Sample records for nano-crystalline lanthanum chromites

  1. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures

    NASA Astrophysics Data System (ADS)

    Schmidt, V. H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.

  2. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less

  3. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  4. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  5. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  6. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  7. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.

    PubMed

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C

    2015-02-03

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  8. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  9. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, V.L.; Singhal, S.C.

    1992-09-01

    A highly sinterable powder consisting essentially of LaCrO[sub 3], containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590 C to 950 C in inert gas containing up to 50,000 ppm O[sub 2] to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m[sup 2]/g. 2 figs.

  10. Ruthenium in komatiitic chromite

    NASA Astrophysics Data System (ADS)

    Locmelis, Marek; Pearson, Norman J.; Barnes, Stephen J.; Fiorentini, Marco L.

    2011-07-01

    The distinction between Ru in solid solution and Ru-bearing inclusions is essential for the predictive modeling of platinum-group element (PGE) geochemistry in applications such as the lithogeochemical exploration for magmatic sulfide deposits in komatiites. This study investigates the role of chromite in the fractionation of Ru in ultramafic melts by analyzing chromite grains from sulfide-undersaturated komatiites and a komatiitic basalt from the Yilgarn Craton in Western Australia. In situ analysis using laser ablation ICP-MS yields uniform Ru concentrations in chromites both within-grain and on a sample scale, with concentrations between 220 and 540 ppb. All other platinum-group elements are below the detection limit of the laser ablation ICP-MS analysis. Carius tube digestion isotope dilution ICP-MS analysis of chromite concentrates confirms the accuracy of the in-situ method. Time resolved laser ablation ICP-MS analyses have identified the presence of sub-micron Ir-bearing inclusions in some chromite grains from the komatiitic basalt. However, Ru-bearing inclusions have not been recognized in the analyzed chromites and this combined with the in situ data suggests that Ru exists in solid solution in the crystal lattice of chromite. These results show that chromite can control the fractionation and concentration of Ru in ultramafic systems.

  11. Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy.

    PubMed

    Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A

    2017-07-14

    Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.

  12. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  13. Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingasu, Dana; Mindru, Ioana, E-mail: imandru@yahoo.com; Culita, Daniela C.

    2014-01-01

    Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{submore » 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.« less

  14. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  15. Podiform chromite deposits--database and grade and tonnage models

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Moring, Barry C.; Galloway, John P.

    2012-01-01

    Chromite ((Mg, Fe++)(Cr, Al, Fe+++)2O4) is the only source for the metallic element chromium, which is used in the metallurgical, chemical, and refractory industries. Podiform chromite deposits are small magmatic chromite bodies formed in the ultramafic section of an ophiolite complex in the oceanic crust. These deposits have been found in midoceanic ridge, off-ridge, and suprasubduction tectonic settings. Most podiform chromite deposits are found in dunite or peridotite near the contact of the cumulate and tectonite zones in ophiolites. We have identified 1,124 individual podiform chromite deposits, based on a 100-meter spatial rule, and have compiled them in a database. Of these, 619 deposits have been used to create three new grade and tonnage models for podiform chromite deposits. The major podiform chromite model has a median tonnage of 11,000 metric tons and a mean grade of 45 percent Cr2O3. The minor podiform chromite model has a median tonnage of 100 metric tons and a mean grade of 43 percent Cr2O3. The banded podiform chromite model has a median tonnage of 650 metric tons and a mean grade of 42 percent Cr2O3. Observed frequency distributions are also given for grades of rhodium, iridium, ruthenium, palladium, and platinum. In resource assessment applications, both major and minor podiform chromite models may be used for any ophiolite complex regardless of its tectonic setting or ophiolite zone. Expected sizes of undiscovered podiform chromite deposits, with respect to degree of deformation or ore-forming process, may determine which model is appropriate. The banded podiform chromite model may be applicable for ophiolites in both suprasubduction and midoceanic ridge settings.

  16. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. B.; Jing, B.; Cui, Y.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond filmmore » are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.« less

  17. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  18. Chromite alteration processes within Vourinos ophiolite

    NASA Astrophysics Data System (ADS)

    Grieco, Giovanni; Merlini, Anna

    2012-09-01

    The renewed interest in chromite ore deposits is directly related to the increase in Cr price ruled by international market trends. Chromite, an accessory mineral in peridotites, is considered to be a petrogenetic indicator because its composition reflects the degree of partial melting that the mantle experienced while producing the chromium spinel-bearing rock (Burkhard in Geochim Cosmochim Acta 57:1297-1306, 1993). However, the understanding of chromite alteration and metamorphic modification is still controversial (e.g. Evans and Frost in Geochim Cosmochim Acta 39:959-972, 1975; Burkhard in Geochim Cosmochim Acta 57:1297-1306, 1993; Oze et al. in Am J Sci 304:67-101, 2004). Metamorphic alteration leads to major changes in chromite chemistry and to the growth of secondary phases such as ferritchromite and chlorite. In this study, we investigate the Vourinos complex chromitites (from the mines of Rizo, Aetoraches, Xerolivado and Potamia) with respect to textural and chemical analyses in order to highlight the most important trend of alteration related to chromite transformation. The present study has been partially funded by the Aliakmon project in collaboration between the Public Power Corporation of Greece and Institute of Geology and Mineral Exploration of Kozani.

  19. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  1. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  2. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  3. Chromite deposits of the north-central Zambales Range, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.

    1970-01-01

    Peridotite and gabbro form an intrusive complex which is exposed over an area about 35 km wide and 150 km long in the center of the Zambales Range of western Luzon. The Zambales Complex is remarkable for its total known resources, mined and still remaining, of about 15 million metric tons of chromite ore. Twenty percent of Free World production was obtained from this area between 1950 and the end of 1964; in 1960 production reached a high of 606,103 metric tons of refractory-grade ore, mostly from the Coto mine near Masinloc, and 128,426 metric tons of metallurgical ore from the Acoje mine. The United States imports 80 to 90 percent of its refractory-grade chromite from the Philippines, and its basic refractory technology has been designed upon the chemical and physical characteristics of Coto high-alumina chromite ore. Continuation of this pattern will depend upon discovery of additional ore reserves to replace those depleted by mining. The Zambales Ultramafic Complex is of the alpine type in which lenticular or podiform deposits of chromite lie in peridotite or dunite, mostly near Contacts with gabbroic rocks. Layered structures, foliation, and lineation commonly are well developed and transect boundaries between major rock units, including chromite deposits, at any angle. Accordingly, these structures cannot be used as guides in exploration and mining as they are used in stratiform complexes such as the Bushveld, where chromite layers extend for many miles. Probably 90 percent of the known deposits in the Zambales Complex are located in two belts in its northern part. One zone containing high-aluminua refractory-grade deposits extends northeast from the Coto mine and Chromite Reservation No. I along a peridotite contact with olivine gabbro, and another of high-chromium metallurgical grade chromite extends south through the Zambales and Acoje properties, and swings westward around the south side of Mount Lanai along a peridotite contact with norite. The textures

  4. Chromite from the Blue Ridge province of North Carolina.

    USGS Publications Warehouse

    Lipin, B.R.

    1984-01-01

    Chromite is found as ubiquitous accessory grains and occasional segregations within dunite bodies. Results of analysis of chromite textures and chemistry and estimation of equilibration T of olivine-chromite pairs are cited as evidence that the dunites are metamorphic rocks rather than primary mantle peridotites. They are considered to be disrupted fragments of ophiolites that were emplaced before or during the peak of Ordovician metamorphism which was responsible for dehydration of serpentine-bearing rocks and alteration of chromite compositions and textures.-M.S.

  5. High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro

    A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.

  6. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  7. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  8. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less

  9. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A.D.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  10. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    DOE PAGES

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; ...

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions.more » In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  11. Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Godel, Bélinda; Barnes, Stephen J.; Gürer, Derya; Austin, Peter; Fiorentini, Marco L.

    2013-01-01

    High-resolution X-ray computed tomography has been carried out on a suite of komatiite samples representing a range of volcanic facies, chromite contents and degrees of alteration and metamorphism, to reveal the wide range of sizes, shapes and degrees of clustering that chromite grains display as a function of cooling history. Dendrites are spectacularly skeletal chromite grains formed during very rapid crystallization of supercooled melt in spinifex zones close to flow tops. At slower cooling rates in the interiors of thick flows, chromite forms predominantly euhedral grains. Large clusters (up to a dozen of grains) are characteristic of liquidus chromite, whereas fine dustings of mostly individual ~20-μm grains form by in situ crystallization from trapped intercumulus liquid. Chromite in coarse-grained olivine cumulates from komatiitic dunite bodies occurs in two forms: as clusters or chains of euhedral crystals, developing into "chicken-wire" texture where chromite is present in supra-cotectic proportions; and as strongly dendritic, semi-poikilitic grains. These dendritic grains are likely to have formed by rapid crescumulate growth from magma that was close to its liquidus temperature but supersaturated with chromite. In some cases, this process seems to have been favoured by nucleation of chromite on the margins of sulphide liquid blebs. This texture is a good evidence for the predominantly cumulus origin of oikocrysts and in situ origin of heteradcumulate textures. Our 3D textural analysis confirms that the morphology of chromite crystals is a distinctive indicator of crystallization environment even in highly altered rocks.

  12. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  13. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  14. Compaction of Chromite Cumulates applying a Centrifuging Piston-Cylinder

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.

    2012-12-01

    Stratiform accumulations of chromite cumulates, such as the UG2 chromitite layer in the Bushveld Complex, is a common feature in most of the large layered mafic intrusions. The time scales and mechanics of gravitationally driven crystal settling and compaction and the feasibility of these processes for the formation of such cumulate layers is investigated through a series of high temperature (1280-1300 °C) centrifuge-assisted experiments at 100-2000 g, 0.4-0.6 GPa. A mixture of natural chromite, with defined grain sizes (means of 5 μm, 13 μm, and 52 μm), and a melt with a composition thought to represent the parental magma of the Bushveld Complex, was first chemically and texturally equilibrated at static conditions and then centrifuged. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. This layer was analysed for porosity, mean grain size, size distribution and also travelling distance of chromite crystals. The experimentally observed mechanical settling velocity of chromite grains in a suspension with ~ 24 vol% crystals is calculated to be about half (~ 0.53) of the Stokes settling velocity, consistent with a sedimentation exponent n of 2.35±0.3. The settling leads to a porosity of about 52 % in the chromite layer. Formation times of chromite orthocumulates with initial crystal content in the melt of 1 % and grain sizes of 2 mm are thus around 0.6 m/day. To achieve more compacted chromite piles, centrifugation times and acceleration were increased. Within each experiment the crystal content of the cumulate layer increases downward almost linearly at least in the lower 2/3 of the cumulate pile. Although porosity in the lowermost segment of the chromite layer decreases with increasing effective stress integrated over time, the absolute decrease is smaller than for experiments with olivine (from a previous study). Formation times of a ½ meter single chromite layer with 70 vol% chromite, is calculated to be

  15. Crystal-Chemical Correlations in Chromites from Kimberlitic and Non-Kimberlitic Sources.

    NASA Astrophysics Data System (ADS)

    Freckelton, C. N.; Flemming, R. L.

    2009-05-01

    This study explores the utility of micro X-ray diffraction (μXRD) as a tool for diamond exploration, as a compliment to current industry-standard techniques such as electron probe microanalysis (EPMA). Here we examine chromite. As one of the first phases to crystallize in mantle rocks, it is a useful indicator of upper mantle magmatic conditions in rocks that have been sampled by kimberlites. In addition, chromite does not alter easily from chemical and physical weathering processes. As such, chromite is a useful kimberlite indicator mineral in diamond exploration. We present correlations between crystal structure (unit cell) and chemical composition of chromite, (Fe,Mg)[Cr, Al]2O4, using correlated μXRD and EPMA data for 133 chromites from a three source locations: Two kimberlite sources and one non-kimberlitic source from an Archean granite/greenstone terrain. Quantitative analysis was performed using Electron Probe Microanalysis (EPMA) at Mineral Services, South Africa, prior to the loan of the samples. Randomly-oriented chromite grains, approximately 500 μm in diameter, were analyzed as previously mounted for EPMA. Micro X-ray-diffraction was performed using a Bruker D8-Discover Diffractometer, with θ-θ geometry, with CuKα radiation, operating at 40 kV and 40 mA, with nominal beam diameter of 500 μm. The data were collected in omega scan mode. Two dimensional General Area Detector Diffraction System (GADDS) images were collected for 20 minutes per image, and integrated to produce one-dimensional plots of intensity versus 2θ, for subsequent unit cell refinement using CELREF. Although all samples in this study were considered to be 'chromite', a plot of Cr/(Cr+Al) versus Fe2+/(Fe2++Mg) shows extensive substitution among four dominant members: chromite (FeCr2O4), magnesio-chromite (MgCr2O4), spinel (MgAl2O4), and hercynite (FeAl2O4), where Mg and Fe2+ substitute for one another on the tetrahedral site, and Cr and Al substitute for one another on the

  16. Volatile products from the interaction of KCl(g) with Cr2O3 and LaCrO3 in oxidizing environments

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Fryburg, G. C.; Dillard, J. G.

    1977-01-01

    Cooled target collection techniques and high pressure mass spectrometric sampling were used to measure the relative rates of oxidative vaporization and to identify the volatile products emanating from samples of chromia and Mg-doped lanthanum chromite. The materials were exposed to partial pressures of KCl with and without H2O in one atmosphere of slowly flowing oxygen at elevated temperatures. Chromia and fresh samples of lanthanum chromite exhibited enhanced rates of oxidative vaporization upon exposure to these reactants. Mass spectrometric identification showed that the enhancements resulted from the heterogeneous formation of complex molecules of the type KCl sub 1,2,3 CrO3 and KOH sub l,2 CrO3. Lanthanum chromite that had undergone prolonged oxidative vaporization exhibited no enhanced oxidation upon exposure to the reactants.

  17. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    NASA Astrophysics Data System (ADS)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  18. Chromite Ore from the Transvaal Region of South Africa

    EPA Pesticide Factsheets

    In 2001, EPA finalized a rule to to delete both chromite ore mined in the Transvaal Region of South Africa and the unreacted ore component of the chromite ore processing residue (COPR) from TRI reporting requirements.

  19. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp; Kan, Tetsuo; Yahiro, Masayuki

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillarsmore » at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.« less

  20. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  1. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  2. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event.

    PubMed

    Schmitz, Birger; Häggström, Therese; Tassinari, Mario

    2003-05-09

    Abundant extraterrestrial chromite grains from decomposed meteorites occur in middle Ordovician (480 million years ago) marine limestone over an area of approximately 250,000 square kilometers in southern Sweden. The chromite anomaly gives support for an increase of two orders of magnitude in the influx of meteorites to Earth during the mid-Ordovician, as previously indicated by fossil meteorites. Extraterrestrial chromite grains in mid-Ordovician limestone can be used to constrain in detail the temporal variations in flux of extraterrestrial matter after one of the largest asteroid disruption events in the asteroid belt in late solar-system history.

  3. Occupational health assessment of chromite toxicity among Indian miners

    PubMed Central

    Das, Alok Prasad; Singh, Shikha

    2011-01-01

    Elevated concentration of hexavalent chromium pollution and contamination has contributed a major health hazard affecting more than 2 lakh mine workers and inhabitants residing in the Sukinda chromite mine of Odisha, India. Despite people suffering from several forms of ill health, physical and mental deformities, constant exposure to toxic wastes and chronic diseases as a result of chromite mining, there is a tragic gap in the availability of 'scientific’ studies and data on the health hazards of mining in India. Occupational Safety and Health Administration, Odisha State Pollution Control Board and the Odisha Voluntary Health Association data were used to compile the possible occupational health hazards, hexavalent chromium exposure and diseases among Sukinda chromite mines workers. Studies were reviewed to determine the routes of exposure and possible mechanism of chromium induced carcinogenicity among the workers. Our studies suggest all forms of hexavalent chromium are regarded as carcinogenic to workers however the most important routes of occupational exposure to Cr (VI) are inhalation and dermal contact. This review article outlines the physical, chemical, biological and psychosocial occupational health hazards of chromite mining and associated metallurgical processes to monitor the mining environment as well as the miners exposed to these toxicants to foster a safe work environment. The authors anticipate that the outcome of this manuscript will have an impact on Indian chromite mining industry that will subsequently bring about improvements in work conditions, develop intervention experiments in occupational health and safety programs. PMID:21808494

  4. Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg-Zn chromites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-05-01

    Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x < 0.2) give rise to a low-frequency semicircle as evidenced from the complex impedance analysis. The low dielectric loss and high ac conductivity of Co2+ doped Mg-Zn spinel chromites are suitable for power transformer applications at high frequencies.

  5. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    PubMed

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  6. Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Jeong Hun; Lee, Sung Su; Lee, Hyeon Jun

    2016-03-21

    We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries;more » however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.« less

  7. Nano-crystalline porous tin oxide film for carbon monoxide sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)

    2000-01-01

    A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.

  8. Natural occurrence and synthesis of two new postspinel polymorphs of chromite.

    PubMed

    Chen, Ming; Shu, Jinfu; Mao, Ho-kwang; Xie, Xiande; Hemley, Russell J

    2003-12-09

    A high-pressure polymorph of chromite, the first natural sample with the calcium ferrite structure, has been discovered in the shock veins of the Suizhou meteorite. Synchrotron x-ray diffraction analyses reveal an orthorhombic CaFe2O4-type (CF) structure. The unit-cell parameters are a = 8.954(7) A, b = 2.986(2) A, c = 9.891(7) A, V = 264.5(4) A3 (Z = 4) with space group Pnma. The new phase has a density of 5.62 g/cm3, which is 9.4% denser than chromite-spinel. We performed laser-heated diamond anvil cell experiments to establish that chromite-spinel transforms to CF at 12.5 GPa and then to the recently discovered CaTi2O4-type (CT) structure above 20 GPa. With the ubiquitous presence of chromite, the CF and CT phases may be among the important index minerals for natural transition sequence and pressure and temperature conditions in mantle rocks, shock-metamorphosed terrestrial rocks, and meteorites.

  9. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone.

    PubMed

    Satsukawa, Takako; Griffin, William L; Piazolo, Sandra; O'Reilly, Suzanne Y

    2015-11-13

    Investigations of the Mantle Transition Zone (MTZ; 410-660 km deep) by deformation experiments and geophysical methods suggest that the MTZ has distinct rheological properties, but their exact cause is still unclear due to the lack of natural samples. Here we present the first direct evidence for crystal-plastic deformation by dislocation creep in the MTZ using a chromitite from the Luobusa peridotite (E. Tibet). Chromite grains show exsolution of diopside and SiO2, suggesting previous equilibration in the MTZ. Electron backscattered diffraction (EBSD) analysis reveals that olivine grains co-existing with exsolved phases inside chromite grains and occurring on chromite grain boundaries have a single pronounced crystallographic preferred orientation (CPO). This suggests that olivine preserves the CPO of a high-pressure polymorph (wadsleyite) before the high-pressure polymorph of chromite began to invert and exsolve. Chromite also shows a significant CPO. Thus, the fine-grained high-pressure phases were deformed by dislocation creep in the MTZ. Grain growth in inverted chromite produced an equilibrated microstructure during exhumation to the surface, masking at first sight its MTZ deformation history. These unique observations provide a window into the deep Earth, and constraints for interpreting geophysical signals and their geodynamic implications in a geologically robust context.

  10. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  11. Encephalopathy caused by lanthanum carbonate.

    PubMed

    Fraile, Pilar; Cacharro, Luis Maria; Garcia-Cosmes, Pedro; Rosado, Consolacion; Tabernero, Jose Matias

    2011-06-01

    Lanthanum carbonate is a nonaluminum, noncalcium phosphate-binding agent, which is widely used in patients with end-stage chronic kidney disease. Until now, no significant side-effects have been described for the clinical use of lanthanum carbonate, and there are no available clinical data regarding its tissue stores. Here we report the case of a 59-year-old patient who was admitted with confusional syndrome. The patient received 3750 mg of lanthanum carbonate daily. Examinations were carried out, and the etiology of the encephalopathy of the patient could not be singled out. The lanthanum carbonate levels in serum and cerebrospinal fluid were high, and the syndrome eased after the drug was removed. The results of our study confirm that, in our case, the lanthanum carbonate did cross the blood-brain barrier (BBB). Although lanthanum carbonate seems a safe drug with minimal absorption, this work reveals the problem derived from the increase of serum levels of lanthanum carbonate, and the possibility that it may cross the BBB. Further research is required on the possible pathologies that increase serum levels of lanthanum carbonate, as well as the risks and side-effects derived from its absorption.

  12. Petrology of chromite in ureilites: Deconvolution of primary oxidation states and secondary reduction processes

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena Anne; Harlow, George E.; Van Orman, James A.; Sutton, Stephen R.; Jercinovic, Michael J.; Mikouchi, Takashi

    2014-06-01

    Ureilites are ultramafic achondrites thought to be residues of partial melting on a carbon-rich asteroid. They show a trend of FeO-variation (olivine Fo from ∼74 to 95) that suggests variation in oxidation state. Whether this variation was established during high-temperature igneous processing on the ureilite parent body (UPB), or preserved from nebular precursors, is a subject of debate. The behavior of chromium in ureilites offers a way to assess redox conditions during their formation and address this issue, independent of Fo. We conducted a petrographic and mineral compositional study of occurrences of chromite (Cr-rich spinel) in ureilites, aimed at determining the origin of the chromite in each occurrence and using primary occurrences to constrain models of ureilite petrogenesis. Chromite was studied in LEW 88774 (Fo 74.2), NWA 766 (Fo 76.7), NWA 3109 (Fo 76.3), HaH 064 (Fo 77.5), LAP 03587 (Fo 74.9), CMS 04048 (Fo 76.4), LAP 02382 (Fo 78.6) and EET 96328 (Fo 85.2). Chromite occurs in LEW 88774 (∼5 vol.%), NWA 766 (<1 vol.%), NWA 3109 (<1 vol.%) and HaH 064 (<1 vol.%) as subhedral to anhedral grains comparable in size (∼30 μm to 1 mm) and/or textural setting to the major silicates (olivine and pyroxenes[s]) in each rock, indicating that it is a primary phase. The most FeO-rich chromites in these sample (rare grain cores or chadocrysts in silicates) are the most primitive compositions preserved (fe# = 0.55-0.6; Cr# varying from 0.65 to 0.72 among samples). They record olivine-chromite equilibration temperatures of ∼1040-1050 °C, reflecting subsolidus Fe/Mg reequilibration during slow cooling from ∼1200 to 1300 °C. All other chromite in these samples is reduced. Three types of zones are observed. (1) Inclusion-free interior zones showing reduction of FeO (fe# ∼0.4 → 0.28); (2) Outer zones showing further reduction of FeO (fe# ∼0.28 → 0.15) and containing abundant laths of eskolaite-corundum (Cr2O3-Al2O3); (3) Outermost zones showing extreme

  13. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    PubMed

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Measurement of host-to-activator transfer efficiency in nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} under VUV excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waite, Christopher; Mann, Rusty; Diaz, Anthony L., E-mail: DiazA@cwu.edu

    2013-02-15

    We have conducted a systematic study of the excitation and reflectance spectra of nano-crystalline Y{sub 2}O{sub 3}:Eu prepared by combustion synthesis. Excitation through the host lattice becomes relatively more efficient as the firing temperature of the precursor is increased, while reflectance properties remain essentially unchanged. Using these data, host-to-activator transfer efficiencies were calculated for excitation at the band edge of Y{sub 2}O{sub 3}, and evaluated using a competition kinetics model. From this analysis we conclude that the relatively low luminous efficiency of these materials is due more to poor bulk crystallinity than to surface loss effects. - Graphical abstract: Themore » low luminous efficiency of nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis is due to poor bulk crystallinity rather than surface loss effects. Highlights: Black-Right-Pointing-Pointer We report on the optical properties of Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis. Black-Right-Pointing-Pointer Host-to-activator transfer efficiencies under VUV excitation were calculated. Black-Right-Pointing-Pointer The low luminous efficiency of these materials is due to poor bulk crystallinity.« less

  15. Study on mechanisms of different sulfuric acid leaching technologies of chromite

    NASA Astrophysics Data System (ADS)

    Shi, Pei-yang; Liu, Cheng-jun; Zhao, Qing; Shi, Hao-nan

    2017-09-01

    The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.

  16. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  17. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  18. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Holm, Nils G

    2011-06-03

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts.

  19. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms

    PubMed Central

    2011-01-01

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts. PMID:21639896

  20. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms

    PubMed Central

    Lee, Jae-Kap; Kim, Jin-Gyu; Hembram, K. P. S. S.; Kim, Yong-Il; Min, Bong-Ki; Park, Yeseul; Lee, Jeon-Kook; Moon, Dong Ju; Lee, Wooyoung; Lee, Sang-Gil; John, Phillip

    2016-01-01

    Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp2 carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA’ structure. The non-Bernal AA’ allotrope of graphite is synthesized by the thermal- and plasma-treatment of graphene nanopowders at ~1,500 °C. The formation of AA’ bilayer graphene nuclei facilitates the preferred texture growth and results in single-crystal AA’ graphite in the form of nanoribbons (1D) or microplates (2D) of a few nm in thickness. Kinetically controlled AA’ graphite exhibits unique nano- and single-crystalline feature and shows quasi-linear behavior near the K-point of the electronic band structure resulting in anomalous optical and acoustic phonon behavior. PMID:28000780

  1. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  2. Indium-tin-oxide nanowhiskers crystalline silicon photovoltaics combining micro- and nano-scale surface textures

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen

    2011-02-01

    In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.

  3. Depth profiling of nitrogen within 15N-incorporated nano-crystalline diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Cassidy, D. P.; Dissanayake, A.; Mancini, D. C.; Ghantasala, M. K.; Kayani, A.

    2013-09-01

    Nano-Crystalline Diamond (NCD) thin films are a topic of recent interest due to their excellent mechanical and electrical properties. The inclusion of nitrogen is a specific interest as its presence within NCD modifies its conductive properties. The methodology adopted for the characterization of nitrogen incorporated NCD films grown on a chromium underlayer determined a correlation between the chromium and nitrogen concentrations as well as a variation in the concentration profile of elements. Additionally, the concentration of nitrogen was found to be more than three times greater for these films versus those grown on a silicon substrate.

  4. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  5. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  6. Nano crystalline Bi2(VO5) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2016-05-01

    Glass composition 7V2O5.23Li2O.20Bi2O3.50B2O3 and x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi2(VO5) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V2O5-crystal were observed along with the nano crystalline Bi2(VO5) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi2(VO5) nano-crystallite was ~30nm for samples annealed at 400°C and ~42nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi2(VO5) crystallite.

  7. Characterization nano crystalline cellulose from sugarcane baggase for reinforcement in polymer composites: Effect of formic acid concentrations

    NASA Astrophysics Data System (ADS)

    Aprilia, N. A. S.; Mulyati, S.; Alam, P. N.; Karmila; Ambarita, A. C.

    2018-04-01

    Nanocellulose from sugarcane bagasse for reinforcement in polymer composites has isolated from formic acid (FA) with different concentration. This research was conducted with three level concentration of FA ei. 15, 30 and 50%. The nanocellulose were successfully prepared with variations of total yields of 66.66, 67.33 and 69.33% respectively with increase of FA concentrations at 6 hours of hidrolysis time. The obtained nanocellulose were characterized by fourier transform infrared (FT-IR) spectroscopy confirmed the introduction of carboxyl goups on the surface of cellulose. The X-ray diffraction (XRD) spectra proved the existence of cellulose, with a highly crystalline of 62.466, 71.033, and 76.296% with increase of FA concentrations. The size of crystallinity of nanocellulose were decreased with increased of FA concentration. The result investigated that size of crystallinity of nano cellulose reduced from 4.37, 4.15 and 3.94 nm.

  8. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE PAGES

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; ...

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 10 9 sec -1mV -1 range, linear response in a broad spectral range belowmore » 320 nm, photocurrents around ~10 -5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  9. On the AC-conductivity mechanism in nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys

    NASA Astrophysics Data System (ADS)

    Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh

    2017-10-01

    In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.

  10. Molecular organic crystalline matrix for hybrid organic-inorganic (nano) composite materials

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Tugulea, L.; Alexandru, H. V.; Stanculescu, F.; Socol, M.

    2005-02-01

    Metal-doped benzil crystals have been grown by thermal gradient solidification in a vertical transparent growth configuration to investigate the effect of metallic guest on the ordered organic host. We have identified the conditions for growing homogeneous, optically good crystals of benzil doped with sodium and silver, limiting the effect of supercooling, low thermal conductivity and anisotropy of the growth speed (temperature gradient at the liquid-solid interface: 10-25 °C, moving speed of the growth interface 2.0 mm/h). The nature and concentration of the dopant are parameters affecting, through the growth process, the crystalline perfection and the optical properties of the organic matrix. Bulk optical characterisation, by spectrophotometrical methods, has offered details on some intrinsic properties of the system metal particles/benzil crystalline matrix. Analytical processing of the experimental data emphasised that benzil is a wide optical band gap organic semiconductor Eg=2.65 eV. We also have investigated the effect of sodium and silver on the properties of benzil crystal as potential transparent semiconductor matrix for (nano)composite metal/molecular organic material. With the increase of sodium concentration from c=1 to 6 wt%, a small narrowing of the band gap has been remarked. The same behaviour has been found for benzil doped with silver (c=2 wt%) compared to pure benzil.

  11. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  12. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  13. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    PubMed Central

    Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud

    2017-01-01

    Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420

  14. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  15. Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    Most environmental concerns associated with the mining and processing of chromite ore focus on the solubility of chromium and its oxidation state. Although trivalent chromium (Cr3+) is an essential micronutrient for humans, hexavalent chromium (Cr6+) is highly toxic. Chromium-bearing solid phases that occur in the chromite ore-processing residue, for example, can effect the geochemical behavior and oxidation state of chromium in the environment.

  16. Lanthanum

    MedlinePlus

    ... levels of phosphate in the blood can cause bone problems. Lanthanum is in a clsas of medications ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  17. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    NASA Astrophysics Data System (ADS)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  18. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substratemore » was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.« less

  19. Neural learning circuits utilizing nano-crystalline silicon transistors and memristors.

    PubMed

    Cantley, Kurtis D; Subramaniam, Anand; Stiegler, Harvey J; Chapman, Richard A; Vogel, Eric M

    2012-04-01

    Properties of neural circuits are demonstrated via SPICE simulations and their applications are discussed. The neuron and synapse subcircuits include ambipolar nano-crystalline silicon transistor and memristor device models based on measured data. Neuron circuit characteristics and the Hebbian synaptic learning rule are shown to be similar to biology. Changes in the average firing rate learning rule depending on various circuit parameters are also presented. The subcircuits are then connected into larger neural networks that demonstrate fundamental properties including associative learning and pulse coincidence detection. Learned extraction of a fundamental frequency component from noisy inputs is demonstrated. It is then shown that if the fundamental sinusoid of one neuron input is out of phase with the rest, its synaptic connection changes differently than the others. Such behavior indicates that the system can learn to detect which signals are important in the general population, and that there is a spike-timing-dependent component of the learning mechanism. Finally, future circuit design and considerations are discussed, including requirements for the memristive device.

  20. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  1. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor.

    PubMed

    Joshi, C; Dwivedi, A; Rai, S B

    2014-08-14

    Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    PubMed

    Götz, Werner; Lenz, Solvig; Reichert, Christoph; Henkel, Kai-Olaf; Bienengräber, Volker; Pernicka, Laura; Gundlach, Karsten K H; Gredes, Tomasz; Gerber, Thomas; Gedrange, Tomasz; Heinemann, Friedhelm

    2010-12-01

    To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  3. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction

    NASA Astrophysics Data System (ADS)

    Kleynhans, E. L. J.; Beukes, J. P.; Van Zyl, P. G.; Bunt, J. R.; Nkosi, N. S. B.; Venter, M.

    2017-04-01

    Ferrochrome (FeCr) production is an energy-intensive process. Currently, the pelletized chromite pre-reduction process, also referred to as solid-state reduction of chromite, is most likely the FeCr production process with the lowest specific electricity consumption, i.e., MWh/t FeCr produced. In this study, the effects of carbonaceous reductant selection on chromite pre-reduction and cured pellet strength were investigated. Multiple linear regression analysis was employed to evaluate the effect of reductant characteristics on the aforementioned two parameters. This yielded mathematical solutions that can be used by FeCr producers to select reductants more optimally in future. Additionally, the results indicated that hydrogen (H)- (24 pct) and volatile content (45.8 pct) were the most significant contributors for predicting variance in pre-reduction and compressive strength, respectively. The role of H within this context is postulated to be linked to the ability of a reductant to release H that can induce reduction. Therefore, contrary to the current operational selection criteria, the authors believe that thermally untreated reductants ( e.g., anthracite, as opposed to coke or char), with volatile contents close to the currently applied specification (to ensure pellet strength), would be optimal, since it would maximize H content that would enhance pre-reduction.

  4. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  5. Effect of Fe3O4 addition on dielectric properties of LaFeO3 nano-crystalline materials synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Laysandra, H.; Triyono, D.

    2017-04-01

    Dielectric properties of nano-crystalline material LaFeO3.xFe3O4 with x = 0, 0.1, 0.2, 0.3, and 0.4 at.% have been studied by impedance spectroscopy method. LaFeO3 was synthesized by sol-gel method resulting nano-particle. Then, it was mixed with Fe3O4 powder. The mixture powder was pressed to form pellet and then sintered at 1300°C for 1 h to form nano-crystalline of LaFeO3.xFe3O4. X-ray diffraction characterization at room temperature for all samples show two phases i.e. perovskite LaFeO3 (orthorhombic) as a main phase and Fe3O4 (cubic) as second phase. It is found that the crystallite size of main phase increases with addition of Fe3O4 until 0.3 at.%. The electrical properties as a function of temperature (300-500 K) and frequency (100 Hz - 1 MHz) are presented in Nyquist and Bode plots. It is observed that from equivalent circuit and their parameters, dielectrical properties are contributed by grain and grain boundary. The dielectric constant, ε‧ were calculated by parallel plate method and their values reach up to 107 exhibiting typical colossal dielectric constant (CDC) material like behavior.

  6. Superconductivity of lanthanum revisited

    NASA Astrophysics Data System (ADS)

    Loeptien, Peter; Zhou, Lihui; Wiebe, Jens; Khajetoorians, Alexander Ako; Wiesendanger, Roland

    2014-03-01

    The thickness dependence of the superconductivity in clean hexagonal lanthanum films grown on tungsten (110) is studied by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Fitting of the measured spectra to BCS theory yields the superconducting energy gaps from which the critical temperatures are determined. For the case of thick, bulk-like films, the bulk energy gap and critical temperature of dhcp lanthanum turn out to be considerably higher as compared to values from the literature measured by other techniques. In thin films the superconductivity is quenched by the boundary condition for the superconducting wavefunction imposed by the substrate and surface, leading to a linear decrease of the superconducting transition temperature as a function of the inverse film thickness. This opens up the possibility to grow lanthanum films with defined superconducting properties.

  7. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.

    PubMed

    Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva

    2014-12-30

    Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Dissolution Behavior of Mg from Magnesia-Chromite Refractory into Al-killed Molten Steel

    NASA Astrophysics Data System (ADS)

    Liu, Chunyang; Yagi, Motoki; Gao, Xu; Kim, Sun-Joong; Huang, Fuxiang; Ueda, Shigeru; Kitamura, Shin-ya

    2018-06-01

    Magnesia-chromite refractory materials are widely employed in steel production, and are considered a potential MgO source for the generation of MgO·Al2O3 spinel inclusions in steel melts. In this study, a square magnesia-chromite refractory rod was immersed into molten steel of various compositions held in an Al2O3 crucibles. As the immersion time was extended, Mg and Cr gradually dissolved from the magnesia-chromite refractory, and the Mg and Cr contents of the steel melts increased. However, it was found that the inclusions in the steel melts remained as almost pure Al2O3 because the Mg content of the steel melts was low, approximately 1 ppm. On the surface of the magnesia-chromite refractory, an MgO·Al2O3 spinel layer with a variable composition was formed, and the thickness of the MgO·Al2O3 spinel layer increased with the immersion time and the Al content of the steel melts. At the rod interface, the formed layer consisted of MgO-saturated MgO·Al2O3 spinel. The MgO content decreased along the thickness direction of the layer, and at the steel melts interface, the formed layer consisted of Al2O3-saturated MgO·Al2O3 spinel. Therefore, the low content of Mg in steel melts and the unchanged inclusions were because of the equilibrium between Al2O3-saturated MgO·Al2O3 layer and Al2O3. In addition, the effects of the Al and Cr contents of the steel melts on the dissolution of Mg from the magnesia-chromite refractory are insignificant.

  9. Conditional estimates of the number of podiform chromite deposits

    USGS Publications Warehouse

    Singer, D.A.

    1994-01-01

    A desirable guide for estimating the number of undiscovered mineral deposits is the number of known deposits per unit area from another well-explored permissive terrain. An analysis of the distribution of 805 podiform chromite deposits among ultramafic rocks in 12 subareas of Oregon and 27 counties of California is used to examine and extend this guide. The average number of deposits in this sample of 39 areas is 0.225 deposits per km2 of ultramafic rock; the frequency distribution is significantly skewed to the right. Probabilistic estimates can be made by using the observation that the lognormal distribution fits the distribution of deposits per unit area. A further improvement in the estimates is available by using the relationship between the area of ultramafic rock and the number of deposits. The number (N) of exposed podiform chromite deposits can be estimated by the following relationship: log10(N)=-0.194+0.577 log10(area of ultramafic rock). The slope is significantly different from both 0.0 and 1.0. Because the slope is less than 1.0, the ratio of deposits to area of permissive rock is a biased estimator when the area of ultramafic rock is different from the median 93 km2. Unbiased estimates of the number of podiform chromite deposits can be made with the regression equation and 80 percent confidence limits presented herein. ?? 1994 Oxford University Press.

  10. Lanthanum carbonate: safety data after 10 years.

    PubMed

    Hutchison, Alastair J; Wilson, Rosamund J; Garafola, Svetlana; Copley, John Brian

    2016-12-01

    Despite 10 years of post-marketing safety monitoring of the phosphate binder lanthanum carbonate, concerns about aluminium-like accumulation and toxicity persist. Here, we present a concise overview of the safety profile of lanthanum carbonate and interim results from a 5-year observational database study (SPD405-404; ClinicalTrials.gov identifier: NCT00567723). The pharmacokinetic paradigms of lanthanum and aluminium are different in that lanthanum is minimally absorbed and eliminated via the hepatobiliary pathway, whereas aluminium shows appreciable absorption and is eliminated by the kidneys. Randomised prospective studies of paired bone biopsies revealed no evidence of accumulation or toxicity in patients treated with lanthanum carbonate. Patients treated with lanthanum carbonate for up to 6 years showed no clinically relevant changes in liver enzyme or bilirubin levels. Lanthanum does not cross the intact blood-brain barrier. The most common adverse effects are mild/moderate nausea, diarrhoea and flatulence. An interim Kaplan-Meier analysis of SPD405-404 data from the United States Renal Data System revealed that the median 5-year survival was 51.6 months (95% CI: 49.1, 54.2) in patients who received lanthanum carbonate (test group), 48.9 months (95% CI: 47.3, 50.5) in patients treated with other phosphate binders (concomitant therapy control group) and 40.3 months (95% CI: 38.9, 41.5) in patients before the availability of lanthanum carbonate (historical control group). Bone fracture rates were 5.9%, 6.7% and 6.4%, respectively. After more than 850 000 person-years of worldwide patient exposure, there is no evidence that lanthanum carbonate is associated with adverse safety outcomes in patients with end-stage renal disease. © 2016 Shire Development LLC. Nephrology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Nephrology.

  11. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  12. Chromite and other mineral deposits in serpentine rocks of the Piedmont Upland, Maryland, Pennsylvania, and Delaware

    USGS Publications Warehouse

    Pearre, Nancy C.; Heyl, Allen V.

    1960-01-01

    The Piedmont Upland in Maryland, Pennsylvania, and Delaware is about 160 miles long and at the most 50 miles wide. Rocks that underlie the province are the Baltimore gneiss of Precambrian age and quartzite, gneiss, schist, marble, phyllite, and greenstone, which make up the Glenarm series of early Paleozoic (?) age. These are intruded by granitic, gabbroic, and ultramaflc igneous rocks. Most of the ultramaflc rocks, originally peridotite, pyroxenite, and dunite, have been partly or completely altered to serpentine and talc; they are all designated by the general term serpentine. The bodies of serpentine are commonly elongate and conformable with the enclosing rocks. Many have been extensively quarried for building, decorative, and crushed stone. In addition, chromite, titaniferous magnetite, rutile, talc and soapstone, amphibole asbestos, magnesite, sodium- rich feldspar (commercially known as soda spar), and corundum have been mined or prospected for in the serpentine. Both high-grade massive chromite and lower grade disseminated chromite occur in very irregular and unpredictable form in the serpentine, and placer deposits of chromite are in and near streams that drain areas underlain by serpentine. A group of unusual minerals, among them kammererite, are typical associates of high-grade massive chromite but are rare in lower grade deposits. Chromite was first discovered in the United States at Bare Hills, Md., around 1810. Between 1820 and 1850, additional deposits were discovered and mined in Maryland and Pennsylvania, including the largest deposit of massive chromite ever found in the United States the Wood deposit, in the State Line district. A second period of extensive chromite mining came during the late 1860's and early 1870's. Production figures are incomplete and conflicting. Estimates from the available data indicate that the aggregate production from 27 of 40 known mines before 1900 totaled between 250,000 and 280,000 tons of lode-chromite ore

  13. The reduction mechanism of a natural chromite at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-02-01

    The behavior of a natural chromite from the Bushveld Complex, Transvaal, South Africa, during reduction at 1416 °C by graphite was studied by means of thermogravimetric analysis, X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), and metallographic analysis. Experimental runs were allowed to proceed up to 120 minutes, resulting in 99 pct reduction. The specific objective of this study was to delineate the reduction mechanism of chromite by graphite. Zoning was observed in partially reduced chromites with degrees of reduction of up to about 70 pct. The inner cores were rich in iron, while the outer cores were depleted of iron. Energy-dispersive X-ray analysis revealed that Fe2+ and Cr3+ ions had diffused outward, whereas Cr2+, Al3+, and Mg2+ ions had diffused inward. The following mechanism of reduction, which is based on the assumption that the composition of the spinel phase remains stoichiometric with increasing degree of reduction, is proposed, (a) Initially, Fe3+ and Fe2+ ions at the surface of the chromite particle are reduced to the metallic state. This is followed immediately by the reduction of Cr3+ ions to the divalent state, (b) Cr2+ ions diffusing toward the center of the particle reduce the Fe3+ ions in the spinel under the surface of the particle to Fe2+ at the interface between the inner and outer cores. Fe2+ ions diffuse toward the surface, where they are reduced to metallic iron, (c) After the iron has been completely reduced, Cr3+ and any Cr2+ that is present are reduced to the metallic state, leaving an iron- and chromium-free spinel, MgAl2O4.

  14. Pharmacology of the Phosphate Binder, Lanthanum Carbonate

    PubMed Central

    Damment, Stephen JP

    2011-01-01

    Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in several experimental models. Lanthanum carbonate and aluminum hydroxide markedly increased excretion of [32P]-phosphate in feces and reduced excretion in urine in rats with normal renal function (p < 0.05), indicating good dietary phosphate-binding efficacy. In rats with chronic renal failure, lanthanum carbonate and aluminum hydroxide reduced urinary phosphate excretion to a greater degree and more rapidly than calcium carbonate, which in turn was more effective than sevelamer hydrochloride. The potential to induce adverse pharmacological effects was assessed systematically in mice, rats, and dogs with normal renal function using standard in vivo models. There was no evidence of any adverse secondary pharmacological effects of lanthanum carbonate on the central nervous, cardiovascular, respiratory, or gastrointestinal systems. These studies indicate that lanthanum carbonate is the more potent of the currently available dietary phosphate binders. No adverse secondary pharmacological actions were observed in vivo in a systematic evaluation at high doses. PMID:21332344

  15. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2018-05-01

    Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.

  16. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S.

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRDmore » diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.« less

  17. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  18. Optical band gap determination of calcium doped lanthanum manganite nano particle tailored with polypyrrole

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa

    2018-05-01

    In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.

  19. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; Rosing, Minik T.; Frei, Robert

    2010-12-01

    The chromite deposits in the Archean Nuggihalli schist belt are part of a layered ultramafic-mafic sequence within the Western Dharwar Craton of the Indian shield. The 3.1-Ga ultramafic-mafic units occur as sill-like intrusions within the volcano-sedimentary sequences of the Nuggihalli greenstone belt that are surrounded by the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. The entire succession is exposed in the Tagdur mining district. The succession has been divided into the lower and the upper ultramafic units, separated by a middle gabbro unit. The ultramafic units comprise of deformed massive chromitite bodies that are hosted within chromite-bearing serpentinites. The chromitite bodies occur in the form of pods and elongated lenses (~60-500 m by ~15 m). Detailed electron microprobe studies reveal intense compositional variability of the chromite grains in silicate-rich chromitite (~50% modal chromite) and serpentinite (~2% modal chromite) throughout the entire ultramafic sequence. However, the primary composition of chromite is preserved in the massive chromitites (~60-75% modal chromite) from the Byrapur and the Bhaktarhalli mining district of the Nuggihalli schist belt. These are characterized by high Cr-ratios (Cr/(Cr + Al) = 0.78-0.86) and moderate Mg-ratios (Mg/(Mg + Fe2+) = 0.38-0.58). The compositional variability occurs due to sub-solidus re-equilibration in the accessory chromite in the serpentinite (Mg-ratio = 0.01-0.38; Cr-ratio = 0.02-0.99) and in silicate-rich chromitite (Mg-ratio = 0.06-0.48; Cr-ratio = 0.60-0.99). In the massive chromitites, the sub-solidus re-equilibration for chromite is less or absent. However, the re-equilibration is prominent in the co-existing interstitial and included olivine (Fo96-98) and pyroxene grains (Mg-numbers = 97-99). Compositional variability on the scale of a single chromite grain occurs in the form of zoning, and it is common in the accessory chromite grains in serpentinite and in the altered grains

  20. The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions

    NASA Technical Reports Server (NTRS)

    Krot, Alexander; Ivanova, Marina A.; Wasson, John T.

    1993-01-01

    We characterize ten chromatic chondrules, two spinelian chondrules andd one spinel-bearing chondrule and summarize data for 120 chromitic inclusions discovered in an extensive survey of ordinary chondrites. Compositional and petrographic evidence suggests that chromitic chondrules and inclusions are closely related. The Cr/(Cr + Al) ratios in the spinal of these objects range from 0.5 to 0.9 and bulk Al2O3 contents are uniformly high (greater than 10 wt%, except for one with 8 wt%). No other elements having comparable solar abundances are so stongly enriched, and alkali feldspar and merrillite are more common than in normal chondrules. The Cr/Mg ratios in chromitic chondrules are 180-750 times the ratios in the bulk chondrite. With the possible exception of magnetic clumping of chromite in the presolar cloud, mechanical processes cannot account for this enrichment. Examination of nebular equilibrium processes shows that 50%-condensation temperatures of Cr at pH2/pH2O of 1500 are several tens of degrees below those of Mg as Mg2SiO4; the condensation of Cr is primarily as MgCr2O4 dissolved in MgAl2O4 at nebular pressures of 10(exp -4) atm or below. At pH2 = 10(exp -3) atm condesation as Cr in Fe-Ni is favored. Making the nebula much more oxidizing reduces the difference in condensation temperatures but Mg remains more refractory. We conclude that nebular equilibrium processes are not responsible for the enhanced Cr/Mg ratios. We propose that both Cr and Al became enriched in residues formed by incomplete evaporation of presolar lumps. We suggest that spinals remained as solid phases when the bulk of the silicates were incorporated into the evaporating melt; vaporization of Al and Cr were inhibited by the slow kinetics of diffusion. Subsequent melting and crystallization of these residues fractionated Cr from Al. The resulting materials constituted major components in the precursors of chromitic chondrules. Our model implies that chromitic chondrules and inclusions

  1. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were

  2. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  3. Investigation of optical properties and local structure of Gd3+ doped nano-crystalline GeSe2

    NASA Astrophysics Data System (ADS)

    Hantour, Hanan Hassan

    2017-04-01

    Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41 nm for GeSe2 and 48 nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1 and 4.8 eV for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ˜202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its full width at half maximum (FWHM) is reduced by ˜50% accompanied by an intensity increase of about ˜17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ˜604 nm. This band is split into two separated bands with higher intensity. The detected emission bands at wavelength >650 nm are assigned to transmission from 6GJ to the different 6PJ terms.

  4. Lanthanum deposition corresponds to white lesions in the stomach.

    PubMed

    Iwamuro, Masaya; Urata, Haruo; Tanaka, Takehiro; Kawano, Seiji; Kawahara, Yoshiro; Kimoto, Katsuhiko; Okada, Hiroyuki

    2018-05-23

    Although lanthanum deposition in the stomach has been most frequently reported to occur as white lesions, no study has investigated whether the white lesions observed during esophagogastroduodenoscopy are truly lanthanum-related. Here, we retrospectively investigated the amount of lanthanum in endoscopic biopsy specimens. We reviewed four patients showing gastric white spots or annular whitish mucosa in the gastric white lesions (Bw) and peripheral mucosa where the white substance was not endoscopically observed (Bp) during biopsy. We also reviewed three patients with diffuse whitish mucosa and three patients with no whitish lesions. We performed scanning electron microscopy and energy dispersive X-ray spectrometry to quantify the lanthanum elements (wt%) in the biopsy specimens. The amount of lanthanum in the Bw ranged from 0.15-0.31 wt%, whereas that of Bp was 0.00-0.13 wt%. The difference was statistically significant (P < 0.05). The amount of lanthanum in the Bw, endoscopically presented with white spots or annular whitish mucosa, was significantly higher than that of no whitish lesions (0.05-0.14 wt%, P < 0.05). The amount of lanthanum was also higher in the diffuse whitish mucosa (0.21-0.23 wt%) compared with no whitish lesions (P < 0.01). This study is the first to reveal that pathological lanthanum deposition corresponds to the endoscopically observed white lesions in the gastric mucosa. Therefore, during esophagogastroduodenoscopy, physicians should pay attention to possible presence of white lesions in patients treated with oral lanthanum carbonate to ensure prompt identification of associated issues. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Physics of the multi-functionality of lanthanum ferrite ceramics

    NASA Astrophysics Data System (ADS)

    Bhargav, K. K.; Ram, S.; Majumder, S. B.

    2014-05-01

    In the present work, we have illustrated the physics of the multifunctional characteristics of nano-crystalline LaFeO3 powder prepared using auto-combustion synthesis. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. The temperature dependence of dielectric constant of pure LaFeO3 exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. The dielectric relaxation of LaFeO3 correlates well with small polaron conduction. The occurrence of polarization hysteresis in LaFeO3 (with centro-symmetric Pnma space group) is thought to be spin current induced type. The canting of the Fe3+ spins induce weak ferromagnetism in nano-crystalline LaFeO3. Room temperature saturation magnetization of pure LaFeO3 is reported to be 3.0 emu/g. Due to the presence of both ferromagnetic as well as polarization ordering, LaFeO3 behaves like a single phase multiferroic ceramics. The magneto-electric coupling in this system has been demonstrated through the magneto-dielectric measurements which yield about 0.8% dielectric tuning (at 10 kHz) with the application of 2 T magnetic field. As a typical application of the synthesized nano-crystalline LaFeO3 powder, we have studied its butane sensing characteristics. The efficient butane sensing characteristics have been correlated to their catalytic activity towards oxidation of butane. Through X-ray photoelectron spectroscopy analyses, we detect the surface adsorbed oxygen species on LaFeO3 surface. Surface adsorbed oxygen species play major role in their low temperature butane sensing. Finally, we have hypothesized that the desorbed H2O and O2 (originate from surface adsorbed hydroxyl and oxygen) initiate the catalytic oxidative dehydrogenation of n-butane resulting in weakening of the electrostatics of the gas molecules.

  6. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  7. Metallic behavior of lanthanum disilicide

    NASA Technical Reports Server (NTRS)

    Long, Robert G.; Bost, M. C.; Mahan, John E.

    1988-01-01

    Polycrystalline thin films of LaSi2 were prepared by reaction of sputter-deposited lanthanum layers with silicon wafers. Samples of the low-temperature tetragonal and the high-temperature orthorhombic phases were separately obtained. The room-temperature intrinsic resistivities were 24 and 57 microohm cm for the low- and high-temperature structures, respectively. Although lanthanum disilicide had been previously reported to be a semiconductor, classical metallic behavior was found for both phases.

  8. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  9. Crystallization of high-Ca chromium garnet upon interaction of serpentine, chromite, and Ca-bearing hydrous fluid

    NASA Astrophysics Data System (ADS)

    Chepurov, A. A.; Turkin, A. I.; Pokhilenko, N. P.

    2017-10-01

    The results of experimental modeling of the conditions of crystallization of high-Ca chromium garnets in the system serpentine-chromite-Ca-Cr-bearing hydrous fluid at a pressure of 5 GPa and temperature of 1300°C are reported. The mineral association including quantitatively predominant high-Mg olivine and diopside-rich clinopyroxene, bright-green garnet, and newly formed chrome spinel was formed. Garnet mostly crystallized around primary chromite grains and was characterized by a high concentration of CaO and Cr2O3. According to the chemical composition, garnets obtained are close to the uvarovite-pyrope varieties, which enter the composition of relatively rare natural paragenesis of garnet wehrlite. The experimental data obtained clearly show that high-Ca chromium garnets are formed in the reaction of chromite-bearing peridotite and Ca-rich fluid at high P-T parameters.

  10. The reduction mechanism of chromite in the presence of a silica flux

    NASA Astrophysics Data System (ADS)

    Weber, P.; Eric, R. H.

    1993-12-01

    The reduction behavior of a natural chromite from the Bushveld Complex of South Africa was studied at 1300 °C to 1500 °C. Reduction was by graphite in the presence of silica. Thermo-gravimetric analysis, X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), and metallographic analysis were the experimental techniques used. Silica affected the reduction at and above 1400 °C. A two-stage reduction mechanism was established. The first stage, up to a reduction level of about 40 pct, is primarily confined to iron metallization, and zoning is observed in partially reduced chromites. In this stage, silica does not interfere with the reduction, which proceeds by an outward diffusion of Fe2+ ions and an inward diffusion of Mg2+ and Cr2+ ions. The second stage is primarily confined to chromium metallization, and formation of a silicate slag alters the reduction mechanism. The slag phase agglomerates and even embeds partially reduced chromite particles. An ion-exchange reaction between the re-ducible cations (Cr3+ and Fe2+) in the spinel and the dissolved cations (Al3+ and Mg2+) in the slag allows further reduction. Once the reducible cations are dissolved in the slag phase, they are reduced to the metallic state at sites where there is contact with the reductant.

  11. Phosphate-binding efficacy of crushed vs. chewed lanthanum carbonate in hemodialysis patients.

    PubMed

    How, Priscilla P; Anattiwong, Prathana; Mason, Darius L; Arruda, Jose A; Lau, Alan H

    2011-01-01

    Lanthanum carbonate, a chewable noncalcium-containing phosphorus (P) binder, is useful for treating secondary hyperparathyroidism in patients who have hypercalcemia and cannot swallow whole tablets. However, some patients cannot chew tablets or prefer to crush and mix them with food. This study was conducted to determine the P-binding efficacy of crushed lanthanum and compare it with chewed lanthanum in hemodialysis (HD) patients. After a 1-week washout period, 11 hemodialysis patients (7 men, 4 women) were randomized to receive, in a crossover fashion, lanthanum 1000 mg 3 times daily chewed with meals and lanthanum 1000 mg 3 times daily crushed into a fine powder, mixed with applesauce and taken with meals, for 4 weeks each. Serum P was measured at the end of each washout (baseline) and weekly during treatment. Changes in serum P from baseline for crushed lanthanum were compared with chewed lanthanum using paired sample t test. Administration of crushed lanthanum resulted in a significant reduction in serum P from baseline (P reduction [mg/dL] for crushed lanthanum in week 1: 2.1 ± 0.4, week 2: 1.7 ± 0.5, week 3: 1.7 ± 0.5, week 4: 1.7 ± 0.4, P<0.05). No statistically significant differences were observed in serum P reduction from baseline and serum P attained during treatment with crushed when compared with chewed lanthanum. Crushed lanthanum is effective in reducing serum P and have similar P-binding efficacy to chewed lanthanum. Crushing lanthanum and mixing it with food can thus be an option for patients who are unable to chew or swallow whole tablets. © 2010 The Authors. Hemodialysis International © 2010 International Society for Hemodialysis.

  12. Preparation and characterization of new photoluminescent nano-powder based on Eu3+:La2Ti2O7 and dispersed into silica matrix for latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Saif, M.; Alsayed, N.; Mbarek, A.; El-Kemary, M.; Abdel-Mottaleb, M. S. A.

    2016-12-01

    Pure lanthanum titanate doped with europium metal ions (La2Ti2O7:Eu3+) and dispersed in silica matrix phosphor powder was prepared by sol-gel process followed by thermal treatment. The prepared nanophosphors were characterized by powder X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Transmission Electron Microscope (TEM), Energy Dispersive Spectroscopy (EDX), and Photoluminescence Spectroscopy (PL). The effects of silica, thermal treatment, Eu3+ ion, and surfactant (CTAB) concentrations on the crystal, morphology, and photoluminescence properties were investigated. The present work found that dispersion of La2Ti2O7:Eu3+ into silica matrix significantly altered the morphology of La2Ti2O7:Eu3+ from high crystalline micro-plate like shape into amorphous aggregated Nano-spherical shape. The high separated spherical shape with intense red PL emission and long lifetime was obtained from 10 mol% Eu3+:La2Ti2O7:Eu3+, dispersed into silica matrix, and prepared in the presence of CTAB. The high PL Nano-phosphor has been successfully used in developing latent fingerprint from various forensic relevant materials.

  13. Kinetics of the reduction of bushveld complex chromite ore at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-12-01

    The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.

  14. Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2015-06-01

    The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from

  15. Toward laser cooling and trapping lanthanum ions

    NASA Astrophysics Data System (ADS)

    Olmschenk, Steven; Banner, Patrick; Hankes, Jessie; Nelson, Amanda

    2017-04-01

    Trapped atomic ions are a leading candidate for applications in quantum information. For scalability and applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress toward laser cooling doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Since the hyperfine structure of this ion has not been measured, we are using optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of transitions in lanthanum. Using laser ablation to directly produce ions from a solid target, we laser cool and trap barium ions, and explore extending this technique to lanthanum ions. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  16. Fuel cells with doped lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  17. Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; McCubbin, Francis M.; Shearer, Charles K.

    2012-06-01

    Despite the very low chromium concentrations in its cumulus olivine (˜140 ppm), lunar troctolite 76535 contains large amounts of Cr sporadically, but highly concentrated, in symplectite assemblages consisting of Mg-Al-chromite and two pyroxenes. Previously proposed symplectite formation mechanisms include crystallization of trapped interstitial melt, diffusion of Cr from cumulus olivine, and/or remobilization of cumulus chromite grains. These mechanisms would imply that the highly Cr-depleted nature of Mg-suite parental magmas and their source materials inferred from cumulus olivine may be illusory. We have conducted a detailed petrologic and textural study of symplectites, as well as chromite veins, intercumulus assemblages, olivine-hosted melt inclusions and clinopyroxene-troilite veins in 76535 with the goals of constraining the origin of the symplectites, and the degree of Cr-depletion in Mg-suite magmas relative to other lunar basalts. Orthopyroxene and clinopyroxene in melt inclusions are depleted in Cr relative to their symplectite counterparts, averaging 900 and 1200 ppm vs. 7400 and 8100 ppm Cr2O3, respectively. Olivine in contact with symplectite assemblages may exhibit a diffusion profile of Cr going into olivine, whereas olivine boundaries away from symplectites show no diffusion profile. There is also a distinct lack of primary chromite as inclusions in cumulus phases and melt inclusions. Multiple textural observations, melt inclusion chemistry, and modeling of chromite-olivine equilibrium rule out previously proposed symplectite formation mechanisms, and strongly suggest that chromite was not a primary crystallization product of the 76535 parental magma. Accordingly, the post-cumulus addition of Cr and Fe is required to produce the symplectites. After considering multiple models, the addition of Cr and Fe to 76535 via infiltration metasomatism by an exogenous chromite-saturated melt is the model most consistent with multiple textural and geochemical

  18. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1982-01-01

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  19. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.

    2015-03-01

    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.

  20. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  1. Mineralogy and origin of stichtite in chromite-bearing serpentinites

    NASA Astrophysics Data System (ADS)

    Ashwal, Lewis D.; Cairncross, Bruce

    Stichtite, a rare (14 known localities worldwide) hydrated carbonate-hydroxide of Mg and Cr with ideal formula Mg6Cr2 (OH)16 CO3 . 4H2O, occurs exclusively in Cr-rich serpentinites of ophiolites or greenstone belts. Physical properties (hardness=1.5-2, specific gravity=2.16-2.2, perfect basal [0001] cleavage, grain size commonly < 100 μm) resemble talc, but the mineral has an attractive purple to lilac color; chemical analyses demonstrate it to be a non-silicate. Stichtite generally occurs as irregular to rounded masses (< 1 cm - 30 cm across) and as veinlets (< 1 mm - > 2 cm wide) within serpentinite. Macroscopic and microscopic textures, such as crosscutting veinlets and stringers, demonstrate that stichtite formation invariably post-dated serpentinization. In some specimens stichtite surrounds relict grains of Cr-rich spinel; in others stichtite has completely replaced euhedral or subhedral chromites. Chemical analyses of stichtites reveal substantial substitution of Al and Fe3+ for Cr in specimens from many localities, reflecting a possible compositional continuum between stichtite and rhombohedral polymorphs hydrotalcite (Mg6Al2 (OH)16 CO3 . 4H2O) and pyroaurite (Mg6Fe2 (OH)16 CO3 . 4H2O). We report the first electron microprobe analyses of stichtites from seven localities, and summarize all available published chemical data. Stichtites very likely inherited part of their trivalent cation chemistry from precursor Cr-rich spinels, but stichtite growth apparently post-dated characteristic ``ferritchromit'' alteration, as demonstrated by the depletion of Al and enrichment in Fe3+ in stichtite relative to primary chromite core compositions. Stichtite appears to form by reaction between serpentine and altered chromite, during addition of substantial fluid, either as separate H2O and CO2 phases, or as a mixed volatile phase. Such reactions must involve removal of substantial SiO2, possibly by transport and remote deposition of silica by throughgoing aqueous and

  2. Arsenic Sorption on TiO2 Nanoparticles: Size And Crystallinity Effects

    EPA Science Inventory

    Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and cryst...

  3. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  4. Single-crystalline monolayer and multilayer graphene nano switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-03-01

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  5. Single-crystalline monolayer and multilayer graphene nano switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Cui, Tianhong, E-mail: tcui@me.umn.edu; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  6. Cytocompatibility of a free machining titanium alloy containing lanthanum.

    PubMed

    Feyerabend, Frank; Siemers, Carsten; Willumeit, Regine; Rösler, Joachim

    2009-09-01

    Titanium alloys like Ti6Al4V are widely used in medical engineering. However, the mechanical and chemical properties of titanium alloys lead to poor machinability, resulting in high production costs of medical products. To improve the machinability of Ti6Al4V, 0.9% of the rare earth element lanthanum (La) was added. The microstructure, the mechanical, and the corrosion properties were determined. Lanthanum containing alloys exhibited discrete particles of cubic lanthanum. The mechanical properties and corrosion resistance were slightly decreased but are still sufficient for many applications in the field of medical engineering. In vitro experiments with mouse macrophages (RAW 264.7) and human bone-derived cells (MG-63, HBDC) were performed and revealed that macrophages showed a dose response below and above a LaCl3 concentration of 200 microM, while MG-63 and HBDC tolerated three times higher concentrations without reduction of viability. The viability of cells cultured on disks of the materials showed no differences between the reference and the lanthanum containing alloy. We therefore propose that lanthanum containing alloy appears to be a good alternative for biomedical applications, where machining of parts is necessary.

  7. Geology and economic potential for chromite in the Zhob Valley ultramafic rock complex, Hindubagh, Quetta division, West Pakistan

    USGS Publications Warehouse

    Rossman, D.L.; Ahmad, Zaki; Rahman, Hamidur

    1971-01-01

    The ultramafic rocks making up the Zhob Valley igneous complex have yielded small amounts of metallurgical-grade chromite since the early part of the century. From 1968-1970 a cooperative study undertaken by the Geological Survey of Pakistan and the U. S. Geological Survey, under the auspices of the Government of Pakistan and the Agency for International Development, evaluated the chromite potential of the Zhob Valley area and provided data for effective exploration. The Jung Tor Ghar ultramafic rock mass, covering an area of about 45 square miles, is a thrust-fault block completely surrounded and underlain (?) by sedimentary rocks as young as Late Cretaceous in age. The igneous rocks were thrust from the northwest along an east-trending, north-dipping fault in Late Cretaceous or Paleocene time and were peneplaned, dissected, and deeply laterized by mid-Eocene time. The ultramafic rocks consist of interlayered harzburgite and dunite and a cross-cutting dunite here called transgressive dunite. Layered structure passes without discernible deviation from the interlayered harzburgite-dunite through the transgressive dunite. The lowest rocks in the mass, composed mainly of transgressive dunite, grade upward into the interlayered rock about 3,000 feet above the fault block base. The upper transgressive dunites tend to form interconnecting linear networks and probably a few pipe-like structures. The transgressive dunite is thought to have formed by action of water derived from the underlying sedimentary rocks; the water heated by the hot ultramafic rock (at the time of emplacement) altered the pyroxene to olivine and talc, and, with lowering temperature, to serpentine. Other interpretations are possible. Virtually all the chromite in the Jung Tor Ghar lies in or immediately above the masses of transgressive dunite. This fact provides a key to chromite exploration: The most favorable zone for prospecting lies in the vicinity of the upper contacts of the transgressive

  8. Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Yaocen; Makino, Akihiro

    2018-04-01

    In the present article, the structural and soft magnetic properties of Fe-B-P-Cu alloy system with W addition have been studied as well as the annealing configurations required for magnetic softness. It is found that the substitution of B by W deteriorates the soft magnetic properties after annealing. The reason of such impact with W addition may lie in the insufficient bonding strength between W and B so that the addition of W is not effective enough to suppress grain growth against the high concentration and high crystallization tendency of Fe during annealing. The addition of 4 at.% W is also found to reduce the saturation magnetization of the nano-crystalline alloy by 14%. It is also found that the addition of P in the Fe-based alloys could help reduce the coercivity upon annealing with high heating rate. The existence of P could also help slightly increase the overall saturation magnetization by enhancing the electron transfer away from Fe in the residual amorphous structure.

  9. Sintered magnetic cores of high Bs Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sharma, Parmanand; Makino, Akihiro

    2014-05-01

    Fabrication of bulk cores of nano-crystalline Fe84.3Si4B8P3Cu0.7 alloy with a lamellar type of microstructure is reported. Amorphous ribbon flakes of size ˜1.0-2.0 mm were compacted in the bulk form by spark plasma sintering technique at different sintering temperatures. High density (˜96.4%) cores with a uniform nano-granular structure made from α-Fe (˜31 nm) were obtained. These cores show excellent mechanical and soft magnetic properties. The lamellar micro-structure is shown to be important in achieving significantly lower magnetic core loss than the non-oriented silicon steel sheets, commercial powder cores and even the core made of the same alloy with finer and randomly oriented powder particles.

  10. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  11. Chemistry of chromites from Arroio Grande Ophiolite (Dom Feliciano Belt, Brazil) and their possible connection with the Nama Group (Namibia)

    NASA Astrophysics Data System (ADS)

    Ramos, Rodrigo Chaves; Koester, Edinei; Porcher, Carla Cristine

    2017-12-01

    The present paper shows a mineral chemistry study in chromites found in serpentine-talc schists of the Arroio Grande Ophiolite, located in the southeastern Dom Feliciano Belt, near the Brazil/Uruguay border. Using electron microscope scanning and electron microprobe techniques, this study found a supra-subduction zone signature in the chromites, together with evidence of metasomatism. It corroborates previous hypothesis that suggested a supra-subduction zone origin for the protoliths of the Arroio Grande meta-igneous rocks and a metasomatic origin for the chromite-bearing magnesian schists. The studied chromites present high Cr# (0.65-0.77) and Fe2+# (0.88-0.95), low MgO (0.85-2.47 wt%) and TiO2 (0.01-0.19 wt%) and anomalous high concentration of ZnO (up to 1.97 wt%). The results were compared with chemical data from detrital chromites from the Schwarzrand and Fish River Subgroups of the Nama Group (Namibia), demonstrating that they are compositionally similar with those found in the latter. These chromites, in turn, are believed to have been derived from the oceanic Marmora Terrane (Gariep Belt) in the west (present-day coordinates). Taking into consideration that oceanic metamafites from both the latter and the Arroio Grande Ophiolite share common bulk-rock geochemical features (in this paper interpreted as fragments of the same paleo-ocean floor - the Marmora back-arc basin), it is possible to raise the hypothesis that detrital material derived from the studied ophiolite might also be found in Nama Group. It is reinforced by the fact that sediments (related to the Pelotas-Aiguá Batholith granitoids) derived from the easternmost Dom Feliciano Belt, i.e. the region where Arroio Grande Ophiolite is located, is found in both Schwarzrand and Fish River Subgroups. Thus, we suggest that Arroio Grande Ophiolite detrital sediments might also have contributed to the Nama Basin infilling during Late Ediacaran-Lower Cambrian.

  12. An Exercise in X-Ray Diffraction Using the Polymorphic Transition of Nickel Chromite.

    ERIC Educational Resources Information Center

    Chipman, David W.

    1980-01-01

    Describes a laboratory experiment appropriate for a course in either x-ray crystallography or mineralogy. The experiment permits the direct observation of a polymorphic transition in nickel chromite without the use of a special heating stage or heating camera. (Author/GS)

  13. Amorphous lithium lanthanum titanate for solid-state microbatteries

    DOE PAGES

    Lee, Jungwoo Z.; Wang, Ziying; Xin, Huolin L.; ...

    2016-12-16

    Lithium lanthanum titanate (LLTO) is a promising solid state electrolyte for solid state batteries due to its demonstrated high bulk ionic conductivity. However, crystalline LLTO has a relatively low grain boundary conductivity, limiting the overall material conductivity. In this work, we investigate amorphous LLTO (a-LLTO) thin films grown by pulsed laser deposition (PLD). By controlling the background pressure and temperature we are able to optimize the ionic conductivity to 3 × 10 –4 S/cm and electronic conductivity to 5 × 10 –11 S/cm. XRD, TEM, and STEM/EELS analysis confirm that the films are amorphous and indicate that oxygen background gasmore » is necessary during the PLD process to decrease the oxygen vacancy concentration, decreasing the electrical conductivity. Amorphous LLTO is deposited onto high voltage LiNi 0.5Mn 1.5O 4 (LNMO) spinel cathode thin films and cycled up to 4.8 V vs. Li showing excellent capacity retention. Finally, these results demonstrate that a-LLTO has the potential to be integrated into high voltage thin film batteries.« less

  14. Stabilized Lanthanum Sulphur Compounds

    NASA Technical Reports Server (NTRS)

    Reynolds, George H. (Inventor); Elsner, Norbert B. (Inventor); Shearer, Clyde H. (Inventor)

    1985-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium. or strontium. This novel compound is an excellent thermoelectric material.

  15. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  16. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  17. Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Bair, V. L.; Morris, J. F.

    1978-01-01

    Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given.

  18. Wafer-size free-standing single-crystalline graphene device arrays

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-08-01

    We report an approach of wafer-scale addressable single-crystalline graphene (SCG) arrays growth by using pre-patterned seeds to control the nucleation. The growth mechanism and superb properties of SCG were studied. Large array of free-standing SCG devices were realized. Characterization of SCG as nano switches shows excellent performance with life time (>22 000 times) two orders longer than that of other graphene nano switches reported so far. This work not only shows the possibility of producing wafer-scale high quality SCG device arrays but also explores the superb performance of SCG as nano devices.

  19. Clinical Characteristics of Seven Patients with Lanthanum Phosphate Deposition in the Stomach.

    PubMed

    Murakami, Naoko; Yoshioka, Masao; Iwamuro, Masaya; Nasu, Junichirou; Nose, Soichiro; Shiode, Junji; Okada, Hiroyuki; Yamamoto, Kazuhide

    2017-08-15

    Objective To analyze the clinical characteristics and endoscopic features of patients with lanthanum deposition in the stomach. Patients We retrospectively reviewed seven patients with lanthanum deposition in the stomach who were diagnosed at Okayama Saiseikai General Hospital. We investigated the patient sex, age at diagnosis, medical and medication histories, gastrointestinal symptoms, complications, presence or absence of gastric atrophy, and outcome. We also investigated any changes in the endoscopic features if previous endoscopic images were available. Results Seven patients (six males and one female) had lanthanum deposition. The median age was 65 years (range, 50-79 years). All patients had been undergoing dialysis (continuous ambulatory peritoneal dialysis in one patient, hemodialysis in six patients). The dialysis period ranged from 16 to 73 months (median, 52 months). The patients had all been taking lanthanum carbonate for a period ranging from 5 to 45 months (median, 27 months). Gastric atrophy was noted in 6 patients (85.7%). One patient had difficulty swallowing, and 1 other patient had appetite loss. The other 5 patients were asymptomatic. Endoscopic features included annular whitish mucosa (n = 4), diffuse whitish mucosa (n = 3), and whitish spots (n = 2). Five patients underwent multiple esophagogastroduodenoscopy. The endoscopic features were unchanged in 2 patients, whereas the whitish mucosa became apparent and spread during the course in 3 patients. Conclusion We identified 7 patients with lanthanum deposition in the stomach. All patients showed whitish lesions macroscopically. Although the pathogenicity of gastric lanthanum deposition is uncertain, lanthanum-related lesions in the stomach progressed during continuous lanthanum phosphate intake in several patients.

  20. Efficacy of chewed vs. crushed lanthanum on phosphorus binding in healthy volunteers.

    PubMed

    How, P P; Mason, D L; Arruda, J A; Lau, A H

    2010-05-01

    For effective dietary phosphorous (P) binding, patients are recommended to chew lanthanum tablets completely before swallowing, with or immediately after meals. However, some patients are unable to chew the tablets. It is not known if crushing the tablets prior to taking them with food is as efficacious as chewing them. This study was conducted to compare the efficacy of chewed vs. crushed lanthanum on P binding. 12 healthy subjects were randomized and crossed-over to receive: (A) a standardized meal containing 1 g (32 mmol) of elemental P; (B) a single 1 g oral dose of lanthanum, chewed and taken with the standardized meal; (C) a single 1 g oral dose of lanthanum, crushed into a fine powder using a pestle and mortar, mixed with applesauce, and taken with the standardized meal. Blood and urine samples were collected from baseline to 8 hours after meal completion. The changes in serum P, urinary P excretion and fractional excretion of P (FePi) were compared among treatment arms using ANOVA. Co-administration of lanthanum with meal resulted in a smaller increase in serum P, compared with meal alone (p < 0.05). The smaller increase in serum P was similar for both chewed and crushed lanthanum. The amount of P excreted and FePi were also lower when chewed or crushed lanthanum was administered with meal, compared with meal alone (p = n.s. and p < 0.05, respectively). Both chewed and crushed lanthanum are effective in lowering P absorption after a dietary P load.

  1. Nutritional status and survival of maintenance hemodialysis patients receiving lanthanum carbonate.

    PubMed

    Komaba, Hirotaka; Kakuta, Takatoshi; Wada, Takehiko; Hida, Miho; Suga, Takao; Fukagawa, Masafumi

    2018-04-16

    Hyperphosphatemia and poor nutritional status are associated with increased mortality. Lanthanum carbonate is an effective, calcium-free phosphate binder, but little is known about the long-term impact on mineral metabolism, nutritional status and survival. We extended the follow-up period of a historical cohort of 2292 maintenance hemodialysis patients that was formed in late 2008. We examined 7-year all-cause mortality according to the serum phosphate levels and nutritional indicators in the entire cohort and then compared the mortality rate of the 562 patients who initiated lanthanum with that of the 562 propensity score-matched patients who were not treated with lanthanum. During a mean ± SD follow-up of 4.9 ± 2.3 years, 679 patients died in the entire cohort. Higher serum phosphorus levels and lower nutritional indicators (body mass index, albumin and creatinine) were each independently associated with an increased risk of death. In the propensity score-matched analysis, patients who initiated lanthanum had a 23% lower risk for mortality compared with the matched controls. During the follow-up period, the serum phosphorus levels tended to decrease comparably in both groups, but the lanthanum group maintained a better nutritional status than the control group. The survival benefit associated with lanthanum was unchanged after adjustment for time-varying phosphorus or other mineral metabolism parameters, but was attenuated by adjustments for time-varying indicators of nutritional status. Treatment with lanthanum is associated with improved survival in hemodialysis patients. This effect may be partially mediated by relaxation of dietary phosphate restriction and improved nutritional status.

  2. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.

    PubMed

    Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang

    2017-07-11

    A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

  3. Microstructure and transport properties of sol-gel derived highly (100)-oriented lanthanum nickel oxide thin films on SiO 2 /Si substrate

    NASA Astrophysics Data System (ADS)

    Zhu, M. W.; Wang, Z. J.; Chen, Y. N.; Zhang, Z. D.

    2011-12-01

    In the present work, lanthanum nickel oxide (LNO) thin films were prepared by the sol-gel method and different thermal treatments were adopted by adjusting the preheating treatment. The microstructure, crystal orientation, chemical composition and electrical properties of LNO films were analyzed to elucidate the relationship between the microstructure and the transport properties of the films. The results show that equiaxed grains predominate the microstructure of the films with pyrolysis step. Without the pyrolysis step, columnar grains are formed in the films, accompanied with an improvement in crystallinity and strengthening of the (100)-orientation. Furthermore, the metal-insulator transition temperature decreases for the films without the pyrolysis step. The effect of film microstructure on its electrical properties was discussed in terms of the existence of internal stress and the improved crystallinity.

  4. Preparation and crystalline studies of PVDF hybrid composites

    NASA Astrophysics Data System (ADS)

    Chethan P., B.; Renukappa, N. M.; Sanjeev, Ganesh

    2018-04-01

    The conducting polymer composites have become increasingly important for electrical and electronic applications due to their flexibility, easy of processing, high strength and low cost. A flexible conducting polymer hybrid composite was prepared by melt mixing of nickel coated multi-walled carbon nanotubes (Ni-MWNT) and graphitized carbon nanofibres (GCNF) in Polyvinylidene fluoride (PVDF) matrix. The crystalline structures of the nano composites were studied by X-ray diffraction (XRD) method and showed characteristic peaks at 17.7°, 18.5°, 20° and 26.7° of 2θ. The β phase crystalline nature of the composite films, degree of crystallinity, melting temperature and crystallization behavior of the hybrid composites were studied using appropriate characterization techniques. The filler in the insulating polymer matrix plays crucial role to improve the crystallinity of the composites.

  5. Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Hiroaki; Arai, Takayoshi; Shibasaki, Masakatsu

    1994-02-23

    In this communication, we report about a new lithium-free BINOL-lanthanum complex, which is quite effective in catalytic asymmetric Michael reaction. We have succeeded in developing effective asymmetric base catalysts, in particular, asymmetric ester enolate catalysts for asymmetric Michael reactions. Two asymmetric lanthanum complexes are now available, namely, BINOL-lanthanum-lithium complex, which is quite effective in catalytic asymmetric nitrosaldol reactions, and a new lithium-free BINOL-lanthanum ester enolate complex, that is very effective in catalytic asymmetric Michael reactions. The two complexes complement each other in their ability to catalyze asymmetric nitroaldol and asymmetric Michael reactions. 14 refs., 1 fig., 2 tabs.

  6. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)

    NASA Astrophysics Data System (ADS)

    Zhou, M.-F.; Robinson, P. T.; Malpas, J.; Aitchison, J.; Sun, M.; Bai, W.-J.; Hu, X.-F.; Yang, J.-S.

    2001-06-01

    The Sartohay block of the Dalabute ophiolite consists chiefly of mantle harzburgite and lherzolite with minor dunite. These rocks host voluminous chromite deposits with lenticular or vein-like shapes. The podiform chromitites are associated with, and cross-cut by, numerous troctolite dykes. Chromite in the chromitites has Al 2O 3 (23-31 wt%), TiO 2 (0.29-0.44 wt%), and Cr 2O 3 contents (<45 wt%) with Cr#s [100Cr/(Cr+Al)] (<60), typical of high-Al chromite deposits. The host peridotites in Sartohay have been texturally and geochemically modified by magmas from which the high-Al chromitites and mafic dykes formed. Dunites commonly envelop the podiform chromite bodies and show transitional contacts with the peridotites. Some of the peridotites and chromitites contain plagioclase that crystallized from impregnated melts. The dunite locally grades into troctolite with increasing plagioclase contents. As a result of melt impregnation, peridotites and dunites show variable Ca and Al contents and LREE enrichment. The parental magma of the chromitites was likely tholeiitic in composition, derived from partial melting of the asthenospheric mantle in a rising diapir. The interaction between this magma and pre-existing lithospheric mantle, composed of depleted lherzolite, would have formed a more silicic, tholeiitic magma from which high-Al chromitites crystallized. During this interaction, harzburgite and dunite were depleted in modal pyroxene and enriched in some incompatible elements (such as Al, Ca and LREE) due to melt impregnation.

  7. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  8. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  9. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  10. Dipicolinate Complexes of Gallium(III) and Lanthanum(III).

    PubMed

    Weekes, David M; Ramogida, Caterina F; Jaraquemada-Peláez, Maria de Guadalupe; Patrick, Brian O; Apte, Chirag; Kostelnik, Thomas I; Cawthray, Jacqueline F; Murphy, Lisa; Orvig, Chris

    2016-12-19

    Three dipicolinic acid amine-derived compounds functionalized with a carboxylate (H 3 dpaa), phosphonate (H 4 dppa), and bisphosphonate (H 7 dpbpa), as well as their nonfunctionalized analogue (H 2 dpa), were successfully synthesized and characterized. The 1:1 lanthanum(III) complexes of H 2 dpa, H 3 dpaa, and H 4 dppa, the 1:2 lanthanum(III) complex of H 2 dpa, and the 1:1 gallium(III) complex of H 3 dpaa were characterized, including via X-ray crystallography for [La 4 (dppa) 4 (H 2 O) 2 ] and [Ga(dpaa)(H 2 O)]. H 2 dpa, H 3 dpaa, and H 4 dppa were evaluated for their thermodynamic stability with lanthanum(III) via potentiometric and either UV-vis spectrophotometric (H 3 dpaa) or NMR spectrometric (H 2 dpa and H 4 dppa) titrations, which showed that the carboxylate (H 3 dpaa) and phosphonate (H 4 dppa) containing ligands enhanced the lanthanum(III) complex stability by 3-4 orders of magnitude relative to the unfunctionalized ligand (comparing log β ML and pM values) at physiological pH. In addition, potentiometric titrations with H 3 dpaa and gallium(III) were performed, which gave significantly (8 orders of magnitude) higher thermodynamic stability constants than with lanthanum(III). This was predicted to be a consequence of better size matching between the dipicolinate cavity and gallium(III), which was also evident in the aforementioned crystal structures. Because of a potential link between lanthanum(III) and osteoporosis, the ligands were tested for their bone-directing properties via a hydroxyapatite (HAP) binding assay, which showed that either a phosphonate or bisphosphonate moiety was necessary in order to elicit a chemical binding interaction with HAP. The oral activity of the ligands and their metal complexes was also assessed by experimentally measuring log P o/w values using the shake-flask method, and these were compared to a currently prescribed osteoporosis drug (alendronate). Because of the potential therapeutic applications of the radionuclides

  11. Nano-architecture of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.

    2017-09-01

    Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.

  12. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  13. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, Cressie E.; Kovach, Louis; Taylor, Albert J.

    1981-01-01

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400.degree. K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10-30 vol. % carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing bases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  14. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  15. Raman spectroscopic features of Al- Fe3+- poor magnesiochromite and Fe2+- Fe3+- rich ferrian chromite solid solutions

    NASA Astrophysics Data System (ADS)

    Kharbish, Sherif

    2018-04-01

    Naturally occurring Al- Fe3 +- poor magnesiochromite and Fe2+- Fe3 +- rich ferrian chromite solid solutions have been analyzed by micro-Raman spectroscopy. The results reflect a strong positive correlation between the Fe3 + # [Fe3+/(Fe3 ++Cr + Al)] and the positions of all Raman bands. A positive correlation of the Raman band positions with Mg# [Mg/(Mg + Fe2 +)] is less stringent. Raman spectra of magnesiochromite and ferrian chromite show seven and six bands, respectively, in the spectral region of 800 - 100 cm- 1. The most intense band in both minerals is identified as symmetric stretching vibrational mode, ν 1( A 1 g ). In the intermediate Raman-shift region (400-600 cm- 1), the significant bands are attributed to the ν 3( F 2 g ) > ν 4( F 2 g ) > ν 2( E g ) modes. The bands with the lowest Raman shifts (< 200 cm- 1) are assigned to F 2 g ( trans) translatory lattice modes. Extra bands in magnesiochromite (two bands) and in ferrian chromite (one weak band) are attributed to lowering in local symmetry and order/disorder effects.

  16. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  17. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  18. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  19. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  20. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; ...

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  1. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single

  2. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  3. Effect of basicity on beneficiated chromite sand smelting process using submerged arc furnace

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Subandrio, S.; Ferdian, D.; Suharno, Bambang

    2018-05-01

    Ferrochrome is an important alloy in stainless steel making due to its contribution to high strength and corrosion resistance. In this present study, ferrochrome was derived from Indonesian chromite sand with low-grade Cr/Fe ratio. In order to improve the ratio, beneficiation process such as pre-magnetic separation and reduction process at 1000°C for 60 minutes was required. The process followed by another magnetic separation, thus the Cr/Fe ratio was increased from 0.9 to 1.6. The reduction process used coconut shell charcoal as reductant and limestone as an additive. The beneficiated sand chromite was briquette using bentonite as a binder in 2 wt.% before it was smelted in a submerged electric arc furnace to produce ferrochrome. Basicity was controlled by the addition of limestone and it was varied from 0.4-1.6. Furthermore, the composition of ferrochrome was analyzed by using X-Ray Fluorescence. From this experiment, the result showed that chromium recovery and specific energy was decreased with the increasing of slag basicity.

  4. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  5. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, C.E. Jr.; Kovach, L.; Taylor, A.J.

    1980-01-22

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400/sup 0/K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10 to 30 vol% carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing gases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  6. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic.

    PubMed

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-05

    A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    NASA Astrophysics Data System (ADS)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  9. Improving the long-term stability of Ti6Al4V abutment screw by coating micro/nano-crystalline diamond films.

    PubMed

    Xie, Youneng; Zhou, Jing; Wei, Qiuping; Yu, Z M; Luo, Hao; Zhou, Bo; Tang, Z G

    2016-10-01

    Abutment screw loosening is the most common complication of implanting teeth. Aimed at improving the long-term stability of them, well-adherent and homogeneous micro-crystalline diamond (MCD) and nano-crystalline diamond (NCD) were deposited on DIO(®) (Dong Seo, Korea) abutment screws using a hot filament chemical vapor deposition (HFCVD) system. Compared with bare DIO(®) screws, diamond coated ones showed higher post reverse toque values than the bare ones (p<0.05) after cyclic loading one million times under 100N, and no obvious flaking happened after loading test. Diamond coated disks showed lower friction coefficients of 0.15 and 0.18 in artificial saliva when countered with ZrO2 than that of bare Ti6Al4V disks of 0.40. Though higher cell apoptosis rate was observed on film coated disks, but no significant difference between MCD group and NCD group. And the cytotoxicity of diamond films was acceptable for the fact that the cell viability of them was still higher than 70% after cultured for 72h. It can be inferred that coating diamond films might be a promising modification method for Ti6Al4V abutment screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages

    PubMed Central

    2012-01-01

    Background Respirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3) in the presence of lipopolysaccharide (LPS) from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. Results In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm) and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7) and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5) induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent. Conclusions In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline silica, involving particle

  11. Solution processed nanogap organic diodes based on liquid crystalline materials

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  12. Nano-Scale Spatial Assessment of Calcium Distribution in Coccolithophores Using Synchrotron-Based Nano-CT and STXM-NEXAFS

    PubMed Central

    Sun, Shiyong; Yao, Yanchen; Zou, Xiang; Fan, Shenglan; Zhou, Qing; Dai, Qunwei; Dong, Faqin; Liu, Mingxue; Nie, Xiaoqin; Tan, Daoyong; Li, Shuai

    2014-01-01

    Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT) and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS) techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism. PMID:25530614

  13. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    NASA Astrophysics Data System (ADS)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  14. Impact of internal crystalline boundaries on lattice thermal conductivity: Importance of boundary structure and spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghababaei, Ramin, E-mail: ramin.aghababaei@epfl.ch; Anciaux, Guillaume; Molinari, Jean-François

    2014-11-10

    The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phonon-crystalline boundaries scattering and its effect on the overall lattice thermal conductivity of crystalline bodies. Various types of crystalline boundaries such as stacking faults, twins, and grain boundaries have been considered in FCC crystalline structures. Accordingly, the specularity coefficient has been determined for different boundaries as the probability of the specular scattering across boundaries. Our results show that in the presence of internal boundaries, the lattice thermal conductivity can be characterized by two parameters: (1)more » boundary spacing and (2) boundary excess free volume. We show that the inverse of the lattice thermal conductivity depends linearly on a non-dimensional quantity which is the ratio of boundary excess free volume over boundary spacing. This shows that phonon scattering across crystalline boundaries is mainly a geometrically favorable process rather than an energetic one. Using the kinetic theory of phonon transport, we present a simple analytical model which can be used to evaluate the lattice thermal conductivity of nano-crystalline materials where the ratio can be considered as an average density of excess free volume. While this study is focused on FCC crystalline materials, where inter-atomic potentials and corresponding defect structures have been well studied in the past, the results would be quantitatively applicable for semiconductors in which heat transport is mainly due to phonon transport.« less

  15. Typology of mafic-ultramafic complexes in Hoggar, Algeria: Implications for PGE, chromite and base-metal sulphide mineralisation

    NASA Astrophysics Data System (ADS)

    Augé, Thierry; Joubert, Marc; Bailly, Laurent

    2012-02-01

    With the aims to bring new information about the typology and mineral potential of mafic-ultramafic complexes of the Hoggar, detailed petrological and chemical characterisation were performed on serpentinite bands and layered intrusions. The serpentinite bands locally contain pods, layers and disseminations of chromite showing all the characteristics (mode of occurrence, composition, nature and composition of silicate inclusions, etc.) of an "ophiolite" chromite. Some chromite concentrations in the serpentinite bands also contain inclusions of platinum-group minerals (described for the first time in the Hoggar) such as ruarsite (RuAsS), an Os, Ru, Ir alloy, and complex Os, Ir, Ru sulfarsenides and arsenides. The serpentinite probably corresponds to remnants of oceanic lithosphere—more specifically from the upper part of the mantle sequence, generally where chromitite pods are most abundant, and the basal part of the cumulate series with stratiform chromite concentrations—and marks suture zones; the rest of the oceanic crust has not been preserved. Considering the typology of the serpentinites bands, their potential for precious- and base-metals is suspected to be low. Of the two layered mafic-ultramafic intrusions that were studied, the In Tedeini intrusion has a wehrlite core intruded by olivine gabbronorite and surrounded by an olivine gabbro aureole; three orthocumulate units, containing disseminated magmatic base-metal sulphides and with a plagioclase composition varying around An 58.1 and An 63.3, that could have been derived from a single magma. The East Laouni intrusion has a basal unit of olivine gabbronorite with specific silicate oxide intergrowths, and an upper unit of more differentiated gabbro, both units containing disseminated magmatic Ni-Cu sulphides indicative of early sulphide immiscibility; the mineral composition of these two cumulate units indicates that they also could have been derived from a single magmatic episode. The characteristic of

  16. DFT Studies on Interaction between Lanthanum and Hydroxyamide

    NASA Astrophysics Data System (ADS)

    Pati, Anindita; Kundu, T. K.; Pal, Snehanshu

    2018-03-01

    Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.

  17. Preparation, structural and dielectric characteristics of Y0.5La0.95PO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Raina, Bindu; Verma, Seema; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Nanoparticles of yttrium substituted lanthanum phosphate having formulae Y0.5La0.95PO4 were successfully prepared through co-precipitation method. The phase, purity and crystallinity of 5% yttrium substituted lanthanum phosphate (Y: LaP 5%) powder was characterized by X-ray diffraction technique which suggests the sample belonging to monoclinic monazite crystal system. The spherical morphology with partial agglomeration having grain size in the nano scale range was observed with transmission electron microscopy. FTIR analysis depicts the presence of water molecule along with the phosphate group. The electrical properties of the grown composition show dependence of dielectric constant and dielectric loss on frequency and temperature. The continuous decrease in dielectric constant with increase in frequency suggests that the conduction mechanism is due to hopping of the charge carriers from one site to another.

  18. Lanthanum fluoride nanoparticles for radiosensitization of tumors

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Bekah, Devesh; Cooper, Daniel; Shastry, Sathvik; Hill, Colin; Bradforth, Stephen; Nadeau, Jay

    2016-03-01

    Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lanthanum fluoride is a transparent material that is easily prepared as nanocrystals, and which can provide radioluminescence at a number of wavelengths through simple substitution of lanthanum ions with other luminescent lanthanides. We have prepared lanthanum fluoride nanoparticles doped with cerium, terbium, or both, that have good spectral overlap with chlorine6 or Rose Bengal photosensitizer molecules. We have also developed a strategy for stable conjugation of the photosensitizers to the nanoparticle surface, allowing for high energy transfer efficiencies on a per molecule basis. Additionally, we have succeeded in making our conjugates colloidally stable under physiological conditions. Here we present our latest results, using nanoparticles and nanoparticle-photosensitizer conjugates to demonstrate radiation dose enhancement in B16 melanoma cells. The effects of nanoparticle treatment prior to 250 kVp x-ray irradiation were investigated through clonogenic survival assays and cell cycle analysis. Using a custom apparatus, we have also observed scintillation of the nanoparticles and conjugates under the same conditions that the cell samples are irradiated.

  19. First-principles study of the solid solution of hydrogen in lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoellhammer, Gunther; Herzig, Peter; Wolf, Walter

    2011-09-01

    Results from first-principles investigations of the energetical, structural, electronic, and vibrational properties of model structures probing the metal-rich region of the lanthanum-hydrogen system, i.e., the region of the solid solution of hydrogen in lanthanum, are presented. We have studied the site preference and the ordering tendency of hydrogen atoms interstitially bonded in close-packed lanthanum. Spatially separated hydrogen atoms have turned out to exhibit an energetical preference for the occupation of octahedral interstitial sites at low temperature. Indications for a reversal of the site preference in favor of the occupation of tetrahedral interstitial sites at elevated temperature have been found. Linearmore » arrangements consisting of pairs of octahedrally and/or tetrahedrally coordinated hydrogen atoms collinearly bonded to a central lanthanum atom have turned out to be energetically favorable structure elements. Further stabilization is achieved if such hydrogen pairs are in turn linked together so that extended chains of La-H bonds are formed. Pair formation and chain linking counteract the energetical preference for octahedral coordination observed for separated hydrogen atoms.« less

  20. Ames Lab 101: Lanthanum Decanting

    ScienceCinema

    Riedemann, Trevor

    2018-04-27

    Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

  1. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menaka; Patra, Rajkumar; Ghosh, Santanu

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating.more » It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.« less

  2. Comparative Planetary Mineralogy: V/(Cr+Al) Systematics in Chromites as an Indicator of Relative Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Kamer, J. M.; Shearer, C. K.

    2004-01-01

    As our contribution to the new "Oxygen in the Solar System" initiative of the Lunar and Planetary Institute and the NASA Cosmochemistry Program, we have been developing oxygen barometers based largely on behavior of V which can occur in four valence states V2+, V3+, V4+, and V5+, and record at least 8 orders of magnitude of fO2. Our first efforts in measuring these valence proportions were by XANES techniques in basaltic glasses from Earth, Moon, and Mars. We now address the behavior of V valence states in chromite in basalts from Earth, Moon, and Mars. We have been looking for a "V in chromite oxybarometer" that works with data collected by the electron microprobe and thus is readily accessible to a large segment of the planetary materials community. This paper describes very early results that will be refined over the next two years.

  3. Effect of Microstructural Interfaces on the Mechanical Response of Crystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Aitken, Zachary H.

    Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, sigma ∝ D-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through

  4. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  5. Stability of solid oxide fuel cell materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A.

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  6. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  7. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  8. Leaching behavior of lanthanum, nickel and iron from spent catalyst using inorganic acids

    NASA Astrophysics Data System (ADS)

    Astuti, W.; Prilitasari, N. M.; Iskandar, Y.; Bratakusuma, D.; Petrus, H. T. B. M.

    2018-01-01

    Highly technological applications of rare earth metals (REs) and scarcity of supply have become an incentive torecover the REs from various resources, which include high grade and low grade ores, as well as recycledwaste materials. Spent hydrocracking catalyst contain lanthanum and a variety of valuable metals such as nickel and iron. This study investigated the recovery of lanthanum, nickel and iron from spent hydrocracking catalyst by leaching using various inorganic acid (sulfuric acid, hydrochloric acid, and nitric acid). The effect of acid concentration, type of acid and leaching temperature was conducted to study the leaching behavior of each valuable metal from spent-catalyst. It has been shown that it is possible to recover more than 90% of lanthanum, however the leaching efficiency of nickel and iron in this process was very low. It can be concluded that the leaching process is selective for lanthanum recovery from hydrocracking spent-catalyst.

  9. Problems of Determining the Content of Cr(VI) in Raw Materials and Materials Containing Chromite Ore.

    PubMed

    Stec, Katarzyna

    2017-11-02

    Materials made with chromite ore are widely applied in the industry metallurgy as well as in the foundry industry. The oxidation number of chromium in these materials is both (III) and (VI). Currently there are no procedures allowing proper determination of chrome in chromite ores and ore-containing materials. The analytical methods applied, which are dedicated to a very narrow range of materials, e.g., cement, and cannot be applied in the case of materials which, apart from trace amounts of Cr(VI), contain mainly compounds of Cr(III), Fe(III) as well as trace compounds of Cu(II), Ni(II) and V(V). In the work particular attention has been paid to the preparation of test samples and creating measurement conditions in which interferences from Cr(III) and Fe(III) spectral lines could be minimized. Two separate instrumental measurement techniques have been applied: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP AES) and the spectrophotometric method using diphenylcarbazide.

  10. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  11. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  12. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..

  13. Surfactant induced stabilization of nano liquid crystalline (dodecane-phytantriol) droplet

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Saha, Debasish; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2018-04-01

    The study of formation and stabilization of dodecane-phytantriol (DPT) microemulsions using ionic and nonionic surfactants are investigated. Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques have been employed to study the resulting structures of the micro emulsion droplets. We show the formation of stable microemulsion droplets with absence of lyotropic liquid crystalline phase on addition of nonionic surfactant C12E10. The oil to surfactant ratio plays the crucial role in formation of stable droplet and its size. The dense presence of C12E10 molecules between microemulsion droplets protect them from coalescence while less number of C12E10 between the surface of droplets easily triggers the coalescence process. The interaction with both anionic (SDS) as well as cationic (DTAB) surfactants with DPT phase leads to formation of microemulsion droplets with lyotropic liquid crystalline phase.

  14. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and themore » Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.« less

  15. Structural Analysis of Corneal Nano-nipple Arrays in Nymphalidae Butterflies

    NASA Astrophysics Data System (ADS)

    Lee, Ken Chun-Yi

    This study is concerned with the two-dimensional arrangement of corneal nano-nipples on the eyes of two Nymphalid butterflies. While the nano-nipples are predominantly in close-packed ordered arrangements, there are coordination defects known as 5-7 defects that disrupt the local translational symmetry and generate a number of secondary defects. Most often 5-7 defects align in rows to separate nipple domains with different orientations much like grain boundaries in crystalline materials. Surprisingly, the majority of 5-7 defect rows are special low-sigma; boundaries that occur infrequently in random crystalline materials. Such prevalence of low-sigma; boundaries suggests that they may serve specific purposes. Based on the superlattices associated with the observed low-sigma; boundaries, it is tentatively suggested that they could lead to diffraction effects for infrared light.

  16. Formulation and Assessment of a Wash-Primer Containing Lanthanum "Tannate" for Steel Temporary Protection

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Oriana; Selmi, Gonzalo J.; Deyá, Cecilia; Di Sarli, Alejandro; Romagnoli, Roberto

    2018-02-01

    Tannins are polyphenols synthesized by plants and useful for the coating industry as corrosion inhibitors. In addition, lanthanum salts have a great inhibitory effect on steel corrosion. The aim of this study was to obtain lanthanum "tannate" with adequate solubility to be incorporated as the corrosion inhibitor in a wash-primer. The "tannate" was obtained from commercial "Quebracho" tannin and 0.1 M La(NO3)3. The soluble tannin was determined by the Folin-Denis reagent, while the concentration of Lanthanum was obtained by a gravimetric procedure. The protective action of "tannate" on SAE 1010 steel was evaluated by linear polarization curves and corrosion potential measurements. Lanthanum "tannate" was incorporated in a wash-primer formulation and tested by corrosion potential and ionic resistance measurements. The corrosion rate was also determined by the polarization resistance technique. Besides, the primer was incorporated in an alkyd paint system and its anticorrosion performance assessed in the salt spray cabinet and by electrochemical impedance spectroscopy. Results showed that lanthanum "tannate" primer inhibits the development of deleterious iron oxyhydroxides on the steel substrate and incorporated into a paint system had a similar behavior to the primer formulated with zinc tetroxychromate.

  17. Effect of lead ion concentration on the structural and optical properties of nano-crystalline PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mehmood, S. K.; Mansoor, M.; Asim, M. M.

    2014-06-01

    PbS thin films have received considerable attention because of their potential applications in opto-electronics applications. Spontaneous reaction of lead acetate and thiourea in aqueous hydrazine hydrate has been used for depositing PbS thin films on glass substrates. Structural and optical properties of PbS thin films are greatly influenced by the morality of the reactants and crystal defects in the lattice. Our work focuses on the variation in lead ion concentration and its effect on the structural and optical properties of PbS thin films. The deposited films were analyzed using XRD, SEM, spectrophotometer and dark resistance measurement. XRD patterns indicated the formation of major phase of nano crystalline PbS with minor presence of lead oxide phase. We also noticed that peak intensity ratio of I111/I200 varied by changing the Pb ion concentration. The film thickness and dark resistance increased whereas optical band gap decreased with the decreasing Pb ion concentration. SEM scans showed that the grain size is less than 100 nm and is not affected by varying Pb ion concentration.

  18. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces.

    PubMed

    Rydén, Louise; Omar, Omar; Johansson, Anna; Jimbo, Ryo; Palmquist, Anders; Thomsen, Peter

    2017-01-01

    It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.

  19. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    PubMed

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value <0.05) to affect dry powder particle size. Higher inlet temperatures caused drug surface melting and hence aggregation of the dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value <0.05). Higher yields were obtained at higher aspiration and lower flow rates. All formulations had less than 3% (w/w) moisture content. Formulations dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  20. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  2. Mechanical and Morphological Study of Synthesized PMMA/CaCO3 Nano composites

    NASA Astrophysics Data System (ADS)

    Alam Md., Azad; Arif, Sajjad; Ansari, Akhter H.

    2017-08-01

    In this study, Nano-composites have been synthesized in which PMMA is the matrix material and calcium carbonate nanoparticles as the filler by In-situ polymerization reaction. Nano-CaCO3 added during polymerization and the quantity of nano-CaCO3 varied as 0.2, 0.4 and 0.6 wt. % of monomer quantity. The Nano-composites were prepared at three distinct stirring speeds 600, 800, 1000 rpm in order to observe the property with respect to stirring speeds. XRD gram depicts that the presence of nano-CaCO3 has given crystalline nature to Nano-composites. The effects of different concentrations of nano-CaCO3 loading on PMMA morphology were studied by using scanning electron microscope (SEM). The mechanical property is increasing with the stirring speed and concentration. Relative to neat PMMA a 62% increase in impact strength were observed in PMMA based Nano-composites using 0.6 wt.% nano-CaCO3.

  3. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  4. Transient formation of nano-crystalline structures during fibrillation of an Aβ-like peptide

    PubMed Central

    Otzen, Daniel E.; Oliveberg, Mikael

    2004-01-01

    During the first few minutes of fibrillation of a 14-residue peptide homologous to the hydrophobic C-terminal part of the Aβ-peptide, EM micrographs reveal small crystalline areas (100 to 150 nm, repeating unit 47 Å) scattered in more amorphous material. On a longer time scale, these crystalline areas disappear and are replaced by tangled clusters resembling protofilaments (hours), and eventually by more regular amyloid fibrils of 60 Å to 120 Å diameter (days). The transient population of the crystalline areas indicates the presence of ordered substructures in the early fibrillation process, the diameter of which matches the length of the 14-mer peptide in an extended β-strand conformation. PMID:15096642

  5. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod; Sonia,; Suman,

    La doped ZnO (Zn{sub 1-x}La{sub x}O, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV–Visible spectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  6. Structural phase study in un-patterned and patterned PVDF semi-crystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramod, K., E-mail: rameshg.phy@pondiuni.edu.in; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu.in

    2014-04-24

    This work explores the structural phase studies of organic polymer- polyvinylidene fluoride (PVDF) thin films in semi-crystallized phase and nano-patterned PVDF thin films. The nanopatterns are transferred with the CD layer as a master using soft lithography technique. The semi-crystalline PVDF films were prepared by a still and hot (SH) method, using a homemade spin coater that has the proficiency of substrate heating by a halogen lamp. Using this set up, smooth PVDF thin films in semi-crystalline α-phase were prepared using 2-Butanone as solvent. XRD, AFM and confocal Raman microscope have been utilized to study the structural phase, crystallinity andmore » quality of the films.« less

  7. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting in Tb and Yb co-doped glass containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Sekar, G.; Akrobetu, R.; Mu, R.; Morgan, S. H.

    2011-10-01

    Tb, Yb, and Ag co-doped glass nano-composites were synthesized in a lithium-lanthanum-aluminosilicate glass matrix (LLAS) by a melt-quench technique. Ag nanoparticles (NPs) were formed in the glass matrix and confirmed by optical absorption and transmission electron microscopy (TEM). Plasmon enhanced luminescence was observed. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting were studied for samples with different thermal annealing times. Because the Yb3+ emission at 940 - 1020 nm is matched well with the band gap of crystalline Si, the quantum cutting effect may have its potential application in silicon-based solar cells.

  8. Controlling the near-field excitation of nano-antennas with phase-change materials.

    PubMed

    Kao, Tsung Sheng; Chen, Yi Guo; Hong, Ming Hui

    2013-01-01

    By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.

  9. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2009-09-03

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones.

  10. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  11. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  12. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  13. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  14. Comparative study of structural and magnetic properties of nano-crystalline Li 0.5Fe 2.5O 4 prepared by various methods

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Pandey, Vibhav; Singh, Sukhveer; Aloysius, R. P.; Annapoorni, S.; Kotanala, R. K.

    2009-08-01

    Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li 0.5Fe 2.5O 4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.

  15. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions

    PubMed Central

    Tarr, James C.; Johnson, Jeffrey S.

    2009-01-01

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones. PMID:19655731

  16. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  17. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  18. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    NASA Astrophysics Data System (ADS)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  19. Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Cu-Rich Nano-phase Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo

    2018-03-01

    Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.

  20. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2017-09-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  1. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA

    NASA Astrophysics Data System (ADS)

    Zhu, Shengfa; Huang, Nan; Shu, Hui; Wu, Yanping; Xu, Li

    2009-10-01

    Pure iron is a potential material applying for coronary artery stents based on its biocorrodible and nontoxic properties. However, the degradation characteristics of pure iron in vivo could reduce the mechanical stability of iron stents prematurely. The purpose of this work was to implant the lanthanum ion into pure iron specimens by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40 kV to improve its corrosion resistance and biocompatibility. The implanted fluence was up to 5 × 10 17 ions/cm 2. The X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state and depth profiles of La, Fe and O elements. The results showed lanthanum existed in the +3 oxidation state in the surface layer, most of the oxygen combined with lanthanum and form a layer of oxides. The lanthanum ion implantation layer could effectively hold back iron ions into the immersed solution and obviously improved the corrosion resistance of pure iron in simulated body fluids (SBF) solution by the electrochemical measurements and static immersion tests. The systematic evaluation of blood compatibility, including in vitro platelets adhesion, prothrombin time (PT), thrombin time (TT), indicated that the number of platelets adhesion, activation, aggregation and pseudopodium on the surface of the La-implanted samples were remarkably decreased compared with pure iron and 316L stainless steel, the PT and TT were almost the same as the original plasma. It was obviously showed that lanthanum ion implantation could effectively improve the corrosion resistance and blood compatibility of pure iron.

  2. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    DTIC Science & Technology

    2014-11-01

    Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity

  3. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    NASA Astrophysics Data System (ADS)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  4. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.

    PubMed

    Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T

    2007-01-01

    A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.

  5. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    NASA Astrophysics Data System (ADS)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  6. Evaluation the pozzolanic reactivity of sonochemically fabricated nano natural pozzolan.

    PubMed

    Askarinejad, Azadeh; Pourkhorshidi, Ali Reza; Parhizkar, Tayebeh

    2012-01-01

    Natural pozzolans are appropriate supplementary cementitious materials in cement and concrete industry. A simple sonochemical method was developed to synthesize nanostructures of natural pozzolan. Chemical composition, crystallinity, morphology and reactivity of the natural pozzolan samples were compared before and after the sonochemical process, by using powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermal Gravimetry and Differential Thermal Analysis (TG/DTA). Compressive strength tests were performed to evaluate the properties of blended cements incorporating nano natural pozzolan. Under optimized conditions, the nano natural pozzolans showed a superior reactivity as compared with the bulk natural pozzolan. Also higher compressive strength was obtained for the cement specimen incorporating nano natural pozzolan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOEpatents

    Karp, Joel S [Glenside, PA; Surti, Suleman [Philadelphia, PA

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  8. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.

  9. Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Tiankai; Mo, Kun; Yun, Di

    Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less

  10. Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets

    DOE PAGES

    Yao, Tiankai; Mo, Kun; Yun, Di; ...

    2017-03-25

    Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less

  11. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in

  12. Atomic simulations of deformation mechanisms of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Song, H. Y.; Li, Y. L.

    2015-09-01

    The effects of amorphous boundary (AB) spacing on the deformation behavior of crystalline/amorphous (C/A) Mg/Mgsbnd Al nanocomposites under tensile load are investigated using molecular dynamics method. The results show that the plasticity of nano-polycrystal Mg can be enhanced with the introduction of C/A interfaces. For samples 5.2 nm in AB spacing and larger, the superior tensile ductility and nearly perfect plastic flow behavior occur during plastic deformation. The studies indicate that the cooperative interactions between crystalline and amorphous are the main reason for excellent ductility enhancements in C/A Mg/Mgsbnd Al nanocomposites.

  13. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Optimization of coupled device based on optical fiber with crystalline and integrated resonators

    NASA Astrophysics Data System (ADS)

    Bassir, David; Salzenstein, Patrice; Zhang, Mingjun

    2017-05-01

    Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.

  15. Understanding the phase formation kinetics of nano-crystalline kesterite deposited on mesoscopic scaffolds via in situ multi-wavelength Raman-monitored annealing.

    PubMed

    Wang, Zhuoran; Elouatik, Samir; Demopoulos, George P

    2016-10-26

    Kesterite, a highly promising photo-absorbing crystalline form of Cu 2 ZnSnS 4 (CZTS), has been prepared via various routes. However, the lack of in-depth understanding of the dynamic phase formation process of kesterite leads to difficulties in optimizing its annealing conditions, hence its light harvesting performance. In this paper, in situ Raman monitored-annealing is applied to study the phase formation kinetics of nano-crystalline kesterite from a precursor deposited on a TiO 2 mesoscopic scaffold. By performing in situ Raman annealing under different experimental conditions and wavelengths, several facts have been discovered: kesterite crystallization starts at as low as 170 °C, but after short time annealing at 300 °C followed by cooling, the initially formed kesterite is found to decompose. Annealing at 400 °C or higher is proven to be sufficient for stabilizing the kesterite phase. Annealing at the higher temperature of 500 °C is necessary though to promote a complete reaction and thus eliminate the parasitic copper tin sulfide (CTS) impurity intermediates identified at lower annealing temperatures. More importantly, the real-time temperature dependence of Raman peak intensity enhancement, shift and broadening for CZTS is established experimentally at 500 °C for 1 h, providing a valuable reference in future CZTS research. This work demonstrates the significance of using in situ Raman spectroscopy in elucidating the kesterite phase formation kinetics, a critical step towards full crystal phase control - a prerequisite for developing fully functional CZTS-based optoelectronic devices.

  16. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Ramanmore » (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.« less

  17. Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents

    Treesearch

    Eun Woo Shin; K. G. Karthikeyan; Mandla A. Tshabalala

    2005-01-01

    Inorganic/organic hybrid adsorbents for removing orthophosphate from water were prepared by lanthanum (La) treatment of bark fiber, a lignocellulosic material obtained from juniper (Juniperusmonosperma). The La was anchored to the juniper bark (JB) fiber by ion exchange with Ca in the bark and was responsible for removing orthophosphate. Two La concentrations (0.01 and...

  18. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    NASA Astrophysics Data System (ADS)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires

  19. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  20. Synthesis of nano-titanium dioxide by sol-gel route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaler, Vandana, E-mail: vandana.kaler@gmail.com; Duchaniya, R. K.; Pandel, U.

    Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO{sub 2} powder in anatase phase was realized by XRD. The optical studies of nano-TiO{sub 2} powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO{sub 2} particles weremore » in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO{sub 2} particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.« less

  1. Synthesis of nano-titanium dioxide by sol-gel route

    NASA Astrophysics Data System (ADS)

    Kaler, Vandana; Duchaniya, R. K.; Pandel, U.

    2016-04-01

    Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO2 powder in anatase phase was realized by XRD. The optical studies of nano-TiO2 powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO2 particles were in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO2 particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.

  2. High-Oriented Thermoelectric Nano-Bulk Fabricated from Thermoelectric Ink

    NASA Astrophysics Data System (ADS)

    Koyano, M.; Mizutani, S.; Hayashi, Y.; Nishino, S.; Miyata, M.; Tanaka, T.; Fukuda, K.

    2017-05-01

    Printing technology is expected to provide innovative and environmentally friendly processes for thermoelectric (TE) module fabrication. As described in this paper, we propose an orientation control process using plastic deformation at high temperatures and present high-oriented TE nano-bulks fabricated from bismuth telluride (Bi-Te) TE inks using this process. In the case of n-type Bi-Te, surface x-ray diffraction reveals that crystalline grains in the plastic-deformed nano-bulk demonstrate a c-plane orientation parallel to the pressed face. According to the high orientation, electrical resistivity ρ, thermal conductivity κ, and figure of merit ZT show anisotropic behavior. It is noteworthy that ( ZT)// almost reaches unity ( ZT)// ˜1 at 340 K, even at low temperatures of the plastic deformation process. In contrast, the ZT of plastic-deformed p-type nano-bulk indicates isotropic behavior. The difference in the process temperature dependence of ZT suggests that n-type and p-type nano-bulk orientation mechanisms mutually differ.

  3. Orientation and faulted structure of γ'-phases in lanthanum-alloyed Ni-Al-Cr superalloy

    NASA Astrophysics Data System (ADS)

    Nikonenko, Elena; Shergaeva, Lyubov'; Popova, Natalya; Koneva, Nina; Qin, Rongshan; Gromov, Victor; Fedorischeva, Marina

    2017-12-01

    The paper presents the transmission and the scanning electron microscope investigations of thin foils of Ni-Al-Cr-based superalloy, which is obtained by the directional crystallization technique. This superalloy contains γ'- and γ- phases. Additionally, lanthanum is introduced in the superalloy in 0.015, 0.10 and 0.30 wt % concentrations. The superalloy specimens are then subjected to 1273 K annealing during 10 and 25 h. It is shown that γ'-phase is major. In the superalloy, lanthanides La2Ni3 and Al2La are detected along with carbide La2C3 particles located on dislocations of the major phase. The amount of phases in the superalloy depends on its thermal treatment and lanthanum concentration. The investigations include the effect of annealing on scalar density of dislocations in γ'-phase. It is demonstrated that lanthanum alloying modifies the preferred orientation of γ'-phase. Annealing of lanthanum-alloyed superalloy causes the orientation dispersion. In γ'-phase, the correlation is observed between the degree of heterogeneity of solid solution and scalar dislocation density. It is shown that this heterogeneity results in the formation of high-density dislocations in γ'- phase.

  4. Synthesis and characterization of nano-sized CaCO3 in purified diet

    NASA Astrophysics Data System (ADS)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  5. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  6. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-08-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  7. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.

    PubMed

    Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim

    2017-02-01

    Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were <0.005 to 34.8 mg L -1 (Rania), <0.005 to 115 mg L -1 (Chhiwali), and <0.005 to 2.0 mg L -1 (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L -1 ). No significant dependence of Cr(VI) concentration on monsoons was observed.

  8. Spectral studies on the interaction between lanthanum ion and the ligand: N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine].

    PubMed

    Yaqin, Zhao; Binsheng, Yang

    2005-11-01

    The interaction between N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine] (EHPG) and lanthanum was studied by the difference UV spectra and fluorescence spectra. At pH 7.4, 0.01 M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes), with the addition of 1.0 x 10(-3)M lanthanum, two new peaks were observed at 238 nm and 294 nm by absorptivity spectroscopy compared with blank solution EHPG suggesting the interaction of lanthanum and EHPG. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence intensity of EHPG at 310 nm was significantly decreased in the presence of lanthanum. The 1:1 stoichiometric ratio of EHPG to lanthanum was confirmed by both fluorescence and UV titration curves. In addition, the molar absorptivity of La-EHPG at 238 nm is (1.23+/-0.01)x10(4)cm(-1)M(-1). The conditional binding constant was calculated to be log K(La-EHPG)=12.09+/-0.37 on the basis of the result of UV titration curves.

  9. Order parameters in lanthanum gallate lightly doped with manganese and paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Guseva, V. B.

    2010-09-01

    The Cr3+ centers have been revealed, transitions at room temperature have been identified, and spin Hamiltonian parameters have been determined for the Cr3+ and Fe3+ triclinic centers in lanthanum gallate lightly doped with manganese. The principal axes of the fourth-rank fine-structure tensor for the Fe3+ triclinic centers have been established and used to determine the order parameters, i.e., the angles of rotation of oxygen octahedra of lanthanum gallate with respect to the perovskite structure. The order parameter in the rhombohedral phase has been estimated.

  10. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  11. Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors

    NASA Astrophysics Data System (ADS)

    Thomas, Kukku; Alexander, Dinu; Sisira, S.; Gopi, Subash; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac

    2018-06-01

    Tb3+/Eu3+ co-doped lanthanum molybdate nanophosphors were synthesized by conventional co-precipitation method. The Powder X-ray diffractogram revealed the formation of highly crystalline tetragonal nanocrystals with space group I41/a and the detailed analysis of the small variation of lattice parameters with Tb/Eu co-doping on the host lattice were carried out based on the ionic radii of the dopants. The FTIR spectra is employed to identify the fundamental vibrational modes in La2-x-y (MoO4)3:xTb, yEu nanocrystals. The formation of nanocrystals by oriented attachment was recognized from the HR TEM images and the d-spacing calculated was in accordance with that corresponding to highest intensity diffraction peak in the XRD patterns. The constituent elements present in the samples were identified with the aid of EDAX and elemental mapping analysis. The broad Mo6+- O2- CTB and the sharp excitation peaks of Tb and Eu identified from the UV-Vis absorption spectra facilitates the suitability of exciting the phosphors effectively over NUV and visible region of the spectra. The possibility of energy transfer from host to Tb3+/Eu3+ ions and from Tb3+ to Eu3+ ions were confirmed from the PL excitation spectra monitoring 5D0→7F2 transition of Eu3+ ions around 615 nm. The correlated analysis of PL emission spectra, life time measurements and CIE diagram, upon different excitation channels elucidate the excellent luminescent properties of La2-x-y (MoO4)3:xTb, yEu nanophosphors with tunable emission colours in a wide range varying from yellow green region to reddish orange region and the efficient energy transfer from Tb3+ to Eu3+ ions in lanthanum molybdate host lattice. The Tb→Eu energy transfer efficiency and probability were calculated from the decay measurements and the values were found to be satisfactory for exploiting the prepared nanophosphors for the development of multifunctional luminescent nanophosphors.

  12. Synthesis and characterization of struvite nano particles

    NASA Astrophysics Data System (ADS)

    Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.

    2015-06-01

    Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.

  13. The synthesis and spectroscopic characterization of nano calcium fluorapatite using tetra-butylammonium fluoride

    NASA Astrophysics Data System (ADS)

    Sheykhan, Mehdi; Heydari, Akbar; Ma'mani, Leila; Badiei, Alireza

    2011-12-01

    Pure homogeneous nano sized biocompatible fluorapatite (FAp) particles were synthesized by a wet chemical procedure using water soluble tetra-butylammonium fluoride (TBAF) without using high temperatures and any purification processes. Combination of the Bragg's law and the plane-spacing equation for the two high intensity lines, namely, (0 0 2) and (3 0 0), gives a = 9.3531 Å, c = 6.8841 Å, confirms the identity of the highly crystalline synthetic material as well as its purity. The effect of various pH's in crystal formation and on their size was also evaluated. The calculated crystallinities were excellent with a rate around 5.0. The synthesized nano FAp was fully characterized by spectroscopic techniques (XRD, SEM, EDS, BET, FT-IR and ICP-AES). The nitrogen adsorption-desorption isotherm showed a type IV diagram and calculation of the surface area was investigated as well.

  14. Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems.

    PubMed

    Shi, J; Jiang, Y; Zhang, S; Yang, D; Jiang, Z

    2016-01-01

    Enzyme@capsule nano/microsystems, which refer to the enzyme-immobilized capsules, have received tremendous interest owing to the combination of the high catalytic activities of encapsulated enzymes and the hierarchical structure of the capsule. The preparation of capsules and simultaneous encapsulation of enzymes is recognized as the core process for the rational design and construction of enzyme@capsule nano/microsystems. The strategy used has three major steps: (a) generation of the templates, (b) surface coating on the templates, and (c) removal of the templates, and it has been proven to be effective and versatile for the construction of enzyme@capsule nano/microsystems. Several conventional methods, including layer-by-layer assembly of polyelectrolytes, liquid crystalline templating method, etc., were used to design and construct enzyme@capsule nano/microsystems, but these have two major drawbacks. One is the low mechanical stability of the systems and the second is the harsh conditions used in the construction process. Learning from nature, several biomimetic/bioinspired methods such as biomineralization, biomimetic/bioinspired adhesion, and their combination have been exploited for the construction of enzyme@capsule nano/microsystems. In this chapter, we will present a general protocol for the construction of enzyme@capsule nano/microsystems using the latter approach. Some suggestions for improved design, construction, and characterization will also be presented with detailed procedures for specific examples. © 2016 Elsevier Inc. All rights reserved.

  15. Lanthanum Deposition in the Stomach in the Absence of Helicobacter pylori Infection.

    PubMed

    Iwamuro, Masaya; Urata, Haruo; Tanaka, Takehiro; Kawano, Seiji; Kawahara, Yoshiro; Kimoto, Katsuhiko; Okada, Hiroyuki

    2018-03-15

    In this case report, we describe two patients who showed a diffusely whitish mucosa in the posterior wall and the lesser curvature of the gastric body. The patients were serologically- and histopathologically-negative for Helicobacter pylori. Random biopsy specimens from the stomach revealed no regenerative changes, intestinal metaplasia, and/or foveolar hyperplasia in either of the patients. Although lanthanum deposition in the gastric mucosa has been reported to occur in close association with H. pylori-associated gastritis, our patients tested negative for H. pylori. These cases suggest that lanthanum deposition presents as whitish lesions in the gastric body in H. pylori-negative patients.

  16. Effect of Nano-SiO₂ on the Early Hydration of Alite-Sulphoaluminate Cement.

    PubMed

    Sun, Jinfeng; Xu, Zhiqiang; Li, Weifeng; Shen, Xiaodong

    2017-05-03

    The impact of nano-SiO₂ on the early hydration properties of alite-sulphoaluminate (AC$A) cement was investigated with a fixed water to solid ratio ( w / s ) of one. Nano-SiO₂ was used in partial substitution of AC$A cement at zero, one and three wt %. Calorimetry, X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) analyses were used to characterize the hydration and hydrates of the blended cement. The hydration of the AC$A cement was significantly promoted, resulting in an increase of the heat released with the addition of nano-SiO₂. Phase development composition analysis showed that nano-SiO₂ had no effect on the type of crystalline hydration products of the AC$A cement. Moreover, nano-SiO₂ showed significant positive effects on pore refinement where the total porosity decreased by 54.09% at three days with the inclusion of 3% nano-SiO₂. Finally, from the SEM observations, nano-SiO₂ was conducive to producing a denser microstructure than that of the control sample.

  17. The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyoung Hun; Shim, Kwang Bo

    2003-01-15

    The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less

  18. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  19. Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yongkui; Wang, Fengping, E-mail: fpwang@ustb.edu.cn; Iqbal, M. Zubair

    Highlights: • Novel 3D SnO flowers self-assembled by 2D nano-leaves were synthesized by hydrothermal method. • The SnO nano-leaf is of single crystalline nature. • The band gap of 2.59 eV of as-prepared products was obtained. • The as-synthesized material will be a promising photocatalytic material. - Abstract: In this report, the novel 3D SnO flower-like hierarchical architectures self-assembled by 2D SnO nano-leaves are successfully synthesized via template-free hydrothermal approach under facile conditions. The high-resolution transmission electron microscopy results demonstrate that the 2D nano-leaves structure is of single crystalline nature. The band gap 2.59 eV for prepared product is obtainedmore » from UV–vis diffuse reflectance spectrum. The photocatalysis of the as prepared SnO for degrading methyl orange (MO) has been studied. A good photocatalytic activity is obtained and the mechanism is discussed in detail. Results indicate that the SnO nanostructures are the potential candidates for photocatalyst applications.« less

  20. Development of Micro and Nano Crystalline CVD Diamond TL/OSL Radiation Detectors for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, Marcelino

    2015-03-01

    Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged

  1. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  2. Electrochemical preparation of nanostructured lanthanum using lanthanum chloride as a precursor in 1-butyl-3-methylimidazolium dicyanamide ionic liquid.

    PubMed

    Zhang, Q B; Yang, C; Hua, Y X; Li, Y; Dong, P

    2015-02-14

    Nanostructured lanthanum was electrochemically prepared on a platinum (Pt) substrate in the room temperature ionic liquid 1-butyl-3-methylimidazolium dicyanamide (BMI-DCA) containing anhydrous LaCl3 at 333 K. The electrochemical reduction behavior of La(iii) was investigated using cyclic voltammetry and chronoamperometry techniques. Cyclic voltammogram revealed that the reduction of La(iii) in BMI-DCA involved an irreversible process controlled by diffusion. Chronoamperometric transient analysis confirmed the diffusion controlled electrodeposition process with the diffusion coefficient of La(iii) species in the range of 10(-10) cm(2) s(-1). The strong complexing capability of DCA(-) anions facilitated the displacement of chloride ligands and induced the solubility of LaCl3. The subsequent coordination of La(iii) and DCA(-) anions forming [La(DCA)4](-) complex anions was monitored by designing amperometric titration experiments. Potentiostatically deposited La-deposits with different nanostructures were characterized by SEM, XRD and XPS analyses. The electrodeposition potential was found to play an important role in controlling the nucleation and growth kinetics of the nanocrystal during the electrodeposition process. Depending on the deposition potential, metallic lanthanum with either nanoparticles or nanoporous structures was obtained.

  3. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Le, Hang T. T.; Kalubarme, Ramchandra S.; Ngo, Duc Tung; Jang, Seong-Yong; Jung, Kyu-Nam; Shin, Kyoung-Hee; Park, Chan-Jin

    2015-01-01

    Aluminium doped lithium lanthanum titanate (A-LLTO) powders with various excess Li2O content are synthesized using a simple citrate gel method. The obtained A-LLTO powders show an agglomerated form, composed of nano-sized particles of 20-50 nm. The morphology and conductivity of the A-LLTO ceramics are largely affected by the content of excess Li2O. The highest total ionic conductivity of 3.17 × 10-4 S cm-1 is achieved for the A-LLTO sample containing 20% excess Li2O, exhibiting a vacancy content of 6%, and a total activation energy of 0.358 eV. The A-LLTO can act as a membrane to protect lithium metal from oxygen and other contaminants diffused through the oxygen electrode part. The Li-O2 cell employing the A-LLTO solid electrolyte shows a good cycle life of longer than 100 discharge-charge cycles, under the constant capacity mode of 300 mAh g-1.

  4. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  5. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates

    PubMed Central

    Lou, Weiwei; Dong, Yiwen; Zhang, Hualin; Jin, Yifan; Hu, Xiaohui; Ma, Jianfeng; Liu, Jinsong; Wu, Gang

    2015-01-01

    Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifications, such as coatings. For this purpose, we prepared a novel bioactive material, a lanthanum-incorporated hydroxyapatite (La-HA) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA. The La-HA coating was composed of rod-like particles which densely compacted together without microcracks. The results of the interfacial shear strength test indicated that the incorporation of lanthanum increased the bonding strength of the HA coating. The mass loss ratios under acidic conditions (pH = 5.5) suggested that the La-HA coatings have better acid resistance. The cytocompatibility of the La-HA coating was also revealed by the relative activity of alkaline phosphatase, cellular morphology and cell proliferation assay in vitro. The present study suggested that La-HA coated on Ti has promising potential for applications in the development of a new type of bioactive coating for metal implants. PMID:26404255

  6. Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron.

    PubMed

    Xiao, Peng; Huang, Junhua; Dong, Ting; Xie, Jianing; Yuan, Jian; Luo, Dongxiang; Liu, Baiquan

    2018-06-06

    For the first time, compounds with lanthanum from the main family element Boron (LaB x ) were investigated as an active layer for thin-film transistors (TFTs). Detailed studies showed that the room-temperature fabricated LaB x thin film was in the crystalline state with a relatively narrow optical band gap of 2.28 eV. The atom ration of La/B was related to the working pressure during the sputtering process and the atom ration of La/B increased with the increase of the working pressure, which will result in the freer electrons in the LaB x thin film. LaB x -TFT without any intentionally annealing steps exhibited a saturation mobility of 0.44 cm²·V −1 ·s −1 , which is a subthreshold swing ( SS ) of 0.26 V/decade and a I on / I off ratio larger than 10⁴. The room-temperature process is attractive for its compatibility with almost all kinds of flexible substrates and the LaB x semiconductor may be a new choice for the channel materials in TFTs.

  7. Catalyzed Preparation of Amorphous Chalcogenides

    DTIC Science & Technology

    1998-01-30

    hydrogen sulfide through lanthanum isopropoxide in dry benzene, as the solvent. The powder obtained was heat-treated in hydrogen sulfide finally 15...producing single-phase crystalline lanthanum sulfide (La2S3) . Amorphous particles were also prepared by reacting titanium tetrapropoxide [Ti...OC3H7)4] and hydrogen sulfide. Resulting powder was heat-treated in flowing hydrogen sulfide to produce crystalline titanium sulfide (TiS2) . 20

  8. Antioxidant protection mechanism of chick hepatic mitochondria exposed to lanthanum chloride & neodymium chloride treatment.

    PubMed

    Ghosh, N; Chattopadhyay, D; Chatterjee, G C

    1991-05-01

    Acute lanthanum chloride (250 mg/kg body wt) and neodymium chloride (200 mg/kg body wt) administrations resulted in significant enhancement of glutathione level in chick hepatic mitochondria. However, glutathione-s-transferase activity was depressed. There was no alteration in the activity of glutathione reductase. Activity of glucose-6-phosphate dehydrogenase was not altered under lanthanum and neodymium treatment. There was a significant enhancement of intramitochondrial glutathione peroxidase and superoxide dismutase. Lipid peroxidation remains the same as control group of animals.

  9. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites.

    PubMed

    Matern, Katrin; Kletti, Holger; Mansfeldt, Tim

    2016-07-01

    Chromite ore processing residue (COPR) is a hazardous waste. Nevertheless, deposition of COPR in uncontrolled surface landfills is still common practice in some countries. Whereas old (between at least 40 and 180 years) COPR from the temperate zone has been intensively investigated, information on COPR in other regions is restricted. Relatively young (<25 years) COPR samples obtained from two abandoned landfill sites in India were investigated by a modified total microwave digestion method, X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) in order to determine their chemical and mineralogical nature. By the use of microwave digestion with acid mixtures of HNO3, H3PO4, and HBF4 (5:3:2 vol), COPR was completely dissolved and element contents similar to those obtained by X-ray fluorescence were found. Total Cr contents of the two COPR accounted for 81 and 74 g kg(-1), of which 20 and 13% were present in the carcinogenic hexavalent form (CrVI). Apart from the common major mineral phases present in COPR reported earlier, a further Cr host mineral, grimaldiite [CrO(OH)], could be identified by XRPD and SEM. Additionally, well soluble Na2CrO4 was present. Improving the effectiveness of chromite ore processing and preventing the migration of Cr(VI) into water bodies are the main challenges when dealing with these COPR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    PubMed

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Nath, M.; Ghosh, A.

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less

  12. Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries.

    PubMed

    Liu, Zhiliang; Chang, Xinghua; Sun, Bingxue; Yang, Sungjin; Zheng, Jie; Li, Xingguo

    2017-06-06

    SiCl 4 can be directly reduced to nano-Si with commercial Na metal under solvent-free conditions by mechanical milling. Crystalline nano-Si with an average size of 25 nm and quite uniform size distribution can be obtained, which shows excellent lithium storage performance, for a high reversible capacity of 1600 mA h g -1 after 500 cycles at 2.1 A g -1 .

  13. Revised energy levels of singly ionized lanthanum

    NASA Astrophysics Data System (ADS)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  14. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong

    2010-10-01

    Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g

  15. Method for producing dense lithium lanthanum tantalate lithium-ion conducting ceramics

    DOEpatents

    Brown-Shaklee, Harlan James; Ihlefeld, Jon; Spoerke, Erik David; Blea-Kirby, Mia Angelica

    2018-05-08

    A method to produce high density, uniform lithium lanthanum tantalate lithium-ion conducting ceramics uses small particles that are sintered in a pressureless crucible that limits loss of Li2O.

  16. The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles.

    PubMed

    Aponsu, G M L P; Wijayarathna, T R C K; Perera, I K; Perera, V P S; Siriwardhana, A C P K

    2013-05-15

    In this paper, the performance of nano-porous electrodes made of a composite material of SrTiO3 and SnO2 are compared with those made of bare SnO2. When these particular devices are analyzed in a comparative mode the results confirmed the enhancement of photovoltaic parameters in the former device. The performance of respective cells were examined by several methods including I-V characteristic measurements, photocurrent action spectra, dark I-V measurements, Mott-Schottky measurements and X-ray diffraction measurements. Even though such improvements in this particular cell could be explicated by the formation of a potential energy barrier of SrTiO3 particles of comparably large width at the SrTiO3/SnO2 interface, the passivation of voids in the SnO2 film by SrTiO3 particles to a certain extent could not be totally ruled out. Besides, high energetic electrons injected by dye molecules move more credibly through mini-bands formed in the chain of nano-crystalline SnO2 particles to the back contact. The blocking of the recombination path and the shifting up of the uppermost electron occupied level of SnO2 accompanying the conduction band edge in the SrTiO3/SnO2 composite film, may have lead to the observed enhancement of the fill factor and photovoltage, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Guler, M. O.; Guzeler, M.; Nalci, D.; Singil, M.; Alkan, E.; Dogan, M.; Guler, A.; Akbulut, H.

    2018-07-01

    Due to their high specific capacities tin based electrode materials are in the focus of many researchers almost for a decade. However, tin based electrodes are hampered in practical applications due to the volumetric changes during the lithiation and delithiation processes. Therefore, we designed and synthesized a novel "yolk-shell" structure in order to remove these challenges. The production of high purity nano Sn particles were synthesized through a facile chemical reduction method. As-synthesized nano particles were then embedded into conformal and self-standing carbon architectures, designed with hollow space in between the shell and the active electrode particles. As-synthesized Sn@C composite particles were decorated between the layers of graphene produced by Hummers method in order to obtained self-standing thin graphene films. A stable discharge capacity of 284.5 mA h g-1 after 250 cycles is obtained. The results have shown that Sn@C@graphene composite electrodes will be a promising novel candidate electrode material for high capacity lithium ion batteries.

  18. The rare earth element (REE) lanthanum (La) induces hormesis in plants.

    PubMed

    Agathokleous, Evgenios; Kitao, Mitsutoshi; Calabrese, Edward J

    2018-07-01

    Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  20. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite.

    PubMed

    Valencia, Germán Ayala; Luciano, Carla Giovana; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2018-02-01

    The aim of this research was to study the effects of laponite concentrations on some properties of nano-biocomposite films based on cassava starch, focusing mainly the relation between the properties of the surface microstructure and roughness, water contact angle and gloss. Nano-biocomposite films were produced by casting. We analyzed gloss, color, opacity, water contact angle, crystallinity by X-ray diffraction, and microstructure by scanning electron microscopy and atomic force microscopy. Texture parameters (energy, entropy and fractal dimension) were extracted from micrographs. We observed a great impact of laponite in the morphology of nano-biocomposite films. Texture parameters correlated with surface heterogeneity and roughness. Finally, surface roughness affected the surface hydrophilicity of nano-biocomposite films. Laponite platelets were exfoliated and/or intercalated with amylose and amylopectin chains. This research reports new information on the effects of laponite concentrations on the morphological, optical and wetting properties of nano-biocomposite films aiming future industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  2. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers.

    PubMed

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-03-04

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

  3. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers

    PubMed Central

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-01-01

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications. PMID:26940260

  4. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  5. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Scott; Poeppelmeier, Ken; Mason, Tom

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less

  6. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  7. Preparation of thin ceramic films via an aqueous solution route

    DOEpatents

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  8. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  9. Complete zircon and chromite digestion by sintering of granite, rhyolite, andesite and harzburgite rock reference materials for geochronological purposes

    NASA Astrophysics Data System (ADS)

    Bokhari, Syed Nadeem H.; Meisel, Thomas

    2014-05-01

    Zircon (ZrSiO4) is a common accessory mineral in nature that occurs in a wide variety of sedimentary, igneous, and metamorphic rocks. Zircon has the ability to retain substantial chemical and isotopic information that are used in range of geochemical and geo- chronological investigations. Sample digestion of such rock types is a limiting factor due to the chemical inertness of zircon (ZrSiO4) tourmaline, chromite, barite, monazite, sphene, xenotime etc. as the accuracy of results relies mainly on recovery of analytes from these minerals. Dissolution by wet acid digestions are often incomplete and high blank and total dissolved solids (TDS) contents with alkali fusions lead to an underestimation of analyte concentrations. Hence an effective analytical procedure, that successfully dissolves refractory minerals such as zircon is needed to be employed for reliable analytical results. Na2O2 digestion [1] was applied in characterisation of granite (G-3), rhyolite (MRH), andesite (MGL-AND) and harzburgite (MUH-1) powdered reference material with solution based ICP-MS analysis. In this study we undertake a systematic evaluation of decomposition time and sample:Na2O2 ratio and test portion size after minimising effect of all other constraints that makes homogeneity ambiguous. In recovering zircon and chromite 100 mg test portion was mixed with different amounts of Na2O2 i.e. 100-600 mg. Impact of decomposition time was observed by systematically increasing heating time from 30-45 minutes to 90-120 minutes at 480°C. Different test portion sizes 100-500 mg of samples were digested to control variance of inhomogeneity. An improved recovery of zirconium in zircon in granite (G-3), rhyolite MRH), andesite (MGL-AND) and chromite in harzburgite (MUH-1) was obtained by increasing heating time (2h) at 480°C and by keeping (1:6) ratio of sample:Na2O2. Through this work it has been established that due to presence of zircon and chromite, decomposition time and sample:Na2O2 ratio has

  10. Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement

    PubMed Central

    Sun, Jinfeng; Xu, Zhiqiang; Li, Weifeng; Shen, Xiaodong

    2017-01-01

    The impact of nano-SiO2 on the early hydration properties of alite-sulphoaluminate (AC$A) cement was investigated with a fixed water to solid ratio (w/s) of one. Nano-SiO2 was used in partial substitution of AC$A cement at zero, one and three wt %. Calorimetry, X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) analyses were used to characterize the hydration and hydrates of the blended cement. The hydration of the AC$A cement was significantly promoted, resulting in an increase of the heat released with the addition of nano-SiO2. Phase development composition analysis showed that nano-SiO2 had no effect on the type of crystalline hydration products of the AC$A cement. Moreover, nano-SiO2 showed significant positive effects on pore refinement where the total porosity decreased by 54.09% at three days with the inclusion of 3% nano-SiO2. Finally, from the SEM observations, nano-SiO2 was conducive to producing a denser microstructure than that of the control sample. PMID:28467348

  11. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.

    PubMed

    Huang, Jer-Shing; Callegari, Victor; Geisler, Peter; Brüning, Christoph; Kern, Johannes; Prangsma, Jord C; Wu, Xiaofei; Feichtner, Thorsten; Ziegler, Johannes; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Sennhauser, Urs; Hecht, Bert

    2010-01-01

    Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 μm(2)) but thin (<80 nm) chemically grown single-crystalline gold flakes that, after immobilization, serve as an ideal basis for focused ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometre-length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and realize high-definition plasmonic nanocircuitry.

  12. Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Jung; Choi, Seong-Ho; Park, Hae-Jun

    2012-10-01

    In this study, nano-silver (nano-Ag) complexes showing different properties have been synthesized as follows. Polypyrrolidone (PVP)-stabilized silver colloids (NAg), nano-Ag bound to silica (SiO2) (NSS), and nano-Ag bound to a complex of SiO2 and polyaniline (PANI) (NSSPAI) were prepared via γ-irradiation at room temperature. NAg and NSS used PVP as a colloidal stabilizer, while NSSPAI did not use PVP as a colloidal stabilizer. Interesting bonding properties occurred in the nano-Ag complex and anticipated structural changes were clearly shown through a surface analysis of x-ray photoelectron spectroscopy (XPS). The morphologies by field emission-scanning electron microscopy (FE-SEM) analysis showed that nano-Ag complexes have various particle sizes ranging from 10 to 30 nm. NSS (average, 10 nm) and NSSPAI (average, 30 nm) showed a uniformly spherical shape and size, while NAg did not. From the reflection peaks in the x-ray diffraction (XRD) patterns, surface crystallinity of the nano-Ag complexes was indicated to be in the same degree as that of NSSPAI>NSS>NAg. Also, in the contact angle (CA) determination, surface hydrophobicity of NSSPAI was stronger than those of NSS and NAg, relatively. The different nano-Ag complexes prepared by γ-irradiation can be applicable in various industry fields due to the increase in specific property.

  13. Comparison of dietary phosphate absorption after single doses of lanthanum carbonate and sevelamer carbonate in healthy volunteers: a balance study.

    PubMed

    Martin, Patrick; Wang, Phillip; Robinson, Antoine; Poole, Lynne; Dragone, Jeffrey; Smyth, Michael; Pratt, Raymond

    2011-05-01

    Lanthanum carbonate and sevelamer carbonate are noncalcium phosphate binders used to treat hyperphosphatemia in patients with chronic kidney disease. This is the first study to compare phosphate absorption from a standardized meal ingested with a typical clinical dose of these binders. Randomized open-label crossover study. Healthy volunteers were confined to a clinical research center during 4 study periods. Of 31 volunteers randomly assigned, 19 completed all treatments and 18 were analyzed in the pharmacodynamic set (1 was excluded because of vomiting). Participants were assigned in random order to meal alone, meal plus lanthanum carbonate (1 tablet containing 1,000 mg of elemental lanthanum), and meal plus sevelamer carbonate (three 800-mg tablets). The gastrointestinal tract was cleared, the meal was ingested (± treatment), and rectal effluent was collected. In a fourth period, volunteers repeated the study procedures while fasting. The primary end point, net phosphate absorption, was analyzed using a mixed-effect linear model. Phosphorus content of effluent and duplicate meal samples were measured using inductively coupled plasma-optical emission spectroscopy. The standard meal contained ∼375 mg of phosphate, 75% of which was absorbed (net absorption, 281.7 ± 14.1 mg [adjusted mean ± standard error]). Lanthanum carbonate decreased net phosphate absorption by 45% (net absorption, 156.0 ± 14.2 mg) compared with 21% (net absorption, 221.8 ± 14.1 mg) for sevelamer carbonate (P < 0.001). Lanthanum carbonate bound 135.1 ± 12.3 mg of phosphate, whereas sevelamer carbonate bound 63.2 ± 12.3 mg, a 71.9-mg difference (95% CI, 40.0-103.8; P < 0.001). Per tablet, this equates to 135 mg of phosphate bound with lanthanum carbonate versus 21 mg with sevelamer carbonate. A single-dose study. In healthy volunteers, 1,000 mg of lanthanum carbonate decreased phosphate absorption by 45% compared with a 21% decrease with 2,400 mg of sevelamer carbonate. Copyright © 2011

  14. Catalytic graphitization behavior of phenolic resins by addition of in situ formed nano-Fe particles

    NASA Astrophysics Data System (ADS)

    Rastegar, H.; Bavand-vandchali, M.; Nemati, A.; Golestani-Fard, F.

    2018-07-01

    This work presents the catalytic graphitization process of phenolic resins (PR's) by addition of in situ nano-Fe particles as catalyst. Pyrolysis treatments of prepared compositions including various contents of nano-Fe particles were carried out at 600-1200 °C for 3 h under reducing atmosphere and graphitization process were evaluated by different techniques such as X-Ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Simultaneous Thermal Analysis (STA) and Raman spectroscopy that mainly performed to identify the phase and microstructural analysis, oxidation resistance and extend of graphitized carbon formation. Results indicate that, in situ graphitic carbon development were already observed after firing the samples at 800 °C for 3 h under reducing atmosphere, increasing temperature and amount of nano-Fe led to a more effective graphitization level. In addition, the different nano crystalline carbon shapes such as onion and bamboo like and carbon nanotubes (CNTs) were in situ identified during graphitization process of nano-Fe containing samples. It was suggested that formation of these different nano carbon structures related to nano-Fe catalyst behavior and the carbon shell growth.

  15. Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjbar, Zohreh Rashidi; Morsali, Ali

    2009-11-01

    Nano-scale of a new Pb(II) coordination polymer, {[Pb(bpacb)(OAc)]·DMF} n ( 1); bpacbH = 3,5-bis[(4-pyridylamino)carbonyl]benzoic acid], were synthesized by a sonochemical method. The nano-material was characterized by scanning electron microscopy, X-ray powder diffraction (XRD), 1H, 13C NMR, IR spectroscopy and elemental analyses. Crystal structure of compound 1 was determined by X-ray crystallography. Calcination of the nano-sized compound 1 at 700 °C under air atmospheres yields PbO nanoparticles. Thermal stability of nano-sized and single crystalline samples of compound 1 were studied and compared with each other.

  16. Glass formation and crystallization in the alumina-silica-lanthanum phosphate system for ceramics composites

    NASA Astrophysics Data System (ADS)

    Guo, Shuling

    The formation, structure, and dynamics of glasses in the alumina-silica-lanthanum phosphate system and their crystallization were investigated as a function of composition. These are of interest because of their potential as precursors for synthesizing ceramic-matrix-composites via co-crystallization of lanthanum monazite and either mullite or alumina into finely mixed microstructures. The glasses were characterized by X-Ray Diffraction (XRD), Raman spectroscopy, Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electron Energy Loss Spectrometry (EELS). Glass formation from rapidly quenched liquids was easiest and most consistent for compositions containing silica, such as for mullitemonazite compositions, and more difficult for alumina-monazite compositions. For mullite-monazite glasses, the glass transition temperatures increased linearly from 845°C to 906°C with increasing mullite content. An analysis of the glass structure indicated a network consisting of corner-linked aluminate, silicate and phosphate tetrahedra where aluminum played a central role of separating silicon and phosphorous. It was hypothesized that the glass network consisted of domains of aluminum silicate network edged by phosphate tetrahedra. A maximum in the crystallization temperature was attributed to the complexity of the glass network. At relatively mullite-rich compositions, simultaneous and cooperative crystallization of lanthanum phosphate and mullite correlated with the highest crystallization temperatures, and the lowest activation energies of crystallization. This was preceded by amorphous phase segregation in the glass at lower temperatures. An intermediate phase of lanthanum phosphate was discovered with an orthorhombic unit cell. For compositions of high phosphate contents, lanthanum phosphate precipitated first at about 900°C leaving an essentially pure mullite glass

  17. Chemical Dynamics of nano-Aluminum and Iodine Based Oxidizers

    NASA Astrophysics Data System (ADS)

    Little, Brian; Ridge, Claron; Overdeep, Kyle; Slizewski, Dylan; Lindsay, Michael

    2017-06-01

    As observed in previous studies of nanoenergetic powder composites, micro/nano-structural features such as particle morphology and/or reactant spatial distance are expected to strongly influence properties that govern the combustion behavior of energetic materials (EM). In this study, highly reactive composites containing crystalline iodine (V) oxide or iodate salts with nano-sized aluminum (nAl) were blended by two different processing techniques and then collected as a powder for characterization. Physiochemical techniques such as thermal gravimetric analysis, calorimetry, X-ray diffraction, electron microscopy, high speed photography, pressure profile analysis, temperature programmed reactions, and spectroscopy were employed to characterize these EM with emphasis on correlating the chemical reactivity with inherent structural features and variations in stoichiometry. This work is a continuation of efforts to probe the chemical dynamics of nAl-iodine based composites.

  18. Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyu; Avila, José; Asensio, Maria C.

    2017-06-01

    The ability to explore electronic structure and their role in determining material’s macroscopic behaviour is essential to explain and engineer functions of material and device. Since its debut in 2004, graphene has attracted global research interest due to its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the massive preparation and production of graphene for various applications. Here by employing angle-resolved photoemission spectroscopy with nanoscale spatial resolution ˜ 100 nm (Nano-ARPES), we describe the approach to measure the electronic structure of polycrystalline graphene on copper foils, demonstrating the power of Nano-ARPES to detect the electronic structure of microscopic single crystalline domains, being fully compatible with conventional ARPES. Similar analysis could be employed to other microscopic materials

  19. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  20. The combination of lanthanum chloride and the calcimimetic calindol delays the progression of vascular smooth muscle cells calcification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciceri, Paola; Volpi, Elisa; Brenna, Irene

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Lanthanum reduces the progression of high phosphate-induced calcium deposition. Black-Right-Pointing-Pointer Calcium receptor agonists and the calcimimetic calindol reduce calcium deposition. Black-Right-Pointing-Pointer Lanthanum and calindol cooperate on reducing calcium deposition. Black-Right-Pointing-Pointer Lanthanum and calindol may interact with the same receptor. -- Abstract: Phosphate (Pi)-binders are commonly used in dialysis patients to control high Pi levels, that associated with vascular calcification (VC). The aim of this study was to investigate the effects of lanthanum chloride (LaCl{sub 3}) on the progression of high Pi-induced VC, in rat vascular smooth muscle cells (VSMCs). Pi-induced Ca deposition was inhibited by LaCl{sub 3}, withmore » a maximal effect at 100 {mu}M (59.0 {+-} 2.5% inhibition). Furthermore, we studied the effects on VC of calcium sensing receptor (CaSR) agonists. Gadolinium chloride, neomycin, spermine, and the calcimimetic calindol significantly inhibited Pi-induced VC (55.9 {+-} 2.2%, 37.3 {+-} 4.7%, 30.2 {+-} 5.7%, and 63.8 {+-} 5.7%, respectively). To investigate the hypothesis that LaCl{sub 3} reduces the progression of VC by interacting with the CaSR, we performed a concentration-response curve of LaCl{sub 3} in presence of a sub-effective concentration of calindol (10 nM). Interestingly, this curve was shifted to the left (IC{sub 50} 9.6 {+-} 2.6 {mu}M), compared to the curve in the presence of LaCl{sub 3} alone (IC{sub 50} 19.0 {+-} 4.8 {mu}M). In conclusion, we demonstrated that lanthanum chloride effectively reduces the progression of high phosphate-induced vascular calcification. In addition, LaCl{sub 3} cooperates with the calcimimetic calindol in decreasing Ca deposition in this in vitro model. These results suggest the potential role of lanthanum in the treatment of VC induced by high Pi.« less

  1. Hearing Threshold, Loss, Noise Levels and Worker's Profiles of an Open Cast Chromite Mines in Odisha, India.

    PubMed

    Kerketta, Sunamani; Gartia, Rajendra; Bagh, Somanath

    2012-10-01

    The aims of the study were to describe the noise levels at an open cast chromite mine in Odisha, India, and the hearing threshold of its workers and to associate their hearing loss with their age, work station and length of employment at the mine. We performed a cross-sectional study of the hearing threshold of chromite mine workers. Audiometric data from 500 subjects was collected at the mines' hospital in the Sukinda Valley of Jajpur, Odisha, India. The latest audiometry data available for the period 2002 to 2008 was used in the analysis. Audiometric screening was performed using an audiometer (TRIVENI TAM-25 6025A) in a quiet environment by qualified technicians, audiologists or physicians. Tests were conducted on the subjects after they had completely rested for 16 hours or more after their day shift. A maximum of 262 subjects (52.4%) were employed in the work zone area and a minimum of 2 subjects (0.4%) had less than 5 years working experience. The age of the subjects ranged from 29 to 59 years and their working experience ranged from 4 to 37 years. The subjects' average mean hearing thresholds at 4, 6 and 8 kHz were 21.53 dBA, 23.40 dBA and 21.90 dBA, respectively. The maximum Leq and L90 levels exceeded the prescribed limits for commercial, residential and silence zones. The maximum Leq levels exceeded 95 dBA for large and medium heavy earth moving machineries (HEMMs), both outside and at the operator's position. Hearing loss due to the subjects' work experience was found to be greater than that attributable to age and workstation. In our study population, the maximum noise levels for large and medium HEMMs and inside the cabins of HEMMs were found to be more than 95 dBA. This indicates that operators in this particular chromite mine at Odisha, India were exposed to noise levels exceeding 95 dBA for more than 10% of the monitoring time. The subjects' hearing loss was also found to increase for every 10-year age interval and that for every 5 years of work

  2. An optical investigation of nano-crystalline CaF2 particles doped with Nd3+ ions

    NASA Astrophysics Data System (ADS)

    O'Dwyer, C.; James, H. J.; Cheu, B.; Jaque, F.; Han, T. P. J.

    2017-10-01

    Good crystalline quality CaF2 sub-micron size particles doped with neodymium ions have been produced by the co-precipitation process and their crystallinity have been further improved by thermal treatment at 500 °C. Core and surface related luminescence defect centres have been identified and the effects of Y3+ and Yb3+ codopants are also investigated. Core defects centres are associated with single-ion and multi-ion defect centres as observed in bulk single crystal whereas the origin of the surface or near surface defect, A‧, centre has been ascertained to be derived from a single-ion centre most probably charge compensated by a hydroxyl group.

  3. Anisamide-Anchored Lyotropic Nano-Liquid Crystalline Particles with AIE Effect: A Smart Optical Beacon for Tumor Imaging and Therapy.

    PubMed

    Urandur, Sandeep; Banala, Venkatesh Teja; Shukla, Ravi Prakash; Mittapelly, Naresh; Pandey, Gitu; Kalleti, Navodayam; Mitra, Kalyan; Rath, Srikanta Kumar; Trivedi, Ritu; Ramarao, Pratibha; Mishra, Prabhat Ranjan

    2018-04-18

    The prospective design of nanocarriers for personalized oncotherapy should be an ensemble of targeting, imaging, and noninvasive therapeutic capabilities. Herein, we report the development of the inverse hexagonal nano-liquid crystalline (NLC) particles that are able to host formononetin (FMN), a phytoestrogen with known anticancer activity, and tetraphenylethene (TPE), an iconic optical beacon with aggregation-induced emission (AIE) signature, simultaneously. Ordered three-dimensional mesoporous internal structure and high-lipid-volume fraction of NLC nanoparticles (NLC NPs) frame the outer compartment for the better settlement of payloads. Embellishment of these nanoparticles by anisamide (AA), a novel sigma receptor targeting ligand using carbodiimide coupling chemistry ensured NLC's as an outstanding vehicle for possible utility in surveillance of tumor location as well as the FMN delivery through active AIE imaging. The size and structural integrity of nanoparticles were evaluated by quasi-elastic light scattering, cryo field emission scanning electron microscopy small-angle X-ray scattering. The existence of AIE effect in the nanoparticles was evidenced through the photophysical studies that advocate the application of NLC NPs in fluorescence-based bioimaging. Moreover, confocal microscopy illustrated the single living cell imaging ability endowed by the NLC NPs. In vitro and in vivo studies supported the enhanced efficacy of targeted nanoparticles (AA-NLC-TF) in comparison to nontargeted nanoparticles (NLC-TF) and free drug. Apparently, this critically designed multimodal NLC NPs may establish a promising platform for targeted and image-guided chemotherapy for breast cancer.

  4. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing

    NASA Astrophysics Data System (ADS)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.

    2017-09-01

    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  5. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  6. Origins of chromite and magnetite in sedimentary rocks deposited in a shallow water environment in the 3.2 Ga Moodies Group, South Africa

    NASA Astrophysics Data System (ADS)

    Otake, T.; Sakamoto, Y.; Itoh, S.; Yurimoto, H.; Kakegawa, T.

    2012-12-01

    *Otake, T. totake@eng.hokudai.ac.jp Div. of Sustainable Resources Engineering, Hokkaido Univ., Sapporo, Japan Sakamoto, Y. yu.sakamoto12@gmail.com Dep. of Earth Science, Tohoku Univ., Sendai, Japan Itoh, S. sitoh@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Yurimoto. H. yuri@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Kakegawa, T. kakegawa@m.tohoku.ac.jp Dep. of Earth Science, Tohoku Univ., Sendai, Japan Geochemical data from ferruginous chemical sedimentary rocks (e.g., Banded Iron Formation: BIF) have been used to reconstruct the surface environments of early Earth. However, only a few studies have investigated the geochemical characteristics of BIFs deposited in a shallow water environment during the Archean, which may have differed from those deposited in a deep water environment. Therefore, we investigated geological, petrographic and geochemical characteristics of ferruginous rocks deposited in a shallow water environment in the Moodies group, in the Barberton Greenstone Belt, South Africa. We obtained ferruginous rock samples in the Moodies group from both an outcrop and underground gold mine, and compared the characteristics of these samples. The 70 sedimentary rock samples were divided into groups based on the dominant Fe minerals they contain: Hematite-rich jaspilite (HM group), Magnetite-rich iron formation/shale/sandstone (MT group), and Siderite-rich sandstone (SD group). Samples in the HM group are predominantly composed of fine-grained quartz (< 20 μm) and hematite (< 5 μm), which are interpreted to be chemical precipitates. Samples in the MT group contain quartz, magnetite, siderite, ankerite, chlorite, biotite and chromite. The grain size of magnetite is much larger (20-150 μm) than that of hematite in the HM group. The magnetite is interpreted as a secondary mineral transformed from hematite during early diagenesis. Results of in situ oxygen isotope analysis by

  7. Open Access Internet Resources for Nano-Materials Physics Education

    NASA Astrophysics Data System (ADS)

    Moeck, Peter; Seipel, Bjoern; Upreti, Girish; Harvey, Morgan; Garrick, Will

    2006-05-01

    Because a great deal of nano-material science and engineering relies on crystalline materials, materials physicists have to provide their own specific contributions to the National Nanotechnology Initiative. Here we briefly review two freely accessible internet-based crystallographic databases, the Nano-Crystallography Database (http://nanocrystallography.research.pdx.edu) and the Crystallography Open Database (http://crystallography.net). Information on over 34,000 full structure determinations are stored in these two databases in the Crystallographic Information File format. The availability of such crystallographic data on the internet in a standardized format allows for all kinds of web-based crystallographic calculations and visualizations. Two examples of which that are dealt with in this paper are: interactive crystal structure visualizations in three dimensions and calculations of lattice-fringe fingerprints for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

  8. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  9. [Pathways of lanthanum ion transport across the posterior epithelium of the cornea in rabbits].

    PubMed

    Virnik, V L

    1985-11-01

    Morphological estimation of the barrier-transport properties of the posterior epithelium in the donor cornea has been performed in the most early time of fanoxic lesions of the cells. Ionized lanthanum, as an effective inhibitor of oxidative phosphorylation and simultaneously--as a marker of transport pathways for particles similar in their size to water molecule, is used in the investigation. The concentration gradient of rare-earth ions is produced by vital injection of lanthanum trichloride into the proper substance (stroma) of the cornea. From the microinjection focus the electron opaque marker is transported through the substrate of the basal substance of the stroma to the posterior epithelium and further along its intercellular and transcellular pathways into the anterior chamber of the eye. The rare-earth ions freely penetrate through the gap and tight junctions. Transcellular transport of lanthanum in the contents of the plasmolemmal microvesicles, vital absorption of the marker on the lateral and luminal parts of the plasmolemma and on the intracellular membranes, lesions of mitochondria and canaliculi of the endoplasmic reticulum of the anoxic character are stated. A suggestion is made on structural preservation of the pathways of convective and dissipative transition of the substance through the posterior epithelium of the cornea during the earliest time of the experimental anoxia.

  10. Hearing Threshold, Loss, Noise Levels and Worker’s Profiles of an Open Cast Chromite Mines in Odisha, India

    PubMed Central

    Kerketta, Sunamani; Gartia, Rajendra; Bagh, Somanath

    2012-01-01

    Objectives: The aims of the study were to describe the noise levels at an open cast chromite mine in Odisha, India, and the hearing threshold of its workers and to associate their hearing loss with their age, work station and length of employment at the mine. Methods: We performed a cross-sectional study of the hearing threshold of chromite mine workers. Audiometric data from 500 subjects was collected at the mines’ hospital in the Sukinda Valley of Jajpur, Odisha, India. The latest audiometry data available for the period 2002 to 2008 was used in the analysis. Audiometric screening was performed using an audiometer (TRIVENI TAM-25 6025A) in a quiet environment by qualified technicians, audiologists or physicians. Tests were conducted on the subjects after they had completely rested for 16 hours or more after their day shift. Results: A maximum of 262 subjects (52.4%) were employed in the work zone area and a minimum of 2 subjects (0.4%) had less than 5 years working experience. The age of the subjects ranged from 29 to 59 years and their working experience ranged from 4 to 37 years. The subjects’ average mean hearing thresholds at 4, 6 and 8 kHz were 21.53 dBA, 23.40 dBA and 21.90 dBA, respectively. The maximum Leq and L90 levels exceeded the prescribed limits for commercial, residential and silence zones. The maximum Leq levels exceeded 95 dBA for large and medium heavy earth moving machineries (HEMMs), both outside and at the operator’s position. Hearing loss due to the subjects’ work experience was found to be greater than that attributable to age and workstation. Conclusion: In our study population, the maximum noise levels for large and medium HEMMs and inside the cabins of HEMMs were found to be more than 95 dBA. This indicates that operators in this particular chromite mine at Odisha, India were exposed to noise levels exceeding 95 dBA for more than 10% of the monitoring time. The subjects’ hearing loss was also found to increase for every 10-year

  11. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  12. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  13. Hydrothermal synthesis of novel Mn(3)O(4) nano-octahedrons with enhanced supercapacitors performances.

    PubMed

    Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong

    2010-10-01

    Uniform and single-crystalline Mn(3)O(4) nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ∼160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a "dissolution-recrystallization" which is followed by an "Ostwald ripening" mechanism. The Mn(3)O(4) nano-octahedrons exhibited an enhanced specific capacitance of 322 F g(-1) compared with the truncated octahedrons with specific capacitances of 244 F g(-1), making them a promising electrode material for supercapacitors.

  14. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Treesearch

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  15. Fabrication of Rare-earth Aluminate (ReAlO3) Glass and Crystalline phases by Aerodynamic Levitation (ADL)

    NASA Astrophysics Data System (ADS)

    Basavalingu, B.; Yoda, Shinichi; Kumar, M. S. Vijaya

    2012-07-01

    Containerless processing by levitation technique has been extensively used for material science and engineering because it suppresses inhomogeneous nucleation from the container wall and helps to produce stable, metastable and glass phases. The containerless levitation technique is widely explored for material processing because of its technological and scientific advantages. Recently, research on bulk glass and glass-ceramics have attracted the attention of material scientists as they are considered as low cost optical materials of the future. In the present study, the formation of bulk spherical glass and crystalline ReAlO _{3}(Re=La-Lu,Y) phases has been investigated due to their unique features in terms of the solidification process from an undercooled melt, glass structure and optical properties. An Aerodynamic levitation (ADL) was used to undercool the melt well below the melting temperature. Sintered bits of ReAlO _{3} sample with a diameter of ~2.5 mm and mass of ~20-25 mg was levitated by an ADL and completely melted by a CO _{2} laser and then the droplet was cooled by turning off the CO _{2} laser and solidified. The surface temperature and solidification process of the levitated droplet was monitored using pyrometer and high speed video camera, respectively. Among the rare earth aluminum perovskites Lanthanum, Neodymium and samarium aluminum perovskites solidified as glass and others YAlO _{3} and Europium to Lutetium aluminum perovskites solidified as crystalline phases. The scanning electron microscopy (SEM) images of cross-sectioned samples, TG/DTA, Transmittance and Refractive Index studies were performed for both glass and crystalline phases. The results of the above studies revealed the formation of glass and crystalline phases directly from the undercooled melt. The glass transition temperature (Tg) gradually increased with increasing ionic radius of the rare-earth elements. The NdAlO _{3} glass phase showed a high refractive index of ~1

  16. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  17. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver

    PubMed Central

    Adhya, Abhishek; Bain, Jayanta; Ray, Oindri; Hazra, Avijit; Adhikari, Souvik; Dutta, Gouranga; Ray, Sudhin; Majumdar, Bijay Kumar

    2014-01-01

    Background: Silver sulfadiazine (SSD) has been the standard topical antimicrobial for burn wounds for decades. Recently, nanometer-sized silver particles are available which have high surface to volume ratio and remain effective even at a very low concentration and minimizes the chance for tissue toxicity due to silver. Hence, we conducted a randomized controlled trial to compare the effectiveness of topical SSD and nano-crystalline silver (AgNP) hydrogel in burn wounds management. Materials and Methods: Study was conducted in the Burn Unit of IPGME&R & SSKM Hospital Calcutta, from January 2011 to August 2012. Patients with 2° burn injury were randomly allocated to SSD and AgNP treatment group. Clinical assessments of burn wound were done on every week till 4th week and on completion of treatment. Results: Data for evaluation were obtained for 54 patients on SSD (2° deep-dermal cases 27) and 52 (2° deep-dermal cases 31) on AgNP treatment. Healing status of 2° deep-dermal burns was more satisfactory for AgNP group than SSD treatment at 4 weeks. Among patients receiving AgNP, 80.6% showed at least 50% healing of 2° deep-dermal wounds compared to 48.1% on SSD at 4 weeks (P = 0.001). The figures for complete healing at 4 weeks were, respectively, 4% and 0% (P = 0.116). Conclusions: AgNP can be an effective and superior alternative to SSD for burn wounds, particularly 2° deep-dermal burns. Healing can be expected, in general, in 6 to 8 weeks time, depending upon the extent of body surface involvement. PMID:25538469

  18. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  19. Powder XRD, TEM, FTIR and thermal studies of strontium tartrate nano particles

    NASA Astrophysics Data System (ADS)

    Lathiya, U. M.; Jethva, H. O.; Joshi, M. J.; Vyas, P. M.

    2017-05-01

    Strontium tartrate finds several applications, e.g., as non-linear optical and dielectric material, in tracer composition and ammunition unit, in treating structural integrity of bone. The growth of single crystals of strontium tartrate in silica gel has been widely reported. In the present study, strontium tartrate nano particles were synthesized by wet chemical method using strontium chloride, tartaric acid and sodium meta-silicate solutions in the presence of Triton X -100 surfactant. It was found that the presence of sodium meta-silicate facilitated the reaction for strontium tartrate product. The powder XRD study of strontium tartrate nano-particles suggested monoclinic crystal system and the average crystallite size was found to be 40 nm determined by applying Scherrer's formula. The TEM analysis indicated that the nano particles were spherical in nature. The FTIR spectrum confirmed the presence of various functional groups such as O-H,C-H, and C=O stretching mode. The thermal analysis was carried out by using TGA and DTA studies. The nano-particles were found to be stable up to 175°C and then decomposed through various stages. The results are compared with the bulk crystalline material available in the literature.

  20. Layered Nano-TiO2 Based Treatments for the Maintenance of Natural Stones in Historical Architecture.

    PubMed

    Gherardi, Francesca; Goidanich, Sara; Dal Santo, Vladimiro; Toniolo, Lucia

    2018-06-18

    Layered treatments of natural stones based on dispersions of experimental nano-TiO 2 and commercial TEOS showing photocatalytic and self-cleaning properties were set up and tested. To enhance nano-TiO 2 efficacy, a surface pre-treatment with tetraethyl orthosilicate was proposed to avoid the penetration of NPs into the crystalline porous substrates and to improve their adhesion to the stone. Two treatment applications (wet-on-wet and wet-on-dry) were compared, showing different results. A strong interaction Si-O-Ti was the key factor for the successful treatment, leaving the band gap and relevant properties of nano-TiO 2 unaltered. The layered treatments were tested on a porous calcarenite (Noto stone) and a very compact marble (Carrara marble). The combined SiO 2 -nano-TiO 2 treatments can find application in suitable cases where a surface consolidation is needed, ensuring a depolluting and self-cleaning durable activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Femtosecond pulsed laser micromachining of single crystalline 3C SiC structures based on a laser-induced defect-activation process

    NASA Astrophysics Data System (ADS)

    Dong, Yuanyuan; Zorman, Christian; Molian, Pal

    2003-09-01

    A femtosecond pulsed Ti:sapphire laser with a pulse width of 120 fs, a wavelength of 800 nm and a repetition rate of 1 kHz was employed for direct write patterning of single crystalline 3C-SiC thin films deposited on Si substrates. The ablation mechanism of SiC was investigated as a function of pulse energy. At high pulse energies (>1 µJ), ablation occurred via thermally dominated processes such as melting, boiling and vaporizing of single crystalline SiC. At low pulse energies, the ablation mechanism involved a defect-activation process that included the accumulation of defects, formation of nano-particles and vaporization of crystal boundaries, which contributed to well-defined and debris-free patterns in 3C-SiC thin films. The interactions between femtosecond laser pulses and the intrinsic lattice defects in epitaxially grown 3C-SiC films led to the generation of nano-particles. Micromechanical structures such as micromotor rotors and lateral resonators were patterned into 3C-SiC films using the defect-activation ablation mechanism.

  2. Magnetization enhancement due to incorporation of non-magnetic nitrogen content in (Co{sub 84}Zr{sub 16})N{sub x} nano-composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in; Akhtar, Jamil; Academy of Scientific and Innovative Research, New Delhi 110001

    We report the magnetic, electronic, and structural properties of nano-composite (Co{sub 84}Zr{sub 16})N{sub x} or CZN films prepared by reactive co-sputter deposition method. As-deposited CZN films have shown enhancement in magnetization (M{sub s}) with incorporation of nitrogen content, which is related to the evolution of nano-composite phase. X-ray diffraction study has confirmed poly-crystalline growth of CZN films with fcc(331) and fcc(422) phases. High-resolution transmission electron microscope study reveals that CZN films are composed of ordered and crystalline ferromagnetic Co nano-clusters, which are embedded in the nano-composite matrix. Photoemission measurements show the change in the intensity near the Fermi level mostmore » likely due to defects and shift in the core-levels binding energy with nitrogen concentration. Raman spectroscopy data show an increase in the intensity of the Raman lines with nitrogen concentration upto 20%. However, the intensity is significantly lower for 30% sample. This indicates that less nitrogen or defect states are being substituted into the lattice above 20% and is consistent with the observed magnetic behavior. Our studies indicate that defects induced due to the incorporation of non-magnetic nitrogen content play a key role to enhance the magnetization.« less

  3. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  4. Higher Strength Lanthanum Carbonate Provides Serum Phosphorus Control With a Low Tablet Burden and Is Preferred by Patients and Physicians: A Multicenter Study

    PubMed Central

    Mehrotra, Rajnish; Martin, Kevin J.; Fishbane, Steven; Sprague, Stuart M.; Zeig, Steven; Anger, Michael

    2008-01-01

    Background and objectives: Management of hyperphosphatemia, a predictor of mortality in chronic kidney disease, is challenging. Nonadherence to dietary phosphate binders, in part, contributes to uncontrolled serum phosphorus levels. This phase IIIb trial assessed the efficacy of increased dosages (3000 to 4500 mg/d) of reformulated lanthanum carbonate (500-, 750-, and 1000-mg tablets) in nonresponders to dosages of up to 3000 mg/d. Design, setting, participants, & measurements: This 8-wk study with a 4-mo open-label extension enrolled 513 patients who were undergoing maintenance hemodialysis. Patients who achieved serum phosphorus control at week 4 with ≤3000 mg/d lanthanum carbonate entered cohort A; nonresponders were randomly assigned to receive 3000, 3750, or 4500 mg/d (cohort B). The primary outcome measure was the control rate for predialysis serum phosphorus levels at the end of week 8, among patients in cohort B. Results: At the end of week 4, 54% of patients achieved serum phosphorus control at dosages ≤3000 mg/d administered as one tablet per meal. Among patients who entered cohort B, control rates of 25, 38, and 32% for patients who were randomly assigned to 3000, 3750, or 4500 mg/d lanthanum carbonate, respectively, were achieved, with no increase in adverse events. Patients and physicians reported significantly higher levels of satisfaction with reformulated lanthanum carbonate compared with previous phosphate binders, partly because of reduced tablet burden with higher dosage strengths. Physicians and patients also expressed a preference for lanthanum carbonate over previous medication. Conclusions: Reformulated lanthanum carbonate is an effective phosphate binder that may reduce daily tablet burden. PMID:18579668

  5. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  6. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  7. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  8. Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan.

    PubMed

    Nawab, Javed; Li, Gang; Khan, Sardar; Sher, Hassan; Aamir, Muhammad; Shamshad, Isha; Khan, Anwarzeb; Khan, Muhammad Amjad

    2016-06-01

    This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80-6.99 mg/kg) and Cd (0.21-0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk.

  9. Protonation of a lanthanum phosphide-alkyl occurs at the P-La not the C-La bond: isolation of a cationic lanthanum alkyl complex.

    PubMed

    Izod, Keith; Liddle, Stephen T; Clegg, William

    2004-08-07

    Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))

  10. Crystalline and Crystalline International Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Hari S.; Chu, Shaoping; Dittrich, Timothy M.

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland betweenmore » 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.« less

  11. Crystalline and Crystalline International Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  12. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  13. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    PubMed

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  14. Stoichiometry determination of (Pb,La)(Zr,Ti)O3-type nano-crystalline ferroelectric ceramics by wavelength-dispersive X-ray fluorescence spectrometry.

    PubMed

    Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata

    2006-07-01

    Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.

  15. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    PubMed

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electronic structure and properties of lanthanum

    NASA Astrophysics Data System (ADS)

    Nixon, Lane; Papaconstantopoulos, Dimitrios

    2008-03-01

    The total energy and electronic structure of lanthanum have been calculated in the bcc, fcc, hcp and dhcp structures for pressures up to 50 GPa. The full potential linearized-augmented-planewave method was used with both the local-density and general-gradient approximations. The correct phase ordering has been found, with lattice parameters and bulk moduli in good agreement with experimental data. The GGA method shows excellent agreement overall while the LDA results show larger discrepancies. The calculated strain energies for the fcc and bcc structures demonstrate the respective stable and unstable configurations at ambient conditions. The calculated superconductivity properties under pressure for the fcc structure are also found to agree well with measurements. Both LDA and GGA, with minor differences, reproduce well the experimental results for Tc.

  17. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism.

    PubMed

    Li, Yunyi; Cundy, Andrew B; Feng, Jingxuan; Fu, Hang; Wang, Xiaojing; Liu, Yangsheng

    2017-05-01

    Large amounts of chromite ore processing residue (COPR) wastes have been deposited in many countries worldwide, generating significant contamination issues from the highly mobile and toxic hexavalent chromium species (Cr(VI)). In this study, sodium dithionite (Na 2 S 2 O 4 ) was used to reduce Cr(VI) to Cr(III) in COPR containing high available Fe, and then sodium phosphate (Na 3 PO 4 ) was utilized to further immobilize Cr(III), via a two-step procedure (TSP). Remediation and immobilization processes and mechanisms were systematically investigated using batch experiments, sequential extraction studies, X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Results showed that Na 2 S 2 O 4 effectively reduced Cr(VI) to Cr(III), catalyzed by Fe(III). The subsequent addition of Na 3 PO 4 further immobilized Cr(III) by the formation of crystalline CrPO 4 ·6H 2 O. However, addition of Na 3 PO 4 simultaneously with Na 2 S 2 O 4 (via a one-step procedure, OSP) impeded Cr(VI) reduction due to the competitive reaction of Na 3 PO 4 and Na 2 S 2 O 4 with Fe(III). Thus, the remediation efficiency of the TSP was much higher than the corresponding OSP. Using an optimal dosage in the two-step procedure (Na 2 S 2 O 4 at a dosage of 12× the stoichiometric requirement for 15 days, and then Na 3 PO 4 in a molar ratio (i.e. Na 3 PO 4 : initial Cr(VI)) of 4:1 for another 15 days), the total dissolved Cr in the leachate determined via Toxicity Characteristic Leaching Procedure (TCLP Cr) testing of our samples was reduced to 3.8 mg/L (from an initial TCLP Cr of 112.2 mg/L, i.e. at >96% efficiency). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La 1-xR x)(Ni 1-yM y)(Si z), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  19. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature.

    PubMed

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-07-01

    This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration.

  20. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    PubMed

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  1. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    NASA Astrophysics Data System (ADS)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  2. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in

  3. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    PubMed

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  4. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  5. Developmental status and system studies of the monolithic solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Myles, K. M.

    The monolithic solid oxide fuel cell (MSOFC) was invented at the Argonne National Laboratory in 1983 and is currently being developed by a team consisting of Argonne National Laboratory and Allied-Signal Aerospace/AiResearch. The MSOFC is an oxide ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. The electrolyte, which conducts oxygens ions from the air side to the fuel side, is yttria-stabilized zirconia (YSZ). All the other materials, that is, the nickel-YSZ anode, the strontium-doped lanthanum manganite cathode, and the doped lanthanum chromite interconnect (bipolar plate), are electronic conductors. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/l at fuel efficiencies over 50 percent, because of small cell size and low resistive losses in the materials. These performances have been approached in laboratory test fuel cell stacks of nominal 125-W capacities.

  6. Fabrication of Lanthanum Telluride 14-1-11 Zintl High-Temperature Thermoelectric Couple

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur A.; Li, Billy Chun-Yip; Fleurial, Pierre; Star, Kurt

    2010-01-01

    The development of more efficient thermoelectric couple technology capable of operating with high-grade heat sources up to 1,275 K is key to improving the performance of radioisotope thermoelectric generators. Lanthanum telluride La3-xTe4 and 14-1-11 Zintls (Yb14MnSb11) have been identified as very promising materials. The fabrication of advanced high-temperature thermoelectric couples requires the joining of several dissimilar materials, typically including a number of diffusion bonding and brazing steps, to achieve a device capable of operating at elevated temperatures across a large temperature differential (up to 900 K). A thermoelectric couple typically comprises a heat collector/ exchanger, metallic interconnects on both hot and cold sides, n-type and ptype conductivity thermoelectric elements, and cold-side hardware to connect to the cold-side heat rejection and provide electrical connections. Differences in the physical, mechanical, and chemical properties of the materials that make up the thermoelectric couple, especially differences in the coefficients of thermal expansion (CTE), result in undesirable interfacial stresses that can lead to mechanical failure of the device. The problem is further complicated by the fact that the thermoelectric materials under consideration have large CTE values, are brittle, and cracks can propagate through them with minimal resistance. The inherent challenge of bonding brittle, high-thermal-expansion thermoelectric materials to a hot shoe material that is thick enough to carry the requisite electrical current was overcome. A critical advantage over prior art is that this device was constructed using all diffusion bonds and a minimum number of assembly steps. The fabrication process and the materials used are described in the following steps: (1) Applying a thin refractory metal foil to both sides of lanthanum telluride. To fabricate the n-type leg of the advanced thermoelectric couple, the pre-synthesized lanthanum

  7. Barium strontium titanate thin film growth with variation of lanthanum dopant compatibility as sensor prototype in the satellite technology

    NASA Astrophysics Data System (ADS)

    Mulyadi; Wahyuni, Rika; Hardhienata, Hendradi; Irzaman

    2018-05-01

    Electrical properties of barium strontium titanate thin films were investigated. Three layers of barium strontium titanate thin films have been prepared by chemical solution deposition method and spin coating technique at 8000 rpm rotational speed for 30 seconds and temperature of annealing at 850°C for eight hours with temperature increment of 1.67°C/minute. Materials produced by the process of lanthanum dopant with doping variations of 2%, 4% and 6% above type-p silicon (100) substrates. Film obtained was then carried out the characterization using USB 2000 VIS-NIR and tauc plot method. As a result, the barium strontium titanate thin film has the value of band gap energy of 1.58 eV, 1.92 eV and 2.24 eV respectively. The characterization of electrical properties shows that the band gap value of barium strontium titanate thin film with lanthanum dopant was in the range of semiconductor value. Barium strontium titanate thin films with lanthanum dopant are sensitive to temperature changes, so it potentially to be applied to temperature monitoring on satellite technology.

  8. Phonons and superconductivity in fcc and dhcp lanthanum

    NASA Astrophysics Data System (ADS)

    Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.

    2010-04-01

    We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.

  9. Effects of lanthanum carbonate and calcium carbonate on fibroblast growth factor 23 and hepcidin levels in chronic hemodialysis patients.

    PubMed

    Chang, Yu-Ming; Tsai, Shih-Ching; Shiao, Chih-Chung; Liou, Hung-Hsiang; Yang, Chuan-Lan; Tung, Nai-Yu; Hsu, Kua-Sui; Chen, I-Ling; Liu, Mei-Chyn; Kao, Jsun-Liang; Jhen, Rong-Na; Huang, Ya-Ting

    2017-10-01

    Phosphate binders have an impact on fibroblast growth factor 23 (FGF23); however, the effect of phosphate binders on serum hepcidin has not been explored. We conducted a 24-week multicenter randomized controlled trial to investigate the effects of lanthanum carbonate or calcium carbonate monotherapy on serum phosphate, FGF23, and hepcidin levels in chronic hemodialysis patients. Forty-six patients were recruited, and daily dietary phosphorus was controlled between 600-800 mg. Serum calcium, phosphate, albumin, alkaline phosphatase (ALP), FGF23, intact parathyroid hormone (iPTH), hepcidin, high-sensitivity CRP (hsCRP), 25(OH)D, 1,25(OH) 2 D, fetuin-A, and osteopontin were checked as scheduled. Twenty-five patients completed the study. Mean serum FGF23 level was significantly decreased after a 24-week treatment with lanthanum (8677.5 ± 7490.0 vs. 4692.8 ± 5348.3 pg/mL, p = 0.013, n = 13), but not with calcium (n = 12). The reduction of serum hepcidin in lanthanum group was positively correlated with the decrement of serum phosphate (r = 0.631, p = 0.021) and serum hsCRP (r = 0.670, p = 0.012) levels, respectively. Serum ALP, iPTH, vitamin D, fetuin-A, and osteopontin revealed no significant inter- or intragroup differences. In summary, a decrease in serum FGF23 levels and a trend of decline in hepcidin levels were observed only in lanthanum group.

  10. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Abhilash, K. P.; Christopher Selvin, P.; Nalini, B.; Somasundaram, K.; Sivaraj, P.; Chandra Bose, A.

    2016-04-01

    The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol-gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10-3 S cm-1 has been obtained for the sample at higher temperatures.

  11. Production of Chromium Oxide from Turkish Chromite Concentrate Using Ethanol

    NASA Astrophysics Data System (ADS)

    Aktas, S.; Eyuboglu, C.; Morcali, M. H.; Özbey, S.; Sucuoglu, Y.

    2015-05-01

    In this study, the possibility of chromium extraction from Turkish chromite concentrate and the production of chromium oxide were investigated. For the conversion of chromium(III) into chromium(VI), NaOH was employed, as well as air with a rate of 20 L/min. The effects of the base amount, fusing temperature, and fusing time on the chromium conversion percentage were investigated in detail. The conversion kinetics of chromium(III) to chromium(VI) was also undertaken. Following the steps of dissolving the sodium chromate in water and filtering, aluminum hydroxide was precipitated by adjusting the pH level of the solution. The chromium(VI) solution was subsequently converted to Cr(III) by the combination of sulfuric acid and ethanol. Interestingly, it was observed that ethanol precipitated chromium as chromium(VI) at mildly acidic pH levels, although this effect is more pronounced for K2Cr2O7 than Na2Cr2O7. On the other hand, in the strongly acidic regime, ethanol acted as a reducing agent role in that chromium(VI) was converted into Cr(III) whereas ethanol itself was oxidized to carbon dioxide and water. Subsequently, chromium hydroxide was obtained by the help of sodium hydroxide and converted to chromium oxide by heating at 800 °C, as indicated in thermo gravimetric analysis (TGA).

  12. Investigation of electronic and local structural changes during lithium uptake and release of nano-crystalline NiFe2O4 by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Permien, Stefan; Rana, Jatinkumar; Krengel, Markus; Sun, Fu; Schumacher, Gerhard; Bensch, Wolfgang; Banhart, John

    2017-02-01

    Nano-crystalline NiFe2O4 particles were synthesized and used as active electrode material for a lithium ion battery that showed a high discharge capacity of 1534 mAh g-1 and charge capacity of 1170 mAh g-1 during the 1st cycle. X-ray absorption spectroscopy including XANES and EXAFS were used to investigate electronic and local structural changes of NiFe2O4 during the 1st lithiation and de-lithiation process. As lithium is inserted into the structure, tetrahedral site Fe3+ ions are reduced to Fe2+ and moved from tetrahedral sites to empty octahedral sites, while Ni2+ ions are unaffected. As a consequence, the matrix spinel structure collapses and transforms to an intermediate rock-salt monoxide phase. Meanwhile, the inserted Li is partially consumed by the formation of SEI and other side reactions during the conversion reaction. With further lithiation, the monoxide phase is reduced to highly disordered metallic Fe/Ni nanoparticles with a number of nearest neighbors of 6.0(8) and 8.1(4) for Fe and Ni, respectively. During subsequent de-lithiation, the metal particles are individually re-oxidized to Fe2O3 and NiO phases instead to the original NiFe2O4 spinel phase.

  13. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  14. Electronic, thermodynamics and mechanical properties of LaB6 from first-principles

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Shevchenko, V. I.; Medukh, N. R.; Leszczynski, Jerzy; Gorb, Leonid

    2018-02-01

    Up to date, the electronic structure properties of amorphous lanthanum hexaboride, a-LaB6, were not yet investigated, and the thermodynamic and mechanical properties of crystalline lanthanum hexaboride (c-LaB6) were studied incompletely. The goal of this work was to fill these gaps in the study of lanthanum hexaborides. The electronic and phonon structures, thermodynamic and mechanical properties of both crystalline and amorphous lanthanum hexaborides (c-LaB6, a-LaB6, respectively) were investigated within the density functional theory. An amorphyzation of c-LaB6 gives rise to the metal - semiconductor transition. The thermal conductivity decreases on going from c-LaB6 to a-LaB6. The elastic moduli, hardness, ideal tensile and shear strengths of a-LaB6 are significantly lower compared to those of the crystalline counterpart, despite the formation of the icosahedron-like boron network in the amorphous phase. For c-LaB6, the stable boron octahedrons are preserved after the failure under tensile and shear strains. The peculiarity in the temperature dependence of heat capacity, Cp(T), at 50 K is explained by the availability of a sharp peak at 100 cm-1 in the phonon density of states of c-LaB6. An analysis of the Fermi surface indicates that this peak is not related to the shape of the Fermi surface, and is caused by the vibration of lanthanum atoms. In the phonon spectrum of a-LaB6, the peak at 100 cm-1 is significantly broader than in the spectrum of c-LaB6, for which reason the anomaly in the Cp(T) dependence of a-LaB6 does not appear. The calculated characteristics are in good agreement with the available experimental data.

  15. Structural Chemistry of Functional Nano-Materials for Environmental Remediation

    NASA Astrophysics Data System (ADS)

    John, Jesse

    Nano minerals and materials have become a focal point of Geoscience research due to the unique physical, chemical, optical, magnetic, electronic, and reactive properties. Many of these desired properties in Nano technology have the potential to impact society by improving remediation, photovoltaics, medicine and the sustainability limits on Earth for an expanding population. Despite the progress made on the discovery, synthesis, and manufacturing of numerous nano-materials, the atomistic cause of their desired properties is poorly understood. To gain a better understanding of the atomic structure of nano materials and their bulk counterparts we combined several crystallographic techniques to solve the crystal structure and performed formative characterization to ascertain the atomistic source of the desired application. These strategies and tools can be used to expedite discovery, development and the goals of the National Nanotechnology Initiative (NNI). This thesis will cover the optimization of the reaction conditions and resolve the atomic structure to produce pure synthetic nano nolanite (SNN) Fe2V3O7OH. The complete structural model of nolanite was described from a bulk mineral to the nano-regime using a combination of single crystal X-ray diffraction (SC-XRD), pair distribution function analysis (PDF) and neutron powder diffraction from synthetic material. Nolanite is isostructural to ferrihydrite, a ubiquitous nano-mineral, both of these mineral structures have been the subject for debate for the last half of century. A comparative study of the isostructural minerals nolanite, akdalaite and ferrihydrite was utilized to address the discrepancies and consolidate the structural models. Lastly, we developed a structural model for nano-crystalline titanium-based material; mono sodium titanate (MST) using high energy total X-ray scattering and PDF coupled with scanning transmission electron microscope (STEM). In the USA we have accumulated over 76000 metric tons

  16. Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan

    2008-10-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  17. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs.

    PubMed

    Jeong, Eun Gyo; Kwon, Seonil; Han, Jun Hee; Im, Hyeon-Gyun; Bae, Byeong-Soo; Choi, Kyung Cheol

    2017-05-18

    Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al 2 O 3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.

  18. Cost-Effectiveness of First-Line Sevelamer and Lanthanum versus Calcium-Based Binders for Hyperphosphatemia of Chronic Kidney Disease.

    PubMed

    Habbous, Steven; Przech, Sebastian; Martin, Janet; Garg, Amit X; Sarma, Sisira

    2018-03-01

    Phosphate binders are used to treat hyperphosphatemia among patients with chronic kidney disease (CKD). To conduct an economic evaluation comparing calcium-free binders sevelamer and lanthanum with calcium-based binders for patients with CKD. Effectiveness data were obtained from a recent meta-analysis of randomized trials. Effectiveness was measured as life-years gained and translated to quality-adjusted life-years (QALYs) using utility weights from the literature. A Markov model consisting of non-dialysis-dependent (NDD)-CKD, dialysis-dependent (DD)-CKD, and death was developed to estimate the incremental costs and effects of sevelamer and lanthanum versus those of calcium-based binders. A lifetime horizon was used and both costs and effects were discounted at 1.5%. All costs are presented in 2015 Canadian dollars from the Canadian public payer perspective. Results of probabilistic sensitivity analysis were presented using cost-effectiveness acceptability curves. Sensitivity analyses were conducted for risk pooling methods, omission of dialysis costs, and persistence of drug effects on mortality. Sevelamer resulted in an incremental cost-effectiveness ratio of $106,522/QALY for NDD-CKD and $133,847/QALY for DD-CKD cohorts. Excluding dialysis costs, sevelamer was cost-effective in the NDD-CKD cohort ($5,847/QALY) and the DD-CKD cohort ($11,178/QALY). Lanthanum was dominated regardless of whether dialysis costs were included. Existing evidence does not clearly support the cost-effectiveness of non-calcium-containing phosphate binders (sevelamer and lanthanum) relative to calcium-containing phosphate binders in DD-CKD patients. Our study suggests that sevelamer may be cost-effective before dialysis onset. Because of the remaining uncertainty in several clinically relevant outcomes over time in DD-CKD and NDD-CKD patients, further research is encouraged. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier

  19. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor

    PubMed Central

    Jeon, Ji Hoon; Joo, Ho-Young; Kim, Young-Min; Lee, Duk Hyun; Kim, Jin-Soo; Kim, Yeon Soo; Choi, Taekjib; Park, Bae Ho

    2016-01-01

    Highly nonlinear bistable current-voltage (I–V) characteristics are necessary in order to realize high density resistive random access memory (ReRAM) devices that are compatible with cross-point stack structures. Up to now, such I–V characteristics have been achieved by introducing complex device structures consisting of selection elements (selectors) and memory elements which are connected in series. In this study, we report bipolar resistive switching (RS) behaviours of nano-crystalline BiFeO3 (BFO) nano-islands grown on Nb-doped SrTiO3 substrates, with large ON/OFF ratio of 4,420. In addition, the BFO nano-islands exhibit asymmetric I–V characteristics with high nonlinearity factor of 1,100 in a low resistance state. Such selector-free RS behaviours are enabled by the mosaic structures and pinned downward ferroelectric polarization in the BFO nano-islands. The high resistance ratio and nonlinearity factor suggest that our BFO nano-islands can be extended to an N × N array of N = 3,740 corresponding to ~107 bits. Therefore, our BFO nano-island showing both high resistance ratio and nonlinearity factor offers a simple and promising building block of high density ReRAM. PMID:27001415

  20. Synthesis of nano-sized lithium cobalt oxide via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Guangfen; Zhang, Jing

    2012-07-01

    In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.

  1. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    PubMed

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of

  2. Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process

    NASA Astrophysics Data System (ADS)

    Lobo, A. O.; Otubo, J.; Matsushima, J. T.; Corat, E. J.

    2011-07-01

    Nano-hydroxyapatite (n-HA) crystalline films have been developed in this study by electrodeposition method on NiTi shape memory alloy (SMA). The electrodeposition of the n-HA films was carried out using 0.042 mol/L Ca(NO3)2 · 4H2O + 0.025 mol/L (NH4) · 2HPO4 electrolytes by applying a constant potential of -2.0 V for 120 min and keeping the solution temperature at 70 °C. The characterization of n-HA films is of special importance since bioactive properties related to n-HA have been directly identified with its specific composition and crystalline structure. AFM, XRD, EDX, FEG-SEM and Raman spectroscopy shows a homogeneous film, with high crystallinity, special composition, and bioactivity properties (Ca/P = 1.93) of n-HA on NiTi SMA surfaces. The n-HA coating with special structure would benefit the use of NiTi alloy in orthopedic applications.

  3. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment.

    PubMed

    Kumar, Adarsh; Maiti, Subodh Kumar

    2015-01-01

    The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.

  4. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-08

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree.

  5. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    NASA Astrophysics Data System (ADS)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  6. Paramagnetic centers in two phases of manganese-doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2009-05-01

    An EPR study of two phases of manganese-doped lanthanum gallate (with a first-order structural transition occurring at 430 K) has revealed Gd3+, Fe3+, and Mn4+ centers at room temperature and 438 K. The parameters of spin Hamiltonians are determined for the Gd3+, Fe3+, and Mn4+ rhombohedral centers in the high-temperature phase (with no other centers found here) and for the monoclinic center Gd3+ in the low-temperature phase. Both in the orthorhombic and in the rhombohedral phase, crystallographic twins (or ferroelastic domains) are observed.

  7. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    NASA Astrophysics Data System (ADS)

    Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.

    1988-11-01

    It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.

  8. The use of nano-sized eggshell powder for calcium fortification of cow?s and buffalo?s milk yogurts.

    PubMed

    El-Shibiny, Safinaze; El-Gawad, Mona Abd El-Kader Mohamed Abd; Assem, Fayza Mohamed; El-Sayed, Samah Mosbah

    2018-01-01

    Calcium is an essential element for the growth, activity, and maintenance of the human body. Eggshells are a waste product which has received growing interest as a cheap and effective source of dietary calcium. Yogurt is a food which can be fortified with functional additives, including calcium. The aim of this study was to produce yogurt with a high calcium content by fortification with nano-sized eggshell powder (nano-ESP). Nano-sized ESP was prepared from pre-boiled and dried eggshell, using a ball mill. Yogurt was prepared from cow’s milk supplemented with 3% skimmed milk powder, and from buffalo’s milk fortified with 0.1, 0.2 and 0.3% and 0.1, 0.3 and 0.5% nano-ESP respectively. Electron microscopic transmission showed that the powder consisted of nano-sized crystalline struc- tures (~10 nm). Laser scattering showed that particles followed a normal distribution pattern with z-average of 590.5 nm, and had negative zeta-potential of –9.33 ±4.2 mV. Results regarding changes in yogurt composi- tion, acid development, calcium distribution, biochemical changes, textural parameters and sensory attributes have been presented and discussed. The addition of up to 0.3% nano-ESP made cow and buffalo high-calcium yogurts with an acceptable composition and quality. High-calcium yogurt may offer better health benefits, such as combating osteoporosis.

  9. Synthesis and Stability of Lanthanum Superhydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.

    Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1more » Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.« less

  10. Crystalline Silica

    Cancer.gov

    Learn about crystalline silica (quartz dust), which can raise your risk of lung cancer. Crystalline silica is present in certain construction materials such as concrete, masonry, and brick and also in commercial products such as some cleansers, cosmetics, pet litter, talcum powder, caulk, and paint.

  11. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  12. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    NASA Astrophysics Data System (ADS)

    Rofouie, P.; Pasini, D.; Rey, A. D.

    2015-09-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations' amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC's surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  13. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  14. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  15. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism

    NASA Astrophysics Data System (ADS)

    He, Yinhai; Lin, Hai; Dong, Yingbo; Wang, Liang

    2017-12-01

    The adsorbent, where lanthanum oxide was incorporated onto porous zeolite (La-Z), of preferable adsorption towards phosphate was prepared by hydrothermal synthesis. Based on pH effect results, La-Z would effectively sequestrate phosphate over wider pH range of 3.0-7.0, alkaline conditions were unfavorable for phosphate. The adsorption of phosphate was not significantly influenced by ionic strength and by coexisting anions of chloride, nitrate and sulfate but bicarbonate showed slightly greater negative effects, indicating La-Z possessed highly selectivity to phosphate. Adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by intra-particle diffusion. Equilibrium adsorption demonstrated that Langmuir model was more suitable than Freundlich model for description phosphate adsorption and the adsorption capacity was 17.2 mg P g-1, which exhibited 95% utilization of incorporated La. Over 95% phosphate was eliminated in real effluent treatment when the dose was 2 g L-1. The underlying mechanism for phosphate capture was probed with Zeta potential and X-ray photoelectron spectroscope analysis, and the formation of La-P inner-sphere complexation was testified to be the dominant pathway. All the results suggested that the porous zeolite-supported lanthanum oxide can serve as a promising adsorbent for phosphate removal in realistic application.

  16. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial.

    PubMed

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-20

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 10(6) and 3.72 × 10(6) respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  17. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    NASA Astrophysics Data System (ADS)

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  18. Effect of drying environment on grain size of titanium dioxide nano-powder synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh

    2018-01-01

    Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.

  19. Improvement in crystal quality and optical properties of n-type GaN employing nano-scale SiO2 patterned n-type GaN substrate.

    PubMed

    Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key

    2013-01-01

    n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.

  20. Study on the Synergetic Fire-Retardant Effect of Nano-Sb₂O₃ in PBT Matrix.

    PubMed

    Niu, Lei; Xu, Jianlin; Yang, Wenlong; Ma, Jiqiang; Zhao, Jinqiang; Kang, Chenghu; Su, Jiaqiang

    2018-06-22

    Nano-Sb₂O₃ has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame retardancy of a nano-Sb₂O₃⁻brominated epoxy resin (BEO)⁻poly(butylene terephthalate) (PBT) composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy (SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that the nano-Sb₂O₃ particles were homogeneously distributed within the PBT matrix, and the thermal stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were improved, as a result of the superior dispersion and interfacial interactions between nano-Sb₂O₃ and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as the nano-Sb₂O₃ content increased. The results from the cone calorimeter test showed that the peak heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO₂P), and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced, compared to those of the neat PBT matrix. Meanwhile, the SEM⁻energy dispersive spectrometry (EDX) analysis of the residues indicated that a higher amount of C element was left, thus the charring layer of the nanocomposites was compact. This showed that nano-Sb₂O₃ could promote the degradation and charring of the PBT matrix, improving thermal stability and flame retardation.

  1. Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolong; Eibl, Oliver; Berthold, Christoph; Scheideler, Lutz; Geis-Gerstorfer, Jürgen

    2006-06-01

    Nanocrystalline hydroxyapatite (Nano HA), a prototype of minerals of bones and teeth, attracts increasing interest in medicine and dentistry. Different parameters for synthesis and post-treatment were investigated to determine their effects on crystallinity of nano HA, and in vitro cell responses to nano HA were studied. XRD and TEM analyses indicate that the crystallinity of nano HA synthesized by a chemical method was within the range of 15-50 nm, which is adapted to natural minerals of hard tissues. Increasing the ageing temperature significantly increased the crystallinity of nano HA, while lengthening the ageing time or varying the post-ageing drying process did not have any influence on its crystallinity. Nano HA annealed between 300 and 900 °C showed a small increase in crystallinity with increasing annealing temperature due to the long-range ordering effect. Cell attachment and spreading on nano HA were lower than those on pure titanium, and decreased as the crystallinity of nano HA increased. However, cells on nano HA demonstrated well-developed filopodia and lamelliopodia, which facilitate migration of the cells on it. This may benefit osteogenesis at the interface between bone and nano HA in vivo.

  2. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies.

    PubMed

    Elnaggar, Yosra Sr; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.

  3. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    PubMed Central

    Elnaggar, Yosra SR; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    2016-01-01

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. PMID:27822033

  4. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    NASA Astrophysics Data System (ADS)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  5. Surface nano-structure of polyamide 6 film by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaosong; Wang, Zhiliang; Liang, Songmiao; Jin, Yan; Lotz, Bernard; Yang, Shuguang

    2018-06-01

    Polyamide 6 (PA 6) melts and dissolves in super-heated water when T > 160 °C. Commercial PA 6 films were treated in super-heated water at 140 °C < T < 160 °C, i.e. below melting. Morphology, thermal behavior, mechanical properties, oxygen permeability and transparency of the film before and after hydrothermal treatment are investigated. After hydrothermal treatment, the melting temperature, crystallinity, elongation at break and toughness increase, whereas the strength decreases. The transparency and oxygen permeability decrease slightly. More interestingly, the hydrothermal treatment generates on the film surface a nano-structured layer 100 nm thick, which greatly improves adhesion and printing performance.

  6. Investigation of radiation damage tolerance in interface-containing metallic nano structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greer, Julia R.

    The proposed work seeks to conduct a basic study by applying experimental and computational methods to obtain quantitative influence of helium sink strength and proximity on He bubble nucleation and growth in He-irradiated nano-scale metallic structures, and the ensuing deformation mechanisms and mechanical properties. We utilized a combination of nano-scale in-situ tension and compression experiments on low-energy He-irradiated samples combined with site-specific microstructural characterization and modeling efforts. We also investigated the mechanical deformation of nano-architected materials, i.e. nanolattices which are comprised of 3-dimensional interwoven networks of hollow tubes, with the wall thickness in the nanometer range. This systematic approach willmore » provide us with critical information for identifying key factors that govern He bubble nucleation and growth upon irradiation as a function of both sink strength and sink proximity through an experimentally-confirmed physical understanding. As an outgrowth of these efforts, we performed irradiations with self-ions (Ni 2+) on Ni-Al-Zr metallic glass nanolattices to assess their resilience against radiation damage rather than He-ion implantation. We focused our attention on studying individual bcc/fcc interfaces within a single nano structure (nano-pillar or a hollow tube): a single Fe (bcc)-Cu (fcc) boundary per pillar oriented perpendicular to the pillar axes, as well as pure bcc and fcc nano structures. Additional interfaces of interest include bcc/bcc and metal/metallic glass all within a single nano-structure volume. The model material systems are: (1) pure single crystalline Fe and Cu, (2) a single Fe (bcc)-Cu (fcc) boundary per nano structure (3) a single metal–metallic glass, all oriented non-parallel to the loading direction so that their fracture strength can be tested. A nano-fabrication approach, which involves e-beam lithography and templated electroplating, as well as two

  7. Crystalline structures, thermal properties and crystallizing mechanism of polyamide 6 nanotubes in confined space

    NASA Astrophysics Data System (ADS)

    Li, Xiaoru; Peng, Zhi; Yang, Chao; Han, Ping; Song, Guojun; Cong, Longliang

    2016-09-01

    The polyamide 6 (PA6) nanotubes were prepared by infiltrating the anodic aluminum oxide templates with polymer solution. Crystalline regions in the nanotube walls were detected by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD), Fast Fourier Transform (FFT) and differential scanning calorimetry (DSC) techniques were employed to investigate crystallization, crystal faces and thermodynamics. It was found that the crystals were transformed from α-form in bulk to γ-form in nanotubes. It was made a detailed analysis in this article. Moreover, schematic diagram for the crystallizing mechanism of PA6 nanotubes was given to explain PA6 molecules how to crystallize in the nano-pores.

  8. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  9. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.

    PubMed

    Huang, Xiao; Zhuang, RanLiang; Muhammad, Faheem; Yu, Lin; Shiau, YanChyuan; Li, Dongwei

    2017-02-01

    Chromite Ore Processing Residue (COPR) produced in chromium salt production process causes a great health and environmental risk with Cr(VI) leaching. The solidification/stabilization (S/S) of COPR using alkali-activated blast furnace slag (BFS) and fly ash (FA) based cementitious material was investigated in this study. The optimum percentage of BFS and FA for preparing the alkali-activated BFS-FA binder had been studied. COPR was used to replace the amount of BFS-FA or ordinary Portland cement (OPC) for the preparation of the cementitious materials, respectively. The immobilization effect of the alkali-activated BFS-FA binder on COPR was much better than that of OPC based cementitious material. The potential for reusing the final treatment product as a readily available construction material was evaluated. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscope with energy dispersive spectrometer (SEM-EDS) analysis indicated that COPR had been effectively immobilized. The solidification mechanism is the combined effect of reduction, ion exchange, precipitation, adsorption and physical fixation in the alkali-activated composite cementitious material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

    PubMed

    Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung

    2016-04-21

    A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.

  12. Synthesis and characterization of CaCO3 (calcite) nano particles from cockle shells (Anadara granosa Linn) by precipitation method

    NASA Astrophysics Data System (ADS)

    Widyastuti, Sri; Intan Ayu Kusuma, P.

    2017-06-01

    Calcium supplements can reduce the risk of osteoporosis, but they are not automatically absorbed in the gastrointestinal tract. Nanotechnology is presumed to have a capacity in resolving this problem. The preparation and characterization of calcium carbonate nano particle to improve the solubility was performed. Calcium carbonate nano particles were synthesized using precipitation method from cockle shells (Anadara granosa Linn). Samples of the cockle shells were dried in an oven at temperature of 50°C for 7 (seven) days and subsequently they were crushed and blended into fine powder that was sieved through 125-μm sieve. The synthesis of calcium carbonate nanocrystals was done by extracting using hydro chloride acid and various concentrations of sodium hydroxide were used to precipitate the calcium carbonate nano particles. The size of the nano particles was determined by SEM, XRD data, and Fourier transform infrared spectroscopy (FT-IR). The results of XRD indicated that the overall crystalline structure and phase purity of the typical calcite phase CaCO3 particles were approximately 300 nm in size. The method to find potential applications in industry to yield the large scale synthesis of aragonite nano particles by a low cost but abundant natural resource such as cockle shells is required.

  13. Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition

    DOE PAGES

    Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; ...

    2014-11-08

    We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr 2-xLa xNb 2O 7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO 3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr 2Nb 2O 7 parent structure. We also compare our experimental results with two variations of the minimum-limit modelmore » for κ and discuss the nature of transport in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.« less

  14. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2016-01-01

    release; distribution is unlimited. 1 1. Introduction Lithium (Li)- ion batteries are currently one of the leading energy storage device technologies...ARL-TR-7584 ● JAN 2016 US Army Research Laboratory Grain Boundary Engineering of Lithium - Ion - Conducting Lithium Lanthanum...Titanate for Lithium -Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public

  15. [An investigation of lanthanum and other metals levels in blood, urine and hair among residents in the rare earth mining area of a city in China].

    PubMed

    Bao, T M; Tian, Y; Wang, L X; Wu, T; Lu, L N; Ma, H Y; Wang, L

    2018-02-20

    Objective: To investigate the levels of lanthanum, cerium, praseodymium, and neodymium in the blood, urine, and hair samples from residents in the rare earth mining area of a city in China, and to provide a scientific basis for the control of rare earth pollution and the protection of population health. Methods: A total of 147 residents who had lived in the rare earth mining area of a city for a long time were selected as the exposure group, and 108 residents in Guyang County of this city who lived 91 km away from the rare earth mining area were selected as the control group. Blood, urine, and hair samples were collected from the residents in both groups. Inductively coupled plasma mass spectrometry was used to determine the content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair samples. Results: In the exposure group, the median levels of lanthanum, cerium, praseodymium, and neodymium were 0.854, 1.724, 0.132, and 0.839 μg/L, respectively, in blood samples, 0.420, 0.920, 0.055, and 0.337 μg/L, respectively, in urine samples, and 0.052, 0.106, 0.012, and 0.045 μg/g, respectively, in hair samples. The exposure group had significantly higher levels of the four rare earth elements in blood, urine, and hair samples than the control group ( P <0.01) . Conclusion: The residents in the rare earth mining area of this city have higher content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair than those in the non-mining area; the content of cerium is highest, followed by lanthanum, neodymium, and praseodymium.

  16. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  17. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly. Copyright © 2014. Published by Elsevier B.V.

  18. Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.

    Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less

  19. Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations

    DOE PAGES

    Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.; ...

    2016-08-29

    Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less

  20. Novel multifunctional titania-silica-lanthanum phosphate nanocomposite coatings through an all aqueous sol-gel process.

    PubMed

    Smitha, Venu Sreekala; Jyothi, Chembolli Kunhatta; Peer, Mohamed A; Pillai, Saju; Warrier, Krishna Gopakumar

    2013-04-07

    A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

  1. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  2. The origin of current blocking in interfacial conduction in Sr-doped lanthanum gallates

    NASA Astrophysics Data System (ADS)

    Park, Hee Jung

    2018-02-01

    The grain boundary transport of lanthanum gallate has been studied with various doping concentrations, and the origins of blocking on the grain boundary are compared. La1-xSrxGaO3 samples (x = 0.005, 0.01, 0.05 and 0.1) have been prepared and their bulk (grain) and grain boundary resistances been experimentally measured as a function of temperature (T: 200-550 °C) and oxygen partial pressure (Po2) using ac-impedance measurements. In addition, Hebb-Wagner polarization measurements have been conducted to investigate the electrical conductivity of minor charge carriers in the lanthanum gallates. The grain boundary resistance in the low-doped materials (x = 0.005 and 0.01) increases with increasing Po2 while in the highly-doped materials (x = 0.05, 0.1) it hardly depended on Po2. At lower concentrations conduction is mixed and at higher concentrations is found to be predominantly ionic conductivity. The space charge model successfully describes the mixed conduction at the grain boundary at low-doping, but does not explain the predominant ionic conductivity at high-doping. The origin of blocking at high-doping is explained by the crystallographic asymmetry of the grain boundary with respect to the bulk and/or Sr-segregation.

  3. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  4. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We alsomore » study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.« less

  5. In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

    PubMed Central

    Andley, Usha P.; Malone, James P.; Townsend, R. Reid

    2014-01-01

    αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin. PMID:24760011

  6. Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes: Influence of carbon black pore former on performance and degradation

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kuhn, J.; Kesler, O.

    2016-06-01

    Suspension plasma spray deposition is utilized to fabricate solid oxide fuel cell cathodes with minimal material decomposition. Adding carbon black as a pore former to the feedstock suspension results in smoother and more porous coatings, but over the range of carbon black concentrations studied, has little impact on the overall symmetrical cell performance. The cathode made with a suspension containing 25 wt% carbon has the highest deposition efficiency and a polarization resistance of 0.062 Ωcm2 at 744 °C. This cathode is tested for 500 h, and it is observed that adding an SDC interlayer between the YSZ electrolyte and the cathode(s) and/or coating the metal substrate with lanthanum chromite decrease the rate of performance degradation.

  7. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    PubMed Central

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications. PMID:26785682

  8. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  9. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  10. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  11. Application of Sequential Extractions and X-ray Absorption Spectroscopy to Determine the Speciation of Chromium in Northern New Jersey Marsh Soils Developed in Chromite ore Processing Residue (COPR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzinga, E.; Cirmo, A

    2010-01-01

    The Cr speciation in marsh soils developed in weathering chromite ore processing residue (COPR) was characterized using sequential extractions and synchrotron microbeam and bulk X-ray absorption spectroscopic (XAS) analyses. The sequential extractions suggested substantial Cr associated with reducible and oxidizable soil components, and significant non-extractable residual Cr. Notable differences in Cr speciation estimates from three extraction schemes underscore the operationally defined nature of Cr speciation provided by these methods. Micro X-ray fluorescence maps and {mu}-XAS data indicated the presence of {micro}m-sized chromite particles scattered throughout the weathered COPR matrix. These particles derive from the original COPR material, and have relativelymore » high resistance towards weathering, and therefore persist even after prolonged leaching. Bulk XAS data further indicated Cr(III) incorporated in Fe(OH){sub 3}, and Cr(III) associated with organic matter. The low Cr contents of the weathered material (200-850 ppm) compared to unweathered COPR (20,000-60,000 ppm) point to substantial Cr leaching during COPR weathering, with partial repartitioning of released Cr into secondary Fe(OH){sub 3} phases and organics. The effects of anoxia on Cr speciation, and the potential of active COPR weathering releasing Cr(VI) deeper in the profile require further study.« less

  12. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    PubMed Central

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  13. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    NASA Astrophysics Data System (ADS)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  14. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw; Chia, Chih-Ta

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{submore » 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.« less

  15. [Crystalline retinopathy].

    PubMed

    Rasquin, F

    2007-01-01

    Crystalline retinopathy is characterized by intraretinal crystalline deposits that, according to their etiology, can be localized in the macular area or, indeed, be found in the entire retina. These deposits can be associated or not to visual loss and electrophysiological perturbations. Among the toxic drugs leading to this retinopathy are tamoxifen, canthaxanthine, methoxyflurane, talc and nitrofurantoin. A detailed description of tamoxifen and canthaxanthine toxicity is reported in this chapter.

  16. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  17. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of themore » Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.« less

  18. Pressure increases, the for­mation of chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana

    USGS Publications Warehouse

    Lipin, Bruce R.

    1993-01-01

    This paper explores the hypothesis that chromite seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive δV of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4–6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0⋅2–0⋅25 kbar, or 5–10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place.Mixing was an important process in the Stillwater magma chamber, however. After the new magma in the chamber underwent ˜5% fractional crystallization, its composition, temperature, and density approached those of the overlying liquid in the chamber and the liquids then mixed. If this process occurred many times over the course of the development of the Ultramafic series, a thick column of magma with orthopyroxene on its liquidus would have been the result. Thus, the sequence of multiple injections, fractionation, and mixing with previously fractionated magma could have been the mechanism that produced the thick bronzite cumulate layer (the Bronzitite zone) above the cyclic units.

  19. Study of lanthanum aluminate for cost effective electrolyte material for SOFC

    NASA Astrophysics Data System (ADS)

    Verma, O. N.; Shahi, A. K.; Singh, P.

    2018-05-01

    The perovskite type electrolyte material LaAlO3 (abbreviated LAO) has been prepared by easy processing of auto-combustion synthesis using lanthanum nitrate and aluminium nitrate salts as precursors and citric acid as the fuel. The XRD analysis reveals that as synthesized material exhibits only single phase having rhombohedral structure. The measured density and theoretical density have been deliberated. The temperature dependent electrical conductivity of LAO increases with increasing the temperature which leads to increased mobility of oxide ion. The major contribution of such a significant value of ionic conductivity of LAO can be inferred to grain boundary resistance.

  20. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  1. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    NASA Astrophysics Data System (ADS)

    Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera

    2012-12-01

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the γ form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of α and γ polymorphic forms. IDM obtained by the two other methods remained in the γ form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of α form than γ form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  2. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    PubMed

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  3. Aquatic ecotoxicity of lanthanum - A review and an attempt to derive water and sediment quality criteria.

    PubMed

    Herrmann, Henning; Nolde, Jürgen; Berger, Svend; Heise, Susanne

    2016-02-01

    Rare earth elements (REE) used to be taken as tracers of geological origin for fluvial transport. Nowadays their increased applications in innovative environmental-friendly technology (e.g. in catalysts, superconductors, lasers, batteries) and medical applications (e.g. MRI contrast agent) lead to man-made, elevated levels in the environment. So far, no regulatory thresholds for REE concentrations and emissions to the environment have been set because information on risks from REE is scarce. However, evidence gathers that REE have to be acknowledged as new, emerging contaminants with manifold ways of entry into the environment, e.g. through waste water from hospitals or through industrial effluents. This paper reviews existing information on bioaccumulation and ecotoxicity of lanthanum in the aquatic environment. Lanthanum is of specific interest as one of the major lanthanides in industrial effluents. This review focuses on the freshwater and the marine environment, and tackles the water column and sediments. From these data, methods to derive quality criteria for sediment and water are discussed and preliminary suggestions are made. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Nano-structured support materials, their characterisation and serum protein profiling through MALDI/TOF-MS.

    PubMed

    Najam-Ul-Haq, M; Rainer, M; Heigl, N; Szabo, Z; Vallant, R; Huck, C W; Engelhardt, H; Bischoff, K-D; Bonn, G K

    2008-02-01

    In the bioanalytical era, novel nano-materials for the selective extraction, pre-concentration and purification of biomolecules prior to analysis are vital. Their application as affinity binding in this regard is needed to be authentic. We report here the comparative application of derivatised materials and surfaces on the basis of nano-crystalline diamond, carbon nanotubes and fullerenes for the analysis of marker peptides and proteins by material enhanced laser desorption ionisation mass spectrometry MELDI-MS. In this particular work, the emphasis is placed on the derivatization, termed as immobilised metal affinity chromatography (IMAC), with three different support materials, to show the effectiveness of MELDI technique. For the physicochemical characterisation of the phases, near infrared reflectance spectroscopy (NIRS) is used, which is a well-established method within the analytical chemistry, covering a wide range of applications. NIRS enables differentiation between silica materials and different fullerenes derivatives, in a 3-dimensional factor-plot, depending on their derivatizations and physical characteristics. The method offers a physicochemical quantitative description in the nano-scale level of particle size, specific surface area, pore diameter, pore porosity, pore volume and total porosity with high linearity and improved precision. The measurement takes only a few seconds while high sample throughput is guaranteed.

  5. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from themore » surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.« less

  6. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyartanti, Endah R., E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id; Department of Chemical Engineering, Diponegoro University, Semarang; Purwanto, Agus

    2016-02-08

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is alsomore » investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.« less

  7. Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): photocatalytic degradation of phenol.

    PubMed

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi; Mohamed, Abdul Rahman

    2010-02-15

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO(2)/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO(2) as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO(2):ZSM-5:silica gel:colloidal silica gel=1:0.6:0.6:1) which giving about 90% degradation of 50mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m(2)/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  8. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  9. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  10. Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji-Min; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005; Liu, Qing

    2014-10-15

    Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were successfully obtained by solvothermal method. The products were characterized by powder X-ray diffraction (PXRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), inductively coupled plasma optical emission spectrometer (ICP-OES), elemental analysis, UV–vis and infrared (IR) spectroscopy. The factors influencing the crystal morphology and size were investigated. The gas sorption measurements reveal that highly crystalline particles have large Langmuir surface area. It was found that the Co(II)-doped MOF-5 shows enhanced hydrostability and the sorption profiles of the Co(II)-doped MOF-5 nano/microcrystals are dependent on the morphology and sizemore » of the particles. Porous Co(II)-doped MOF-5 is stable upon the removal of guest molecules and exhibits different colour with accommodating different solvent molecule, which means that it can act as solvatochromic sensing materials for recognition of solvent molecules. - Graphical abstract: Co(II)-doped MOF-5 nano/microcrystals with different shapes and sizes were synthesized by a facile hydrothermal method, which not only enhance gas sorption properties and structural stability of MOFs towards moisture, but also act as new sensing materials for sensing small molecules. - Highlights: • Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were obtained. • Co(II)-doped MOF-5 nano/microcrystals enhance the structural stability towards moisture. • Co(II)-doped MOF-5 can act as new sensing material for sensing small molecules.« less

  11. Size and Crystallographic Orientation Effects on the Mechanical Behavior of 4H-SiC Micro-/nano-pillars

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolei; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Tan, Zhanqiu; Guo, Cuiping; Zhang, Di

    2018-02-01

    Single crystalline 4H-SiC micro-/nano-pillars of various sizes and different crystallographic orientations were fabricated and tested by uniaxial compression. The pillars with zero shear stress resolved on the basal slip system were found to fracture in a brittle manner without showing significant size dependence, while the pillars with non-zero resolved shear stress showed a "smaller is stronger" behavior and a jerky plastic flow. These observations were interpreted by homogeneous dislocation nucleation and dislocation glide on the basal plane.

  12. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    PubMed Central

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  13. Maxillary sinus floor augmentation using a nano-crystalline hydroxyapatite silica gel: case series and 3-month preliminary histological results.

    PubMed

    Canullo, Luigi; Dellavia, Claudia; Heinemann, Friedhelm

    2012-03-20

    The aim of this case series is to histologically examine a new hydroxyapatite in sinus lift procedure after 3 months. Ten 2-stage sinus lifts were performed in 10 healthy patients having initial bone height of 1-2mm and bone width of 5mm, asking for a fixed implant-supported rehabilitation. After graft material augmentation, a rough-surfaced mini-implant was inserted to maintain stability of the sinus widow. A bioptical core containing a mini-implant was retrieved 3 months after maxillary sinus augmentation with NanoBone(®) and processed for undecalcified histology. From the histomorphometric analysis, NanoBone(®) residuals accounted for the 38.26% ± 8.07% of the bioptical volume, marrow spaces for the 29.23% ± 5.18% and bone for the 32.51% ± 4.96% (new bone: 20.64% ± 2.96%, native bone: 11.87% ± 3.27%). Well-mineralized regenerated bone with lamellar parallel-fibred structure and Haversian systems surrounded the residual NanoBone(®) particles. The measured bone-to-implant contact amounted to 26.02% ± 5.46%. No connective tissue was observed at the implant boundary surface. In conclusion, the tested material showed good histological outcomes also 3 months after surgery. In such critical conditions, the use of a rough-surfaced mini-implant showed BIC values supposed to be effective also in case of functional loading. Although longer follow-up and a wider patient size are needed, these preliminary results encourage further research on this biomaterial for implant load also under early stage and critical conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain.

    PubMed

    Mallik, Prabhat K; Shi, Hua; Pande, Jayanti

    2017-09-16

    The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multi scale modeling of ignition and combustion of micro and nano aluminum particles

    NASA Astrophysics Data System (ADS)

    Puri, Puneesh

    With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a

  16. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko,; David, J [Naperville, IL

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  17. Structural, optical and AFM characterization of PVA:La3+ polymer films

    NASA Astrophysics Data System (ADS)

    Ali, F. M.; Maiz, F.

    2018-02-01

    In this paper the structural and optical properties of pure Polyvinyl alcohol (PVA) and La3+-doped PVA films in the concentration range of 4%, 12% and 20% weight percent of Lanthanum were prepared by the conventional casting technique. X-ray diffraction pattern and atomic force microscopy studies of the investigated samples reveal their semi-crystalline nature. It is found that, absorption coefficient and cluster size of lanthanum:PVA composite increase with increasing salt concentration. However, the optical energy gap shows a slight decreasing trend.

  18. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  19. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  20. Dispersion and interaction of graphene oxide in amorphous and semi-crystalline nano-composites: a PALS study

    NASA Astrophysics Data System (ADS)

    Maurer, Frans H. J.; Arza, Carlos R.

    2015-06-01

    The influence of dispersion and interaction of Graphene Oxide (GO) in semicrystalline Polyhydroxy butyrate (PHB) and glassy amorphous Poly(tBP-oda) is explored by Positron Annihilation Lifetime Spectroscopy (PALS). The ortho-Positronium lifetimes which represent the main free volume hole size of both polymers are mainly affected by the large differences in internal stresses built up by the shrinkage of the polymers during their preparation, restricted by the platelet structure of GO. The ortho-Positronium intensities, which represent the ortho-Positronium formation probabilities, suggest a strong dependency of on the dispersion of the nano-particles and their aspect ratio.

  1. Effect of dissimilatory Fe(III) reducers on bio-reduction and nickel-cobalt recovery from Sukinda chromite-overburden.

    PubMed

    Esther, Jacintha; Panda, Sandeep; Behera, Sunil K; Sukla, Lala B; Pradhan, Nilotpala; Mishra, Barada K

    2013-10-01

    The effect of an adapted dissimilatory iron reducing bacterial consortium (DIRB) towards bio-reduction of Sukinda chromite overburden (COB) with enhanced recovery of nickel and cobalt is being reported for the first time. The remarkable ability of DIRB to utilize Fe(III) as terminal electron acceptor reducing it to Fe(II) proved beneficial for treatment of COB as compared to previous reports for nickel leaching. XRD studies showed goethite as the major iron-bearing phase in COB. Under facultative anaerobic conditions, goethite was reduced to hematite and magnetite with the exposure of nickel oxide. FESEM studies showed DIRB to be associated with COB through biofilm formation with secondary mineral precipitates of magnetite deposited as tiny globular clusters on the extra polymeric substances. The morphological and mineralogical changes in COB, post DIRB application, yielded a maximum of 68.5% nickel and 80.98% cobalt in 10 days using 8M H2SO4. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert

    2017-11-01

    Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.

  3. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging

    PubMed Central

    Westermeier, Christian; Cernescu, Adrian; Amarie, Sergiu; Liewald, Clemens; Keilmann, Fritz; Nickel, Bert

    2014-01-01

    Controlling the domain size and degree of crystallization in organic films is highly important for electronic applications such as organic photovoltaics, but suitable nanoscale mapping is very difficult. Here we apply infrared-spectroscopic nano-imaging to directly determine the local crystallinity of organic thin films with 20-nm resolution. We find that state-of-the-art pentacene films (grown on SiO2 at elevated temperature) are structurally not homogeneous but exhibit two interpenetrating phases at sub-micrometre scale, documented by a shifted vibrational resonance. We observe bulk-phase nucleation of distinct ellipsoidal shape within the dominant pentacene thin-film phase and also further growth during storage. A faint topographical contrast as well as X-ray analysis corroborates our interpretation. As bulk-phase nucleation obstructs carrier percolation paths within the thin-film phase, hitherto uncontrolled structural inhomogeneity might have caused conflicting reports about pentacene carrier mobility. Infrared-spectroscopic nano-imaging of nanoscale polymorphism should have many applications ranging from organic nanocomposites to geologic minerals. PMID:24916130

  5. Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens.

    PubMed

    Qian, Yiguang; Yao, Jun; Russel, Mohammad; Chen, Ke; Wang, Xiaoyu

    2015-03-01

    The application of nanotechnology in medicine has recently been a breakthrough in therapeutic drugs formulation. This paper presents the structural and optical characterization of a new green nano-formulation (ZnO-Aloe vera) with considerable antibacterial activity against pathogenic bacteria. Its particle structure, size and morphology were characterized by XRD, TEM and SEM. And optical absorption spectra and photoluminescence were measured synchronously. Their antibacterial activity against Escherichia coli and Staphylococcus aureus was also investigated using thermokinetic profiling and agar well diffusion method. The nano-formulation is spherical shape and hexagonal with a particle size ranging from 25 to 65 nm as well as an increased crystallite size of 49 nm. For antibacterial activity, the maximum inhibition zones of ZnO and ZnO+A. vera are 18.33 and 26.45 mm for E. coli, 22.11 and 28.12 mm for S. aureus (p<0.05). Considering Pmax, Qt and k, ZnO+A. vera nano-formulation has a significant (p < 0.05) antibacterial effect against S. aureus almost at all concentration and against E. coli at 15 and 25mg/L. ZnO+A. vera nano-formulation is much more toxic against S. aureus than E. coli, with an IC50 of 13.12 mg/L and 21.31 mg/L, respectively. The overall results reveal that the ZnO-A. vera nano-formulation has good surface energy, crystallinity, transmission, and enriched antibacterial activities. Their antibacterial properties are possibly relevant to particle size, microstructural ionization, the crystal formation and the Gram property of pathogens. This ZnO-A. vera nano-formulation could be utilized effectively as a spectral and significant antibacterial agent for pathogens in future medical and environmental concerns. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  7. Synthesis of HAP nano rods and processing of nano-size ceramic reinforced poly(L)lactic acid composites

    NASA Astrophysics Data System (ADS)

    Flanigan, Kyle Yusef

    2000-09-01

    montmorillonite galleries were successfully intercalated and exfoliated. Gallery spacings increased as much as 30A with ODA. NMR results demonstrated that the ODA in the galleries of the highly loaded clay is in an extended trans-configuration at lower temperatures. Furthermore the alkyl chains are nano-constrained and have limited mobility. These configurations influence the gallery spacing. The appearance of two crystalline melts (DSC) may indicate that the desired physicochemical modification of the PLLA at the clay nano-reinforcement interface was achieved. For the growth of HAP nano-rods a hydrothermal synthesis route was developed. A kinetics study revealed several unique features of the method of growth. TEM analysis indicates that the synthesis procedure was successful in generating rod-like HAP structures of 100nm length and 10 nm in width. The effect of synthesis conditions on the phase purity and the morphology of the precipitates was investigated. The surface of the HAP rods was modified using OTS and OMS. The surface modified HAP was used to process HAP/PLLA composites. The properties of the composites depend strongly on the nature of the interface. Composites made with OMS or OTS demonstrated a higher elastic modulus. At 1% solids loading the OTS treated sample generated a 40% increase in modulus. Silane treated composites had DMA transitions shifted 10 to 20 degrees higher. "Well-ordered" SAMs improve the dispersion of the inorganic reinforcement in PLLA and promote the formation of mechanical entanglements at the HAP-PLLA interface. As a result load transfer is more complete resulting in higher modulus material.

  8. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    NASA Astrophysics Data System (ADS)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  9. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals

    PubMed Central

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-01-01

    Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557

  10. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    PubMed

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  11. Electronic Conductivity of Doped-Lanthanum Gallate Electrolytes

    NASA Astrophysics Data System (ADS)

    Yamaji, Katsuhiko; Xiong, Yue Ping; Kishimoto, Haruo; Horita, Teruhisa; Sakai, Natsuko; Brito, Manuel E.; Yokokawa, Harumi

    Electronic conductivity of doped lanthanum gallate electrolytes were determined by using a Hebb-Wagner type polarization cell. Electronic conductivity of cobalt-doped, La0.8Sr0.2Ga0.8Mg0.15Co0.5O3-δ (LSGMC), and non cobalt-doped, La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM8282), were measured as a function of oxygen partial pressures. The electronic conductivity of LSGM8282 showed a linear dependence on p(O2)1/4 in the higher p(O2) region, which is attributed to the electronic hole conductivity. The electronic conductivity of LSGMC showed a linear dependence on p(O2)1/6 in the higher p(O2) region. LSGMC has higher electronic conductivity than LSGM, and the conductivity was not clearly changed with temperatures between 600 and 800 °C. In lower p(O2) region, the electronic conductivity data have poor reproducibility and did not show any dependence on p(O2) because of the degradation of the electrolytes in severe reducing atmospheres.

  12. Crystallization of lanthanum and yttrium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Sadiki, Najim; Coutures, Jean Pierre; Fillet, Catherine; Dussossoy, Jean Luc

    2006-01-01

    The crystallization behaviour of aluminosilicate glasses of lanthanum (LAS) and yttrium (YAS) containing 2-8 mol% of Ln 2O 3 (Ln = La or Y), 12-30 mol% of Al 2O 3, and 64-80 mol% of SiO 2 has been studied by DTA, XRD and SEM-EDX analysis. X-ray diffraction results indicate the presence of the mullite phase and La 2Si 2O 7 in the monoclinic high-temperature G form (group space P2 1/c) for the LAS glasses, and mullite y-Y 2Si 2O 7 in the monoclinic structure (group space C2/m) and a small amount of β-Y 2Si 2O 7 in the orthorhombic structure (space group Pna2) for the YAS. For both cases, very little tridymite phase is observed. The results also show that the values of Tg for YAS are higher than those for LAS glasses. The crystallization of LAS glasses is more difficult than that of YAS. For all samples, we observed only one kind of mullite (Al/Si = 3.14).

  13. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  14. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  15. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  16. Effect of surface modification on photoluminescence properties of Y3Al5O12:Ce3+, Gd3+ nano-phosphors.

    PubMed

    Li, Jie; Zhao, Junfu; Zhou, Hefeng; Liang, Jian; Liu, Xuguang; Xu, Bingshe

    2011-04-01

    In this study, a series of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors were prepared using a simply wet chemical process with polyvinyl pyrrolidone as a modifier. The crystal and bonding structures of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors prepared with different weight percentages of polyvinyl pyrrolidone were characterized by X-ray diffractometry and infrared spectrometry. The decomposition process of dried precursor gel with adding 1.37 wt% polyvinyl pyrrolidone was investigated by differential thermal and thermogravimetric analysis. The effect of surface modification on photoluminescence properties for the samples was studied. The results show that the steric hindrance effect of polyvinyl pyrrolidone leads to high dispersion and good crystallinity of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors prepared with adding a proper weight percentages of polyvinyl pyrrolidone. Adding polyvinyl pyrrolidone is beneficial for the photoluminescence enhancement of the samples, which is attributed to the promotion of the incorporation of Ce(3+) and Gd(3+) into the Y(3)Al(5)O(12) nanocrystal and the surface passivation of the nano-particles by the polyvinyl pyrrolidone molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Effects of soil lanthanum on growth and elemental composition of plants

    NASA Astrophysics Data System (ADS)

    Fastovets, Ilya; Kotelnikova, Anna; Olga, Rogova; Nikolai, Sushkov; Elena, Pashkevich

    2017-04-01

    Effects of soil lanthanum on growth and elemental composition of plants In recent years, lanthanum (La) has been found effective in increasing crop productivity. This results in its growing application in agriculture. However, it is controversial whether lanthanum has beneficial or negative impact on plants (Kabata-Pendias, 2011). In the present study we carried out a pot experiment to understand how soil La affects barley (Hordeum vulgare L., 'Mikhaylovsky' cv.) growth and elemental composition. The pot experiment was conducted in a growbox under artificial light in sod-podzolic soil. The soil was sprayed with LaCl3 solutions to achieve the following concentrations of exogenous La: 0 (control), 10, 20, 50, 100, and 200 mg/kg. The plants were grown for 40 days in 2-litre pots, 6 plants in each pot, with 4 replications per group (24 pots total), and were irrigated with distilled water. Fresh aboveground biomass was weighed, chlorophylls α and β and carotenoids were measured in fresh leaves. Dry leaves, stems and soil were subject to atomic emission (ICP-AES) elemental analysis. Statistical computations involved simulated Kruskal-Wallis and Jonckheere-Terpstra tests as well as Gao modification of Campbell-Skillings test for nonparametric multiple comparisons. Multiple regression and correlation analyzes were also performed. All differences were considered significant at α=0.05. Our results indicate that both leaves and stems of barley readily accumulate La. Leaves accumulate up to 1.2% of soil La concentration, and significantly more La than stems. Significant accumulation of La by stems and leaves was observed in pots with La soil concentrations higher than 50 and 20 mg/kg, respectively. Plant biomass uniformly increases up to 13.5 % compared to the control, and significant increase in plant biomass was observed at concentrations 100 and 200 mg/kg La. Chlorophyll α and β and carotenoid content decrease significantly at 100 mg/kg La compared to the control group

  18. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGES

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; ...

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  19. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  20. The incorporation of plutonium in lanthanum zirconate pyrochlore

    NASA Astrophysics Data System (ADS)

    Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Conradson, Steven D.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.

    2013-11-01

    The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N2-3.5%H2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm-1 and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N2-3.5%H2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples.

  1. Effect of Temperature, Precursor Type and Dripping Time on the Crystallite Size of Nano ZnO Obtained by One-Pot Synthesis: 2 k Full Factorial Design Analysis.

    PubMed

    Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael

    2018-06-01

    The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.

  2. Combinatorial Nano-Bio Interfaces.

    PubMed

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  3. Lanthanum chloride impairs spatial memory through ERK/MSK1 signaling pathway of hippocampus in rats.

    PubMed

    Liu, Huiying; Yang, Jinghua; Liu, Qiufang; Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Zheng, Linlin; Xi, Qi; Cai, Yuan

    2014-12-01

    Rare earth elements (REEs) are used in many fields for their diverse physical and chemical properties. Surveys have shown that REEs can impair learning and memory in children and cause neurobehavioral defects in animals. However, the mechanism underlying these impairments has not yet been completely elucidated. Lanthanum (La) is often selected to study the effects of REEs. The aim of this study was to investigate the spatial memory impairments induced by lanthanum chloride (LaCl3) and the probable underlying mechanism. Wistar rats were exposed to LaCl3 in drinking water at 0 % (control, 0 mM), 0.25 % (18 mM), 0.50 % (36 mM), and 1.00 % (72 mM) from birth to 2 months after weaning. LaCl3 considerably impaired the spatial learning and memory of rats in the Morris water maze test, damaged the synaptic ultrastructure and downregulated the expression of p-MEK1/2, p-ERK1/2, p-MSK1, p-CREB, c-FOS and BDNF in the hippocampus. These results indicate that LaCl3 exposure impairs the spatial learning and memory of rats, which may be attributed to disruption of the synaptic ultrastructure and inhibition of the ERK/MSK1 signaling pathway in the hippocampus.

  4. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    PubMed

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were <0.001 mg L(-1) in all lakes prior to the application of Phoslock(®). The effects of Phoslock(®) application were evident in the post-application maximum TLa and FLa concentrations reported for surface waters between 0.026 mg L(-1)-2.30 mg L(-1) and 0.002 mg L(-1) to 0.14 mg L(-1), respectively. Results of generalised additive modelling indicated that recovery trajectories for TLa and FLa in surface and bottom waters in lakes were represented by 2nd order decay relationships, with time, and that recovery reached an end-point between 3 and 12 months post-application. Recovery in bottom water was slower (11-12 months) than surface waters (3-8 months), most probably as a result of variation in physicochemical conditions of the receiving waters and associated effects on product settling rates and processes relating to the disturbance of bed sediments. CHEAQS PRO modelling was also undertaken on 11 of the treated lakes in order to predict concentrations of La(3+) ions and the potential for negative ecological impacts. This modelling indicated that the concentrations of La(3+) ions will be very low (<0.0004 mg L(-1)) in lakes of moderately low to high alkalinity (>0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following

  5. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-10-01

    Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  6. Elastic moduli in nano-size samples of amorphous solids: System size dependence

    NASA Astrophysics Data System (ADS)

    Cohen, Yossi; Procaccia, Itamar

    2012-08-01

    This letter is motivated by some recent experiments on pan-cake-shaped nano-samples of metallic glass that indicate a decline in the measured shear modulus upon decreasing the sample radius. Similar measurements on crystalline samples of the same dimensions showed a much more modest change. In this letter we offer a theory of this phenomenon; we argue that such results are generically expected for any amorphous solid, with the main effect being related to the increased contribution of surfaces with respect to the bulk when the samples get smaller. We employ exact relations between the shear modulus and the eigenvalues of the system's Hessian matrix to explore the role of surface modes in affecting the elastic moduli.

  7. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  8. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  9. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  10. Characteristics of nano-sized yttria powder synthesized by a polyvinyl alcohol solution route at low temperature.

    PubMed

    Lee, Sang-Jin; Jung, Choong-Hwan

    2012-01-01

    Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).

  11. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  12. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    PubMed

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P < 0.05) and group 3 (nano-ionomer, mean: 6.14 +/- 2.12 MPa; P < 0.001). No significant differences in debond locations were found among the three groups. Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  13. Role of crystallins in diabetic complications.

    PubMed

    Reddy, Vadde Sudhakar; Reddy, G Bhanuprakash

    2016-01-01

    Crystallins are the major structural proteins of vertebrate eye lens responsible for maintaining the refractive index of the lens. However, recent studies suggest that they also have a functional significance in non-lenticular tissues. Prolonged uncontrolled diabetes results in the development of macro and microvascular complications that are the leading causes of morbidity and mortality in diabetic patients all over the world. Recent studies have shown that crystallins play an instrumental role in diabetes and its complications. Therefore, this review highlights the current data on the impact of chronic hyperglycemia on expression, distribution, glycation, phosphorylation, chaperone-like function and, anti-apoptotic activity of crystallins. Furthermore, we discussed the insights for developing therapeutic strategies for diabetic complications including natural agents, peptides, and pharmacological chaperones that modulate or mimic chaperone activity of α-crystallins. Upregulation of crystallins appears to be a common feature of chronic diabetes. Further, chronic hyperglycemia induces the glycation and phosphorylation of crystallins, mainly α-crystallins and thereby alters their properties. The disturbed interaction of αB-crystallin with various apoptotic mediators including Bax and caspases is also an important factor for increased cell death in diabetes. Numerous dietary agents, peptides, and chemical chaperones prevent apoptosis and the loss of chaperone activity in diabetes. Understanding the role of crystallins will aid in developing therapeutic strategies for alleviating pathophysiological conditions such as protein aggregation, inflammation, oxidative stress and apoptosis associated with chronic complications of diabetes including cataract, retinopathy, and cardiomyopathy. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Molecular Treatment of Nano-Kaolinite Generations.

    PubMed

    Táborosi, Attila; Szilagyi, Robert K; Zsirka, Balázs; Fónagy, Orsolya; Horváth, Erzsébet; Kristóf, János

    2018-06-18

    A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.

  15. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ternary lanthanum sulfide selenides {alpha}-LaS{sub 2-x}Se{sub x} (0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch, Christian; Doert, Thomas, E-mail: thomas.doert@chemie.tu-dresden.de

    2012-01-15

    Mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0lanthanum chloride and alkali metal polychalcogenides. The LaS{sub 2-x}Se{sub x} compounds crystallize in space group P2{sub 1}/a, no. 14, and adopt the {alpha}-LnS{sub 2} (Ln=Y, La-Lu) structure type with a pronounced site preference for the chalcogen atoms. The mixed chalcogenides form a complete miscible series with lattice parameters a=820-849 pm, b=413-425 pm and c=822-857 pm ({beta} Almost-Equal-To 90 Degree-Sign) following Vegard's rule. Raman signals indicate the presence of mixed X{sub 2}{sup 2-} dianions, a species rarely evidenced in literature, besides the well known anionsmore » S{sub 2}{sup 2-} and Se{sub 2}{sup 2-}. The band gaps of the LaS{sub 2-x}Se{sub x} compounds, determined by optical spectroscopy, decrease nearly linearly with increasing amount of selenium. - Graphical abstract: Raman spectra and site occupancies in the structures of selected lanthanum sulfide selenides. Highlights: Black-Right-Pointing-Pointer Vegard series of mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0

  17. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  18. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  19. Study of the Effect on Ionic Conductivity and Structral Morphology of the SR Doped Lanthanum Gallate Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Sood, Kapil; Singh, K.; Pandey, O. P.

    2013-07-01

    In the present study, lanthanum gallate and Sr-doped lanthanum gallate samples were prepared by conventional solid state reaction method. The phase conformation has been performed by using X-ray diffraction (XRD) study. The elemental composition has been confirmed using energy dispersive spectroscopy (EDS) analysis. Ac conductivity of the samples has been measured in the frequency range 0.1-106 Hz and from 50-800 °C. The impedance plots among real and complex impedances at particular temperature have been discussed. The behavior shows the effect of bulk and grain boundary effects of the doped sample. The impedance plots with frequency have been analyzed. The plots have been well fitted to equivalent circuit model. The conductivity shows the Arrhenius type of behavior. The activation energy has been calculated from the plots and represents that the conductivity through the material is mainly ionic. The structural morphology of the samples has been investigated using scanning electron microscope (SEM). The micrograph shows that the porosity and grain size both decreases with Sr-doping.

  20. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no reportmore » previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.« less

  1. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?

    PubMed

    Weadick, Cameron J; Chang, Belinda S W

    2009-05-01

    Within the vertebrate eye, betagamma crystallins are extremely stable lens proteins that are uniquely adapted to increase refractory power while maintaining transparency. Unlike alpha crystallins, which are well-characterized, multifunctional proteins that have important functions both in and out of the lens, betagamma lens crystallins are a diverse group of proteins with no clear ancestral or contemporary nonlens role. We carried out phylogenetic and molecular evolutionary analyses of the betagamma-crystallin superfamily in order to study the evolutionary history of the gamma N crystallins, a recently discovered, biochemically atypical family suggested to possess a divergent or ancestral function. By including nonlens, betagamma-motif-containing sequences in our analysis as outgroups, we confirmed the phylogenetic position of the gamma N family as sister to other gamma crystallins. Using maximum likelihood codon models to estimate lineage-specific nonsynonymous-to-synonymous rate ratios revealed strong positive selection in all of the early lineages within the betagamma family, with the striking exception of the lineage leading to the gamma N crystallins which was characterized by strong purifying selection. Branch-site analysis, used to identify candidate sites involved in functional divergence between gamma N crystallins and its sister clade containing all other gamma crystallins, identified several positively selected changes at sites of known functional importance in the betagamma crystallin protein structure. Further analyses of a fish-specific gamma N crystallin gene duplication revealed a more recent episode of positive selection in only one of the two descendant lineages (gamma N2). Finally, from the guppy, Poecilia reticulata, we isolated complete gamma N1 and gamma N2 coding sequence data from cDNA and partial coding sequence data from genomic DNA in order to confirm the presence of a novel gamma N2 intron, discovered through data mining of two

  2. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol.

    PubMed

    Siddiqa, Asima; Masih, Dilshad; Anjum, Dalaver; Siddiq, Muhammad

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process. Copyright © 2015. Published by Elsevier B.V.

  3. Accomplishment of highly porous-lithium lanthanum titanate through microwave treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmi, D.; Nalini, B., E-mail: jyothsnalalin99@gmail.com; Abhilash, K. P.

    Perovskite structured (ABO{sub 3}) lithium lanthanum titanate (LLTO) is a successful electrolyte reported by several scientists in the recent past. It is believed that intercalation and de-intercalation of Li ions inside solid electrolyte can be improved by increasing the porosity of the material. Hence in this research work, an attempt is made to increase the porosity of the LLTO electrolyte by rapid-microwave synthesis route. The microwave prepared LLTO is compared with the sol-gel synthesized LLTO. The prepared samples are analyzed with XRD, SEM, PL and cyclic Voltammetry studies. Morphological analysis proves that microwave synthesized LLTO contains much pores compared tomore » the Sol-gel LLTO. A remarkable difference in its electrochemical property is also demonstrated and analysed with cyclic voltammetric studies and the results are presented.« less

  4. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  5. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    PubMed

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  6. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    PubMed

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  7. Crystalline Silica Primer

    USGS Publications Warehouse

    ,

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  8. To be nano or not to be nano?

    NASA Astrophysics Data System (ADS)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  9. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  10. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    NASA Astrophysics Data System (ADS)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  11. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  12. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    PubMed

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  13. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics.

  14. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esro, M.; Adamopoulos, G., E-mail: g.adamopoulos@lancaster.ac.uk; Mazzocco, R.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currentsmore » (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.« less

  15. Influence of calcium precursors on the morphology and crystallinity of sol gel-derived hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi Natarajan, U.; Rajeswari, S.

    2008-10-01

    Nanosized hydroxyapatite (HAP) particles were prepared by sol-gel method from the water-based solution of calcium and phosphorus precursor. In this study, two calcium precursors such as calcium nitrate tetrahydrate and calcium acetate were chosen as calcium precursors. The influence of aging period, pH, viscosity and sintering temperature on crystallinity and morphology of the HAP particles were investigated for the two calcium precursors with triethyl phosphate precursor. The morphology of nano-HAP towards phosphorous precursor was dependent on the type of calcium precursor used. The HAP prepared from calcium nitrate and triethyl phosphate was spherically shaped whereas the one from calcium acetate was found to be fibrous in structure. Both HAPs were stable up to 1200 °C and their crystallinity increased with respect to the sintering temperature. The obtained sample was characterized through X-ray diffraction (XRD), P 31 nuclear magnetic resonance (NMR), scanning electronic microscopy (SEM) and TEM analysis. The sol derived from the optimized aging period for the two different calcium precursors was coated on 316L stainless-steel (SS) implant and its corrosion resistivity during long-term implantation was studied by cyclic polarization in Ringer's solution. Both HAPs have their own desirable qualities and were found to be corrosion resistive.

  16. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    PubMed

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  18. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  19. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less

  20. Materiais a base de oxidos com estrutura do tipo perovskite e compositos como anodos de PCES: Propriedades Funcionais e Comportamento Eletroquimico em Celulas com Eletrolitos Solidos a Base de Galatos e Silicatos

    NASA Astrophysics Data System (ADS)

    Kolotygin, Vladislav

    This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-delta (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27-based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-delta.