol number concentrations (Nanotracer), active surface area (LQ1), and fractionated mass (Cascade Impactor) were measured before, during, and after sanding. Scanning electron microscope/energy dispersive X-ray (SEM/EDX) analysis was performed to adequately characterize the morphology, size, and chemical composition of released particles.SEM/EDX analysis indicated that sanding surfaces treated with MNO-containing coating did not release the designated MNO as free primary particles. In both coatings, clusters of MNO were perceived embedded in and attached to micro-sized wood and/or coating particles created by sanding the coated surface. Real-time measurements indicated a lower release of micro-sized particles from sanding of surfaces treated with Coating I than from sanding untreated surfaces or surfaces treated with Coating II. A substantial increase in nanosized and a slight increase in micro-sized particles was perceived as the rotation speed of the sander increased. However

  4. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-05-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8-17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9-5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  5. Cyclic deformation and nano-contact adhesion of MEMS nano-bridges by in-situ TEM nanomechanical testing

    NASA Astrophysics Data System (ADS)

    Lockwood, A. J.; Bobji, M. S.; Bunyan, R. J. T.; Inkson, B. J.

    2010-07-01

    MEMS nano-bridges fabricated by FIB have been deformed in-situ in the TEM. The polysilicon bridges show high levels of flexibility but also, at increased indentation depths, residual plastic deformation after fully unloading the bridges. Here, a significant number of cycles were applied to the centre of a bridge by a W-probe. This resulted in the formation of an adhesive contact with the W-probe. On unloading the nano-bridge regained its original shape and then deformed upwards, adhered to the W-probe. A significant high tensile force of -17μN was required to sever the nano-contact. Analysis of the W-probe and polysilicon nano-bridge indicate that carbon migration along the W-probe and local contact heating due to the associated fatigue cycles were responsible for the adhesive bond, with initial carbon contamination layer on the W-probe of 2nm, thickening during the loading cycles to 25nm.

  6. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method

    SciTech Connect

    Joseph Berkmans, A.; Jagannatham, M.; Priyanka, S.; Haridoss, Prathap

    2014-11-15

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.

  7. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  8. Development of a nano condensation particle counter battery (nano-CPCb) to infer the composition of freshly formed particles down to 1 nm in the boreal forest

    NASA Astrophysics Data System (ADS)

    Kuang, C.; Kangasluoma, J.; Wimmer, D.; Rissanen, M.; Lehtipalo, K.; Worsnop, D. R.; Wang, J.; Kulmala, M. T.; Petaja, T.

    2013-12-01

    Atmospheric particle nucleation is an important environmental nano-scale process, with field measurements and modeling studies indicating that freshly nucleated particles are a significant source of global cloud condensation nuclei. However, our understanding of atmospheric nucleation and its influence on climate is limited as few ambient measurements have been made of either the nucleation rate or the chemical composition of the freshly formed clusters, both of which are necessary to constrain the nucleation mechanism and to develop a process-level model. In this study, a nano condensation particle counter battery (nano CPCb) was developed, characterized, and then deployed during an intensive field campaign to infer the size-resolved composition of freshly formed particles down to 1 nm. The nano CPCb is composed of four CPCs optimized for the detection of sub 3 nm particles, using diethylene glycol, water, and butanol as the CPC working fluids. The nano CPCb was characterized in the laboratory with mono-disperse challenge aerosols of diverse composition. By sampling electrical mobility-classified particles, the nano CPCb accounts for the strong dependence of CPC detection on particle size and charge below 3 nm. Measured differences between the various CPC responses are then attributed to composition-specific interactions between the sampled particles and the various working fluids of the nano CPCb. Characterization results for the composition dependent responses of the nano CPCb will be presented. After characterization, the nano CPCb was integrated as a detector in a Nano-SMPS system optimized for particle detection down to 1 nm. The combined instrument was deployed during an intensive field campaign in the Spring of 2013 to study atmospheric nucleation and initial growth at a long-term measurement site in the boreal forest in Hyytiälä, Finland. Preliminary measurements of freshly nucleated aerosol size distributions and the size-resolved composition

  9. Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood

    PubMed Central

    Lim, Sang-Dong

    2014-01-01

    Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain 9.03μg/mL of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was 37℃, and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products. PMID:26760752

  10. Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood.

    PubMed

    Park, Sun-Young; Do, Jeong-Ryong; Kim, Young-Jin; Kim, Kee-Sung; Lim, Sang-Dong

    2014-01-01

    Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain 9.03μg/mL of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was 37℃, and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products. PMID:26760752

  11. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of

  12. The fate of nano-silver in aqueous media

    NASA Astrophysics Data System (ADS)

    Plowman, Blake. J.; Tschulik, Kristina; Walport, Emily; Young, Neil P.; Compton, Richard G.

    2015-07-01

    Silver nanoparticles offer highly attractive properties for many applications, however concern has been raised over the possible toxicity of this material in environmental systems. While it is thought that the release of Ag+ can play a crucial role in this toxicity, the mechanism by which the oxidative dissolution of nano-silver occurs is not yet understood. Here we address this through the electrochemical analysis of gold-core silver-shell nanoparticles in various solutions. This novel method allows the direct quantification of silver dissolution by normalisation to the gold core signal. This is shown to be highly effective at discriminating between silver dissolution and the loss of nanoparticles from the electrode surface. We evidence through this rigorous approach that the reduction of O2 drives the dissolution of nano-silver, while in the presence of Cl- this dissolution is greatly inhibited. This work is extended to the single nanoparticle level using nano-impact experiments.Silver nanoparticles offer highly attractive properties for many applications, however concern has been raised over the possible toxicity of this material in environmental systems. While it is thought that the release of Ag+ can play a crucial role in this toxicity, the mechanism by which the oxidative dissolution of nano-silver occurs is not yet understood. Here we address this through the electrochemical analysis of gold-core silver-shell nanoparticles in various solutions. This novel method allows the direct quantification of silver dissolution by normalisation to the gold core signal. This is shown to be highly effective at discriminating between silver dissolution and the loss of nanoparticles from the electrode surface. We evidence through this rigorous approach that the reduction of O2 drives the dissolution of nano-silver, while in the presence of Cl- this dissolution is greatly inhibited. This work is extended to the single nanoparticle level using nano-impact experiments

  13. Cytotoxicity of a novel nano-silver particle endodontic irrigant

    PubMed Central

    Chan, Eric LK; Zhang, Chengfei; Cheung, Gary SP

    2015-01-01

    Purpose The aim of this study was to evaluate the cytotoxic effect of a novel nano-silver particle (25.2±6.5 nm) endodontic irrigant (0.2 mM) and compare it with 3% sodium hypochlorite. Materials and methods Two cell types, mouse fibroblast National Institutes of Health 3T3 (NIH 3T3) and primary human periodontal ligament stem cell (hPDLSCs) were used in a test for the effect of direct and indirect (by separating the agent and cell with a layer of agar) exposure to the two solutions. In the direct exposure experiment, ten groups of cell cultures were exposed to one dilution (3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6 or 1:7) of a nano-silver irrigant for 48 hours; the concentration-response function was estimated by determining the number of viable cells in each group by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The 50% lethal dose of the testing irrigant for NIH3T3 and hPDLSCs were estimated. In the second part of the experiment, a modified agar overlaying technique was applied. Twelve culture wells (6-well plate) were divided into three groups (n=4). The cell lysis zone (cytotoxic range) created by the stock nano-silver solution, 3% sodium hypochlorite, and an isotonic phosphate buffering saline (control) was measured by two double blinded observers (Kappa score =100%). The cytotoxic score of specific irrigant was derived by modified Sjögren’s method. Results The 50% lethal doses of the testing nano silver irrigant for NIH 3T3 and hPDLSCs after 48 hours of direct exposure were 0.58 and 0.608 dilution of stock solution, respectively. The cytotoxic scores of nano-silver irrigant and control (phosphate buffered saline) on NIH 3T3 were 0.25 (95% confidence interval [CI] =0 to 1.04) and 0 (95% CI =0 to 0); and on hPDLSCs were 0.13 (95% CI =0 to 0.52) and 0.25 (95% CI =0 to 1.04), respectively. Toxicity of the test and control group on both mouse fibroblasts (P>0.05) and hPDLSCs (P=1.00) was not statistically different. Conclusion Our

  14. Construction of micro-nano network structure on titanium surface for improving bioactivity

    NASA Astrophysics Data System (ADS)

    Jiang, Pinliang; Liang, Jianhe; Lin, Changjian

    2013-09-01

    A novel hierarchical micro-nano structured titania layer was constructed on Ti surface to mimic the multi-level bone structure. The Ti substrate was subjected to a suitable acid etching and subsequent anodization in NaOH electrolyte to form a micro-nano porous titania layer. It was indicated that this microporous/nano-network (micro/nano-network) structured surface presented the enhanced wettability and superhydrophilic property. The polarization curve measurements showed that the as-prepared micro/nano-network structured TiO2 surface was of better corrosion resistance compared to the blank Ti surface, according to its corrosion current decreased, corrosion potential shifted positively and polarization resistance increased in Hank's solution. Meanwhile, the Mott-Schottky plots revealed that less oxygen vacancies existed in the micro/nano-network structured TiO2 film in contrast to the natural oxide film on blank Ti surface. Moreover, it was observed that the micro/nano-network structured surface was completely covered by a homogeneous apatite layer when immersed in simulated body fluid (SBF) for 14 days, exhibiting an excellent ability of biomineration. Furthermore, the superior cell adhesion and viability were discerned on such hierarchically structured surface, through a comparison of MG63 cell behaviors on blank Ti surface, nano-network structured surface and micro/nano-network structured surface. All results suggest our construction of micro-nano porous TiO2 surface is a promising strategy for improving the bioactivity of titanium implants.

  15. Preparation of hybrid nano biocomposite κ-carrageenan/cellulose nanocrystal/nanoclay

    NASA Astrophysics Data System (ADS)

    Zakuwan, Siti Zarina; Ahmad, Ishak; Ramli, Nazaruddin

    2013-11-01

    Biodegradable composites film based on κ-carrageenan and nano particles as filler was prepared to study the mechanical strength of carrageenan composites. Solution casting technique was used to prepare_this biocomposite. Preparation of composite film and nano filler involve two stages, preparation of cellulose nanocrystals (CNC) from kenaf with alkali treatment, bleaching, and hydrolysis followed by the preparation of two types of nano composite. Tensile test was carried on the composite film based on κ-carrageenan with the variation percentage of CNC and nano clay to obtain the optimum CNC and nano clay loading. After that hybrid nano-biocomposite film based on κ-carrageenan with the variation percentage of CNC/nano clay (OMMT) according to optimum value of composite carrageenan/CNC and composite carrageenan/nano clay film was prepared. The effect of nano filler on the mechanical properties of carrageenan films was examined. κ-carrageenan biocomposite increased with the optimum at 4% CNC and nano clay composition. Additional improvement of tensile strength with hybridization of CNC and nanoclay indicated better mechanical properties.

  16. Microstructural evolution of plasma sprayed submicron-/nano-zirconia-based thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Bai, Y.; Liu, K.; Wang, J. W.; Kang, Y. X.; Li, J. R.; Chen, H. Y.; Li, B. Q.

    2016-02-01

    Two types of agglomerates powder with grain sizes in the submicron- /nano-range were used as the feedstock to deposit yttria partially stabilized zirconia (YPSZ) thermal barrier coatings (TBCs). The dual-modal submicron-coating and multi-modal nano-coating were fabricated. The results from thermal shock test indicated that, due to the weak bond and higher densification rate of unmelted nano-particles in the nano-coating, the interface between recrystallization zone and unmelted nano-particles linked up, which resulted in the decrease of content of unmelted nano-particles from 13% to 7%. The weak bond and higher shrinking rate of nano-particles led to the formation of coarse cracks that ran along the recrystallization zone/unmelted nano-particles interfaces. These cracks caused the premature failure of nano-coating. The submicron-coating can overcome the inherent deficiencies of nano-coating at high temperatures and show a higher thermal shock resistance, it is expected to become a candidate for high-performance TBCs.

  17. Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution

    PubMed Central

    Dumont, Egon; Johnson, Andrew C.; Keller, Virginie D.J.; Williams, Richard J.

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ∼6 × 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production. Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L−1 nano silver and 1.5 ng L−1 nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L−1 and 150 ng L−1, respectively. Predicted concentrations were usually highest in July. PMID:25463731

  18. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. PMID:24830568

  19. Obstructive Sleep Apnea in Obese Community-Dwelling Children: The NANOS Study

    PubMed Central

    Alonso-Álvarez, María Luz; Cordero-Guevara, José Aurelio; Terán-Santos, Joaquin; Gonzalez-Martinez, Mónica; Jurado-Luque, María José; Corral-Peñafiel, Jaime; Duran-Cantolla, Joaquin; Kheirandish-Gozal, Leila; Gozal, David

    2014-01-01

    Introduction: Obesity in children is assumed to serve as a major risk factor in pediatric obstructive sleep apnea syndrome (OSAS). However, the prevalence of OSAS in otherwise healthy obese children from the community is unknown. Aim: To determine the prevalence of OSAS in obese children identified and recruited from primary care centers. Methods: A cross-sectional, prospective, multicenter study. Spanish children ages 3–14 y with a body mass index (BMI) greater than or equal to the 95th percentile for age and sex were randomly selected, and underwent medical history, snoring, and Pediatric Sleep Questionnaire (PSQ) assessments, as well as physical examination, nasopharyngoscopy, and nocturnal polysomnography (NPSG) recordings. Results: Two hundred forty-eight children (54.4% males) with mean age of 10.8 ± 2.6 y were studied with a BMI of 28.0 ± 4.7 kg/m2 corresponding to 96.8 ± 0.6 percentile when adjusted for age and sex. The mean respiratory disturbance index (RDI), obstructive RDI (ORDI), and obstructive apnea-hypopnea index (OAHI) were 5.58 ± 9.90, 5.06 ± 9.57, and 3.39 ± 8.78/h total sleep time (TST), respectively. Using ≥ 3/h TST as the cutoff for the presence of OSAS, the prevalence of OSAS ranged from 21.5% to 39.5% depending on whether OAHI, ORDI, or RDI were used. Conclusions: The prevalence of obstructive sleep apnea syndrome (OSAS) in obese children from the general population is high. Obese children should be screened for the presence of OSAS. ClinicalTrials.gov Identifier: NCT01322763. Citation: Alonso-Álvarez ML, Cordero-Guevara JA, Terán-Santos J, Gonzalez-Martinez M, Jurado-Luque MJ, Corral-Peñafiel J, Duran-Cantolla J, Kheirandish-Gozal L, Gozal D, for the Spanish Sleep Network. Obstructive sleep apnea in obese community-dwelling children: the NANOS study. SLEEP 2014;37(5):943-949. PMID:24790273

  20. High-Speed Nano-Processing with Cluster Ion Beams

    NASA Astrophysics Data System (ADS)

    Seki, T.; Matsuo, J.

    2006-11-01

    The gas cluster ion beam process has a high potential for material processing in nano-technology devices, such as photonic crystals, thin film transistors (TFTs) and micro-electromechanical systems (MEMS). In order to fabricate the devices, one needs to etch target materials with a high-speed, low-damage and ultra-smooth process. Extremely high rate sputtering was realized by high-energy cluster ion beam. We have been using this technique for poly-Si TFTs. There are many hillocks on poly-Si films formed by using a laser anneal technique, and they cause degradation of devices. When the laser crystallized poly-Si film was irradiated with cluster ion beam, the higher hillocks could be etched selectively and the surfaces of poly-Si films could be processed with low ion dose. High-speed nano-processing was realized by cluster ion beam.

  1. Controlling nitrogen migration through micro-nano networks.

    PubMed

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G; Chu, Paul K; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium. PMID:24419037

  2. FTIR spectroscopy as a tool for nano-material characterization

    NASA Astrophysics Data System (ADS)

    Baudot, Charles; Tan, Cher Ming; Kong, Jeng Chien

    2010-11-01

    Covalently grafting functional molecules to carbon nanotubes (CNTs) is an important step to leverage the excellent properties of that nano-fiber in order to exploit its potential in improving the mechanical and thermal properties of a composite material. While Fourier Transform Infra Red (FTIR) spectroscopy can display the various chemical bonding in a material, we found that the existing database in FTIR library does not cover all the bonding information present in functionalized CNTs because the bond between the grafted molecule and the CNT is new in the FTIR study. In order to extend the applicability of FTIR to nano-material, we present a theoretical method to derive FTIR spectroscopy and compare it with our experimental results. In particular, we illustrate a method for the identification of functional molecules grafted on CNTs, and we are able to confirm that the functional molecules are indeed covalently grafted on the CNTs without any alterations to its functional groups.

  3. Nonlocal theory and finite element modeling of nano-composites

    NASA Astrophysics Data System (ADS)

    Alvinasab, Ali

    This research is concerned with fundamentals of modeling nano-composites. The study contains two major parts, namely, numerical modeling of nanocomposites and nonlocal theory based approach for predicting behavior of Carbon Nanotubes (CNTs). Computational modeling of glass (silica) fibers having micro-scale outer dimensions and nano-scale internal structures was performed to assess its mechanical behavior. Self-assembly technique was used to synthesize the individual fibers of approximately 5 mum in length with a hexagonal cross-section (2mum between two opposite sides) and honeycomb-like internal nano-structures. These fibers have several potential applications including synthesis of multifunctional composite materials. Numerical modeling of the individual fibers was performed using continuum mechanics based approach wherein linear elastic elements were utilized within a commercial finite element (FE) analysis software. A representative volume element approach was adopted for computational efficiency. Appropriate loads and boundary conditions were used to derive stress-strain relationship (stiffness matrix) which has six independent constants for the individual fiber. Force-displacement relationships under simulated nanoindentation were obtained for the actual fiber (with six independent constants) and under transversely isotropic approximation. The contact problem was solved for the transversely isotropic case, which indicated a much stiffer fiber compared to the FE predictions. This difference is likely due to the geometric nonlinearity considered in FE analysis yielding accurate results for large displacements. The effective mechanical properties of randomly oriented nano-structured glass fiber composite are evaluated by using a continuum mechanics based FE model. The longitudinal and transverse properties of aligned fiber are calculated. Then the equivalent material properties for tilted fiber with different fiber orientations are obtained. Based on equivalent

  4. CCD centroiding analysis for Nano-JASMINE observation data

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo

    2010-07-01

    Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.

  5. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-12-01

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

  6. Electrical properties of epoxy resin based nano-composites

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.; Parans Paranthaman, M.; Aytug, Tolga; Sathyamurthy, Srivatsan; More, Karren L.; Li, Jing; Goyal, Amit

    2007-01-01

    We investigate the electrical properties of composite materials prepared as nano- and sub-micron-scale metal-oxide particles embedded in a commercial resin. The filler particles are barium titanate and calcium copper titanate. The physical and structural characteristics of the constituents and the fabricated composites are reported. Electrical characterization of the composite samples is performed using time- and frequency-domain dielectric spectroscopy techniques. The electrical breakdown strength of samples with nano- and sub-micron-sized particles have better electrical insulation properties than the unfilled resin. The start-up funding for the research was provided by the US Department of Energy, Office of Electricity Delivery and Energy Reliability, and follow-on funding was continued by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725 (D06-100).

  7. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  8. Skyrmion Creation and Manipulation by Nano-Second Current Pulses.

    PubMed

    Yuan, H Y; Wang, X R

    2016-01-01

    Easy creation and manipulation of skyrmions is important in skyrmion based devices for data storage and information processing. We show that a nano-second current pulse alone is capable of creating/deleting and manipulating skyrmions in a spin valve with a perpendicularly magnetized free layer and broken chiral symmetry. Interestingly, for an in-plane magnetized fixed layer, the free layer changes from a single domain at zero current to a Neel wall at an intermediate current density. Reverse the current polarity, the Neel wall changes to its image inversion. A properly designed nano-second current pulse, that tends to convert one type of Neel walls to its image inversion, ends up to create a stable skyrmion without assistance of external fields. For a perpendicularly magnetized fixed layer, the skyrmion size can be effectively tuned by a current density. PMID:26934954

  9. Single Wall Carbon Nano Tube Films and Coatings

    NASA Astrophysics Data System (ADS)

    Sreekumar, T. V.; Kumar, Satish; Ericson, Lars M.; Smalley, Richard E.

    2002-03-01

    Purified single wall carbon nano tubes (SWNTs) produced from the high-pressure carbon monoxide (HiPCO) process have been dissolved /dispersed in oleum. These solutions /dispersions were optically homogeneous and have been used to form stand-alone SWNT films. The washed, dried, and heat-treated films are isotropic. The scanning electron micrographs of the film surface shows that the nanotube ropes (or fibrils) of about 20 nm diameters are arranged just like macroscopic fibers in a non-woven fabric. Polarized Raman spectroscopy of the SWNT film confirms the isotropic nature of these films. The films are being characterized for their thermal, mechanical as well electrical properties. Thin nano tube coatings, including optically transparent coatings, have also been made on a variety of substrates such as glass, polyethylene, polystyrene, polypropylene, silicon wafer, as well as stainless steel.

  10. Nano-particle laser removal from silicon wafers

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Cho, S. H.; Kim, T. H.; Park, Jin-Goo; Busnaina, Ahmed A.

    2003-11-01

    A laser shock cleaning (LSC) technique as a new dry cleaning methodology has been applied to remove micro and nano-scale inorganic particulate contaminants. Shock wave is generated in the air just above the wafer surface by focusing intensive laser beam. The velocity of shock wave can be controlled to 10,000 m/sec. The sub-micron sized silica and alumina particles are attempted to remove from bare silicon wafer surfaces. More than 95% of removal efficiency of the both particles are carried out by the laser-induced airborne shock waves. In the final, a removal of nano-scale slurry particles from real patterned wafers are successfully demonstrated by LSC after chemical-mechanical polishing (CMP) process.

  11. Skyrmion Creation and Manipulation by Nano-Second Current Pulses

    PubMed Central

    Yuan, H. Y.; Wang, X. R.

    2016-01-01

    Easy creation and manipulation of skyrmions is important in skyrmion based devices for data storage and information processing. We show that a nano-second current pulse alone is capable of creating/deleting and manipulating skyrmions in a spin valve with a perpendicularly magnetized free layer and broken chiral symmetry. Interestingly, for an in-plane magnetized fixed layer, the free layer changes from a single domain at zero current to a Neel wall at an intermediate current density. Reverse the current polarity, the Neel wall changes to its image inversion. A properly designed nano-second current pulse, that tends to convert one type of Neel walls to its image inversion, ends up to create a stable skyrmion without assistance of external fields. For a perpendicularly magnetized fixed layer, the skyrmion size can be effectively tuned by a current density. PMID:26934954

  12. Open Access Internet Resources for Nano-Materials Physics Education

    NASA Astrophysics Data System (ADS)

    Moeck, Peter; Seipel, Bjoern; Upreti, Girish; Harvey, Morgan; Garrick, Will

    2006-05-01

    Because a great deal of nano-material science and engineering relies on crystalline materials, materials physicists have to provide their own specific contributions to the National Nanotechnology Initiative. Here we briefly review two freely accessible internet-based crystallographic databases, the Nano-Crystallography Database (http://nanocrystallography.research.pdx.edu) and the Crystallography Open Database (http://crystallography.net). Information on over 34,000 full structure determinations are stored in these two databases in the Crystallographic Information File format. The availability of such crystallographic data on the internet in a standardized format allows for all kinds of web-based crystallographic calculations and visualizations. Two examples of which that are dealt with in this paper are: interactive crystal structure visualizations in three dimensions and calculations of lattice-fringe fingerprints for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

  13. Microelectromechanical systems based Stewart platform with sub-nano resolution

    NASA Astrophysics Data System (ADS)

    Yang, Seung Ho; Kim, Yong-Sik; Yoo, Jae-Myung; Dagalakis, Nicholas G.

    2012-08-01

    There have been difficulties in the fabrication of microelectromechanical systems (MEMS) based Stewart platforms [D. Stewart, Proc. Inst. Mech. Eng. 180(15), 371 (1965)]. The macroscale positioning technology, such as universal joints, ball and roller bearings, and commercial actuators, used for building the macro Stewart platforms could not be fit into MEMS version machines. In this paper, we report that these difficulties were overcome at the National Institute of Standards and Technology (NIST). A prototype of NIST's MEMS-based Stewart platform showed six degree-of-freedom kinematic capability with sub-nano-scale resolution. This MEMS Stewart platform can be adopted as a precision stage for sub nano-scale applications, such as the atomic force microscope and manipulation of molecules.

  14. Synthesis and Electrochemical Properties of Nano-VO2 (B).

    PubMed

    Yang, Yun; Lu, Yong; Wang, Wei; Feng, Chuanqi; Yang, Shuijin

    2016-03-01

    The nano-VO2 (B) has been self-assembly synthesized by hydrothermal method using different templates, which may give them some interesting properties. The as-prepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated. The results show that the hexadecyltrimethyl ammonium bromide (CTAB) (soft template) was used to obtain the VO2 (B1) nanobelts. The flake graphite (hard template) was taken to get the VO2 (B2) nanosheets. The VO2 (B1) nanobelts have higher initial capacity to compare with VO2 (B2). But the VO2 (B2) nanosheets showed better cycling performance than that of VO2 (B1) nanobelts. The nano VO2 (B2) is a promising anode material for lithium ion battery application. PMID:27455666

  15. First principles simulations of nano-peptides on copper surfaces

    NASA Astrophysics Data System (ADS)

    Le, Duy; Rahman, Talat S.

    Protein folding is the process in which a protein structure finds its stable conformation or functional shape. It is considered as a robust way for self-assembling proteins into conformations with desired functionalities. In this work, to obtain a microscopic understanding of the protein folding phenomenon, as influenced by a metallic environment, we perform density functional theory based simulations of the folding of a 9-amino-acid nano-peptide on various copper surfaces. We show that the considered nano-peptides fold into stable monomers or dimers with different conformations depending on the crystallographic orientation of the surface. Comparison of our simulated Scanning Tunneling Microscopy (STM) image with available experimental results provides insights into the microscopic forces responsible for dimerization on Cu(100). This work is supported in part by NSF Grant CHE-1310327.

  16. Micro and nano devices in passive millimetre wave imaging systems

    NASA Astrophysics Data System (ADS)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  17. Optoacoustic sensor for nanoparticle linked immunosorbent assay (NanoLISA)

    NASA Astrophysics Data System (ADS)

    Conjusteau, André; Liopo, Anton; Tsyboulski, Dmitri; Ermilov, Sergey A.; Elliott, William R., III; Barsalou, Norman; Maswadi, Saher M.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2011-03-01

    We developed an optoacoustic biosensor intended for the detection of bloodborne microorganisms using immunoaffinity reactions of antibody-coupled gold nanorods as contrast agents specifically targeted to the antigen of interest. Optoacoustic responses generated by the samples are detected using a wide band ultrasonic transducer. The sensitivity of the technique has been assessed by determining minimally detectable optical density which corresponds to the minimum detectable concentration of the target viral surface antigens. Both ionic solutions and gold nanorods served as the contrast agent generating the optoacoustic response. The sensitivity of Nano-LISA is at least OD=10-6 which allows reliable detection of 1 pg/ml (depending on the commercial antibodies that are used). Adequate detection sensitivity, as well as lack of non-specific cross-reaction between antigens favors NanoLISA as a viable technology for biosensor development.

  18. Variable Emissivity Surfaces for Micro and Nano-satellites

    NASA Astrophysics Data System (ADS)

    Cao, Shengzhu; Chen, Xuekang; Wu, Gan; Yang, Jianping; Wang, Rui; Shang, Kaiwen; Wang, Lanxi

    Micro and Nano-satellites with their low thermal capacitance are vulnerable to rapid temperature fluctuations. Therefore, thermal control becomes more important, but the limitations on mass and electrical power require new approaches. Possible solutions to actively vary the heat rejection of the satellite in response to variations in the thermal load and environmental condition are the use of a variable emissivity surfaces (VES), such as thermochromic, electrochromic, micro louvers and thermal switches, etc. Micro louvers with small volume, low weight, less power consumption and large emissivity variation, will be the more suitable solution for micro and Nano-satellites. In this paper, a polymer micro louver is developed. The design and fabrication of a prototype of micro louvers are described. The actuation voltage of the micro louver's analytic model is also discussed. Finally, the experimental results for the actuation voltage and emissivity variations that measured on these prototypes are presented.

  19. Optics for nano-satellite X-ray monitor

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír.; Burrows, David N.; Prieskorn, Zachary; Hudec, René

    The Schmidt lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space X-ray monitors. It is possible to assemble Schmidt lobster eye telescopes with dimensions and focal lengths acceptable for nano class satellites. In this paper, draft of nano-class space mission providing monitoring of specific sky area is presented. Preliminary optical design study for such mission is performed. Two of possible opticle designs are presented. For those designs, field of view, effective input area and other basic optical parameters are calculated. Examples of observed images are presented.

  20. Recent progress in micro and nano-joining

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hu, A.; Khan, M. I.; Wu, W.; Tam, B.; Yavuz, M.

    2009-05-01

    Micro and nano-joining has been identified as a key enabling technology in the construction of micromechanical and microelectronic devices. The current article reviews recent progress in micro and nano-joining. In particular, laser micro-welding (LMW) of crossed 316 LVM stainless steel (SS) wire was compared to conventional resistance micro-welding (RMW) and was successfully employed in welding a Pt-Ir /SS dissimilar combination. Welding of Au nanoparticles was realized using femtosecond laser irradiation and its application in the surface enhanced Raman spectroscopy was investigated. Brazing between carbon nanotube (CNT) bundles and Ni electrodes was attained in vacuum, resulting in the development of a novel CNT filament of incandescent lamps.

  1. Mirror profile optimization for nano-focusing KB mirror

    SciTech Connect

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-06-23

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.

  2. Method for forming a nano-textured substrate

    DOEpatents

    Jeong, Sangmoo; Hu, Liangbing; Cui, Yi

    2015-04-07

    A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale, roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.

  3. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  4. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  5. Terahertz pinch harmonics enabled by single nano rods.

    PubMed

    Park, Hyeong-Ryeol; Bahk, Young-Mi; Choe, Jong Ho; Han, Sanghoon; Choi, Seong Soo; Ahn, Kwang Jun; Park, Namkyoo; Park, Q-Han; Kim, Dai-Sik

    2011-11-21

    A pinch harmonic (or guitar harmonic) is a musical note produced by lightly pressing the thumb of the picking hand upon the string immediately after it is picked [J. Chem. Educ. 84, 1287 (2007)]. This technique turns off the fundamental and all overtones except those with a node at that location. Here we present a terahertz analogue of pinch harmonics, whereby a metallic nano rod placed at a harmonic node on a terahertz nanoresonator suppresses the fundamental mode, making the higher harmonics dominant. Strikingly, a skin depth-wide nano rod placed at the mid-point turns off all resonances. Our work demonstrates that terahertz electromagnetic waves can be tailored by nanoparticles strategically positioned, paving important path towards terahertz switching and detection applications. PMID:22109504

  6. Action of colloidal silica films on different nano-composites

    NASA Astrophysics Data System (ADS)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  7. Studies on structural properties of clay magnesium ferrite nano composite

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Mandeep; Jeet, Kiran; Kaur, Rajdeep

    2015-08-01

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m2/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  8. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  9. Nano-materials enabled thermoelectricity from window glasses.

    PubMed

    Inayat, Salman B; Rader, Kelly R; Hussain, Muhammad M

    2012-01-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m(2) window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology. PMID:23150789

  10. Generation of nano roughness on fibrous materials by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kulyk, I.; Scapinello, M.; Stefan, M.

    2012-12-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  11. First study of nano-composite scintillators under alpha irradiation

    SciTech Connect

    Letant, S; Wang, T

    2005-06-01

    We demonstrate that nano-composite materials based on semiconductor quantum dots have great potential for radiation detection via scintillation. While quantum dots and laser dyes both emit in the visible range at room temperature, the Stokes shift of the dyes is significantly larger. The scintillation output of both systems was studied under alpha irradiation and interpreted using a combination of energy-loss and photon transport Monte Carlo simulation models. The comparison of the two systems, which allows the quantification of the role played by the Stokes shift in the scintillation output, opens up exciting possibilities for a new class of scintillators that would take advantage of the limitless assembly of nano-crystals in large, transparent, and sturdy matrices.

  12. Controlling nitrogen migration through micro-nano networks

    PubMed Central

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium. PMID:24419037

  13. Controlling nitrogen migration through micro-nano networks

    NASA Astrophysics Data System (ADS)

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  14. On nonlinear response of micro and nano capacitive resonators

    NASA Astrophysics Data System (ADS)

    Knecht, Martin William

    The nonlinear response of an electrostatically actuated micro/nano-resonator is investigated. The resonator is parametrically actuated using an electrostatic force with a first order fringe correction. Viscous damping and the Casimir effect are included. The resonator is studied using the Method of Multiple Scales in a direct approach of the problem and then compared numerically using a Reduced Order Model based on the application of a Galerkin procedure. In addition to primary resonance (o0), parametric resonances are found at half (1/2o0), twice (2o 0), and three-halves ( 32 o0) natural frequency. The frequency response is investigated for excitations near primary and near half primary natural frequency. Results for a uniform capacitive resonator are provided at micro and nano scales.

  15. Enhanced delivery of nano- and submicron particles using elongated microparticles.

    PubMed

    Raphael, Anthony P; Sisney, John P; Liu, David C; Prow, Tarl W

    2015-01-01

    Nanodermatology is a rapidly emerging field of study receiving significant interest because of its potential application in the prevention and treatment of skin diseases. However, nanoparticulate penetration into and through the skin is not feasible through topical application alone. Many physical and chemical approaches have been developed to enhance particulate penetration into skin. The most successful have been physical penetration enhancers. We have found that elongated microparticles can significantly improve topical nano- and microsphere delivery in an in vivo porcine model. The delivery efficiency was inversely related to the diameter of the payload. These data support a role for elongated microparticle enhanced delivery of nano- and submicron particulate cosmeceutical or therapeutic applications. PMID:25176162

  16. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite.

    PubMed

    Li, Xiang; Huang, Jie; Ahmad, Zeeshan; Edirisinghe, Mohan

    2007-01-01

    Electrohydrodynamic spray deposition of a hydroxyapatite (HA) suspension consisting of nano-particles has been used to create a hydroxyapatite coating comprising of nanostructured surface topography. Preliminary coating experiments were carried out on an Al substrate and 30 s was found to be the most appropriate coating time. HA coating on titanium for this duration was found to be well-bonded to the substrate after heat-treatment. A thickness of 2 mum was achieved in 30 s and formation of a bone-like apatite on the surface was detected after incubation of the heat-treated coated Ti in simulated body fluid. Therefore, we have uncovered a new procedure by which nano-biomaterials can be deposited on real orthopedic substrates to prepare bioactive thin coatings in a simple and easy manner. PMID:18032815

  17. Bio-nano interactions detected by nanochannel electrophoresis.

    PubMed

    Luan, Binquan

    2016-08-01

    Engineered nanoparticles have been widely used in industry and are present in many consumer products. However, their bio-safeties especially in a long term are largely unknown. Here, a nanochannel-electrophoresis-based method is proposed for detecting the potential bio-nano interactions that may further lead to damages to human health and/or biological environment. Through proof-of-concept molecular dynamics simulations, it was demonstrated that the transport of a protein-nanoparticle complex is very different from that of a protein along. By monitoring the change of ionic currents induced by a transported analyte as well as the transport velocities of the analyte, the complex (with bio-nano interaction) can be clearly distinguished from the protein alone (with no interaction with tested nanoparticles). PMID:27334561

  18. Evaporation of sessile droplets on nano-porous alumina surfaces

    NASA Astrophysics Data System (ADS)

    Singh, Sanchit K.; Pratap, Dheeraj; Ramakrishna, S. Anantha; Khanderkar, Sameer

    2013-07-01

    An experimental investigation of evaporation of sessile droplets is presented on nano-porous alumina surfaces with different pore distribution morphologies and pore sizes. Evaporation can be considered as a quasi-steady-state process, such that the vapor concentration distribution above the droplet satisfies the Laplace equation, but with a timevarying droplet surface. For benchmarking, the evaporation of sessile water and ethanol droplets is also investigated on standard borosilicate glass and Teflon surfaces respectively, and results are compared with the previous work. Contact angle variation with time is also recorded and high speed videos showing the spreading process of droplets on nanoporous surfaces are taken. The results clearly show that nano-structuring is an effective tool to control wettability as well as the diffusive evaporation process.

  19. Studies on structural properties of clay magnesium ferrite nano composite

    SciTech Connect

    Kaur, Manpreet Singh, Mandeep; Jeet, Kiran Kaur, Rajdeep

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  20. Nano-materials Enabled Thermoelectricity from Window Glasses

    NASA Astrophysics Data System (ADS)

    Inayat, Salman B.; Rader, Kelly R.; Hussain, Muhammad M.

    2012-11-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  1. Skyrmion Creation and Manipulation by Nano-Second Current Pulses

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Wang, X. R.

    2016-03-01

    Easy creation and manipulation of skyrmions is important in skyrmion based devices for data storage and information processing. We show that a nano-second current pulse alone is capable of creating/deleting and manipulating skyrmions in a spin valve with a perpendicularly magnetized free layer and broken chiral symmetry. Interestingly, for an in-plane magnetized fixed layer, the free layer changes from a single domain at zero current to a Neel wall at an intermediate current density. Reverse the current polarity, the Neel wall changes to its image inversion. A properly designed nano-second current pulse, that tends to convert one type of Neel walls to its image inversion, ends up to create a stable skyrmion without assistance of external fields. For a perpendicularly magnetized fixed layer, the skyrmion size can be effectively tuned by a current density.

  2. Construction of a DNA Nano-Object Directly Demonstrates Computation

    PubMed Central

    Wu, Gang; Jonoska, Natasha; Seeman, Nadrian C.

    2009-01-01

    We demonstrate a computing method in which a DNA nano-object representing the solution of a problem emerges as a result of self-assembly. We report an experiment in which three-vertex colorability for a 6-vertex graph with 9 edges is solved by constructing a DNA molecule representing the colored graph itself. Our findings show that computation based on “shape processing” is a viable alternative to symbol processing when computing by molecular self-assembly. PMID:19607875

  3. Nanorod Aspect Ratios Determined by the Nano-Impact Technique.

    PubMed

    Plowman, Blake J; Young, Neil P; Batchelor-McAuley, Christopher; Compton, Richard G

    2016-06-01

    The in situ electrochemical sizing of individual gold nanorods is reported. Through the combination of electrochemical dissolution and the use of a surface-bound redox tag, the volume and surface area of the nanorods are measured, and provide the aspect ratio and the size of the nanorods. Excellent independent agreement is found with electron microscopy analysis of the nanorods, establishing the application of nano-impact experiments for the sizing of anisotropic nanomaterials. PMID:27106096

  4. Nano-JASMINE: A 10-kilogram Satellite For Space Astrometry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Gouda, N.; Yano, T.; Suganuma, M.; Yamauchi, M.; Yamada, Y.

    The current status of the nanoJASMINE project is presented Nano-JASMINE--a very small satellite weighing less than 10 kg -- aims to carry out astrometry measurements on nearby bright stars This satellite adopts the same observation technique used by the HIPPARCOS satellite In this technique simultanaeously measurements of two different fields separated by an angle that is greater than 90 degrees is carried out these measurements are carried out in the course of continuous scanning observations of the whole sky This technique enables us to distinguish between the irregularty in the spin velocity and stellar position distribution The major technical differrence between the nano-JASMINE and the HIPPARCOS satellite is the utilization of a CCD sensor device that makes it possible to achieve comparable astrometry accuracy by using an extremly smaller telescope We developed a prototype system and evaluated its performance The telescope is composed entirely of alminum A 5-cm telecsope including an aluminum beam combiner The telescope is based on the standard Richey-Chretian optical system and has a composit f ratio of 33 that enables the match of the Airy disk size to three times of the CCD pixel size of 15um The full depletion CCD will be used in the time delayed and integration TDI mode in order to efficiently survey the whole sky in the near-infrared wavelength The nano-JASMINE satellite is scheduled for launch in 2008 as a piggyback system We expected the satellite to measure the position and proper motion of bright stars mz 7 5 with an

  5. The nano-plasma interface: implications of the protein corona

    PubMed Central

    Wolfram, Joy; Yang, Yong; Shen, Jianliang; Moten, Asad; Chen, Chunying; Shen, Haifa; Ferrari, Mauro; Zhao, Yuliang

    2014-01-01

    The interactions between nanoparticles and macromolecules in the blood plasma dictate the biocompatibility and efficacy of nanotherapeutics. Accordingly, the properties of nanoparticles and endogenous biomolecules change at the nano-plasma interface. Here, we review the implications of such changes including toxicity, immunological recognition, molecular targeting, biodistribution, intracellular uptake, and drug release. Although this interface poses several challenges for nanomedicine, it also presents opportunities for exploiting nanoparticle-protein interactions. PMID:24656615

  6. Chaos suppression in a spin-torque nano-oscillator

    NASA Astrophysics Data System (ADS)

    Xu, H. Z.; Chen, X.; Liu, J.-M.

    2008-11-01

    We propose a novel practicable self-control scheme to suppress chaos in a spin-torque nano-oscillator in the presence of spin-polarized dc and ac. The magnetization dynamics is investigated by performing micromagnetic simulation. A complete chaos control diagram is obtained, indicating that employment of this proper self-control scheme over a broad frequency range of the ac can greatly reduce the degree of chaoticity in the oscillator.

  7. Micro- and nano-fabricated implantable drug-delivery systems

    PubMed Central

    Meng, Ellis; Hoang, Tuan

    2013-01-01

    Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted. PMID:23323562

  8. Nano-spectroscopy and chemical nanoscopy of biomaterials

    SciTech Connect

    Bruendermann, E.; Schmidt, D. A.; Kopf, I.; Havenith, M.

    2010-02-03

    A scanning near-field infrared microscopy experimental station will be integrated into the ANKA-IR2 beamline to combine broadband synchrotron radiation with near-field microscopy. Other microscopy techniques also available in the station will be compared. We have performed nano-spectroscopy investigating biomaterials like self-assembled monolayers and nanoscale lipid membranes. Coherent synchrotron radiation (CSR) at ANKA has been measured to determine power and beam profile for coupling terahertz radiation to the nanoscope.

  9. PREFACE: International Conference on Theoretical Physics: Dubna-Nano 2012

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury M.

    2012-11-01

    The International Conference 'Dubna-Nano2012' was held on 9-14 July 2012 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference was the third one in the series started in 2008. 'Dubna-Nano2012' provided an opportunity for presentations and discussions about theoretical and experimental advances in the rapidly growing area of nanophysics. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: graphene and other carbon nanostructures, topological insulators, quantum transport, quantum dots, atomic clusters, Josephson junctions and applications of nanosystems. About 100 scientists from 22 countries participated in the conference. The program included 38 oral talks and 39 posters. This volume contains 35 contributions. We would like to express our gratitude to all participants for their presentations and discussions. We are deeply indebted to the members of the International Advisory Committee Professors K S Novoselov, T Ando, T Chakraborty, J Fabian, V M Galitski, F Guinea, M Z Hasan, P Hawrylak, K Kadowaki, R Kleiner, T Koyama, Yu I Latyshev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G. Reinhard, J M Rost and A Ya Vul. Financial support from BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Further information about 'Dubna-Nano2012' is available on the homepage http://theor.jinr.ru/~nano12. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  10. Stress development in particulate, nano-composite and polymeric coatings

    NASA Astrophysics Data System (ADS)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  11. Nano-spectroscopy and chemical nanoscopy of biomaterials

    NASA Astrophysics Data System (ADS)

    Bründermann, E.; Schmidt, D. A.; Kopf, I.; Havenith, M.

    2010-02-01

    A scanning near-field infrared microscopy experimental station will be integrated into the ANKA-IR2 beamline to combine broadband synchrotron radiation with near-field microscopy. Other microscopy techniques also available in the station will be compared. We have performed nano-spectroscopy investigating biomaterials like self-assembled monolayers and nanoscale lipid membranes. Coherent synchrotron radiation (CSR) at ANKA has been measured to determine power and beam profile for coupling terahertz radiation to the nanoscope.

  12. Tomography and optical properties of silver nano-inukshuk

    SciTech Connect

    Ghosh, Tanmay; Das, Pabitra; Ghosh, Tapas; Satpati, Biswarup

    2015-06-24

    Following a simple dip-and-rinse galvanic displacement reaction silver nano-inukshuks were prepared directly on germanium surfaces. Morphology, 3-dimensional (3D) structure, chemical composition and optical properties of the silver nanostructurs were investigated using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and cathodoluminescence (CL) spectroscopy. Exact 3D morphology was reconstructed in the by tomography mode of TEM.

  13. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema

    Jim Schuck and Alice Egan

    2010-01-08

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  14. Programmable bio-nano-chip system for saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Kosten, Thomas R.; Miller, Craig S.; Ebersole, Jeffrey L.; McDevitt, John

    2014-06-01

    This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

  15. Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.

    PubMed

    Altintas, Zeynep; Abdin, Mohammed J; Tothill, Alexander M; Karim, Kal; Tothill, Ibtisam E

    2016-09-01

    Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface. The solid phase photopolymerization approach used for the synthesis of nanoMIPs ranging from 200 to 235 nm in diameter. The limit of detection and KD were significantly improved when endotoxin samples were prepared using a novel triethylamine method. This improved the efficiency of gold nanoparticle functionalization by targeting the subunits of the endotoxin. Compared to the vancomycin MIP control, the endotoxin MIPs displayed outstanding affinity and selectivity towards the endotoxin with KD values in the range of 4.4-5.3 × 10(-10) M, with limits of detection of 0.44 ± 0.02 ng mL(-1) as determined by surface plasmon resonance (SPR) sensor when itaconic acid was used as the functional monomer. The MIP surface can be regenerated >30 times without significant loss of binding activity making this approach highly cost effective for expensive analyte templates. The combination of molecular modeling and solid phase synthesis enabled the successful synthesis of nanoMIPs capable of recognition and ultrasensitive detection of endotoxins using the highly sensitive SPR biosensor with triethylamine method. PMID:27543033

  16. New York Nano-Bio Molecular Information Technology (NYNBIT) Incubator

    SciTech Connect

    Das, Digendra K

    2008-12-19

    This project presents the outcome of an effort made by a consortium of six universities in the State of New York to develop a Center for Advanced technology (CAT) in the emerging field of Nano-Bio-Molecular Information Technology. The effort consists of activities such as organization of the NYNBIT incubator, collaborative research projects, development of courses, an educational program for high schools, and commercial start-up programs.

  17. Nano-booms — A new class of WIMP detectors

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Fagaly, R. L.; Bielski, R.

    2014-07-01

    Weakly Interacting Massive Particles (WIMPs) can constitute a large fraction of the dark matter (DM) in the universe. The importance of coherent scattering and detection of annual modulation effect (AME), diurnal modulation effect (DME) and direction sensitive AME was documented. In particular, DAMA/NaI and DAMA/LIBRA have released data collected during 14 annual cycles, which support in model independent way, the presence of DM particles in the galactic halo. There is a clear evidence of AME signature in DAMA data. Recently, positive hints have also been reported by CoGeNT on AME signature in Ge, while CREST-II and CDMS-Si have published some events in excess of estimated background; these events are compatible with WIMP-like candidates. If these results would be analyzed all together in some WIMP scenario, one could derive: MDM < 10 GeV/c2. Current generation of detectors is far from being optimal or in some cases even reliable when MDM approaches 5 GeV/c2. We propose a detector, which can detect the direction of incoming WIMPs. This paper focus on a particular implementation of the new class of nano-explosive DM detectors. The local heating ignites an explosion, which release chemical energy stored in such a nano-grain. Use of two component nano-explosive permits to amplify the bolometric effect due to WIMP-candidates. The energy available becomes 100,000-fold larger than the energy initially deposited by DM candidate. This leads to a sonic-boom, which can be detected remotely. This new class of nano-explosive detectors may be especially important in detection of WIMPs with very low mass, say MDM = O(5 GeV/c2). We describe a configuration, which leads to explosive-triode, and permits detection of the direction of incoming WIMPs.

  18. Nano-structured polymer composites and process for preparing same

    DOEpatents

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  19. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard Lee; Hollingsworth, Joel P.

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  20. On the capabilities of nano electrokinetic thrusters for space propulsion

    NASA Astrophysics Data System (ADS)

    Diez, F. J.; Hernaiz, G.; Miranda, J. J.; Sureda, M.

    2013-02-01

    A theoretical analysis considering the capabilities of nano electrokinetic thrusters for space propulsion is presented. The work describes an electro-hydro-dynamic model of the electrokinetic flow in nano-channels and represents the first attempt to exploit the advantages of the electrokinetic effect as the basis for a new class of nano-scale thrusters suitable for space propulsion. Among such advantages are their small volume, fundamental simplicity, overall low mass, and actuation efficiency. Their electrokinetic efficiency is affected by the slip length, surface charge, pH and molarity. These design variables are analyzed and optimized for the highest electrokinetic performance inside nano-channels. The optimization is done for power consumption, thrust and specific impulse resulting in high theoretical efficiency ˜99% with corresponding high thrust-to-power ratios. Performance curves are obtained for the electrokinetic design variables showing that high molarity electrolytes lead to high thrust and specific impulse values, whereas low molarities provide highest thrust-to-power ratios and efficiencies. A theoretically designed 100 nm wide by 1 μm long emitter optimized using the ideal performance charts developed would deliver thrusts from 5 to 43 μN, specific impulse from 60 to 210 s, and would have power consumption between 1-15 mW. It should be noted that although this is a detail analytical analysis no prototypes exist and any future experimental work will face challenges that could affect the final performance. By designing an array composed of thousands of these single electrokinetic emitters, it would result in a flexible and scalable propulsion system capable of providing a wide range of thrust control for different mission scenarios and maintaining very high efficiencies and thrust-to-power ratio by varying the number of emitters in use at any one time.

  1. The nano-plasma interface: Implications of the protein corona.

    PubMed

    Wolfram, Joy; Yang, Yong; Shen, Jianliang; Moten, Asad; Chen, Chunying; Shen, Haifa; Ferrari, Mauro; Zhao, Yuliang

    2014-12-01

    The interactions between nanoparticles and macromolecules in the blood plasma dictate the biocompatibility and efficacy of nanotherapeutics. Accordingly, the properties of nanoparticles and endogenous biomolecules change at the nano-plasma interface. Here, we review the implications of such changes including toxicity, immunological recognition, molecular targeting, biodistribution, intracellular uptake, and drug release. Although this interface poses several challenges for nanomedicine, it also presents opportunities for exploiting nanoparticle-protein interactions. PMID:24656615

  2. Fabricated nano-fiber diameter as liquid concentration sensors

    NASA Astrophysics Data System (ADS)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  3. A review of nano-optics in metamaterial hybrid heterostructures

    SciTech Connect

    Singh, Mahi R.

    2014-03-31

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  4. Ecotoxicity of selected nano-materials to aquatic organisms.

    PubMed

    Blaise, C; Gagné, F; Férard, J F; Eullaffroy, P

    2008-10-01

    Present knowledge concerning the ecotoxic effects of nano-materials is very limited and merits to be documented more fully. For this purpose, we appraised the toxicity of nine metallic nano-powders (copper zinc iron oxide, nickel zinc iron oxide, yttrium iron oxide, titanium dioxide, strontium ferrite, indium tin oxide, samarium oxide, erbium oxide, and holmium oxide) and of two organic nano- powders (fullerene-C60 and single-walled carbon nanotube or SWCNT). After a simple process where nano-powders (NPs) were prepared in aqueous solution and filtered, they were then bioassayed across several taxonomic groups including decomposers (bacteria), primary producers (micro-algae), as well as primary and secondary consumers (micro-invertebrates and fish). Toxicity data generated on the 11 NPs reflected a wide spectrum of sensitivity that was biological level-, test-, and endpoint-specific. With all acute and chronic tests confounded for these 11 NPs, toxicity responses spanned over three orders of magnitude: >463 mg/L (24 h LC50 of the invertebrate Thamnoplatyurus platyurus for fullerene-C60) / 0.3 mg/L (96 h EC50 of the invertebrate Hydra attenuata for indium tin oxide), that is a ratio of 1543. On the basis of the MARA (Microbial Array for Risk Assessment) assay toxic fingerprint concept, it is intimated that NPs may have different modes of toxic action. When mixed in a 1:1 ratio with a certified reference material (CRM) sediment, two solid phase assays and an elutriate assay, respectively, showed that five NPs (copper zinc iron oxide, samarium oxide, erbium oxide, holmium oxide, and SWCNT) were able to increase both CRM sediment toxicity and its elutriate toxicity. This initial investigation suggests that chemicals emerging from nanotechnology may pose a risk to aquatic life in water column and sediment compartments and that further studies on their adverse effects are to be encouraged. PMID:18528913

  5. In Conversation with Jim Schuck: Nano-optics

    SciTech Connect

    Jim Schuck and Alice Egan

    2009-08-07

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  6. A review of nano-optics in metamaterial hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.

    2014-03-01

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  7. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    NASA Astrophysics Data System (ADS)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  8. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    NASA Astrophysics Data System (ADS)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  9. Physiological impacts of ABA-JA interactions under water-limitation.

    PubMed

    de Ollas, Carlos; Dodd, Ian C

    2016-08-01

    Plant responses to drought stress depend on highly regulated signal transduction pathways with multiple interactions. This complex crosstalk can lead to a physiological outcome of drought avoidance or tolerance/resistance. ABA is the principal mediator of these responses due to the regulation of stomatal closure that determines plant growth and survival, but also other strategies of drought resistance such as osmotic adjustment. However, other hormones such as JA seem responsible for regulating a subset of plant responses to drought by regulating ABA biosynthesis and accumulation and ABA-dependent signalling, but also by ABA independent pathways. Here, we review recent reports of ABA-JA hormonal and molecular interactions within a physiological framework of drought tolerance. Understanding the physiological significance of this complex regulation offers opportunities to find strategies of drought tolerance that avoid unwanted side effects that limit growth and yield, and may allow biotechnological crop improvement. PMID:27299601

  10. New Enhanced Artificial Bee Colony (JA-ABC5) Algorithm with Application for Reactive Power Optimization

    PubMed Central

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054

  11. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    NASA Astrophysics Data System (ADS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.

  12. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis.

    PubMed

    Nozaki, Kosuke; Shinonaga, Togo; Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao; Tsukamoto, Masahiro; Yamashita, Kimihiro; Nagai, Akiko

    2015-12-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni-Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. PMID:26354233

  13. Exploring packaging strategies of nano-embedded thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Singha, Aniket; Mahanti, Subhendra D.; Muralidharan, Bhaskaran

    2015-10-01

    Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multi moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.

  14. Nano-modification to improve the ductility of cementitious composites

    SciTech Connect

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam; Şahmaran, Mustafa; Yıldırım, Gürkan; Lachemi, Mohamed

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.

  15. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    PubMed

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications. PMID:26428100

  16. Nano-imprint gold grating as refractive index sensor

    NASA Astrophysics Data System (ADS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-05-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  17. Computational Design of Photovoltaic Materials with Self Organized Nano Structures

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2013-03-01

    Chalcopyrite and II-VI semiconductors, such as Cu(In, Ga)Se2, Cu2ZnSn(S, Se)4 and Cd(S, Te), are one of the most promising materials for low cost photovoltaic solar-cells. In this paper, based on first-principles calculations, we propose that self-organized nano-structures in these compounds will enhance the conversion efficiency. Our calculations are based on the KKR-CPA-LDA with the self-interaction correction. We also use VASP package for calculating mixing energy and effective interactions of the systems by using the cluster expansion method. For phase separating systems, we simulate nano-structure formation by using the Monte Carlo method. It is expected that the photo-generated electron-hole pairs are efficiently separated by the type-II interface and then effectively transferred along the quasi-one-dimensional structures. Moreover, we can expect multiplication of generated carriers due to the multi-exciton effects in nano-structures.

  18. Magnetic nano-sorbents for fast separation of radioactive waste

    SciTech Connect

    Zhang, Huijin; Kaur, Maninder; Qiang, You

    2013-07-01

    In order to find a cost effective and environmentally benign technology to treat the liquid radioactive waste into a safe and stable form for resource recycling or ultimate disposal, this study investigates the separation of radioactive elements from aqueous systems using magnetic nano-sorbents. Our current study focuses on novel magnetic nano-sorbents by attaching DTPA molecules onto the surface of double coated magnetic nanoparticles (dMNPs), and performed preliminary sorption tests using heavy metal ions as surrogates for radionuclides. The results showed that the sorption of cadmium (Cd) and lead (Pb) onto the dMNP-DTPA conjugates was fast, the equilibrium was reached in 30 min. The calculated sorption capacities were 8.06 mg/g for Cd and 12.09 mg/g for Pb. After sorption, the complex of heavy elements captured by nano-sorbents can be easily manipulated and separated from solution in less than 1 min by applying a small external magnetic field. In addition, the sorption results demonstrate that dMNP-DTPA conjugates have a very strong chelating power in highly diluted Cd and Pb solutions (1-10 μg/L). Therefore, as a simple, fast, and compact process, this separation method has a great potential in the treatment of high level waste with low concentration of transuranic elements compared to tradition nuclear waste treatment. (authors)

  19. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    NASA Astrophysics Data System (ADS)

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-10-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research.

  20. Nano-PCMs for passive electronic cooling applications

    NASA Astrophysics Data System (ADS)

    Colla, L.; Fedele, L.; Mancin, S.; Buonomo, B.; Ercole, D.; Manca, O.

    2015-11-01

    The present work aims at investigating a new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in a paraffin wax having a melting temperature of 45°C. The thermophysical properties such as latent heat and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCM. Finally, a numerical comparison between the use of the pure paraffin wax and the nano-PCM in a typical electronics passive cooling device was implemented. Numerical simulations were carried out using the Ansys-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures, melting time and junction temperature were reported. Moreover, a comparison with experimental results was also performed.

  1. The evolution of telemedicine and nano-technology

    NASA Astrophysics Data System (ADS)

    Park, Dong Kyun; Young Jung, Eun; Chan Moon, Byung

    2012-10-01

    This paper will cover definition and history of telemedicine, changes in medical paradigm and roll of telemedicine and roll of nano-technology for evolution of telemedicine. Hypothetically, telemedicine is distance communication for medical purpose and modern definition explains telemedicine as `a system of health care delivery in which physicians examine distant patients through the use of telecommunications technology. Medical service will change to personalized medicine based on gene information to prevent and manage diseases due to decrease of acute diseases, population aging and increase of prevalence in chronic diseases, which means current medical services based on manualized treatment for diseases will change to personalized medicine based on individual gene information. Also, international healthcare will be activated to provide high quality medical services with low cost using developed transportation. Moreover, hospital centered medical services will change to patients centered medical service due to increase of patient's rights. Development in sensor technology is required for telemedicine to be applied as basic infrastructure for medical services. Various researches in nano-biosensor field are conducted due to introduction of new technologies. However, most researches are in fundamental levels that requires more researches for stability and clinical usefulness. Nano technology is expected to achieve innovative development and define new criteria for disease prevention and management.

  2. Janus "nano-bullets" for magnetic targeting liver cancer chemotherapy.

    PubMed

    Shao, Dan; Li, Jing; Zheng, Xiao; Pan, Yue; Wang, Zheng; Zhang, Ming; Chen, Qi-Xian; Dong, Wen-Fei; Chen, Li

    2016-09-01

    Tumor-targeted delivery of anti-cancer drugs with controlled drug release function has been recognized as a promising strategy for pursuit of increased chemotherapeutic efficacy and reduced adverse effects. Development of magnetic nanoparticulates as delivery carriers to accommodate cytotoxic drugs for liver cancer treatment has evoked immense interest with respect to their convenience in biomedical application. Herein, we engineered multifunctional Janus nanocomposites, characterized by a head of magnetic Fe3O4 and a body of mesoporous SiO2 containing doxorubicin (DOX) as "nano-bullets" (M-MSNs-DOX). This nanodrug formulation possessed nanosize with controlled aspect-ratio, defined abundance in pore structures, and superior magnetic properties. M-MSN-DOX was determined to induce selective growth inhibition to the cancer cell under magnetic field rather than human normal cells due to its preferable endocytosis by the tumor cells and pH-promoted DOX release in the interior of cancer cells. Ultimately, both subcutaneous and orthotropic liver tumor models in mice have demonstrated that the proposed Janus nano-bullets imposed remarkable suppression of the tumor growth and significantly reduced systematic toxicity. Taken together, this study demonstrates an intriguing targeting strategy for liver cancer treatment based on a novel Janus nano-bullet, aiming for utilization of nanotechnology to obtain safe and efficient treatment of liver cancer. PMID:27258482

  3. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  4. Semiconductor nano-gap antennas with high quality factor

    NASA Astrophysics Data System (ADS)

    Uemoto, Mitsuharu; Ajiki, Hiroshi

    2013-03-01

    Metallic islands with nano-gap structure are one of the most popular optical antennas. We theoretically propose a new nano-gap antenna utilizing exciton resonance of semiconductor. A light field at the nano-gap (hot spot) formed between two CuCl islands is significantly enhanced by a factor of metallic antennas. However, the hot spot of the semiconducting antenna exhibits much higher quality factor (Q ~104) at T = 40 K than those of metallic antennas which do not exceed Q ~ 100 . Our result suggests the semiconducting antenna would function as a new type of photonic cavity. The calculation method is based on a finite element method which can take into account exciton resonance. We also systematically study the geometry dependence of the enhancement factor and Q factor. In contrast to metallic antenna, blunt edges of semiconducting islands at the gap are preferable in order to achieve high enhancement factor. This is because of the fact that exciton wave function extends near the edge for blunt geometry.

  5. Photothermal response of near-infrared-absorbing NanoGUMBOS.

    PubMed

    Dumke, Jonathan C; Qureshi, Ammar; Hamdan, Suzana; El-Zahab, Bilal; Das, Susmita; Hayes, Daniel J; Boldor, Dorin; Rupnik, Kresimir; Warner, Isiah M

    2014-01-01

    The photothermal properties of several near-infrared-absorbing nanoparticles derived from group of uniform materials based on organic salts (GUMBOS) and composed of cationic dyes coupled with biocompatible anions are evaluated. These nanoparticles were synthesized using a reprecipitation method performed at various pH values: 2.0, 5.0, 7.0, 9.0, and 11.0. The cations for the nanoparticles derived from GUMBOS (nanoGUMBOS), [1048] and [1061], have absorbance maxima at wavelengths overlapping with human soft tissue absorbance minima. Near-infrared-absorbing nanoGUMBOS excited with a 1064 nm continuous laser led to heat generation, with an average temperature increase of 20.4 ± 2.7 °C. Although the [1061][Deoxycholate] nanoGUMBOS generated the highest temperature increase (23.7 ± 2.4 °C), it was the least photothermally efficient compound (13.0%) due to its relatively large energy band gap of 0.892 eV. The more photothermally efficient compound [1048][Ascorbate] (64.4%) had a smaller energy band gap of 0.861 eV and provided an average photothermal temperature increase of 21.0 ± 2.1 °C. PMID:24666951

  6. Fracture strength of micro- and nano-scale silicon components

    NASA Astrophysics Data System (ADS)

    DelRio, Frank W.; Cook, Robert F.; Boyce, Brad L.

    2015-06-01

    Silicon devices are ubiquitous in many micro- and nano-scale technological applications, most notably microelectronics and microelectromechanical systems (MEMS). Despite their widespread usage, however, issues related to uncertain mechanical reliability remain a major factor inhibiting the further advancement of device commercialization. In particular, reliability issues related to the fracture of MEMS components have become increasingly important given continued reductions in critical feature sizes coupled with recent escalations in both MEMS device actuation forces and harsh usage conditions. In this review, the fracture strength of micro- and nano-scale silicon components in the context of MEMS is considered. An overview of the crystal structure and elastic and fracture properties of both single-crystal silicon (SCS) and polycrystalline silicon (polysilicon) is presented. Experimental methods for the deposition of SCS and polysilicon films, fabrication of fracture-strength test components, and analysis of strength data are also summarized. SCS and polysilicon fracture strength results as a function of processing conditions, component size and geometry, and test temperature, environment, and loading rate are then surveyed and analyzed to form overarching processing-structure-property-performance relationships. Future studies are suggested to advance our current view of these relationships and their impacts on the manufacturing yield, device performance, and operational reliability of micro- and nano-scale silicon devices.

  7. Exploring packaging strategies of nano-embedded thermoelectric generators

    SciTech Connect

    Singha, Aniket; Muralidharan, Bhaskaran; Mahanti, Subhendra D.

    2015-10-15

    Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multi moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.

  8. Nano-FTIR chemical mapping of minerals in biological materials

    PubMed Central

    Amarie, Sergiu; Zaslansky, Paul; Kajihara, Yusuke; Griesshaber, Erika; Schmahl, Wolfgang W

    2012-01-01

    Summary Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies. PMID:22563528

  9. Nano-FTIR chemical mapping of minerals in biological materials.

    PubMed

    Amarie, Sergiu; Zaslansky, Paul; Kajihara, Yusuke; Griesshaber, Erika; Schmahl, Wolfgang W; Keilmann, Fritz

    2012-01-01

    Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies. PMID:22563528

  10. Deployed Nano-Satellites to Determine Gravity as Secondary Mission

    NASA Astrophysics Data System (ADS)

    Crowe, William J.; Kinkaid, Nathan M.; Page, John R.; Olsen, John

    2015-04-01

    The mass properties of a planetary body can be estimated by using visiting spacecraft, although this currently requires the use of specialised equipment for precise ranging and attitude control. An alternate method without this requirement would allow the reallocation of mass, power and bandwidth budgets to other important scientific tasks. One such method may deploy groups of nano-satellites in the vicinity of a planetary body to make gravity estimates. The estimates are made by measuring the changes in velocity and position of the nano-satellites relative to one another as they move through the gravity field near the body. This technique only requires the use of low-power communications equipment and an ad-hoc positioning network. Computationally simple techniques have been derived which are able to produce in-situ gravity estimates. These have been tested using simulation of vehicles travelling near modelled planetary bodies. As the effectiveness of this technique may depend on the manner in which the vehicles are deployed, two such strategies were simulated as a point for comparison and discussion.. It has been found that the technique becomes increasingly inaccurate for smaller asteroids. By relying on non-directional hardware, each nano-satellite may pursue alternate primary mission goals concurrently with mass determination.

  11. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  12. High-frequency nano-optomechanical disk resonators in liquids

    NASA Astrophysics Data System (ADS)

    Gil-Santos, E.; Baker, C.; Nguyen, D. T.; Hease, W.; Gomez, C.; Lemaître, A.; Ducci, S.; Leo, G.; Favero, I.

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  13. Multiplexing nano-electroporation for simultaneous transfection of multiple cells

    NASA Astrophysics Data System (ADS)

    Howdyshell, M.; Vieira, G.; Gallego-Perez, D.; Zhao, X.; Lee, L. J.; Sooryakumar, R.

    2013-03-01

    Transfection of biomolecules into cells via electrophoresis across nanochannels, or nano-electroporation, is a recently developed technique shown to deliver precisely controlled dosages with low cell mortality rates. Such advantages are due to the nanochannels used for transfection, which distinguish this technique from bulk and micro-electroporation. Recent demonstrations of nano-electroporation rely on optical tweezers for cell localization, which restrict throughput to sequential electroporation of one cell at a time. In the current work, we overcome this drawback by advancing a multiplexed approach that integrates the nano-channel device with an array of magnetic traps remotely controlled by external magnetic fields. This setup enables multiple magnetically labeled cells to be manipulated in parallel, allowing for simultaneous electroporation of many cells with precisely controlled dosages. After transfection, the cells can be moved downstream for further analysis. Such a magnetically-actuated, remotely-controlled approach for loading of cells and subsequent removal of transfected cells has the potential to transform the current device into an automated platform for simultaneous dosage-controlled biomolecule delivery to large numbers of individual cells.

  14. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    PubMed

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes. PMID:24245325

  15. NanoCipro Encapsulation in Monodisperse Large Porous PLGA Microparticles

    PubMed Central

    Arnold, Matthew M.; Gorman, Eric M.; Schieber, Loren J.; Munson, Eric J.; Berland, Cory

    2007-01-01

    Pulmonary drug delivery of controlled release formulations may provide an effective adjunct approach to orally delivered antibiotics for clearing persistent lung infections. Dry powder formulations for this indication should possess characteristics including; effective deposition to infected lung compartments, persistence at the infection site, and steady release of antibiotic. Large porous particles (∼10-15 μm) have demonstrated effective lung deposition and enhanced lung residence as a result of their large diameter and reduced clearance by macrophages in comparison to small microparticles (∼1-5 μm). In this report, Precision Particle Fabrication technology was used to create monodisperse large porous particles of poly(D,L-lactic-co-glycolic acid) (PLGA) utilizing oils as extractable porogens. After extraction, the resulting large porous PLGA particles exhibited a low density and a web-like or hollow interior depending on porogen concentration and type, respectively. Ciprofloxacin nanoparticles (nanoCipro) created by homogenization in dichloromethane, possessed a polymorph with a decreased melting temperature. Encapsulating nanoCipro in large porous PLGA particles resulted in a steady release of ciprofloxacin that was extended for larger particle diameters and for the solid particle morphology in comparison to large porous particles. The encapsulation efficiency of nanoCipro was quite low and factors impacting the entrapment of nanoparticles during particle formation were elucidated. A dry powder formulation with the potential to control particle deposition and sustain release to the lung was developed and insight to improve nanoparticle encapsulation is discussed. PMID:17604870

  16. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials.

    PubMed

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-01-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484

  17. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    PubMed Central

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-01-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484

  18. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds. PMID:24962377

  19. Remediation of PCB contaminated soils using iron nano-particles.

    PubMed

    Varanasi, Patanjali; Fullana, Andres; Sidhu, Sukh

    2007-01-01

    In this study, iron nano-particles were used to remediate PCB contaminated soil and an attempt was made to maximize PCB destruction in each treatment step. The results show that nano-particles do aid in the dechlorination process and high PCB destruction efficiencies can be achieved. The destruction efficiency during the preliminary treatment (mixing of soil and iron nano-particles in water) can be increased by increasing the water temperature. The maximum thermal destruction (pyrolysis/combustion of soil after preliminary treatment) of soil-bound PCBs occurs at 300 degrees C in air. A minimum total PCB destruction efficiency of 95% can be achieved by this process. The effect of changing treatment parameters such as type of mixing, time of mixing and mixing conditions and application of other catalysts like iron oxide and V(2)O(5)/TiO(2) was also investigated. It was found that at 300 degrees C in air, iron oxide and V(2)O(5)/TiO(2) are also good catalysts for remediating PCB contaminated soils. PMID:16962632

  20. Micro-nano-biosystems: An overview of European research.

    PubMed

    Lymberis, Andreas

    2010-06-01

    New developments in science, technologies and applications are blurring the boundaries between information and communications technology (ICT), micro-nano systems and life sciences, e.g. through miniaturisation and the ability to manipulate matter at the atomic scale and to interface live and man-made systems. Interdisciplinary research towards integrated systems and their applications based on emerging convergence of information & communication technologies, micro-nano and bio technologies is expected to have a direct influence on healthcare, ageing population and well being. Micro-Nano-Bio Systems (MNBS) research and development activities under the European Union's R&D Programs, Information & Communication Technologies priority address miniaturised, smart and integrated systems for in-vitro testing e.g. lab-on-chips and systems interacting with the human e.g. autonomous implants, endoscopic capsules and robotics for minimally invasive surgery. The MNBS group involves hundreds of key public and private international organisations working on system development and validation in diverse applications such as cancer detection and therapy follow-up, minimally invasive surgery, capsular endocsopy, wearable biochemical monitoring and repairing of vital functions with active implant devices. The paper presents MNBS rationale and activities, discusses key research and innovation challenges and proposes R&D directions to achieve the expected impact on healthcare and quality of life. PMID:20450400

  1. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  2. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  3. Nano-Sized Natural Colorants from Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.

    2010-03-01

    Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.

  4. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  5. NanoSIMS and Micro-Raman Spectroscopy applied to the Analysis of Uranium Oxyfluoride Particles for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Kips, R.; Kristo, M.; Crowhurst, J.; Stefaniak, E.; Hutcheon, I. D.

    2010-12-01

    Environmental swipe sampling is used by safeguards organizations to verify the absence of undeclared nuclear activities. Particulate material collected in environmental swipe samples is typically analyzed for its uranium isotopic composition. At enrichment facilities, these swipe samples often contain UO2F2 particles formed from the hydrolysis of uranium hexafluoride gas. Since UO2F2 particulate material has been found to be unstable with respect to the loss of fluorine (J.A. Carter et al. Task A.200.3 K/NSP-777, 1998) the measurement of the residual amount of fluorine has the potential of placing boundaries on the particle’s age and exposure history. To investigate the decomposition of UO2F2 and its potential applications in nuclear safeguards and nuclear forensics, a suite of micro-analytical tools was applied to a set of lab-synthesized UO2F2 particles. Samples were either stored in an inert atmosphere or exposed to different levels of humidity, temperature and light to identify those environmental conditions that accelerate the decomposition of UO2F2. Given the small size of the particles, secondary ion mass spectrometry with nanometer-scale spatial resolution (NanoSIMS) was used to measure the relative amount of fluorine. The elemental data from the NanoSIMS was complemented with micro-Raman spectroscopy for molecular fingerprinting. These measurements showed that even though the decomposition of UO2F2 generally happens very slowly, subtle differences can be distinguished depending on the environmental conditions to which they were exposed. The exposure to humidity was identified as the main factor accelerating the loss of fluorine in UO2F2 particles. Particles exposed to 30 % relative humidity and higher showed a decrease in the relative amount of fluorine and a shift of the UO22+ symmetric stretching frequency towards lower frequencies. These changes were attributed to an increase in hydration of the UO2F2 particles. This work was performed under the

  6. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    PubMed

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs. PMID:25607307

  7. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  8. Discovering New Minerals in the Early Solar System: a Nano-mineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.

    2008-12-01

    Nano-mineralogy is a study of earth and planetary materials at nano-scales, focused on characterizing nano- features (like inclusion, exsolution, coating, pore) in minerals and revealing nano-minerals/particles. With current high-resolution analytical electron microscopy, we are now capable to carry out nano-imaging, in-situ non-destructive chemical and structural analyses on geo-materials easier and faster. During an ongoing nano-mineralogy investigation of primitive meteorites, new minerals formed in the early solar system are being discovered. Each of the discoveries adds new information on the early solar evolution. Presented here are a few new minerals observed in refractory inclusions from Allende, including an ultra-refractory titania phase that likely formed among the first condensates, a new hibonite mineral by alteration, a Mo-rich oxide, and a Nb-rich oxide.

  9. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle

    PubMed Central

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-01-01

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3−/−) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3+/+) were injected into NANOS3−/− Wagyu embryos. Subsequently, exogenous germ cells (NANOS3+/+) were identified in the NANOS3−/− ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies. PMID:27117862

  10. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle.

    PubMed

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-01-01

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3(-/-)) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3(+/+)) were injected into NANOS3(-/-) Wagyu embryos. Subsequently, exogenous germ cells (NANOS3(+/+)) were identified in the NANOS3(-/-) ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies. PMID:27117862

  11. Evaluation of the Nano-TiO2 as a Novel Deswelling Material.

    PubMed

    Chu, Ming; Hou, Yue-Long; Xu, Lan; Chu, Zheng-Yun; Zhang, Ming-Bo; Wang, Yue-Dan

    2016-01-01

    Nano-TiO2 is widely applied in the automobile exhaust hose reels as a catalyst to reduce oxynitride emissions, including nitric oxide (NO). In the biomedicine field, NO plays an important role in vasodilation and edema formation in human bodies. However, the deswelling activity of nano-TiO2 has not been reported. Here, we demonstrated that nano-TiO2 can significantly degrade the production of NO in LPS-induced RAW264.7 mouse macrophages. Further study indicated that nano-TiO2 exhibited an effect on vascular permeability inhibition, and prevented carrageenan-induced footpad edema. Therefore, we prepared a nano-TiO2 ointment and observed similar deswelling effects. In conclusion, nano-TiO2 might act as a novel deswelling agent related with its degradation of NO, which will aid in our ability to design effective interventions for edema involved diseases. PMID:26742025

  12. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    NASA Astrophysics Data System (ADS)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  13. Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah (Inventor); Prokopuk, Nicholas (Inventor)

    2008-01-01

    Methods of fabricating nano-gap electrode structures in array configurations, and the structures so produced. The fabrication method involves depositing first and second pluralities of electrodes comprising nanowires using processes such as lithography, deposition of metals, lift-off processes, and chemical etching that can be performed using conventional processing tools applicable to electronic materials processing. The gap spacing in the nano-gap electrode array is defined by the thickness of a sacrificial spacer layer that is deposited between the first and second pluralities of electrodes. The sacrificial spacer layer is removed by etching, thereby leaving a structure in which the distance between pairs of electrodes is substantially equal to the thickness of the sacrificial spacer layer. Electrode arrays with gaps measured in units of nanometers are produced. In one embodiment, the first and second pluralities of electrodes are aligned in mutually orthogonal orientations.

  14. Magnetically levitated nano-robots: an application to visualization of nerve cells injuries.

    PubMed

    Lou, Mingji; Jonckheere, Edmond

    2007-01-01

    This paper proposes a swarm of magnetically levitated nano-robots with high sensitivity nano-sensors as a mean to detect chemical sources, specifically the chemical signals released by injured nervous cells. In the aftermath of the process, further observation by these nano-robots would be used to monitor the healing process and assess the amount of regeneration, if any, or even the repair, of the injured nervous cells. PMID:17377291

  15. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots).

    PubMed

    Lou, Qing; Qu, Songnan; Jing, Pengtao; Ji, Wenyu; Li, Di; Cao, Junsheng; Zhang, Hong; Liu, Lei; Zhao, Jialong; Shen, Dezhen

    2015-02-25

    Novel luminescent "nano-bombs" based on a self-assembled system of carbon-nanodots, termed supra-CDs, are developed. The luminescence of these luminescent "nano-bombs" depends strongly on water contact; they show weak emission in toluene and decompose in contact with water, resulting in strong photoluminescence. Paper coated with these "nano-bombs" is successfully applied for water-jet printing of luminescence patterns and the mapping of human sweat-pore patterns. PMID:25447963

  16. NanoSail-D: A Solar Sail Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Whorton, Mark; Heaton, Andy; Pinson, robin; Laue, Greg; Adams, Charles

    2009-01-01

    During the past decade, within the United States, NASA Marshall Space Flight Center (MSFC) was heavily engaged in the development of revolutionary new technologies for in-space propulsion. One of the major in-space propulsion technologies developed was a solar sail propulsion system. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems have been designed for large spacecraft in the tens to hundreds of kilograms mass range. Recently, however, MSFC has been investigating the application of solar sails for small satellite propulsion. Likewise, NASA Ames Research Center (ARC) has been developing small spacecraft missions that have a need for amass-efficient means of satisfying deorbit requirements. Hence, a synergistic collaboration was established between these two NASA field Centers with the objective of conducting a flight demonstration of solar sail technologies for small satellites. The NanoSail-D mission flew onboard the ill-fated Falcon Rocket launched August 2, 2008, and, due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. Both the original sailcraft and the flight spare are hereafter referred to as NanoSail-D. The sailcraft consists of a sail subsystem stowed in a three-element CubeSat. Shortly after deployment of the NanoSail-D, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary technical objectives: (1) to successfully stow and deploy the sail and (2) to demonstrate deorbit functionality. Given a near-term opportunity for launch on Falcon, the project was given the challenge of delivering the flight hardware in 6 mo, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization of the spacecraft

  17. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers

    PubMed Central

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-01-01

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications. PMID:26940260

  18. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-03-01

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

  19. A Solid State Nano-Generator: Concept, Design and Theoretical Estimations

    NASA Astrophysics Data System (ADS)

    Vopsaroiu, M.; Cain, M. G.; Kuncser, V.; Blackburn, J.

    Nano-technology is a very attractive area of research and innovation because it allows the current trends in miniaturization to continue. The transition from micro scale to nano scale devices has already taken place in many applications such as electronics, magnetic recording and nano-biophysics. However, as we scale down the size of the structures and devices, it becomes obvious that the classical behavior will break down at the nano-scale and an interesting superposition of classical and quantum effects will emerge. Therefore, the validity of classical physics is questioned and many aspects of physics are now being revisited from the point of view of nano-technologies. In line with the new developments in miniaturization and nano-technologies, we propose in this letter a simple mechanism that applies the Faraday effect at the nano-scale in order to create a possible solid-state energy nano-generator device. The proposed nano-generator functionality is based on what we shall call the Super-Paramagnetic Electromotive Force (SPEF) effect. This has the potential to produce a very small voltage on short time scales by converting directly thermal energy at room temperature to electromotive energy without the need for external work or mechanical motion.

  20. Biokinetics and effects of titania nano-material after inhalation and i.v. injection

    NASA Astrophysics Data System (ADS)

    Landsiedel, Robert; Fabian, Eric; Ma-Hock, Lan; Wiench, Karin; van Ravenzwaay, Bennard

    2009-05-01

    Within NanoSafe2 we developed a special inhalation model to investigate deposition of inhaled particles in the lung and the further distribution in the body after. Concurrently, the effects of the inhaled materials in the lung were examined. The results for nano-Titania were compared to results from inhalation studies with micron-sized (non-nano) Titania particles and to quartz particles (DQ12, known to be potent lung toxicants). To build a PBPK model for nano-Titania the tissue distribution of the material was also examined following intravenous (i.v.) administration.