Sample records for nano-optical yagi-uda antenna

  1. Evolutionary Optimization of Yagi-Uda Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.

    2001-01-01

    Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.

  2. Evolutionary Optimization of Quadrifilar Helical and Yagi-Uda Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Stoica, Adrian; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present optimization results obtained for two type of antennas using evolutionary algorithms. A quadrifilar helical UHF antenna is currently flying aboard NASA's Mars Odyssey spacecraft and is due to reach final Martian orbit insertion in January, 2002. Using this antenna as a benchmark, we ran experiments employing a coevolutionary genetic algorithm to evolve a quadrifilar helical design in-situ - i.e., in the presence of a surrounding structure. Results show a 93% improvement at 400 MHz and a 48% improvement at 438 MHz in the average gain. The evolved antenna is also one-fourth the size. Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain and the inclusion of numerous parasitic elements. Our fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain.

  3. Babinet-inverted optical Yagi-Uda antenna for unidirectional radiation to free space.

    PubMed

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-11

    Nanophotonics capable of directing radiation or enhancing quantum-emitter transition rates rely on plasmonic nanoantennas. We present here a novel Babinet-inverted magnetic-dipole-fed multislot optical Yagi-Uda antenna that exhibits highly unidirectional radiation to free space, achieved by engineering the relative phase of the interacting surface plasmon polaritons between the slot elements. The unique features of this nanoantenna can be harnessed for realizing energy transfer from one waveguide to another by working as a future "optical via".

  4. Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space

    NASA Astrophysics Data System (ADS)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-01

    Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.

  5. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less

  6. Minimizing yagi-uda radiosonde receiver antenna size using minkowski curve fractal model

    NASA Astrophysics Data System (ADS)

    Sani, Arman; Suherman

    2018-03-01

    This paper discusses Yagi-Uda antenna design for radiosonde earth station receiver. The design was performed by using Minkowski curve fractal model to reduce physical dimension. The antenna design should fulfil the following requirements: work on frequency of 433MHz, match to the 50 Ohm of radiosonde characteristic impedance, the expected gain is higher than 10 dBi, VSWR is smaller than 2 and the expected bandwidth is higher than 10 MHz. Antenna design and evaluation were conducted by using MMANA-GAL simulator. The evaluation of the designed antenna shows that the Yagi-Uda antenna designed by using Minkowski curve model successfully reduces antenna size up to 9.41% and reduces number of elements about 33%.

  7. Design of microwave antenna system on planar Yagi-Uda elements and microstrip coupler

    NASA Astrophysics Data System (ADS)

    Petrovnin, K. V.; Latypov, R. R.

    2017-11-01

    Paper presents results of calculation, electromagnetic modelling and measurements of manufactured antenna system on planar Yagi-Uda elements and microstrip coupler. System has summary and subtract modes. Center frequency of system is 1532 MHz with 96 MHz bandwidth. Gain of system is 8 dB in main lobe direction (in-phase mode) and 5 dB (antiphase mode).

  8. Compact Nonlinear Yagi-Uda Nanoantennas.

    PubMed

    Xiong, Xiaoyan Y Z; Jiang, Li Jun; Sha, Wei E I; Lo, Yat Hei; Chew, Weng Cho

    2016-01-07

    Nanoantennas have demonstrated unprecedented capabilities for manipulating the intensity and direction of light emission over a broad frequency range. The directional beam steering offered by nanoantennas has important applications in areas including microscopy, spectroscopy, quantum computing, and on-chip optical communication. Although both the physical principles and experimental realizations of directional linear nanoantennas has become increasingly mature, angular control of nonlinear radiation using nanoantennas has not been explored yet. Here we propose a novel concept of nonlinear Yagi-Uda nanoantenna to direct second harmonic radiation from a metallic nanosphere. By carefully tuning the spacing and dimensions of two lossless dielectric elements, which function respectively as a compact director and reflector, the second harmonic radiation is deflected 90 degrees with reference to the incident light (pump) direction. This abnormal light-bending phenomenon is due to the constructive and destructive interference between the second harmonic radiation governed by a special selection rule and the induced electric dipolar and magnetic quadrupolar radiation from the two dielectric antenna elements. Simultaneous spectral and spatial isolation of scattered second harmonic waves from incident fundamental waves pave a new way towards nonlinear signal detection and sensing.

  9. Compact Nonlinear Yagi-Uda Nanoantennas

    PubMed Central

    Xiong, Xiaoyan Y. Z.; Jiang, Li Jun; Sha, Wei E. I.; Lo, Yat Hei; Chew, Weng Cho

    2016-01-01

    Nanoantennas have demonstrated unprecedented capabilities for manipulating the intensity and direction of light emission over a broad frequency range. The directional beam steering offered by nanoantennas has important applications in areas including microscopy, spectroscopy, quantum computing, and on-chip optical communication. Although both the physical principles and experimental realizations of directional linear nanoantennas has become increasingly mature, angular control of nonlinear radiation using nanoantennas has not been explored yet. Here we propose a novel concept of nonlinear Yagi-Uda nanoantenna to direct second harmonic radiation from a metallic nanosphere. By carefully tuning the spacing and dimensions of two lossless dielectric elements, which function respectively as a compact director and reflector, the second harmonic radiation is deflected 90 degrees with reference to the incident light (pump) direction. This abnormal light-bending phenomenon is due to the constructive and destructive interference between the second harmonic radiation governed by a special selection rule and the induced electric dipolar and magnetic quadrupolar radiation from the two dielectric antenna elements. Simultaneous spectral and spatial isolation of scattered second harmonic waves from incident fundamental waves pave a new way towards nonlinear signal detection and sensing. PMID:26738692

  10. Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma.

    PubMed

    Kim, Da-Jin; Park, Jang-Soon; Kim, Cheol Ho; Hur, Jae; Kim, Choong-Ki; Cho, Young-Kyun; Ko, Jun-Bong; Park, Bonghyuk; Kim, Dongho; Choi, Yang-Kyu

    2017-12-08

    This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 10 4 and 10 5  S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.

  11. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  12. Dielectric Yagi-Uda nanoantennas driven by electron-hole plasma photoexcitation

    NASA Astrophysics Data System (ADS)

    Li, S.; Lepeshov, S.; Savelev, R.; Baranov, D.; Belov, P.; Krasnok, A.

    2017-11-01

    All-dielectric nanophotonics based on high-index dielectric nanoparticles became a powerful platform for modern light science, providing many fascinating applications, including high-efficient nanoantennas and metamaterials. High-index dielectric nanostructures are of a special interest for nonlinear nanophotonics, where they demonstrate special types of optical nonlinearity, such as electron-hole plasma photoexcitation, which are not inherent to plasmonic nanostructures. Here, we propose a novel type of highly tunable all-dielectric Yagi-Uda nanoantennas, consisting of a chain of Si nanoparticles exciting by an electric dipole source, which allow tuning of their radiating properties via electron-hole plasma photoexcitation. We theoretically and numerically demonstrate the tuning of radiation power patterns and the Purcell effect by additional pumping of several boundary nanoparticles with relatively low peak intensities of fs-laser.

  13. Microstrip Yagi Antenna with Dual Aperture-Coupled Feed

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald; Venkatesan, Jaikrishna

    2008-01-01

    A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.

  14. DESIGN NOTE: A multiplying interferometer for 1.3 GHz using two Yagi antennas

    NASA Astrophysics Data System (ADS)

    Gallerani, A.; Minarelli, G.

    2007-07-01

    This note describes the small digital correlation interferometer, operating at 1.3 GHz, designed at the Istituto di Radioastronomia which is part of the National Institute for Astrophysics. It uses two Yagi Uda antennas to collect the radio-astronomical signal, which is converted to a base band of 0 4 MHz utilizing rf and digital blocks, in the same manner as a normal scientific radio telescope. The correlation of the two signals is performed in real time and a commercial PC is used to collect and visualize the fringe pattern. It is possible to detect the strongest radio sources such as the Sun, Cassiopeia A, Taurus and Cygnus A. The interferometer designed is simple, affordable and is suitable as a demonstration/teaching tool.

  15. Microstrip Yagi array for MSAT vehicle antenna application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur; Pozar, David

    1990-01-01

    A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.

  16. Frequency Reconfigurable Quasi-Yagi Antenna with a Novel Balun Loading Four PIN Diodes

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Wang, Guang-Ming; Li, Hai-Peng; Wen, Tong; Kong, Xiangxin

    2018-04-01

    A novel frequency reconfigurable Quasi-Yagi antenna is proposed. The antenna has two dipoles on different layers of the substrate and they are fed by two coplanar striplines. Four PIN diodes, loading inside the coplanar striplines, are used as the switches. By switching the states of the four diodes, the antenna can work in three modes with different working bands around 3.5 GHz (cover the band of WiMAX), 5.2 GHz (cover the band of WLAN) and 7 GHz respectively. In addition, the working bands can be independently tuned by adjusting several parameters of the antenna. A prototype antenna was fabricated and tested. Good agreement between the simulation and the measurement is achieved. The results prove that the antenna can realize frequency reconfiguration effectively while maintaining the pattern characteristic of Yagi antenna at all frequency.

  17. Utilizing Yagi antennas in Lightning Mapping Array to detect low-power VHF signals

    NASA Astrophysics Data System (ADS)

    Tilles, J.; Thomas, R. J.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    The New Mexico Tech VHF Lightning Mapping Array (LMA) being operated at Langmuir Laboratory in central New Mexico is comprised of 22 time-of-arrival stations spanning an area approximately 60 km north-south and 45 km east-west. Nine stations are at high altitude (3.1-3.3 km GPS) over a 3 x 4 km area around the mountain-top Laboratory, and 13 are on the surrounding plains and the Rio Grande valley, at altitudes between 1.4 and 2.2 km. Each station utilizes a vertical half-wave dipole antenna having about 2 dBi gain at horizontal incidence and providing omnidirectional azimuthal coverage. In 2012, four additional stations utilizing higher gain (11 dBi) Yagi antennas were co-located at four of the surrounding sites within 10-15 km of the laboratory, each pointed over the laboratory area. The purpose was to test if directional antennas would improve detection of low-power sources in the laboratory vicinity, such as those associated with positive breakdown or weak precursor events. The test involved comparing the number and quality of radiation sources obtained by processing data from two sets of stations: first for a 17-station network in which all stations were omnidirectional, and then for the same network with Yagi-based measurements substituted in place of the omni measurements at the four co-located stations. For radiation events located in both datasets, the indicated source power values from Yagi stations were typically 5-10 dB greater than their omnidirectional counterpart for sources over or near the laboratory, consistent with the 9 dB difference in on-axis gain values. The difference decreased through zero and to negative values with increasing distance from the laboratory, confirming that it was due to the directionality of the Yagi antennas. It was expected that a network having Yagi antennas at all outlying stations would improve the network's detection of lower power sources in its central region. Rather, preliminary results show that there is no

  18. A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns

    NASA Astrophysics Data System (ADS)

    Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-07-01

    In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.

  19. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas

    NASA Astrophysics Data System (ADS)

    Yifat, Yuval; Ackerman, Matthew; Guyot-Sionnest, Philippe

    2017-01-01

    We report the fabrication of a colloidal quantum dot based photodetector designed for the 3-5 μm mid infrared wavelength range incorporated with optical nano-antenna arrays to enhance the photocurrent. The fabricated arrays exhibit a resonant behavior dependent on the length of the nano-antenna rods, in good agreement with numerical simulation. The device exhibits a three-fold increase in the spectral photoresponse compared to a photodetector device without antennas, and the resonance is polarized parallel to the antenna orientation. We numerically estimate the device quantum efficiency and investigate its bias dependence.

  20. Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation

    NASA Astrophysics Data System (ADS)

    Wang, Shiyi; Zhan, Qiwen

    2015-03-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas' geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.

  1. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  2. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.

    PubMed

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Kim, Un Jeong; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-02

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.

  3. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    PubMed Central

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-01-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115

  4. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, andmore » background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.« less

  5. Robustness of plasmon phased array nanoantennas to disorder

    PubMed Central

    Arango, Felipe Bernal; Thijssen, Rutger; Brenny, Benjamin; Coenen, Toon; Koenderink, A. Femius

    2015-01-01

    We present cathodoluminescence experiments that quantify the response of plasmonic Yagi-Uda antennas fabricated on one-dimensional silicon nitride waveguides as function of electron beam excitation position and emission wavelength. At the near-infrared antenna design wavelength cathodoluminescence signal robustly is strongest when exciting the antenna at the reflector element. Yet at just slightly shorter wavelengths the signal is highly variable from antenna to antenna and wavelength to wavelength. Hypothesizing that fabrication randomness is at play, we analyze the resilience of plasmon Yagi-Uda antennas to varations in element size of just 5 nm. While in our calculations the appearance of directivity is robust, both the obtained highest directivity and the wavelength at which it occurs vary markedly between realizations. The calculated local density of states is invariably high at the reflector for the design wavelength, but varies dramatically in spatial distribution for shorter wavelengths, consistent with the cathodoluminescence experiments. PMID:26038871

  6. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators

    NASA Astrophysics Data System (ADS)

    Paulides, M. M.; Mestrom, R. M. C.; Salim, G.; Adela, B. B.; Numan, W. C. M.; Drizdal, T.; Yeo, D. T. B.; Smolders, A. B.

    2017-03-01

    Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S 11  <  -15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S 21  <  -23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE  =  0.51 °C and R 2  =  0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.

  7. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  8. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.

    PubMed

    Mivelle, Mathieu; Viktorovitch, Pierre; Baida, Fadi I; El Eter, Ali; Xie, Zhihua; Vo, Than-Phong; Atie, Elie; Burr, Geoffrey W; Nedeljkovic, Dusan; Rauch, Jean-Yves; Callard, Ségolène; Grosjean, Thierry

    2014-06-16

    We show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, local heating, spectroscopy, and nanoimaging.

  9. Intrasystem Analysis Program (IAP) Model Improvement.

    DTIC Science & Technology

    1982-02-01

    of Loop Antennas 2-117 2.11 Transmission Loss of Yagi-Uda Beam Antennas 2-120 2.12 Impedance Matching Factor of Frequency-Independent Antennas 2-121...2.16.5 Directive Gain Model for a Loop Antenna 2-181 2.16.6 Directive Gain Model for a Planer Log-Spiral Antenna 2-182 2.16.7 Directive Gain Model for...The published specifications for the antenns which meet certain standard requirements are based on measure- ments of the terminal impedance of the total

  10. Optical spins and nano-antenna array for magnetic therapy.

    PubMed

    Thammawongsa, N; Mitatha, S; Yupapin, P P

    2013-09-01

    Magnetic therapy is an alternative medicine practice involving the use of magnetic fields subjected to certain parts of the body and stimulates healing from a range of health problems. In this paper, an embedded nano-antenna system using the optical spins generated from a particular configuration of microrings (PANDA) is proposed. The orthogonal solitons pairs corresponding to the left-hand and right-hand optical solitons (photons) produced from dark-bright soliton conversion can be simultaneously detected within the system at the output ports. Two possible spin states which are assigned as angular momentum of either +ħ or -ħ will be absorbed by an object whenever this set of orthogonal solitons is imparted to the object. Magnetic moments could indeed arise from the intrinsic property of spins. By controlling some important parameters of the system such as soliton input power, coupling coefficients and sizes of rings, output signals from microring resonator system can be tuned and optimized to be used as magnetic therapy array.

  11. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B.

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate 6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  12. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.

    PubMed

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (X D ) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of X D states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the X D emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe 2 on a gold substrate, we demonstrate ~6 × 10 5 -fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 10 3 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  13. Highlighting the History of Japanese Radio Astronomy: 1: An Introduction

    NASA Astrophysics Data System (ADS)

    Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Kaifu, Norio; Hayashi, Masa; Nakamura, Tsuko; Stewart, Ronald; Yokoo, Hiromitsu

    2012-11-01

    Japan was one of a number of nations that made important contributions in the fledgling field of radio astronomy in the years immediately following WWII. In this paper we discuss the invention of the Yagi-Uda antenna and the detection of solar radio emission in 1938, before reviewing radio astronomical developments that occurred between 1948 and 1961 in Osaka, Nagoya, Tokyo and Hiraiso. In order to place these early Japanese experiments in a national and international context we briefly review the world-wide development of radio astronomy in the immediate post-War years before discussing the growth of optical astronomy in Japan at this time.

  14. Development of Stiff and Extendible Electromagnetic Sensors for Space Missions

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.

    2010-05-01

    We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.

  15. Investigation of a nanostrip patch antenna in optical frequencies

    NASA Astrophysics Data System (ADS)

    Kashyap, Nitesh; Wani, Zamir Ahmad; Jain, Rishi; Khusboo; Dinesh Kumar, V.

    2014-08-01

    This is the first report and investigation of a patch antenna in optical frequency range. Variety of plasmonic nanoantenna reported so far is good at enhancing the local field intensity of light by orders of magnitude. However, their far-field radiation efficiency is very poor. The proposed patch antenna emits a directional beam with high efficacy in addition to enhancing the intensity of near field. The nano-patch antenna (NPA) consists of a square patch of gold film of dimension 480 nm2, placed on a substrate of dielectric constant \\varepsilon_{{r}} = 3.9 and thickness 150 nm with a ground plane of gold film of dimension 1,080 nm2. The NPA resonates at 210 THz and has gain nearly 2 dB and radiation efficiency 45.18 %. The NPA might be useful in variety of applications such as optical communication, nano-photonics, biosensing, and spectroscopy.

  16. Planar microstrip YAGI antenna array

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1993-01-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  17. Ultra-wideband optical leaky-wave slot antennas.

    PubMed

    Wang, Yan; Helmy, Amr S; Eleftheriades, George V

    2011-06-20

    We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

  18. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    PubMed

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  19. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.

    PubMed

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-16

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  20. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  1. Optical Nano Antennas: State of the Art, Scope and Challenges as a Biosensor Along with Human Exposure to Nano-Toxicology

    PubMed Central

    Kausar, Abu Sulaiman Mohammad Zahid; Reza, Ahmed Wasif; Latef, Tarik Abdul; Ullah, Mohammad Habib; Karim, Mohammad Ershadul

    2015-01-01

    The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters. PMID:25884787

  2. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  3. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek; Rana, Goutam; Bhattacharya, Arkabrata; Singh, Abhishek; Jain, Ravikumar; Bapat, Rudheer D.; Duttagupta, S. P.; Prabhu, S. S.

    2018-05-01

    Photoconductive antennas (PCAs) are among the most conventional devices used for emission as well as detection of terahertz (THz) radiation. However, due to their low optical-to-THz conversion efficiencies, applications of these devices in out-of-laboratory conditions are limited. In this paper, we report several factors of enhancement in THz emission efficiency from conventional PCAs by coating a nano-layer of dielectric (TiO2) on the active area between the electrodes of a semi-insulating GaAs-based device. Extensive experiments were done to show the effect of thicknesses of the TiO2 layer on the THz power enhancement with different applied optical power and bias voltages. Multiphysics simulations were performed to elucidate the underlying physics behind the enhancement of efficiency of the PCA. Additionally, this layer increases the robustness of the electrode gaps of the PCAs with high electrical insulation as well as protect it from external dust particles.

  4. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    PubMed

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  5. Mode Matching for Optical Antennas

    NASA Astrophysics Data System (ADS)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-01

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  6. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  7. Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-05-01

    Broadband nano-antennas play a central role in many areas of science and technology. However, a more intuitive understanding for rational design of nano-antennas with broadband response is desirable. A log periodic nano-antenna was studied in the paper. The finite-difference time-domain method was used to explore the spectral characteristics of the log periodic nano-antenna by the excitation mode of reception and emission. The effects of geometry on field enhancement and the Purcell factor were systematically described and investigated. The field enhancement of the nano-antenna can be tuned by geometric parameters such as the outer radius, the tooth angle, and the ratio of the radial sizes of successive teeth, which provide control over both the spectral resonance position and the field enhancement peak amplitude. The Purcell factor mainly depends on the outer radius, the tooth angle, and the bow angle. In addition, multi-resonant field enhancement was analyzed in detail by conformal transformation. Furthermore, a careful comparison of the characteristics of a bowtie nano-antenna demonstrated that the log periodic nano-antenna has considerable potential for multi-resonant field enhancement and improvement of the Purcell factor. The results provide a promising prospect for designing and optimizing the log periodic nano-antenna in a broad range of wavelengths.

  8. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  9. Optical antenna enhanced spontaneous emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less

  10. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  11. Optical antenna enhanced spontaneous emission

    DOE PAGES

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; ...

    2015-01-26

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less

  12. Optical antenna gain. I - Transmitting antennas

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  13. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    PubMed

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300  μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  14. Controlling the near-field excitation of nano-antennas with phase-change materials.

    PubMed

    Kao, Tsung Sheng; Chen, Yi Guo; Hong, Ming Hui

    2013-01-01

    By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.

  15. Optical response of bowtie antennas

    NASA Astrophysics Data System (ADS)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  16. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays

    PubMed Central

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-01-01

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999

  17. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission

    PubMed Central

    Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.

    2013-01-01

    We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840

  18. Plasmonic Antennas for Optical Nanocrystallography and Femtosecond Spatio-Temporal Control

    NASA Astrophysics Data System (ADS)

    Berweger, Samuel

    possible. Combining the frequency domain shaping of optical transients with nanofocusing, we demonstrate the deterministic control of pulses as short as 16 fs and the generation of arbitrary waveforms at the tip apex. These results demonstrate the capability of these plasmonic optical antennas to not only generate enhanced optical fields for the study of matter on the nanoscale, but also to control ultrafast nano-optical excitations with applications for imaging and spectroscopy.

  19. Tropical Storm Yagi off Japan

    NASA Image and Video Library

    2017-12-08

    On Tuesday, June 11, 2013 Tropical Storm Yagi spun in the North Pacific Ocean just south of Japan. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this beautiful true-color image of the storm on that same date at 4:10 UTC (1:10 p.m. Japan local time). The image shows a clear apostrophe-shaped cyclone, with a closed eye and somewhat elliptical shape. The clouds associated with the northern fringes of the storm draped over southeastern coastal Japan, and a long “tail” (or band) of thunderstorms fed into the center from the south. Multispectral imagery also showed tight bands of thunderstorms wrapping into the center of the storm, although the building of thunderstorms was weakening around the center. Near the same time as the image was captured, the Joint Typhoon Warning Center announced that vertical wind shear was starting to take a toll on Yagi. Northwesterly wind shear had caused the system to tilt slightly with the upper-level center displaced about 20 nautical miles east of the low-level center. Tropical Storm Yagi developed from Tropical Depression 03W in the Western North Pacific Ocean on June 6, and intensified the weekend of June 8-9, when it reached Tropical Storm status and was given the name Yagi. Also known as Dante, the storm reached the maximum wind speeds on June 10 and 11, after which it began to weaken as it moved into cooler waters. On June 14, Yagi’s remnants passed about 200 miles south of Tokyo, and brought soaking rains to the coastline of Japan’s Honshu Island. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook

  20. Huge light-enhancement by coupling a Bowtie Nano-antenna's plasmonic resonance to a photonic crystal mode.

    PubMed

    Eter, Ali El; Grosjean, Thierry; Viktorovitch, Pierre; Letartre, Xavier; Benyattou, Taha; Baida, Fadi I

    2014-06-16

    We numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties. The proposed hybrid dielectric-plasmonic structure may open new avenues in the generation of deeply subwavelength intense optical sources, with direct applications in various domains such as data storage, non-linear optics, optical trapping and manipulation, microscopy, etc.

  1. Highly sensitive and selective sugar detection by terahertz nano-antennas

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah

    2015-10-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.

  2. Highly sensitive and selective sugar detection by terahertz nano-antennas

    PubMed Central

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah

    2015-01-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5–2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity. PMID:26494203

  3. Applications of Nano-optics.

    PubMed

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  4. Microstrip antenna developments at JPL

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.

  5. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  6. Optical Vector Near-Field Imaging for the Design of Impedance Matched Optical Antennas and Devices

    NASA Astrophysics Data System (ADS)

    Olmon, Robert L.

    Antennas control and confine electromagnetic energy, transforming free-space propagating modes to localized regions. This is not only true for the traditional classical radio antenna, but also for structures that interact resonantly at frequencies throughout the visible regime, that are on the micro- and nanometer size scales. The investigation of these optical antennas has increased dramatically in recent years. They promise to bring the transformative capabilities of radio antennas to the nanoscale in fields such as plasmonics, photonics, spectroscopy, and microscopy. However, designing optical antennas with desired properties is not straightforward due to different material properties and geometric considerations in the optical regime compared to the RF. New antenna characterization tools and techniques must be developed for the optical frequency range. Here, the optical analogue of the vector network analyzer, based on a scattering-type scanning near-field optical microscope, is described and demonstrated for the investigation of the electric and magnetic properties of optical antennas through their electromagnetic vector near-field. Specifically, bringing this microwave frequency tool to the optical regime enables the study of antenna resonant length scaling, optical frequency electromagnetic parameters including current density and impedance, optical antenna coupling to waveguides and nanoloads, local electric field enhancement, and electromagnetic duality of complementary optical antenna geometries.

  7. Multilayer Patch Antenna Surrounded by a Metallic Wall

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Huang, John

    2003-01-01

    A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of <=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.

  8. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  9. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  10. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    PubMed

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  11. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  12. Thermal effects of optical antenna under the irradiation of laser

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Li, Fu; Yang, Wenqiang; Yang, Jianfeng

    2017-10-01

    The laser communication terminal is a precision optical, mechanical, electrical integration device which operations extremely high accuracy. It is hard to improve the space environment adaptability in the hash vibration, thermal cycling, high vacuum and radiation conditions space environment. Accordingly, the optical antenna will be influenced by space thermal environment. Laser energy will be absorbed when optical antenna under the irradiation of laser. It can contribute to thermal distortion and make the beam quality degradation which affects the performance of laser communications links. This influence will aggravate when the laser power rising.Wavefront aberration is the distance between the ideal reference sphere and the actual distorted wavefront. The smaller the wavefront aberration, the better the optical performance of the optical antenna. On the contrary, the greater the wavefront aberration, the worse the performance of the optical antenna or even affect the normal operation of the optical antenna. The performance index of the optical antenna generally requires the wavefront aberration to be better than λ/20. Due to the different thermal and thermal expansion coefficients of the material, the effect of thermal deformation on the optical antenna can be reduced by matching the appropriate material. While the appropriate support structure and proper heat dissipation design can also reduce the impact. In this paper, the wavefront aberration of the optical antenna is better than λ/50 by the material matching and the appropriate support structure and the secondary design of the diameter of 5mm hole thermal design.

  13. Resonance spectra of diabolo optical antenna arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu; Simpkins, Blake

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlatedmore » to the shift of the resonance wavelength.« less

  14. Photocurrent mapping of near-field optical antenna resonances

    NASA Astrophysics Data System (ADS)

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-09-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (~50 nm) and wavelength-scale (~1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.

  15. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    PubMed

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  16. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  17. Proceedings of the Antenna Applications Symposium Held at Monticello, Illinois on 21-23 September 1983. Volume 1.

    DTIC Science & Technology

    1984-03-01

    are the zig-zag [12] and the yagi. A zig-zag antenna is the two-dimensional equivalent of a helix . It may be printed unto a supporting substrate and...In the last decade the advances have been subtle, but none-the-less important in optimizing performance of broadband systems. This paper describes some...geometry commonly used is the planar spiral/ helix antenna. Figure 4 shows a single-mode 2 inch diameter spiral/ helix antenna designed to operate

  18. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.

  19. Integrated Nanoscale Antenna-LED for On-Chip Optical Communication

    NASA Astrophysics Data System (ADS)

    Fortuna, Seth

    Traditional semiconductor light emitting diodes (LEDs) have low modulation speed because of long spontaneous emission lifetime. Spontaneous emission in semiconductors (and indeed most light emitters) is an inherently slow process owing to the size mismatch between the dipole length of the optical dipole oscillators responsible for light emission and the wavelength of the emitted light. More simply stated: semiconductors behave as a poor antenna for its own light emission. By coupling a semiconductor at the nanoscale to an external antenna, the spontaneous emission rate can be dramatically increased alluding to the exciting possibility of an antenna-LED that can be directly modulated faster than the laser. Such an antenna-LED is well-suited as a light source for on-chip optical communication where small size, fast speed, and high efficiency are needed to achieve the promised benefit of reduced power consumption of on-chip optical interconnect links compared with less efficient electrical interconnect links. Despite the promise of the antenna-LED, significant challenges remain to implement an antenna-coupled device in a monolithically integrated manner. Notably, most demonstrations of antenna-enhanced spontaneous emission have relied upon optical pumping of the light emitting material which is useful for fundamental studies; however, an electrical injection scheme is required for practical implementation of an antenna-LED. In this dissertation, demonstration of an electrically-injected III-V antenna-LED is reported: an important milestone toward on-chip optical interconnects. In the first part of this dissertation, the general design principles of enhancing the spontaneous emission rate of a semiconductor with an optical antenna is discussed. The cavity-backed slot antenna is shown to be uniquely suited for an electrically-injected antenna-LED because of large spontaneous emission enhancement, simple fabrication, and directional emission of light. The design

  20. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it; Ongarello, T.

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  1. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    DOE PAGES

    Jun, Young Chul; Brener, Igal

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.

  2. An integral sunshade for optical reception antennas

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1988-01-01

    Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.

  3. Optical rectification using geometrical field enhancement in gold nano-arrays

    NASA Astrophysics Data System (ADS)

    Piltan, S.; Sievenpiper, D.

    2017-11-01

    Conversion of photons to electrical energy has a wide variety of applications including imaging, solar energy harvesting, and IR detection. A rectenna device consists of an antenna in addition to a rectifying element to absorb the incident radiation within a certain frequency range. We designed, fabricated, and measured an optical rectifier taking advantage of asymmetrical field enhancement for forward and reverse currents due to geometrical constraints. The gold nano-structures as well as the geometrical parameters offer enhanced light-matter interaction at 382 THz. Using the Taylor expansion of the time-dependent current as a function of the external bias and oscillating optical excitation, we obtained responsivities close to quantum limit of operation. This geometrical approach can offer an efficient, broadband, and scalable solution for energy conversion and detection in the future.

  4. Nano-optomechanics with optically levitated nanoparticles

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; Vamivakas, A. Nick

    2015-01-01

    Nano-optomechanics is a vibrant area of research that continues to push the boundary of quantum science and measurement technology. Recently, it has been realised that the optical forces experienced by polarisable nanoparticles can provide a novel platform for nano-optomechanics with untethered mechanical oscillators. Remarkably, these oscillators are expected to exhibit quality factors approaching ?. The pronounced quality factors are a direct result of the mechanical oscillator being freed from a supporting substrate. This review provides an overview of the basic optical physics underpinning optical trapping and optical levitation experiments, it discusses a number of experimental approaches to optical trapping and finally outlines possible applications of this nano-optomechanics modality in hybrid quantum systems and nanoscale optical metrology.

  5. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.

    PubMed

    Vietz, Carolin; Kaminska, Izabela; Sanz Paz, Maria; Tinnefeld, Philip; Acuna, Guillermo P

    2017-05-23

    Plasmonic structures are known to affect the fluorescence properties of dyes placed in close proximity. This effect has been exploited in combination with single-molecule techniques for several applications in the field of biosensing. Among these plasmonic structures, top-down zero-mode waveguides stand out due to their broadband capabilities. In contrast, optical antennas based on gold nanostructures exhibit fluorescence enhancement on a narrow fraction of the visible spectrum typically restricted to the red to near-infrared region. In this contribution, we exploit the DNA origami technique to self-assemble optical antennas based on large (80 nm) silver nanoparticles. We have studied the performance of these antennas with far- and near-field simulations and characterized them experimentally with single-molecule fluorescence measurements. We demonstrate that silver-based optical antennas can yield a fluorescence enhancement of more than 2 orders of magnitude throughout the visible spectral range for high intrinsic quantum yield dyes. Additionally, a comparison between the performance of gold and silver-based antennas is included. The results indicate that silver-based antennas strongly outperform their gold counterparts in the blue and green ranges and exhibit marginal differences in the red range. These characteristics render silver-based optical antennas ready for applications involving several fluorescently labeled species across the visible spectrum.

  6. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  7. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  8. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Astrophysics Data System (ADS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-05-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  9. Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications.

    PubMed

    Bellanca, Gaetano; Calò, Giovanna; Kaplan, Ali Emre; Bassi, Paolo; Petruzzelli, Vincenzo

    2017-07-10

    In this paper we propose a novel hybrid optical plasmonic Vivaldi antenna for operation in the standard C telecommunication band for wavelengths in the 1550 nm range. The antenna is fed by a silicon waveguide and is designed to have high gain and large bandwidth. The shape of the radiation pattern, with a main lobe along the antenna axis, makes this antenna suitable for point-to-point connections for inter- or intra-chip optical communications. Direct port-to-port short links for different connection distances and in a homogeneous environment have also been simulated to verify, by comparing the results of a full-wave simulation with the Friis transmission equation, the correctness of the antenna parameters obtained via near-to-far field transformation.

  10. Optical Links and RF Distribution for Antenna Arrays

    NASA Technical Reports Server (NTRS)

    Huang, Shouhua; Calhoun, Malcolm; Tjoelker, Robert

    2006-01-01

    An array of three antennas has recently been developed at the NASA Jet Propulsion Laboratory capable of detecting signals at X and Ka band. The array requires a common frequency reference and high precision phase alignment to correlate received signals. Frequency and timing references are presently provided from a remotely located hydrogen maser and clock through a combination of commercially and custom developed optical links. The selected laser, photodetector, and fiber components have been tested under anticipated thermal and simulated antenna rotation conditions. The resulting stability limitations due to thermal perturbations or induced stress on the optical fiber have been characterized. Distribution of the X band local oscillator includes a loop back and precision phase monitor to enable correlation of signals received from each antenna.

  11. A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haque, Ahasanul; Reza, Ahmed Wasif; Kumar, Narendra

    2015-11-01

    In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun's energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna's geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz-40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.

  12. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas

    PubMed Central

    Jia, Hongwei; Liu, Haitao; Zhong, Ying

    2015-01-01

    The radiation of an electric dipole emitter can be drastically enhanced if the emitter is placed in the nano-gap of a metallic dipole antenna. By assuming that only surface plasmon polaritons (SPPs) are excited on the antenna, we build up an intuitive pure-SPP model that is able to comprehensively predict the electromagnetic features of the antenna radiation, such as the total or radiative emission rate and the far-field radiation pattern. With the model we can distinguish the respective contributions from SPPs and from other surface waves to the antenna radiation. It is found that for antennas with long arms that support higher-order resonances, SPPs provide a dominant contribution to the antenna radiation, while for other cases, the contribution of surface waves other than SPPs should be considered. The model reveals an intuitive picture that the enhancement of the antenna radiation is due to surface waves that are resonantly excited on the two antenna arms and that are further coupled into the nano-gap or scattered into free space. From the model we can derive a phase-matching condition that predicts the antenna resonance and the resultant enhanced radiation. The model is helpful for a physical understanding and intuitive design of antenna devices. PMID:25678191

  13. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.

    PubMed

    Raval, Manan; Poulton, Christopher V; Watts, Michael R

    2017-07-01

    We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

  14. Two-dimensional optical phased array antenna on silicon-on-insulator.

    PubMed

    Van Acoleyen, Karel; Rogier, Hendrik; Baets, Roel

    2010-06-21

    Optical wireless links can offer a very large bandwidth and can act as a complementary technology to radiofrequency links. Optical components nowadays are however rather bulky. Therefore, we have investigated the potential of silicon photonics to fabricated integrated components for wireless optical communication. This paper presents a two-dimensional phased array antenna consisting of grating couplers that couple light off-chip. Wavelength steering of $0.24 degrees /nm is presented reducing the need of active phase modulators. The needed steering range is $1.5 degrees . The 3dB angular coverage range of these antennas is about $0.007pi sr with a directivity of more than 38dBi and antenna losses smaller than 3dB.

  15. 3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna.

    PubMed

    Belarouci, Ali; Benyattou, Taha; Letartre, Xavier; Viktorovitch, Pierre

    2010-09-13

    A new approach is proposed for the optimum addressing of a metallic nano-antenna (NA) with a free space optical beam. This approach relies on the use of an intermediate resonator structure that provides the appropriate modal conversion of the incoming beam. More precisely, the intermediate resonator consists in a Photonic Crystal (PC) membrane resonant structure that takes benefit of surface addressable slow Bloch modes. First, a phenomenological approach including a deep physical understanding of the NA-PC coupling and its optimization is presented. In a second step, the main features of this analysis are confirmed by numerical simulations (FDTD).

  16. Mode structure of planar optical antennas on dielectric substrates

    DOE PAGES

    Word, Robert C.; Konenkamp, Rolf

    2016-08-08

    Here, we report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

  17. Coherent optical modulation for antenna remoting

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.

    1991-01-01

    A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.

  18. Optical Properties of the Crescent–Shaped Nanohole Antenna

    PubMed Central

    Wu, Liz Y.; Ross, Benjamin M.; Lee, Luke P.

    2009-01-01

    We present the first optical study of large–area random arrays of crescent–shaped nanoholes. The crescent–shaped nanohole antennae, fabricated using wafer–scale nanosphere lithography, provide a complement to crescent–shaped nanostructures, called nanocrescents, which have been established as powerful plasmonic biosensors. With both systematic experimental and computational analysis, we characterize the optical properties of crescent–shaped nanohole antennae, and demonstrate tunability of their optical response by varying all key geometric parameters. Crescent–shaped nanoholes have reproducible sub–10 nm tips and are sharper than corresponding nanocrescents, resulting in higher local field enhancement (LFE), which is predicted to be |E|/|E0| = 1500. In addition, the crescent–shaped nanohole hole–based geometry offers increased integratability and the potential to nanoconfine analyte in “hot–spot” regions—increasing biomolecular sensitivity and allowing localized nanoscale optical control of biological functions. PMID:19354226

  19. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  20. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  1. Fabrication of micro/nano optical fiber by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng

    2017-10-01

    We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.

  2. Design of optical transmitting antenna with enhance performance in visible light communication

    NASA Astrophysics Data System (ADS)

    Kuang, Dang; Wang, Jianping; Lu, Huimin

    2016-10-01

    An optical transmitting antenna for visible light communication(VLC) is designed in this work, in which the antenna is positioned before the light-emitting diodes (LED) source to change the lighting distribution, in order to achieve uniform received power effect. The method to design antenna is introduced into physical optical lens principle. According to the energy conservation law and Snell law, the antenna is designed via establishing energy mapping between the luminous flux emitted by a LED source with Lambertian distribution and the target plane. The coordinates of the antenna model are obtained under matrix laboratory (MATLAB). The antenna model entity is generated through three dimensional (3D) composition software AutoCAD with the coordinates of antenna. Ray-tracing software Tracepro is used to trace the ray which through antenna, and validate the irradiance maps. The uniformity of illumination and received power of the designed VLC is improved from approximately 35% to over 83%.

  3. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    PubMed

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss <27  dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  4. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    PubMed

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  5. The contribution of the Georges Heights Experimental Radar Antenna to Australian radio astronomy

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Wendt, Harry

    2017-12-01

    During the late 1940s and throughout the1950s Australia was one of the world’s foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation’s Division of Radiophysics based in Sydney. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials attached to recycled radar receivers, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division’s short-lived Georges Heights Field Station but in 1948 was relocated to the new Potts Hill Field Station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, galactic and extragalactic research programs that it was used for.

  6. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, S., E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Darak, Mayur Sudesh, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Kumar, D. Sriram, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cellmore » antenna used in satellite systems.« less

  7. Data Encoding using Periodic Nano-Optical Features

    NASA Astrophysics Data System (ADS)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  8. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    PubMed

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  9. All-dielectric fiber-optic passive millimeter-wave antenna

    NASA Astrophysics Data System (ADS)

    Wang, Wen C.; Lin, Weiping; Marshall, Hank; Schaafsma, David T.; Chaung, Richard

    2003-07-01

    An integrated Mach-Zehnder interferometer made of electro-optic polymer, which has excellent broadband (>100 GHz) response, was fabricated as a mm-wave receive antenna. When an electric field is applied to the interferometer arm(s) made of EO material, a phase delay is generated which results in a net imbalance in the interferometer and thus a change in the output intensity. This output intensity change, which contains electric field strength and temporal profile information, is then read by a photodetector and processed. To test this antenna in free space, a micro-strip travelling electromagnetic cell, which has uniform electric field distribution in the 1 GHz range, was constructed. The test results show the antenna had good linear response over a 40 dB power range, at 1 GHz center frequency. The measured minimum detectable E-field strength was about 0.22 V/m (or 6.7 nW/cm2) at 1 kHz bandwidth with a laser power of 7.9 μWatt (-21dBm) measured after the sensor, which agrees with our theoretical calculations. The measured E-field signal increases with increasing laser power, which indicates that significant sensitivity improvement, can be easily obtained by lowering passive losses. The antenna was found to be thermally stable over a temperature range from -30 to 50 C. The antenna sensitivity can be further improved by lowering the device insertion loss, optimizing the photodetector and detection circuitry, and using EO polymers with higher electro-optic coefficients.

  10. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  11. Optical Sensing And Imaging Opportunities

    DTIC Science & Technology

    2016-02-12

    Functional Materials Workshops, supported by AFOSR.Potentially Useful New Research Areas.- Plasmonics - Infrared antennae- IV-VI (lead salt) Infrared Photo...Potentially Useful New Research Areas. - Plasmonics - Infrared antennae - IV-VI (lead salt) Infrared Photo Detectors and Focal Plane Arrays...Hexagonal Ferrite Thin Films for Q-Band Signal Processing Devices Plasmonics New techniques for transmitting optical signals through nano-scale

  12. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  13. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  14. Optical Assembly and Characterization System for Nano-Photonics Research

    DTIC Science & Technology

    2016-03-01

    Unlimited Final Report: Optical Assembly and Characterization System for Nano -Photonics Research The views, opinions and/or findings contained in this...reviewed journals: Final Report: Optical Assembly and Characterization System for Nano -Photonics Research Report Title With this equipment funding support...Assembly and Characterization System for Nano -Photonics Research PI: Prof. Weidong Zhou, University of Texas at Arlington (UTA) 500 S. Cooper St

  15. Analysis of a generalized dual reflector antenna system using physical optics

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  16. Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.

    PubMed

    Thammawongsa, Nopparat; Yupapin, Preecha P

    2016-01-01

    A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.

  17. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  18. Development of Quantum Cascade Lasers with Novel Active Regions and Integrated Nano-Antennas

    NASA Astrophysics Data System (ADS)

    Dey, Dibyendu

    Quantum Cascade Laser (QCL), invented in 1994, has led to path-breaking improvements in room-temperature operation in mid and long wave infrared, and has been used in gas and chemical sensing, bio-imaging, free-space communications and many other military applications. One of the major operational drawbacks of standard QCL is added phonon relaxation in the injector region leading to generation of excess heat. The first part of my thesis focuses on developing a novel injectorless QCL (I-QCL) which circumvents this problem. The fabricated laser was both electrically and optically tested and compared with two types of standard QCLs---one developed in our laboratory and another provided by MIT Lincoln Laboratory. Voltage defect is a key parameter used to quantify excess heat generated in a QCL. We were able to measure a record low voltage defect of ˜ 57 meV at 77 K using the I-QCL we have developed. The effect of injectors on thermal performance of QCL was further analyzed through time-resolved spectral analysis. Next, we focused on developing a composite material based plasmonic antenna integrated QCL. The device was capable of squeezing the optical mode to ˜ 100 nm which is 60 times smaller than the operating wavelength (˜ 6 um). Such mode confinement can overcome the primary drawback in a mid-IR bio-sensor where the dimensional mismatch between long wavelengths (order of microns) and tiny probed molecules (˜ few nanometers) makes probe-particle interaction strength extremely weak. An apertureless near-field scanning optical microscope (a-NSOM) was built to measure the antenna near-field characteristic. We further worked on measuring the optical force generated near the antenna "hotspot" due to high electric field gradient. We then worked on understanding the coupling between antenna plasmonic modes and the laser cavity mode. This unusual coupling has been explained based on optical feedback effect. The final part of my research focused on delivering the bio

  19. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    NASA Astrophysics Data System (ADS)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  20. Quasi-optical antenna-mixer-array design for terahertz frequencies

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  1. Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics

    DTIC Science & Technology

    2008-07-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5652--08-9137 Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics July...NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Field Test on the Feasibility of Remoting HF Antenna...optic link was employed to remote a high-frequency ( HF , 2-30 MHz) direction-finding (DF) array. The test link comprised a seven-element “L” array

  2. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    PubMed

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  3. Experimental demonstration of an optical phased array antenna for laser space communications.

    PubMed

    Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L

    1994-06-20

    The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.

  4. Optically Transparent Split-Ring Antennas for 1 to 10 GHz

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    2007-01-01

    Split-ring antennas made from optically transparent, electrically conductive films have been invented for applications in which there are requirements for compact antennas capable of operation over much or all of the frequency band from 1 to 10 GHz. Primary examples of such applications include wireless local-area networks and industrial, scientific, and medical (ISM) applications. These antennas can be conveniently located on such surfaces as those of automobile windows and display screens of diverse hand-held electronic units. They are fabricated by conventional printed-circuit techniques and can easily be integrated with solid-state amplifier circuits to enhance gain. The structure of an antenna of this type includes an antenna/feed layer supported on the top or outer face of a dielectric (e.g., glass) and, optionally, a ground layer on the bottom or inner face of the substrate. The ring can be in the form of either a conductive strip or a slot in the antenna/feed layer. The ring can be of rectangular, square, circular, elliptical, or other suitable shape and can be excited by means of a microstrip, slot line, or coplanar waveguide. For example, the antenna shown in the figure features a square conductive-strip split ring with a microstrip feed. In general, an antenna fed at its external boundary in the manner of this invention presents very high impedance, thereby creating an impedance-matching problem. Splitting the ring . that is, cutting a notch through the ring . offers a solution to the problem in that the notch fixes the location of maximum electric field, which location is directly related to the impedance. Thus, an excellent impedance match can be achieved through proper choice of the location of the notch. In geometric layout, such a ring antenna structure is typically between 1.4 and 1.3 the size of a patch antenna capable of operating in the same frequency range. This miniaturization of the antenna is desirable, not only because it contributes to

  5. Tropical Storm Yagi in the North Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    In early June, Tropical storm Yagi developed from Tropical Depression 03W in the Western North Pacific Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on June 10 at 1:55 UTC (9:55 P.M.) as the storm was spinning near 25.0 north and 135.2 east, or about 396 miles (637 km) west of Iwo Jima, Japan. At that time, the storm had maximum sustained winds 51.7 mph (83.3 km/h). The image shows a tightly-wrapped circulation, a clouded eye and storm bands reached furthest out in the northeast quadrant. The tropical depression first formed on June 6 east of the Philippines, and intensified on the weekend of June 8-9, when it was given the name of Yagi. Also known as Dante, the storm reached the maximum wind speeds on June 10 and 11, after which it began to weaken as it moved into cooler waters. On June 14, Yagi’s remnants passed about 200 miles south of Tokyo, and brought soaking rains to the coastline of Japan’s Honshu Island. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Architectural design of a ground-based deep-space optical reception antenna

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  7. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    NASA Astrophysics Data System (ADS)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  8. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    PubMed Central

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-01-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383

  9. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  10. Optical Antenna Arrays on a Fiber Facet for In Situ Surface Enhanced Raman Scattering Detection

    PubMed Central

    Smythe, Elizabeth J.; Dickey, Michael D.; Bao, Jiming; Whitesides, George M.

    2009-01-01

    This paper reports a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signal, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of ‘hot spots’ generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring ‘hot spots’ because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 × 105 to 5.1 × 105. PMID:19236032

  11. Programmable Bidirectional Folding of Metallic Thin Films for 3D Chiral Optical Antennas.

    PubMed

    Mao, Yifei; Zheng, Yun; Li, Can; Guo, Lin; Pan, Yini; Zhu, Rui; Xu, Jun; Zhang, Weihua; Wu, Wengang

    2017-05-01

    3D structures with characteristic lengths ranging from nanometer to micrometer scale often exhibit extraordinary optical properties, and have been becoming an extensively explored field for building new generation nanophotonic devices. Albeit a few methods have been developed for fabricating 3D optical structures, constructing 3D structures with nanometer accuracy, diversified materials, and perfect morphology is an extremely challenging task. This study presents a general 3D nanofabrication technique, the focused ion beam stress induced deformation process, which allows a programmable and accurate bidirectional folding (-70°-+90°) of various metal and dielectric thin films. Using this method, 3D helical optical antennas with different handedness, improved surface smoothness, and tunable geometries are fabricated, and the strong optical rotation effects of single helical antennas are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rectenna session: Micro aspects. [energy conversion

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  13. Rectenna session: Micro aspects

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  14. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12.

    PubMed

    Shimada, Tomohiro; Momiyama, Eri; Yamanaka, Yuki; Watanabe, Hiroki; Yamamoto, Kaneyoshi; Ishihama, Akira

    2017-12-01

    The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Optical Recorder of the Lunar Sounder Experiment

    NASA Image and Video Library

    1972-11-22

    S72-49482 (November 1972) --- The Optical Recorder of the Lunar Sounder Experiment (S-209) which will be mounted in the SIM bay of the Apollo 17 Service Module. The three functional parts of the Lunar Sounder are the optical recorder, the coherent synthetic aperture radar, and the antennas, a retractable dipole for HF and a yagi for VHF. The Lunar Sounder will probe three-quarters of a mile below the moon's surface from the orbiting Apollo 17 spacecraft. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.

  16. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays.

    PubMed

    Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P

    1996-09-10

    The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).

  17. Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)

    NASA Astrophysics Data System (ADS)

    Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal

    2004-03-01

    In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.

  18. Optical, thermal and morphological study of ZnS doped PVA polymer nano composites

    NASA Astrophysics Data System (ADS)

    Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta

    2018-05-01

    The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.

  19. Engineering two-wire optical antennas for near field enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhong-Jian; Zhao, Qian; Xiao, Si; He, Jun

    2017-07-01

    We study the optimization of near field enhancement in the two-wire optical antenna system. By varying the nanowire sizes we obtain the optimized side-length (width and height) for the maximum field enhancement with a given gap size. The optimized side-length applies to a broadband range (λ = 650-1000 nm). The ratio of extinction cross section to field concentration size is found to be closely related to the field enhancement behavior. We also investigate two experimentally feasible cases which are antennas on glass substrate and mirror, and find that the optimized side-length also applies to these systems. It is also found that the optimized side-length shows a tendency of increasing with the gap size. Our results could find applications in field-enhanced spectroscopies.

  20. Designing and Validating a Measure of Teacher Knowledge of Universal Design for Assessment (UDA)

    ERIC Educational Resources Information Center

    Jamgochian, Elisa Megan

    2010-01-01

    The primary purpose of this study was to design and validate a measure of teacher knowledge of Universal Design for Assessment (TK-UDA). Guided by a validity framework, a number of inferences, assumptions, and evidences supported this investigation. By addressing a series of research questions, evidence was garnered for the use of the measure to…

  1. Electron-beam lithography for micro and nano-optical applications

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W.; Muller, Richard E.; Echternach, Pierre M.

    2005-01-01

    Direct-write electron-beam lithography has proven to be a powerful technique for fabricating a variety of micro- and nano-optical devices. Binary E-beam lithography is the workhorse technique for fabricating optical devices that require complicated precision nano-scale features. We describe a bi-layer resist system and virtual-mark height measurement for improving the reliability of fabricating binary patterns. Analog E-beam lithography is a newer technique that has found significant application in the fabrication of diffractive optical elements. We describe our techniques for fabricating analog surface-relief profiles in E-beam resist, including some discussion regarding overcoming the problems of resist heating and charging. We also describe a multiple-field-size exposure scheme for suppression of field-stitch induced ghost diffraction orders produced by blazed diffraction gratings on non-flat substrates.

  2. Development of low loss soft nano magnetic system for antenna miniaturization at ultra high frequency

    NASA Astrophysics Data System (ADS)

    Manhas, Anita; Daya, K. S.; Singh, M.

    2018-05-01

    Sol gel auto combustion processed nano magnetic system of Co2Z hexaferrite of composition Ba3-xSrxCo2InyFe24-yO41 (x=1.5 and y=0.1) was investigated for microwave antenna miniaturization in the frequency range 2 GHz to 3.43 GHz. The structural properties performed by XRD and TEM with SAED clearly indicate the formation of single phased Z-type hexagonal nanoferrite with high crystallization. The magnetic property was measured using VSM show a typical feature of magnetically soft material with low coercivity. Successfully obtained appreciable microwave properties using network analyzer, as the nano magnetic system Ba1.5Sr1.5Co2In0.1Fe23.90O41 attained best results were μ' = 5.4 and ɛ' = 4.6 at 2GHz with controlled magnetic and electric loss tangents close to zero i.e. 0.005 and 0.008, respectively. Microwave results are explained on the basis of relevant existing theories and models.

  3. Nano-optical information storage induced by the nonlinear saturable absorption effect

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Liu, Shuang; Geng, Yongyou; Wang, Yang; Li, Xiaoyi; Wu, Yiqun; Dun, Aihuan

    2011-08-01

    Nano-optical information storage is very important in meeting information technology requirements. However, obtaining nanometric optical information recording marks by the traditional optical method is difficult due to diffraction limit restrictions. In the current work, the nonlinear saturable absorption effect is used to generate a subwavelength optical spot and to induce nano-optical information recording and readout. Experimental results indicate that information marks below 100 nm are successfully recorded and read out by a high-density digital versatile disk dynamic testing system with a laser wavelength of 405 nm and a numerical aperture of 0.65. The minimum marks of 60 nm are realized, which is only about 1/12 of the diffraction-limited theoretical focusing spot. This physical scheme is very useful in promoting the development of optical information storage in the nanoscale field.

  4. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application

    NASA Astrophysics Data System (ADS)

    Heydari, Samaneh; Rastan, Iman; Parvin, Amin; Pirooj, Azadeh; Zarrabi, Ferdows B.

    2017-01-01

    Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures.

  5. Optical electric field sensor sensitivity direction rerouting and enhancement using a passive integrated dipole antenna.

    PubMed

    Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen

    2017-06-10

    This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.

  6. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna.

    PubMed

    Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-09-09

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

  7. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna

    PubMed Central

    Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-01-01

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15–200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs). PMID:28891928

  8. Two-dimensional optical architectures for the receive mode of phased-array antennas.

    PubMed

    Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J

    1999-05-10

    We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.

  9. Nano-optical conveyor belt, part I: Theory.

    PubMed

    Hansen, Paul; Zheng, Yuxin; Ryan, Jason; Hesselink, Lambertus

    2014-06-11

    We propose a method for peristaltic transport of nanoparticles using the optical force field over a nanostructured surface. Nanostructures may be designed to produce strong near-field hot spots when illuminated. The hot spots function as optical traps, separately addressable by their resonant wavelengths and polarizations. By activating closely packed traps sequentially, nanoparticles may be handed off between adjacent traps in a peristaltic fashion. A linear repeating structure of three separately addressable traps forms a "nano-optical conveyor belt"; a unit cell with four separately addressable traps permits controlled peristaltic transport in the plane. Using specifically designed activation sequences allows particle sorting.

  10. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip.

    PubMed

    Lin, Yongbin; Guo, Junpeng; Lindquist, Robert G

    2009-09-28

    Dramatic increase in the bandwidth of optical fiber inline polarizer can be achieved by using metal nano-grid on the fiber tip. However, high extinction ratio of such fiber polarizer requires high spatial frequency metal nano girds with high aspect ratio on the small area of optical fiber tip. We report the development of a nano-fabrication process on the optical fiber tip, and the design and realization of the first ultra-wideband fiber inline polarization device with Au nano gird fabricated on a single mode optical fiber end face.

  11. Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals

    NASA Astrophysics Data System (ADS)

    Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.

    2017-05-01

    Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.

  12. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    PubMed

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  13. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain

  14. Tracking Performance of Upgraded "Polished Panel" Optical Receiver on NASA's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.

  15. Purcell effect for active tuning of light scattering from semiconductor optical antennas.

    PubMed

    Holsteen, Aaron L; Raza, Søren; Fan, Pengyu; Kik, Pieter G; Brongersma, Mark L

    2017-12-15

    Subwavelength, high-refractive index semiconductor nanostructures support optical resonances that endow them with valuable antenna functions. Control over the intrinsic properties, including their complex refractive index, size, and geometry, has been used to manipulate fundamental light absorption, scattering, and emission processes in nanostructured optoelectronic devices. In this study, we harness the electric and magnetic resonances of such antennas to achieve a very strong dependence of the optical properties on the external environment. Specifically, we illustrate how the resonant scattering wavelength of single silicon nanowires is tunable across the entire visible spectrum by simply moving the height of the nanowires above a metallic mirror. We apply this concept by using a nanoelectromechanical platform to demonstrate active tuning. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Multiband Photonic Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  17. Ultrahigh responsivity of optically active, semiconducting asymmetric nano-channel diodes

    NASA Astrophysics Data System (ADS)

    Akbas, Y.; Stern, A.; Zhang, L. Q.; Alimi, Y.; Song, A. M.; Iñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Wicks, G. W.; Sobolewski, Roman

    2015-10-01

    We present our research on the fabrication and optical characterization of novel semiconducting asymmetric nano-channel diodes (ANCDs). We focus on optical properties of ANCDs and demonstrate that they can be operated as very sensitive, single-photon-level, visible-light photodetectors. Our test devices consisted of 1.2-μm-long, ∼200- to 300-nm-wide channels that were etched in an InGaAs/InAlAs quantum-well hetero structure with a twodimensional electron gas layer. The ANCD I-V curves were collected by measuring the transport current both in the dark and under 800-nm-wavelength, continuous-wave-light laser illumination. In all of our devices, the impact of the light illumination was very clear, and there was a substantial photocurrent, even for incident optical power as low as 1 nW. The magnitude of the optical responsivity in ANCDs with the conducting nano-channel increased linearly with a decrease in optical power over many orders of magnitude, reaching a value of almost 10,000 A/W at 1-nW excitation.

  18. Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas

    NASA Astrophysics Data System (ADS)

    Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar

    2015-02-01

    An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.

  19. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  20. Semianalytical model for the electromagnetic enhancement by a rectangular nanowire optical antenna on metallic substrate.

    PubMed

    Wan, Jianing; Zhu, Junda; Zhong, Ying; Liu, Haitao

    2018-06-01

    The electromagnetic enhancement by a metallic nanowire optical antenna on metallic substrate is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons in the nanogap between the antenna and the substrate, we build up an intuitive and comprehensive model that provides semianalytical expressions for the electromagnetic field in the nanogap to achieve an understanding of the mechanism of electromagnetic enhancement. Our results show that antennas with short lengths that support the lowest order of resonance can achieve a high electric-field enhancement factor over a large range of incidence angles. Two phase-matching conditions are derived from the model for predicting the antenna lengths at resonance. Excitation of symmetric or antisymmetric localized surface plasmon resonance is further explained with the model. The model also shows superior computational efficiency compared to the full-wave numerical method when scanning the antenna length, the incidence angle, or the wavelength.

  1. Optically controlled phased-array antenna technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  2. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S

    2012-03-26

    A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

  3. Mechanical and optical characterization of tungsten oxynitride (W-O-N) nano-coatings

    NASA Astrophysics Data System (ADS)

    Nunez, Oscar Roberto

    Aation and cation doping of transition metal oxides has recently gained attention as a viable option to design materials for application in solar energy conversion, photo-catalysis, transparent electrodes, photo-electrochemical cells, electrochromics and flat panel displays in optoelectronics. Specifically, nitrogen doped tungsten oxide (WO3) has gained much attention for its ability to facilitate optical property tuning while also demonstrating enhanced photo-catalytic and photochemical properties. The effect of nitrogen chemistry and mechanics on the optical and mechanical properties of tungsten oxynitride (W-O-N) nano-coatings is studied in detail in this work. The W-O-N coatings were deposited by direct current (DC) sputtering to a thickness of ˜100 nm and the structural, compositional, optical and mechanical properties were characterized in order to gain a deeper understanding of the effects of nitrogen incorporation and chemical composition. All the W-O-N coatings fabricated under variable nitrogen gas flow rate were amorphous. X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS) measurements revealed that nitrogen incorporation is effective only for a nitrogen gas flow rates ?9 sccm. Optical characterization using ultraviolet-visible-near infrared (UV-VIS-NIR) spectroscopy and spectroscopic ellipsometry (SE) indicate that the nitrogen incorporation induced effects on the optical parameters is significant. The band gap (Eg) values decreased from ˜2.99 eV to ˜1.89 eV indicating a transition from insulating WO3 to metallic-like W-N phase. Nano-mechanical characterization using indentation revealed a corresponding change in mechanical properties; maximum values of 4.46 GPa and 98.5 GPa were noted for hardness and Young?s modulus, respectively. The results demonstrate a clear relationship between the mechanical, physical and optical properties of amorphous W-O-N nano-coatings. The correlation presented in this thesis could

  4. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    PubMed

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  5. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  6. High-performance fiber optic link for ECM antenna remoting

    NASA Astrophysics Data System (ADS)

    Edge, Colin; Burgess, John W.; Wale, Michael J.; Try, Nicholas W.

    1998-11-01

    The ability to remotely radiate microwave signals has become an essential feature of modern electronic counter-measures (ECM) systems. The use of fiber optics allows remote microwave links to be constructed which have very low propagation loss and dispersion, are very flexible and light in weight, and have a high degree of immunity from external electromagnetic fields, crosstalk and environmental effects. This combination of desirable characteristics are very beneficial to avionic ECM antenna remoting as well as many other applications. GEC-Marconi have developed high performance fiber components for use in a towed radar decoy. The resulting rugged and compact optical transmitter and receiver modules have been developed and proven to maintain the required performance over the full hostile range of environmental conditions encountered on a fast jet. Packaged fiber optic links have been produced which can achieve a compression dynamic range of greater than 87 dB in 1 MHz bandwidth over a 2 to 18 GHz.

  7. Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components.

    PubMed

    Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei

    2015-04-06

    We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

  8. Optical increase of photo-integrated micro- and nano-periodic susceptibility lattices

    NASA Astrophysics Data System (ADS)

    Smirnov, Vitaly A.; Vostrikova, Liubov I.

    2015-03-01

    It is demonstrated that the nonlinear photo-integrated micro- and nano-periodic second-order susceptibility lattices with very small amplitudes which were preliminarily recorded using bi-chromatic powerful laser light in amorphous glass materials can be increased up to some orders of magnitude under the action of a simple coherent monochromatic radiation. The optical increase of the small lattices takes place independent of the polarization and direction of propagation of the optical amplifying radiation and is achieved at various wavelengths. The observed phenomenon is not be explained only by nonlinear wave interaction in medium and also may be related to the microscopic asymmetry processes of the optical transitions between local centers in an isotropic medium that leads to the appearance and growth of the all-optically induced small micro- and nano-periodic electrical charges separations inside the sample. Possible mechanisms that may be responsible for the observed effects in the studied phosphate glasses are discussed.

  9. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  10. A novel optical fibre doped with the nano-material as InP

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lee, Ly Guat; Zhang, Ru

    2007-11-01

    As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.

  11. Strong Plasmonic Enhancement of a Single Peridinin-Chlorophyll a-Protein Complex on DNA Origami-Based Optical Antennas.

    PubMed

    Kaminska, Izabela; Bohlen, Johann; Mackowski, Sebastian; Tinnefeld, Philip; Acuna, Guillermo P

    2018-02-27

    In this contribution, we fabricate hybrid constructs based on a natural light-harvesting complex, peridinin-chlorophyll a-protein, coupled to dimer optical antennas self-assembled with the help of the DNA origami technique. This approach enables controlled positioning of individual complexes at the hotspot of the optical antennas based on large, colloidal gold and silver nanoparticles. Our approach allows us to selectively excite the different pigments present in the harvesting complex, reaching a fluorescence enhancement of 500-fold. This work expands the range of self-assembled functional hybrid constructs for harvesting sunlight and can be further developed for other pigment-proteins and proteins.

  12. Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity.

    PubMed

    Brunstein, M; Braive, R; Hostein, R; Beveratos, A; Rober-Philip, I; Sagnes, I; Karle, T J; Yacomotti, A M; Levenson, J A; Moreau, V; Tessier, G; De Wilde, Y

    2009-09-14

    Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0+/-0.2 micros and 0.9+/-0.2 micros for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 micros and 4 micros respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.

  13. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  14. Detection Performance of Upgraded "Polished Panel" Optical Receiver Concept on the Deep-Space Network's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.

  15. Precision pointing compensation for DSN antennas with optical distance measuring sensors

    NASA Technical Reports Server (NTRS)

    Scheid, R. E.

    1989-01-01

    The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.

  16. Optical properties study of nano-composite filled D shape photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  17. Nonlinear electro-optic tuning of plasmonic nano-filter

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-03-01

    Efficient, easy and accurate tuning techniques to a plasmonic nano-filter are investigated. The proposed filter supports both blue and red shift in the resonance wavelength. By varying the refractive index with a very small change (in the order of 10-3), the resonance wavelength can be controlled efficiently. Using Pockels material, an electrical tuning to the response of the filter is demonstrated. In addition, the behavior of the proposed filter can be controlled optically using Kerr material. A new approach of multi-stage electro-optic controlling is introduced. By cascading two stages and filling the first stage with pockels material and the second stage with kerr material, the output response of the second stage can be controlled by controlling the output response of the first stage electrically. Due to the sharp response of the proposed filter, 60nm shift in the resonance wavelength per 10 voltages is achieved. This nano-filter has compact size, low loss, sharp response and wide range of tunabilty which is highly demandable in many biological and sensing applications.

  18. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    NASA Astrophysics Data System (ADS)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  19. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber

    DOE PAGES

    Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...

    2017-05-10

    One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less

  20. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.

    One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less

  1. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal-cell interactions.

    PubMed

    Darville, Nicolas; Saarinen, Jukka; Isomäki, Antti; Khriachtchev, Leonid; Cleeren, Dirk; Sterkens, Patrick; van Heerden, Marjolein; Annaert, Pieter; Peltonen, Leena; Santos, Hélder A; Strachan, Clare J; Van den Mooter, Guy

    2015-10-01

    Drug nano-/microcrystals are being used for sustained parenteral drug release, but safety and efficacy concerns persist as the knowledge of the in vivo fate of long-living particulates is limited. There is a need for techniques enabling the visualization of drug nano-/microcrystals in biological matrices. The aim of this work was to explore the potential of coherent anti-Stokes Raman scattering (CARS) microscopy, supported by other non-linear optical methods, as an emerging tool for the investigation of cellular and tissue interactions of unlabeled and non-fluorescent nano-/microcrystals. Raman and CARS spectra of the prodrug paliperidone palmitate (PP), paliperidone (PAL) and several suspension stabilizers were recorded. PP nano-/microcrystals were incubated with RAW 264.7 macrophages in vitro and their cellular disposition was investigated using a fully-integrated multimodal non-linear optical imaging platform. Suitable anti-Stokes shifts (CH stretching) were identified for selective CARS imaging. CARS microscopy was successfully applied for the selective three-dimensional, non-perturbative and real-time imaging of unlabeled PP nano-/microcrystals having dimensions larger than the optical lateral resolution of approximately 400nm, in relation to the cellular framework in cell cultures and ex vivo in histological sections. In conclusion, CARS microscopy enables the non-invasive and label-free imaging of (sub)micron-sized (pro-)drug crystals in complex biological matrices and could provide vital information on poorly understood nano-/microcrystal-cell interactions in future. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nano-stepper-driven optical shutter for applications in free-space micro-optics

    NASA Astrophysics Data System (ADS)

    Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.

    2002-09-01

    In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.

  3. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  4. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema

    Jim Schuck and Alice Egan

    2017-12-09

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  5. In Conversation with Jim Schuck: Nano-optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim Schuck and Alice Egan

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  6. Subreflector extension for improved efficiencies in Cassegrain antennas - GTD/PO analysis. [Geometrical Theory of Diffraction/Physical Optics

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1986-01-01

    Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.

  7. Optical Absorption Spectra of Nuclear Filters Modified by Deposition of Silver Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.

    2015-07-01

    Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.

  8. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  9. Hybrid RF / Optical Communication Terminal with Spherical Primary Optics for Optical Reception

    NASA Technical Reports Server (NTRS)

    Charles, Jeffrey R.; Hoppe, Daniel H.; Sehic, Asim

    2011-01-01

    Future deep space communications are likely to employ not only the existing RF uplink and downlink, but also a high capacity optical downlink. The Jet Propulsion Laboratory (JPL) is currently investigating the benefits of a ground based hybrid RF and deep space optical terminal based on limited modification of existing 34 meter antenna designs. The ideal design would include as large an optical aperture as technically practical and cost effective, cause minimal impact to RF performance, and remain cost effective even when compared to a separate optical terminal of comparable size. Numerous trades and architectures have been considered, including shared RF and optical apertures having aspheric optics and means to separate RF and optical signals, plus, partitioned apertures in which various zones of the primary are dedicated to optical reception. A design based on the latter is emphasized in this paper, employing spherical primary optics and a new version of a "clamshell" corrector that is optimized to fit within the limited space between the antenna sub-reflector and the existing apex structure that supports the subreflector. The mechanical design of the hybrid accommodates multiple spherical primary mirror panels in the central 11 meters of the antenna, and integrates the clamshell corrector and optical receiver modules with antenna hardware using existing attach points to the maximum extent practical. When an optical collection area is implemented on a new antenna, it is possible to design the antenna structure to accommodate the additional weight of optical mirrors providing an equivalent aperture of several meters diameter. The focus of our near term effort is to use optics with the 34 meter DSS-13 antenna at Goldstone to demonstrate spatial optical acquisition and tracking capability using an optical system that is temporarily integrated into the antenna.

  10. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

    PubMed

    Aieta, Francesco; Genevet, Patrice; Yu, Nanfang; Kats, Mikhail A; Gaburro, Zeno; Capasso, Federico

    2012-03-14

    Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array. © 2012 American Chemical Society

  11. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  12. A tunable plasmonic nano-antenna based on metal–graphene double-nanorods

    NASA Astrophysics Data System (ADS)

    Dong, Zhewei; Sun, Chen; Si, Jiangnan; Deng, Xiaoxu

    2018-05-01

    A tunable plasmonic antenna based on metal–graphene nanostructures is proposed in the mid-infrared region, composed of two identical gold nanorods placed on separated graphene sheets. The unidirectional side scattering of the plasmonic antenna achieved by the constructive and destructive interference of the localized surface plasmon resonances (LSPR) of the nanorods is investigated using finite-difference time-domain solutions and is theoretically analyzed based on a two point dipole model. The scattering directivity peak of the plasmonic antenna is red-shifted linearly with increasing refractive index of the environment. The scattering direction from the plasmonic antenna is switched actively by tuning the LSPRs of the nanorods with the Fermi energies of the separated graphene sheets. The refractive index sensitivity and active tunable scattering direction of the plasmonic antenna provides a promising application to manipulate light at the nanoscale in the fields of bio-sensing and optoelectronic devices.

  13. Particle-based Nano-Antennas at the Vis-NIR regime

    DTIC Science & Technology

    2013-11-01

    PSS (poly(3,4-ethylenedioxythiophene) :poly(styrene sulfonate) is then spin coated and dried at 110oC to form a 50nm buffer layer partially covering...dominant effect is that during the spin coating of the 50nm PEDOT buffer a residual very thin layer coated also the top 50nm part of the Au disks...antennas, capacitive versus conductive coupling, on-demand design (termed ‘popcorn’ antennas), broadband plasmonic metamaterials, and light

  14. High Throughput Optical Lithography by Scanning a Massive Array of Bowtie Aperture Antennas at Near-Field

    DTIC Science & Technology

    2015-11-03

    scale optical projection system powered by spatial light modulators, such as digital micro-mirror device ( DMD ). Figure 4 shows the parallel lithography ...1Scientific RepoRts | 5:16192 | DOi: 10.1038/srep16192 www.nature.com/scientificreports High throughput optical lithography by scanning a massive...array of bowtie aperture antennas at near-field X. Wen1,2,3,*, A. Datta1,*, L. M. Traverso1, L. Pan1, X. Xu1 & E. E. Moon4 Optical lithography , the

  15. Optical links in the angle-data assembly of the 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Nelson, M. D.; Schroeder, J. R.; Tubbs, E. F.

    1988-01-01

    In the precision-pointing mode the 70 meter antennas utilize an optical link provided by an autocollimator. In an effort to improve reliability and performance, commercial instruments were evaluated as replacement candidates, and upgraded versions of the existing instruments were designed and tested. The latter were selected for the Neptune encounter, but commercial instruments with digital output show promise of significant performance improvement for the post-encounter period.

  16. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    PubMed

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  17. Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Drijkoningen, S.; Karczewski, J.; Bogdanowicz, R.; Haenen, K.

    2016-01-01

    It is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of a linear antenna microwave plasma enhanced chemical vapor deposition system (LA MW CVD) is the fact that it allows to grow the diamond layers at low temperature (below 300°C) [1]. High quality nanocrystalline diamond (NCD) thin films with thicknesses ranging from 70 nm to 150 nm, were deposited on silicon, glass and optical fibre substrates [2]. Substrates pretreatment by dip-coating and spin coating process with a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) has been applied. During the deposition process the continuous mode of operation of the LA MW CVD system was used, which produces a continuous wave at a maximum power of 1.9 kW (in each antenna). Diamond films on optical fibres were obtained at temperatures below 350°C, providing a clear improvement of results compared to our earlier work [3]. The samples were characterized by scanning electron microscopy (SEM) imaging to investigate the morphology of the nanocrystalline diamond films. The film growth rate, film thickness, and optical properties in the VIS-NIR range, i.e. refractive index and extinction coefficient will be discussed based on measurements on reference quartz plates by using spectroscopic ellipsometry (SE).

  18. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

    2016-01-28

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm{sup 2} in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. Themore » wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.« less

  19. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  20. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    NASA Astrophysics Data System (ADS)

    Rofouie, P.; Pasini, D.; Rey, A. D.

    2015-09-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations' amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC's surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  1. Probing the electrical switching of a memristive optical antenna by STEM EELS

    PubMed Central

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-01-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052

  2. Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabaeian, Mohammad, E-mail: sabaiean@scu.ac.ir; Heydari, Mehdi; Ajamgard, Narges

    The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly,more » the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.« less

  3. Beyond dipolar regime in high-order plasmon mode bowtie antennas

    NASA Astrophysics Data System (ADS)

    Cuche, Aurélien; Viarbitskaya, Sviatlana; Kumar, Upkar; Sharma, Jadab; Arbouet, Arnaud; Girard, Christian; Dujardin, Erik

    2017-03-01

    Optical nanoantennas have shown their great potential for far-field to near-field coupling and for light confinement in subwavelength volumes. Here, we report on a multimodal configuration for bright and polarization-dependent bowtie antenna based on large and highly crystalline gold prisms. Each individual prism constituting an antenna arm sustains high order plasmon modes in the visible and near infrared range that allow for high field confinement and two-dimensional optical information propagation. We demonstrate by scanning two-photon luminescence (TPL) microscopy and numerical simulations based on the Green dyadic method that these bowtie antennas result in intense hot spots in different antenna locations as a function of the incident polarization. Finally, we quantify the local field enhancement above the antennas by computing the normalized total decay rate of a molecular system placed in the near field of the antenna gap as a function of the dipole orientation. We demonstrate the existence of a subtle relation between antenna geometry, polarization dependence and field enhancement. These new multimodal optical antennas are excellent far field to near field converter and they open the door for new strategies in the design of coplanar optical components for a wide range of applications including sensing, energy conversion or integrated information processing.

  4. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  5. High efficient optical remote sensing images acquisition for nano-satellite-framework

    NASA Astrophysics Data System (ADS)

    Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi

    2017-09-01

    It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.

  6. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    NASA Astrophysics Data System (ADS)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  7. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  8. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    PubMed

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  9. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp; Kan, Tetsuo; Yahiro, Masayuki

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillarsmore » at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.« less

  10. Antenna gain of actively compensated free-space optical communication systems under strong turbulence conditions.

    PubMed

    Juarez, Juan C; Brown, David M; Young, David W

    2014-05-19

    Current Strehl ratio models for actively compensated free-space optical communications terminals do not accurately predict system performance under strong turbulence conditions as they are based on weak turbulence theory. For evaluation of compensated systems, we present an approach for simulating the Strehl ratio with both low-order (tip/tilt) and higher-order (adaptive optics) correction. Our simulation results are then compared to the published models and their range of turbulence validity is assessed. Finally, we propose a new Strehl ratio model and antenna gain equation that are valid for general turbulence conditions independent of the degree of compensation.

  11. Optical Manipulation along Optical Axis with Polarization Sensitive Meta-lens.

    PubMed

    Markovich, Hen; Shishkin, Ivan; Hendler, Netta; Ginzburg, Pavel

    2018-06-27

    The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, where a precise control over mechanical path and stability is required. While conventional optical tweezers are based on bulky diffractive optical elements, developing compact integrable within a fluid cell trapping devices is highly demanded. Here, plasmonic polarization sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges to trap objects in lateral direction outside the depth of focus, bi-focal Fresnel meta-lens demonstrates the capability to manipulate a bead along 4 micrometers line. Additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled accurate mapping of optical potential via a particle tracking algorithm. Auxiliary micro- and nano- structures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including, transport, trapping and sorting, which are highly demanded in lab-on-a-chip applications and many others.

  12. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less

  13. Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna

    NASA Astrophysics Data System (ADS)

    Furukado, Yuya; Abe, Hiroshi; Hinakura, Yosuke; Baba, Toshihiko

    2018-02-01

    Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500-1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20-320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.

  14. Development of the Nano-HEB Array for Low-Background Far-IR Applications

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Pereverzev, Sergey V.; Olaya, David; Gershenson, Michael E.; Cantor, Robin; Kawamura, Jonathan H.; Day, Peter K.; Bumble, Bruce; LeDuc, Henry G.; Monacos, Steve P.; hide

    2010-01-01

    We present an overview of the recent progress made in the development of a far-IR array of ultrasensitive hot-electronnanobolometers (nano-HEB) made from thin titanium (Ti) films. We studied electrical noise, signal and noisebandwidth, single-photon detection, optical noise equivalent power (NEP), and a microwave SQUID (MSQUID) basedfrequency domain multiplexing (FDM) scheme. The obtained results demonstrate the very low electrical NEP down to1.5x10-(sup 2)? W/Hz(sup 1)/(sup 2) at 50 mK determined by the dominating phonon noise. The NEP increases with temperature as T(sup 3)reaching 10-(sup 1)? W/Hz(sup 1)/(sup 2) at the device critical temperature TC = 330-360 mK. Optical NEP = 8.6x10-(sup 1)? W/Hz(sup 1)/(sup 2) at 357mK and 1.4x10-(sup 1)? W/Hz(sup 1)/(sup 2) at 100 mK respectively, agree with thermal and electrical data. The optical couplingefficiency provided by a planar antenna was greater than 50%. Single 8-?m photons have been detected for the first timeusing a nano-HEB operating at 50-200 mK thus demonstrating a potential of these detectors for future photon-countingapplications in mid-IR and far-IR. In order to accommodate the relatively high detector speed ( ?s at 300 mK, 100 ?sat 100 mK), an MSQUID based FDM multiplexed readout with GHz carrier frequencies has been built. Both the readoutnoise 2 pA/Hz(sup 1)/(sup 2) and the bandwidth > 150 kHz are suitable for nano-HEB detectors.

  15. Integrated optical transceiver with electronically controlled optical beamsteering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less

  16. Experimental demonstration of conformal phased array antenna via transformation optics.

    PubMed

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  17. Experimental Evaluation of the "Polished Panel Optical Receiver" Concept on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.

  18. Foundations of Broadband Multifunctional Metamaterials Inspired by the Analogy of Formation

    DTIC Science & Technology

    2013-01-30

    25] S. Lim and M.F. Iskander, “ Design of a Dual-Band, Compact Yagi Antenna Over an EBG Ground Plane,’’ IEEE Antennas Wireless Propagat. Lett., vol. 8...For VHF and UHF frequency bands total EBG plus antenna thickness could be prohibitively large. This report presents a unique concept to design and...official Department of the Army position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT

  19. Progress of pancreatitis disease biomarker alpha amylase enzyme by new nano optical sensor.

    PubMed

    Attia, M S; Al-Radadi, Najlaa S

    2016-12-15

    A new nano optical sensor binuclear Pd-(2-aminothiazole) (urea), Pd(atz,ur) complex was prepared and characterized for the assessment of the activity of alpha amylase enzyme in urine and serum samples for early diagnosis of Pancreatitis disease. The assessment of alpha amylase activity is carried out by the quenching of the luminescence intensity of the nano optical sensor binuclear Pd(atz,ur) complex at 457nm by the 2-chloro-4-nitrophenol (2-CNP) which produced from the reaction of the enzyme with 2-chloro-4-nitrophenyl-α-d-maltotrioside (CNPG3) substrate. The remarkable quenching of the luminescence intensity at 457nm of nano Pd(atz,ur) doped in sol-gel matrix by various concentrations of the 2-CNP was successfully used as an optical sensor for the assessment of α-amylase activity. The calibration plot was achieved over the concentration range 8.5×10(-6) to 1.9×10(-9)molL(-1) 2-CNP with a correlation coefficient of (0.999) and a detection limit of (7.4×10(-10)molL(-1)). The method was used satisfactorily for the assessment of the α-amylase activity over activity range (3-321U/L) in different urine and serum samples of pancreatitis patients. The assessment of the alpha amylase biomarker by the proposed method increases its sensitivity (96.88%) and specificity (94.41%) for early diagnosis of pancreatitis diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  1. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    PubMed Central

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-01-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906

  2. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  3. Phase Retrieval for Radio Telescope and Antenna Control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce

    2011-01-01

    Phase-retrieval is a general term used in optics to describe the estimation of optical imperfections or "aberrations." The purpose of this innovation is to develop the application of phase retrieval to radio telescope and antenna control in the millimeter wave band. Earlier techniques do not approximate the incoherent subtraction process as a coherent propagation. This approximation reduces the noise in the data and allows a straightforward application of conventional phase retrieval techniques for radio telescope and antenna control. The application of iterative-transform phase retrieval to radio telescope and antenna control is made by approximating the incoherent subtraction process as a coherent propagation. Thus, for systems utilizing both positive and negative polarity feeds, this approximation allows both surface and alignment errors to be assessed without the use of additional hardware or laser metrology. Knowledge of the antenna surface profile allows errors to be corrected at a given surface temperature and observing angle. In addition to imperfections of the antenna surface figure, the misalignment of multiple antennas operating in unison can reduce or degrade the signal-to-noise ratio of the received or broadcast signals. This technique also has application to the alignment of antenna array configurations.

  4. Two-dimensional acousto-optic processor using circular antenna array with a Butler matrix

    NASA Astrophysics Data System (ADS)

    Lee, Jim P.

    1992-09-01

    A two-dimensional acousto-optic signal processor is shown to be useful for providing simultaneous spectrum analysis and direction finding of radar signals over an instantaneous field of view of 360 deg. A system analysis with emphasis on the direction-finding aspect of this new architecture is presented. The peak location of the optical pattern provides a direct measure of bearing, independent of signal frequency. In addition, the sidelobe levels of the pattern can be effectively reduced using amplitude weighting. Performance parameters, such as mainlobe beamwidth, peak-sidelobe level, and pointing error, are analyzed as a function of the Gaussian laser illumination profile and the number of channels. Finally, a comparison with a linear antenna array architecture is also discussed.

  5. The mobile Sousy-Doppler radar: Technical design and first results

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Schmidt, G.; Ruster, R.

    1983-01-01

    A mobile VHF Doppler system was developed. The electronic part is installed in a 20 ft container and tested using a special log periodic aerial to illuminate the 300 m dish. The system was extended by designing a mobile phased antenna array with finally 576 Yagi elements. The grouping of the single Yagis, the system of transmission lines, the phase shifters, the power splitters and the T/R switch are described. Results from the first two campaigns and a survey of future programs demonstrating the flexibility of this mobile system are summarized.

  6. Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.

    PubMed

    Zheng, Yuxin; Ryan, Jason; Hansen, Paul; Cheng, Yao-Te; Lu, Tsung-Ju; Hesselink, Lambertus

    2014-06-11

    Optical tweezers have been widely used to manipulate biological and colloidal material, but the diffraction limit of far-field optics makes focused beams unsuitable for manipulating nanoscale objects with dimensions much smaller than the wavelength of light. While plasmonic structures have recently been successful in trapping nanoscale objects with high positioning accuracy, using such structures for manipulation over longer range has remained a significant challenge. In this work, we introduce a conveyor belt design based on a novel plasmonic structure, the resonant C-shaped engraving (CSE). We show how long-range manipulation is made possible by means of handoff between neighboring CSEs, and we present a simple technique for controlling handoff by rotating the polarization of laser illumination. We experimentally demonstrate handoff between a pair of CSEs for polystyrene spheres 200, 390, and 500 nm in diameter. We then extend this technique and demonstrate controlled particle transport down a 4.5 μm long "nano-optical conveyor belt."

  7. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  8. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  9. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  10. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  11. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE PAGES

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.; ...

    2017-03-16

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  12. Molecular diodes in optical rectennas

    NASA Astrophysics Data System (ADS)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  13. Aerial tracking of radio-marked white-tailed tropicbirds over the Caribbean Sea

    USGS Publications Warehouse

    Fuller, M.R.; Obrecht, H.H.; Pennycuick, C.J.; Schaffner, F.C.; Amlaner, Charles J.

    1989-01-01

    We radio-marked nesting white-tailed tropicbirds at Culebra National Wildlife Refuge, Puerto Rico, and tracked them from a Cessna 182 during flights over the open sea. Locations of the birds were determined using standard aerial telemetry techniques for side-facing Yagi antennas. We used strut-mounted, 4-element Yagi antennas connected to a switchbox and scanning receiver. By recording bearing and distance from at least 1 of 3 aeronautical navigation beacons, the position of the aircraft and the bird could be estimated with an error of about 2 km. On several occasions we plotted the general heading of a bird and then relocated and tracked the same bird on the following day. Our method of aerial tracking and navigation was useful for tracking birds over the sea to at least 116 km from the breeding colony

  14. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    PubMed Central

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  15. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    PubMed

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  16. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    NASA Astrophysics Data System (ADS)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  17. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  18. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    PubMed Central

    Vasconcelos, Helena

    2018-01-01

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108

  19. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.

    PubMed

    de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis

    2018-04-20

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  20. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  1. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  2. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  3. Optical study of xanthene-type dyes in nano-confined liquid

    NASA Astrophysics Data System (ADS)

    Mahdi Shavakandi, Seyyed; Alizadeh, Khalil; Sharifi, Soheil; Marti, Othmar; Amirkhani, Masoud

    2017-04-01

    The optical activity of dye molecules in different environments is of great interest for many applications such as laser system or biological imaging. We investigate the fluorescence and absorption spectrum of nano-confined xanthene dyes (RhB and fluorescein sodium salt) in a two-phase liquid. Each show very distinct optical behavior in the water phase of a reverse microemulsion. Their optical properties such as absorption and fluorescence for different concentrations of dye and nanodroplets are investigated. We show that for the same concentration of dye in the microemulsion the peak of fluorescence intensity is varied by altering the concentration of nanodroplets. However, the trend of the change is widely different depending on the hydrophobicity of dyes. Quantum-mechanical second order perturbation theory is used to calculate the ratio of dipole moments in the ground and excited states, which accounts for the Stokes shift in fluorescence peak. Photon correlation spectroscopy is employed to check the trace of the dye in the oil phase of the microemulsion.

  4. Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid

    PubMed Central

    Golovin, Andrii B.; Xiang, Jie; Park, Heung-Shik; Tortora, Luana; Nastishin, Yuriy A.; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2011-01-01

    In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for application in devices such as an “optical invisibility cloak” and an “optical black hole”. We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1. PMID:28879997

  5. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  6. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    PubMed

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  7. Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices

    NASA Astrophysics Data System (ADS)

    Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.

    2018-05-01

    Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.

  8. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  9. Spatial and temporal temperature distribution optimization for a geostationary antenna

    NASA Technical Reports Server (NTRS)

    Tsuyuki, G.; Miyake, R.

    1992-01-01

    The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.

  10. Fabrication and Operation of a Nano-Optical Conveyor Belt

    PubMed Central

    Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus

    2015-01-01

    The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed. PMID:26381708

  11. Fabrication and Operation of a Nano-Optical Conveyor Belt.

    PubMed

    Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus

    2015-08-26

    The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.

  12. Radio polarisation measurements of meteor trail echoes with BRAMS

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Anciaux, M.; Calders, S.; De Keyser, J.; Gamby, E.

    2012-04-01

    BRAMS, the Belgian RAdio Meteor Stations, is a network of radio receiving stations using forward scatter techniques to detect and characterize meteors. The transmitter is a dedicated beacon located in Dourbes in the south-west of Belgium. It emits towards the zenith a purely sinusoidal wave circularly polarised, at a frequency of 49.97 MHz and with a power of 150 watts. The main goals of the project are to compute meteoroid flux rates and trajectories. Most receiving stations are using a 3 element Yagi antenna and are therefore only sensitive to one polarisation. The station located in Uccle has also a crossed 3 element Yagi antenna and therefore allows measurements of horizontal and vertical polarisations. We present the preliminary radio polarisation measurements of meteor trail echoes and compare them with the theoretical predictions of Jones & Jones (1991) for oblique scattering of radio waves from meteor trails.

  13. Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kechen; Li, Jun; Lin, Chensheng

    2004-04-21

    The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.

  14. Advances in optoplasmonic sensors - combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    NASA Astrophysics Data System (ADS)

    Xavier, Jolly; Vincent, Serge; Meder, Fabian; Vollmer, Frank

    2018-01-01

    Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  15. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    NASA Astrophysics Data System (ADS)

    Zia, Shahneel; Banerjee, Anirudh

    2016-05-01

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  16. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu

    2016-05-06

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  17. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    PubMed

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-22

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).

  18. Wireless thin film transistor based on micro magnetic induction coupling antenna

    PubMed Central

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT). PMID:26691929

  19. Wireless thin film transistor based on micro magnetic induction coupling antenna

    NASA Astrophysics Data System (ADS)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  20. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    1998-11-01

    Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.

  1. A dual frequency microstrip antenna for Ka band

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Baddour, M. F.

    1985-01-01

    For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.

  2. Phased-Array Antenna With Optoelectronic Control Circuits

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.

    1995-01-01

    Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.

  3. Infrared technology for satellite power conversion. [antenna arrays and bolometers

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.

    1984-01-01

    Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.

  4. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    NASA Technical Reports Server (NTRS)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal

  5. Optical gain in type–II InGaAs/GaAsSb quantum well nano-heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirmal, H. K.; Yadav, Nisha; Lal, Pyare

    2015-08-28

    In this paper, we have simulated optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain in the heterostructure can be achieved at the lasing wavelength ~ 1.95 µm (SWIR region) and at corresponding energy ~more » 0.635 eV.« less

  6. Optical antenna gain. III - The effect of secondary element support struts on transmitter gain

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1976-01-01

    The effect of a secondary-element spider support structure on optical antenna transmitter gain is analyzed. An expression describing the influence of the struts on the axial gain, in both the near and far fields, is derived as a function of the number of struts and their width. It is found that, for typical systems, the struts degrade the on-axis gain by less than 0.4 dB, and the first side-lobe level is not increased significantly. Contour plots have also been included to show the symmetry of the far-field distributions for three- and four-support members.

  7. Antenna reconfiguration verification and validation

    NASA Technical Reports Server (NTRS)

    Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor); Carlson, Douglas R. (Inventor); Drexler, Jerome P. (Inventor)

    2009-01-01

    A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points.

  8. Quantum optics and nano-optics teaching laboratory for the undergraduate curriculum: teaching quantum mechanics and nano-physics with photon counting instrumentation

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.

    2017-08-01

    At the Institute of Optics, University of Rochester (UR), we have adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular 3-hour experiments and 20-min-demonstrations based on technical elective, 4-credit-hour laboratory course "Quantum Optics and Nano-Optics Laboratory" (OPT 253/OPT453/PHY434), that were incorporated into a number of required courses ranging from freshman to senior level. Rochester Monroe Community College (MCC) students also benefited from this facility that was supported by four NSF grants. MCC students carried out two 3-hour labs on photon quantum mechanics at the UR. Since 2006, total 566 students passed through the labs with lab reports submission (including 144 MCC students) and more than 250 students through lab demonstrations. In basic class OPT 253, four teaching labs were prepared on generation and characterization of entangled and single (antibunched) photons demonstrating the laws of quantum mechanics: (1) entanglement and Bell's inequalities, (2) single-photon interference (Young's double slit experiment and Mach-Zehnder interferometer), (3) confocal microscope imaging of single-emitter (colloidal nanocrystal quantum dots and NV-center nanodiamonds) fluorescence within photonic (liquid crystal photonic bandgap microcavities) or plasmonic (gold bowtie nanoantennas) nanostructures, (4) Hanbury Brown and Twiss setup. Fluorescence antibunching from nanoemitters. Students also carried out measurements of nanodiamond topography using atomic force microscopy and prepared photonic bandgap materials from cholesteric liquid crystals. Manuals, student reports, presentations, lecture materials and quizzes, as well as some NSF grants' reports are placed on a website http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ . In 2011 UR hosted 6 professors from different US universities in three-days training of these experiments participating in the Immersion Program of the Advanced

  9. The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.

    2013-12-01

    One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near

  10. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    NASA Astrophysics Data System (ADS)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  11. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that ismore » capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.« less

  12. A generalized method for determining radiation patterns of aperture antennas and its application to reflector antennas. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Paknys, J. R.

    1982-01-01

    The reflector antenna may be thought of as an aperture antenna. The classical solution for the radiation pattern of such an antenna is found by the aperture integration (AI) method. Success with this method depends on how accurately the aperture currents are known beforehand. In the past, geometrical optics (GO) has been employed to find the aperture currents. This approximation is suitable for calculating the main beam and possibly the first few sidelobes. A better approximation is to use aperture currents calculated from the geometrical theory of diffraction (GTD). Integration of the GTD currents over and extended aperture yields more accurate results for the radiation pattern. This approach is useful when conventional AI and GTD solutions have no common region of validity. This problem arises in reflector antennas. Two dimensional models of parabolic reflectors are studied; however, the techniques discussed can be applied to any aperture antenna.

  13. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.

    PubMed

    Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael

    2015-07-01

    A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.

  14. Analysis of a dual-reflector antenna system using physical optics and digital computers

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1972-01-01

    The application of physical-optics diffraction theory to a deployable dual-reflector geometry is discussed. The methods employed are not restricted to the Conical-Gregorian antenna, but apply in a general way to dual and even multiple reflector systems. Complex vector wave methods are used in the Fresnel and Fraunhofer regions of the reflectors. Field amplitude, phase, polarization data, and time average Poynting vectors are obtained via an IBM 360/91 digital computer. Focal region characteristics are plotted with the aid of a CalComp plotter. Comparison between the GSFC Huygens wavelet approach, JPL measurements, and JPL computer results based on the near field spherical wave expansion method are made wherever possible.

  15. The First Geodetic VLBI Field Test of LIFT: A 550-km-long Optical Fiber Link for Remote Antenna Synchronization

    NASA Astrophysics Data System (ADS)

    Perini, Federico; Bortolotti, Claudio; Roma, Mauro; Ambrosini, Roberto; Negusini, Monia; Maccaferri, Giuseppe; Stagni, Matteo; Nanni, Mauro; Clivati, Cecilia; Frittelli, Matteo; Mura, Alberto; Levi, Filippo; Zucco, Massimo; Calonico, Davide; Bertarini, Alessandra; Artz, Thomas

    2016-12-01

    We present the first field test of the implementation of a coherent optical fiber link for remote antenna synchronization realized in Italy between the Italian Metrological Institute (INRIM) and the Medicina radio observatory of the National Institute for Astrophysics (INAF). The Medicina VLBI antenna participated in the EUR137 experiment carried out in September 2015 using, as reference systems, both the local H-maser and a remote H-maser hosted at the INRIM labs in Turin, separated by about 550 km. In order to assess the quality of the remote clock, the observed radio sources were split into two sets, using either the local or the remote H-maser. A system to switch automatically between the two references was integrated into the antenna field system. The observations were correlated in Bonn and preliminary results are encouraging since fringes were detected with both time references along the full 24 hours of the session. The experimental set-up, the results, and the perspectives for future radio astronomical and geodetic experiments are presented.

  16. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  17. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    DOE PAGES

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; ...

    2017-02-14

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement withmore » the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.« less

  18. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  19. Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes.

    PubMed

    Rauf, Sajid; Hayat Nawaz, Muhammad Azhar; Badea, Mihaela; Marty, Jean Louis; Hayat, Akhtar

    2016-11-17

    Diabetes is a rapidly growing disease that can be monitored at an individual level by controlling the blood glucose level, hence minimizing the negative impact of the disease. Significant research efforts have been focused on the design of novel and improved technologies to overcome the limitations of existing glucose analysis methods. In this context, nanotechnology has enabled the diagnosis at the single cell and molecular level with the possibility of incorporation in advanced molecular diagnostic biochips. Recent years have witnessed the exploration and synthesis of various types of nanomaterials with enzyme-like properties, with their subsequent integration into the design of biomimetic optical sensors for glucose monitoring. This review paper will provide insights on the type, nature and synthesis of different biomimetic nanomaterials. Moreover, recent developments in the integration of these nanomaterials for optical glucose biosensing will be highlighted, with a final discussion on the challenges that must be addressed for successful implementation of these nano-devices in the clinical applications is presented.

  20. Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes

    PubMed Central

    Rauf, Sajid; Hayat Nawaz, Muhammad Azhar; Badea, Mihaela; Marty, Jean Louis; Hayat, Akhtar

    2016-01-01

    Diabetes is a rapidly growing disease that can be monitored at an individual level by controlling the blood glucose level, hence minimizing the negative impact of the disease. Significant research efforts have been focused on the design of novel and improved technologies to overcome the limitations of existing glucose analysis methods. In this context, nanotechnology has enabled the diagnosis at the single cell and molecular level with the possibility of incorporation in advanced molecular diagnostic biochips. Recent years have witnessed the exploration and synthesis of various types of nanomaterials with enzyme-like properties, with their subsequent integration into the design of biomimetic optical sensors for glucose monitoring. This review paper will provide insights on the type, nature and synthesis of different biomimetic nanomaterials. Moreover, recent developments in the integration of these nanomaterials for optical glucose biosensing will be highlighted, with a final discussion on the challenges that must be addressed for successful implementation of these nano-devices in the clinical applications is presented. PMID:27869658

  1. Antennae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 7' x 7' on the sky of the interacting galaxies NGC 4038 and NGC 4039, better known as the Antennae, or Ring Tail galaxies. The two galaxies are engaged in a tug-of-war as they collide. The mutual gravitation between them is working to distort each spiral galaxy's appearance as the two merge. The interaction is evidently impetus for an intense burst of new star formation, as can be seen from the many infrared-bright knots and bright galactic nuclei. Compare the 2MASS view of this system with that obtained by the Hubble Space Telescope in the optical. Many of the same features are seen, although 2MASS is able to peer through much of the dust seen in the galaxies' disks. The galaxy light looks smoother. Also, in the near-infrared the bright knots of star formation are likely highlighted by the light of massive red supergiant stars. The much more extended 'tidal tails,' which give the Antennae their name, are quite faint in the 2MASS image mosaic.

  2. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis

    PubMed Central

    Schaub, Franz X; Reza, Md Shamim; Flaveny, Colin A; Li, Weimin; Musicant, Adele M; Hoxha, Sany; Guo, Min; Cleveland, John L; Amelio, Antonio L

    2015-01-01

    Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We report the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer (BRET) that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, including improved intensity, sensitivity and durable spectral properties, thereby dramatically reducing image acquisition times and permitting highly sensitive in vivo imaging. Notably, the self-illuminating and bi-functional nature of these LumiFluor reporters enables greatly improved spatio-temporal monitoring of very small numbers of tumor cells via in vivo optical imaging and also allows the isolation and analyses of single cells by flow cytometry. Thus, LumiFluor reporters are inexpensive, robust, non-invasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes. PMID:26424696

  3. Tailoring the chirality of light emission with spherical Si-based antennas.

    PubMed

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  4. Optical nano artifact metrics using silicon random nanostructures

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsutomu; Yoshida, Naoki; Nishio, Shumpei; Hoga, Morihisa; Ohyagi, Yasuyuki; Tate, Naoya; Naruse, Makoto

    2016-08-01

    Nano-artifact metrics exploit unique physical attributes of nanostructured matter for authentication and clone resistance, which is vitally important in the age of Internet-of-Things where securing identities is critical. However, expensive and huge experimental apparatuses, such as scanning electron microscopy, have been required in the former studies. Herein, we demonstrate an optical approach to characterise the nanoscale-precision signatures of silicon random structures towards realising low-cost and high-value information security technology. Unique and versatile silicon nanostructures are generated via resist collapse phenomena, which contains dimensions that are well below the diffraction limit of light. We exploit the nanoscale precision ability of confocal laser microscopy in the height dimension; our experimental results demonstrate that the vertical precision of measurement is essential in satisfying the performances required for artifact metrics. Furthermore, by using state-of-the-art nanostructuring technology, we experimentally fabricate clones from the genuine devices. We demonstrate that the statistical properties of the genuine and clone devices are successfully exploited, showing that the liveness-detection-type approach, which is widely deployed in biometrics, is valid in artificially-constructed solid-state nanostructures. These findings pave the way for reasonable and yet sufficiently secure novel principles for information security based on silicon random nanostructures and optical technologies.

  5. Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation.

    PubMed

    Jiang, Min; Wang, Guanghui; Jiao, Wenxiang; Ying, Zhoufeng; Zou, Ningmu; Ho, Ho-Pui; Sun, Tianyu; Zhang, Xuping

    2017-01-15

    We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.

  6. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  7. Continuous zoom antenna for mobile visible light communication.

    PubMed

    Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu

    2015-11-10

    In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6  mm. Finally, we established an indoor VLC system model in a room the size of 5  m ×5  m ×3  m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.

  8. Radio antennas

    NASA Astrophysics Data System (ADS)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  9. Optical modelling of far-infrared astronomical instrumentation exploiting multimode horn antennas

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Créidhe; Murphy, J. Anthony; Mc Auley, Ian; Wilson, Daniel; Gradziel, Marcin L.; Trappe, Neil; Cahill, Fiachra; Peacocke, T.; Savini, G.; Ganga, K.

    2014-07-01

    In this paper we describe the optical modelling of astronomical telescopes that exploit bolometric detectors fed by multimoded horn antennas. In cases where the horn shape is profiled rather than being a simple cone, we determine the beam at the horn aperture using an electromagnetic mode-matching technique. Bolometers, usually placed in an integrating cavity, can excite many hybrid modes in a corrugated horn; we usually assume they excite all modes equally. If the waveguide section feeding the horn is oversized these modes can propagate independently, thereby increasing the throughput of the system. We use an SVD analysis on the matrix that describes the scattering between waveguide (TE/TM) modes to recover the independent orthogonal fields (hybrid modes) and then propagate these to the sky independently where they are added in quadrature. Beam patterns at many frequencies across the band are then added with a weighting appropriate to the source spectrum. Here we describe simulations carried out on the highest-frequency (857-GHz) channel of the Planck HFI instrument. We concentrate in particular on the use of multimode feedhorns and consider the effects of possible manufacturing tolerances on the beam on the sky. We also investigate the feasibility of modelling far-out sidelobes across a wide band for electrically large structures and bolometers fed by multi-mode feedhorns. Our optical simulations are carried out using the industry-standard GRASP software package.

  10. Enhanced optical and electrochemical properties of polyaniline/cobalt oxide nano composite

    NASA Astrophysics Data System (ADS)

    Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Devendrappa, H.

    2018-05-01

    Polyaniline and its composites at different wt. % of Cobalt oxide nano (PDC1, PDC2 and PDC5) were prepared by in-situ chemical reaction method The optical property was carried out using UV-Vis. Absorption Spectroscopy. The electrochemical property like cyclic voltammetry and galvonostatic charging-discharging was carried out for PANI and PDC nanocomposite electrode materials. A specific capacitance of 212.08 F/g and 336.41 F/g with scan rates 100 and 200 mV/s at 0.4 A/g current density respectively. These results are suggesting PDC composite is a prominent candidate for supercapacitor properties applications.

  11. A new approach for shaping of dual-reflector antennas

    NASA Technical Reports Server (NTRS)

    Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.

    1987-01-01

    The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.

  12. Broadband standard dipole antenna for antenna calibration

    NASA Astrophysics Data System (ADS)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  13. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects.

    PubMed

    Zou, Longfang; Cryan, Martin; Klemm, Maciej

    2014-10-06

    The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.

  14. The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Chen, Jiahong; Zhao, Wenhua

    2016-02-01

    The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.

  15. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms thatmore » had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.« less

  16. Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna

    NASA Astrophysics Data System (ADS)

    Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.

    2018-03-01

    Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.

  17. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  18. Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics

    NASA Astrophysics Data System (ADS)

    Jin, Yingdi; Li, Xingxing; Yang, Jinlong

    A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.

  19. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    PubMed

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  20. Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Aditya, Rachakonda A. N. S.; Thampy, Anand Sreekantan

    2018-05-01

    Field enhanced graphene based dual hexagonal ring optical antenna has been designed in IR regime. Outcomes of hexagonal rings with gold and graphene materials and their effect has been studied and analyzed. Graphene based structures are found to have better and enhanced results as compared to that of gold. In addition, a two fold increase in bandwidth (∼30 THz) and cross-section (∼6.00E+06 nm2) has been observed in case of graphene. Field patterns for various tip/corner curvatures are simulated and localized/regional field patterns are justified. The effect of inter ring spacing on absorption cross section has been studied for every 10 nm increase in spacing. This absorption enhancement in addition to field localization makes the current structure feasible for tip enhanced spectroscopy.

  1. Defect-free fabrication of nano-disk and nano-wire by fusion of bio-template and neutral beam etching

    NASA Astrophysics Data System (ADS)

    Samukawa, S.; Noda, Shuichi; Higo, Akio; Yasuda, Manabu; Wada, Kazumi

    2016-11-01

    We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.

  2. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  3. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    PubMed

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  4. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  5. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  6. Chromium doped nano-phase separated yttria-alumina-silica glass based optical fiber preform: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Bysakh, Sandip; Kir'yanov, Alexandar; Paul, Mukul Chandra

    2015-06-01

    Transition metal (TM) doping in silica core optical fiber is one of the research area which has been studied for long time and Chromium (Cr) doping specially attracts a lot of research interest due to their broad emission band covering U, C and L band with many potential application such as saturable absorber or broadband amplifier etc. This paper present fabrication of Cr doped nano-phase separated silica fiber within yttria-alumina-silica core glass through conventional Modified Chemical Vapor Deposition (MCVD) process coupled with solution doping technique along with different material and optical characterization. For the first time scanning electron microscope (SEM) / energy dispersive X-ray (EDX) analysis of porous soot sample and final preform has been utilized to investigate incorporation mechanism of Crions with special emphasis on Cr-species evaporation at different stages of fabrication. We also report that optimized annealing condition of our fabricated preform exhibited enhanced fluorescence emission and a broad band within 550- 800 nm wavelength region under pumping at 532 nm wavelength due to nano-phase restructuration.

  7. Aligned Layers of Silver Nano-Fibers.

    PubMed

    Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov

    2012-02-01

    We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  8. Nano-Bio Quantum Technology for Device-Specific Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  9. Hardening surveillance illumination using aircraft antennas

    NASA Astrophysics Data System (ADS)

    Donohoe, J. P.; Taylor, C. D.

    1990-06-01

    Aircraft maintenance depots and main operating bases need to be able to perform quick checks of the electromagnetic pulse (EMP) hardness of their systems without removing them from service for any length of time. Preliminary tests have shown that the onboard HF antennas of the EMP Test-Bed Aircraft (EMPTAC) may be capable of providing the HF excitation required to effectively monitor the EMP hardness of aircraft systems. The surface current and charge distributions on the EMPTAC which result from swept frequency excitation of the HF radio antennas are computed over a range of 0.5 to 100 MHz using various antenna drive configurations. The computational analysis is performed by using two separate frequency-dependent techniques: the method-of-moments technique and the physical optics approximation. These calculations are then compared with the excitation provided from an overhead plane wave and with measured data from EMPTAC tests.

  10. A Study on the Applications of Quantum Optical Coherence to Nano-Optics

    NASA Astrophysics Data System (ADS)

    Hakami, Jabir Wali

    Optically controlled dipole-dipole interaction at submicrometers and subwavelength scales leads to many interesting phenomenon and remarkable potential applications in quantum optics, condensed matter physics, and today's micro-devices. In this dissertation, we study the applications of quantum optical coherence to nano-optics in the following systems and aspects. On the one hand, chiral metamaterials has been previously reported as excellent candidates to realize both attractive and repulsive Casimir forces, where the existence of a repulsive Casimir force depends upon the strength of the chirality. On the other hand, nanoscale integration of metal nanoparticles and semiconductors is particularly interesting because the strengths of both materials are combined in such a hybrid system. In the first part of this work, we proposed a technical scheme to coherently control of the Casimir interaction energy with two identical chirality mediums. We took explicit caution regarding the requirements of passivity and causal response of the materials, since these requirements are essential for the application of the Lifshitz formula. The rare-earth metals' atomic species, for instance, dysprosium, is proposed as an applicable medium for the forthcoming studies of possible experimental implementation of our technique. Secondly, we fully investigated the coherent control of the quantum optical properties of spontaneous emission spectra of a semiconductor quantum dot coupled to a metallic nanoparticle. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. In

  11. Study and verification of multibeam ability for a new VHF-radar in northern Norway

    NASA Astrophysics Data System (ADS)

    Renkwitz, Toralf; Singer, Werner; Latteck, Ralph

    2010-05-01

    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn (IAP) has been operating the ALWIN MST radar system at 53.5 MHz on the North-Norwegian island Andoya for more than 10 years. The antenna array of 144 Yagi antennas has been used to form a 6 degree wide beam on transmission and reception. With this radar, the characteristics of Polar Mesospheric Summer Echoes (PMSE) have been investigated with high time resolution. For future studies of horizontal structures of winds, waves, turbulence and PMSE, the IAP is currently building a new advanced VHF-Radar to replace ALWIN. For this purpose an additional module (Butler matrix) for the receiver of this VHF-Radar has been built which allows the generation of multiple beams in azimuth and zenith angles for simultaneous observations. In 2009 IAP started to build the successor system of the ALWIN radar, called MAARSY (Middle Atmosphere Alomar Radar SYstem). In the first step this new system will consist of a phased array of 217 individual 3-element Yagi antennas arranged in an equilateral grid structure and the same amount of transceiver modules. Furthermore 64 Yagi antennas of the former ALWIN antenna array are still available for reception (ALWIN64). On reception the Butler matrix will be used to form simultaneously 16 beams in hardware with the ALWIN64 array, while for transmission an equal illumination with the MAARSY array will be generated. A Butler matrix is a reciprocal structure composed of half-power 90° hybrid couplers and phase shifters, first described by Butler [1961]. In this structure the total number of available beams is determined by the amount of independent receivers and antenna feeds. A 4-Port Butler matrix simultaneously generates 4 individual in- and outputs. For the current 16 channel radar receiver a 16-Port Butler matrix was built by the concatenation of 8x 4-Port Butler matrices. Using this 16-Port Butler matrix with the ALWIN64 array 16 individual beams with a beam width of approximately

  12. Nano-optical imaging of WS e 2 waveguide modes revealing light-exciton interactions

    DOE PAGES

    Fei, Z.; Scott, M. E.; Gosztola, D. J.; ...

    2016-08-01

    We report on a nano-optical imaging study of WSe 2 thin flakes with scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WSe 2. By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WSe 2. We found that all the modes interact strongly with WSe 2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies,more » on the other hand, these modes are strongly damped due to adjacent B excitons or band-edge absorptions. Lastly, the mode-shifting phenomena are consistent with polariton formation in WSe 2.« less

  13. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  14. Array of Laminated Waveguides for Implementation in LTCC Technology

    DTIC Science & Technology

    2006-11-01

    Novembre 2004, pp 581-589. [ 13 ] Clénet, M., “Study of a Ka-Band Yagi-like antenna array buried in LTCC material”, JINA, 12-14 November 2002, Nice...public release, distribution unlimited 13 . SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16...2.3.1 Excitation coefficients ....................................................................... 13 2.3.2 Boresight radiation patterns

  15. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform

    NASA Astrophysics Data System (ADS)

    Dash, Aneesh; Selvaraja, S. K.; Naik, A. K.

    2018-02-01

    We present a scheme for on-chip optical transduction of strain and displacement of Graphene-based Nano-Electro-Mechanical Systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: Mach-Zehnder Interferometer(MZI), micro-ring resonator and ring-loaded MZI. An index-sensing based technique using a Mach-Zehnder Interferometer loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/sqrt(Hz), and 6.5E-6 %/sqrt(Hz) for displacement and strain respectively. Though any phase sensitive integrated photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  16. MAARSY: The new MST radar on Andøya—System description and first results

    NASA Astrophysics Data System (ADS)

    Latteck, R.; Singer, W.; Rapp, M.; Vandepeer, B.; Renkwitz, T.; Zecha, M.; Stober, G.

    2012-02-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the North-Norwegian island Andøya is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangle grid forming a circular aperture of approximately 6300 m2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output up to 2 kW. This arrangement provides a very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6° allowing classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. The installation of the antenna array was completed in August 2009. The radar control and data acquisition hardware as well as an initial expansion stage of 196 transceiver modules was installed in spring 2010 and upgraded to 343 transceiver modules in November 2010. The final extension to 433 transceiver modules has recently been completed in May 2011. Beside standard observations of tropospheric winds and Polar Mesosphere Summer Echoes, the first multi-beam experiments using up to 97 quasi-simultaneous beams in the mesosphere have been carried out in 2010 and 2011. These results provide a first insight into the horizontal variability of polar mesosphere summer and winter echoes with time resolutions between 3 and 9 minutes. In addition, first meteor head echo observations were conducted during the Geminid meteor shower in December 2010.

  17. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-09-08

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

  18. Precision Antenna Measurement System (PAMS) Engineering Services

    DTIC Science & Technology

    1978-04-01

    8217) = receiving antenna gain for vertical polarization. The total direct signal power is Following Beck /narn and Spizzachino , the specular component...method may be valid for the problem. Very often, however, the physical optics 92 approach baaed on a solution of the wave equation will have to

  19. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  20. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    PubMed

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  1. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.

    1991-01-01

    The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.

  2. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  3. Quadratic Electro-Optic Effect and Electroabsorption in a Novel Nano-Optical Material based on the Nonconjugated Conductive Polymer, Poly(ethylenepyrrolediyl) Derivative

    NASA Astrophysics Data System (ADS)

    Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.

    2005-03-01

    We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).

  4. Optical spring effect in nanoelectromechanical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Feng; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg; Du, Yu

    2014-08-11

    In this Letter, we report a hybrid system consisting of nano-optical and nano-mechanical springs, in which the optical spring effect works to adjust the mechanical frequency of a nanoelectromechanical systems resonator. Nano-scale folded beams are fabricated as the mechanical springs and double-coupled one-dimensional photonic crystal cavities are used to pump the “optical spring.” The dynamic characteristics of this hybrid system are measured and analyzed at both low and high input optical powers. This study leads the physical phenomenon of optomechanics in complex nano-opto-electro-mechanical systems (NOEMS) and could benefit the future applications of NOEMS in chip-level communication and sensing.

  5. Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate

    NASA Astrophysics Data System (ADS)

    Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin

    2015-06-01

    The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.

  6. Analysis of dual-frequency MEMS antenna using H-MRTD method

    NASA Astrophysics Data System (ADS)

    Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong

    2004-10-01

    For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.

  7. Phased array-fed antenna configuration study

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.

  8. Resonant antenna probes for tip-enhanced infrared near-field microscopy.

    PubMed

    Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer

    2013-03-13

    We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

  9. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  10. MAARSY - The new MST radar on Andøya: System description and first results

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner; Renkwitz, Toralf

    2012-07-01

    In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}) on the North-Norwegian island Andøya. MAARSY is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangular grid forming a circular aperture of approximately 6300 m^2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW. This arrangement provides very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6°. The system allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. Standard observations of tropospheric winds and polar mesosphere summer echoes started immediately with an initial stage of expansion in spring 2010. Meteor head echo experiments and 3D observations of polar mesospheric winter echoes were conducted after an upgrade of the system in December 2010. Multi-beam experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during campaigns in summer 2011 with the completed system. We present a system description of MAARSY including beam pattern validation and show initial results from various campaigns obtained during the first 2 years of operation.

  11. High pressure effect on optical gain in type-II InGaAs/GaAsSb nano-heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Nisha; Nirmal, H. K.; Yadav, Rashmi

    This paper reports the simulation of optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain of the order of ∼ 9000 /cm in the heterostructure can be achieved at the lasing wavelength ∼ 1.95 µmmore » (SWIR region). The application of high pressure (2 and 5 GPa) on the structure shows that the gain as well as lasing wavelength both approach to higher values. Thus, the structure can be tuned externally by the application of high pressure.« less

  12. A carbon nanotube optical rectenna

    NASA Astrophysics Data System (ADS)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  13. A carbon nanotube optical rectenna.

    PubMed

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L; Cola, Baratunde A

    2015-12-01

    An optical rectenna--a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current--was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ∼2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (∼10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  14. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform.

    PubMed

    Dash, Aneesh; Selvaraja, S K; Naik, A K

    2018-02-15

    We present a scheme for on-chip optical transduction of strain and displacement of graphene-based nano-electro-mechanical systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: the Mach-Zehnder interferometer (MZI), the micro-ring resonator, and the ring-loaded MZI. An index sensing based technique using an MZI loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28  fm/Hz and 6.5×10 -6 %/Hz for displacement and strain, respectively. Though any phase-sensitive integrated-photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  15. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    NASA Astrophysics Data System (ADS)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  16. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  17. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  18. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  19. Transmitter and receiver antenna gain analysis for laser radar and communication systems

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1973-01-01

    A comprehensive and fairly self-contained study of centrally obscured optical transmitting and receiving antennas is presented and is intended for use by the laser radar and communication systems designer. The material is presented in a format which allows the rapid and accurate evaluation of antenna gain. The Fresnel approximation to scalar wave theory is reviewed and the antenna analysis proceeds in terms of the power gain. Conventional range equations may then be used to calculate the power budget. The transmitter calculations, resulting in near and far field antenna gain patterns, assumes the antenna is illuminated by a laser operating in the fundamental cavity mode. A simple equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn which display the losses in antenna gain due to pointing errors and the cone angle of the outgoing beam as a function of antenna size and central obscuration. The use of telescope defocusing as an approach to spreading the beam for target acquisition is compared to some alternate methods.

  20. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  1. Laboratory investigation of antenna signals from dust impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  2. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  3. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    NASA Astrophysics Data System (ADS)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  4. A compact thermo-optical multimode-interference silicon-based 1 × 4 nano-photonic switch.

    PubMed

    Zhou, Haifeng; Song, Junfeng; Chee, Edward K S; Li, Chao; Zhang, Huijuan; Lo, Guoqiang

    2013-09-09

    An ultra-compact multimode-interference (MMI)-based 1 × 4 nano-photonic switch is demonstrated by employing silicon thermo-optical effect on SOI platform. The device performance is systematically characterized by comprehensively investigating the constituent building blocks, including 1 × 4 power splitter, 4 × 4 MMI coupler and groove-isolated thermo-optical heaters. An instructive model is established to statistically estimate the required power consumption and investigate the influence of the power imbalance of the 4 × 4 MMI coupler on the switching performance. At the designed wavelength of 1550 nm, the average insertion loss of different switching states is 1.7 dB, and the transmission imbalance is 1.05 dB. The worst extinction ratio and crosstalk of all the output ports reach 11.48 dB and -11.38 dB, respectively.

  5. Optical Response of Metal Nanoantennas to Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Biswas, Sushmita; Heberle, Albert

    2007-03-01

    Nanoscale metal antennas are promising devices for focusing light down to dimensions much smaller than the wavelength of light. This focusing can lead to strong optical enhancement of the response of single molecules or quantum dots placed in the antenna gap, as well as strong nonlinearities. The optical response of such antenna, however, is not well understood yet. Here, we will present results of our investigations of the linear and nonlinear optical response of silver nanoscale bowtie antennas to excitation with near-infrared pulses from a femtosecond Ti:sapphire laser. The antennas were fabricated with electron beam lithography and a lift-of process on glass substrates and semiconductor materials. They have lengths of a few hundred nanometers and gaps between 10 and 100 nanometers. We will discuss polarization dependence of the excitation sensitivity, second harmonic generation and other nonlinear effects. References: [1] P. Muhlschlegel et al., Science ,1607(2005). [2] J.N. Farahani et al., Phys. Rev. Lett. 95,017402(2005).

  6. Design of a sector bowtie nano-rectenna for optical power and infrared detection

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Hu, Haifeng; Lu, Shan; Guo, Lingju; He, Tao

    2015-10-01

    We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiO x -Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5-30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

  7. Nanopillar Optical Antenna Avalanche Detectors

    DTIC Science & Technology

    2014-08-30

    tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support

  8. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency.

    PubMed

    Lu, Bing-Rui; Deng, Jianan; Li, Qi; Zhang, Sichao; Zhou, Jing; Zhou, Lei; Chen, Yifang

    2018-06-14

    Metasurfaces consisting of a two-dimensional metallic nano-antenna array are capable of transferring a Gaussian beam into an optical vortex with a helical phase front and a phase singularity by manipulating the polarization/phase status of light. This miniaturizes a laboratory scaled optical system into a wafer scale component, opening up a new area for broad applications in optics. However, the low conversion efficiency to generate a vortex beam from circularly polarized light hinders further development. This paper reports our recent success in improving the efficiency over a broad waveband at the visible frequency compared with the existing work. The choice of material, the geometry and the spatial organization of meta-atoms, and the fabrication fidelity are theoretically investigated by the Jones matrix method. The theoretical conversion efficiency over 40% in the visible wavelength range is worked out by systematic calculation using the finite difference time domain (FDTD) method. The fabricated metasurface based on the parameters by theoretical optimization demonstrates a high quality vortex in optical frequencies with a significantly enhanced efficiency of over 20% in a broad waveband.

  9. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana.

    PubMed

    Lockey, Jacob K; Willis, Mark A

    2015-07-01

    Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.

  10. Linear and ultrafast nonlinear plasmonics of single nano-objects

    NASA Astrophysics Data System (ADS)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual

  11. Wave-Coupled Millimeter-Wave Electro-Optic Techniques

    DTIC Science & Technology

    2001-03-01

    This report details results on two antenna-coupled millimeter-wave electro - optic modulators, the slot-vee antenna-coupled modulator and a 94 GHz...study of the effects of velocity mismatch on linearized electro - optic modulators was made and the results published. A key result was that directional...drift in electro - optic modulators was made and protons were determined to be the cause. Several inventions were made to reduce or eliminate proton-caused bias drift.

  12. Antenna-coupled unbiased detectors for LW-IR regime

    NASA Astrophysics Data System (ADS)

    Tiwari, Badri Nath

    At room temperature (300K), the electromagnetic (EM) radiation emitted by humans and other living beings peaks mostly in the long-wavelength infrared (LW-IR) regime. And since the atmosphere shows relatively little absorption in this band, applications such as target detection, tracking, active homing, and navigation in autonomous vehicles extensively use the LW-IR frequency range. The present research work is focused on developing antenna-based, uncooled, and unbiased detectors for the LW-IR regime. In the first part of this research, antenna-coupled metal-oxide-metal diodes (ACMOMD) are investigated. In response to the EM radiation, high-frequency antenna currents are induced in the antenna. An asymmetric-barrier Al-Al2O3-Pt MOM diode rectifies the antenna currents. Two different types of fabrication processes have been developed for ACMOMDs namely one-step lithography and two-step lithography. The major drawbacks of MOM-based devices include hard-to-control fabrication processes, generally very high zero-biased resistances, and vulnerability to electrostatic discharges, leading to unstable electrical characteristics. The second part of this research focuses on the development of unbiased LW-IR sensors based on the Seebeck effect. If two different metals are joined together at one end and their other ends are open-circuited, and if a non-zero temperature difference exists between the joined end and the open ends, then a non-zero open-circuit voltage can be measured between the open ends of the wires. Based on this effect, we have developed antenna-coupled nano-thermocouples (ACNTs) in which radiation-induced antenna currents produce polarization-dependent heating of the joined end of the two metals whereas the open ends remain at substrate temperature. This polarization-dependent heating induces polarization-dependent temperature difference between the joined end and the open ends of the metals leading to a polarization-dependent open-circuit voltage between the

  13. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  14. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  15. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires.

    PubMed

    Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H

    2016-06-27

    We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.

  16. Lithium niobate guided-wave beam former for steering phased-array antennas.

    PubMed

    Armenise, M N; Passaro, V M; Noviello, G

    1994-09-10

    We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

  17. Equipment: Antenna systems

    NASA Astrophysics Data System (ADS)

    Petrie, L. E.

    1983-05-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for an HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits or both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  18. Equipment: Antenna systems

    NASA Astrophysics Data System (ADS)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  19. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array

  20. Thermo-activated nano-material for use in optical devices

    NASA Astrophysics Data System (ADS)

    Mias, Solon; Sudor, Jan; Camon, Henri

    2007-05-01

    In this paper we describe the use of thermo-activated PNIPAM nano-material in optical switching devices. In other publications, the PNIPAM is used either as a carrier for crystalline colloidal array self-assemblies or as micro-particles that serve as pigment bags. In this publication we use a simpler-to-fabricate pure PNIPAM solution in a semi-dilute regime. The PNIPAM devices produced are transparent at temperatures below a critical temperature of 32°C and become diffusing above this temperature. We show that at 632nm the transmission through the devices is about 75% in the transparent state while the additional attenuation achieved in the diffusing state is of the order of 38 dB. The experimental fall and rise times obtained are large (about 300ms and 5s respectively) due to the non-optimised thermal addressing scheme. In addition, spectral measurements taken in the infrared spectrum (700-1000nm) demonstrate that the cell response is flat over a large portion of the infrared spectrum in both the transparent and the diffusing states.

  1. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas

    PubMed Central

    Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.

    2017-01-01

    Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941

  2. Transcatheter Antenna For Microwave Treatment

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2000-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  3. Stable isomers and electronic, vibrational, and optical properties of WS2 nano-clusters: A first-principles study

    NASA Astrophysics Data System (ADS)

    Hafizi, Roohollah; Hashemifar, S. Javad; Alaei, Mojtaba; Jangrouei, MohammadReza; Akbarzadeh, Hadi

    2016-12-01

    In this paper, we employ an evolutionary algorithm along with the full-potential density functional theory (DFT) computations to perform a comprehensive search for the stable structures of stoichiometric (WS2)n nano-clusters (n = 1 - 9), within three different exchange-correlation functionals. Our results suggest that n = 5 and 8 are possible candidates for the low temperature magic sizes of WS2 nano-clusters while at temperatures above 500 Kelvin, n = 7 exhibits a comparable relative stability with n = 8. The electronic properties and energy gap of the lowest energy isomers were computed within several schemes, including semilocal Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals, hybrid B3LYP functional, many body based DFT+GW approach, ΔSCF method, and time dependent DFT calculations. Vibrational spectra of the lowest lying isomers, computed by the force constant method, are used to address IR spectra and thermal free energy of the clusters. Time dependent density functional calculation in a real time domain is applied to determine the full absorption spectra and optical gap of the lowest energy isomers of the WS2 nano-clusters.

  4. Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen

    2018-03-01

    Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.

  5. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications.

  6. Optimization of an Offset Receiver Optics for Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Yeap, Kim Ho; Tham, Choy Yoong

    2018-01-01

    The latest generation of Cassegrain radio astronomy antennas is designed for multiple frequency bands with receivers for individual bands offset from the antenna axis. The offset feed arrangement typically has two focusing elements in the form of ellipsoidal mirrors in the optical path between the feed horn and the antenna focus. This arrangement aligns the beam from the offset feed horn to illuminate the subreflector. The additional focusing elements increase the number of design variables, namely the distances between the horn aperture and the first mirror and that between the two mirrors, and their focal lengths. There are a huge number of possible combinations of these four variables in which the optics system can take on. The design aim is to seek the combination that will give the optimum antenna efficiency, not only at the centre frequency of the particular band but also across its bandwidth. To pick the optimum combination of the variables, it requires working through, by computational mean, a continuum range of variable values at different frequencies which will fit the optics system within the allocated physical space. Physical optics (PO) is a common technique used in optics design. However, due to the repeated iteration of the huge number of computation involved, the use of PO is not feasible. We present a procedure based on using multimode Gaussian optics to pick the optimum design and using PO for final verification of the system performance. The best antenna efficiency is achieved when the beam illuminating the subreflector is truncated with the optimum edge taper. The optimization procedure uses the beam's edge taper at the subreflector as the iteration target. The band 6 receiver optics design for the Atacama Large Millimetre Array (ALMA) antenna is used to illustrate the optimization procedure.

  7. The uncertainty principle in resonant gravitational wave antennae and quantum non-demolition measurement schemes

    NASA Technical Reports Server (NTRS)

    Fortini, Pierluigi; Onofrio, Roberto; Rioli, Alessandro

    1993-01-01

    A review on the current efforts to approach and to surpass the fundamental limit in the sensitivity of the Weber type gravitational wave antennae is reported. Applications of quantum non-demolition techniques to the concrete example of an antenna resonant with the transducer are discussed in detail. Analogies and differences from the framework of the squeezed states in quantum optics are discussed.

  8. The uncertainty principle in resonant gravitational wave antennae and quantum non-demolition measurement schemes

    NASA Technical Reports Server (NTRS)

    Fortini, Pierluigi; Onofrio, Roberto; Rioli, Alessandro

    1993-01-01

    A review of current efforts to approach and to surpass the fundamental limit in the sensitivity of the Weber type gravitational wave antennae is reported. Applications of quantum non-demolition techniques to the concrete example of an antenna resonant with the transducer are discussed in detail. Analogies and differences from the framework of the squeezed states in quantum optics are discussed.

  9. Antenna-coupled TES bolometer arrays for CMB polarimetry

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Bock, J. J.; Bonetti, J. A.; Brevik, J.; Chattopadhyay, G.; Day, P. K.; Golwala, S.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Nguyen, H.; Ogburn, R. W.; Orlando, A.; Transgrud, A.; Turner, A.; Wang, G.; Zmuidzinas, J.

    2008-07-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.

  10. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.

    PubMed

    Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L

    2010-01-18

    Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation.

  11. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  12. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    PubMed

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  13. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  14. Radar transponder antenna pattern analysis for the space shuttle

    NASA Technical Reports Server (NTRS)

    Radcliff, Roger

    1989-01-01

    In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.

  15. Design considerations for the beam-waveguide retrofit of a ground antenna station

    NASA Technical Reports Server (NTRS)

    Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.

    1986-01-01

    Retrofitting an antenna that was originally designed without a beam waveguide introduces special difficulties because it is desirable to minimize alteration of the original mechanical truss work and to image the actual feed without distortion at the focal point of the dual-shaped reflector. To obtain an acceptable image, certain Geometrical Optics (GO) design criteria are followed as closely as possible. The problems associated with applying these design criteria to a 34-meter dual-shaped DSN (Deep Space Network) antenna are discussed. The use of various diffraction analysis techniques in the design process is also discussed. GTD and FFT algorithms are particularly necessary at the higher frequencies, while Physical Optics and Spherical Wave Expansions proved necessary at the lower frequencies.

  16. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M.

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. Itmore » is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of

  17. Electro-Optic Lighting Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1999-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.

  18. Nano-cone optical fiber array sensors for MiRNA profiling

    NASA Astrophysics Data System (ADS)

    Wang, Yunshan; Senapati, Satyajyoti; Stoddart, Paul; Howard, Scott; Chang, Hsueh-Chia

    2013-09-01

    Up/down regulation of microRNA panels has been correlated to cardiovascular diseases and cancer. Frequent miRNA profiling at home can hence allow early cancer diagnosis and home-use chronic disease monitoring, thus reducing both mortality rate and healthcare cost. However, lifetime of miRNAs is less than 1 hour without preservation and their concentrations range from pM to mM. Despite rapid progress in the last decade, modern nucleic acid analysis methods still do not allow personalized miRNA profiling---Real-time PCR and DNA micro-array both require elaborate miRNA preservation steps and expensive equipment and nano pore sensors cannot selectively quantify a large panel with a large dynamic range. We report a novel and low-cost optical fiber sensing platform, which has the potential to profile a panel of miRNA with simple LED light sources and detectors. The individual tips of an optical imaging fiber bundle (mm in diameter with 7000 fiber cores) were etched into cones with 10 nm radius of curvature and coated with Au. FRET (Forster Resonant Energy Transfer) hairpin oligo probes, with the loop complementary to a specific miRNA that can release the hairpin, were functionalized onto the conic tips. Exciting light in the optical fiber waveguide is optimally coupled to surface plasmonics on the gold surface, which then converges to the conic tips with two orders of magnitude enhancement in intensity. Unlike nanoparticle plasmonics, tip plasmonics can be excited over a large band width and hence the plasmonic enhanced fluorescence signal of the FRET reporter is also focused towards the tip--- and is further enhanced with the periodic resonant grid of the fiber array which gives rise to pronounced standing wave interference patterns. Multiplexing is realized by functionalizing different probes onto one fiber bundle using a photoactivation process.

  19. Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.

    Plasmonic nano-antennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nano-antennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electronmore » microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) imaging information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here in this paper we demonstrate the fabrication of Au nano-pyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nano-antenna designs.« less

  20. Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas

    DOE PAGES

    Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.; ...

    2018-06-01

    Plasmonic nano-antennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nano-antennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electronmore » microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) imaging information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here in this paper we demonstrate the fabrication of Au nano-pyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nano-antenna designs.« less

  1. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  2. Plasmonic optical nanotweezers

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; El Maklizi, Mahmoud; Ismail, Yehea; Swillam, Mohamed A.

    2017-02-01

    Plasmonic grating structures can be used in many applications such as nanolithography and optical trapping. In this paper, we used plasmonic grating as optical tweezers to trap and manipulate dielectric nano-particles. Different plasmonic grating structures with single, double, and triple slits have been investigated and analyzed. The three configurations are optimized and compared to find the best candidate to trap and manipulate nanoparticles. The three optimized structures results in capability to super focusing and beaming the light effectively beyond the diffraction limit. A high transverse gradient optical force is obtained using the triple slit configuration that managed to significantly enhance the field and its gradient. Therefore, it has been chosen as an efficient optical tweezers. This structure managed to trap sub10nm particles efficiently. The resultant 50KT potential well traps the nano particles stably. The proposed structure is used also to manipulate the nano-particles by simply changing the angle of the incident light. We managed to control the movement of nano particle over an area of (5μm x 5μm) precisely. The proposed structure has the advantage of trapping and manipulating the particles outside the structure (not inside the structure such as the most proposed optical tweezers). As a result, it can be used in many applications such as drug delivery and biomedical analysis.

  3. Phased array-fed antenna configuration study: Technology assessment

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.

  4. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  5. A new antenna concept for satellite communications

    NASA Technical Reports Server (NTRS)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  6. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  7. Detection Performance of Upgraded "Polished Panel" Optical Receiver Concept on the Deep-Space Network's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    Initial optical communications experiments with a Vertex polished aluminum panel have been described. The polished panel was mounted on the main reflector of the DSN's research antenna at DSS-13. The PSF was recorded via remotely controlled digital camera mounted on the subreflector structure. Initial PSF generated by Jupiter showed significant tilt error and some mechanical deformation. After upgrades, the PSF improved significantly, leading to much better concentration of light. Communications performance of the initial and upgraded panel structure were compared. After the upgrades, simulated PPM symbol error probability decreased by six orders of magnitude. Work is continuing to demonstrate closed-loop tracking of sources from zenith to horizon, and better characterize communications performance in realistic daytime background environments.

  8. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  9. SWS grating for UV band filter by nano-imprint

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Shian; Liao, Ke-Hao; Chen, Chang-Tai; Lai, Chieh-Lung; Ko, Cheng-Hao

    2009-05-01

    Regarding to researches on manufacturing process, the fabrication of nano structures on SWS (subwavelength structured) grating are mainly produced by photo lithography. We find that UV light transmission efficiency of PET film significantly drops 50% when we put nano structures on the surface of material. In this paper, we add nano structures on the surface of PET film and create a UV band filter. Decent optical filtering effects can be achieved by combining the characteristics of PET materials with nano structures on their surfaces.

  10. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  11. SU-E-T-87: The Effect of Bleaching Wavelengths on the Regeneration of the Optically Stimulated Luminescence Signal of NanoDot Dosimeters Pre-Exposed to High-Doses.

    PubMed

    Omotayo, A; Cygler, J; Sawakuchi, G

    2012-06-01

    To investigate the effect of bleaching wavelengths on the regeneration of optically stimulated luminescence (OSL) signals in Al 2 O 3 :C nanoDot dosimeters pre-exposed to high doses. Regeneration is the increase in the OSL signal during storage of a bleached nanoDot that was previously pre-exposed to a high dose. This phenomenon affects the accuracy of a calibration protocol proposed by Jursinic 2010 (Med. Phys. 37:102) in which pre-exposure of nanoDots to a high-dose was used to minimize changes in the sensitivity of the detector as a function of accumulated dose. Al 2 O 3 :C OSLDs of the type nanoDot were used throughout this study. Readout was performed using the microStar reader. Bleaching of the OSLDs was performed with four 26 W fluorescent light bulbs in two modes: (i) directly under the lamps; and (ii) with the aid of a long-pass optical filter placed over the nanoDots, partially blocking wavelengths below 495 nm. Eighteen nanoDots were pre-exposed to 1 kGy dose. Then the pre-exposed nanoDots were bleached in two sets of 9 to very low residual OSL signals using bleaching modes (i) and (ii) for 12 h and 45 h, respectively. The nanoDots were then stored in dark and readout after various time intervals to monitor the regeneration of the OSL signal. We fitted the regeneration of the OSL signal using a saturation function and obtained rise-time values of 563 h and 630 h, for bleaching modes (i) and (ii), respectively. At the saturation level, the equivalent doses were about 1.18 Gy and 0.38 Gy for modes (i) and (ii), respectively. The regeneration rates of nanoDot OSLDs pre-exposed to high doses depend on the bleaching light wavelength used to reset the detectors. A bleaching source that has a low component of wavelengths below 495 nm can minimize the regeneration of the OSL signal. Natural Sciences and Engineering Research Council of Canada. © 2012 American Association of Physicists in Medicine.

  12. Effect of telescope antenna diagram on the data acquisition in a stellar interferometer

    NASA Astrophysics Data System (ADS)

    Longueteau, Emmanuel; Delage, Laurent; Reynaud, François

    2017-11-01

    This paper deals with the effect of the telescope size on accuracy of the data acquisition in a optical fibre linked stellar interferometer. In this context we introduce the concept of antenna diagram commonly used for microwaves antennae. This concept is essential to explain the contrasts and the phaseclosure acquisitions corruption in a stellar interferometer. The telescope pointing errors induces additional effects that are superimposed with the field limitation and could become critical.

  13. Designing Plasmonic Materials and Optical Metasurfaces for Light Manipulation and Optical Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Wenxiang

    Metamaterials are artificial materials designed to create optical properties that do not exist in nature. They are assemblies of subwavelength structures that are tailored in size, shape, composition, and orientation to realize the desired property. Metamaterials are promising for applications in diverse areas: optical filters, lenses, holography, sensors, photodetectors, photovoltaics, photocatalysts, medical devices, and many more, because of their excellent abilities in bending, absorbing, enhancing and blocking light. However, the practical use of metamaterials is challenged by the lack of plasmonic materials with proper permittivity for different applications and the slow and expensive fabrication methods available to pattern sub-wavelength structures. We have also only touched the surface in exploring the innovative uses of metamaterials to solve world problems. In this thesis, we study the fundamental optical properties of metamaterial building blocks by designing material permittivity. We continuously tune the interparticle distance in colloidal Au nanocrystal (NC) solids via the partial ligand exchange process. Then we combine top-down nanoimprint lithography with bottom-up assembly of colloidal NCs to develop a large-area, low-cost fabrication method for subwavelength nanostructures. Via this method, we fabricate and characterize nano-antenna arrays of different sizes and demonstrate metasurface quarter wave-plates of different bandwidth, and compare their performances with simulation results. We also integrate the metasurfaces with chemically- and mechanically-responsive polymers for strong-signal sensing. In the first design, we combine ultrathin plasmonic nanorods with hydrogel to fabricate optical moisture sensors for agricultural use. In the second application, we design mechanically tunable Au grating resonances on a polydimethylsiloxane (PDMS) substrate. The dimensions of Au grating are carefully engineered to achieve a hybridized, ultrasharp, and

  14. Nano-Fabrication Methods for Micro-Miniature Optical Thermometers Suited to High Temperatures and Harsh Environments

    NASA Astrophysics Data System (ADS)

    DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.

    2012-12-01

    The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory

  15. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less

  16. Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing

    DOE PAGES

    Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...

    2016-11-22

    Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less

  17. Design of a compact CMOS-compatible photonic antenna by topological optimization.

    PubMed

    Pita, Julián L; Aldaya, Ivan; Dainese, Paulo; Hernandez-Figueroa, Hugo E; Gabrielli, Lucas H

    2018-02-05

    Photonic antennas are critical in applications such as spectroscopy, photovoltaics, optical communications, holography, and sensors. In most of those applications, metallic antennas have been employed due to their reduced sizes. Nevertheless, compact metallic antennas suffer from high dissipative loss, wavelength-dependent radiation pattern, and they are difficult to integrate with CMOS technology. All-dielectric antennas have been proposed to overcome those disadvantages because, in contrast to metallic ones, they are CMOS-compatible, easier to integrate with typical silicon waveguides, and they generally present a broader wavelength range of operation. These advantages are achieved, however, at the expense of larger footprints that prevent dense integration and their use in massive phased arrays. In order to overcome this drawback, we employ topological optimization to design an all-dielectric compact antenna with vertical emission over a broad wavelength range. The fabricated device has a footprint of 1.78 µm × 1.78 µm and shows a shift in the direction of its main radiation lobe of only 4° over wavelengths ranging from 1470 nm to 1550 nm and a coupling efficiency bandwidth broader than 150 nm.

  18. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  19. Antenna theory: Analysis and design

    NASA Astrophysics Data System (ADS)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  20. Improvement in crystal quality and optical properties of n-type GaN employing nano-scale SiO2 patterned n-type GaN substrate.

    PubMed

    Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key

    2013-01-01

    n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.

  1. High frequency GaAlAs modulator and photodetector for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Chorey, C. M.; Hill, S. M.; Bhasin, K. B.

    1988-01-01

    A waveguide Mach-Zehnder electro-optic modulator and an interdigitated photoconductive detector designed to operate at 820 nm, fabricated on different GaAlAs/GaAs heterostructure materials, are being investigated for use in optical interconnects in phased array antenna systems. Measured optical attenuation effects in the modulator are discussed and the observed modulation performance up to 1 GHz is presented. Measurements of detector frequency response are described and results presented.

  2. Fundamental Fractal Antenna Design Process

    NASA Astrophysics Data System (ADS)

    Zhu, L. P.; Kim, T. C.; Kakas, G. D.

    2017-12-01

    Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.

  3. View north of the antenna array, note the communications antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of the antenna array, note the communications antenna in the middleground - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  4. View of antenna tunnel end. Right to Antenna Silo #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of antenna tunnel end. Right to Antenna Silo #1, left to Antenna Silo #2 - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  5. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization.

    PubMed

    Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin

    2012-09-21

    Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.

  6. Electro-optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1996-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.

  7. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, Willliam; Solakiewicz, Richard

    1998-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.

  8. L-Band Orthogonal-Mode Crossed-Slot Antenna and VHF Crossed-Loop Antenna

    DOT National Transportation Integrated Search

    1972-01-01

    A low-gain, circularly polarized, L-ban antenna; a low-gain, lineraly polarized, L-band antenna; and a low-gain, lineraly polarized, L-ban antenna; and a low-gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended ...

  9. Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas.

    PubMed

    Juswardy, Budi; Xiao, Feng; Alameh, Kamal

    2009-03-16

    This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America

  10. Pattern and polarization measurements of integrated-circuit spiral antennas at 10-μm wavelength

    NASA Astrophysics Data System (ADS)

    MacDonald, Michael E.; Grossman, Erich N.

    1996-12-01

    Radiation patterns are presented for planar equiangular spiral antennas at wavelengths of approximately 10 micrometers . These antennas are fabricated using integrated-circuit processes on silicon substrates and are coupled through dielectric lenses. Patterns are presented over a full 2D scan for orthogonal linear polarizations, and for left- circular (LCP) and right-circular (RCP) polarizations. The antennas respond preferentially to left-circularly polarized radiation, as expected for the left-handed sense of the spiral arms. Cross-polarization ratios as large as 10 dB in circular polarization are obtained, corresponding to an axial ratio of 1.2. No difference in response between horizontally and vertically polarized radiation is observed, as expected for circularly polarized antennas. Directivities as large as 14 dB in left-circular polarization have been obtained. The cross-polarized directivity is considerably lower than the co-polarized directivity. All patterns are approximately circularly symmetric about the (theta) equals 0 axis. The cross-polarization ratio and pattern symmetry strongly depend on the alignment of the antenna and detector response is antenna coupled, even at radiation wavelength of the same order of magnitude as the resolution limit of the optical lithography used to define the antenna geometry.

  11. Optical band gap determination of calcium doped lanthanum manganite nano particle tailored with polypyrrole

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa

    2018-05-01

    In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.

  12. Computer prediction of large reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Botula, A.

    1980-01-01

    A FORTRAN program for calculating reflector antenna radiation patterns was rewritten and extended to include reflectors composed of a number of panels. These individual panels must be analytic surfaces. The theoretical foundation for the program is as follows: Geometrical optics techniques are used to trace rays from a feed antenna to the reflector surface and back to a mathematical plane just in front of the reflector. The resulting tangential electric field distribution, assumed to be the only source of forward radiation, is integrated numerically to calculate the radiation pattern for a desired set of angles. When the reflector is composed of more than one panel, each panel is treated as a separated antenna, the ray-tracing procedure and integration being repeated for each panel. The results of the individual aperture plane integrations are stored and summed to yield the relative electric field strength over the angles of interest. An example and several test cases are included to demonstrate the use of the program and verify the new method of computation.

  13. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  14. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  15. Effects of deterministic surface distortions on reflector antenna performance

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1985-01-01

    Systematic distortions of reflector antenna surfaces can cause antenna radiation patterns to be undesirably different from those of perfectly smooth reflector surfaces. In this paper, a simulation model for systematic distortions is described which permits an efficient computation of the effects of distortions in the reflector pattern. The model uses a vector diffraction physical optics analysis for the determination of both the co-polar and cross-polar fields. An interpolation scheme is also presented for the description of reflector surfaces which are prescribed by discrete points. Representative numerical results are presented for reflectors with sinusoidally and thermally distorted surfaces. Finally, comparisons are made between the measured and calculated patterns of a slowly-varying distorted offset parabolic reflector.

  16. Antenna Controller Replacement Software

    NASA Technical Reports Server (NTRS)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  17. Multiwavelength study of Chandra X-ray sources in the Antennae

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  18. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  19. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  20. Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.

    PubMed

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-10-27

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.

  1. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.

    PubMed

    Taisova, A S; Yakovlev, A G; Fetisova, Z G

    2014-03-01

    This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell

  2. Transition-edge superconducting antenna-coupled bolometer

    NASA Astrophysics Data System (ADS)

    Hunt, Cynthia L.

    2004-10-01

    The temperature anisotropy of the cosmic microwave background (CMB) is now being probed with unprecedented accuracy and sky coverage by the Wilkinson Microwave Anisotropy Probe (WMAP), and will be definitively mapped by the Planck Surveyor after its launch in 2007. However, the polarization of the CMB will not be mapped with sufficient accuracy. In particular, the measurement of the curl-polarization, which may be used to probe the energy scale of the inflationary epoch, requires a large advance in the format of millimeter-wave bolometer arrays. SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) is being developed to address these needs for the next generation of submillimeter astronomical detectors. SAMBA consists of a focal plane populated with microstrip-coupled slot antennas, whose signals are coherently added and sent to transition-edge superconducting (TES) bolometers via microstrip lines. SAMBA eliminates the need for the feedhorns and optical filters currently used on CMB observational instruments, such as Planck and Boomerang. The SAMBA architecture allows for a high density of pixels in the focal plane with minimal sub-Kelvin mass. As a precursor to a full monolithic high-density antenna array, we are developing a single-band antenna-coupled Bolometric detector. In this thesis, I report test results for a single-pixel antenna-coupled Bolometric detector. Our device consists of a dual slot microstrip-coupled slot antenna coupled to an Al/Ti/Au voltage-biased TES. The coupling architecture involves propagating the signal along super conducting microstrip lines and terminating the lines at a normal metal resistor collocated with a TES on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized for 140 GHz measurements. In the thermal bandwidth of the TES, we measure a noise equivalent power (NEP) of 2.0 x 10 -17 W/[Special characters omitted.] in dark tests which agrees with the calculated NEP

  3. MSU Antenna Pattern Data

    NASA Technical Reports Server (NTRS)

    Mo, Tsan; Kleespies, Thomas J.; Green, J. Philip

    2000-01-01

    The Microwave Sounding Unit (MSU) antenna pattern data for nine MSU Flight Models (FMs) have been successfully rescued from 22-year old 7-track and 9-track magnetic tapes and cartridges. These antenna pattern data were unpacked into user-friendly ASCII format, and are potentially useful for making antenna pattern corrections to MSU antenna temperatures in retrieving the true brightness temperatures. We also properly interpreted the contents of the data and show how to convert the measured antenna signal amplitude in volts into relative antenna power in dB with proper normalization. It is found that the data are of high quality with a 60-dB drop in the co-polarized antenna patterns from the central peak value to its side-lobe regions at scan angles beyond 30 deg. The unpacked antenna pattern data produced in this study provide a useful database for data users to correct the antenna side-lobe contribution to MSU measurements. All of the data are available to the scientific community on a single CD-ROM.

  4. Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex.

    PubMed

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2011-11-01

    Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex, Ca[((NO(2))(2)-8HQ)(2)], were explored, studied and evaluated in this work. Thin films of Ca[((NO(2))(2)-8HQ)(2)] were assembled by using a direct, simple and efficient layer-by-layer (LBL) chemical deposition technique. The optical properties of thin films were investigated by using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 200-2500 nm. The refractive index, n, and the absorption index, k, of Ca[((NO(2))(2)-8HQ)(2)] films were determined from the measured transmittance and reflectance. The real and imaginary dielectric constants were also determined. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with band gaps of 1.1 eV and 2.4 eV for the optical and transport energy gaps, respectively. The current-voltage characteristics of Ca[((NO(2))(2)-8HQ)(2)] showed a trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Graphical representation of the current-voltage characteristics yields three distinct linear parts indicating the existence of three conduction mechanisms. Structural characterization and identification were confirmed by using Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) was also used to image the surface morphology of the deposited nano-sized metal complex and such study revealed a high homogeneity in surface spherical particle distribution with average particles size in the range 20-40 nm. Thermal gravimetric analysis (TGA) was also studied for [(NO(2))(2)-8HQ] and Ca[((NO(2))(2)-8HQ)(2)] to evaluate and confirm the thermal stability characteristics incorporated into the synthesized nano-sized Ca[((NO(2))(2)-8HQ)(2)] complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Phased-array-fed antenna configuration study. Volume 1: Technology assessment

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.

    1983-01-01

    The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.

  6. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  7. CW laser damage testing of RAR nano-textured fused silica and YAG

    NASA Astrophysics Data System (ADS)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey

    2017-11-01

    A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin

  8. Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.

    1975-01-01

    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.

  9. Computer prediction of dual reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1981-01-01

    A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.

  10. (HEL MRI) 3D Meta Optics for High Energy Lasers

    DTIC Science & Technology

    2016-09-13

    based metal-oxide nano- hair structures for optical vortex generation," Opt. Express 23, 19056-19065 (2015) 15. Li, Yuan, Zeyu Zhang, Wenzhe Li, Jerome...Indumathi Raghu Srimathi, Aaron J. Pung, Yuan Li, Raymond C. Rumpf, and Eric G. Johnson, "Fabrication of metal-oxide nano- hairs for effective index...Grating Based Optical Nano- Hairs Using ALD Nano- Patterning Subwavelength gratings (SWGs) based artificial dielectric elements are used to obtain the

  11. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.

    PubMed

    Panaretos, Anastasios H; Werner, Douglas H

    2015-04-06

    In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

  12. Infrared Active Sm1-xndxnio3 Based Nano-Switchings For High Powers Laser Sources

    NASA Astrophysics Data System (ADS)

    Ngom, B. D.; Kana, J. B. Kana; Nemraoui, O.; Manyala, N.; Maaza, M.; Mdjoe, R.; Beye, A. C.

    2008-09-01

    This contribution was targeted to engineer novel thermochromic infrared nano-structured photonics. These smart optically tuneable materials are based on rare earth nickelates in the form of ReNiO3 where Re is bi-solution of rare earth metals of Samarium "Sm" and Neodynium "Nd." In addition to their Metal-Insulator tuneable transition temperature (MIT), these MIT oxide family exhibit a specific thermal stability and thus could be ideal to an ultimate optical limiting and other Non-Linear Optical properties for high power laser sources. This MIT thermochomic ReNiO3 system is novel in its nano-structured form and has not been investigated from nonlinear optical viewpoint. This contribution reports on the optimization of the synthesis of Sm1-xNdxNiO3 Nano-structures and investigation of their corresponding MIT electron dynamics.

  13. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna.

    PubMed

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-09

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors' knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna's matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  14. Application of inertial instruments for DSN antenna pointing and tracking

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.

    1990-01-01

    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.

  15. Micromirror arrays to assess luminescent nano-objects.

    PubMed

    Kawakami, Yoichi; Kanai, Akinobu; Kaneta, Akio; Funato, Mitsuru; Kikuchi, Akihiko; Kishino, Katsumi

    2011-05-01

    We propose an array of submicrometer mirrors to assess luminescent nano-objects. Micromirror arrays (MMAs) are fabricated on Si (001) wafers via selectively doping Ga using the focused ion beam technique to form p-type etch stop regions, subsequent anisotropic chemical etching, and Al deposition. MMAs provide two benefits: reflection of luminescence from nano-objects within MMAs toward the Si (001) surface normal and nano-object labeling. The former increases the probability of optics collecting luminescence and is demonstrated by simulations based on the ray-tracing and finite-difference time-domain methods as well as by experiments. The latter enables different measurements to be repeatedly performed on a single nano-object located at a certain micromirror. For example, a single InGaN∕GaN nanocolumn is assessed by scanning electron microscopy and microphotoluminescence spectroscopy.

  16. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  17. Optical characterization of Jerusalem cross-shaped nanoaperture antenna arrays

    NASA Astrophysics Data System (ADS)

    Turkmen, Mustafa; Aslan, Ekin; Aslan, Erdem

    2014-03-01

    Recent advances in nanofabrication and computational electromagnetic design techniques have enabled the realization of metallic nanostructures in different shapes and sizes with adjustable resonance frequencies. To date, many metamaterial designs in various geometries with the used of different materials have been presented for the applications of surface plasmons, cloaking, biosensing, and frequency selective surfaces1-5. Surface plasmons which are collective electron oscillations on metal surfaces ensure that plasmonic nanoantennas can be used in many applications like biosensing at infrared (IR) and visible regions. The nanostructure that we introduce has a unit cell that consists of Jerusalem crossshaped nanoaperture on a gold layer, which is standing on suspended SiNx, Si or glass membranes. The proposed nanoaperture antenna array has a regular and stable spectral response. In this study, we present sensitivity of the resonance characteristics of Jerusalem cross-shaped nanoaperture antenna arrays to the changes in substrate parameters and metal thickness. We demonstrate that resonance frequency values can be adjusted by changing the thicknesses and types of the dielectric substrate and the metallic layer. Numerical calculations on spectral response of the nanoantenna array are performed by using Finite Difference Time Domain (FDTD) method6. The results of the simulations specify that resonance frequencies, the reflectance and transmittance values at resonances, and the band gap vary by the change of substrate parameters and metal thicknesses. These variations is a sign of that the proposed nanoantenna can be employed for sensing applications.

  18. X-Ray Binaries and Star Clusters in the Antennae: Optical Cluster Counterparts

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea; Whitmore, Bradley C.

    2012-10-01

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2σ positional uncertainty of ≈0farcs8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, Hα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident XRBs (64%) are hosted by star clusters with ages of ≈6 Myr or less. All of the very young host clusters are fairly massive and have M >~ 3 × 104 M ⊙, with many having masses M ≈ 105 M ⊙. Five of the XRBs are hosted by young clusters with ages τ ≈ 10-100 Myr, while three are hosted by intermediate-age clusters with τ ≈ 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.

  19. Boosting infrared energy transfer in 3D nanoporous gold antennas.

    PubMed

    Garoli, D; Calandrini, E; Bozzola, A; Ortolani, M; Cattarin, S; Barison, S; Toma, A; De Angelis, F

    2017-01-05

    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm -1 through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.

  20. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    2000-09-01

    Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.

  1. Hierarchical sinuous-antenna phased array for millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-03-01

    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  2. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  3. GPS antenna designs

    NASA Technical Reports Server (NTRS)

    Laube, Samuel J. P.

    1987-01-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  4. Dual Mode Slotted Monopole Antenna

    DTIC Science & Technology

    2017-01-05

    of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...to a dual mode antenna having one mode as a slotted cylinder antenna and another mode as a monopole antenna . (2) Description of the Prior Art...0004] Slotted cylinder antennas are popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds

  5. The Antenna Bride and Bridegroom

    NASA Astrophysics Data System (ADS)

    2007-03-01

    northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. Scientists are eager to use this transformational capability to study the first stars and galaxies that formed in the early Universe, to learn long-sought details about how stars are formed, and to trace the motion of gas and dust as it whirls toward the surface of newly-formed stars and planets. "The success of this test is fundamental proof that the hardware and software now under development for ALMA will work to produce a truly revolutionary astronomical tool," said Massimo Tarenghi, the ALMA Director. In addition to the leading-edge electronic and electro-optical hardware and custom software that proved itself by producing ALMA's first fringes, the system's antennas are among the most advanced in the world. The stringent requirements for the antennas included extremely precise reflecting surfaces, highly accurate ability to point at desired locations in the sky, and the ability to operate reliably in the harsh, high-altitude environment of the ALMA site. The ALMA Test Facility operates the two prototype antennas built by Alcatel Alenia Space and European Industrial Engineering in Europe, and by VertexRSI (USA). These antennas were evaluated individually at the ATF. Both prototypes were equipped with electronic equipment for receiving, digitizing and transmitting signals to a central facility, where the signals are combined to make the antennas work together as a single astronomical instrument. "The successful achievement of recording the first fringes with two ALMA antennas is certainly an important milestone in the scientific program," said Hans Rykaczewski, the European ALMA Project Manager. "It is encouraging and adds to our motivation to see that the principles of ALMA work - not

  6. The Application of Nano-TiO2 Photo Semiconductors in Agriculture

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Zeng, Zhanghua; Wang, Anqi; Liu, Guoqiang; Cui, Haixin

    2016-11-01

    Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.

  7. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  8. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  9. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  10. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  11. Toward a nanoimprinted nanoantenna to perform optical rectification through molecular diodes

    NASA Astrophysics Data System (ADS)

    Reynaud, C. A.; Duché, D.; Ruiz, C. M.; Palanchoke, U.; Patrone, L.; Le Rouzo, J.; Labau, S.; Frolet, N.; Gourgon, C.; Alfonso, C.; Charaï, A.; Lebouin, C.; Simon, J.-J.; Escoubas, L.

    2017-12-01

    This work presents investigations about the realization and modelization of rectenna solar cells. Rectennas are antennas coupled with a rectifier to convert the alternative current originating from the antenna into direct current that can be harvested and stored. By reducing the size of the antennas to the nanoscale, interactions with visible and near-infrared light become possible. If techniques such as nanoimprint lithography make possible the fabrication of sufficiently small plasmonic structures to act as optical antennas, the concept of rectenna still faces several challenges. One of the most critical point is to achieve rectification at optical frequencies. To address this matter, we propose to use molecular diodes (ferrocenyl-alkanethiol) that can be self-assembled on metallic surfaces such as gold or silver. In this paper, we present a basic rectenna theory as well as finite-difference time-domain (FDTD) optical simulations of plasmonic structures and experimental results of both nanoimprint fabrication of samples and characterizations by electron microscopy, Raman spectroscopy, and cyclic voltammetry techniques.

  12. Investigation of optical properties and local structure of Gd3+ doped nano-crystalline GeSe2

    NASA Astrophysics Data System (ADS)

    Hantour, Hanan Hassan

    2017-04-01

    Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41 nm for GeSe2 and 48 nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1 and 4.8 eV for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ˜202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its full width at half maximum (FWHM) is reduced by ˜50% accompanied by an intensity increase of about ˜17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ˜604 nm. This band is split into two separated bands with higher intensity. The detected emission bands at wavelength >650 nm are assigned to transmission from 6GJ to the different 6PJ terms.

  13. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  14. Electrochemical micro/nano-machining: principles and practices.

    PubMed

    Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun

    2017-03-06

    Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.

  15. Ultra-high optical responsivity of semiconducting asymmetric nano-channel diodes for photon detection

    NASA Astrophysics Data System (ADS)

    Akbas, Y.; Plecenik, T.; Durina, P.; Plecenik, A.; Jukna, A.; Wicks, G.; Sobolewski, Roman

    2017-05-01

    The asymmetric nano-channel diode (ANCD) is the 2-dimensional electron gas (2DEG) semiconductor nanodevice that, unlike a conventional diode, relies on the device nanostructure and field-controlled transport in a ballistic nanometerwidth channel instead of barriers to develop its asymmetric, diode-like current-voltage (I-V) characteristics. We focus on ANCD optoelectronic properties, and demonstrate that the devices can act as very sensitive, single-photon-level, visiblelight photodetectors. Our test structures consist of 2-μm-long and 230-nm-wide channels and were fabricated using electron-beam lithography on a GaAs/AlGaAs heterostructure with a 2DEG layer, followed by reactive ion etching. The I-V curves were collected by measuring the transport current under the voltage-source biasing condition, both in the dark and under light illumination. The experiments were conducted inside a cryostat, in a temperature range from 300 K to 78 K. As an optical excitation, we used a 800-nm-wavelength, generated by a commercial Ti:sapphire laser operated either at a quasi-continuous-wave mode or as a source of 100-fs-wide pulses. The impact of the light illumination was very clear, and at low temperatures we observed a significant photocurrent Iph 0.25 μA at temperature 78 K for the incident optical power as low as 1 nW, with a limited dark-current background. The magnitude of the device optical responsivity increased linearly with the decrease of the optical power, reaching for 1-nW optical excitation the value as high as 400 A/W at room temperature and >800 A/W at 78K. The physics of the photoresponse gain mechanism in the ANCD arises from a vast disparity between the sub-picosecond transit time of photo-excited electrons travelling in the 2DEG nanochannel and the up to microsecond lifetime of photo-excited holes pushed towards the device substrate.

  16. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  17. Determination of antenna factors using a three-antenna method at open-field test site

    NASA Astrophysics Data System (ADS)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  18. Structural, morphological and optical properties of PEDOT:PSS/QDs nano-composite films prepared by spin-casting

    NASA Astrophysics Data System (ADS)

    Najeeb, Mansoor Ani; Abdullah, Shahino Mah; Aziz, Fakhra; Ahmad, Zubair; Rafique, Saqib; Wageh, S.; Al-Ghamdi, Ahmed A.; Sulaiman, Khaulah; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.

    2016-09-01

    This paper describes the structural, morphological and optical properties of the nano-composite of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and quantum dots (QDs). The ZnSe and CdSe QDs have been synthesized, with the aid of Mercaptoacetic acid (MAA), by a colloidal method with an average size of 5 to 7 nm. QDs have been embedded in PEDOT:PSS using a simple solution processing approach and has been deposited as thin films by spin coating technique. The QDs embedded PEDOT:PSS enhances the light absorption spectra of samples, prominently in terms of absorption intensity which may consequently improve sensitivity of the optoelectronic devices.

  19. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  20. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking west. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  1. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking southeast. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  2. All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stenishchev, Ivan; Basharin, Alexey A.

    2017-05-01

    We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range. Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.

  3. Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.

    PubMed

    Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie

    2016-05-11

    Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.

  4. The Entry of Nano-dust Particles into the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Juhasz, A.

    2016-12-01

    Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.

  5. Compact optical filter for dual-wavelength fluorescence-spectrometry based on enhanced transmission through metallic nano-slit array

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zhan, L.; Xia, Y.

    2009-03-01

    A novel optical filter based on enhanced transmission through metallic nano-slit is proposed for dual-wavelength fluorescence-spectrometry. A special structure, sampled-period slit array, is utilized to meet the requirement of dual-wavelength transmission in this system. Structure parameters on the transmission property are analyzed by means of Fourier transformation. With the features both to enhance the fluorescence generation and to enhance light transmission, in addition with the feasibility for miniaturization, integration on one chip, and mass production, the proposed filters are promising for the realization of dual-wavelength fluorescence-spectrometry in micro-total-analysis-system.

  6. Antenna cab interior showing waveguide from external parabolic antenna (later ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  7. First two ALMA antennas successfully linked

    NASA Astrophysics Data System (ADS)

    2009-05-01

    a millionth of a second between equipment located many kilometers apart. The extreme environment where the ALMA observatory is located, with its strong winds, high altitude, and wide range of temperatures, just adds to the complexity of the observatory and to the fascinating engineering challenges we face", comments Richard Murowinski, ALMA Project Engineer. The astronomical target in this scientific milestone was the planet Mars. The astronomers measured the distinctive "fringes" -- a regular pattern of alternating strong and weak signals -- detected by the interferometer as the planet moved across the sky. The hardware used in this successful first test included two 12-metre diameter ALMA antennas as well as the complex series of electronic processing components needed to combine the signals. Such pairs of antennas are the basic building blocks of imaging systems that enable radio telescopes to deliver pictures that approach or even exceed the resolving power of visible light telescopes. Each antenna is combined electronically with every other antenna to form a multitude of antenna pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in early in the next decade, ALMA's 66 antennas will provide over a thousand such antenna pairings, with distances between antennas up to 16 kilometres. This will enable ALMA to see with a sharpness surpassing that of the best space telescopes, and to complement ground-based optical interferometers such as the ESO Very Large Telescope Interferometer (VLTI). "We are on target to do the first interferometry tests at the 5000-metre high-altitude site by the end of this year, and by the end of 2011 we plan to have at least 16 antennas working together as a single giant telescope," said Thijs de Graauw, ALMA Director. Notes for editors ALMA is a revolutionary astronomical telescope, comprising an array of 66 giant 12-metre and 7-metre

  8. Comsat Antenna

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The antenna shown is the new, multiple-beam, Unattended Earth Terminal, located at COMSAT Laboratories in Clarksburg, Maryland. Seemingly simple, it is actually a complex structure capable of maintaining contact with several satellites simultaneously (conventional Earth station antennas communicate with only one satellite at a time). In developing the antenna, COMSAT Laboratories used NASTRAN, NASA's structural analysis computer program, together with BANDIT, a companion program. The computer programs were used to model several structural configurations and determine the most suitable, The speed and accuracy of the computerized design analysis afforded appreciable savings in time and money.

  9. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    PubMed

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    NASA Astrophysics Data System (ADS)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  11. Study of array plasma antenna parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kumar, Prince

    2018-04-01

    This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.

  12. Multibeam antenna study, phase 1

    NASA Technical Reports Server (NTRS)

    Bellamy, J. L.

    1972-01-01

    A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.

  13. A True Metasurface Antenna.

    PubMed

    El Badawe, Mohamed; Almoneef, Thamer S; Ramahi, Omar M

    2016-01-13

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.

  14. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    NASA Astrophysics Data System (ADS)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  15. An antenna pointing mechanism for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Heimerdinger, H.

    1981-01-01

    An antenna pointing mechanism for large reflector antennas on direct broadcasting communication satellites was built and tested. After listing the requirements and constraints for this equipment the model is described, and performance figures are given. Futhermore, results of the qualification level tests, including functional, vibrational, thermovacuum, and accelerated life tests are reported. These tests were completed successfully.

  16. NanoSIMS Reveals New Structural and Elemental Signatures of Early Life

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; Robert, Francois; McKay, David S.

    2006-01-01

    The young technology of NanoSIMS is unlocking new information from organic matter in ancient sediments. We have used this technique to characterize sub-micron scale element composition of Proterozoic organics that are clearly biogenic as a guide for interpreting problematic structures in terrestrial or extraterrestrial samples. We used the NanoSIMS 50 of the National Museum of Natural History in Paris to map carbon, nitrogen (as CN), and sulfur in organic structures from the approximately 0.8 Ga Bitter Springs Formation. We analyzed spheroidal and filamentous microfossils as well as organic laminae that appeared amorphous by optical and scanning electron microscopy. In clear-cut microfossils, a coincidence between optical images and NanoSIMS element maps suggests a biological origin for the mapped carbon, sulfur, and nitrogen; this conclusion is supported by high resolution NanoSIMS maps showing identical spatial distributions of C, CN and S. High resolution images also demonstrate distinctive nano structure of the filaments and spheroids. In the amorphous laminae, NanoSIMS reveals morphologies reminiscent of compressed microfossils. Distinct CN/C ratios of the spheroids, filaments, and laminae may reflect their biological precursors (cell walls, cyanobacterial sheaths, and microbial communities/biofilms, respectively). Similar amorphous laminae comprise a preponderance of the organic matter in many Precambrian deposits. Thus it is possible that NanoSIMS will provide fresh insight into a large body of previously uninterpretable material. Additionally, NanoSIMS analysis may establish new biosignatures that will be helpful for assessing the origin and biogenicity of controversial Archean structures and any organic materials that may occur in Martian or other extraterrestrial samples.

  17. Astigmatism in reflector antennas.

    NASA Technical Reports Server (NTRS)

    Cogdell, J. R.; Davis, J. H.

    1973-01-01

    Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.

  18. Miniaturization of Microwave Ablation Antennas

    NASA Astrophysics Data System (ADS)

    Luyen, Hung

    Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun

  19. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    PubMed Central

    Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  20. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  1. Effect of lead ion concentration on the structural and optical properties of nano-crystalline PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mehmood, S. K.; Mansoor, M.; Asim, M. M.

    2014-06-01

    PbS thin films have received considerable attention because of their potential applications in opto-electronics applications. Spontaneous reaction of lead acetate and thiourea in aqueous hydrazine hydrate has been used for depositing PbS thin films on glass substrates. Structural and optical properties of PbS thin films are greatly influenced by the morality of the reactants and crystal defects in the lattice. Our work focuses on the variation in lead ion concentration and its effect on the structural and optical properties of PbS thin films. The deposited films were analyzed using XRD, SEM, spectrophotometer and dark resistance measurement. XRD patterns indicated the formation of major phase of nano crystalline PbS with minor presence of lead oxide phase. We also noticed that peak intensity ratio of I111/I200 varied by changing the Pb ion concentration. The film thickness and dark resistance increased whereas optical band gap decreased with the decreasing Pb ion concentration. SEM scans showed that the grain size is less than 100 nm and is not affected by varying Pb ion concentration.

  2. X-RAY BINARIES AND STAR CLUSTERS IN THE ANTENNAE: OPTICAL CLUSTER COUNTERPARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea

    2012-10-20

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2{sigma} positional uncertainty of Almost-Equal-To 0.''8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, H{alpha} colors with predictions from stellar evolutionary models. We find that 14 ofmore » the 22 coincident XRBs (64%) are hosted by star clusters with ages of Almost-Equal-To 6 Myr or less. All of the very young host clusters are fairly massive and have M {approx}> 3 Multiplication-Sign 10{sup 4} M {sub Sun }, with many having masses M Almost-Equal-To 10{sup 5} M {sub Sun }. Five of the XRBs are hosted by young clusters with ages {tau} Almost-Equal-To 10-100 Myr, while three are hosted by intermediate-age clusters with {tau} Almost-Equal-To 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.« less

  3. Optical signal processing

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1978-01-01

    The article discusses several optical configurations used for signal processing. Electronic-to-optical transducers are outlined, noting fixed window transducers and moving window acousto-optic transducers. Folded spectrum techniques are considered, with reference to wideband RF signal analysis, fetal electroencephalogram analysis, engine vibration analysis, signal buried in noise, and spatial filtering. Various methods for radar signal processing are described, such as phased-array antennas, the optical processing of phased-array data, pulsed Doppler and FM radar systems, a multichannel one-dimensional optical correlator, correlations with long coded waveforms, and Doppler signal processing. Means for noncoherent optical signal processing are noted, including an optical correlator for speech recognition and a noncoherent optical correlator.

  4. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty

    PubMed Central

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-01-01

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness. PMID:28287450

  5. 'Invisible' antenna takes up less space

    NASA Astrophysics Data System (ADS)

    Shelley, M.; Bond, K.

    1986-06-01

    A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.

  6. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  7. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    NASA Astrophysics Data System (ADS)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  8. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  9. Enhancement of integrated photonic biosensing by magnetic controlled nano-particles

    NASA Astrophysics Data System (ADS)

    Peserico, N.; Sharma, P. Pratim; Belloni, A.; Damin, F.; Chiari, M.; Bertacco, R.; Melloni, A.

    2018-02-01

    Integrated Mach-Zehnder interferometers, ring resonators, Bragg reflectors or simple waveguides are commonly used as photonic biosensing elements. They can be used for label-free detection relating the changes in the optical signal in realtime, as optical power or spectral response, to the presence and even the quantity of a target analyte on the surface of the photonic waveguide. The label-free method has advantages in term of sample preparation but it is more sensitive to spurious effects such as temperature and refractive index sample variation, biological noise, etc. Label methods can be more robust, more sensitive and able to manipulate the biological targets. In this work, we present an innovative labeled biosensing technique exploiting magnetic nano-beads for enhancement of sensitivity over integrated optic microrings. A sandwich binding is exploited to bring the magnetic labels close to the surface of the optical waveguide and interact with the optical evanescent field. The proximity and the quantity of the magnetic nano-beads are seen as a shift in the resonance of the microring. Detection of antibodies permits to reach a high level of sensitivity, down to 8 pM with a high confidence level. The sizes of the nano-beads are 50 to 250 nm. Furthermore, time-varying magnetic fields permit to manipulate the beads and even induce specific signals on the detected light to easy the processing and provide a reliable identification of the presence of the desired analyte. Multiple analytes detection is also possible.

  10. Phased-array-fed antenna configuration study, volume 2

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.

    1983-01-01

    Increased capacity in future satellite systems can be achieved through antenna systems which provide multiplicity of frequency reuses at K sub a band. A number of antenna configurations which can provide multiple fixed spot beams and multiple independent spot scanning beams at 20 GHz are addressed. Each design incorporates a phased array with distributed MMIC amplifiers and phasesifters feeding a two reflector optical system. The tradeoffs required for the design of these systems and the corresponding performances are presented. Five final designs are studied. In so doing, a type of MMIC/waveguide transition is described, and measured results of the breadboard model are presented. Other hardware components developed are described. This includes a square orthomode transducer, a subarray fed with a beamforming network to measure scanning performance, and another subarray used to study mutual coupling considerations. Discussions of the advantages and disadvantages of the final design are included.

  11. Optical trapping/modification of nano-(micro)particles by gradient and photorefractive forces during laser illumination

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Okafor, F.

    2010-08-01

    In this paper we describe photo-induced trapping/redistribution of silver nano-(micro) particles near the surface of photorefractive crystal LiNbO3:Fe. This type of optical trapping is due to combined forces of direct gradient-force trapping and asymmetric photorefractive forces of electro-phoresis and dielectro-phoresis. The silver nanoparticles were produced through extracellular biosynthesis on exposure to the fungus, Fusarium oxysporum (FO) and to the plant extracts. Pulsed and CW visible laser radiation lead to significant modification of nanoparticle clusters. This study indicates that extracellular biosynthesis can constitute a possible viable alternative method for the production of nanoparticles. In addition, the theoretical modeling of asymmetric photorefractive electric field grating has been presented and compared with the experimental results.

  12. Multi-scale Modeling and Analysis of Nano-RFID Systems on HPC Setup

    NASA Astrophysics Data System (ADS)

    Pathak, Rohit; Joshi, Satyadhar

    In this paper we have worked out on some the complex modeling aspects such as Multi Scale modeling, MATLAB Sugar based modeling and have shown the complexities involved in the analysis of Nano RFID (Radio Frequency Identification) systems. We have shown the modeling and simulation and demonstrated some novel ideas and library development for Nano RFID. Multi scale modeling plays a very important role in nanotech enabled devices properties of which cannot be explained sometimes by abstraction level theories. Reliability and packaging still remains one the major hindrances in practical implementation of Nano RFID based devices. And to work on them modeling and simulation will play a very important role. CNTs is the future low power material that will replace CMOS and its integration with CMOS, MEMS circuitry will play an important role in realizing the true power in Nano RFID systems. RFID based on innovations in nanotechnology has been shown. MEMS modeling of Antenna, sensors and its integration in the circuitry has been shown. Thus incorporating this we can design a Nano-RFID which can be used in areas like human implantation and complex banking applications. We have proposed modeling of RFID using the concept of multi scale modeling to accurately predict its properties. Also we give the modeling of MEMS devices that are proposed recently that can see possible application in RFID. We have also covered the applications and the advantages of Nano RFID in various areas. RF MEMS has been matured and its devices are being successfully commercialized but taking it to limits of nano domains and integration with singly chip RFID needs a novel approach which is being proposed. We have modeled MEMS based transponder and shown the distribution for multi scale modeling for Nano RFID.

  13. ATCRBS Antenna Modification Kit

    DOT National Transportation Integrated Search

    1976-06-01

    The report describes the design, fabrication and test results of an improved ATCRBS (Air Traffic Control Radar Beacon System) array antenna for mounting on the reflector of an ASR radar antenna. The antenna consists of a 4-foot high by 26-foot wide a...

  14. The interaction of the near-field plasma with antennas used in magnetic fusion research

    NASA Astrophysics Data System (ADS)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  15. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  16. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  17. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used outdoors...

  18. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  19. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used outdoors...

  20. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...