Sample records for nano-polysilicon thin films

  1. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Zhang, Yanmin

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructuremore » after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.« less

  2. Design, Simulation and Characteristics Research of the Interface Circuit based on nano-polysilicon thin films pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang

    2018-03-01

    This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.

  3. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.

    PubMed

    Saha, Rajarshi; Muthuswamy, Jit

    2007-06-01

    We had earlier demonstrated the use of polysilicon microelectrodes for recording electrical activity from single neurons in vivo. Good machinability and compatibility with CMOS processing further make polysilicon an attractive interface material between biological environments on one hand and MEMS technology and digital circuits on the other hand. In this study, we focus on optimizing the polysilicon thin films for (a) electrical recording and (b) stimulation of single neurons by minimizing its electrochemical impedance spectra and maximizing its charge storage/injection capacity respectively. The structure-property relationships in ion-implanted (phosphorus) LPCVD polysilicon thin films under different annealing and doping conditions were carefully assessed during this optimization process. A 2D model of the polysilicon thin film consisting of 4 grains and 3 grain boundaries was constructed and the effect of grain size and grain boundaries on dc resistivity was simulated using device simulator ATLAS. Optimal processing conditions and doping concentrations resulted in a 10-fold decrease in electrochemical impedance from 1.1 kOmega to 0.1 kOmega at 1 kHz (area of polysilicon interface = 4.8 mm(2)). Subsequent characterizations showed that evolution of secondary grains within the polysilicon thin films at optimal doping and annealing conditions (10(21)/cm(3) of phosphorus and annealed at 1200 degrees C) was responsible for decreasing the impedance. Cyclic voltammetry studies demonstrated that charge storage properties of low doped (10(15)/cm(3)) thin films was 111.4 microC/cm(2) in phosphate buffered saline which compares well with platinum wires (approximately 50 microC/cm(2)) and the double-layered capacitance (C(dl)) could be sustained between -1 to 1 V before breakdown and hydrolysis. We conclude that polysilicon can be optimized for recording and stimulating single neurons and can be a valuable interface material between neurons and CMOS or MEMS devices.

  4. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  5. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  6. Influence of high energy electron irradiation on the characteristics of polysilicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Aleksandrova, P. V.; Gueorguiev, V. K.; Ivanov, Tz. E.; Kaschieva, S.

    2006-08-01

    The influence of high energy electron (23 MeV) irradiation on the electrical characteristics of p-channel polysilicon thin film transistors (PSTFTs) was studied. The channel 220 nm thick LPCVD (low pressure chemical vapor deposition) deposited polysilicon layer was phosphorus doped by ion implantation. A 45 nm thick, thermally grown, SiO2 layer served as gate dielectric. A self-alignment technology for boron doping of the source and drain regions was used. 200 nm thick polysilicon film was deposited as a gate electrode. The obtained p-channel PSTFTs were irradiated with different high energy electron doses. Leakage currents through the gate oxide and transfer characteristics of the transistors were measured. A software model describing the field enhancement and the non-uniform current distribution at textured polysilicon/oxide interface was developed. In order to assess the irradiation-stimulated changes of gate oxide parameters the gate oxide tunneling conduction and transistor characteristics were studied. At MeV dose of 6×1013 el/cm2, a negligible degradation of the transistor properties was found. A significant deterioration of the electrical properties of PSTFTs at MeV irradiation dose of 3×1014 el/cm2 was observed.

  7. Large area polysilicon films with predetermined stress characteristics and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  8. Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films

    DOE PAGES

    Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

    2015-03-24

    We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm ×more » 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.« less

  9. Measurements of thermal conductivity and the coefficient of thermal expansion for polysilicon thin films by using double-clamped beams

    NASA Astrophysics Data System (ADS)

    Liu, Haiyun; Wang, Lei

    2018-01-01

    In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96  ±  0.92) W · m · K-1 and (2.65  ±  0.03)  ×  10-6 K-1, respectively, with temperature ranging from 300-400 K.

  10. Mechanisms for fatigue and wear of polysilicon structural thin films

    NASA Astrophysics Data System (ADS)

    Alsem, Daniel Henricus

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT(TM) process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo . It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ˜4-20 nm. Such results are interpreted and explained by a reaction-layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT(TM) process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (˜50-100 nm) created by fracture through the silicon grains (˜500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (˜20-200 nm) forms at worn regions. No

  11. Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.

    PubMed

    Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2012-01-01

    Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.

  12. Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films

    NASA Astrophysics Data System (ADS)

    Dunham, Marc T.; Lorenzi, Bruno; Andrews, Sean C.; Sood, Aditya; Asheghi, Mehdi; Narducci, Dario; Goodson, Kenneth E.

    2016-12-01

    The ability to tune the thermal conductivity of semiconductor materials is of interest for thermoelectric applications, in particular, for doped silicon, which can be readily integrated in electronic microstructures and have a high thermoelectric power factor. Here, we examine the impact of nanovoids on the thermal conductivity of highly doped, high-power factor polysilicon thin films using time-domain thermoreflectance. Voids are formed through ion implantation and annealing, evolving from many small (˜4 nm mean diameter) voids after 500 °C anneal to fewer, larger (˜29 nm mean diameter) voids with a constant total volume fraction after staged thermal annealing to 1000 °C. The thermal conductivity is reduced to 65% of the non-implanted reference film conductivity after implantation and 500 °C anneal, increasing with anneal temperature until fully restored after 800 °C anneal. The void size distributions are determined experimentally using small-angle and wide-angle X-ray scattering. While we believe multiple physical mechanisms are at play, we are able to corroborate the positive correlation between measurements of thermal conductivity and void size with Monte Carlo calculations and a scattering probability based on Matthiessen's rule. The data suggest an opportunity for thermal conductivity suppression combined with the high power factor for increased material zT and efficiency of nanostructured polysilicon as a thermoelectric material.

  13. Dynamic studies of nano-confined polymer thin films

    NASA Astrophysics Data System (ADS)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  14. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  15. Nano CaCO₃ imprinted starch hybrid polyethylhexylacrylate\\polyvinylalcohol nanocomposite thin films.

    PubMed

    Prusty, Kalyani; Swain, Sarat K

    2016-03-30

    Starch hybrid polyethylhexylacrylate (PEHA)/polyvinylalcohol (PVA) nanocomposite thin films are prepared by different composition of nano CaCO3 in aqueous medium. The chemical interaction of nano CaCO3 with PEHA in presence of starch and PVA is investigated by Fourier transforms infrared spectroscopy (FTIR). X-ray diffraction (XRD) is used in order to study the change in crystallite size and d-spacing during the formation of nanocomposite thin film. The surface morphology of nanofilms is studied by scanning electron microscope (SEM). The topology and surface roughness of the films is noticed by atomic force microscope (AFM). The tensile strength, thermal stability and thermal conductivity of films are increased with increase in concentrations of CaCO3 nanopowder. The chemical resistance and biodegradable properties of the nanocomposite thin films are also investigated. The growth of bacteria and fungi in starch hybrid PEHA film is reduced substantially with imprint of nano CaCO3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  17. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  18. Defect analysis and detection of micro nano structured optical thin film

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Shi, Nuo; Zhou, Lang; Shi, Qinfeng; Yang, Yang; Li, Zhuo

    2017-10-01

    This paper focuses on developing an automated method for detecting defects on our wavelength conversion thin film. We analyzes the operating principle of our wavelength conversion Micro/Nano thin film which absorbing visible light and emitting infrared radiation, indicates the relationship between the pixel's pattern and the radiation of the thin film, and issues the principle of defining blind pixels and their categories due to the calculated and experimental results. An effective method is issued for the automated detection based on wavelet transform and template matching. The results reveal that this method has desired accuracy and processing speed.

  19. Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.

    2003-08-01

    We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.

  20. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  1. New possibility on InZnO nano thin film for green emissive optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Noor Bin Ahmad, Mohd; Faizal Jamlos, Mohd; Bellan, Chandar Shekar; Chandran, Sharmila; Sivaraj, Manoj

    2016-04-01

    Indium zinc oxide (InZnO) nano thin film was prepared from InZnO nanoparticles (NPs) by thermal evaporation technique. Fourier transform infrared spectroscopy showed the presence of metal-oxide bond. X-ray diffraction pattern revealed the mixed phase structure. The presence of elements In, Zn and O were identified from energy dispersive X-ray analysis. Size of the NPs was found to be 171 and 263 nm by transmission electron microscopy. Scanning electron microscopy image showed the spherical shape uniform morphology with uniform distribution grains. Photoluminescence spectrum exhibited a broad green emission for InZnO nano thin film. The acquired results of structure, smooth morphology and photoluminescence property suggested that the InZnO nano thin film to be a promising material for room temperature green emissive optoelectronic, laser diodes, solar cells and other optical devices.

  2. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.

    PubMed

    Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert

    2013-07-01

    A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.

  3. Improvement in performance and reliability with CF4 plasma pretreatment on the buffer oxide layer for low-temperature polysilicon thin-film transistor

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh

    2012-03-01

    This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.

  4. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  5. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging

    PubMed Central

    Westermeier, Christian; Cernescu, Adrian; Amarie, Sergiu; Liewald, Clemens; Keilmann, Fritz; Nickel, Bert

    2014-01-01

    Controlling the domain size and degree of crystallization in organic films is highly important for electronic applications such as organic photovoltaics, but suitable nanoscale mapping is very difficult. Here we apply infrared-spectroscopic nano-imaging to directly determine the local crystallinity of organic thin films with 20-nm resolution. We find that state-of-the-art pentacene films (grown on SiO2 at elevated temperature) are structurally not homogeneous but exhibit two interpenetrating phases at sub-micrometre scale, documented by a shifted vibrational resonance. We observe bulk-phase nucleation of distinct ellipsoidal shape within the dominant pentacene thin-film phase and also further growth during storage. A faint topographical contrast as well as X-ray analysis corroborates our interpretation. As bulk-phase nucleation obstructs carrier percolation paths within the thin-film phase, hitherto uncontrolled structural inhomogeneity might have caused conflicting reports about pentacene carrier mobility. Infrared-spectroscopic nano-imaging of nanoscale polymorphism should have many applications ranging from organic nanocomposites to geologic minerals. PMID:24916130

  6. PECVD based silicon oxynitride thin films for nano photonic on chip interconnects applications.

    PubMed

    Sharma, Satinder K; Barthwal, Sumit; Singh, Vikram; Kumar, Anuj; Dwivedi, Prabhat K; Prasad, B; Kumar, Dinesh

    2013-01-01

    Thin silicon oxynitride (SiO(x)N(y)) films were deposited by low temperature (~300°C) plasma enhanced chemical vapour deposition (PECVD), using SiH(4), N(2)O, NH(3) precursor of the flow rate 25, 100, 30 sccm and subjected to the post deposition annealing (PDA) treatment at 400°C and 600°C for nano optical/photonics on chip interconnects applications. AFM result reveals the variation of roughness from 60.9 Å to 23.4 Å after PDA treatment with respect to the as-deposited films, favourable surface topography for integrated waveguide applications. A model of decrease in island height with the effect of PDA treatment is proposed in support of AFM results. Raman spectroscopy and FTIR measurements are performed in order to define the change in crystallite and chemical bonding of as-deposited as well as PDA treated samples. These outcomes endorsed to the densification of SiO(x)N(y) thin films, due to decrease in Si-N and Si-O bonds strain, as well the O-H, N-H bonds with in oxynitride network. The increase in refractive index and PL intensity of as deposited SiO(x)N(y) thin films to the PDA treated films at 400°C and 600°C are observed. The significant shift of PL spectra peak positions indicate the change in cluster size as the result of PDA treatment, which influence the optical properties of thin films. It might be due to out diffusion of hydrogen containing species from silicon oxynitride films after PDA treatment. In this way, the structural and optical, feasibility of SiO(x)N(y) films are demonstrated in order to obtain high quality thin films for nano optical/photonics on chip interconnects applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Surface induced phonon decay rates in thin film nano-structures

    NASA Astrophysics Data System (ADS)

    Photiadis, D. M.

    2007-12-01

    Nano-scale structure significantly impacts phonon transport and related phonon relaxation rates, with order of magnitude effects on the thermal conductivity of dielectric thin films and quantum wires, and even larger effects on the lifetimes of ultrasonic phonons of micro- (nano-) oscillators. In both cases, efforts to explain the data have been hampered by our lack of knowledge of the effects of confined dimensionality on phonon-phonon scattering rates. Using a phonon Boltzmann equation with appropriate boundary conditions on the free surfaces to take surface roughness into account, we have obtained an expression yielding phonon lifetimes in 2-D dielectric nanostructures(thin films) resulting from phonon-phonon scattering in conjunction with phonon-surface scattering. We present these theoretical results and, in the limit in which surface induced losses dominate, obtain explicit predictions for the phonon lifetimes. The predicted temperature dependence of the ultrason! ic loss does not explain the observed saturation of the loss at low temperatures(τ(T) → const), but does give results of the order of magnitude of measured ultrasonic lifetimes.

  8. The Evolution of Fabricated Gold Thin Films to Nano-Micro Particles Under Thermal Annealing Process

    NASA Astrophysics Data System (ADS)

    Hajivaliei, Mahdi; Nazari, Saeed

    2016-06-01

    Gold (Au) thin films with thickness of 35nm were prepared by electron beam deposition onto flat glass substrates under high vacuum (5.3×10-3Pa) condition and they were annealed in the range of 573-873 K for 1 and 2h in atmospheric pressure. The influence of the annealing temperature on the evolution of Au thin film to nano-micro particles was studied. Moreover, the basic properties of the films, namely morphological, structural and optical were investigated. The X-ray diffraction (XRD) analysis revealed that the Au thin films were cubic structure phase with lattice parameter around a=4.0786Å. The most preferential orientation is along (111) planes for all Au films. The lattice parameter and grain size in the films were calculated by X-ray patterns and correlated with annealing temperatures. The obtained results of ultraviolet-visible spectrometry (UV-Vis) indicate that with increasing annealing temperature, the surface plasmon resonance peak of gold nanocrystallite will disappear which implies the size of particles are grown. Field-emission scanning electron microscopy (FE-SEM) results show that the prepared gold thin films have been converted to nano-micro gold particles in different annealing temperatures. These results lead to controlling the size of produced nanocrystallite.

  9. van der Waals interaction between a moving nano-cylinder and a liquid thin film.

    PubMed

    Ledesma-Alonso, René; Raphaël, Elie; Salez, Thomas; Tordjeman, Philippe; Legendre, Dominique

    2017-05-24

    We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the film thickness and the probe speed have a significant effect on the threshold separation distance below which the jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the measurement of interaction forces.

  10. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    NASA Astrophysics Data System (ADS)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  11. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    NASA Astrophysics Data System (ADS)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  12. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  13. Chemically deposited nano grain composed MoS(2) thin films for supercapacitor application.

    PubMed

    Pujari, R B; Lokhande, A C; Shelke, A R; Kim, J H; Lokhande, C D

    2017-06-15

    Low temperature soft chemical synthesis approach is employed towards MoS 2 thin film preparation on cost effective stainless steel substrate. 3-D semispherical nano-grain composed surface texture of MoS 2 film is observed through FE-SEM technique. Electrochemical supercapacitor performance of MoS 2 film is tested from cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques in 1M aqueous Na 2 SO 4 electrolyte. Specific capacitance (C s ) of 180Fg -1 with CV cycling stability of 82% for 1000 cycles is achieved. Equivalent series resistance (R s ) of 1.78Ωcm -2 observed through Nyquist plot shows usefulness of MoS 2 thin film for charge conduction in supercapacitor application. Copyright © 2016. Published by Elsevier Inc.

  14. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    NASA Astrophysics Data System (ADS)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  15. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  16. Micromechanical Characterization of Polysilicon Films through On-Chip Tests.

    PubMed

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2016-07-28

    When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young's modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed.

  17. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-03-17

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less

  18. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  19. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  20. Micromechanical Characterization of Polysilicon Films through On-Chip Tests

    PubMed Central

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2016-01-01

    When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young’s modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed. PMID:27483268

  1. Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, A.; Rawat, R. S.; Ahmad, R.; Umar, Z. A.; Hussain, T.; Lee, P.; Chen, Z.

    2015-07-01

    Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3 kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.

  2. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  3. Depth profiling of nitrogen within 15N-incorporated nano-crystalline diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Cassidy, D. P.; Dissanayake, A.; Mancini, D. C.; Ghantasala, M. K.; Kayani, A.

    2013-09-01

    Nano-Crystalline Diamond (NCD) thin films are a topic of recent interest due to their excellent mechanical and electrical properties. The inclusion of nitrogen is a specific interest as its presence within NCD modifies its conductive properties. The methodology adopted for the characterization of nitrogen incorporated NCD films grown on a chromium underlayer determined a correlation between the chromium and nitrogen concentrations as well as a variation in the concentration profile of elements. Additionally, the concentration of nitrogen was found to be more than three times greater for these films versus those grown on a silicon substrate.

  4. Design and fabrication of highly hydrophobic Mn nano-sculptured thin films and evaluation of surface properties on hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran

    2017-03-01

    The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.

  5. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    PubMed Central

    Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu

    2016-01-01

    In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216

  6. Control of polysilicon on-film particulates with on-product measurements

    NASA Astrophysics Data System (ADS)

    Barker, Judith B.; Chain, Elizabeth E.; Plachecki, Vincent E.

    1997-08-01

    Historically, a number of in-line particle measurements have been performed on separate test wafers included with product wafers during polysilicon processes. By performing film thickness and particulate measurements directly on product wafers, instead, a number of benefits accrue: (1) reduced test wafer usage, (2) reduced test wafer storage requirements, (3) reduced need for equipment to reclaim test wafers, (4) reduced need for direct labor to reclaim test wafers, and (5) reduced engineering 'false alarms' due to incorrectly processed test wafers. Implementation of on-product measurements for the polysilicon diffusion process required a number of changes in both philosophy and methodology. We show the necessary steps to implementation of on-product particle measurements with concern for overall manufacturing efficiency and the need to maintain appropriate control. Particle results from the Tencor 7600 Surfscan are presented.

  7. Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions

    NASA Astrophysics Data System (ADS)

    Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.

    2001-10-01

    Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.

  8. The influences of fluorine and process variations on polysilicon film stress and MOSFET hot carrier effects

    NASA Technical Reports Server (NTRS)

    Lowry, Lynn E.; Macwilliams, Kenneth P.; Isaac, Mary

    1991-01-01

    The use of fluorinated gate oxides may provide an improvement in nMOSFET reliability by enhancing hot carrier resistance. In order to clarify the mechanisms by which polysilicon processing and fluorination influence the oxide behavior, a matrix of nMOSFET structures was prepared using various processing, doping, and implantation strategies. These structures were evaluated for crystalline morphology and chemical element distribution. Mechanical stress measurements were taken on the polysilicon films from room temperature to cryogenic temperature. These examinations showed that fluorination of a structure with randomly oriented polysilicon can reduce residual mechanical stress and improve hot carrier resistance at room temperature.

  9. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  10. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    PubMed

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  11. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  12. Effect of lead ion concentration on the structural and optical properties of nano-crystalline PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mehmood, S. K.; Mansoor, M.; Asim, M. M.

    2014-06-01

    PbS thin films have received considerable attention because of their potential applications in opto-electronics applications. Spontaneous reaction of lead acetate and thiourea in aqueous hydrazine hydrate has been used for depositing PbS thin films on glass substrates. Structural and optical properties of PbS thin films are greatly influenced by the morality of the reactants and crystal defects in the lattice. Our work focuses on the variation in lead ion concentration and its effect on the structural and optical properties of PbS thin films. The deposited films were analyzed using XRD, SEM, spectrophotometer and dark resistance measurement. XRD patterns indicated the formation of major phase of nano crystalline PbS with minor presence of lead oxide phase. We also noticed that peak intensity ratio of I111/I200 varied by changing the Pb ion concentration. The film thickness and dark resistance increased whereas optical band gap decreased with the decreasing Pb ion concentration. SEM scans showed that the grain size is less than 100 nm and is not affected by varying Pb ion concentration.

  13. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  14. Synthesis and Characterization of BaFe12O19 Thin Films Using Suspension of Nano Powders

    NASA Astrophysics Data System (ADS)

    Salemizadeh, Saman; Seyyed Ebrahimi, S. A.

    BaM thin films have been synthesized by dispersing the dried gel nano powders prepared by Sol-Gel method. The solution was made by dissolving iron nitrate Fe(NO3).9H2O, barium nitrate Ba(NO3)2 and citric acid in deyonized water and methanol. This sol was slowly evaporated until a dried gel was formed. This dried gel was then added to ethylene glycol. The final solution was vigorously shaken and mixed in ultrasonic cleaner for 30 min to disperse particles sufficiently. Then the prepared solution spin coated on Si(110) substrate. The obtained thin films were dried at 120 °C and then calcined at 900 °C for 1 h. The films were characterized using X-ray diffraction (XRD) and vibrating sample magnetometer (VSM).

  15. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  16. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin

    2018-04-01

    Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.

  17. Flexoelectricity in barium strontium titanate thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. Themore » measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.« less

  18. Fabrication of a pure TiO2 thin film using a self-polymeric titania nano-sol and its properties.

    PubMed

    Park, Won-Kyu; Song, Jeong-Hwan; Kim, Soo-Ryong; Kim, Tae-Hyun; Iwasaki, Mitusnobo

    2012-02-01

    A pure TiO2 thin film without adding any organic binder was fabricated by using a self-polymeric titania nano-sol (14 mass%), which was prepared by the acid peptization method. The particle size distribution in the 14 mass% TiO2 sol, in which almost of particles had a size below 10.2 nm and the crystal phase confirmed by X-ray diffraction analysis was anatase. The diluted nano-sol had a capability to form a thin film at a low temperature (100-400 degrees C) on the slide glass by dipping method. The average thickness of a coating film was measured to be about 0.25-0.30 microm. A coated film had a high refractive index over 1.88 at least irrespective of the heat-treatment even at room temperature drying and showed a super-hydrophilicity (< 5 degrees) after 20 minutes under Ultra Violet light irradiation, and it sustained in the darkness during a long period over 7 days depending on the heat-treatment conditions. Atomic Force Microscopic observation shows that the morphology of a heat-treated film had a relationship with the long-term hydrophilicity in the darkness.

  19. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    NASA Astrophysics Data System (ADS)

    Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa

    2014-01-01

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  20. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  1. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  2. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  3. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.

    2017-12-01

    The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.

  4. Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    NASA Astrophysics Data System (ADS)

    Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto

    2015-12-01

    In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

  5. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  6. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  7. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  8. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  9. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  10. The effect of thin film morphology on the electrochemical performance of Cu-Sn anode for lithium rechargeable batteries.

    PubMed

    Polat, B D; Keleş, O

    2014-05-01

    We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.

  11. Corrosion, optical and magnetic properties of flexible iron nitride nano thin films deposited on polymer substrate

    NASA Astrophysics Data System (ADS)

    Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.

    2017-11-01

    Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.

  12. Synthesis and characterization of ZnO:TiO{sub 2} nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutanto, Heri, E-mail: herisutanto@undip.ac.id; Nurhasanah, Iis; Hidayanto, Eko

    In this work, (ZnO){sub x}:(TiO{sub 2}){sub 1-x} nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol–gel spray coating technique onto glass substrate. Pure TiO{sub 2} and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO{sub 2} and ZnO:TiO{sub 2} thin films at different composition have been investigated. Ultraviolet – Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employedmore » in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO{sub 2} on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.« less

  13. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    NASA Astrophysics Data System (ADS)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  14. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  15. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    PubMed

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  16. Evaluation of the adhesion on the nano-scaled polymeric film systems.

    PubMed

    Park, Tae Sung; Park, Ik Keun; Yoshida, Sanichiro

    2017-04-01

    We applied scanning acoustic microscopy known as the V(z) curve technique to photoresist thin-film systems for the evaluation of the adhesive strength at the film-substrate interface. Through the measurement of the SAW (Surface Acoustic Wave) velocity, the V(z) curve analysis allows us to quantify the stiffness of the film-substrate interface. In addition, we conducted a nano-scratch test to quantify the ultimate strength of the adhesion through the evaluation of the critical load. To vary the adhesive conditions, we prepared thin-film specimens with three different types of pre-coating surface treatments, i.e., oxygen-plasma bombardment, HMDS (Hexametyldisilazane) treatment and untreated. The magnitudes of the quantified stiffness and ultimate strength are found consistent with each other for all the specimens tested, indicating that the pre-coating surface treatment can strengthen both the stiffness and ultimate strength of the adhesion. The results of this study demonstrate the usefulness of the V(Z) analysis as a nondestructive method to evaluate the adhesion strength of nano-structured thin-film systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2018-05-01

    Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.

  18. Development of flexible Ni80Fe20 magnetic nano-thin films

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.

    2017-11-01

    Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.

  19. PREFACE: Innovations in Thin Film Processing and Characterisation

    NASA Astrophysics Data System (ADS)

    Henrion, Gérard; Belmahi, Mohammed; Andrieu, Stéphane

    2010-07-01

    This special issue contains selected papers which were presented as invited or contributed communications at the 4th International Conference on Innovation in Thin Film Processing and Characterization (ITFPC'09) which was held on 17-20 November, 2009 in Nancy (France) Jointly organized by the French Vacuum Society and the Institut Jean Lamour-a joint research unit specialized in materials, metallurgy, nano-sciences, plasmas and surfaces-the ITFPC conferences aim at providing an open forum to discuss the progress and latest developments in thin film processing and engineering. Invited lectures aim particularly at providing overviews on scientific topics while contributed communications focus on particular cutting-edge aspects of thin film science and technology, including CVD, PVD and ion beam assisted processes. The 2009 conference was organized along the 6 main following topics: Thin films processing and surface engineering Numerical simulation and thin film characterization Protective applications of thin films Energy, environment and health applications of thin films Micro- and nano-patterning of thin films New properties and applications resulting from patterned thin films which were completed by a special half day session devoted to industry-supported innovation. 180 scientists from 20 worldwide countries attended the different sessions along with the 9 invited lectures and 130 contributions were given. Besides the outstanding scientific program, a half-day tutorial session preceded the conference. During the short courses, emphasis was laid on: Lithography for thin film patterning Mechanical properties of thin films Principles and applications of reactive sputtering processes. The French Vacuum Society granted financial aid to PhD students who applied for it in order to encourage the participation of young scientists. The 19 papers published in this volume were accepted for publication after peerreviewal as for regular papers. As chairmen of this conference

  20. Sb:SnO2 thin films-synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bhadrapriya B., C.; Varghese, Anitta Rose; Amarendra, G.; Hussain, Shamima

    2018-04-01

    Transparent thin films of antimony doped SnO2 have been synthesized and characterized using optical spectroscopy, XRD, RAMAN and FESEM. The band gap of Sb doped tin oxide thin film samples were found to vary from 3.26 eV to 3.7 eV. The XRD peaks showed prominent rutile SnO2 peaks with diminished intensity due to antimony doping. A wide band in the range 550-580 cm-1 was observed in raman spectra and is a feature of nano-sized SnO2. SEM images showed flower-like structures on thin film surface, a characteristic feature of antimony.

  1. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  2. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  3. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  4. Characterization of MAPLE deposited WO3 thin films for electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Stefan, N.; Szilágyi, I. M.; Mihailescu, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Besleaga, C.; Iliev, M. T.; Gesheva, K. A.

    2017-01-01

    Tungsten trioxide (WO3) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζFWHM=25 ns) laser source was used in all experiments. The MAPLE deposited WO3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices.

  5. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  6. Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex.

    PubMed

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2011-11-01

    Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex, Ca[((NO(2))(2)-8HQ)(2)], were explored, studied and evaluated in this work. Thin films of Ca[((NO(2))(2)-8HQ)(2)] were assembled by using a direct, simple and efficient layer-by-layer (LBL) chemical deposition technique. The optical properties of thin films were investigated by using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 200-2500 nm. The refractive index, n, and the absorption index, k, of Ca[((NO(2))(2)-8HQ)(2)] films were determined from the measured transmittance and reflectance. The real and imaginary dielectric constants were also determined. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with band gaps of 1.1 eV and 2.4 eV for the optical and transport energy gaps, respectively. The current-voltage characteristics of Ca[((NO(2))(2)-8HQ)(2)] showed a trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Graphical representation of the current-voltage characteristics yields three distinct linear parts indicating the existence of three conduction mechanisms. Structural characterization and identification were confirmed by using Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) was also used to image the surface morphology of the deposited nano-sized metal complex and such study revealed a high homogeneity in surface spherical particle distribution with average particles size in the range 20-40 nm. Thermal gravimetric analysis (TGA) was also studied for [(NO(2))(2)-8HQ] and Ca[((NO(2))(2)-8HQ)(2)] to evaluate and confirm the thermal stability characteristics incorporated into the synthesized nano-sized Ca[((NO(2))(2)-8HQ)(2)] complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  8. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  9. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    NASA Astrophysics Data System (ADS)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  10. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  11. Water-Soluble Epitaxial NaCl Thin Film for Fabrication of Flexible Devices.

    PubMed

    Lee, Dong Kyu; Kim, Sungjoo; Oh, Sein; Choi, Jae-Young; Lee, Jong-Lam; Yu, Hak Ki

    2017-08-18

    We studied growth mechanisms of water-soluble NaCl thin films on single crystal substrates. Epitaxial growth of NaCl(100) on Si(100) and domain-matched growth of NaCl(111) on c-sapphire were obtained at thicknesses below 100 nm even at room temperature from low lattice mismatches in both cases. NaCl thin film, which demonstrates high solubility selectivity for water, was successfully applied as a water-soluble sacrificial layer for fabrication of several functional materials, such as WO 3 nano-helix and Sn doped In 2 O 3 nano-branches.

  12. Ferroelastic switching in a layered-perovskite thin film

    PubMed Central

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  13. Ferroelastic switching in a layered-perovskite thin film

    DOE PAGES

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; ...

    2016-02-03

    Here, a controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi 2WO 6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barriermore » of ferroelastic switching in orthorhombic Bi 2WO 6 film is ten times lower than the one in PbTiO 3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.« less

  14. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  15. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  16. Synthesis of α-MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin films and their application in gas sensing

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

    2016-11-01

    Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.

  17. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7)O3 for multi-bit storage application

    PubMed Central

    2011-01-01

    In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156

  18. Single neuronal recordings using surface micromachined polysilicon microelectrodes.

    PubMed

    Muthuswamy, Jit; Okandan, Murat; Jackson, Nathan

    2005-03-15

    Bulk micromachining techniques of silicon have been used successfully in the past several years to microfabricate microelectrodes for monitoring single neurons in acute and chronic experiments. In this study we report for the first time a novel surface micromachining technique to microfabricate a very thin polysilicon microelectrode that can be used for monitoring single-unit activity in the central nervous system. The microelectrodes are 3 mm long and 50 microm x 3.75 microm in cross-section. Excellent signal to noise ratios in the order of 25-35 dB were obtained while recording neuronal action potentials. The microelectrodes successfully penetrated the brains after a microincision of the dura mater. Chronic implantation of the microprobe for up to 33 days produced only minor gliosis. Since the polysilicon shank acts as a conductor, additional processing steps involved in laying conductor lines on silicon substrates are avoided. Further, surface micromachining allows for fabricating extremely thin microelectrodes which could result in decreased inflammatory responses. We conclude that the polysilicon microelectrode reported here could be a complementary approach to bulk-micromachined silicon microelectrodes for chronic monitoring of single neurons in the central nervous system.

  19. Effect of annealing on optical properties and structure of the vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Yi; Li, Yuming; Huang, Yize; Tong, Guoxiang; Fang, Baoying; Zheng, Qiuxin; Li, Liu; Shen, Yujian

    2012-10-01

    VO2 thin films were prepared on soda-lime glass substrates by DC magnetron sputtering at room temperature using vanadium target and post annealing in air. X-ray diffraction and FTIR spectroscopy analyses showed that the films obtained at the optimized parameters have high VO2 (011) orientation. Both low temperature deposition and post annealing method were beneficial to grow the nano-films with pure VO2 phase-structure and composition. Metalinsulator transition properties of the VO2 films in terms of infrared transmittance, transmittance variation and film thickness were investigated under varying annealing temperature. Results showed that infrared transmittance variation and transition temperature of the nano-films were significantly improved and reduced respectively. Therefore, this study was able to develop practical low-cost preparation methods for high-performance intelligent energy-saving thin films.

  20. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  1. Studies of Nano-structured Se77Sb23- x Ge x Thin Films Prepared by Physical Vapor Condensation Technique

    NASA Astrophysics Data System (ADS)

    Alvi, M. A.

    2017-02-01

    Bulk Se77Sb23- x Ge x material with x = 4 and 12 was prepared by employing a melt quench technique. Its amorphous as well as glassy nature was confirmed by x-ray diffraction analysis and nonisothermal differential scanning calorimetry measurements. The physical vapor condensation technique was applied to prepare nanostructured thin films of Se77Sb23- x Ge x material. The surface morphology of the films was examined using field-emission scanning electron microscopy, revealing average particle size between 20 nm and 50 nm. Systematic investigation of optical absorption data indicated that the optical transition was indirect in nature. The dark conductivity (dc conductivity) of nano-structured Se77Sb23- x Ge x thin films was also investigated at temperatures from 313 K to 463 K, revealing that it tended to increase with increasing temperature. Analyses of our experimental data also indicate that the conduction is due to thermally supported tunneling of charge carriers in confined states close to the band edges. The calculated values of activation energy agree well with the optical bandgap.

  2. Automatic hammering of nano-patterns on special polymer film by using a vibrating AFM tip

    PubMed Central

    2012-01-01

    Complicated nano-patterns with linewidth less than 18 nm can be automatically hammered by using atomic force microscopy (AFM) tip in tapping mode with high speed. In this study, the special sample was thin poly(styrene-ethylene/butylenes-styrene) (SEBS) block copolymer film with hexagonal spherical microstructures. An ordinary silicon tip was used as a nano-hammer, and the entire hammering process is controlled by a computer program. Experimental results demonstrate that such structure-tailored thin films enable AFM tip hammering to be performed on their surfaces. Both imprinted and embossed nano-patterns can be generated by using a vibrating tip with a larger tapping load and by using a predefined program to control the route of tip movement as it passes over the sample’s surface. Specific details for the fabrication of structure-tailored SEBS film and the theory for auto-hammering patterns were presented in detail. PMID:22889045

  3. Effect of temperature on optical properties of PMMA/SiO2 composite thin film

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-05-01

    Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.

  4. Rapid nano impact printing of silk biopolymer thin films

    NASA Astrophysics Data System (ADS)

    White, Robert D.; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J.; Kaplan, David L.; Omenetto, Fiorenzo G.

    2011-11-01

    In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100-200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.

  5. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    PubMed

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  6. A reversible bipolar WORM device based on AlOxNy thin film with Al nano phase embedded

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Li, J.; Zhang, L.; Hu, X. C.

    2017-03-01

    An Al-rich AlOxNy thin film based reversible Write-Once-Read-Many-Times (WORM) memory device with MIS structure could transit from high resistance state (HRS, ∼1011 Ω) to low resistance state (LRS, ∼105 Ω) by sweeping voltage up to ∼20 V. The first switching could be recorded as writing process for WORM device which may relate to conductive path are formed through the thin film. The conductive path should be formed by both Al nano phase and oxygen vacancies. Among of them, Al nano phases are not easy to move, but oxygen vacancies could migrate under high E-field or at high temperature environment. Such conductive path is not sensitive to charging effect after it formed, but it could be broken by heating effect, which may relate to the migration of excess Al ions and oxygen vacancies at high temperature. After baking LRS (ON state) WORM device at 200 °C for 2 min, the conductivity will decrease to HRS which indicates conductive path is broken and device back to HRS (OFF state) again. This phenomenon could be recorded as recovery process. Both writing and recovery process related to migration of oxygen vacancies and could be repeated over 10 times in this study. It also indicates that there is no permanent breakdown occurred in MIS structured WORM device operation. We suggest that this conductive path only can be dissolved by a temperature sensitive electro-chemical action. This WORM device could maintain at LRS over 105 s with on-off ratio over 4 orders.

  7. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  8. Economics of polysilicon processes

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K. Y.; Chou, S. M.

    1986-01-01

    Techniques are being developed to provide lower cost polysilicon material for solar cells. Existing technology which normally provides semiconductor industry polysilicon material is undergoing changes and also being used to provide polysilicon material for solar cells. Economics of new and existing technologies are presented for producing polysilicon. The economics are primarily based on the preliminary process design of a plant producing 1,000 metric tons/year of silicon. The polysilicon processes include: Siemen's process (hydrogen reduction of trichlorosilane); Union Carbide process (silane decomposition); and Hemlock Semiconductor process (hydrogen reduction of dichlorosilane). The economics include cost estimates of capital investment and product cost to produce polysilicon via the technology. Sensitivity analysis results are also presented to disclose the effect of major paramentes such as utilities, labor, raw materials and capital investment.

  9. Mechanical Characterization of Polysilicon MEMS: A Hybrid TMCMC/POD-Kriging Approach.

    PubMed

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2018-04-17

    Microscale uncertainties related to the geometry and morphology of polycrystalline silicon films, constituting the movable structures of micro electro-mechanical systems (MEMS), were investigated through a joint numerical/experimental approach. An on-chip testing device was designed and fabricated to deform a compliant polysilicon beam. In previous studies, we showed that the scattering in the input–output characteristics of the device can be properly described only if statistical features related to the morphology of the columnar polysilicon film and to the etching process adopted to release the movable structure are taken into account. In this work, a high fidelity finite element model of the device was used to feed a transitional Markov chain Monte Carlo (TMCMC) algorithm for the estimation of the unknown parameters governing the aforementioned statistical features. To reduce the computational cost of the stochastic analysis, a synergy of proper orthogonal decomposition (POD) and kriging interpolation was adopted. Results are reported for a batch of nominally identical tested devices, in terms of measurement error-affected probability distributions of the overall Young’s modulus of the polysilicon film and of the overetch depth.

  10. Mathematical modelling of thin films growth and calculation of coefficients reflection, transmission and absorption waves

    NASA Astrophysics Data System (ADS)

    Istratov, A. V.; Gerke, M. N.

    2018-01-01

    Progress in nano- and microsystem technology is directly related to the development of thin-film technologies. At the present time, thin metal films can serve as the basis for the creation of new instruments for nanoelectronics. One of the important parameters of thin films affecting the characteristics of devices is their optical properties. That is why the island structures, whose optical properties, can change in a wide range depending on their morphology, are of increasing interest. However, despite the large amount of research conducted by scientists from different countries, many questions about the optimal production and use of thin films remain unresolved.

  11. A Novel Fabrication Approach for Multifunctional Graphene-based Thin Film Nano-composite Membranes with Enhanced Desalination and Antibacterial Characteristics.

    PubMed

    Hegab, Hanaa M; ElMekawy, Ahmed; Barclay, Thomas G; Michelmore, Andrew; Zou, Linda; Losic, Dusan; Saint, Christopher P; Ginic-Markovic, Milena

    2017-08-08

    A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.

  12. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  13. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  14. Temperature dependent infrared nano-imaging of La0.67Sr0.33MnO3 thin film

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Huffman, T. J.; Hae Kwak, In; Biswas, Amlan; Qazilbash, M. M.

    2018-01-01

    We investigate the temperature dependence of infrared properties at nanometer length scales in La0.67Sr0.33MnO3 (LSMO) thin film with a thickness of 47 unit cells grown on SrTiO3 substrate. The infrared nano-imaging experiments were performed using a near-field optical microscope in conjunction with a variable temperature heating stage. The near-field infrared data is consistent with the bulk of the LSMO film undergoing the thermally-driven non-percolative second-order transition from a metallic, ferromagnetic phase to an insulating, paramagnetic phase. We find persistent infrared contrast on the nanoscale that is independent of temperature and which we attribute to two novel phases with different conductivities coexisting in the vicinity of the film-substrate interface. These two coexisting phases at the film-substrate interface do not undergo the metal-insulator transition (MIT) and hence are different from the metallic, ferromagnetic and insulating, paramagnetic phases in the bulk of the film. At temperatures approaching the nominal MIT temperature, repeated scans of the same microscopic area at constant temperature reveal bimodal fluctuation of the near-field infrared amplitude. We interpret this phenomenon as slow, critical fluctuations of the conductivity in the bulk of the LSMO film.

  15. New organic semiconductor thin film derived from p-toluidine monomer

    NASA Astrophysics Data System (ADS)

    Al-Hossainy, A. F.; Zoromba, M. Sh

    2018-03-01

    p-Toluidine was used as a precursor to synthesize new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1,2-diamine] (MBD) by oxidative reaction via potassium dichromate as oxidizing agent at room temperature. Spin coater was used to fabricate nano-size crystalline thin film of the MBD with thickness 73 nm. The characterizations of the MBD powder and thin film have been described by various techniques including Fourier Transform Infrared (FT-IR), Mass Spectra, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV-Visible measurements and Atomic Force Microscope (AFM). The results revealed that the MBD as an organic material is semi-crystalline containing benzenoid (Bensbnd Nsbnd Ben) and quinonoid (Quin = N = Quin) structures. Various optical constants such as refractive index (n), and the absorption index, (k) of the MBD thin film were determined. The effect of temperature on the electrical resistivity of MBD film was studied by a Keithley 6517B electrometer. The energy band gap value of the MBD thin film was found to be 2.24 eV. Thus, MBD is located in the semiconductor materials range. In addition, structural and optical mechanisms of MBD nanostructured thin film were investigated. The obtained results illustrate the possibility of controlling the organic semiconductor MBD thin film for the optoelectronic applications.

  16. Ferroelectric thin-film active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  17. Thin-film nano-thermogravimetry applied to praseodymium-cerium oxide films at high temperatures

    NASA Astrophysics Data System (ADS)

    Schröder, Sebastian; Fritze, Holger; Bishop, Sean; Chen, Di; Tuller, Harry L.

    2018-05-01

    High precision measurements of oxygen nonstoichiometry δ in thin film metal oxides MaOb±δ at elevated temperatures and controlled oxygen partial pressures pO2 are reported with the aid of resonant microbalances. The resonant microbalances applied here consisted of y-cut langasite (La3Ga5SiO14) and CTGS (Ca3TaGa3Si2O14) piezoelectric resonators, operated in the thickness shear mode at ˜5 MHz. Measurements of variations in δ of Pr0.1Ce0.9O2-δ (PCO) films are reported for the oxygen partial pressure range from 10-8 bar to 0.2 bar at 700 °C, and these results were found to be in good agreement with previously reported oxygen nonstoichiometry δ data derived from chemical capacitance studies. The PCO thin-films were deposited via pulsed laser deposition on both sides of the resonators, whose series resonance frequency was tracked, converted into mass changes and, finally, into nonstoichiometry. The nonstoichiometry was observed to reach a plateau as the oxygen partial pressure dropped below about 10-5 bar, the behavior being attributed to the full reduction of Pr to the trivalent state. These resonators enable stable operation up to temperatures above 1000 °C, thereby maintaining high mass resolution suitable for determining oxygen nonstoichiometry variations in thin films deposited on such resonators. For the given experimental conditions, a mass resolution of ˜50 ng was achieved at 700 °C with the CTGS resonator.

  18. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    PubMed Central

    Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue

    2014-01-01

    Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241

  19. Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films

    NASA Astrophysics Data System (ADS)

    Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi

    2017-07-01

    We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.

  20. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  1. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsem, Daniel Henricus

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy ofmore » the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations

  2. Tensile testing of thin-film microstructures

    NASA Astrophysics Data System (ADS)

    Greek, Staffan; Johansson, Stefan A. I.

    1997-09-01

    The mechanical properties of thin film microstructures depend on size and shape and on the film manufacturing process. Hence, the test structures that are used to measure mechanical properties should have dimensions of the same order of magnitude as an application structure. The microstructures are easily monitored in a scanning electron microscope (SEM), but to be handled and tested in situ a micromanipulator was developed. The parts of the micromanipulator essential to the tests are two independently moveable tables driven by electric motors. The test structures and a testing unit are mounted on the tables. A testing unit was designed to measure force and displacement with high resolution. The testing unit consists of an arm actuated by a piezoelectric element and equipped with a probe. An optical encoder measures the movement of the arm, while strain gauges measure the force in the arm. Test structures consist typically of a released beam fixed at one end with a ring at the other. The micromanipulator is used to position the probe of the testing unit in the ring. The testing unit then executed a tensile test of the beam. Test structures of polysilicon films produced under various process conditions were used to verify the possibility of measuring Young's modulus with an accuracy of +/- 5 percent, as well as fracture strength.Young's modulus is calculated using the difference in elongation for different beam lengths. The fracture strength of the beams was evaluated with Weibull statistics.

  3. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  4. Dewetting of thin polymer films: an X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Müller-Buschbaum, P.; Stamm, M.

    1998-06-01

    The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.

  5. Effects of bacteria on CdS thin films used in technological devices

    NASA Astrophysics Data System (ADS)

    Alpdoğan, S.; Adıgüzel, A. O.; Sahan, B.; Tunçer, M.; Metin Gubur, H.

    2017-04-01

    Cadmium sulfide (CdS) thin films were fabricated on glass substrates by the chemical bath deposition method at 70 {}^\\circ \\text{C} considering deposition times ranging from 2 h to 5 h. The optical band gaps of CdS thin films were found to be in the 2.42-2.37 eV range. CdS thin films had uniform spherical nano-size grains which had polycrystalline, hexagonal and cubic phases. The films had a characteristic electrical resistivity of the order of {{10}5} Ω \\text{cm} and n-type conductivity at room condition. CdS thin films were incubated in cultures of B.domonas aeruginosa and Staphylococcus aureus, which exist abundantly in the environment, and form biofilms. SEM images showed that S. aureus and K. pneumonia were detected significantly on the film surfaces with a few of P. aeruginosa and B. subtilis cells attached. CdS thin film surface exhibits relatively good resistance to the colonization of P. aeruginosa and B. subtilis. Optical results showed that the band gap of CdS thin films which interacted with the bacteria is 2.42 \\text{eV} . The crystal structure and electrical properties of CdS thin films were not affected by bacterial adhesion. The antimicrobial effect of CdS nanoparticles was different for different bacterial strains.

  6. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    PubMed Central

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo

    2017-01-01

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures. PMID:29206155

  7. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    PubMed

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  8. Polysilicon for everything?

    NASA Astrophysics Data System (ADS)

    Ward, M. C. L.; McNie, Mark E.; Bunyan, Robert J.; King, David O.; Carline, Roger T.; Wilson, Rebecca; Gillham, J. P.

    1998-09-01

    We review some of the attractive attributes of microengineering and relate them to features of the highly successful silicon microelectronics industry. We highlight the need for cost effective functionality rather than ultimate performance as a driver for success and review key examples of polysilicon devices from this point of view. The effective exploitation of the data generated by the cost effective polysilicon sensors is also considered and we conclude that `non traditional' data analysis will need to be exploited if full use is to be made of polysilicon devices.

  9. Effect of molarity on sol-gel routed nano TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lourduraj, Stephen; Williams, Rayar Victor

    The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.

  10. Thin polymeric films for building biohybrid microrobots.

    PubMed

    Ricotti, Leonardo; Fujie, Toshinori

    2017-03-06

    This paper aims to describe the disruptive potential that polymeric thin films have in the field of biohybrid devices and to review the recent efforts in this area. Thin (thickness  <  1 mm) and ultra-thin (thickness  <  1 µm) matrices possess a series of intriguing features, such as large surface area/volume ratio, high flexibility, chemical and physical surface tailorability, etc. This enables the fabrication of advanced bio/non-bio interfaces able to efficiently drive cell-material interactions, which are the key for optimizing biohybrid device performances. Thin films can thus represent suitable platforms on which living and artificial elements are coupled, with the aim of exploiting the unique features of living cells/tissues. This may allow to carry out certain tasks, not achievable with fully artificial technologies. In the paper, after a description of the desirable chemical/physical cues to be targeted and of the fabrication, functionalization and characterization procedures to be used for thin and ultra-thin films, the state-of-the-art of biohybrid microrobots based on micro/nano-membranes are described and discussed. The research efforts in this field are rather recent and they focus on: (1) self-beating cells (such as cardiomyocytes) able to induce a relatively large deformation of the underlying substrates, but affected by a limited controllability by external users; (2) skeletal muscle cells, more difficult to engineer in mature and functional contractile tissues, but featured by a higher controllability. In this context, the different materials used and the performances achieved are analyzed. Despite recent interesting advancements and signs of maturity of this research field, important scientific and technological steps are still needed. In the paper some possible future perspectives are described, mainly concerning thin film manipulation and assembly in multilayer 3D systems, new advanced materials to be used for the fabrication

  11. A Lanthanide MOF Thin-Film Fixed with Co3 O4 Nano-Anchors as a Highly Efficient Luminescent Sensor for Nitrofuran Antibiotics.

    PubMed

    Zhang, Feng; Yao, Hua; Chu, Tianshu; Zhang, Gaowei; Wang, Yi; Yang, Yangyi

    2017-08-01

    Nitrofurans are a group of widely used veterinary antibiotics, which have been banned due to antibiotics pollution. Development of a rapid and effective method for the detection of nitrofuran antibiotics (NFAs) is an important challenge. Herein, we designed a chemical sensor based on a thin-film composed of the lanthanide metal-organic framework (Ln-MOF) {[Eu 2 (BCA) 3 (H 2 O)(DMF) 3 ]⋅0.5DMF⋅H 2 O} n (Eu-BCA, in which BCA is 2,2'-biquinoline-4,4'-dicarboxylate) coated on a cost-effective stainless steel wire mesh (SSWM) by Co 3 O 4 nano-anchor fixation method. The MOF coatings were well adhered to the SSWM, resulting in a three-dimensional porous, flexible, and processable sensor. The structure of the as-prepared MOF thin-film was confirmed by powder X-ray diffraction (PXRD), and the surface morphology was examined by scanning electron microscopy (SEM). Significantly, the Eu-BCA thin-film was highly selective and sensitive to NFAs, and yet remained unaffected by other common antibiotics that may be present. The limits of detection for nitrofurantoin (NFT) and nitrofurazone (NFZ) are 0.21 and 0.16 μm, respectively. NFAs were also successfully detected in water from the Pearl River in Guangzhou, and from bovine serum samples. Hence, the reported Ln-MOF thin-film is a promising sensor for the detection of NFAs, thereby helping to protect human beings from all manner of hazards that arise from the abuse of antibiotics in livestock breeding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pinning in high performance MgB2 thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Prikhna, Tatiana; Shapovalov, Andrey; Eisterer, Michael; Shaternik, Vladimir; Goldacker, Wilfried; Weber, Harald W.; Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir; Boutko, Viktor; Grechnev, Gennadiy; Gusev, Alexandr; Kovylaev, Valeriy; Shaternik, Anton

    2017-02-01

    The comparison of nano-crystalline MgB2 oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, Jc, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB2 bulks with high Jc in low (∼106 A/cm2 in 0-1 T at 10 K) and medium magnetic fields contain MgB0.6-0.8O0.8-0.9 nano-inclusions, where δTc or a combined δTc (dominant) / δl pinning mechanism prevails, while in bulk MgB2 with high Jc in high magnetic fields (Birr(18.5 K) = 15 T, Bc2(0 K) = 42.1 T) MgB1.2-2.7O1.8-2.5 nano-layers are present and δl pinning prevails. The structure of oxygen-containing films with high Jc in low and high magnetic fields (Jc (0 Т) = 1.8 × 107 А/сm2 and Jc (5 Т) = 2 × 106 А/сm2 at 10 К) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δl pinning is realized. The results of DOS calculations in MgB2-xOx cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, Eb, does not increase sufficiently as compared with that for MgB2, while when oxygen atoms form zigzag chains the calculated Eb is even lower (Eb = -1.15712 Ry).

  13. Light scattering properties of self-organized nanostructured substrates for thin-film solar cells.

    PubMed

    Mennucci, C; Del Sorbo, S; Pirotta, S; Galli, M; Andreani, L C; Martella, C; Giordano, M C; Buatier de Mongeot, F

    2018-06-01

    We investigate the scattering properties of novel kinds of nano-textured substrates, fabricated in a self-organized fashion by defocused ion beam sputtering. These substrates provide strong and broadband scattering of light and can be useful for applications in thin-film solar cells. In particular, we characterize the transmitted light in terms of haze and angle-resolved scattering, and we compare our results with those obtained for the commonly employed Asahi-U texture. The results indicate that the novel substrate has better scattering properties compared to reference Asahi-U substrates. We observe super-Lambertian light scattering behavior in selected spectral and angular regions due to the peculiar morphology of the nano-textured interface, which combines high aspect ratio pseudo random structures with a one-dimensional periodic pattern. The enhancement of light absorption observed in a prototype thin film semiconductor absorber grown on nano-textured glass with respect to an Asahi-U substrate further confirms the superior light trapping properties of the novel substrate.

  14. An Ultra-Precise Method for the Nano Thin-Film Removal

    NASA Astrophysics Data System (ADS)

    Pa, P. S.

    In this research an electrode-set is used to investigate via an ultra-precise method for the removal of Indium Tin Oxide (ITO) thin-film microstructure from defective display panels to conquer the low yield rate in display panel production as to from imperfect Indium Tin Oxide layer deposition is well known. This process, which involves the removal of ITO layer substructure by means of an electrochemical removal (ECMR), is of major interest to the optoelectronics semiconductor industry. In this electro machining process a high current flow and high feed rate of the display (color filter) achieves complete and efficient removal of the ITO layer. The ITO thin-film can be removed completely by a proper combination of feed rate and electric power. A small gap between the diameter cathode virtual rotation circle and the diameter virtual rotation circle also corresponds to a higher removal rate. A small anode edge radius with a small cathode edge radius effectively improves dregs discharge and is an advantage when associated with a high workpiece feed rate. This precision method for the recycling of defective display screen color filters is presented as an effective tool for use in the screen manufacturing process. The defective Indium Tin Oxide thin-film can be removed easily and cleanly in a short time. The complete removal of the ITO layer makes it possible to put these panels back into the production line for reuse with a considerable reduction of both waste and production cost.

  15. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  16. Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants

    NASA Astrophysics Data System (ADS)

    Cheraghizade, Mohsen; Jamali-Sheini, Farid; Yousefi, Ramin

    2017-06-01

    Lead sulfide (PbS) thin films were deposited by CVD method to examine the effects of anionic and cationic dopants on optical and electrical properties for photovoltaic applications. XRD diffractograms verified the formation of cubic phase of multicrystalline PbS thin films. FESEM images showed surface morphologies in nano-dimensions (rods and flowers). UV-Vis-NIR spectrum revealed absorbance in the visible and NIR regions for all samples, in which dopants decreased the intensity of absorbance. Se as an anionic dopant for PbS thin films increased electrical resistance, acceptor concentrations, and crystallite defects, and decreased flat-band voltage and depletion width. Finally, photovoltaic measurements indicated that Zn-doped PbS thin film, as a photovoltaic cell, exhibited higher conversion efficiency and external quantum efficiency (EQE).

  17. Scanning gate study of organic thin-film field-effect transistor

    NASA Astrophysics Data System (ADS)

    Aoki, N.; Sudou, K.; Matsusaki, K.; Okamoto, K.; Ochiai, Y.

    2008-03-01

    Scanning gate microscopy (SGM) has been applied for a study of organic thin-film field effect transistor (OFET). In contrast to one-dimensional nano-material such a carbon nanonube or nano-structure such a quantum point contact, visualization a transport characteristic of OFET channel is basically rather difficult since the channel width is much larger than the size of the SGM tip. Nevertheless, Schottky barriers are successfully visualized at the boundary between the metal electrodes and the OFET channel at ambient atmosphere.

  18. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Che; Al-Saab, Feras; Wang, Yudong; Ou, Jun-Yu; Walker, John C.; Wang, Shuncai; Gholipour, Behrad; Simpson, Robert E.; Hewak, Daniel W.

    2014-10-01

    Nano-scale MoS2 thin films are successfully deposited on a variety of substrates by atmospheric pressure chemical vapor deposition (APCVD) at ambient temperature, followed by a two-step annealing process. These annealed MoS2 thin films are characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-VIS-NIR spectrometry, photoluminescence (PL) and Hall Effect measurement. Key optical and electronic properties of APCVD grown MoS2 thin films are determined. This APCVD process is scalable and can be easily incorporated with conventional lithography as the deposition is taking place at room temperature. We also find that the substrate material plays a significant role in the crystalline structure formation during the annealing process and single crystalline MoS2 thin films can be achieved by using both c-plane ZnO and c-plane sapphire substrates. These APCVD grown nano-scale MoS2 thin films show great promise for nanoelectronic and optoelectronic applications.

  19. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  20. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  1. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Method for selective CMP of polysilicon

    NASA Technical Reports Server (NTRS)

    Babu, Suryadevara V. (Inventor); Natarajan, Anita (Inventor); Hegde, Sharath (Inventor)

    2010-01-01

    A method of removing polysilicon in preference to silicon dioxide and/or silicon nitride by chemical mechanical polishing. The method removes polysilicon from a surface at a high removal rate while maintaining a high selectivity of polysilicon to silicon dioxide and/or a polysilicon to silicon nitride. The method is particularly suitable for use in the fabrication of MEMS devices.

  3. Integrating Nano-patterned Ferromagnetic and Ferroelectric Thin Films for Electrically Tunable RF Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tengxing; Peng, Yujia; Jiang, Wei

    Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less

  4. Integrating Nano-patterned Ferromagnetic and Ferroelectric Thin Films for Electrically Tunable RF Applications

    DOE PAGES

    Wang, Tengxing; Peng, Yujia; Jiang, Wei; ...

    2016-10-31

    Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less

  5. Morphological evolution of thin polymer film on chemically patterned substrates

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2018-05-01

    In this paper work, pattern formation in ultra thin polymer film, adsorbed on chemically patterned substrates, is reported under strong confinement. The observations indicate for the strong influence of the surface attraction over evolution of spindoal waves, leading to the flattening of the film. But, the film appears to be torn apart in strip or nano fiber like structures, because of coalescences of the monomers at the free ends of the chains. The beads at the free ends of the chain are relatively more mobile. The chain diffusion towards attractive part of the chemically patterned surfaces is clearly seen. Prewetting or crystallization like phenomena seems to appear resulting into formation of strips with coexistence of molten phase drops at the top of the ruptured film. The investigation mimics spindoal dewetting because of the fact that the rupturing occurs in case of strong attractive surface. The investigation is of technical importance as it highlights the formation of nano scale strips and fibers though in a quasi equilibrium case.

  6. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  7. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Ali, Asghar

    TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.

  8. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode

    NASA Astrophysics Data System (ADS)

    Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.

    2015-02-01

    Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.

  9. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  10. Structural, thermal, spectroscopic, and spectral dispersion studies of nanocrystalline methyl red thin films

    NASA Astrophysics Data System (ADS)

    Makhlouf, Mohamed M.; El-Denglawey, Adel

    2018-04-01

    Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.

  11. Pulsed—Laser Deposition Of Oxide Thin Films And Laser—Induced Breakdown Spectroscopy Of Multi—Element Materials

    NASA Astrophysics Data System (ADS)

    Pedarnig, Johannes D.

    2010-10-01

    New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.

  12. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    PubMed

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.

    PubMed

    Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G

    2010-07-05

    A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.

  14. Quaternary schematics for property engineering of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Chavan, G. T.; Pawar, S. T.; Prakshale, V. M.; Sikora, A.; Pawar, S. M.; Chaure, N. B.; Kamble, S. S.; Maldar, N. N.; Deshmukh, L. P.

    2017-12-01

    The synthesis of quaternary Cd1-xZnxSySe1-y (0 ≤ x = y ≤ 0.35) thin films was done through indigenously developed chemical solution growth process. As-obtained thin films were subjected to the physical, chemical, structural and optical characterizations. The nearly hydrophobic nature of the as-deposited films except binary CdSe was observed through the wettability studies. The colorimetric studies supported a change in physical color attributes. The elemental analysis done confirmed the formation of Cd(Zn, S)Se and the chemical states of constituent elements as Cd2+, Zn2+, S2- and Se2-. Structural assessment suggested the formation of the polycrystalline quaternary phase of the hexagonal wurtzite structure. The Raman spectroscopy was also employed for the confirmation studies on Cd1-xZnxSySe1-y thin films. Morphological observations indicated microstructural transformation from an aggregated bunch of nano-sized globular grains into a rhomboid network of petal/flakes like crystallites. The atomic force micrographs (AFM) revealed the enhancement in the hillock structures. From advanced AFM characterizations, we observed that the CdSe thin film has leptokurtic (Sku = 3.23) surface, whereas, quaternary Cd(Zn, S)Se films have platykurtic (Sku < 3) surface. The orientation of the surface morphology was observed through the angular spectrum studies. The optical absorption studies revealed direct allowed transition for the films with a continuous modulation of the energy bandgap from 1.8 eV to 2.31 eV.

  15. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  16. CMOS compatible thin-film ALD tungsten nanoelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Davidson, Bradley Darren

    This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different

  17. Nanostructure iron-silicon thin film deposition using plasma focus device

    NASA Astrophysics Data System (ADS)

    Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.

    2013-03-01

    The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample

  18. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    NASA Astrophysics Data System (ADS)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  19. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    NASA Astrophysics Data System (ADS)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  20. Photodiode Based on CdO Thin Films as Electron Transport Layer

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  1. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  2. Self-Heating Effects In Polysilicon Source Gated Transistors

    PubMed Central

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  3. Thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate by using successive ion layer adsorption and reaction (SILAR) technique: characterization and optical-electrical-photovoltaic properties.

    PubMed

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2012-07-01

    A method is described for thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate complex, Zn[((NO(2))(2)-8HQ)(2)] by using successive ion layer adsorption and reaction (SILAR) technique. Highly homogeneous assembled nano-sized metal complex thin films with particle size distribution in the range 27-47nm was identified by using scanning electron microscopy (SEM). Zn[((NO(2))(2)-8HQ)(2)] and [(NO(2))(2)-8HQ] ligand were studied by thermal gravimetric analysis (TGA). Graphical representation of temperature dependence of the dark electrical conductivity produced two distinct linear parts for two activation energies at 0.377eV and 1.11eV. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a fundamental band gap of 2.74eV. The dark current density-voltage (J-V) characteristics showed the rectification effect due to the formation of junction barrier of Zn[((NO(2))(2)-8HQ)(2)] complex film/n-Si interface. The photocurrent in the reverse direction is strongly increased by photo-illumination and the photovoltaic characteristics were also determined and evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Thin-Film Transistors Fabricated Using Sputter Deposition of Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Xiao, Nan

    2013-01-01

    Development of thin film transistors (TFTs) with conventional channel layer materials, such as amorphous silicon (a-Si) and polysilicon (poly-Si), has been extensively investigated. A-Si TFT currently serves the large flat panel industry; however advanced display products are demanding better TFT performance because of the associated low electron mobility of a-Si. This has motivated interest in semiconducting metal oxides, such as Zinc Oxide (ZnO), for TFT backplanes. This work involves the fabrication and characterization of TFTs using ZnO deposited by sputtering. An overview of the process details and results from recently fabricated TFTs following a full-factorial designed experiment will be presented. Material characterization and analysis of electrical results will be described. The investigated process variables were the gate dielectric and ZnO sputtering process parameters including power density and oxygen partial pressure. Electrical results showed clear differences in treatment combinations, with certain I-V characteristics demonstrating superior performance to preliminary work. A study of device stability will also be discussed.

  5. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  6. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Schütz, Gisela; Goering, Eberhard J.

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  7. Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, Elias James

    Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.

  8. Micron-scale channel formation by the release and bond-back of pre-stressed thin films: A finite element analysis

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Huck, W. T. S.; Onck, P. R.

    2010-04-01

    Buckling of thin films on a rigid substrate during use or fabrication is a well-known but unwanted phenomenon. However, this phenomenon can also be exploited to generate well-controlled patterns at the micro and nano-scale. These patterned surfaces find various technological applications such as optical gratings or micro/nano-fluidic channels. In this article, we present a numerical model that accounts for the buckling-up of pre-strained thin films by a reduction of the interface toughness and the subsequent bond-back. Channels are formed whose dimensions can be controlled by tuning the film dimensions, film thickness and stiffness, the eigenstrain in the film and the cohesive interface energy between the film and the substrate. We will show how the buckling-up and draping back processes can be captured in terms of a limited set of dimensionless parameters, providing quantitative insight on how these parameters should be tuned to generate a specified channel geometry.

  9. Growth, structure and stability of sputter-deposited MoS2 thin films.

    PubMed

    Kaindl, Reinhard; Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang

    2017-01-01

    Molybdenum disulphide (MoS 2 ) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS 2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS 2 films by magnetron sputtering. MoS 2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO 2 /Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS 2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS 2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS 2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS 2 thin films are discussed. A potential application for such conductive nanostructured MoS 2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS 2 films.

  10. Growth, structure and stability of sputter-deposited MoS2 thin films

    PubMed Central

    Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang

    2017-01-01

    Molybdenum disulphide (MoS2) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films. PMID:28685112

  11. Dewetting of Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.

    2001-03-01

    DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.

  12. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  13. Noncontact viscoelastic measurement of polymer thin films in a liquid medium using a long-needle AFM

    NASA Astrophysics Data System (ADS)

    Guan, Dongshi; Barraud, Chloe; Charlaix, Elisabeth; Tong, Penger

    We report noncontact measurement of the viscoelastic property of polymer thin films in a liquid medium using frequency-modulation atomic force microscopy (FM-AFM) with a newly developed long-needle probe. The probe contains a long vertical glass fiber with one end adhered to a cantilever beam and the other end with a sharp tip placed near the liquid-film interface. The nanoscale flow generated by the resonant oscillation of the needle tip provides a precise hydrodynamic force acting on the soft surface of the thin film. By accurately measuring the mechanical response of the thin film, we obtain the elastic and loss moduli of the thin film using the linear response theory of elasto-hydrodynamics. The experiment verifies the theory and demonstrates its applications. The technique can be used to accurately measure the viscoelastic property of soft surfaces, such as those made of polymers, nano-bubbles, live cells and tissues. This work was supported by the Research Grants Council of Hong Kong SAR.

  14. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    PubMed

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  16. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  17. A two-layer structured PbI2 thin film for efficient planar perovskite solar cells.

    PubMed

    Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao

    2015-07-28

    In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm(-2) and a fill factor of 0.67.

  18. Coupled optical and electrical study of thin-film InGaAs photodetector integrated with surface InP Mie resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Song, Jiakun; Yu, Hailong

    2016-03-14

    High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less

  19. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  20. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  1. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Chuan

    should be less than 3 mm in order to guarantee the first resonant frequency above 60 kHz. Finally, a package for the PZT thin-film micro probe device is developed to ensure its proper function in an aqueous environment, such as inside of cochlea. The package is an insulation layer of parylene coating on the probe. A finite element analysis indicates that a coating thickness of less than 1 mum will reduce the PZT diaphragm displacement by less than 10%. A special fixture is designed to hold a large number of probes for parylene deposition of a thickness of 250 nm. A packaged probe is then submerged in deionized water and functions properly for at least 55 hours. Displacement and impedance of the probe are measured via a laser Doppler vibrometer and an impedance analyzer, respectively. Experimental results show that displacement of the PZT diaphragm increases about 30% in two hours, after the probe is submerged in the deionized water. The impedance measurement shows consistent trends. A hypothesis to explain this unusual phenomenon is diffusion of water molecules into the PZT thin film. High-resolution SEM images of the probe indicate presence of numerous nano-pores in the surface of the PZT thin film, indirectly confirming the hypothesis. Keywords: PZT, Thin-Film, Dual Electrodes, Parylene Coating, Aqueous Environment, Cochlear Implant

  2. Effect of bath temperature on structure, morphology and thermoelectric properties of CoSb{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Suchitra, E-mail: suchitrayadav87@gmail.com; Pandya, Dinesh K.; Chaudhary, Sujeet

    2016-05-23

    CoSb{sub 3} thin films are deposited on conducting glass substrates (FTO) by electrodeposition at different bath temperatures (60°C, 70°C and 80°C) and the resulting influence of the bath temperature on the structure, morphology and electrical properties of films is investigated. X-ray diffraction confirms the formation of CoSb{sub 3} phase in the films. Scanning electron microscopy reveals that different morphologies ranging from branched nano-flakes to nano-needles evolve as bath temperature increases. It is concluded that a growth temperature of 80°C is suitable for producing CoSb{sub 3} films with such properties that show potential feasibility for thermoelectric applications.

  3. Nanocrystalline mesoporous SMO thin films prepared by sol gel process for MEMS-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Gong, Jianwei; Fei, Weifeng; Seal, Sudipta; Chen, Quanfang

    2004-01-01

    MEMS based SnO2 gas sensor with sol gel synthesized mesoporous nanocrystalline (<10 nm) semiconductor thin (100~150 nm) film has been recently developed. The SnO2 nano film is fabricated with the combination of polymeric sol gel chemistry with block copolymers used for structure directing agents. The novel hydrogen sensor has a fast response time (1s) and quick recovery time (3s), as well as good sensitivity (about 90%), comparing to other hydrogen sensors developed. The improved capabilities are credited to the large surface to volume ratio of gas sensing thin film with nano sized porous surface topology, which can greatly increase the sensitivity even at relatively low working temperature. The gas sensing film is deposited onto a thin dielectric membrane of low thermal conductivity, which provides good thermal isolation between substrate and the gas-sensitive heated area on the membrane. In this way the power consumption can be kept very low. Since the fabrication process is completely compatible with IC industry, it makes mass production possible and greatly reduces the cost. The working temperature of the new sensor can be reduced as low as 100°C. The low working temperature posse advantages such as lower power consumption, lower thermal induced signal shift as well as safe detection in certain environments where temperature is strictly limited.

  4. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  5. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  6. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    PubMed Central

    Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan

    2010-01-01

    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033

  7. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  8. Nanoscale strengthening mechanisms in metallic thin film systems

    NASA Astrophysics Data System (ADS)

    Schoeppner, Rachel Lynn

    Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity

  9. The effect of heat treatment on superhydrophilicity of TiO2 nano thin films

    NASA Astrophysics Data System (ADS)

    Ashkarran, A. A.; Mohammadizadeh, M. R.

    2007-11-01

    TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.

  10. Successive ion layer adsorption and reaction (SILAR) technique synthesis of Al(III)-8-hydroxy-5-nitrosoquinolate nano-sized thin films: characterization and factors optimization.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdel Refea, M

    2013-02-01

    Nano Al(III)-8-hydroxy-5-nitrosoquinolate [Al(III)-(HNOQ)(3)] thin films were synthesized by the rapid, direct, simple and efficient successive ion layer adsorption and reaction (SILAR) technique. Thin film formation optimized factors were evaluated. Stoichiometry and structure were confirmed by elemental analysis and FT-IR. The particle size (27-71 nm) was determined using scanning electron microscope (SEM). Thermal stability and thermal parameters were determined by thermal gravimetric analysis (TGA). Optical properties were investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence. Refractive index, n, and absorption index, k, were determined. Spectral behavior of the absorption coefficient in the intrinsic absorption region revealed a direct allowed transition with 2.45 eV band gap. The current-voltage (I-V) characteristics of [Al(III)-(HNOQ)(3)]/p-Si heterojunction was measured at room temperature. The forward and reverse I-V characteristics were analyzed. The calculated zero-bias barrier height (Φ(b)) and ideality factor (n) showed strong bias dependence. Energy distribution of interface states (N(ss)) was obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    EPA Science Inventory

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  12. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  13. Synthesis and electrochemical property of LiCoO 2 thin films composed of nanosize compounds synthesized via nanosheet restacking method

    NASA Astrophysics Data System (ADS)

    Quan, Zhen; Iwase, Kosuke; Sonoyama, Noriyuki

    LiCoO 2 thin films with nanosize particles were synthesized on Au substrates by nanosheet restacking method and subsequent hydrothermal reaction which needs less cost than the vacuum deposition methods. The grain size of LiCoO 2 films estimated by XRD reflection was about 15 nm that was independent of the thickness of precursor cobalt hydroxide film. Comparing the rate performance of the thin films with various thickness, the optimum performance was obtained by the thin film with 5 min deposition time: 62% of the capacity was held at 400 C-rate compared with that at 20 C-rate. The results of AC-impedance analysis of electrode reaction indicate that the high rate capability of the LiCoO 2 film is obtained by the small grain size and large surface area of LiCoO 2 thin film with nano size particles.

  14. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  15. Drop dynamics on a thin film: Thin film rupture

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Kim, Pilnam; Stone, Howard A.

    2011-11-01

    The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.

  16. The role of ultra-fast solvent evaporation on the directed self-assembly of block polymer thin films

    NASA Astrophysics Data System (ADS)

    Drapes, Chloe; Nelson, G.; Grant, M.; Wong, J.; Baruth, A.

    The directed self-assembly of nano-structures in block polymer thin films viasolvent vapor annealing is complicated by several factors, including evaporation rate. Solvent vapor annealing exposes a disordered film to solvent(s) in the vapor phase, increasing mobility and tuning surface energy, with the intention of producing an ordered structure. Recent theoretical predictions reveal the solvent evaporation affects the resultant nano-structuring. In a competition between phase separation and kinetic trapping during drying, faster solvent removal can enhance the propagation of a given morphology into the bulk of the thin film down to the substrate. Recent construction of a purpose-built, computer controlled solvent vapor annealing chamber provides control over forced solvent evaporation down to 15 ms. This is accomplished using pneumatically actuated nitrogen flow into and out of the chamber. Furthermore, in situ spectral reflectance, with 10 ms temporal resolution, monitors the swelling and evaporation. Presently, cylinder-forming polystyrene-block-polylactide thin films were swollen with 40% (by volume) tetrahydrofuran, followed by immediate evaporation under a variety of designed conditions. This includes various evaporation times, ranging from 15 ms to several seconds, and four unique rate trajectories, including linear, exponential, and combinations. Atomic force microscopy reveals specific surface, free and substrate, morphologies of the resultant films, dependent on specific evaporation conditions. Funded by the Clare Boothe Luce Foundation and Nebraska EPSCoR.

  17. Rapid and ultrasensitive flexible palladium nano-thin film biosensing electrode development for cancer antigen HER2 detection

    NASA Astrophysics Data System (ADS)

    Huang, Yun-Tzu; Chang, Chia-Yu; Chen, Wei; Su, Chien-Hao; Hsu, Guo-Cheng; Chang, Chia-Ching

    HER2 (human epidermal growth factor receptor 2) is one of the significant surface antigens of breast cancer Trace amount of HER2 protein in human serum is highly correlated to the tumor progression in breast cancers especially in the cases of recurrence. Therefore, HER2 detection of human serum is significant for early detection of cancer recurrence. Conventional HER2 detection approaches may not be sensitive enough or contain highly false positive rate or time consuming for accurate detection. Therefore, a rapid, highly sensitive and specific sensing is highly desired. By using HER2 specific binding peptide functionalized palladium thin film electrochemical electrode the HER2 protein concentration can be determined at sub-nanogram level by electrochemical impedance spectroscopy (EIS) within 10 mins. The Pd nano-film is sputtered on the flexible plastics substrate and reduces the cost of this electrode. Due to the low cost of the electrode, it is designed as a disposable biosensing probe which may reduce the concern of human sample contamination. The self-management after breast cancer operation may be feasible in the near future. Keywords: Electrochemical impedance spectroscopy(EIS), breast cancer, biosensor Corresponding author: ccchang01@faculty.nctu.edu.tw; Cheeshin Technology Co. Collaboration.

  18. Dynamic depinning phase transition in magnetic thin film with anisotropy

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Zheng, B.; Jin, M. H.; Wang, L.; Zhou, N. J.

    2018-02-01

    The dynamic pinning effects induced by quenched disorder are significant in manipulating the domain-wall motion in nano-magnetic materials. Through numerical simulations of the nonstationary domain-wall dynamics with the Landau-Lifshitz-Gilbert equation, we confidently detect a dynamic depinning phase transition in a magnetic thin film with anisotropy, which is of second order. The transition field, static and dynamic exponents are accurately determined, based on the dynamic scaling behavior far from stationary.

  19. A thin film nitinol heart valve.

    PubMed

    Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P

    2005-11-01

    In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.

  20. Simultaneous monitoring of humidity and chemical changes using quartz crystal microbalance sensors modified with nano-thin films.

    PubMed

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    Quartz crystal microbalance (QCM) electrodes modified with nano-thin films were used to develop a system for measuring significant environment changes (smoke, humidity, hazardous material release). A layer-by-layer approach was used for the deposition of sensitive coatings with a nanometer thickness on the electrode surface. The QCM electrode was modified with self-assembled alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) (or its manganese derivative, MnTSPP) and poly(diallyldimethylammonium chloride) (PDDA). The QCM sensors, which had been reported previously for humidity sensing purposes, revealing a high possibility to recognize significant environmental changes. Identifying of the origin of environmental change is possible via differential signal analysis of the obtained data. The sensors showed different responses to humidity changes, hazardous gas (ammonia) or cigarette smoke exposure. Even qualitative analysis is not yet available; it has been shown that ventilation triggers or alarms for monitoring smoke or hazardous material release can be built using the obtained result.

  1. Developing NanoFoil-Heated Thin-Film Thermal Battery

    DTIC Science & Technology

    2013-09-01

    buffer discs (in gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat...of the fuse strip with a Microtherm disc. Cathode Electrolyte Anode Microtherm Heat paper NanoFoil Buffer Agilent 34970A 606.5 Nichrome wire Maccor...gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat loss

  2. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  3. Nano-crystalline porous tin oxide film for carbon monoxide sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)

    2000-01-01

    A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.

  4. Thickness Dependence of Magnetic Blocking in Granular Metallic Thin Films

    NASA Astrophysics Data System (ADS)

    Wang, J.-Q.; Zhao, Z.-D.; Whittenburg, S. L.

    2002-03-01

    Inter-particle interaction among single domain nano-size magnetic particles embedded in nonmagnetic matrix was studied. Attention was paid to concentrated Cu-Co granular thin films with a fixed magnetic volume fraction. By analyzing theoretical models and comparing with experimental results, we studied a dimensional constraint on the magnetic properties and found that as the film thickness reduces toward thin limit the inter-particle interaction plays important roles in modifying magnetic behavior. Experimental evidence showed that the peak temperature of the susceptibility for Cu80Co20 granular thin films strongly depends on the film thickness in the range of 0 120 nm (1). It was also observed that the spontaneous magnetization of the Co phase varies with the thickness though particle size remains constant. We calculated the dipolar interaction energy among magnetic particles including far-neighbor interaction for films with different thickness values. The calculation revealed that the interaction energy varies across the film from edge to edge and the average interaction energy is strongly dependent on film thickness. Good quantitative agreement of the calculated energy curve with the experimental blocking curve was achieved after taking the magnetization variation into account. In the calculation it is assumed the existence of 100 nm sized domain structures in granular film as demonstrate (2) by previous studies. *supported by DoD/DARPA grant No. MDA972-97-1-003. (1) L. M. Malkinski, J.-Q. Wang, et al, Appl. Phys. Lett. 75, 844 (1999). (2) A. Gavrin, et al, Appl. Phys. Lett. 66, 1683 (1995); Y. J. Chen, et al, Appl. Phys. Lett. 72, 2472 (1998).

  5. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    NASA Astrophysics Data System (ADS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  6. Surface Engineering of Polycrystalline Silicon for Long-Term Mechanical Stress Endurance Enhancement in Flexible Low-Temperature Poly-Si Thin-Film Transistors.

    PubMed

    Chen, Bo-Wei; Chang, Ting-Chang; Chang, Kuan-Chang; Hung, Yu-Ju; Huang, Shin-Ping; Chen, Hua-Mao; Liao, Po-Yung; Lin, Yu-Ho; Huang, Hui-Chun; Chiang, Hsiao-Cheng; Yang, Chung-I; Zheng, Yu-Zhe; Chu, Ann-Kuo; Li, Hung-Wei; Tsai, Chih-Hung; Lu, Hsueh-Hsing; Wang, Terry Tai-Jui; Chang, Tsu-Chiang

    2017-04-05

    The surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used. This paper investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Our simulated results show that the nonuniform stress in the gate insulator is more pronounced near the polysilicon/gate insulator edge and at the two sides of the polysilicon protrusion. This stress results in defects in the gate insulator and leads to a nonuniform degradation phenomenon, which affects both the performance and the reliability in thin-film transistors (TFTs). The degree of degradation is similar regardless of bending axis (channel-length axis, channel-width axis) or bending type (compression, tension), which means that the degradation is dominated by the protrusion effects. Furthermore, by utilizing long-term electrical bias stresses after undergoing long-tern bending stress, it is apparent that the carrier injection is severe in the subchannel region, which confirms that the influence of protrusions is crucial. To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height. The device with the lowest protrusions demonstrates the smallest degradation after undergoing long-term bending.

  7. Tailoring magnetic domains in Gd-Fe thin films

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Chelvane, J. Arout; Mohanty, J.

    2018-05-01

    This paper presents the global modification of magnetic domains and magnetic properties in amorphous Gd19Fe81 thin films with rapid thermal processing at two distinct temperatures (250oC and 450oC), and with different time intervals viz., 2, 5, 10 and 20 minutes. 100 nm thick as-prepared films display nano-scale meandering stripe domains with high magnetic phase contrast which is the signature of perpendicular magnetic anisotropy. The films processed at 250oC for various time intervals show successive reduction in magnetic phase contrast and domain size. The domain pattern completely disappeared, and topography dominated mixed magnetic phase has been obtained for the films processed at 450oC for time intervals greater than 2 minutes. The magnetization measurements indicate the reduction in perpendicular magnetic anisotropy with increase in saturation magnetization for all the rapid thermal processed films. The experimental outputs have been used to simulate the domain pattern. Reduction in uniaxial anisotropy along with the increase in saturation magnetization successfully explain the experimental trend of decrease in domain size and magnetic contrast.

  8. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46more » to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.« less

  9. Thin Crystal Film Polarizer for Display Application

    NASA Astrophysics Data System (ADS)

    Paukshto, Michael

    2003-03-01

    Optiva Inc. has pioneered the development of nano-thin crystalline film (TCF) optical coatings for use in information displays and other applications. TCF is a material based on water-based dichroic dye solutions. Disk-like dye molecules aggregate in a ``plane-to-plane" manner; this self-assembly results in formation of highly anisometric rod-like stacks. These stacks have an aspect ratio of approximately 200:1. At a certain threshold of dye concentration, a nematic ordering of the rod-like stacks appears. Such a system acquires polarizing properties according to the following mechanism. Flow-induced alignment is known to occur in the lyotropic systems in a shear flow. In our case, the material undergoes shear alignment while being coated onto a glass or plastic substrate. In the coated thin film, the long molecular stacks are oriented in the flow direction parallel to the flow direction and substrate plane. The planes of the dye molecules are perpendicular to the substrate plane with the optical transition oscillators lying in the molecule plane. After the coating, as the thin film dries, crystallization occurs due to water evaporation. In a dry film, the molecular planes maintain their orthogonal orientation with respect to the substrate surface. TCF is known to possess properties of an E-mode polarizer. TCF technology has now migrated out of the R stage into manufacturing and is currently being incorporated into new display products. This presentation will provide an overview of TCF technology. The first part of the presentation will describe material structure, optical properties and characterization, material processing and associated coating equipment. This will be followed by a presentation on optical modeling and simulation of display performance with TCF components. Comparisons of display performance will be made for exemplar configurations of a variety of LCDs, including TN, STN and AMLCD designs in both transmissive and reflective modes.

  10. Processing-Structure-Property Relationships in Laser-Annealed PbSe Nanocrystal Thin Films.

    PubMed

    Treml, Benjamin E; Robbins, Andrew B; Whitham, Kevin; Smilgies, Detlef-M; Thompson, Michael O; Hanrath, Tobias

    2015-01-01

    As nanocrystal (NC) synthesis techniques and device architectures advance, it becomes increasingly apparent that new ways of connecting NCs with each other and their external environment are required to realize their considerable potential. Enhancing inter-NC coupling by thermal annealing has been a long-standing challenge. Conventional thermal annealing approaches are limited by the challenge of annealing the NC at sufficiently high temperatures to remove surface-bound ligands while at the same time limiting the thermal budget to prevent large-scale aggregation. Here we investigate nonequilibrium laser annealing of NC thin films that enables separation of the kinetic and thermodynamic aspects of nanocrystal fusion. We show that laser annealing of NC assemblies on nano- to microsecond time scales can transform initially isolated NCs in a thin film into an interconnected structure in which proximate dots "just touch". We investigate both pulsed laser annealing and laser spike annealing and show that both annealing methods can produce "confined-but-connected" nanocrystal films. We develop a thermal transport model to rationalize the differences in resulting film morphologies. Finally we show that the insights gained from study of nanocrystal mono- and bilayers can be extended to three-dimensional NC films. The basic processing-structure-property relationships established in this work provide guidance to future advances in creating functional thin films in which constituent NCs can purposefully interact.

  11. Novel antifouling nano-enhanced thin-film composite membrane containing cross-linkable acrylate-alumoxane nanoparticles for water softening.

    PubMed

    Ghaemi, Negin

    2017-01-01

    A novel thin-film composite (TFC) nanofiltration membrane was prepared using polymerization of pyrrole monomers on the PES ultrafiltration membrane. To improve the characteristics of hydrophobic polypyrrole (PPy) thin-film layer, cross-linkable acrylate-functionalized alumoxane nanoparticles with different concentrations were embedded into the thin-film during polymerization process, and thin-film nanocomposite (TFNC) membranes were prepared. The characteristics and performance of TFC and TFNC membranes were assessed through the morphological analyses (SEM, AFM), measurement of hydrophilicity and solid-liquid interfacial free energy, water permeability and Mg 2+ removal tests. Addition of proper amount of nanoparticles into the polymerization mixture led to the preparation of membranes with more hydrophilic, thinner and smoother active layer as well as higher water permeability compared to TFC control membrane. TFNC membrane prepared with 0.025g of nanoparticles was the most efficient membrane since it exhibited the highest rejection of MgCl 2 and MgSO 4 salts. Antifouling capability of membranes, in terms of flux recovery and fouling parameters, demonstrated the high tolerance of TFNC against fouling. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  13. Ag implantation-induced modification of Ni-Ti shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singhal, R.; Vishnoi, R.; Banerjee, M. K.; Sharma, M. C.; Asokan, K.; Kumar, M.

    2017-08-01

    Nanocrystalline thin films of Ni-Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120 keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni-Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni-Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni-Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9 × 1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni-Ti thin films.

  14. Multi-layer assemblies with predetermined stress profile and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2003-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  15. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com; Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, itmore » observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.« less

  16. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal-Organic Framework Thin Films.

    PubMed

    Mandemaker, Laurens D B; Filez, Matthias; Delen, Guusje; Tan, Huanshu; Zhang, Xuehua; Lohse, Detlef; Weckhuysen, Bert M

    2018-04-19

    Metal-organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films.

  17. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal–Organic Framework Thin Films

    PubMed Central

    2018-01-01

    Metal–organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films. PMID:29595980

  18. Study on the growth mechanism and optical properties of sputtered lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng; Volinsky, Alex A.

    2015-11-01

    Lead selenide thin films with different microstructure were deposited on Si (1 0 0) substrates using magnetron sputtering at 50 °C, 150 °C and 250 °C, respectively. The crystal structure of the sputtered PbSe thin films varies from amorphous crystalline to columnar grain, and then to double-layer (nano-crystalline layer and columnar grain layer) structure as the deposition temperature increases, which is due to the dominating growth mode of the thin films changes from Frank-van der Merwe (or layer-by-layer) growth mode at 50 °C to Volmer-Weber (or 3D island) growth mode at 150 °C, and then to Stranski-Krastanow (or 3D island-on-wetting-layer) growth mode at 250 °C. The growth mechanism of the sputtered PbSe thin films is mainly dominated by the surface and strain energy contributions. Moreover, the strain energy contribution is more prominent when the deposition temperature is less than 180 °C, while, the surface energy contribution is more prominent when the deposition temperature is higher than 180 °C. The absorption spectra of the sputtered PbSe thin films are in 3.1-5 μm range. Besides, the sputtered PbSe thin film prepared at 250 °C has two different optical band gaps due to its unique double-layer structure. According to the theoretical calculation results, the variation of the band gap with the deposition temperature is determined by the shift of the valence band maximum with the lattice constant.

  19. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  20. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  1. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  2. Visible light assisted photoelectrocatalytic degradation of sugarcane factory wastewater by sprayed CZTS thin films

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Mahadik, M. A.; Patil, V. L.; Pawar, A. R.; Gadakh, S. R.; Moholkar, A. V.; Patil, P. S.; Bhosale, C. H.

    2017-12-01

    Highly crystalline Cu2ZnSnS4 (CZTS) thin films have been deposited onto glass and FTO coated glass substrates by simple chemical spray-pyrolysis technique. It is an important material for solar energy conversion through the both photovoltaics and photocatalysis. The effect of substrate temperatures on the physico-chemical properties of the CZTS films is studied. The XRD study shows the formation of single phase CZTS with kesterite structure. FE-SEM analysis reveals nano flakes architecture with pin-hole and crake free surface with more adherent. The film deposited at optimized substrate temperature exhibits optical band gap energy of 1.90 eV, which lies in the visible region of the solar spectrum and useful for photocatalysis application. The photoelectrocatalytic activities of the large surface area (10 × 10 cm2) deposited CZTS thin film photocatalysts were evaluated for the degradation of sugarcane factory wastewater under visible light irradiation. The results show that the CZTS thin film photocatalyst exhibited about 90% degradation of sugar cane factory wastewater. The mineralization of sugarcane factory wastewater is studied by measuring chemical oxygen demand (COD) values.

  3. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of

  4. Stress effects in ferroelectric perovskite thin-films

    NASA Astrophysics Data System (ADS)

    Zednik, Ricardo Johann

    The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution

  5. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  6. Near atomically smooth alkali antimonide photocathode thin films

    DOE PAGES

    Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...

    2017-01-24

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  7. Near atomically smooth alkali antimonide photocathode thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Jun; Karkare, Siddharth; Nasiatka, James

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  8. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  9. Opto-electronic characterizations of oriented nano-structure CdSe film/Si (0 0 1) heterostructure

    NASA Astrophysics Data System (ADS)

    Al-Kotb, M. S.; Al-Waheidi, Jumana Z.; Kotkata, M. F.

    2014-05-01

    Nano-crystalline CdSe thin films were fabricated by evaporating CdSe nano-powders on glass and p-Si (0 0 1) substrates. X-ray diffraction analysis indicated the hexagonal structure for the growing film along the (0 0 2) plane. The results revealed that the thermally evaporated thin film has a comparatively smoother surface with grain size ˜21 nm. Analysis of the absorption coefficient dependence on the photon energy predicts two direct band-gap values of 2.11 ± 0.02 and 1.71 ± 0.03 eV. On the basis of the Wemple-diDomenico single oscillator model, the values of single oscillator energy (Eu) and oscillator dispersion energy (Ed) found to be 2.71 ± 0.09 and 12.94 ± 0.35 eV, respectively. The photoluminescence measurements show levels at the following values: 1.824, 1.786, 1.682, and 1.617 eV confirming the native defects existence in the gap of CdSe films because of stoichiometric deviation. The forward I-V characteristics of Ni/CdSe/p-Si (0 0 1) structure have been primarily analyzed within the framework of a standard thermionic emission theory over the temperature range of 160-360 K. The characteristic parameters of the Ni/CdSe/p-Si(0 0 1) structure such as barrier height (φb), ideality factor (n), and series resistance (Rs) have been calculated using a method developed by Cheung-Cheung.

  10. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  11. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE PAGES

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...

    2017-08-02

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  12. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  13. Enhancement of Electrical Properties of Nanostructured Polysilicon Layers Through Hydrogen Passivation.

    PubMed

    Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D

    2015-12-01

    The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.

  14. Preparation of biomimetic nano-structured films with multi-scale roughness

    NASA Astrophysics Data System (ADS)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  15. Mechanical properties of amorphous and devitrified Ni-Zr alloy thin films: A cyclic nanoindentation study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Chatterjee, Arnomitra; Jana, Swapan

    2018-04-01

    Thin films of Ni-Zr glassy alloy were deposited at room temperature by magnetron co-sputtering. The alloy films were vacuum annealed in steps of 200°C from room temperature up to 800 °C, where devitrification finally occurred. Mechanical properties of the films were measured after each thermal anneal, through (cyclic) nanoindentation technique. The hardness values were observed to steadily increase with annealing temperature, as the alloy films underwent an amorphous to crystalline transformation. Grazing incidence X-ray diffraction measurements were performed on the as-deposited and annealed films both before and after nanoindentation. The resistance to plastic deformation was strongly linked to the (nano)structure of the material.

  16. Thin Films

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Bahari, Ali; Gholipur, Reza

    2014-11-01

    Effect of annealing temperature on the characteristics of sol-gel-driven Ta ax La(1- a) x O y thin film spin-coated on Si substrate as a high- k gate dielectric was studied. Ta ax La(1- a) x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3 x La0.7 x Oy film had an amorphous structure. Therefore, Ta0.3 x La0.7 x O y film was chosen to continue the present studies. The morphology of Ta0.3 x La0.7 x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3 x La0.7 x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance-voltage ( C- V) and current density-voltage ( J- V) measurements and the Tauc method. The obtained results demonstrated that Ta0.3 x La0.7 x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10-6 A/cm2 at 1 V).

  17. Automated array assembly task development of low-cost polysilicon solar cells

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1980-01-01

    Development of low cost, large area polysilicon solar cells was conducted in this program. Three types of polysilicon materialk were investigated. A theoretical and experimenal comparison between single crystal silicon and polysilicon solar cell efficiency was performed. Significant electrical performance differences were observed between types of wafer material, i.e. fine grain and coarse grain polysilicon and single crystal silicon. Efficiency degradation due to grain boundaries in fin grain and coarse grain polysilicon was shown to be small. It was demonstrated that 10 percent efficient polysilicon solar cells can be produced with spray on n+ dopants. This result fulfills an important goal of this project, which is the production of batch quantity of 10 percent efficient polysilicon solar cells.

  18. Spectrum-per-Pixel Cathodoluminescence Imaging of CdTe Thin-Film Bevels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, John; Al-Jassim, Mowafak M.; Burst, James

    2016-11-21

    We conduct T=6 K cathodoluminescence (CL) spectrum imaging with a nano-scale electron beam on beveled surfaces of CdTe thin-films at different critical stages of standard CdTe device fabrication. The through-thickness total CL intensity profiles are consistent with a reduction in grain boundary recombination due to the CdCl2 treatment. Color-coded maps of the low-temperature luminescence transition energies reveal that CdTe thin films have remarkably non-uniform opto-electronic properties, which depend strongly on sample processing history. The grain-to-grain S content in the interdiffused CdTe/CdS region is estimated from a sample size of thirty-five grains, and the S content in adjacent grains varies significantlymore » in CdCl2-treated samples. A low-temperature luminescence model is developed to interpret spectral behavior at grain boundaries and grain interiors.« less

  19. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    PubMed Central

    Wang, DongLin; Su, Gang

    2014-01-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm–800 nm, the conversion efficiency of solar cells can be further enhanced. PMID:25418477

  20. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping.

  1. Film and membrane-model thermodynamics of free thin liquid films.

    PubMed

    Radke, C J

    2015-07-01

    In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Poly-silicon TFT AM-OLED on thin flexible metal substrates

    NASA Astrophysics Data System (ADS)

    Afentakis, Themis; Hatalis, Miltiadis K.; Voutsas, Apostolos T.; Hartzell, John W.

    2003-05-01

    Thin metal foils present an excellent alternative to polymers for the fabrication of large area, flexible displays. Their main advantage spurs from their ability to withstand higher temperatures during processing; microelectronic fabrication at elevated temperatures offers the ability to utilize a variety of crystallization processes for the active layer of devices and thermally grown gate dielectrics. This can lead to high performance (high mobility, low threshold voltage) low cost and highly reliable thin film transistors. In some cases, the conductive substrate can also be used to provide power to the active devices, thus reducing layout complexity. This paper discusses the first successful attempt to design and fabricate a variety of active matrix organic light emitting diode displays on thin, flexible stainless steel foils. Different pixel architectures, such as two- and four-transistor implementations, and addressing modes, such as voltage- or current-driven schemese are examined. This work clearly demonstrates the advantages associated with the fabrication of OLED displays on thin metal foils, which - through roll-to-roll processing - can potentially result in revolutionizing today's display processing, leading to a new generation of low cost, high performance versatile display systems.

  3. Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.

    2000-11-01

    Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.

  4. Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning

    PubMed Central

    Zhang, Xinping; Liu, Feifei; Li, Hongwei

    2016-01-01

    Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248

  5. Solution-based Syntheses of Iron Pyrite Thin Films for Photovoltaic and Protein Foot-printing Applications

    NASA Astrophysics Data System (ADS)

    El Makkaoui, Mohammed

    Iron pyrite (cubic FeS2) is a non-toxic, earth abundant semiconductor possessing a set of excellent optical/electronic properties for serving as an absorber layer in PV devices. Additionally, pyrite is a very efficient hydroxyl radical generator via Fenton chemistry and has shown promise in oxidative protein and DNA foot-printing application. The main focus of this thesis is on fabricating phase and elementally pure iron pyrite thin films using a solution-based approach that employs hydrazine as a solvent. A precursor ink is formed at room temperature by mixing elemental iron and sulfur in anhydrous hydrazine and then deposited on Mo-coated glass substrates, via spin coating, to yield amorphous iron sulfide films that are then annealed in H2S (340°C) and sulfur gas (≤ 500 °C) to form uniform, polycrystalline and phase pure pyrite films with densely packed grains. This approach is likely to yield the most elementally pure pyrite thin films made to date, through a very simple and scalable process. The ink has shown to be very sensitive to environmental conditions and has a very short shelf life (˜1 day). Additionally, the film microstructure is greatly influenced by the S:Fe concentration ratio that when tuned to 3:1, yielded uniform, robust and optically flat iron sulfide thin films with an optimal thickness (˜320 nm) for PV application. The results however were not reproducible, mainly due to failure in applying multiple layers without compromising film morphology. Thinner (< 100 nm) iron sulfide films, on the other hand, are reproducibly produced, but are too thin to be employed in PV devices. Direct annealing in sulfur gas at 475°C for 4 hours, bypassing the > 12 hour H2S annealing step, yielded phase pure pyrite films, with good morphology, at lower processing time and annealing temperatures (< 500°C). The latter part of this thesis regards the use of pyrite nano-crystals in conjunction with high surface area polymer laminates for protein foot

  6. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-07

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.

  7. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  8. Temperature Behavior of Thin Film Varactor

    DTIC Science & Technology

    2012-01-01

    Temperature Behavior of Thin Film Varactor By Richard X. Fu ARL-TR-5905 January 2012...Thin Film Varactor Richard X. Fu Sensors and Electron Devices Directorate, ARL...DD-MM-YYYY) January 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Temperature Behavior of Thin Film Varactor 5a

  9. Self-Limited Growth in Pentacene Thin Films

    PubMed Central

    2017-01-01

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought. PMID:28287698

  10. Self-Limited Growth in Pentacene Thin Films.

    PubMed

    Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland

    2017-04-05

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

  11. Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films

    NASA Astrophysics Data System (ADS)

    Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir

    Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.

  12. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  13. Growth temperature modulated phase evolution and functional characteristics of high quality Pb1-x Lax (Zr0.9Ti0.1)O3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder

    2018-05-01

    In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).

  14. Effect of annealing on structural, optical and electrical properties of SILAR synthesized CuO thin film

    NASA Astrophysics Data System (ADS)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-05-01

    Nano crystalline CuO thin films were synthesize on glass substrate using SILAR technique. The structural, optical and electrical properties of the films were carried out for as deposited as well as for films post annealed in the temperature range 300 - 500° C. The X-ray diffraction pattern shows all the films are polycrystalline in nature with monoclinic phase. The crystallite size increase and lattice strain decreases with increase of annealing temperature indicating high quality of the films for annealed films. The value of band gap decreases with increases of annealing temperature of the film. The effect of annealing temperature on ionic conductivity and activation energy to electrical conduction process are discussed.

  15. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  16. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  17. Pattern interpolation in thin films of lamellar, symmetric copolymers on nano-patterned substrates

    NASA Astrophysics Data System (ADS)

    Detcheverry, Francois; Nagpal, Umang; Liu, Guoliang; Nealey, Paul; de Pablo, Juan

    2009-03-01

    A molecular model of block copolymer systems is used to conduct a systematic study of the morphologies that arise when thin films of symmetric, lamellar forming block copolymer materials are deposited on nanopatterned surfaces. Over 500 distinct cases are considered. It is found that, in general, three distinct morphologies can arise depending on the strength of the substrate-polymer interactions, the film thickness, and the period of the substrate pattern. The relative stability of those morphologies is determined by direct calculation of the free energy differences. The dynamic propensity of those morphologies to emerge is examined by careful analysis of simulated trajectories. The results of this systematic study are used to interpret recent experimental data for films of polystyrene-PMMA copolymers on chemically nanopatterned surfaces.

  18. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    PubMed

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.

  19. Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.

    2016-12-01

    TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.

  20. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  1. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  2. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  3. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    NASA Astrophysics Data System (ADS)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  4. Nanocrystal thin film fabrication methods and apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  5. Thin-film rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1994-11-01

    Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxynitride electrolyte, Li metal anode, and Li(1-x)Mn2O4 as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100 C or by enhancing the lithium ion transport rate in the cathode material.

  6. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  7. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  8. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    PubMed

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less

  10. Electrochemical and microstructural characterization of magnetron-sputtered ATO thin films as Li–ion storage materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Pan; Zhang, Hong; Chen, Wenhao

    2015-01-15

    Highlights: • Nano-structured ATO thin films prepared by RF magnetron sputtering at 25 °C, 100 °C and 200 °C, respectively. • ATO thin films show a high reversible capacity and high rate performance. • Electrochemical reaction mechanism of the ATO thin film was revealed by transmission electron microscopy. - Abstract: Sb-doped SnO{sub 2} (ATO) nanostructured thin films were prepared by using radio frequency magnetron sputtering at the substrate temperatures of 25 °C, 100 °C and 200 °C, respectively. All the ATO thin films have the similar redox characteristics in the cyclic voltammetry measurements. The ATO thin film sputtered at 200more » °C shows the lowest charge transfer resistance and best electrochemical performance, and has a high reversible capacity of 679 mA h g{sup −1} at 100 mA g{sup −1} after 200 charge–discharge cycles and high rate performance of 483 mA h g{sup −1} at 800 mA g{sup −1}. The electrochemical mechanisms were investigated by analyzing the phase evolution of the ATO electrodes that had been electrochemically induced at various stages. The results reveal that the ATO underwent reversible lithiation/delithiation processes during the electrochemical cycles, i.e., the SnO{sub 2} reacted with Li{sup +} to produce metallic Sn and followed by the formation of the Li{sub x}Sn alloys during discharge process, and then Li{sub x}Sn alloys de-alloyed, Sn reacted with Li{sub 2}O, and even partially formed SnO{sub 2} during charge process.« less

  11. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  12. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  13. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  14. Mechanical properties of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N + and Ar + ions. Part II: nano-scratch tests with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.

  15. Plasma assisted facile synthesis of vanadium oxide (V3O7) nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Saini, Sujit K.; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.

    2018-05-01

    Vanadium oxides nanostructured thin films are synthesized using plasma assisted sublimation process. The effect of temperatures on growth of V2O5 and V3O7 thin films is studied. Scanning electron micrographs shows different morphologies are obtained at different temperatures i.e. at 450 °C nano cubes-like structures are obtained, whereas at 550 °C and 650 °C nanorods are obtained. Sample deposited at 450 °C is entirely composed of V2O5 and sample at higher temperatures are composed of mixed phase of vanadium oxides i.e. V2O5 and V3O7. As temperature increased, so the content of V3O7 in the sample is increased as confirmed by XRD and Raman analyses.

  16. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    PubMed

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  17. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov Websites

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the National Laboratory developed low-cost transparent encapsulation schemes for CIGS cells that reduced power

  18. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  19. Cd-doped ZnO nano crystalline thin films prepared at 723K by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Joishy, Sumanth; Rajendra B., V.

    2018-04-01

    Ternary Zn1-xCdxO(x=0.10, 0.40, 0.70 at.%) thin films of 0.025M precursor concentration have been successfully deposited on preheated (723K) glass substrates using spray pyrolysis route. The structure, morphology and optical properties of deposited films have been characterized by X-ray diffraction, Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry. X-ray diffraction study shows that the prepared films are polycrystalline in nature. 10% Cd doped ZnO film belongs to the hexagonal wurtzite system and 70% Cd doped ZnO film belongs to the cubic system, although mixed phases were formed for 40% Cd doped ZnO film. The optical transmittance spectra has shown red shift with increasing cadmium content. Optical energy band gap has been reduced with cadmium dopant.

  20. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  1. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  2. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  3. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    PubMed

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  4. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  5. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  6. Cu-doped CdS and its application in CdTe thin film solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yi; College of Electronic and Information Engineering, Hankou University, Wuhan, Hubei 430212; Yang, Jun

    2016-01-15

    Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the V{sub Cd{sup −}} and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atommore » hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl{sub 2} annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures.« less

  7. Influences of the residual argon gas and thermal annealing on Ta2O5 and SiO2 thin film filters

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jen; Chen, Chih-Min; Lai, Yin-Chieh

    2005-04-01

    Ion beam assisted deposition (IBAD) technique had widely used for improving stacking density and atomic mobility of thin films in many applications, especially adopted in optical film industries. Tantalum pentaoxide (Ta2O5) and silicon oxides (SiO2) optical thin films were deposited on the quartz glass substrate by using argon ion beam assisted deposition, and the influences of the residual argon gas and thermal annealing processes on the optical property, stress, compositional and microstructure evolution of the thin films were investigated in this study. Ta2O5 thin films were analyzed by XPS indicated that the ratio value of oxygen to tantalum was insufficient, at the same time, the residual argon gas in the thin films might result in film and device instabilities. Adopting oxygen-thermal annealing treatment at the temperature of 425°C, the thin films not only decreased the residual argon gas and the surface roughness, but also provided the sufficient stoichiometric ratio. Simultaneously, microstructure examination indicated few nano-crystallized structures and voids existed in Ta2O5 thin films, and possessed reasonable refractive index and lower extinction coefficient. By the way, we also suggested the IBAD system using the film compositional gas ion beam to replace the argon ion beam for assisting deposited optical films. The designed (HL)6H6LH(LH)6 multi-layers indicated higher insertion loss than the designed (HL)68H(LH)6 multi-layers. Therefore, using the high refractive index as spacer material represented lower insertion loss.

  8. Comparison of full 3-D, thin-film 3-D, and thin-film plate analyses of a postbuckled embedded delamination

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Strain-energy release rates are often used to predict when delamination growth will occur in laminates under compression. Because of the inherently high computational cost of performing such analyses, less rigorous analyses such as thin-film plate analysis were used. The assumptions imposed by plate theory restrict the analysis to the calculation of total strain energy, G(sub t). The objective is to determine the accuracy of thin-film plate analysis by comparing the distribution of G(sub t) calculated using fully three dimensional (3D), thin-film 3D, and thin-film plate analyses. Thin-film 3D analysis is the same as thin-film plate analysis, except 3D analysis is used to model the sublaminate. The 3D stress analyses were performed using the finite element program NONLIN3D. The plate analysis results were obtained from published data, which used STAGS. Strain-energy release rates were calculated using variations of the virtual crack closure technique. The results demonstrate that thin-film plate analysis can predict the distribution of G(sub t) quite well, at least for the configurations considered. Also, these results verify the accuracy of the strain-energy release rate procedure for plate analysis.

  9. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  10. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  11. Temperature dependence of LRE-HRE-TM thin films

    NASA Astrophysics Data System (ADS)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  12. Method of producing amorphous thin films

    DOEpatents

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  13. Method of producing amorphous thin films

    DOEpatents

    Brusasco, R.M.

    1992-09-01

    Disclosed is a method of producing thin films by sintering which comprises: (a) coating a substrate with a thin film of an inorganic glass forming material possessing the capability of being sintered; and (b) irradiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed. 4 figs.

  14. Thin film solar cell design based on photonic crystal and diffractive grating structures.

    PubMed

    Mutitu, James G; Shi, Shouyuan; Chen, Caihua; Creazzo, Timothy; Barnett, Allen; Honsberg, Christiana; Prather, Dennis W

    2008-09-15

    In this paper we present novel light trapping designs applied to multiple junction thin film solar cells. The new designs incorporate one dimensional photonic crystals as band pass filters that reflect short light wavelengths (400 - 867 nm) and transmit longer wavelengths(867 -1800 nm) at the interface between two adjacent cells. In addition, nano structured diffractive gratings that cut into the photonic crystal layers are incorporated to redirect incoming waves and hence increase the optical path length of light within the solar cells. Two designs based on the nano structured gratings that have been realized using the scattering matrix and particle swarm optimization methods are presented. We also show preliminary fabrication results of the proposed devices.

  15. Barium ferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.

    1996-03-01

    Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.

  16. Gas Permeation in Thin Glassy Polymer Films

    NASA Astrophysics Data System (ADS)

    Paul, Donald

    2011-03-01

    The development of asymmetric and composite membranes with very thin dense ``skins'' needed to achieve high gas fluxes enabled the commercial use of membranes for molecular level separations. It has been generally assumed that these thin skins, with thicknesses of the order of 100 nm, have the same permeation characteristics as films with thicknesses of 25 microns or more. Thick films are easily made in the laboratory and have been used extensively for measuring permeation characteristics to evaluate the potential of new polymers for membrane applications. There is now evidence that this assumption can be in very significant error, and use of thick film data to select membrane materials or predict performance should be done with caution. This presentation will summarize our work on preparing films of glassy polymers as thin as 20 nm and characterizing their behavior by gas permeation, ellipsometry and positron annihilation lifetime spectroscopy. Some of the most important polymers used commercially as gas separation membranes, i.e., Matrimid polyimide, polysulfone (PSF) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), have been made into well-defined thin films in our laboratories by spin casting techniques and their properties studied using the techniques we have developed. These thin films densify (or physically age) much faster than thicker films, and, as result, the permeability decreases, sometimes by several-fold over weeks or months for thin films. This means that the properties of these thin films can be very different from bulk films. The techniques, interpretations and implications of these observations will be discussed. In a broader sense, gas permeation measurements can be a powerful way of developing a better understanding of the effects of polymer chain confinement and/or surface mobility on the behavior of thin films.

  17. Sol-gel nano-porous silica-titania thin films with liquid fill for optical interferometric sensors

    NASA Astrophysics Data System (ADS)

    Martin, Andrew J.; Green, Mino

    1990-11-01

    The production of thin films whose refractive index is measurand specific, for use in an interferometric fiber optic chemical sensor, is discussed. The problem of making such coatings has been tackled by a system we have termed the "guest-host" approach, in which an active liquid whose index varies with measurand, is contained within a porous glass host of fixed index. Suitable porous silica-titania glass films have been produced via the sol-gel process. The use of this system enables the index of the glass to be varied, so that the composite index of the liquid filled film can be tailored to that required by the optical system. The sol-gel method developed is based upon the hydrolysis and polymerisation of metal alkoxides, in an acidic aqueous/alcoholic solution. Thin film slab waveguides were deposited in order to measure the light scattering losses, which were found to be typically ''1dB/cm. The porosity of films was studied using a new technique developed in which water adsorption isotherms are plotted using ellipsometry. The pore size was found to be very small of pore diameter in the nanometer range, and the total porosity -1O%. Both of these factors were increased by the removal of residual organic material, using hydrogen peroxide. Finally the use of pH indicator dyes as a liquid fill is discussed, to produce a pH sensor.

  18. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  19. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  20. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Ramanmore » (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.« less

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  3. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE PAGES

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.; ...

    2016-11-19

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  4. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  5. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  6. Self-assembly of dodecaphenyl POSS thin films

    NASA Astrophysics Data System (ADS)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  7. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  8. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    PubMed

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  9. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  10. An overview of thin film nitinol endovascular devices.

    PubMed

    Shayan, Mahdis; Chun, Youngjae

    2015-07-01

    Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Piezoelectric thin films and their applications for electronics

    NASA Astrophysics Data System (ADS)

    Yoshino, Yukio

    2009-03-01

    ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.

  12. Stretchable, adhesive and ultra-conformable elastomer thin films.

    PubMed

    Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji

    2016-11-16

    Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (T g ). In this paper, we report that free-standing polystyrene (PS, T g : 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, T g : -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (R a = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.

  13. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    of low-loss optical waveguides over shallow and deep focusing conditions. Lastly, SLM beam shaping has been successfully extended to interferometric processing inside thin transparent film, enabling the arbitrary formation of uniform or non-uniform, symmetric or asymmetric patterns of flexible shape on nano-scale dimensions without phase-noise degradation by the SLM patterning. We present quantized structuring of thin films by a single laser pulse, demonstrating λ/2nfilm layer ejection control, blister formation, nano-cavities, and film colouring. Closed intra-film nanochannels with high aspect ratio (20:1) have been formed inside 3.5 um thick silica, opening new prospects for sub-cellular studies and lab-in-film concepts that integrate on CMOS silicon technologies.

  14. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  15. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  16. Development of High Resistive and High Magnetization Soft Thin Film and Fabrication of Thin Film Inductors

    DTIC Science & Technology

    2004-11-01

    properties of Co- doped ZnO nanocluster films", .J. of Appl. Phys. in press, 2005 2. Presentations (contributed): Conference Contributions: 1) Y. Qiang...gigahertz band applications. The effects of substrates bias, sputter parameters, and seed-layer have thoroughly been investigated. The magnetic...Adequate properties of soft magnetic thin film were evaluated by an analytical calculation [1] to meet the requirement for gigahertz band thin-film

  17. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    PubMed

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  18. Black thin film silicon

    NASA Astrophysics Data System (ADS)

    Koynov, Svetoslav; Brandt, Martin S.; Stutzmann, Martin

    2011-08-01

    "Black etching" has been proposed previously as a method for the nanoscale texturing of silicon surfaces, which results in an almost complete suppression of reflectivity in the spectral range of absorption relevant for photovoltaics. The method modifies the topmost 150 to 300 nm of the material and thus also is applicable for thin films of silicon. The present work is focused on the optical effects induced by the black-etching treatment on hydrogenated amorphous and microcrystalline silicon thin films, in particular with respect to their application in solar cells. In addition to a strong reduction of the reflectivity, efficient light trapping within the modified thin films is found. The enhancement of the optical absorption due to the light trapping is investigated via photometric measurements and photothermal deflection spectroscopy. The correlation of the texture morphology (characterized via atomic force microscopy) with the optical effects is discussed in terms of an effective medium with gradually varying optical density and in the framework of the theory of statistical light trapping. Photoconductivity spectra directly show that the light trapping causes a significant prolongation of the light path within the black silicon films by up to 15 μm for ˜1 μm thick films, leading to a significant increase of the absorption in the red.

  19. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  20. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  1. Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.

    PubMed

    Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2018-05-30

    Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.

  2. Dynamic delamination of patterned thin films

    NASA Astrophysics Data System (ADS)

    Kandula, Soma S. V.; Tran, Phuong; Geubelle, Philippe H.; Sottos, Nancy R.

    2008-12-01

    We investigate laser-induced dynamic delamination of a patterned thin film on a substrate. Controlled delamination results from our insertion of a weak adhesion region beneath the film. The inertial forces acting on the weakly bonded portion of the film lead to stable propagation of a crack along the film/substrate interface. Through a simple energy balance, we extract the critical energy for interfacial failure, a quantity that is difficult and sometimes impossible to characterize by more conventional methods for many thin film/substrate combinations.

  3. Nanotextured thin films for detection of chemicals by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Korivi, Naga; Jiang, Li; Ahmed, Syed; Nujhat, Nabila; Idrees, Mohanad; Rangari, Vijaya

    2017-11-01

    We report on the development of large area, nanostructured films that function as substrates for surface enhanced Raman scattering (SERS) detection of chemicals. The films are made of polyethylene terephthalate layers partially embedded with multi-walled carbon nanotubes and coated with a thin layer of gold. The films are fabricated by a facile method involving spin-coating, acid dip, and magnetron sputtering. The films perform effectively as SERS substrates when used in the detection of dye pollutants such as Congo red dye, with an enhancement factor of 1.1  ×  106 and a detection limit of 10-7 M which is the lowest reported for CR detection by freestanding SERS film substrates. The films have a long shelf life, and cost US0.20 per cm2 of active area, far less than commercially available SERS substrates. This is the first such work on the use of a polymer layer modified with carbon nanotubes to create a nano-scale texture and arbitrary ‘hot-spots’, contributing to the SERS effect.

  4. Micro/nano moire methods

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao

    2003-10-01

    Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.

  5. Organic/carbon nanotubes hybrid thin films for chemical detection

    NASA Astrophysics Data System (ADS)

    Banimuslem, Hikmat Adnan

    Metallophthalocyanines (MPcs) are classified as an important class of conjugated materials and they possess several advantages attributed to their unique chemical structure. Carbon nanotubes (CNT), on the other hand, are known to enhance the properties of nano-composites in the conjugated molecules, due to their one dimensional electronic skeleton, high surface area and high aspect ratio. In this thesis, work has been carried out on the investigation of different substituted metal-phthalocyanines with the aim of developing novel hybrid film structures which incorporates these phthalocyanines and single-walled carbon nanotubes (SWCNT) for chemical detection applications. Octa-substituted copper phthalocyanines (CuPcR[8]) have been characterised using UV-visible absorption spectroscopy. Obtained spectra have yielded an evidence of a thermally induced molecular reorganization in the films. Influence of the nature of substituents in the phthalocyanine molecule on the thin films conductivity was also investigated. Octa-substituted lead (II) phthalocyanines (PbPcR[8]) have also been characterized using UV-visible spectroscopy. Sandwich structures of ITO/PbPcR[8]/In were prepared to investigate the electronic conduction in PbPcR[8]. The variation in the J(V) behavior of the films as a result of heat treatment is expected to be caused by changes in the alignment inside the columnar stacking of the molecules of the films. Thin films of non-covalently hybridised SWCNT and tetra-substituted copper phthalocyanine (CuPcR[4]) molecules have been produced. FTIR, DC conductivity, SEM and AFM results have revealed the [mathematical equation]; interaction between SWCNTs and CuPCR[4] molecules and shown that films obtained from the acid-treated SWCNTs/CuPcR[4] hybrids demonstrated more homogenous surface. Thin films of pristine CuPCR[4] and CuPcR[4]/S WCNT were prepared by spin coating onto gold-coated glass slides and applied as active layers for the detection of benzo

  6. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits

    NASA Astrophysics Data System (ADS)

    Sporea, R. A.; Trainor, M. J.; Young, N. D.; Shannon, J. M.; Silva, S. R. P.

    2014-03-01

    Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration.

  7. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits

    PubMed Central

    Sporea, R. A.; Trainor, M. J.; Young, N. D.; Shannon, J. M.; Silva, S. R. P.

    2014-01-01

    Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration. PMID:24599023

  8. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  9. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  10. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  11. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Ajith R.

    , the deposition parameters of CdTe layers were further optimised. This research programme has demonstrated that electrodeposited ZnS, CdS and CdTe thin film layers have material characteristics comparable with those of the materials reported in the literature and can be used in thin film solar cell devices. Furthermore, the electrolytes were used for up to two years, reducing the wastage even further, in comparison to other fabrication methods, such as chemical bath deposition. Several large-area semiconducting layers were successfully fabricated to test the scalability of the method. Nano-rods perpendicular to the glass/FTO surface with gaps among grains in CdS layers were observed. In order to reduce the possible pinholes due the gaps, a deposition of a semiconducting layer to cover completely the substrate was investigated. CdS(i-X)Sex layers were investigated to produce a layer-by-layer deposition of the material. However it was observed the surface morphology of CdS(j.X)Sex is a function of the growth parameters which produced nano-wires, nano-tubes and nano-sheets. This is the first recording of this effect for a low temperature deposition method, minimising the cost of producing this highly photosensitive material for use in various nano technology applications.The basic structure experimented was glass/conducting-glass/buffer layer/window material/absorber material/metal. By utilising all the semiconducting layers developed, several solar cell device structures were designed, fabricated and tested. This included a novel all-electrodeposited multi-layer graded bandgap device, to enhance the absorption of solar photons. The device efficiencies varied from batch to batch, and efficiencies in the range (3-7)% were observed. The variations in chemical concentrations, surface states and the presence of pin-hole defects in CdS were the main reasons for the range of efficiencies obtained. In the future work section, ways to avoid these variations and to increase

  12. Thermal conductivity model for nanoporous thin films

    NASA Astrophysics Data System (ADS)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  13. Characterization of aluminum selenide bi-layer thin film

    NASA Astrophysics Data System (ADS)

    Boolchandani, Sarita; Soni, Gyanesh; Srivastava, Subodh; Vijay, Y. K.

    2018-05-01

    The Aluminum Selenide (AlSe) bi-layer thin films were grown on glass substrate using thermal evaporation method under high vacuum condition. The morphological characterization was done using SEM. Electrical measurement with temperature variation shows that thin films exhibit the semiconductor nature. The optical properties of prepared thin films have also been characterized by UV-VIS spectroscopy measurements. The band gap of composite thin films has been calculated by Tauc's relation at different temperature ranging 35°C-100°C.

  14. Low-Cost Detection of Thin Film Stress during Fabrication

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  15. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  16. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  17. Fabrication of ion bombardment induced rippled TiO2 surfaces to influence subsequent organic thin film growth.

    PubMed

    Kratzer, Markus; Szajna, Konrad; Wrana, Domink; Belza, Wojciech; Krok, Franciszek; Teichert, Christian

    2018-05-23

    Control over organic thin film growth is a central issue in the development of organic electronics. The anisotropy and extended size of the molecular building blocks introduce a high degree of complexity within the formation of thin films. This complexity can be even increased for substrates with induced, sophisticated morphology and anisotropy. Thus, targeted structuring like ion beam mediated modification of substrates in order to create ripples, pyramids, or pit structures provides a further degree of freedom in manipulating the growth morphology of organic thin films. We provide a comprehensive review of recent work on para-hexaphenyl (C36H26, 6P) as a typical representative of the class of small, rod-like conjugated molecules and rutile TiO2(110) as an example for a transparent oxide electrode to demonstrate the effect of ion beam induced nanostructuring on organic thin film growth. Starting from molecular growth on smooth, atomically flat TiO2(110) (11) surfaces, we investigate the influence of the ripple size on the resulting 6P thin films. The achieved 6P morphologies are either crystalline nano-needles composed of flat lying molecules or islands consisting of upright standing 6P, which are elongated in ripple direction. The islands' length to width ratio can be controlled by tuning of the ripples' shape. © 2018 IOP Publishing Ltd.

  18. Influence of elastic parameters on the evolution of elasticity modulus of thin films

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.

    2012-09-01

    In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.

  19. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  20. Methods for preparing colloidal nanocrystal-based thin films

    DOEpatents

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  1. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    NASA Astrophysics Data System (ADS)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  2. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  3. In Situ Preparation of Biomimetic Thin Films and Their Surface-Shielding Effect for Organisms in High Vacuum

    PubMed Central

    Muranaka, Yoshinori; Shimomura, Masatsugu; Hariyama, Takahiko

    2013-01-01

    Self-standing biocompatible films have yet to be prepared by physical or chemical vapor deposition assisted by plasma polymerization because gaseous monomers have thus far been used to create only polymer membranes. Using a nongaseous monomer, we previously found a simple fabrication method for a free-standing thin film prepared from solution by plasma polymerization, and a nano-suit made by polyoxyethylene (20) sorbitan monolaurate can render multicellular organisms highly tolerant to high vacuum. Here we report thin films prepared by plasma polymerization from various monomer solutions. The films had a flat surface at the irradiated site and were similar to films produced by vapor deposition of gaseous monomers. However, they also exhibited unique characteristics, such as a pinhole-free surface, transparency, solvent stability, flexibility, and a unique out-of-plane molecular density gradient from the irradiated to the unirradiated surface of the film. Additionally, covering mosquito larvae with the films protected the shape of the organism and kept them alive under the high vacuum conditions in a field emission-scanning electron microscope. Our method will be useful for numerous applications, particularly in the biological sciences. PMID:24236023

  4. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  5. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Isik, Dilek

    electrochemical impedance spectroscopy. In the context of ARTICLE 1, thin film transistors based on soluble pentacene derivatives (prepared by the research group directed by Professor J. Anthony, at the University of Kentucky) were fabricated and characterized. GIXRD results performed on the thin films suggested a molecular arrangement favorable to charge transport in the source-drain direction, with the pi-pi stacking direction perpendicular to the channel. In ARTICLE 1, HMDS-treated SiO 2 substrates were used, to improve the surface coverage and to limit charge trapping at the dielectric surface. AFM showed good film coverage. The transistors showed ambipolar characteristics, attributed to the good matching between Au electrode work function and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the pentacene derivative. The work reported in ARTICLE 2 deals with pi-conjugated thiopheno-azomethines (both in oligomer and polymer form) and oligothiophene analogues. In the former case, couplings in the polymer are based on azomethine (-N=C-) moieties whereas in the latter case they are based on more conventional protocols (-C=C-). The effect of the coupling protocols on the corresponding thin film transistors behavior was studied. The key conclusion of this study was that thiopheno-azomethines thin films can be effectively incorporated into organic transistors: thin films of oligothiopheno-azomethines and the oligothiophenes exhibit p-type behavior whereas thin films of polythiopheno-azomethine exhibit an ambipolar behavior. The hole mobility of the heat-treated thin films of oligothiopheno-azomethines was three orders of magnitude higher compared to its oligothiophene analogue. AFM, coupled with hyperspectral fluorescence imaging, were used to investigate the micro- and nano-scale surface coverage. For the oligothiopheno-azomethine we were able to quantitatively deduce the surface coverage. To contribute to the exploration of innovative

  6. Effective mobility enhancement of amorphous In-Ga-Zn-O thin-film transistors by holographically generated periodic conductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jaewook; Kim, Joonwoo; Jeong, Soon Moon

    In this study, we demonstrate a mobility enhancement structure for fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) by embedding a holographically generated periodic nano-conductor in the back-channel regions. The intrinsic field-effect mobility was enhanced up to 2 times compared to that of a reference sample. The enhancement originated from a decrease in the effective channel length due to the highly conductive nano-conductor region. By combining conventional and holographic lithography, the performance of the a-IGZO TFT can be effectively improved without varying the composition of the channel layer.

  7. Effective mobility enhancement of amorphous In-Ga-Zn-O thin-film transistors by holographically generated periodic conductor

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook; Kim, Joonwoo; Kim, Donghyun; Jeon, Heonsu; Jeong, Soon Moon; Hong, Yongtaek

    2016-08-01

    In this study, we demonstrate a mobility enhancement structure for fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) by embedding a holographically generated periodic nano-conductor in the back-channel regions. The intrinsic field-effect mobility was enhanced up to 2 times compared to that of a reference sample. The enhancement originated from a decrease in the effective channel length due to the highly conductive nano-conductor region. By combining conventional and holographic lithography, the performance of the a-IGZO TFT can be effectively improved without varying the composition of the channel layer.

  8. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  9. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  10. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  11. In-space fabrication of thin-film structures

    NASA Technical Reports Server (NTRS)

    Lippman, M. E.

    1972-01-01

    A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.

  12. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  13. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  14. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    NASA Astrophysics Data System (ADS)

    Baniecki, John David

    This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form

  15. Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki

    Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less

  16. Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators

    DOE PAGES

    El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki; ...

    2017-06-14

    Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less

  17. Polysilicon planarization and plug recess etching in a decoupled plasma source chamber using two endpoint techniques

    NASA Astrophysics Data System (ADS)

    Kaplita, George A.; Schmitz, Stefan; Ranade, Rajiv; Mathad, Gangadhara S.

    1999-09-01

    The planarization and recessing of polysilicon to form a plug are processes of increasing importance in silicon IC fabrication. While this technology has been developed and applied to DRAM technology using Trench Storage Capacitors, the need for such processes in other IC applications (i.e. polysilicon studs) has increased. Both planarization and recess processes usually have stringent requirements on etch rate, recess uniformity, and selectivity to underlying films. Additionally, both processes generally must be isotropic, yet must not expand any seams that might be present in the polysilicon fill. These processes should also be insensitive to changes in exposed silicon area (pattern factor) on the wafer. A SF6 plasma process in a polysilicon DPS (Decoupled Plasma Source) reactor has demonstrated the capability of achieving the above process requirements for both planarization and recess etch. The SF6 process in the decoupled plasma source reactor exhibited less sensitivity to pattern factor than in other types of reactors. Control of these planarization and recess processes requires two endpoint systems to work sequentially in the same recipe: one for monitoring the endpoint when blanket polysilicon (100% Si loading) is being planarized and one for monitoring the recess depth while the plug is being recessed (less than 10% Si loading). The planarization process employs an optical emission endpoint system (OES). An interferometric endpoint system (IEP), capable of monitoring lateral interference, is used for determining the recess depth. The ability of using either or both systems is required to make these plug processes manufacturable. Measuring the recess depth resulting from the recess process can be difficult, costly and time- consuming. An Atomic Force Microscope (AFM) can greatly alleviate these problems and can serve as a critical tool in the development of recess processes.

  18. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  19. Effects of high temperature and film thicknesses on the texture evolution in Ag thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2017-04-01

    In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} < uvw \\rangle weak fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} < uvw \\rangle orientations as their preferred orientations, but their preferred fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} < uvw \\rangle fiber texture.

  20. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  1. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite.

    PubMed

    Valencia, Germán Ayala; Luciano, Carla Giovana; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2018-02-01

    The aim of this research was to study the effects of laponite concentrations on some properties of nano-biocomposite films based on cassava starch, focusing mainly the relation between the properties of the surface microstructure and roughness, water contact angle and gloss. Nano-biocomposite films were produced by casting. We analyzed gloss, color, opacity, water contact angle, crystallinity by X-ray diffraction, and microstructure by scanning electron microscopy and atomic force microscopy. Texture parameters (energy, entropy and fractal dimension) were extracted from micrographs. We observed a great impact of laponite in the morphology of nano-biocomposite films. Texture parameters correlated with surface heterogeneity and roughness. Finally, surface roughness affected the surface hydrophilicity of nano-biocomposite films. Laponite platelets were exfoliated and/or intercalated with amylose and amylopectin chains. This research reports new information on the effects of laponite concentrations on the morphological, optical and wetting properties of nano-biocomposite films aiming future industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: Effect of liquid film thickness

    NASA Astrophysics Data System (ADS)

    Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim

    2017-06-01

    This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.

  3. Optical and thermoelectric properties of nano-particles based Bi2(Te1-xSex)3 thin films

    NASA Astrophysics Data System (ADS)

    Adam, A. M.; Lilov, E.; Petkov, P.

    2017-01-01

    Nano-particles of Bi2Te3 and Bi2(Te1-xSex)3 films were deposited using vacuum thermal evaporation technique from previously prepared bulk alloys synthesized by melting method. Optical and thermoelectric properties were studied in the temperature range of 300-473K. The formation of none- and Se-doped Bi2Te3 nano-particles was verified by EDX and XRD analysis. TEM, SEM and AFM analysis showed the prepared films are polycrystalline in nature. The measurements of electrical conductivity and Seebeck coefficient, alongside with thermal conductivity calculations, resulted in the highest values of thermoelectric power at high temperature to be reported. The maximum value of power factor was calculated at 62.82917 μWK-2cm-1 for (Bi2Se0.3Te1.7) sample at 463 K. On the addition of Se to Bi2Te3 film, a significant decrease of the electronic thermal conductivity (Kel) from 2.181 × 10-2 to 0.598 × 10-2 (μW/cm.K) could be achieved. Figure of merit (ZT) calculations showed a maximum value of 0.85 at room temperature, for Bi2Te3. Besides the increase of ZT value for all samples at higher temperature, surprisingly, a value of 2.75 for (Bi2Se1.2Te1.8) was obtained. We believe our results could open avenues for new applications.

  4. Evolution of nano-rheological properties of Nafion¯ thin films during pH modification by strong base treatment: A static and dynamic force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam; Solares, Santiago D.

    2016-04-01

    Addition of a strong base to Nafion® proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculation of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.

  5. Theory and Device Modeling for Nano-Structured Transistor Channels

    DTIC Science & Technology

    2011-06-01

    zinc oxide ( ZnO ) thin film transistors ( TFTs ) that contain nanocrystalline grains on the order of ~20nm. The authors of ref. 1 present results...problem in order to determine the threshold voltage. 15. SUBJECT TERMS nano-structured transistor , mesoscopic, zinc oxide , ZnO , field-effect...and R. Neidhard, “Microwave ZnO Thin - Film Transistors ”, IEEE Electron Dev. Lett. 29, 1024 (2008); doi: 10.1109/LED.2008.2001635.

  6. MCP performance improvement using alumina thin film

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Yan, Baojun; Liu, Shulin; Zhao, Tianchi; Yu, Yang; Wen, Kaile; Li, Yumei; Qi, Ming

    2017-10-01

    The performance improvement using alumina thin film on a dual microchannel plate (MCP) detector for single electron counting was investigated. The alumina thin film was coated on all surfaces of the MCPs by atomic layer deposition method. It was found that the gain, the single electron resolution and the peak-to-valley ratio of the dual MCP detector were significantly enhanced by coating the alumina thin film. The optimum operating conditions of the new dual MCP detector have been studied.

  7. Atomic-scale visualization of oxide thin-film surfaces.

    PubMed

    Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro

    2018-01-01

    The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.

  8. Miniature hybrid microwave IC's using a novel thin-film technology

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Miwa, Tetsuji; Taguchi, Yutaka; Uwano, Tomoki

    1990-12-01

    A novel thin-film technology for miniature hybrid microwave ICs is presented. All passive components, such as resistors and capacitors, are fully integrated on ordinary alumina ceramic substrates using the thin-film technology with very high yield. The numbers of parts and wiring processes were significantly reduced. This technology was applied to the fabrication of Ku-band solid-state power amplifiers. This thin-film technology offers the following advantages: (1) a very high yield fabrication process of thin-film capacitor having excellent electrical characteristics in the gigahertz range (Q = 230 at 12 GHz) and reliability: (2) two kinds of thin-film resistors having different temperature coefficients of resistivity and a lift-off process to integrate them with thin-film capacitors; and (3) a matching method using the thin-film capacitor.

  9. Transferable and flexible thin film devices for engineering applications

    NASA Astrophysics Data System (ADS)

    Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun

    2014-05-01

    Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.

  10. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  11. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  12. Electrostatic thin film chemical and biological sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less

  13. Characterization and Modeling of Nano-organic Thin Film Phototransistors Based on 6,13(Triisopropylsilylethynyl)-Pentacene: Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Jouili, A.; Mansouri, S.; Al-Ghamdi, Ahmed A.; El Mir, L.; Farooq, W. A.; Yakuphanoglu, F.

    2017-04-01

    Organic thin film transistors based on 6,13(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) with various channel widths and thicknesses of the active layer (300 nm and 135 nm) were photo-characterized. The photoresponse behavior and the gate field dependence of the charge transport were analyzed in detail. The surface properties of TIPS-pentacene deposited on silicon dioxide substrate were investigated using an atomic force microscope. We confirm that the threshold voltage values of the TIPS-pentacene transistor depend on the intensity of white light illumination. With the multiple trapping and release model, we have developed an analytical model that was applied to reproduce the experimental output characteristics of organic thin film transistors based on TIPS-pentacene under dark and under light illumination.

  14. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less

  15. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  16. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  17. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  18. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  19. Synthesis of nano-structured tin oxide thin films with faster response to LPG and ammonia by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    PrasannaKumari, K.; Thomas, Boben

    2018-01-01

    Nanostructured SnO2 thin film have been efficiently fabricated by spray pyrolysis using atomizers of different types. The structure and morphology of as-prepared samples are investigated by techniques such as x-ray diffraction, and field-emission scanning electron microscopy. Significant morphological changes are observed in films by modifying the precursor atomization as a result of change of spray device. The optical characterization indicates that change in atomization, affects the absorbance and the band gap, following the varied crystallite size. Gas sensing investigations on ultrasonically prepared tin oxide films show NH3 response at operating temperatures lower down to 50 °C. For 1000 ppm of LPG the response at 350 °C for air blast atomizer film is about 99%, with short response and recovery times. The photoluminescence emmision spectra reveal the correlation between atomization process and the quantity of oxygen vacancies present in the samples. The favorable size reduction in microstructure with good crystallinity with slight change in lattice properties suggest their scope in gas sensing applications. On the basis of these characterizations, the mechanism of LPG and NH3 gas sensing of nanostructured SnO2 thin films has been proposed.

  20. CW laser damage testing of RAR nano-textured fused silica and YAG

    NASA Astrophysics Data System (ADS)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey

    2017-11-01

    A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film

  1. Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers

    NASA Astrophysics Data System (ADS)

    Colombi, Paolo; Bergese, Paolo; Bontempi, Elza; Borgese, Laura; Federici, Stefania; Sylvest Keller, Stephan; Boisen, Anja; Eleonora Depero, Laura

    2013-12-01

    A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density, but to surface effects according to theoretical predictions on size-dependent mechanical properties of nano- and microstructures.

  2. Microstructure research for ferroelectric origin in the strained Hf0.5Zr0.5O2 thin film via geometric phase analysis

    NASA Astrophysics Data System (ADS)

    Bi, Han; Sun, Qingqing; Zhao, Xuebing; You, Wenbin; Zhang, David Wei; Che, Renchao

    2018-04-01

    Recently, non-volatile semiconductor memory devices using a ferroelectric Hf0.5Zr0.5O2 film have been attracting extensive attention. However, at the nano-scale, the phase structure remains unclear in a thin Hf0.5Zr0.5O2 film, which stands in the way of the sustained development of ferroelectric memory nano-devices. Here, a series of electron microscopy evidences have illustrated that the interfacial strain played a key role in inducing the orthorhombic phase and the distorted tetragonal phase, which was the origin of the ferroelectricity in the Hf0.5Zr0.5O2 film. Our results provide insight into understanding the association between ferroelectric performances and microstructures of Hf0.5Zr0.5O2-based systems.

  3. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO 2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Talebian, Nasrin; Nilforoushan, Mohammad Reza; Zargar, Elahe Badri

    2011-10-01

    The nano-sized coupled oxides ZnO/SnO 2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli ( E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO 2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO 2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.

  4. Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film

    NASA Astrophysics Data System (ADS)

    Abid, S.; Raza, Z. A.; Rehman, A.

    2016-10-01

    Polymeric nanostructures have gained importance in medical science as drug delivery carriers due to their biocompatibility and biodegradability. Polyhydroxybutyrate (PHB) is one of the natural biodegradable polymers used to deliver drugs in the form of nano/microcapsules. In this study, solvent evaporation method has been used for the synthesis of PHB nanospheres using poly(vinyl) alcohol (PVA) both as emulsifier and stabilizer. The produced PHB nanospheres were analyzed using dynamic light scattering and scanning electron microscopy. The size of nanospheres decreased whereas the zeta potential increased on increasing the concentration of emulsifier. The PHB nanospheres were then deposited into porous thin film on a glass surface and characterized against bulk PHB film by using atomic force microscopy, contact angle measurement and x-ray diffraction.

  5. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  6. Anisotropic imprint of amorphization and phase separation in manganite thin films via laser interference irradiation.

    PubMed

    Ding, Junfeng; Lin, Zhipeng; Wu, Jianchun; Dong, Zhili; Wu, Tom

    2015-02-04

    Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano- to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65 (Ca0.75 Sr0.25 )0.35 MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  8. High density nonmagnetic cobalt in thin films

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.

    2018-05-01

    Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.

  9. Nanosphere lithography applied to magnetic thin films

    NASA Astrophysics Data System (ADS)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  10. Fabrication and etching processes of silicon-based PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian

    2001-09-01

    Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.

  11. Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Amara, A.; Abdennouri, N.; Drici, A.; Abdelkader, D.; Bououdina, M.; Chaffar Akkari, F.; Khemiri, N.; Kanzari, M.; Bernède, J. C.

    2017-08-01

    Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups R\\bar{3}m and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M-H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.

  12. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  13. Thermodynamic and kinetic anisotropies in octane thin films.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent

  14. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  15. Oxide-based thin film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  16. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    NASA Astrophysics Data System (ADS)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  17. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  18. Diamond Thin-Film Thermionic Generator

    NASA Astrophysics Data System (ADS)

    Clewell, J. M.; Ordonez, C. A.; Perez, J. M.

    1997-03-01

    Since the eighteen-hundreds scientists have sought to develop the highest thermal efficiency in heat engines such as thermionic generators. Modern research in the emerging diamond film industry has indicated the work functions of diamond thin-films can be much less than one electron volt, compelling fresh investigation into their capacity as thermionic generators and inviting new methodology for determining that efficiency. Our objective is to predict the efficiency of a low-work-function, degenerate semiconductor (diamond film) thermionic generator operated as a heat engine between two constant-temperature thermal reservoirs. Our presentation will focus on a theoretical model which predicts the efficiency of the system by employing a Monte Carlo computational technique from which we report results for the thermal efficiency and the thermionic current densities of diamond thin-films.

  19. Optimization of high quality Cu2ZnSnS4 thin film by low cost and environment friendly sol-gel technique for thin film solar cells applications

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-05-01

    In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.

  20. All-Ceramic Thin Film Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYLE, TIMOTHY J.; INGERSOLL, DAVID; CYGAN, RANDALL T.

    2002-11-01

    We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films weremore » generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting

  1. Tailoring Thin Film-Lacquer Coatings for Space Application

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's thermal control requirements, there is often a need for a variation of solar absorptance (Alpha(s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of Alpha(s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  2. Tailoring Thin Film-Lacquer Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's then-nal control requirements, there is often a need for a variation of solar absorptance (alpha(sub s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of alpha(sub s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  3. Glass transition dynamics of stacked thin polymer films

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke

    2011-10-01

    The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.

  4. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  5. Electrolyte and Electrode Passivation for Thin Film Batteries

    NASA Technical Reports Server (NTRS)

    West, W.; Whitacre, J.; Ratnakumar, B.; Brandon, E.; Blosiu, J.; Surampudi, S.

    2000-01-01

    Passivation films for thin film batteries have been prepared and the conductivity and voltage stability window have been measured. Thin films of Li2CO3 have a large voltage stability window of 4.8V, which facilitates the use of this film as a passivation at both the lithium anode-electrolyte interface at high cathodic potentials.

  6. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  7. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  8. Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors

    NASA Astrophysics Data System (ADS)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2017-12-01

    In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.

  9. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  10. Thin film resonator technology.

    PubMed

    Lakin, Kenneth M

    2005-05-01

    Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.

  11. A generalized theory of thin film growth

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  12. Thin-Film Photovoltaics: Status and Applications to Space Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  13. Electron Damage Effects on Carbon Nanotube Thin Films

    DTIC Science & Technology

    2013-03-01

    ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS THESIS Jeremy S. Best, Captain, USMC AFIT-ENP-13-M-37 DEPARTMENT OF THE AIR FORCE AIR...Government and is not subject to copyright protection in the United States. AFIT-ENP-13-M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS...M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS Jeremy S. Best, BS Aerospace Engineering Captain, USMC Approved: Dr. John McClory

  14. Effect of structural in-depth heterogeneities on electrical properties of Pb(Zr0.52Ti0.48) O3 thin films as revealed by nano-beam X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vaxelaire, N.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Alvarez-Murga, M.; Vaughan, G. B. M.; Defay, E.; Gergaud, P.

    2016-09-01

    A direct quantification of a structural in-depth composition in the lead zirconate titanate Pb(Zr,Ti)O3 thin films of morphotropic composition has been conducted using the newly available X-ray nano-pencil beam (i.e., beam size of 100 nm × 1 μm) diffraction approach. We tested two samples with different Zr/Ti chemical gradients. Here, we demonstrate the presence of a significant microstructural gradient between the rhombohedral and tetragonal phases through PbZrxTi1-xO3 (PZT) films with a 100 nm in-depth resolution. The phase gradient extends over around 350 nm, and it is repeated through the PZT film three times, which corresponds to the number of thermal annealings. Moreover, this microstructural gradient is in agreement with the Zr/Ti chemical gradient observed by the secondary ion mass spectroscopy (SIMS). Indeed, the quantity of tetragonal phases rises in the Ti-rich zones as revealed by SIMS, and the quantity of rhombohedral phases rises in the Zr-rich zones. We also demonstrated a huge difference in the in-depth phase variation between the two tested samples. The gradient free sample still contains 4.7% of phase variation through the film and the amplified gradient contains 9.6% of phase variation through the film. Knowing that the gradient free sample shows better electric and piezoelectric coefficients, one can draw a correlation between the chemical composition, crystallographic homogeneity, and electro-mechanical properties of the film. The more close the film is to the morphotropic composition and the more it is crystallographically homogeneous, the higher the piezoelectric coefficients of the PZT are. Finally, the adequate knowledge of phase variation and its relation to the fabrication technique are crucial for the enhancement of the PZT electro-mechanical properties. Our methodology and findings open up new perspectives in establishing a relevant quantitative feedback to reach an ultimate electro-mechanical coupling in the sol-gel PZT thin films.

  15. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    PubMed Central

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  16. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  17. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    PubMed

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  18. 78 FR 21344 - Grant of Authority for Subzone Status, Hemlock Semiconductor Corporation, (Polysilicon), Hemlock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Status, Hemlock Semiconductor Corporation, (Polysilicon), Hemlock, Michigan Pursuant to its authority... polysilicon manufacturing facility of Hemlock Semiconductor Corporation, located in Hemlock, Michigan (FTZ... manufacturing of polysilicon at the facility of Hemlock Semiconductor Corporation, located in Hemlock, Michigan...

  19. Novel photon management for thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Rajesh

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  20. The Optical Properties of Thin Film Reduced Graphene Oxide/Poly (3,4 Ethylenedioxtriophene):Poly (Styrene Sulfonate)(PEDOT:PSS) Fabricated by Spin Coating

    NASA Astrophysics Data System (ADS)

    Rokmana, Arinta W.; Asriani, A.; Suhendar, H.; Triyana, K.; Kusumaatmaja, A.; Santoso, I.

    2018-04-01

    Reduced Graphene Oxide (rGO) has been successfully synthesized from Graphite powder through chemical process using modified Hummers method by removing NaNO3 from reaction formula. Hydrazine hydrate 80 wt% has been chosen as reductor to eliminate the epoxy group in GO. FTIR and Uv-Vis spectroscopy result showed that Graphene Oxide (GO) and rGO were formed. Our produced rGO then used to fabricated the composite thin film rGO/PEDOT:PSS by spin coating at room temperature. The optical constant of thin film rGO/PEDOT:PSS were calculated from the absorbance spectrum of Uv-Visible spectra. The result showed that the value of coefficient absorbance of rGO dropped from 4.7×106 m-1 to 1.3×106 m-1 after doped with 0.02 mL PEDOT:PSS, then increase with the addition volume concentration of PEDOT:PSS. The value of extinction coefficient decrease from 0.31 to 0.08 after rGO doped with 0.02 ml PEDOT:PSS and then increase with the addition concentration of PEDOT:PSS. Our result show that thin film rGO/PEDOT:PSS was more transparent than that of thin film rGO.

  1. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  2. Controlling the ferroelectric and resistive switching properties of a BiFeO3 thin film prepared using sub-5 nm dimension nanoparticles.

    PubMed

    Shirolkar, Mandar M; Li, Jieni; Dong, Xiaolei; Li, Ming; Wang, Haiqian

    2017-10-04

    In recent years, BiFeO 3 has attracted significant attention as an interesting multiferroic material in the exploration of fundamental science and development of novel applications. Our previous study (Phys. Chem. Chem. Phys.18, 2016, 25409) highlighted the interesting physicochemical features of BiFeO 3 of sub-5 nm dimension. The study also accentuated the existence of weak ferroelectricity at sub-5 nm dimensions in BiFeO 3 . Based on this feature, we have prepared thin films using sub-5 nm BiFeO 3 nanoparticles and explored various physicochemical properties of the thin film. We report that during the formation of the thin film, the nanoparticles aggregated; particularly, annihilation of their nanotwinning nature was observed. Qualitatively, the Gibbs free energy change ΔG governed the abovementioned processes. The thin film exhibited an R3c phase and enhanced Bi-O-Fe coordination as compared to the sub-5 nm nanoparticles. Raman spectroscopy under the influence of a magnetic field shows a magnetoelectric effect, spin phonon coupling, and magnetic anisotropy. We report room-temperature ferroelectric behavior in the thin film, which enhances with the application of a magnetic field; this confirms the multiferroic nature of the thin film. The thin film shows polarization switching ability at multiple voltages and read-write operation at low bias (±0.5 V). Furthermore, the thin film shows negative differential-complementary resistive switching behavior in the nano-microampere current range. We report nearly stable 1-bit operation for 10 2 cycles, 10 5 voltage pulses, and 10 5 s, demonstrating the paradigm device applications. The observed results thus show that the thin films prepared using sub-5 nm BiFeO 3 nanoparticles are a promising candidate for future spintronics and memory applications. The reported approach can also be pertinent to explore the physicochemical properties and develop potential applications of several other nanoparticles.

  3. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  4. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  5. Synthesis and characterization of nanostructured bismuth selenide thin films.

    PubMed

    Sun, Zhengliang; Liufu, Shengcong; Chen, Lidong

    2010-12-07

    Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1).

  6. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  7. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  8. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  9. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance.

  10. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-05-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  11. Pulsed photonic fabrication of nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  12. A micro oxygen sensor based on a nano sol-gel TiO2 thin film.

    PubMed

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-09-03

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  13. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    NASA Astrophysics Data System (ADS)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  14. Drop impact on thin liquid films using TIRM

    NASA Astrophysics Data System (ADS)

    Pack, Min; Ying Sun Team

    2015-11-01

    Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.

  15. Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.

  16. Effect of different sound atmospheres on SnO2:Sb thin films prepared by dip coating technique

    NASA Astrophysics Data System (ADS)

    Kocyigit, Adem; Ozturk, Erhan; Ejderha, Kadir; Turgut, Guven

    2017-11-01

    Different sound atmosphere effects were investigated on SnO2:Sb thin films, which were deposited with dip coating technique. Two sound atmospheres were used in this study; one of them was nay sound atmosphere for soft sound, another was metallic sound for hard sound. X-ray diffraction (XRD) graphs have indicated that the films have different orientations and structural parameters in quiet room, metallic and soft sound atmospheres. It could be seen from UV-Vis spectrometer measurements that films have different band gaps and optical transmittances with changing sound atmospheres. Scanning electron microscope (SEM) and AFM images of the films have been pointed out that surfaces of films have been affected with changing sound atmospheres. The electrical measurements have shown that films have different I-V plots and different sheet resistances with changing sound atmospheres. These sound effects may be used to manage atoms in nano dimensions.

  17. Thermoelectric effects of amorphous Ga-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  18. AZO nanorods thin films by sputtering method

    NASA Astrophysics Data System (ADS)

    Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.

    2018-05-01

    Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.

  19. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. B.; Jing, B.; Cui, Y.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond filmmore » are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.« less

  20. Drop impact onto a thin film: Miscibility effect

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, H.; Amirfazli, A.

    2017-09-01

    In this work a systematic experimental study was performed to understand the process of liquid drop impact onto a thin film made of a different liquid from drop. The drop and film liquids can be miscible or immiscible. Three general outcomes of deposition, crown formation without splashing, and splashing, were observed in the advancing phase of the drop impact onto a solid surface covered by either a miscible or an immiscible thin film. However, for a miscible film, a larger Weber number and film thickness are needed for the formation of a crown and splashing comparing with immiscible cases. The advancing phase of drop impact onto a thin immiscible film with a large viscosity is similar to that of drop impact onto a dry surface; for a miscible film viscous film, the behavior is far from that of a dry surface. The behavior of liquid lamella in the receding phase of drop impact onto a thin miscible film is reported for the first time. The results show that immiscibility is not a necessary condition for the existence of a receding phase. The existence of a receding phase is highly dependent on the interfacial tension between the drop and the film. The miscibility can significantly affect the receding morphology as it will cause mixing of the two liquids.

  1. Study of structural and optical properties of ZnS zigzag nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein

    2015-11-01

    Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.

  2. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    PubMed

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  < 0.01, P  < 0.05); high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value ( P  < 0.01, P  < 0.05); high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits' scalded skin crusting time ( P  < 0.01), significantly shortened the rabbit skin burns from the scab time ( P  < 0.01), and significantly improved the treatment of skin diseases in rabbits scald model change ( P  < 0.01, P  < 0.05). The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  3. Effect of solution concentration on MEH-PPV thin films

    NASA Astrophysics Data System (ADS)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  4. Disconnecting structure and dynamics in glassy thin films

    PubMed Central

    Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.

    2017-01-01

    Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147

  5. Microstructural and mechanical characteristics of Ni–Cr thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petley, Vijay; Sathishkumar, S.; Thulasi Raman, K.H.

    2015-06-15

    Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texturemore » in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.« less

  6. Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors.

    PubMed

    Cheng, Tien-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn

    2018-07-01

    Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.

  7. Perovskite phase thin films and method of making

    DOEpatents

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  8. Reduction of metallosis in hip implant using thin film coating

    NASA Astrophysics Data System (ADS)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  9. Memristive Properties of Thin Film Cuprous Oxide

    DTIC Science & Technology

    2011-03-01

    Equation Chapter 1 Section 1 MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Brett C...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the...MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Presented to the Faculty Department of Engineering Physics Graduate School of

  10. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qingliu; Shi, Bing; Bareño, Javier

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitablemore » in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.« less

  11. Room temperature ferroelectricity in continuous croconic acid thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Wang, Xiao; Yu, Le; Ahmadi, Zahra; Costa, Paulo S.; DiChiara, Anthony D.; Cheng, Xuemei; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan

    2016-09-01

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  12. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films.

    PubMed

    Shabanov, N S; Asvarov, A Sh; Chiolerio, A; Rabadanov, K Sh; Isaev, A B; Orudzhev, F F; Makhmudov, S Sh

    2017-07-15

    Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Three dimensional-stacked complementary thin-film transistors using n-type Al:ZnO and p-type NiO thin-film transistors.

    PubMed

    Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying

    2018-03-05

    The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.

  14. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J [Albuquerque, NM

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  15. Ultrahigh-Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin-Film Lithium-Ion Battery: Comparison with SnO2.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2016-12-21

    To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.

  16. Mechanical and physicochemical properties study on gellan gum thin film prepared using film casting method

    NASA Astrophysics Data System (ADS)

    Ismail, Nur Arifah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat

    2017-09-01

    The GG thin films were prepared by film casting technique using gelzan (GG1) and kelcogel (GG2) respectively. The physical appearances of the thin films were observed and their mechanical and chemical properties were investigated. Chemical characterizations were done by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), UV-Vis Spectroscopy, and Scanning Electron Microscopy (SEM). Based on the ATR-FTIR result, GG1 and GG2 thin films show a broad peak in the range of 3600-3200 cm-1 assigned to -OH functional group. A broad peaks also was observed at 3000-2600 cm-1 and 1800-1600 cm-1 which are belong to -CH and C=O functional group, respectively. The UV-Vis Spectroscopy analysis shows that single absorption peak was observed at 260 nm for both films. For mechanical properties, GG1 thin film has high tensile strength (80±12), but low strain at break (2±1), on the other hand GG2 thin film has low tensile strength (3±0.08) but high strain at break (13±0.58). The Water Vapour Transmission Rates (WVTR) and swelling of GG1 and GG2 thin films were (422±113, 415±26) and (987±113, 902±63), respectively.

  17. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of

  18. Silicon-integrated thin-film structure for electro-optic applications

    DOEpatents

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  19. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    NASA Astrophysics Data System (ADS)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  20. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  1. Thin-film reliability and engineering overview

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1984-10-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  2. Synthesis, characterization and oxidation of metallic cobalt (Co) thin film into semiconducting cobalt oxide (Co3O4)thin film using microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed

    2018-06-01

    The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.

  3. Metal Induced Growth of Si Thin Films and NiSi Nanowires

    DTIC Science & Technology

    2010-02-25

    Zinc Oxide Over MIG Silicon- We have been studying the formation of ZnO films by RF sputtering. Part of this study deals with...about 50 nm. 15. SUBJECT TERMS Thin film silicon, solar cells, thin film transistors , nanowires, metal induced growth 16. SECURITY CLASSIFICATION...to achieve, µc-Si is more desirable than a-Si due to its increased mobility. Thin film µc-Si is also a popular material for thin film transistors

  4. Vapor deposition routes to conformal polymer thin films

    PubMed Central

    Moni, Priya; Al-Obeidi, Ahmed

    2017-01-01

    Vapor phase syntheses, including parylene chemical vapor deposition (CVD) and initiated CVD, enable the deposition of conformal polymer thin films to benefit a diverse array of applications. This short review for nanotechnologists, including those new to vapor deposition methods, covers the basic theory in designing a conformal polymer film vapor deposition, sample preparation and imaging techniques to assess film conformality, and several applications that have benefited from vapor deposited, conformal polymer thin films. PMID:28487816

  5. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges.

    PubMed

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-01-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  6. Young's modulus measurement of aluminum thin film with cantilever structure

    NASA Astrophysics Data System (ADS)

    Lee, ByoungChan; Lee, SangHun; Lee, Hwasu; Shin, Hyungjae

    2001-09-01

    Micromachined cantilever structures are commonly used for measuring mechanical properties of thin film materials in MEMS. The application of conventional cantilever theory in experiment raises severe problem. The deformation of the supporting post and flange is produced by the applied electrostatic force and lead to more reduced measurement value than real Young's modulus of thin film materials. In order to determine Young's modulus of aluminum thin film robustly and reproducibly, the modified cantilever structure is proposed. Two measurement methods, which are cantilever tip deflection measurement and resonant frequency measurement, are used for confirming the reliability of the proposed cantilever structure as well. Measured results indicate that the proposed measurement scheme provides useful and credible Young's modulus value for thin film materials with sub-micron thickness. The proved validation of the proposed scheme makes sure that in addition to Young's modulus of aluminum thin film, that of other thin film materials which are aluminum alloy, metal, and so forth, can be extracted easily and clearly.

  7. Application of surface analytical methods in thin film analysis

    NASA Astrophysics Data System (ADS)

    Wen, Xingu

    Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite

  8. Preliminary Measurements of Thin Film Solar Cells

    NASA Image and Video Library

    1967-06-21

    George Mazaris, works with an assistant to obtain the preliminary measurements of cadmium sulfide thin-film solar cells being tested in the Space Environmental Chamber at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis’ Photovoltaic Fundamentals Section was investigating thin-film alternatives to the standard rigid and fragile solar cells. The cadmium sulfide semiconductors were placed in a light, metallized substrate that could be rolled or furled during launch. The main advantage of the thin-film solar cells was their reduced weight. Lewis researchers, however, were still working on improving the performance of the semiconductor. The new thin-film solar cells were tested in a space simulation chamber in the CW-6 test cell in the Engine Research Building. The chamber created a simulated altitude of 200 miles. Sunlight was simulated by a 5000-watt xenon light. Some two dozen cells were exposed to 15 minutes of light followed by 15 minutes of darkness to test their durability in the constantly changing illumination of Earth orbit. This photograph was taken for use in a NASA recruiting publication.

  9. Physical Vapor Deposition of Thin Films

    NASA Astrophysics Data System (ADS)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  10. Thin-film diffusion brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  11. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  12. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  13. Self-organized antireflection CuIn(S,Se)2 nano-protrusions on flexible substrates by ion erosion based on CuInS2 nanocrystal precursor inks

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun

    2015-11-01

    In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)2 thin film was demonstrated. Home-made CuInS2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)2 film with the incident light from 350 to 2000 nm. A 36-cm2 CuIn(S,Se)2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)2 flexible thin film.

  14. Method for making surfactant-templated, high-porosity thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2001-01-01

    An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  15. Thermoelectric Properties of Al-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Ichinose, A.

    2014-06-01

    We have prepared 2 % Al-doped ZnO (AZO) thin films on SrTiO3 substrates by a pulsed laser deposition technique at various deposition temperatures ( T dep = 300-600 °C). The thermoelectric properties of AZO thin films were studied in a low temperature range (300-600 K). Thin film deposited at 300 °C is fully c-axis-oriented and presents electrical conductivity 310 S/cm with Seebeck coefficient -65 μV/K and power factor 0.13 × 10-3 Wm-1 K-2 at 300 K. The performance of thin films increases with temperature. For instance, the power factor is enhanced up to 0.55 × 10-3 Wm-1 K-2 at 600 K, surpassing the best AZO film previously reported in the literature.

  16. Room temperature ferroelectricity in continuous croconic acid thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structuresmore » of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.« less

  17. Thin-Film Ceramic Thermocouples Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.

    2004-01-01

    The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200

  18. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    NASA Astrophysics Data System (ADS)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  19. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Anton; Chyasnavichyus, Marius; Leonard, Donovan N.

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy tomore » a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Lastly, our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.« less

  20. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    DOE PAGES

    Ievlev, Anton; Chyasnavichyus, Marius; Leonard, Donovan N.; ...

    2018-02-22

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy tomore » a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Lastly, our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.« less

  1. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness.

    PubMed

    Ievlev, Anton V; Chyasnavichyus, Marius; Leonard, Donovan N; Agar, Joshua C; Velarde, Gabriel A; Martin, Lane W; Kalinin, Sergei V; Maksymovych, Petro; Ovchinnikova, Olga S

    2018-04-02

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  2. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    NASA Astrophysics Data System (ADS)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  3. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beringer, Douglas

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5more » GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.« less

  4. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  5. Properties of thin silver films with different thickness

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan

    2009-01-01

    In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.

  6. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  7. Lifetime prediction of InGaZnO thin film transistor for the application of display device and BEOL-transistors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Min; Cho, Won Ju; Yu, Chong Gun; Park, Jong Tae

    2018-04-01

    In this work, the lifetime prediction models of amorphous InGaZnO thin film transistors (a-IGZO TFTs) were suggested for the application of display device and BEOL (Back End Of line) transistors with embedded a-IGZO TFTs. Four different types of test devices according to the active layer thickness, source/drain electrode materials and thermal treatments have been used to verify the suggested model. The device lifetimes under high gate bias stress and hot carrier stress were extracted through fittings of the stretched-exponential equation for threshold voltage shifts and the current estimation method for drain current degradations. Our suggested lifetime prediction models could be used in any kinds of structures of a-IGZO TFTs for the application of display device and BEOL transistors. The a-IGZO TFTs with embedded ITO local conducting layer under source/drain is better for BEOL transistor application and a-IGZO TFTs with InGaZnO thin film as source/drain electrodes may be better for the application of display devices. From 1983 to 1985, he was a Researcher at Gold-Star Semiconductor, Inc., Korea, where he worked on the development of SRAM. He joined the Department of Electronics Engineering, University of Incheon, Incheon, Korea, in 1987, where he is a Professor. As a visiting scientist at Massachusetts Institute of Technology, Cambridge, in 1991, he conducted research in hot carrier reliability of CMOS. As a visiting scholar at University of California, Davis, in 2001, he conducted research on the device structure of Nano-scale SOI CMOS. His recent interests are device structure and reliability of Nano-scale CMOS devices, flash memory, and thin film transistors.

  8. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  9. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  10. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    PubMed Central

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-01-01

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312

  11. Polysilicon Prepared from SiCl4 by Atmospheric-Pressure Non-Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Wang, Nan; Yang, Jinhua; Wang, Younian; Zhu, Aimin

    2011-10-01

    Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition

  12. Thin film thermocouples for high temperature measurement on ceramic materials

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  13. Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films

    NASA Astrophysics Data System (ADS)

    Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.

    2016-03-01

    W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.

  14. Generation of low work function, stable compound thin films by laser ablation

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  15. Spectroscopic Ellipsometry Studies of Ag and ZnO Thin Films and Their Interfaces for Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Sainju, Deepak

    Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the

  16. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  17. Thin spray film thickness measuring technique

    NASA Technical Reports Server (NTRS)

    Jones, G.; Kurtz, G. W.

    1971-01-01

    Thin spray film application depths, in the 0.0002 cm to 0.002 cm range, are measured by portable, commercially available, light density measuring device used in conjunction with glass plate or photographic film. Method is automated by using mechanical/electrical control for shutting off film applicator at desired densitometer reading.

  18. Water-Based Peeling of Thin Hydrophobic Films

    NASA Astrophysics Data System (ADS)

    Khodaparast, Sepideh; Boulogne, François; Poulard, Christophe; Stone, Howard A.

    2017-10-01

    Inks of permanent markers and waterproof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows for complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface.

  19. Unlocking the Structure and Dynamics of Thin Polymeric Films

    DTIC Science & Technology

    2016-11-13

    AFRL-AFOSR-JP-TR-2016-0092 Unlocking the Structure and Dynamics of Thin Polymeric Films Andrew Whittaker THE UNIVERSITY OF QUEENSLAND Final Report 11...Final 3. DATES COVERED (From - To)  15 Jun 2015 to 16 Jun 2016 4. TITLE AND SUBTITLE Unlocking the Structure and Dynamics of Thin Polymeric Films 5a...the interfacial structure that are inherent in thin films affects how polymers behave. A number of technically relevant polymeric systems were

  20. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.