Sample records for nanocavity array lasers

  1. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  2. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  3. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays

    DOE PAGES

    Deeb, Claire; Guo, Zhi; Yang, Ankun; ...

    2018-01-25

    Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavitiesmore » when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.« less

  4. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeb, Claire; Guo, Zhi; Yang, Ankun

    Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavitiesmore » when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.« less

  5. Plasmonic resonances in ordered and disordered aluminum nanocavities arrays.

    NASA Astrophysics Data System (ADS)

    Campuzano, R. G.; Mendoza, D.

    2017-01-01

    Nanocavities arrays were synthesized by electrochemical anodization of aluminum using oxalic and phosphoric acids as electrolytes. The morphology and topography of these structures were evaluated by SEM and AFM. Plasmonic properties of Al cavities arrays with different ordering and dimensions were analysed based on specular reflectivity. Al cavities arrays fabricated with phosphoric acid dramatically reduced the optical reflectivity as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 300nm-400nm range, which were ascribed to (0,1) plasmonic mode, and also a colored appearance in the samples is noticeably depending on the observation angle. These changes are not observed in samples made with oxalic acid and this fact was explained, based on a theoretical model, in terms that the surface plasmons are excited far in the UV range.

  6. Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser

    DTIC Science & Technology

    2011-05-01

    we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p–i–n junction formed by ion implantation...330 nm layer of silicon nitride was then deposited on the sample using plasma-enhanced chemical vapour deposition (PECVD) to serve as a mask for ion

  7. Spectroscopic Imaging of NIR to Visible Upconversion from NaYF4:Yb3+, Er3+ Nanoparticles on Au Nano-cavity Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Jon; Zhao, Bo; Lin, Cuikun; Berry, Mary; May, P. Stanley; Smith, Steve

    2015-03-01

    We use spectroscopic imaging to assess the spatial variations in upconversion luminescence from NaYF4:Er3+,Yb3+ nanoparticles embedded in PMMA on Au nano-cavity arrays. The nano-cavity arrays support a surface plasmon (SP) resonance at 980nm, coincident with the peak absorption of the Yb3+ sensitizer. Spatially-resolved upconversion spectra show a 30X to 3X luminescence intensity enhancement on the nano-cavity array compared to the nearby smooth Au surface, corresponding to excitation intensities from 1 W/cm2 to 300kW/cm2. Our analysis shows the power dependent enhancement in upconversion luminescence can be almost entirely accounted for by a constant shift in the effective excitation intensity, which is maintained over five orders of magnitude variation in excitation intensity. The variations in upconversion luminescence enhancement with power are modeled by a 3-level-system near the saturation limit, and by simultaneous solution of a system of coupled nonlinear differential equations, both analyses agree well with the experiments. Analysis of the statistical distribution of emission intensities in the spectroscopic images on and off the nano-cavity arrays provides an estimate of the average enhancement factor independent of fluctuations in nano-particle density. Funding provided by NSF Award # 0903685 (IGERT).

  8. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    NASA Astrophysics Data System (ADS)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  9. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  10. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2011-02-04

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  11. Ballistic phonon transmission in quasiperiodic acoustic nanocavities

    NASA Astrophysics Data System (ADS)

    Mo, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Chen, Yuan; Hu, Wangyu; Wang, Ling-Ling; Pan, Anlian

    2011-04-01

    Ballistic phonon transport is investigated in acoustic nanocavities modulated in a quasiperiodic manner at low temperatures. Two different types of quasiperiodic acoustic nanocavities are considered: the lengths of nanocavities (QPL) and the lengths of the bridges (QPD) connecting two successive nanocavities are modulated according to the Fibonacci rule. We demonstrate that the transmission spectra and thermal conductance in both systems are similar, which is more prominent in QPD than in QPL. The transmission and thermal conductance of QPD are larger than those of QPL due to the fact that constant nanocavity length in QPD would strengthen ballistic phonon resonant transport, while varying nanocavity length in QPL lead to strong phonon scattering.

  12. Electrically Driven Photonic Crystal Nanocavity Devices

    DTIC Science & Technology

    2012-01-01

    material, here gallium arsenide and indium arsenide self- assembled quantum dots (QDs). QDs are preferred for the gain medium because they can have...blue points ) and 150 K (green points ). The black lines are linear fits to the above threshold output power of the lasers, which are used to find the...SHAMBAT et al.: ELECTRICALLY DRIVEN PHOTONIC CRYSTAL NANOCAVITY DEVICES 1707 Fig. 13. (a) Tilted SEM picture of a fabricated triple cavity device. The in

  13. Investigation of the optical response of photonic crystal nanocavities in ferroelectric oxide thin film

    NASA Astrophysics Data System (ADS)

    Lin, Pao Tai; Russin, William A.; Joshi-Imre, Alexandra; Ocola, Leonidas E.; Wessels, B. W.

    2015-10-01

    The optical properties of BaTiO3 two dimensional photonic crystal (PhC) nanocavities were investigated. Two types of nanocavities consisting of dopants and vacancies with PhC periodicities ranging from 200 to 550 nm were evaluated. The images from laser scanning confocal microscopy show the optical scattering of the PhC cavities is highly wavelength dependent. An optical intensity reversal is observed when the wavelength of probe light shifts by 29 nm. Meanwhile, intensity contrast between the nanocavity and its adjacent PhCs is enhanced as the PhC periodicity becomes shorter than the probe wavelength. To determine the photonic band structures fluorescence from dye covered PhCs were imaged and analyzed. A strong enhancement of fluorescence is observed for the PhC with a period of 200 nm. Upon comparison to the 2D finite difference time domain calculations, the enhancement is attributed to strong light localization within the PhC nanocavity. As a result, the in-plane lightwave propagation is prohibited that results in an increase in the vertical light scattering.

  14. Fiber Laser Arrays

    DTIC Science & Technology

    2006-05-03

    AFRL-DE-PS- AFRL-DE-PS- TR-2006-1059 TR-2006-1059 FIBER LASER ARRAYS Thomas B. Simpson L-3 Communications-Jaycor 3394...LEANNE J HENRY, Lt Col, USAF L. BRUCE SIMPSON, SES Chief, High Power Solid State Laser Branch Director, Directed Energy Directorate...SUBTITLE Fiber Laser Arrays 5c. PROGRAM ELEMENT NUMBER 62605F 5d. PROJECT NUMBER 4866 5e. TASK NUMBER LR 6. AUTHOR(S) Thomas B. Simpson

  15. Ultrafast Direct Modulation of a Single-Mode Photonic Crystal Nanocavity Light-Emitting Diode

    DTIC Science & Technology

    2011-11-15

    nanocavity laser with world record low threshold of 208 nW based on a lateral p-i-n junction defined by ion implantation in gallium arsenide6. This...recombination effects are mini- mized. In contrast, at room temperature, thermal excitation of car- riers depopulates the quantum dots much quicker than does Pur

  16. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  17. Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin

    2018-06-01

    Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.

  18. Sub-wavelength plasmon laser

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  19. Subwavelength micropillar array terahertz lasers.

    PubMed

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  20. Low-cost laser diode array

    DOEpatents

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  1. Low-cost laser diode array

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  2. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities

    DOE PAGES

    Luo, Yue; Ahmadi, Ehsaneh D.; Shayan, Kamran; ...

    2017-11-10

    Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic applications and devices but are also known to suffer from low optical quantum yields. Here we demonstrate SWCNT excitons coupled to plasmonic nanocavity arrays reaching deeply into the Purcell regime with Purcell factors (F P) up to F P = 180 (average F P = 57), Purcell-enhanced quantum yields of 62% (average 42%), and a photon emission rate of 15 MHz into the first lens. The cavity coupling is quasi-deterministic since the photophysical properties of every SWCNT are enhanced by at least one order of magnitude. Furthermore,more » the measured ultra-narrow exciton linewidth (18 ueV) reaches the radiative lifetime limit, which is promising towards generation of transform-limited single photons. Furthermore, to demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat at cryogenic temperatures in a unique interplay of excitons, phonons, and plasmons at the nanoscale.« less

  3. Surface plasmon polariton nanocavity with ultrasmall mode volume

    NASA Astrophysics Data System (ADS)

    Yue, Wencheng; Yao, Peijun; Luo, Huiwen; Liu, Wen

    2017-08-01

    We present a plasmonic nanocavity structure, consisting of a gallium phosphide (GaP) cylinder penetrating into a rectangular silver plate, and study its properties using a finite element method (FEM). An ultrasmall mode volume of 1.5×10-5[λ_0/(2n)]3 is achieved, which is more than 200 times smaller than the previous ultrasmall mode volume plasmonic nanodisk resonators. Meanwhile, the quality factor of the plasmonic nanocavity is about 38.2 and is over two times greater than the ultrasmall mode volume plasmonic nanodisk resonators. Compared to the aforementioned plasmonic nanodisk resonators, a more than one-order of magnitude larger Purcell factor of 1.2×104 is achieved. We determined the resonant modes of our plasmonic nanocavity are dipolar plasmon modes by analyzing the electric field properties. In addition, we investigate the dependence of the optical properties on the refractive index of the cavity material and discuss the effect of including the silica (SiO2) substrate. Our work provides an alternative approach to achieve ultrasmall plasmonic nanocavity of interest in applications to many areas of research, including device physics, nonlinear optics and quantum optics.

  4. Polarization-resolved optical response of plasmonic particle-on-film nanocavities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.

    2018-02-01

    Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.

  5. High density pixel array and laser micro-milling method for fabricating array

    NASA Technical Reports Server (NTRS)

    McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)

    2003-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  6. Assembly of microparticles by optical trapping with a photonic crystal nanocavity

    NASA Astrophysics Data System (ADS)

    Renaut, C.; Dellinger, J.; Cluzel, B.; Honegger, T.; Peyrade, D.; Picard, E.; de Fornel, F.; Hadji, E.

    2012-03-01

    In this work, we report the auto-assembly experiments of micrometer sized particles by optical trapping in the evanescent field of a photonic crystal nanocavity. The nanocavity is inserted inside an optofluidic cell designed to enable the real time control of the nanoresonator transmittance as well as the real time visualization of the particles motion in the vicinity of the nanocavity. It is demonstrated that the optical trap above the cavity enables the assembly of multiple particles in respect of different stable conformations.

  7. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  8. Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities

    DOE PAGES

    Wang, Feng; Martinson, Alex B. F.; Harutyunyan, Hayk

    2017-04-03

    Since their discovery in the 1960s, nonlinear optical effects have revolutionized optical technologies and laser industry. Development of efficient nanoscale nonlinear sources will pave the way for new applications in photonic circuitry, quantum optics and biosensing. However, nonlinear signal generation at dimensions smaller than the wavelength of light brings new challenges. The fundamental difficulty of designing an efficient nonlinear source is that some of the contributing factors involved in nonlinear wave-mixing at the nanoscale are often hard to satisfy simultaneously. Here, we overcome these limitations by developing a new type of nonplanar plasmonic metasurfaces, which can greatly enhance the secondmore » harmonic generation (SHG) at visible frequencies and achieve conversion efficiency of ~6 × 10 -5 at a peak pump intensity of ~0.5 GW/cm 2. This is 4-5 orders of magnitude larger than the efficiencies observed for nonlinear thin films and doubly resonant plasmonic antennas. The proposed metasurface consists of an array of metal-dielectric-metal (MDM) nanocavities formed by conformally cross-linked nanowires separated by an ultrathin nonlinear material layer. The nonplanar MDM geometry minimizes the destructive interference of nonlinear emission into the far-field, provides strongly enhanced independently tunable resonances both for fundamental and harmonic frequencies, a good mutual overlap of the modes and a strong interaction with the nonlinear spacer. Lastly, our findings enable the development of efficient nanoscale single photon sources, integrated frequency converters, and other nonlinear devices.« less

  9. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  10. Modular package for cooling a laser diode array

    DOEpatents

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  11. Matrix addressable vertical cavity surface emitting laser array

    NASA Astrophysics Data System (ADS)

    Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.

    1991-02-01

    The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.

  12. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  13. DFB laser array driver circuit controlled by adjustable signal

    NASA Astrophysics Data System (ADS)

    Du, Weikang; Du, Yinchao; Guo, Yu; Li, Wei; Wang, Hao

    2018-01-01

    In order to achieve the intelligent controlling of DFB laser array, this paper presents the design of an intelligence and high precision numerical controlling electric circuit. The system takes MCU and FPGA as the main control chip, with compact, high-efficiency, no impact, switching protection characteristics. The output of the DFB laser array can be determined by an external adjustable signal. The system transforms the analog control model into a digital control model, which improves the performance of the driver. The system can monitor the temperature and current of DFB laser array in real time. The output precision of the current can reach ± 0.1mA, which ensures the stable and reliable operation of the DFB laser array. Such a driver can benefit the flexible usage of the DFB laser array.

  14. Single-element optical injection locking of diode-laser arrays

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1988-01-01

    By optically injecting a single end-element of a semiconductor laser array, both the spatial and spectral emission characteristics of the entire laser array is controlled. With the output of the array locked, the far-field emission angle of the array is continuously scanned over several degrees by varying the injection frequency.

  15. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  16. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    DTIC Science & Technology

    2015-01-02

    with the laser array to understand the phase noise of elements on a common heat sink, and the relationship between linewidth and feedback speed...spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22, 160 (2012). [2] J. R. Leger, “Lateral mode control of an AlGaAs...Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22

  17. Laser beam shaping design based on micromirror array

    NASA Astrophysics Data System (ADS)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  18. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  19. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  20. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  1. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    PubMed

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.

  2. Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode

    NASA Astrophysics Data System (ADS)

    Hsin, Wei

    New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.

  3. Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement

    PubMed Central

    Liu, Feifei; Zhang, Xinping; Fang, Xiaohui

    2017-01-01

    Plasmonic nanocavity arrays were achieved by producing isolated silver semi-cylindrical nanoshells periodically on a continuous planar gold film. Hybridization between localized surface plasmon resonance (LSPR) in the Ag semi-cylindrical nanoshells (SCNS) and surface plasmon polaritons (SPP) in the gold film was observed as split bonding and anti-bonding resonance modes located at different spectral positions. This led to strong local field enhancement and confinement in the plano-concave nanocavites. Narrow-band optical extinction with an amplitude as high as 1.5 OD, corresponding to 97% reduction in the transmission, was achieved in the visible spectrum. The resonance spectra of this hybrid device can be extended from the visible to the near infrared by adjusting the structural parameters. PMID:28074853

  4. Means for phase locking the outputs of a surface emitting laser diode array

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor)

    1987-01-01

    An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.

  5. High duty cycle hard soldered kilowatt laser diode arrays

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom

    2010-02-01

    High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.

  6. Non-Hermitian engineering of single mode two dimensional laser arrays

    PubMed Central

    Teimourpour, Mohammad H.; Ge, Li; Christodoulides, Demetrios N.; El-Ganainy, Ramy

    2016-01-01

    A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and lossy pseudo-isospectral chains of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays. PMID:27698355

  7. Magnetic Light-Matter Interactions in a Photonic Crystal Nanocavity

    NASA Astrophysics Data System (ADS)

    Burresi, M.; Kampfrath, T.; van Oosten, D.; Prangsma, J. C.; Song, B. S.; Noda, S.; Kuipers, L.

    2010-09-01

    We study the magnetic coupling between a metal-coated near-field probe and a photonic crystal nanocavity. The resonance of the nanocavity shifts to shorter wavelengths when the ringlike apex of the probe is above an antinode of the magnetic field of the cavity. We show that this can be attributed to a magnetic light-matter interaction and is in fact a manifestation of Lenz’s law at optical frequencies. We use these measurements to determine the magnetic polarizability of the apex of the probe and find good agreement with theory. We discuss how this method could be applied to study the electric and magnetic polarizibilities of nano-objects.

  8. Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics

    NASA Astrophysics Data System (ADS)

    Song, Junyeob; Zhou, Wei

    2017-02-01

    Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.

  9. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  10. Colloidal lithography with electrochemical nickel deposition as a unique method for improved silver decorated nanocavities in SERS applications

    NASA Astrophysics Data System (ADS)

    Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol

    2017-11-01

    Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.

  11. Laser-phased-array beam steering based on crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei

    2011-06-01

    Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.

  12. Inkjet-Printed Nanocavities on a Photonic Crystal Template.

    PubMed

    Brossard, Frederic S F; Pecunia, Vincenzo; Ramsay, Andrew J; Griffiths, Jonathan P; Hugues, Maxime; Sirringhaus, Henning

    2017-12-01

    The last decade has witnessed the rapid development of inkjet printing as an attractive bottom-up microfabrication technology due to its simplicity and potentially low cost. The wealth of printable materials has been key to its widespread adoption in organic optoelectronics and biotechnology. However, its implementation in nanophotonics has so far been limited by the coarse resolution of conventional inkjet-printing methods. In addition, the low refractive index of organic materials prevents the use of "soft-photonics" in applications where strong light confinement is required. This study introduces a hybrid approach for creating and fine tuning high-Q nanocavities, involving the local deposition of an organic ink on the surface of an inorganic 2D photonic crystal template using a commercially available high-resolution inkjet printer. The controllability of this approach is demonstrated by tuning the resonance of the printed nanocavities by the number of printer passes and by the fabrication of photonic crystal molecules with controllable splitting. The versatility of this method is evidenced by the realization of nanocavities obtained by surface deposition on a blank photonic crystal. A new method for a free-form, high-density, material-independent, and high-throughput fabrication technique is thus established with a manifold of opportunities in photonic applications. © 2017 Hitachi Cambridge Laboratory. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  14. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  15. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  16. Micromirror Array Control of a Phase-Locked Laser Diode Array

    DTIC Science & Technology

    1995-12-01

    Micromirror Intensity-Voltage Curve . From the intensity plot, maxima (Ix) and minima (IMN) are noted. If IMAX and IMn are known, A4 can be calculated for...of the micromirror array used. Mirror 9 600 500 E 400- S300- C, -0200 lOO_ 0 0 5 10 15 20 25 30 Volts Figure 3b. Mirror Deflection Curve Corresponding...AFIT/GAP/ENP/95D-2 MICROMIRROR ARRAY CONTROL OF A PHASE-LOCKED LASER DIODE ARRAY THESIS Carl J. Christensen, Captain, USAF AFIT/GAP/ENP/95D-2

  17. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  18. Phase-locked laser array

    NASA Technical Reports Server (NTRS)

    Botez, Dan (Inventor)

    1987-01-01

    A phase-locked laser array comprises a body of semiconductor material having means for defining a plurality of substantially parallel lasing zones which are spaced an effective distance apart so that the modes of the adjacent lasing zones are phase-locked to one another. One of the array electrodes comprises a plurality of electrical contacts to the body between the lasing zones. These contacts provide an enhanced current density profile and thus an increase in the gain in the regions between the lasing zones so that zero degree phase-shift operation between adjacent lasing zones is achievable.

  19. Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity

    DTIC Science & Technology

    2014-01-01

    P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer

  20. Thin planar package for cooling an array of edge-emitting laser diodes

    DOEpatents

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  1. Control of strong light-matter coupling using the capacitance of metamaterial nanocavities

    DOE PAGES

    Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...

    2015-01-27

    Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.

  2. Prelaunch testing of the GEOS-3 laser reflector array

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Fitzmaurice, M. W.; Abshire, J. B.; Rowe, H. E.

    1978-01-01

    The prelaunch testing performed on the Geos-3 laser reflector array before launch was used to determine the lidar cross section of the array and the distance of the center of gravity of the satellite from the center of gravity of reflected laser pulses as a function of incidence angle. Experimental data are compared to computed results.

  3. MoS2 monolayers on nanocavities: enhancement in light-matter interaction

    NASA Astrophysics Data System (ADS)

    Janisch, Corey; Song, Haomin; Zhou, Chanjing; Lin, Zhong; Elías, Ana Laura; Ji, Dengxin; Terrones, Mauricio; Gan, Qiaoqiang; Liu, Zhiwen

    2016-06-01

    Two-dimensional (2D) atomic crystals and van der Waals heterostructures constitute an emerging platform for developing new functional ultra-thin electronic and optoelectronic materials for novel energy-efficient devices. However, in most thin-film optical applications, there is a long-existing trade-off between the effectiveness of light-matter interactions and the thickness of semiconductor materials, especially when the materials are scaled down to atom thick dimensions. Consequently, enhancement strategies can introduce significant advances to these atomically thick materials and devices. Here we demonstrate enhanced absorption and photoluminescence generation from MoS2 monolayers coupled with a planar nanocavity. This nanocavity consists of an alumina nanolayer spacer sandwiched between monolayer MoS2 and an aluminum reflector, and can strongly enhance the light-matter interaction within the MoS2, increasing the exclusive absorption of monolayer MoS2 to nearly 70% at a wavelength of 450 nm. The nanocavity also modifies the spontaneous emission rate, providing an additional design freedom to control the interaction between light and 2D materials.

  4. Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity.

    PubMed

    Jin, Xin; Cerea, Andrea; Messina, Gabriele C; Rovere, Andrea; Piccoli, Riccardo; De Donato, Francesco; Palazon, Francisco; Perucchi, Andrea; Di Pietro, Paola; Morandotti, Roberto; Lupi, Stefano; De Angelis, Francesco; Prato, Mirko; Toma, Andrea; Razzari, Luca

    2018-02-22

    Phonons (quanta of collective vibrations) are a major source of energy dissipation and drive some of the most relevant properties of materials. In nanotechnology, phonons severely affect light emission and charge transport of nanodevices. While the phonon response is conventionally considered an inherent property of a nanomaterial, here we show that the dipole-active phonon resonance of semiconducting (CdS) nanocrystals can be drastically reshaped inside a terahertz plasmonic nanocavity, via the phonon strong coupling with the cavity vacuum electric field. Such quantum zero-point field can indeed reach extreme values in a plasmonic nanocavity, thanks to a mode volume well below λ 3 /10 7 . Through Raman measurements, we find that the nanocrystals within a nanocavity exhibit two new "hybridized" phonon peaks, whose spectral separation increases with the number of nanocrystals. Our findings open exciting perspectives for engineering the optical phonon response of functional nanomaterials and for implementing a novel platform for nanoscale quantum optomechanics.

  5. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers

    NASA Astrophysics Data System (ADS)

    Takeda, Koji; Sato, Tomonari; Shinya, Akihiko; Nozaki, Kengo; Kobayashi, Wataru; Taniyama, Hideaki; Notomi, Masaya; Hasebe, Koichi; Kakitsuka, Takaaki; Matsuo, Shinji

    2013-07-01

    A low operating energy is needed for nanocavity lasers designed for on-chip photonic network applications. On-chip nanocavity lasers must be driven by current because they act as light sources driven by electronic circuits. Here, we report the high-speed direct modulation of a lambda-scale embedded active region photonic-crystal (LEAP) laser that holds three records for any type of laser operated at room temperature: a low threshold current of 4.8 µA, a modulation current efficiency of 2.0 GHz µA-0.5 and an operating energy of 4.4 fJ bit-1. Five major technologies make this performance possible: a compact buried heterostructure, a photonic-crystal nanocavity, a lateral p-n junction realized by ion implantation and thermal diffusion, an InAlAs sacrificial layer and current-blocking trenches. We believe that an output power of 2.17 µW and an operating energy of 4.4 fJ bit-1 will enable us to realize on-chip photonic networks in combination with the recently developed highly sensitive receivers.

  6. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  7. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics

    DOE PAGES

    Hagglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; ...

    2016-01-29

    In this study, when optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near-perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping semiconductor tin monosulfide (SnS) onto a two-dimensional gold nanodot array. In combination with a thin (55 nm) SiO 2 spacer layer and a highly reflectivemore » Al film on the back, a semiopen nanocavity is formed. The SnS-coated array supports a localized surface plasmon resonance in the vicinity of the lowest order antisymmetric Fabry–Perot resonance of the nanocavity. Very strong coupling of the two resonances is evident through anticrossing behavior with a minimum peak splitting of 400 meV, amounting to 24% of the plasmon resonance energy. The mode equalization resulting from this strong interaction enables simultaneous optical impedance matching of the system at both resonances and thereby two near-perfect absorption peaks, which together cover a broad spectral range. When paired with the heavy damping from SnS band-to-band transitions, this further enables approximately 60% of normal incident solar photons with energies exceeding the band gap to be absorbed in the 10 nm SnS coating. Thereby, these results establish a distinct relevance of strong coupling phenomena to efficient, nanoscale photovoltaic absorbers and more generally for fulfilling a specific optical condition at multiple spectral positions.« less

  8. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuramochi, Eiichi, E-mail: kuramochi.eiichi@lab.ntt.co.jp; Nozaki, Kengo; Shinya, Akihiko

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 ofmore » the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.« less

  9. Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode

    NASA Technical Reports Server (NTRS)

    Philipp-Rutz, E. M.

    1975-01-01

    Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.

  10. Multicolor photonic crystal laser array

    DOEpatents

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  11. Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.

    PubMed

    Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin

    2013-06-20

    When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls.

  12. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  13. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  14. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  15. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    DOEpatents

    Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  16. Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control.

    PubMed

    Upham, Jeremy; Tanaka, Yoshinori; Asano, Takashi; Noda, Susumu

    2008-12-22

    We introduce recent advances in dynamic control over the Q factor of a photonic crystal nanocavity system. By carefully timing a rapid increase of the Q factor from 3800 to 22,000, we succeed in capturing a 4ps signal pulse within the nanocavity with a photon lifetime of 18ps. By performing an additional transition of the Q factor within the photon lifetime, the held light is once again ejected from of the system on demand.

  17. Theoretical analysis of phase locking in an array of globally coupled lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2013-09-30

    A model of an array of globally coupled fibre lasers, with the same fraction of the total output beam power injected into each laser, is considered. Phase self-locking of the laser array makes it possible to increase the brightness of the total output beam without any devices for controlling the phases of output beams, which significantly complicate the laser system. The spread of the laser optical lengths is several hundreds of wavelengths (or even more); within the theory of hollow cavities, this spread should lead to a fast decrease in the total power with an increase in the number ofmore » lasers. The presence of the active medium may reduce this drop to a great extent due to the self-tuning of the laser array radiation wavelength to a value providing a maximum gain for the array lasing mode. The optical length of each element is assumed to be random. The increase in the phase-locking efficiency due to the gain saturation is explained based on the probabilistic approach. An iterative procedure is developed to find the array output power in the presence of steady-state phase locking. Calculations for different values of small-signal gain and the output-power fraction spent on global coupling are performed. It is shown that, when this fraction amounts to ∼20 % – 30 %, phase locking of up to 20 fibre lasers can be implemented with an efficiency as high as 70 %. (control of laser radiation parameters)« less

  18. Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity.

    PubMed

    Park, Junghyun; Kim, Hwi; Lee, Il-Min; Kim, Seyoon; Jung, Jaehoon; Lee, Byoungho

    2008-10-13

    We investigate the reflection and transmission characteristics of the low-dielectric constant cut off barrier in the metal-insulator-metal (MIM) waveguide and propose a novel plasmonic nano-cavity made of two cut off barriers and the waveguide between them. It is shown that the anti-symmetric mode in the MIM waveguide with the core of the low dielectric constant below the specific value cannot be supported and this region can be regarded as a cut off barrier with high stability. The phase shift due to the reflection at the finite-length cut off barrier is calculated and the design scheme of the cavity length for the resonant tunneling is presented. The transmission spectra through the proposed nano-cavity are also discussed.

  19. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    PubMed

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  20. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.

    PubMed

    Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun

    2017-10-16

    We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.

  1. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-05-01

    In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.

  2. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  3. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  4. Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity.

    PubMed

    Brunstein, M; Braive, R; Hostein, R; Beveratos, A; Rober-Philip, I; Sagnes, I; Karle, T J; Yacomotti, A M; Levenson, J A; Moreau, V; Tessier, G; De Wilde, Y

    2009-09-14

    Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0+/-0.2 micros and 0.9+/-0.2 micros for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 micros and 4 micros respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.

  5. 3D imaging LADAR with linear array devices: laser, detector and ROIC

    NASA Astrophysics Data System (ADS)

    Kameyama, Shumpei; Imaki, Masaharu; Tamagawa, Yasuhisa; Akino, Yosuke; Hirai, Akihito; Ishimura, Eitaro; Hirano, Yoshihito

    2009-07-01

    This paper introduces the recent development of 3D imaging LADAR (LAser Detection And Ranging) in Mitsubishi Electric Corporation. The system consists of in-house-made key devices which are linear array: the laser, the detector and the ROIC (Read-Out Integrated Circuit). The laser transmitter is the high power and compact planar waveguide array laser at the wavelength of 1.5 micron. The detector array consists of the low excess noise Avalanche Photo Diode (APD) using the InAlAs multiplication layer. The analog ROIC array, which is fabricated in the SiGe- BiCMOS process, includes the Trans-Impedance Amplifiers (TIA), the peak intensity detectors, the Time-Of-Flight (TOF) detectors, and the multiplexers for read-out. This device has the feature in its detection ability for the small signal by optimizing the peak intensity detection circuit. By combining these devices with the one dimensional fast scanner, the real-time 3D range image can be obtained. After the explanations about the key devices, some 3D imaging results are demonstrated using the single element key devices. The imaging using the developed array devices is planned in the near future.

  6. Phased laser array with tailored spectral and coherence properties

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA

    2011-03-29

    Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.

  7. Phased laser array with tailored spectral and coherence properties

    DOEpatents

    Messerly, Michael J; Dawson, Jay W; Beach, Raymond J

    2014-05-20

    Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.

  8. High-speed electronic beam steering using injection locking of a laser-diode array

    NASA Astrophysics Data System (ADS)

    Swanson, E. A.; Abbas, G. L.; Yang, S.; Chan, V. W. S.; Fujimoto, J. G.

    1987-01-01

    High-speed electronic steering of the output beam of a 10-stripe laser-diode array is reported. The array was injection locked to a single-frequency laser diode. High-speed steering of the locked 0.5-deg-wide far-field lobe is demonstrated either by modulating the injection current of the array or by modulating the frequency of the master laser. Closed-loop tracking bandwidths of 70 kHz and 3 MHz, respectively, were obtained. The beam-steering bandwidths are limited by the FM responses of the modulated devices for both techniques.

  9. Target tracking and pointing for arrays of phase-locked lasers

    NASA Astrophysics Data System (ADS)

    Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis

    2016-09-01

    Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.

  10. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  11. Design of a patterned nanostructure array using a nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Yoshida, Yutaka; Ohnishi, Ko; Matsuo, Yasutaka; Watanabe, Seiichi

    2018-04-01

    For design the patterned nanostructure array (PNSA) on material surface using a nanosecond pulsed laser, we investigated the influence of phase shift between scattered lights on silicon (Si) substrate using 30-nm-wide gold lines (GLs) spacings. At a spacing of 5,871 nm, ten nanodot (ND) arrays were formed at intervals of 533 nm by nanosecond pulsed laser. The results show that the formation of the PNSA was affected by the resonance of scattered light. We conclude that ND arrays were formed with a spacing of Λ = nλ. And we have designed PNSA comprising two ND arrays on the substrate. The PNSA with dimensions of 1,600 nm × 1,600 nm was prepared using GLs.

  12. Robust synchronization in fiber laser arrays.

    PubMed

    Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt

    2006-02-01

    Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.

  13. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation.

    PubMed

    Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther

    2014-11-15

    We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.

  14. Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation.

    PubMed

    Chu, Shu-Chun; Chen, Yun-Ting; Tsai, Ko-Fan; Otsuka, Kenju

    2012-03-26

    This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns. This study also experimentally demonstrates the generation of an square vortex array laser beams by passing specific high-order HGMs (HGn,n + 1 or HGn + 1,n modes) through a Dove prism-embedded unbalanced Mach-Zehnder interferometer [Optics Express 16, 19934-19949]. The resulting square vortex array laser beams with embedded vortexes aligned in a square array can be applied to multi-spot dark optical traps in the future.

  15. Improving solar-pumped laser efficiency by a ring-array concentrator

    NASA Astrophysics Data System (ADS)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  16. Effect of interface layer on the performance of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng

    2015-02-01

    Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.

  17. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    NASA Astrophysics Data System (ADS)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  18. Intensity dynamics in a waveguide array laser

    NASA Astrophysics Data System (ADS)

    Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.

    2011-02-01

    We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.

  19. Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera.

    PubMed

    Goyal, Anish; Myers, Travis; Wang, Christine A; Kelly, Michael; Tyrrell, Brian; Gokden, B; Sanchez, Antonio; Turner, George; Capasso, Federico

    2014-06-16

    We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light reflected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.

  20. Hybrid photonic-plasmonic crystal nanocavity sensors

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chiang, Chih-Kai; Chou, Bo-Tsun; Huang, Zhen-Ting; Ku, Yun-Cheng; Kuo, Mao-Kuen; Hsu, Jin-Chen; Lin, Tzy-Rong

    2018-02-01

    We have investigated a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10- 3 ( λ/ n eff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/ V m is significantly enhanced by about 15 times. The designed hybrid photonic-plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light-matter interaction, such as biosensors and nanolasers.

  1. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  2. A simple laser locking system based on a field-programmable gate array.

    PubMed

    Jørgensen, N B; Birkmose, D; Trelborg, K; Wacker, L; Winter, N; Hilliard, A J; Bason, M G; Arlt, J J

    2016-07-01

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

  3. A simple laser locking system based on a field-programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, N. B.; Birkmose, D.; Trelborg, K.

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The lockingmore » system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.« less

  4. Semiconductor Laser Diode Arrays by MOCVD (Metalorganic Chemical Vapor Deposition)

    DTIC Science & Technology

    1987-09-01

    laser diode arrays are intended to be used as an optical pump for solid state yttrium aluminum garnet (YAG) lasers. In particular, linear uniform...corresponds to about . , 8080A. Such thin layer structures, while difficult to grow by such conventional growth methods as liquid phase epitaxy ( LPE ...lower yet than for DH lasers grown by LPE . , - Conventional self-aligned stripe laser This structure is formed by growing (on an n-type GaAs substrate

  5. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  6. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    NASA Astrophysics Data System (ADS)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  7. Multiple wavelength tunable surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei

    1991-06-01

    Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.

  8. Space Qualification of Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  9. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  10. Observation of enhanced superconductivity in the vicinity of Ar-induced nano-cavities in Pb(111).

    PubMed

    Song, Sang Yong; Seo, Jungpil

    2017-09-22

    Local variations of superconductivity have been studied using scanning tunneling microscopy around nano-cavities formed by Ar ions embedded in Pb(111). Various factors including the density of states at Fermi energy, electron-phonon couplings, and quantum well states, which are known to affect superconductivity, have been examined. We show that the superconductivity is enhanced near the nano-cavities and propose that quantum effects such as quantum confinement, proximity effect and multi-gap effect are possibly involved in determining the superconducting gap of this system. These results have important implications for the characterization and understanding of superconductivity at a nanometer scale.

  11. Improved semi-conductor laser device, operating, at room temperature, with an array of three lasers in the spatially coherent, free running mode

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1975-01-01

    The peak pulse power was increased by operating an array of three homostructure Ga As lasers in the laser device. A spatial filter in the laser device selects the spatially coherent, free running, mode. The optical peak power is 5 watts, which is three times the peak power of a single laser in the array. The far-field distribution of the three laser array is a single Gaussian beam of spatial coherence without sidelobes or grating lobes. The length of the optical pulses of spatial coherence was increased to 200 ns by improved heat transfer from the p-n junctions of the lasers to the metal housing of the pulse transformer, and by doubling the core area and increasing the turns of the primary windings of the pulse transformer. The mechanical stability of the laser device was improved and the transition from mechanical alignment to electro-mechanical alignment control, was facilitated.

  12. Turbulent chimeras in large semiconductor laser arrays

    PubMed Central

    Shena, J.; Hizanidis, J.; Kovanis, V.; Tsironis, G. P.

    2017-01-01

    Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure. PMID:28165053

  13. Turbulent chimeras in large semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Shena, J.; Hizanidis, J.; Kovanis, V.; Tsironis, G. P.

    2017-02-01

    Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure.

  14. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    NASA Astrophysics Data System (ADS)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  15. Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry

    DOEpatents

    Vertes, Akos; Walker, Bennett N.; Stolee, Jessica A.; Retterer, Scott T.

    2016-11-08

    The production and use of semiconducting nanopost arrays made by nanofabrication is described herein. These nanopost arrays (NAPA) provide improved laser ionization yields and controllable fragmentation with switching or modulation capabilities for mass spectrometric detection and identification of samples deposited on them.

  16. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  17. Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors

    DOE PAGES

    Akselrod, Gleb M.; Ming, Tian; Argyropoulos, Christos; ...

    2015-04-07

    Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths–critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ~60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS 2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. Here, we observe a 2000-fold enhancement in the PLmore » intensity of MoS 2– which has intrinsically low absorption and small quantum yield–at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.« less

  18. Detecting Disease Biomarkers Using Nanocavities and Nanoparticle Composites

    NASA Astrophysics Data System (ADS)

    Forster, Robert J.; Mallon, Colm; Devadoss, Anitha; Keyes, Tia E.

    2011-08-01

    The convergence of electrochemistry, materials, photonics and biomedical science at the nanoscale opens up significant opportunities for developing advanced sensors. In this contribution, we present examples of our use of nanometer dimensioned electrodes, nanocavities and nanoparticle-metallopolymer composites to create high sensitivity detection platforms and materials for detecting proteins and nucleic acids. The application of these approaches in the diagnosis and prognosis of cancers such as neuroblastoma, as well as point-of-care detection of infectious disease, will be discussed.

  19. Cascaded injection resonator for coherent beam combining of laser arrays

    DOEpatents

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  20. Monolayer semiconductor nanocavity lasers with ultralow thresholds.

    PubMed

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-02

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  1. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    NASA Astrophysics Data System (ADS)

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-01

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  2. Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing

    2014-12-01

    In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.

  3. Coupled-mode analysis of gain and wavelength oscillation characteristics of diode laser phased arrays

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Ettenberg, M.; Ackley, D. E.

    1985-01-01

    The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.

  4. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  5. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, Jay A.; Freitas, Barry L.

    1999-01-01

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

  6. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  7. Laser diode arrays for naval reconnaissance

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Crosby, Frank J.; Petee, Danny A.; Suiter, Harold R.; Witherspoon, Ned H.

    2003-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) Project has demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). Historically, optical aerial detection of minefields has primarily been limited to daytime operations but LDAs promise compact and efficient lighting to allow for enhanced reconnaissance operations for future mine detection systems. When combined with high-resolution intensified imaging systems, LDAs can illuminate otherwise unseen areas. Future wavelength options will open the way for active multispectral imaging with LDAs. The Coastal Systems Station working for the Office of Naval Research on the ALRT project has designed, developed, integrated, and tested both prototype and commercial arrays from a Cessna airborne platform. Detailed test results show the ability to detect several targets of interest in a variety of background conditions. Initial testing of the prototype arrays, reported on last year, was completed and further investigations of the commercial versions were performed. Polarization-state detection studies were performed, and advantageous properties of the source-target-sensor geometry noted. Current project plans are to expand the field-of-view coverage for Naval exercises in the summer of 2003. This paper describes the test collection, data library products, array information, on-going test analysis results, and future planned testing of the LDAs.

  8. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1994-04-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.

  9. Analysis and design of fiber-coupled high-power laser diode array

    NASA Astrophysics Data System (ADS)

    Zhou, Chongxi; Liu, Yinhui; Xie, Weimin; Du, Chunlei

    2003-11-01

    A conclusion that a single conventional optical system could not realize fiber coupled high-power laser diode array is drawn based on the BPP of laser beam. According to the parameters of coupled fiber, a method to couple LDA beams into a single multi-mode fiber including beams collimating, shaping, focusing and coupling is present. The divergence angles after collimating are calculated and analyzed; the shape equation of the collimating micro-lenses array is deprived. The focusing lens is designed. A fiber coupled LDA result with the core diameter of 800 um and numeric aperture of 0.37 is gotten.

  10. 50 Mb/s, 220-mW Laser-Array Transmitter

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.

    1992-01-01

    Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.

  11. Packaging and testing of multi-wavelength DFB laser array using REC technology

    NASA Astrophysics Data System (ADS)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  12. 2D Ruddlesden-Popper Perovskites Microring Laser Array.

    PubMed

    Zhang, Haihua; Liao, Qing; Wu, Yishi; Zhang, Zhaoyi; Gao, Qinggang; Liu, Peng; Li, Meili; Yao, Jiannian; Fu, Hongbing

    2018-04-01

    3D organic-inorganic hybrid perovskites have featured high gain coefficients through the electron-hole plasma stimulated emission mechanism, while their 2D counterparts of Ruddlesden-Popper perovskites (RPPs) exhibit strongly bound electron-hole pairs (excitons) at room temperature. High-performance solar cells and light-emitting diodes (LEDs) are reported based on 2D RPPs, whereas light-amplification devices remain largely unexplored. Here, it is demonstrated that ultrafast energy transfer along cascade quantum well (QW) structures in 2D RPPs concentrates photogenerated carriers on the lowest-bandgap QW state, at which population inversion can be readily established enabling room-temperature amplified spontaneous emission and lasing. Gain coefficients measured for 2D RPP thin-films (≈100 nm in thickness) are found about at least four times larger than those for their 3D counterparts. High-density large-area microring arrays of 2D RPPs are fabricated as whispering-gallery-mode lasers, which exhibit high quality factor (Q ≈ 2600), identical optical modes, and similarly low lasing thresholds, allowing them to be ignited simultaneously as a laser array. The findings reveal that 2D RPPs are excellent solution-processed gain materials potentially for achieving electrically driven lasers and ideally for on-chip integration of nanophotonics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an

    2018-04-01

    A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.

  14. Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions

    NASA Astrophysics Data System (ADS)

    Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.

    2017-09-01

    The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.

  15. Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity.

    PubMed

    Tang, Jianwei; Xia, Juan; Fang, Maodong; Bao, Fanglin; Cao, Guanjun; Shen, Jianqi; Evans, Julian; He, Sailing

    2018-04-27

    Plasmon-emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure. The gold nanostructure functions as a nanocavity to enhance emitter interactions and a nanoantenna to make the emitters selectively excitable and detectable. When we selectively excite or detect either emitter, we observe photon emission predominantly from the target emitter with up to 132-fold Purcell-enhanced emission rate, indicating individual addressability and strong plasmon-exciton interactions. Our work represents a step towards a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.

  16. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    PubMed

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  17. High-power arrays of quantum cascade laser master-oscillator power-amplifiers.

    PubMed

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-02-25

    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  18. Study on the near-field non-linearity (SMILE) of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng

    2018-02-01

    High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.

  19. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  20. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  1. Optical intensity dynamics in a five-emitter semiconductor array laser

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kutz, J. Nathan

    2009-06-01

    The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.

  2. Synchrotron emission from nanowire array targets irradiated by ultraintense laser pulses

    NASA Astrophysics Data System (ADS)

    Martinez, B.; d’Humières, E.; Gremillet, L.

    2018-07-01

    We present a numerical study, based on two-dimensional particle-in-cell simulations, of the synchrotron emission induced during the interaction of femtosecond laser pulses of intensities I = 1021–1023 W cm‑2 with nanowire arrays. Through an extensive parametric scan on the target parameters, we identify and characterize several dominant radiation mechanisms, mainly depending on the transparency or opacity of the plasma produced by the wire expansion. At I = 1022 W m‑2, the emission of high-energy (>10 keV) photons attains a maximum conversion efficiency of ∼10% for 36–50 nm wire widths and 1 μm interspacing. This maximum radiation yield is found to be similar to that achieved in a uniform plasma of same average (sub-solid) density, but nanowire arrays provide efficient radiation sources over a broader parameter range. Moreover, we examine the variations of the photon spectra with the laser intensity and the wire material, and we demonstrate that the radiation efficiency can be further enhanced by adding a plasma mirror at the backside of the nanowire array. Finally, we briefly consider the influence of a finite laser focal spot and oblique incidence angle.

  3. Coherent beam combining architectures for high power tapered laser arrays

    NASA Astrophysics Data System (ADS)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  4. Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture

    DTIC Science & Technology

    2016-02-08

    Thermal Management of Quantum Cascade Lasers in an Individually Addressable Monolithic Array Architecture Leo Missaggia, Christine Wang, Michael...power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity...quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest

  5. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Eegholm, Niels; Ott, Melanie; Stephen, Mark; Leidecker, Henning

    2005-01-01

    Semiconductor laser diodes emit coherent light by simulated emission generated inside the cavity formed by the cleaved end facets of a slab of semiconductor that is typically less than a millimeter in any dimension for single emitters. The diode is pumped by current injection in the p-n junction through the metallic contacts. Laser diodes emitting in the range of 0.8 micron to 1.06 micron have a wide variety of applications from pumping erbium doped fiber amplifiers, dual-clad fiber lasers, solid-state lasers used in telecom, aerospace, military, medical purposes and all the way to CD players, laser printers and other consumer and industrial products. Laser diode bars have many single emitters side by side and spaced approximately .5 mm on a single slab of semiconductor material approximately .5 mm x 10 mm. The individual emitters are connected in parallel maintaining the voltage at -2V but increasing the current to 50-100A/bar. Stacking these laser diode bars in multiple layers, 2 to 20+ high, yields high power laser diode arrays capable of emitting several hundreds of Watts. Electrically the bars are wired in series increasing the voltage by 2V/bar but maintaining the total current at 50-100A. These arrays are one of the enabling technologies for efficient, high power solid-state lasers. Traditionally these arrays are operated in QCW (Quasi CW) mode with pulse widths 10-200 (mu)s and with repetition rates of 10-200Hz. In QCW mode the wavelength and the output power of the laser reaches steady-state but the temperature does not. The advantage is a substantially higher output power than in CW mode, where the output power would be limited by the internal heating and hence the thermal and heat sinking properties of the device. The down side is a much higher thermal induced mechanical stress caused by the constant heating and cooling cycle inherent to the QCW mode.

  6. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  7. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  8. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Gatabi, Javad R.; Bernick, Steven M.; Park, Sooyeon; Lee, Gwan-Hyoung; Droopad, Ravindranath; Kim, Namwon

    2017-02-01

    We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.

  9. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    NASA Astrophysics Data System (ADS)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  10. Scalable diode array pumped Nd rod laser

    NASA Technical Reports Server (NTRS)

    Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.

    1991-01-01

    Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.

  11. Phased-array laser radar: Concept and application

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    The design and construction of a coaxial transmitter-receiver combination was investigated. Major emphasis was placed on simple permanent optical alignment, transmitter-receiver field of view matching, use of a pulsed gas laser as a transmitter maximum optical efficiency, complete digital control of data acquisition, and optical mount pointing and tracking. Also a means of expanding the coaxial transmitter-receiver concept to allow phased-array lidar, par-lidar was described.

  12. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami

    PubMed Central

    2017-01-01

    Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale. PMID:29166033

  13. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.

    PubMed

    Chikkaraddy, Rohit; Turek, V A; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F; Baumberg, Jeremy J

    2018-01-10

    Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 10 3 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.

  14. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; Turek, V. A.; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F.; Baumberg, Jeremy J.

    2018-01-01

    Fabricating nanocavities in which optically-active single quantum emitters are precisely positioned, is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore, and obtain enhancements of $\\geq4\\times10^3$ with high quantum yield ($\\geq50$%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of $\\pm1.5$ nm. Our approach introduces a straightforward non-invasive way to measure and quantify confined optical modes on the nanoscale.

  15. Preliminary results toward injection locking of an incoherent laser array

    NASA Technical Reports Server (NTRS)

    Daher, J.

    1986-01-01

    The preliminary results of phase locking an incoherent laser array to a master source in an attempt to achieve coherent operation are presented. The techniques necessary to demonstrate phase locking are described along with some topics for future consideration. As expected, the results obtained suggest that injection locking of an array, where the spacing between adjacent longitudinal modes of its elements is significantly larger than the locking bandwidth, may not be feasible.

  16. Numerical simulation of evaluation of surface breaking cracks by array-lasers generated narrow-band SAW

    NASA Astrophysics Data System (ADS)

    Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu

    2011-09-01

    Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.

  17. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  18. Multiple-wavelength vertical cavity laser arrays with wide wavelength span and high uniformity

    NASA Astrophysics Data System (ADS)

    Yuen, Wupen; Li, Gabriel S.; Chang-Hasnain, Connie J.

    1996-12-01

    Vertical-cavity surface-emitting lasers (VCSELs) are promising for numerous applications. In particular, due to their inherent single Fabry-Perot mode operation, VCSELs can be very useful for wavelength division multiplexing (WDM) systems allowing high bandwidth and high functionalities.1, 2 Multiple wavelength VCSEL arrays with wide channel spacings (>10 nm) provide an inexpensive solution to increasing the capacity of local area networks without using active wavelength controls.1 The lasing wavelength of a VCSEL is determined by the equivalent laser cavity thickness which can be varied by changing the thickness of either the l-spacer or the distributed Bragg reflector (DBR) layers. To make monolithic multiple-wavelength VCSEL arrays, the lasing wavelength, and therefore the cavity thickness, has to be varied at reasonable physical distances. For all practical applications, it is imperative for the fabrication technology to be controllable, cost-effective, and wafer-scale. Recently, we demonstrated a patterned-substrate molecular beam epitaxy (MBE) growth technique with in-situ laser reflectometry monitoring for fabricating multiple wavelength VCSEL arrays.3, 4 With this method, VCSEL arrays with very large and highly controllable lasing wavelength spans and excellent lasing characteristics have been achieved.

  19. Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range

    NASA Astrophysics Data System (ADS)

    González-Campuzano, R.; Saniger, J. M.; Mendoza, D.

    2017-11-01

    The size-controllable and ordered Al nanocavities and nanodomes arrays were synthesized by electrochemical anodization of aluminum using phosphoric acid, citric acid and mixture both acids. Few layer graphene (FLG) was transferred directly on top of Al nanostructures and their morphology were evaluated by scanning electron microscopy. The interaction between FLG and the plasmonic properties of Al nanostructures arrays were investigated based on specular reflectivity in the ultraviolet-visible-infrared range and Raman spectroscopy. We found that their optical reflectivity was dramatically reduced as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 200-896 nm wavelength range, which were ascribed to plasmonic resonances. The plasmonic properties of these nanostructures do not exhibit evident changes by the presence of FLG in the UV-vis range of the electromagnetic spectrum. By contrast, the surface-enhanced Raman spectroscopy of FLG was observed in nanocavities and nanodomes structures that result in an intensity increase of the characteristic G and 2D bands of FLG induced by the plasmonic properties of Al nanostructures.

  20. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert

    2018-01-01

    The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.

  1. Generation of vortex array laser beams with Dove prism embedded unbalanced Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Chun

    2009-02-01

    This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.

  2. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    NASA Technical Reports Server (NTRS)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  3. Experimental research on femto-second laser damaging array CCD cameras

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi

  4. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.

    PubMed

    Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T

    2013-05-10

    We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

  5. Wavelength shift in vertical cavity laser arrays on a patterned substrate

    NASA Astrophysics Data System (ADS)

    Eng, L. E.; Bacher, K.; Yuen, W.; Larson, M.; Ding, G.; Harris, J. S., Jr.; Chang-Hasnain, C. J.

    1995-03-01

    The authors demonstrate a spatially chirped emission wavelength in vertical cavity surface emitting laser (VCSEL) arrays grown by molecular beam epitaxy. The wavelength shift is due to a lateral thickness variation in the Al(0.2)Ga(0.8)As cavity, which is induced by a substrate temperature profile during growth. A 20 nm shift in lasing wavelength is obtained in a VCSEL array.

  6. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities.

    PubMed

    Shi, Lei; Tuzer, T Umut; Fenollosa, Roberto; Meseguer, Francisco

    2012-11-20

    A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  8. Field demonstration of an eight-element fiber laser hydrophone array

    NASA Astrophysics Data System (ADS)

    Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John

    2014-05-01

    We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system and highlighting the advantage this technology provides in the underwater sensing domain. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.

  9. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity.

    PubMed

    Wang, Lei; Zhang, Jinchuan; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Xu, Xiangang; Liu, Fengqi

    2016-12-26

    We show a phase-locked array of three quantum cascade lasers with an integrated Talbot cavity at one side of the laser array. The coupling scheme is called diffraction coupling. By controlling the length of Talbot to be a quarter of Talbot distance (Zt/4), in-phase mode operation can be selected. The in-phase operation shows great modal stability under different injection currents, from the threshold current to the full power current. The far-field radiation pattern of the in-phase operation contains three lobes, one central maximum lobe and two side lobes. The interval between adjacent lobes is about 10.5°. The output power is about 1.5 times that of a single-ridge laser. Further studies should be taken to achieve better beam performance and reduce optical losses brought by the integrated Talbot cavity.

  10. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  11. Experimental demonstration of an optical phased array antenna for laser space communications.

    PubMed

    Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L

    1994-06-20

    The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.

  12. Tunable plasmonic nanocavity with Ge2Sb2Te5 film for directional launching of surface plasmons

    NASA Astrophysics Data System (ADS)

    Jeong, Hee-Dong; Hwang, Chi-Young; Kim, Hyuntai; Choi, Muhan; Lee, Seung-Yeol

    2018-04-01

    A tunable plasmonic nanocavity which consists of a metallic groove with submerged ultra-thin Ge2Sb2Te5 film is proposed for controlling the on/off characteristics of directional surface plasmon polaritions (SPPs) launching. Different mechanisms of launching SPPs using two orthogonal incident polarizations are investigated to reveal the SPP generation characteristics from the proposed nanocavity. By choosing the appropriate position of Ge2Sb2Te5 film, we report that the directional launching characteristics of SPPs can be controlled by changing the phase state of extremely small volume of Ge2Sb2Te5 film, which shows up to 37 dB of extinction ratio changing characteristics.

  13. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  14. Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, X. L.; Ma, Y.; Zhang, J. S.; Xu, J.; Wu, X. F.; Zhang, Y.; Han, X. B.; Fu, Q.; Liao, Z. M.; Chen, L.; Yu, D. P.

    2010-09-01

    The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control.

  15. AlGaAs phased array laser for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.

    1989-01-01

    Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.

  16. Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser.

    PubMed

    Daskalakis, Konstantinos S; Väkeväinen, Aaro I; Martikainen, Jani-Petri; Hakala, Tommi K; Törmä, Päivi

    2018-04-11

    Nanoscale coherent light sources offer potentially ultrafast modulation speeds, which could be utilized for novel sensors and optical switches. Plasmonic periodic structures combined with organic gain materials have emerged as promising candidates for such nanolasers. Their plasmonic component provides high intensity and ultrafast nanoscale-confined electric fields, while organic gain materials offer fabrication flexibility and a low acquisition cost. Despite reports on lasing in plasmonic arrays, lasing dynamics in these structures have not been experimentally studied yet. Here we demonstrate, for the first time, an organic dye nanoparticle-array laser with more than a 100 GHz modulation bandwidth. We show that the lasing modulation speed can be tuned by the array parameters. Accelerated dynamics is observed for plasmonic lasing modes at the blue side of the dye emission.

  17. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, Raymond J.; Benett, William J.; Mills, Steven T.

    1997-01-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

  18. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  19. The use of integrated focal plane array technologies in laser microsatellite networks

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2004-10-01

    Clustering micro satellites in cooperative fly formation constellations leads to high-performance space systems. The only way to achieve high-speed communication between the satellites is by a laser beam with a narrow divergence angle. In order to make the communication successful three types of focal plane detector arrays are required in the communication terminal: acquisition, tracking and communication detector arrays. The acquisition detector array is used to acquire the neighbor satellite using a wide field-of-view telescope. The tracking detector provides fast, real time and accurate direction location of the neighbor satellite. Based on the information from the acquisition and tracking detectors the receiver and transmitter maintain line of sight. The development of large, fast and very sensitive focal plane detector arrays makes it possible to implement the acquisition, tracking and communication with only one focal plane detector array. By doing so it is possible to reduce dramatically the size, weight, and cost of the optics and electronics which leads to lightweight communication terminals. As a result, the satellites are smaller and lighter, which reduces the space mission cost and increases the booster efficiency. In this paper we will present an overview of the concept of integrated focal plane arrays for laser satellite communication. We also present simulation results based on real system parameters and compare different implementation options.

  20. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  1. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Jost, Steven R.; Smith, M. J.; McDaniel, Robert V.

    2004-01-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: (1) target identification; (2) target tracking; (3) target location; (4) identification friend-or-foe (IFF); (5) parcel tracking, and; (6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  2. Optical and Thermal Analyses of High-Power Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Vasilyev, Aleksey; Allan, Graham R.; Schafer, John; Stephen, Mark A.; Young, Stefano

    2004-01-01

    An important need, especially for space-borne applications, is the early identification and rejection of laser diode arrays which may fail prematurely. The search for reliable failure predictors is ongoing and has led to the development of two techniques, infrared imagery and monitoring the Temporally-resolved and Spectrally-Resolved (TSR) optical output from which temperature of the device can be measured. This is in addition to power monitoring on long term burn stations. A direct measurement of the temperature of the active region is an important parameter as the lifetime of Laser Diode Arrays (LDA) decreases exponentially with increasing temperature. We measure the temperature from time-resolving the spectral emission in an analogous method to Voss et al. In this paper we briefly discuss the measurement setup and present temperature data derived from thermal images and TSR data for two differently designed high-power 808 nanometer LDA packages of similar specification operated in an electrical and thermal environment that mimic the expected operational conditions.

  3. Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    NASA Technical Reports Server (NTRS)

    Elliott, R. A.; Hartnett, K.

    1987-01-01

    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented.

  4. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off.

    PubMed

    Kim, Seungjun; Son, Jung Hwan; Lee, Seung Hyun; You, Byoung Kuk; Park, Kwi-Il; Lee, Hwan Keon; Byun, Myunghwan; Lee, Keon Jae

    2014-11-26

    Crossbar-structured memory comprising 32 × 32 arrays with one selector-one resistor (1S-1R) components are initially fabricated on a rigid substrate. They are transferred without mechanical damage via an inorganic-based laser lift-off (ILLO) process as a result of laser-material interaction. Addressing tests of the transferred memory arrays are successfully performed to verify mitigation of cross-talk on a plastic substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  6. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  7. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    DOE PAGES

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter 1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC) 6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots 7, extreme difficulty in currentmore » injection8, and lack of compatibility with electronic circuits 7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe 2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers 7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less

  8. Linear laser diode arrays for improvement in optical disk recording for space stations

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.

  9. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  10. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  11. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.

    PubMed

    Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  12. THz generation by laser coupling to carbon nanotube array

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Uma, R.

    2018-01-01

    A viable scheme of THz radiation generation by beating of two lasers ( ω1 , k→ 1 ; ω2 , k→ 2 ) in a nanotube array, mounted on a dielectric substrate, is proposed and studied. The free electrons of the nanotubes acquire a large oscillatory velocity and experience a beat frequency ponderomotive force that turns nanotubes into oscillating dipole antennae emitting THz radiation. The THz power peaks in directions where a phase difference between fields due to successive nanotubes is integral multiple of 2 π . The THz power is large when the beat frequency equals ωp/√{2 } (where ωp is the electron plasma frequency) and surface plasmon resonance occurs. For our set of laser and carbon nanotube parameters, the generated THz is about 0.1 kW for CO2 laser power of 10 GW and pulse length of a few picoseconds.

  13. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  14. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  15. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xuyue; Meng Qingxuan; Kang Renke

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-meltmore » ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 {mu}m of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.« less

  16. Theoretical study on phase-locking of a radial array CO2 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen

    2014-11-01

    The phase-locking of the radial array CO2 laser (RAL) is introduced based on the injection-locking principle. The characteristic parameters of laser beams used in the phase-locking are described, and the coupling coefficient c00 between the injected mode and the eigenmode of RAL is calculated. The laser modes from RAL are the low-order Hermite Gaussian modes due to the diffraction loss. The analytical formula for the output beam through an ABCD optical system is derived according Collins formula. The numerical examples are given to illustrate our analytical results.

  17. Single-pulse femtosecond laser fabrication of concave microlens- and micromirror arrays in chalcohalide glass

    NASA Astrophysics Data System (ADS)

    Kadan, Viktor; Blonskyi, Ivan; Shynkarenko, Yevhen; Rybak, Andriy; Calvez, Laurent; Mytsyk, Bohdan; Spotyuk, Oleh

    2017-11-01

    The diffraction-limited plano-concave microlens- and micromirror arrays were produced in chalcohalide glass of 65GeS2-25Ga2S3-10CsCl composition transparent from ∼0.5 to 11 μm. Only a single 200 fs laser pulse with 800 nm central wavelength is required to form microlens, which after metal coating becomes a concave micromirror. This process can serve as a basis for flexible technology to fabricate regular microlens and micromirror arrays for optotelecom applications, its performance being limited only by repetition rate of the laser pulses (typically 1000 microlenses per second).

  18. Multispectral InGaAs/GaAs/AlGaAs laser arrays by MBE growth on patterned substrates

    NASA Astrophysics Data System (ADS)

    Kamath, K.; Bhattacharya, P.; Singh, J.

    1997-05-01

    Multispectral semiconductor laser arrays on single chip is demonstrated by molecular beam epitaxial (MBE) growth of {In0.2Ga0.8As}/{GaAs} quantum well lasers on GaAs (1 0 0) substrates patterned by dry etching. No regrowth is needed for simple edge emitting lasers. It was observed that the laser characteristics are not degraded by the patterned growth. The shift in the emission wavelength obtained by this method can be controlled by varying the width of the pre-patterned ridges as well as by selecting the regions with different number of vertical sidewalls on both sides. We have also shown that multispectral vertical cavity surface emitting laser (VCSEL) arrays can be made by this technique with a single regrowth.

  19. High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture

    DOEpatents

    Beach, Raymond J.

    1997-01-01

    Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

  20. High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture

    DOEpatents

    Beach, R.J.

    1997-11-18

    Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

  1. Demonstration of an advanced fibre laser hydrophone array in Gulf St Vincent

    NASA Astrophysics Data System (ADS)

    Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John

    2015-09-01

    We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.

  2. The Use of a Microcomputer Based Array Processor for Real Time Laser Velocimeter Data Processing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1990-01-01

    The application of an array processor to laser velocimeter data processing is presented. The hardware is described along with the method of parallel programming required by the array processor. A portion of the data processing program is described in detail. The increase in computational speed of a microcomputer equipped with an array processor is illustrated by comparative testing with a minicomputer.

  3. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation timesmore » (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.« less

  4. High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fang-Liang; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Jia, Zhi-Wei

    2016-03-15

    A phase-locked quantum cascade laser (QCL) array consisting of one hundred elements that were integrated in parallel was achieved at λ ∼ 4.6 μm. The proposed Fraunhofer’s multiple slits diffraction model predicted and explained the far-field pattern of the phase-locked laser array. A single-lobed far-field pattern, attributed to the emission of an in-phase-like supermode, is obtained near the threshold (I{sub th}). Even at 1.5 I{sub th}, greater than 73.3% of the laser output power is concentrated in a low-divergence beam with an optical power of up to 40 W.

  5. Advanced thermal management of high-power quantum cascade laser arrays for infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Barletta, Philip; Diehl, Laurent; North, Mark T.; Yang, Bao; Baldasaro, Nick; Temple, Dorota

    2017-10-01

    Next-generation infrared countermeasure (IRCM) systems call for compact and lightweight high-power laser sources. Specifically, optical output power of tens of Watts in the mid-wave infrared (MWIR) is desired. Monolithically fabricated arrays of quantum cascade lasers (QCLs) have the potential to meet these requirements. Single MWIR QCL emitters operating in continuous wave at room temperature have demonstrated multi-Watt power levels with wall-plug efficiency of up to 20%. However, tens of Watts of output power from an array of QCLs translates into the necessity of removing hundreds of Watts per cm2, a formidable thermal management challenge. A potential thermal solution for such high-power QCL arrays is active cooling based on high-performance thin-film thermoelectric coolers (TFTECs), in conjunction with pumped porous-media heat exchangers. The use of active cooling via TFTECs makes it possible to not only pump the heat away, but also to lower the QCL junction temperature, thus improving the wall-plug efficiency of the array. TFTECs have shown the ability to pump >250W/cm2 at ΔT=0K, which is 25 times greater than that typically seen in commercially available bulk thermoelectric devices.

  6. A ring lasers array for fundamental physics

    NASA Astrophysics Data System (ADS)

    Di Virgilio, Angela; Allegrini, Maria; Beghi, Alessandro; Belfi, Jacopo; Beverini, Nicolò; Bosi, Filippo; Bouhadef, Bachir; Calamai, Massimo; Carelli, Giorgio; Cuccato, Davide; Maccioni, Enrico; Ortolan, Antonello; Passeggio, Giuseppe; Porzio, Alberto; Ruggiero, Matteo Luca; Santagata, Rosa; Tartaglia, Angelo

    2014-12-01

    After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large-size ring-lasers able to measure the de Sitter and Lense-Thirring effects. The instrument will be located at the underground laboratory of Gran Sasso, in Italy. We describe the preliminary actions and measurements already under way and present the full road map to GINGER. The intermediate apparatuses GP2 and GINGERino are described. GINGER is expected to be fully operating in few years. xml:lang="fr"

  7. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  8. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  9. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  10. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  11. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Luo, Guanghong; Diao, Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-04-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3×ω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ~2 µm in SF6 gas and to ~5 µm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (~10×) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  12. Three-dimensional concentration of light in deeply sub-wavelength, laterally tapered gap-plasmon nanocavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliabue, Giulia; Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125; Poulikakos, Dimos

    2016-05-30

    Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to confine and focus the GP mode. Here, we propose a mechanism for the three dimensional concentration of light in planar MIM structures which exploits exclusively the lateral tapering of the front metallic layer while keeping a constant thickness of the insulating layer. We demonstrate that an array of tapered planar GP nanocavities can efficiently concentrate light in all three dimensions. A semi-analytical, one-dimensional model provides understanding ofmore » the underlying physics and approximately predicts the behavior of the structure. Three-dimensional simulations are then used to precisely calculate the optical behavior. Cavities with effective volumes as small as 10{sup −5} λ{sup 3} are achieved in an ultrathin MIM configuration. Our design is inherently capable of efficiently coupling with free-space radiation. In addition, being composed of two electrically continuous layers separated by an ultrathin dielectric spacer, it could find interesting applications in the area of active metamaterials or plasmonic photocatalysis where both electrical access and light concentration are required.« less

  13. The statistics of laser returns from cube-corner arrays on satellite

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1973-01-01

    A method first presented by Goodman is used to derive an equation for the statistical effects associated with laser returns from satellites having retroreflecting arrays of cube corners. The effect of the distribution on the returns of a satellite-tracking system is illustrated by a computation based on randomly generated numbers.

  14. Quasi-CW 110 kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver

    NASA Astrophysics Data System (ADS)

    Kawashima, Toshiyuki; Kanzaki, Takeshi; Matsui, Ken; Kato, Yoshinori; Matsui, Hiroki; Kanabe, Tadashi; Yamanaka, Masanobu; Nakatsuka, Masahiro; Izawa, Yasukazu; Nakai, Sadao; Miyamoto, Masahiro; Kan, Hirofumi; Hiruma, Teruo

    2001-12-01

    We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd:glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiency of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm2 was accomplished across an emitting area of 418 mm× 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL.

  15. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  16. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    PubMed Central

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-01-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater. PMID:26446436

  17. Digital barcodes of suspension array using laser induced breakdown spectroscopy

    PubMed Central

    He, Qinghua; Liu, Yixi; He, Yonghong; Zhu, Liang; Zhang, Yilong; Shen, Zhiyuan

    2016-01-01

    We show a coding method of suspension array based on the laser induced breakdown spectroscopy (LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in accuracy and stability to current fluorescent multicolor coding method. This demonstration increases the capability of multiplexed detection and accurate filtrating, expanding more extensive applications of suspension array in life science. PMID:27808270

  18. Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Zhang, Jiasen; Xu, Jun; Yu, Dapeng

    2011-03-01

    The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control. This work is supported by NSFC (10804003, 61036005 and 11074015), the national 973 program of China (2007CB936203, 2009CB623703), MOST and NSFC/RGC (N HKUST615/06).

  19. Control of femtosecond laser interference ejection with angle and polarisation

    NASA Astrophysics Data System (ADS)

    Roper, David M.; Ho, Stephen; Haque, Moez; Herman, Peter R.

    2017-03-01

    The nonlinear interactions of femtosecond lasers are driving multiple new application directions for nanopatterning and structuring of thin transparent dielectric films that serve in range of technological fields. Fresnel reflections generated by film interfaces were recently shown to confine strong nonlinear interactions at the Fabry-Perot fringe maxima to generate thin nanoscale plasma disks of 20 to 40 nm thickness stacked on half wavelength spacing, λ/2nfilm, inside a film (refractive index, nfilm). The following phase-explosion and ablation dynamics have resulted in a novel means for intrafilm processing that includes `quantized' half-wavelength machining steps and formation of blisters with embedded nanocavities. This paper presents an extension in the control of interferometric laser processing around our past study of Si3N4 and SiOx thin films at 515 nm, 800 nm, and 1044 nm laser wavelengths. The role of laser polarization and incident angle is explored on fringe visibility and improving interferometric processing inside the film to dominate over interface and / or surface ablation. SiOx thin films of 1 μm thickness on silicon substrates were irradiated with a 515 nm wavelength, 280 fs duration laser pulses at 0° to 65° incident angles. A significant transition in ablation region from complete film removal to structured quantized ejection is reported for p- and s-polarised light that is promising to improve control and expand the versatility of the technique to a wider range of applications and materials. The research is aimed at creating novel bio-engineered surfaces for cell culture, bacterial studies and regenerative medicine, and nanofluidic structures that underpin lab-in-a-film. Similarly, the formation of intrafilm blisters and nanocavities offers new opportunities in structuring existing thin film devices, such as CMOS microelectronics, LED, lab-on-chips, and MEMS.

  20. 1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme.

    PubMed

    Cheng, Yuanbing; Wang, Qi Jie; Pan, Jiaoqing

    2014-12-15

    We demonstrate a cost-effective 1.55 µm low chirp 4 × 25 Gbit/s electroabsorption modulated laser (EML) array with 0.8 nm channel spacing by varying ridge width of the lasers and using selective area growth (SAG) integration scheme. The devices for all the 4 channels within the EML array show uniform threshold currents around 18 mA and high SMSRs over 45 dB. The output optical power of each channel is about 9 mW at an injection current of 100 mA. The typical chirp value of single EML measured by a fiber resonance method varied from 2.2 to -4 as the bias voltage was increased from 0 V to 2.5 V. These results show that the EML array is a suitable light source for 100 Gbit/s optical transmissions.

  1. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  2. Advancements of ultra-high peak power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  3. Disorder-induced localization of excitability in an array of coupled lasers

    NASA Astrophysics Data System (ADS)

    Lamperti, M.; Perego, A. M.

    2017-10-01

    We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.

  4. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad

    2017-12-01

    In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.

  5. Linear laser diode arrays for improvement in optical disk recording

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  6. SnO2/Pt Thin Film Laser Ablated Gas Sensor Array

    PubMed Central

    Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman

    2011-01-01

    A gas sensor array was developed in a 10 × 10 mm2 space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO2 and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O2. A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times. PMID:22164041

  7. Monolithically integrated distributed feedback laser array wavelength-selectable light sources for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-01-01

    The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).

  8. High-resolution 3D laser imaging based on tunable fiber array link

    NASA Astrophysics Data System (ADS)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  9. Polarization effects associated with thermal processing of HY-80 structural steel using high-power laser diode array

    NASA Astrophysics Data System (ADS)

    Wu, Sheldon S. Q.; Baker, Bradford W.; Rotter, Mark D.; Rubenchik, Alexander M.; Wiechec, Maxwell E.; Brown, Zachary M.; Beach, Raymond J.; Matthews, Manyalibo J.

    2017-12-01

    Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.

  10. Wide-field airborne laser diode array illuminator: demonstration results

    NASA Astrophysics Data System (ADS)

    Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.

    2005-06-01

    The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.

  11. High density pixel array

    NASA Technical Reports Server (NTRS)

    McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  12. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  13. Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Wan, Noel H.; Mouradian, Sara; Englund, Dirk

    2018-04-01

    Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano-scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes—directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.

  14. Multi-gas sensing with quantum cascade laser array in the mid-infrared region

    NASA Astrophysics Data System (ADS)

    Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie

    2017-05-01

    Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.

  15. All-optical switching for 10-Gb/s packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities.

    PubMed

    Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya

    2015-11-16

    An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.

  16. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  17. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  18. Method of calculating retroreflector-array transfer functions. [laser range finders

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1978-01-01

    Techniques and equations used in calculating the transfer functions to relate the observed return laser pulses to the center of mass of the Lageos satellite retroflector array, and for most of the retroreflector-equipped satellites now in orbit are described. The methods derived include the effects of coherent interference, diffraction, polarization, and dihedral-angle offsets. Particular emphasis is given to deriving expressions for the diffraction pattern and active reflecting area of various cube-corner designs.

  19. 1D array of dark spot traps formed by counter-propagating nested Gaussian laser beams for trapping and moving atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Frazer, Travis D.

    2017-04-01

    The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.

  20. 16-element photodiode array for the angular microdeflection detector and for stabilization of a laser radiation direction

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal

    2016-12-01

    In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.

  1. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.

    PubMed

    Gisbert Quilis, Nestor; Lequeux, Médéric; Venugopalan, Priyamvada; Khan, Imran; Knoll, Wolfgang; Boujday, Souhir; Lamy de la Chapelle, Marc; Dostalek, Jakub

    2018-05-23

    The facile preparation of arrays of plasmonic nanoparticles over a square centimeter surface area is reported. The developed method relies on tailored laser interference lithography (LIL) that is combined with dry etching and it offers means for the rapid fabrication of periodic arrays of metallic nanostructures with well controlled morphology. Adjusting the parameters of the LIL process allows for the preparation of arrays of nanoparticles with a diameter below hundred nanometers independently of their lattice spacing. Gold nanoparticle arrays were precisely engineered to support localized surface plasmon resonance (LSPR) with different damping at desired wavelengths in the visible and near infrared part of the spectrum. The applicability of these substrates for surface enhanced Raman scattering is demonstrated where cost-effective, uniform and reproducible substrates are of paramount importance. The role of deviations in the spectral position and the width of the LSPR band affected by slight variations of plasmonic nanostructures is discussed.

  2. Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; Howell, Joe; Fikes, John; Fork, Richard; Phillips, Dane; Aiken, Dan; McDanal, A. J.

    2006-01-01

    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system.

  3. Far field beam pattern of one MW combined beam of laser diode array amplifiers for space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1989-01-01

    The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.

  4. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study.

    PubMed

    Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J

    2018-02-19

    We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

  5. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the

  6. Laser tailored nanoparticle arrays to detect molecules at dilute concentration

    NASA Astrophysics Data System (ADS)

    Zanchi, Chiara; Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M.

    2017-02-01

    By nanosecond pulsed laser ablation in an ambient gas gold nanoparticles (NPs) were produced that self-assemble on a substrate resulting in increasingly elaborated architectures of growing thickness, from isolated NP arrays up to percolated films. NPs nucleate and grow in the plasma plume propagating through the gas. Process parameters including laser wavelength, laser energy density, target to substrate distance, nature and pressure of the gas affect plasma expansion, thus asymptotic NP size and kinetic energy. NP size, energy and mobility at landing determine film growth and morphology that affect the physico-chemical properties of the film. Keeping fixed the other process parameters, we discuss the sensitive dependence of film surface nanostructure on Ar pressure and on laser pulse number. The initial plume velocity and average ablated mass per pulse allow predicting the asymptotic NP size. The control of growth parameters favors fine-tuning of NP aggregation, relevant to plasmonics to get optimized substrates for surface enhanced Raman spectroscopy (SERS). Their behavior is discussed for testing conditions of interest for clinical application. Both in aqueous and in biological solutions we obtained good sensitivity and reproducibility of the SERS signals for the anti-Parkinson drug apomorphine, and for the anti-epilepsy drug carbamazepine.

  7. Digital equalization of time-delay array receivers on coherent laser communications.

    PubMed

    Belmonte, Aniceto

    2017-01-15

    Field conjugation arrays use adaptive combining techniques on multi-aperture receivers to improve the performance of coherent laser communication links by mitigating the consequences of atmospheric turbulence on the down-converted coherent power. However, this motivates the use of complex receivers as optical signals collected by different apertures need to be adaptively processed, co-phased, and scaled before they are combined. Here, we show that multiple apertures, coupled with optical delay lines, combine retarded versions of a signal at a single coherent receiver, which uses digital equalization to obtain diversity gain against atmospheric fading. We found in our analysis that, instead of field conjugation arrays, digital equalization of time-delay multi-aperture receivers is a simpler and more versatile approach to accomplish reduction of atmospheric fading.

  8. Development of the Laser Retroreflector Array (LRA) for SARAL

    NASA Astrophysics Data System (ADS)

    Costes, Vincent; Gasc, Karine; Sengenes, Pierre; Salcedo, Corinne; Imperiali, Stéphan; du Jeu, Christian

    2017-11-01

    CNES (French spatial agency) will provide the AltiKa high resolution altimeter, Doris instrument and the LRA (Laser Retroreflector Array) for SARAL (Satellite with Argos and AltiKa) in cooperation with ISRO (Indian space agency). The LRA is a passive equipment reflecting the laser beams coming from the Earth ground stations. Computing the send-return time travel of the laser beams allows the determination of the satellite altitude within an accuracy of a few millimeters. The reflective function is done by a set of 9 corner cube reflectors, with a conical arrangement providing a 150 degrees wide field of view over the full 360 degrees azimuth angle. According to CNES optomechanical specifications, the LRA has been developed by SESO (French optical firm). SESO has succeeded in providing the corner cube reflectors with a very stringent dihedral angle error of 1.6 arcsec and an accuracy within +/-0.5 arcsec. During this development, SESO has performed mechanical, thermal and thermo-optical analyses. The optical gradient of each corner cube, as well as angular deviations and PSF (Point Spread Function) in each laser range finding direction, have been computed. Mechanical and thermal tests have been successfully performed. A thermo-optical test has successfully confirmed the optical effect of the predicted in-flight thermal gradients. Each reflector is characterized in order to find its best location in the LRA housing and give the maximum optimization to the space telemetering mission.

  9. Refractive index dependence of L3 photonic crystal nano-cavities.

    PubMed

    Adawi, A M; Chalcraft, A R; Whittaker, D M; Lidzey, D G

    2007-10-29

    We model the optical properties of L3 photonic crystal nano-cavities as a function of the photonic crystal membrane refractive index n using a guided mode expansion method. Band structure calculations revealed that a TE-like full band-gap exists for materials of refractive index as low as 1.6. The Q-factor of such cavities showed a super-linear increase with refractive index. By adjusting the relative position of the cavity side holes, the Q-factor was optimised as a function of the photonic crystal membrane refractive index n over the range 1.6 to 3.4. Q-factors in the range 3000-8000 were predicted from absorption free materials in the visible range with refractive index between 2.45 and 2.8.

  10. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.

    PubMed

    Witinski, Mark F; Blanchard, Romain; Pfluegl, Christian; Diehl, Laurent; Li, Biao; Krishnamurthy, Kalyani; Pein, Brandt C; Azimi, Masud; Chen, Peili; Ulu, Gokhan; Vander Rhodes, Greg; Howle, Chris R; Lee, Linda; Clewes, Rhea J; Williams, Barry; Vakhshoori, Daryoosh

    2018-04-30

    This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.

  11. Method to improve near-field nonlinearity of a high-power diode laser array on a microchannel cooler

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyou; Jia, Yangtao; Cai, Wanshao; Tao, Chunhua; Zah, Chung-en; Liu, Xingsheng

    2018-03-01

    Due to thermal stress, each emitter in a semiconductor laser bar or array is vertically displaced along the p-n junction; the result is that each emitter is not in a line, called near-field nonlinearity. Near-field nonlinearity along a laser bar (also known as "SMILE" effect) degrades the laser beam brightness, which causes an adverse effect on optical coupling and beam shaping. A large SMILE value causes a large divergence angle after collimation and a wider line after collimation and focusing. We simulate the factors affecting the SMILE value of a high-power diode laser array on a microchannel cooler (MCC). According to the simulation results, we have fabricated a series of laser bars bonded on MCCs with lower SMILE value. After simulation and experiment analysis, we found the key factor to affect SMILE is the deformation of the thin MCC because of the distribution of strain and stress in it. We also decreased the SMILE value of 1-cm-wide full bar AuSn bonded on MCCs from 12 to 1 μm by balancing force on MCC to minimize the deformation.

  12. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  13. Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristov, Andrey I.; Kabashin, Andrei V., E-mail: kabashin@lp3.univ-mrs.fr; Zywietz, Urs

    2014-02-17

    By using methods of laser-induced transfer combined with nanoparticle lithography, we design and fabricate large-area gold nanoparticle-based metamaterial arrays exhibiting extreme Heaviside-like phase jumps in reflected light due to a strong diffractive coupling of localized plasmons. When employed in sensing schemes, these phase singularities provide the sensitivity of 5 × 10{sup 4} deg. of phase shift per refractive index unit change that is comparable with best values reported for plasmonic biosensors. The implementation of sensor platforms on the basis of such metamaterial arrays promises a drastic improvement of sensitivity and cost efficiency of plasmonic biosensing devices.

  14. MoonLIGHT: A USA-Italy lunar laser ranging retroreflector array for the 21st century

    NASA Astrophysics Data System (ADS)

    Martini, M.; Dell'Agnello, S.; Currie, D.; Delle Monache, G.; Vittori, R.; Chandler, J. F.; Cantone, C.; Boni, A.; Berardi, S.; Patrizi, G.; Maiello, M.; Garattini, M.; Lops, C.; March, R.; Bellettini, G.; Tauraso, R.; Intaglietta, N.; Tibuzzi, M.; Murphy, T. W.; Bianco, G.; Ciocci, E.

    2012-12-01

    Since the 1970s Lunar Laser Ranging (LLR) to the Apollo Cube Corner Retroreflector (CCR) arrays (developed by the University of Maryland, UMD) have supplied significant tests of General Relativity: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. LLR has also provided significant information on the composition and origin of the Moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests), in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100 mm diameter) unaffected by librations. In particular, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF) and created a new industry-standard test procedure (SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of CCRs in laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of retroreflector payloads under thermal conditions produced with a solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time payload movement to simulate satellite orientation on orbit with respect to solar illumination and laser interrogation beams. These capabilities provide: unique pre-launch performance validation of the space segment of LLR/SLR (Satellite Laser

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Control of the angular distribution of the radiation emitted by phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Kachurin, O. R.; Lebedev, F. V.; Napartovich, M. A.; Khlynov, M. E.

    1991-03-01

    A numerical investigation was made of the influence of the number and packing density of a linear array of periodically arranged coherent sources on the efficiency of redistributing the radiation power from the side lobes to the main lobe of the angular distribution of the emitted radiation by using a binary phase corrector mounted in the image-doubling plane. The results are given of experimental investigations of a new device for improving the radiation pattern of phase-locked laser arrays.

  16. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  17. Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.

    2014-03-01

    The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.

  18. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power.

    PubMed

    Rivoire, Kelley; Lin, Ziliang; Hatami, Fariba; Masselink, W Ted; Vucković, Jelena

    2009-12-07

    We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.

  19. Development of high sensitivity eight-element multiplexed fiber laser acoustic pressure hydrophone array and interrogation system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang

    2017-09-01

    Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.

  20. Low-threshold photonic-band-edge laser using iron-nail-shaped rod array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae-Hyuck; No, You-Shin; Hwang, Min-Soo

    2014-03-03

    We report the experimental demonstration of an optically pumped rod-type photonic-crystal band-edge laser. The structure consists of a 20 × 20 square lattice array of InGaAsP iron-nail-shaped rods. A single-mode lasing action is observed with a low threshold of ∼90 μW and a peak wavelength of 1451.5 nm at room temperature. Measurements of the polarization-resolved mode images and lasing wavelengths agree well with numerical simulations, which confirm that the observed lasing mode originates from the first Γ-point transverse-electric-like band-edge mode. We believe that this low-threshold band-edge laser will be useful for the practical implementation of nanolasers.

  1. Microgroove fabrication with excimer laser ablation techniques for optical fiber array alignment purposes

    NASA Astrophysics Data System (ADS)

    Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.

    2000-11-01

    Currently, an ever increasing need for bandwidth, compactness and efficiency characterizes the world of interconnect and data communication. This tendency has already led to serial links being gradually replaced by parallel optical interconnect solutions. However, as the maximum capacity for the latter will be reached in the near future, new approaches are required to meet demand. One possible option is to switch to 2D parallel implementations of fiber arrays. In this paper we present the fabrication of a 2D connector for coupling a 4x8 array of plastic optical fibers to RCLED or VCSEL arrays. The connector consists primarily of dedicated PMMA plates in which arrays of 8 precisely dimensioned grooves at a pitch of 250 micrometers are introduced. The trenches are each 127 micrometers deep and their width is optimized to allow fixation of plastic optical fibers. We used excimer laser ablation for prototype fabrication of these alignment microstructures. In a later stage, the plates can be replicated using standard molding techniques. The laser ablation technique is extremely well suited for rapid prototyping and proves to be a versatile process yielding high accuracy dimensioning and repeatability of features in a wide diversity of materials. The dependency of the performance in terms of quality of the trenches (bottom roughness) and wall angle on various parameters (wavelength, energy density, pulse frequency and substrate material) is discussed. The fabricated polymer sheets with grooves are used to hold optical fibers by means of a UV-curable adhesive. In a final phase, the plates are stacked and glued in order to realize the 2D-connector of plastic optical fibers for short distance optical interconnects.

  2. Compressing a confined DNA: from nano-channel to nano-cavity

    NASA Astrophysics Data System (ADS)

    Sakaue, Takahiro

    2018-06-01

    We analyze the behavior of a semiflexible polymer confined in nanochannel under compression in axial direction. Key to our discussion is the identification of two length scales; the correlation length ξ of concentration fluctuation and what we call the segregation length . These length scales, while degenerate in uncompressed state in nanochannel, generally split as upon compression, and the way they compete with the system size during the compression determines the crossover from quasi-1D nanochannel to quasi-0D nanocavity behaviors. For a flexible polymer, the story becomes very simple, which corresponds to a special limit of our description, but a much richer behavior is expected for a semiflexible polymer relevant to DNA in confined spaces. We also briefly discuss the dynamical properties of the compressed polymer.

  3. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE PAGES

    Li, Luozhou; Lu, Ming; Schroder, Tim; ...

    2015-01-28

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less

  4. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  5. GaInNAsSb/GaAs vertical cavity surface-emitting lasers (VCSELs): current challenges and techniques to realize multiple-wavelength laser arrays at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Gobet, Mathilde; Bae, Hopil P.; Sarmiento, Tomas; Harris, James S.

    2008-02-01

    Multiple-wavelength laser arrays at 1.55 μm are key components of wavelength division multiplexing (WDM) systems for increased bandwidth. Vertical cavity surface-emitting lasers (VCSELs) grown on GaAs substrates outperform their InP counterparts in several points. We summarize the current challenges to realize continuous-wave (CW) GaInNAsSb VCSELs on GaAs with 1.55 μm emission wavelength and explain the work in progress to realize CW GaInNAsSb VCSELs. Finally, we detail two techniques to realize GaInNAsSb multiple-wavelength VCSEL arrays at 1.55 μm. The first technique involves the incorporation of a photonic crystal into the upper mirror. Simulation results for GaAs-based VCSEL arrays at 1.55 μm are shown. The second technique uses non-uniform molecular beam epitaxy (MBE). We have successfully demonstrated 1x6 resonant cavity light-emitting diode arrays at 850 nm using this technique, with wavelength spacing of 0.4 nm between devices and present these results.

  6. Photonic crystal Fano resonances for realizing optical switches, lasers, and non-reciprocal elements

    NASA Astrophysics Data System (ADS)

    Bekele, Dagmawi A.; Yu, Yi; Hu, Hao; Ding, Yunhong; Sakanas, Aurimas; Ottaviano, Luisa; Semenova, Elizaveta; Oxenløwe, Leif K.; Yvind, Kresten; Mork, Jesper

    2017-08-01

    We present our work on photonic crystal membrane devices exploiting Fano resonance between a line-defect waveguide and a side coupled nanocavity. Experimental demonstration of fast and compact all-optical switches for wavelength-conversion is reported. It is shown how the use of an asymmetric structure in combination with cavity-enhanced nonlinearity can be used to realize non-reciprocal transmission at ultra-low power and with large bandwidth. A novel type of laser structure, denoted a Fano laser, is discussed in which one of the mirrors is based on a Fano resonance. Finally, the design, fabrication and characterization of grating couplers for efficient light coupling in and out of the indium phosphide photonic crystal platform is discussed.

  7. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  8. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1993-12-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. Concentrtion was on epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer involves creating a nonuniform substrate surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate temperature. Growth is investigated with the use of a patterned spacer (either a Ga or Si substrate) placed in-between the substrate and its heater. The temperature distribution on such wafers is used to guide our experiments. A reflectivity measurement apparatus that is capable of mapping a 2 in. wafer with a 100 microns diameter resolution was built for diagnosing our wafers. In this first six-month report, our calculations, the various experimental results, and a discussion on future directions are presented.

  9. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.

    PubMed

    Schuettler, M; Stiess, S; King, B V; Suaning, G J

    2005-03-01

    A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.

  10. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less

  11. Frequency control using a complex effective reflectivity in laterally coupled semiconductor laser arrays.

    PubMed

    Griffel, G; Marshall, W K; Gravé, I; Yariv, A; Nabiev, R

    1991-08-01

    Frequency selectivity of a novel type of multielement, multisection laterally coupled semiconductor laser array is studied using the round-trip method. It is found that such a structure should lead to a strong frequency selectivity owing to a periodic dependency of the threshold gain on the frequency. A gain-guided two-coupledcavity device was fabricated. The experimental results show excellent agreement with the theoretical prediction.

  12. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    NASA Astrophysics Data System (ADS)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  13. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  14. Phase-front measurements of an injection-locked AlGaAs laser-diode array

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Rall, Jonathan A. R.; Abshire, James B.

    1989-01-01

    The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach-Zehnder interferometer. Root-mean-square phase errors of 0.037 + or - 0.003 wave are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe's ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.

  15. Enhanced optical absorbance and fabrication of periodic arrays on nickel surface using nanosecond laser

    NASA Astrophysics Data System (ADS)

    Fu, Jinxiang; Liang, Hao; Zhang, Jingyuan; Wang, Yibo; Liu, Yannan; Zhang, Zhiyan; Lin, Xuechun

    2017-04-01

    A hundred-nanosecond pulsed laser was employed to structure the nickel surface. The effects of laser spatial filling interval and laser scanning speed on the optical absorbance capacity and morphologies on the nickel surface were experimentally investigated. The black nickel surface covered with dense micro/nanostructured broccoli-like clusters with strong light trapping capacity ranging from the UV to the near IR was produced at a high laser scanning speed up to v=100 mm/s. The absorbance of the black nickel is as high as 98% in the UV range of 200-400 nm, more than 97% in the visible spectrum, ranging from 400 to 800 nm, and over 90% in the IR between 800 and 2000 nm. In addition, when the nickel surface was irradiated in two-dimensional crossing scans by laser with different processing parameters, self-organized and shape-controllable structures of three-dimensional (3D) periodic arrays can be fabricated. Compared with ultrafast laser systems previously used for such processing, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. This nickel surface structured technique may be applicable in optoelectronics, batteries industry, solar/wave absorbers, and wettability materials.

  16. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.

    PubMed

    Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei

    2011-06-20

    We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

  17. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  18. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection

    NASA Astrophysics Data System (ADS)

    Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen

    2008-12-01

    A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.

  19. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.

    PubMed

    Liu, Xin; Lebedkin, Sergei; Besser, Heino; Pfleging, Wilhelm; Prinz, Stephan; Wissmann, Markus; Schwab, Patrick M; Nazarenko, Irina; Guttmann, Markus; Kappes, Manfred M; Lemmer, Uli

    2015-01-27

    Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.

  20. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  1. Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique

    PubMed Central

    Donnelly, Ryan F.; Majithiya, Rita; Singh, Thakur Raghu Raj; Morrow, Desmond I. J.; Garland, Martin J.; Demir, Yusuf K.; Migalska, Katarzyna; Ryan, Elizabeth; Gillen, David; Scott, Christopher J.; Woolfson, A. David

    2010-01-01

    Purpose Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries. Methods A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised. Results Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 μm and 900 μm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 μm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 μm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 μm into the skin. However, the entirety of the microneedle lengths was not inserted. Conclusion In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles. PMID:20490627

  2. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings

    NASA Astrophysics Data System (ADS)

    Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.

  3. Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation

    NASA Astrophysics Data System (ADS)

    Ghica, Corneliu; Nistor, Leona Cristina; Teodorescu, Valentin Serban; Maraloiu, Adrian; Vizireanu, Sorin; Scarisoreanu, Nae Doinel; Dinescu, Maria

    2011-03-01

    We have studied by transmission electron microscopy the microstructural effects induced by pulsed laser annealing in comparison with thermal treatments of RF plasma hydrogenated Si wafers aiming for further application in the smart-cut procedure. While thermal annealing mainly produces a slight decrease of the density of plasma-induced planar defects and an increase of the size and number of plasma-induced nanocavities in the Si matrix, pulsed laser annealing of RF plasma hydrogenated Si wafers with a 355 nm wavelength radiation results in both the healing of defects adjacent to the wafer surface and the formation of a well defined layer of nanometric cavities at a depth of 25-50 nm. In this way, a controlled fracture of single crystal layers of Si thinner than 50 nm is favored.

  4. NONLINEAR AND FIBER OPTICS: Phase locking of a laser array in the case of different types of multibeam intracavity interaction in nonlinear media

    NASA Astrophysics Data System (ADS)

    Bel'dyugin, Igor'M.; Alimin, D. D.; Zolotarev, M. V.

    1991-03-01

    A theoretical investigation is made of the phase locking of a laser array in the case of different types of multibeam intracavity interaction in nonlinear media. The conditions are found under which a long-range coupling of the "all with all" type is established between the lasers and also when only the nearest neighbors interact (short-range coupling). The influence of the number of lasers, frequency offsets of their resonators, and of the coupling coefficients on the phase-locking band is considered. Expressions are obtained for determination of the threshold values of the gain and of the frequency characteristics of cophasal and noncophasal operation of a laser array under long-range and short-range coupling conditions. A study is made of the influence of the parameters of a resonantly absorbing medium on phase locking of a set of lasers and it is shown that in the case of the optimal long-range coupling the phase-locking band is independent of the number of lasers.

  5. Controllable Terahertz Radiation from a Linear-Dipole Array Formed by a Two-Color Laser Filament in Air.

    PubMed

    Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie

    2016-12-09

    We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.

  6. Robust label-free biosensing using microdisk laser arrays with on-chip references.

    PubMed

    Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C

    2018-02-05

    Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.

  7. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  8. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  9. Target-in-the-loop high-power adaptive phase-locked fiber laser array using single-frequency dithering technique

    NASA Astrophysics Data System (ADS)

    Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.

    2011-11-01

    We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.

  10. Laser produced nanocavities in silica and sapphire: a parametric study

    NASA Astrophysics Data System (ADS)

    Hallo, L.; Bourgeade, A.; Travaillé, G.; Tikhonchuk, V. T.; Nkonga, B.; Breil, J.

    2008-05-01

    We present a model, that describes a sub-micron cavity formation in a transparent dielectric under a tight focusing of a ultra-short laser pulse. The model solves the full set of Maxwell's equations in the three-dimensional geometry along with non-linear propagation phenomenons. This allows us to initialize hydrodynamic simulations of the sub-micron cavity formation. Cavity characteristics, which depend on 3D energy release and non linear effects, have been investigated and compared with experimental results. For this work, we want to deeply acknowledge the numerical support provided by the CEA Centre de Calcul Recherche et Technologie, whose help guaranteed the achievement of this study.

  11. Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Gao, Zihe; Johnson, Matthew T.; Choquette, Kent D.

    2018-05-01

    Optically coupled semiconductor laser arrays are described by coupled rate equations. The coupled mode equations and carrier densities are included in the analysis, which inherently incorporate the carrier-induced nonlinearities including gain saturation and amplitude-phase coupling. We solve the steady-state coupled rate equations and consider the cavity frequency detuning and the individual laser pump rates as the experimentally controlled variables. We show that the carrier-induced nonlinearities play a critical role in the mode control, and we identify gain contrast induced by cavity frequency detuning as a unique mechanism for mode control. Photon-mediated energy transfer between cavities is also discussed. Parity-time symmetry and exceptional points in this system are studied. Unbroken parity-time symmetry can be achieved by judiciously combining cavity detuning and unequal pump rates, while broken symmetry lies on the boundary of the optical locking region. Exceptional points are identified at the intersection between broken symmetry and unbroken parity-time symmetry.

  12. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles

    PubMed Central

    2013-01-01

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518

  13. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles.

    PubMed

    Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander

    2013-09-03

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.

  14. Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities

    DOE PAGES

    Xia, Zhenyang; Song, Haomin; Kim, Munho; ...

    2017-07-07

    Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. Wemore » introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. As a result, these single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.« less

  15. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  16. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  17. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  18. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  19. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  20. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics. PMID:24435059

  1. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-17

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.

  2. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  3. Fabrication of microgrooves with excimer laser ablation techniques for plastic optical fiber array alignment purposes

    NASA Astrophysics Data System (ADS)

    Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Ottevaere, Heidi; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.

    2000-06-01

    Laser ablation is extremely well suited for rapid prototyping and proves to be a versatile technique delivering high accuracy dimensioning and repeatability of features in a wide diversity of materials. In this paper, we present laser ablation as a fabrication method for micro machining in of arrays consisting of precisely dimensioned U-grooves in dedicated polycarbonate and polymethylmetacrylate plates. The dependency of the performance on various parameters is discussed. The fabricated plates are used to hold optical fibers by means of a UV-curable adhesive. Stacking and gluing of the plates allows the assembly of a 2D connector of plastic optical fibers for short distance optical interconnects.

  4. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a

  5. Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonzon, C., E-mail: bonzonc@phys.ethz.ch; Benea Chelmus, I. C.; Ohtani, K.

    2014-04-21

    Our work presents a slot and a patch array antenna at the front facet of a 4.7 THz quantum cascade laser as extractor, decreasing the facet reflectivity down to 2.6%. The resulting output power increases by a factor 2 and the slope efficiency by a factor 4. The simulated and the measured far-fields are in good agreement.

  6. A Prospective Split-Face Study of the Picosecond Alexandrite Laser With Specialized Lens Array for Facial Photoaging in Chinese.

    PubMed

    Ge, Yiping; Guo, Lifang; Wu, Qiuju; Zhang, Mengli; Zeng, Rong; Lin, Tong

    2016-11-01

    A 755nm picosecond alexandrite laser with a diffractive lens array has been reported for the treatment of acne scar and photoaging with clinical ef cacy. In this study, we evaluated the application of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging in Chinese. Ten subjects with moderate facial photoaging were enrolled in a prospective, evaluator-blinded, open-label, and split-face trial to assess the ef cacy and safety of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging. Each subject received a series of four treatment sessions on the right side of the face at two-week intervals. The left side of the face served as the control side. Blinded evaluation of baseline, pre-treatment, and two-month follow-up visit was performed by two independent dermatologists on a 5-point global photoaging scale (GPS) and a 6/8-point Asian photographic scale (APS). Adverse events and discomfort associated with the treatment were also assessed. Signi cant improvement in photoaged tissue was observed on the treated side of the face, with a mean GPS score decrease from 2.67 to 1.44 at the two-month follow-up visit. A greater improvement in wrinkles was observed (2.78 vs 1.89; P less than 0.05) when com- pared to the improvement in pigmentation (2.67 vs 2.11; P less than 0.05). No changes were observed on the control side. Treatment results improved gradually throughout the treatment program and continued to the two-month follow up. In addition, skin tightening was perceived in all subjects, and shallower nasolabial folds were observed in 60% of the subjects on the treated side of face. Moderate pain and transient erythema were observed as the two main discomforts associated with the treatment. The 755nm picosecond alexandrite laser with a diffractive lens array is efficacious and safe for rejuvenation of photodamaged facial tissue in Chinese. J Drugs Dermatol. 2016;15(11):1390-1396..

  7. Gold nanoparticle array formation on dimpled Ta templates using pulsed laser-induced thin film dewetting.

    PubMed

    El-Sayed, Hany A; Horwood, Corie A; Owusu-Ansah, Ebenezer; Shi, Yujun J; Birss, Viola I

    2015-04-28

    Here we show that pulsed laser-induced dewetting (PLiD) of a thin Au metallic film on a nano-scale ordered dimpled tantalum (DT) surface results in the formation of a high quality Au nanoparticle (NP) array. In contrast to thermal dewetting, PLiD does not result in deformation of the substrate, even when the Au film is heated to above its melting point. PLiD causes local heating of only the metal film and thus thermal oxidation of the Ta substrate can be avoided, also because of the high vacuum (low pO2) environment employed. Therefore, this technique can potentially be used to fabricate NP arrays composed of high melting point metals, such as Pt, not previously possible using conventional thermal annealing methods. We also show that the Au NPs formed by PLiD are more spherical in shape than those formed by thermal dewetting, likely demonstrating a different dewetting mechanism in the two cases. As the metallic NPs formed on DT templates are electrochemically addressable, a longer-term objective of this work is to determine the effect of NP size and shape (formed by laser vs. thermal dewetting) on their electrocatalytic properties.

  8. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  9. Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiß, M.; Kapfinger, S.; Wixforth, A.

    2016-07-18

    A coupled quantum dot–nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a f{sub SAW} ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g{sup (2)}. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g{sup (2)}, demonstrating high fidelity regulation of the stream of single photonsmore » emitted by the system.« less

  10. Visible light-harvesting of TiO2 nanotubes array by pulsed laser deposited CdS

    NASA Astrophysics Data System (ADS)

    Bjelajac, Andjelika; Djokic, Veljko; Petrovic, Rada; Socol, Gabiel; Mihailescu, Ion N.; Florea, Ileana; Ersen, Ovidiu; Janackovic, Djordje

    2014-08-01

    Titanium dioxide (TiO2) nanotubes arrays, obtained by anodization technique and annealing, were decorated with CdS using pulsed laser deposition method. Their structural, morphological and chemical characterization was carried out by electron microscopy in scanning (SEM) and transmission (TEM) modes, combined with energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). It was demonstrated that the quantity of deposited CdS can be controlled by varying the number of laser pulses. The chemical mapping of the elements of interest was performed using the energy filtered mode of the electron microscope. The results showed that pulse laser deposition is an adequate technique for deposition of CdS inside and between 100 nm wide TiO2 nanotubes. The diffuse reflectance spectroscopy investigation of selected samples proved that the absorption edge of the prepared CdS/TiO2 nanocomposites is significantly extended to the visible range. The corresponding band gaps were determinated from the Tauc plot of transformed Kubelka-Munk function. The band gap reduction of TiO2 nanotubes by pulsed laser deposition of CdS was put in evidence.

  11. High channel count and high precision channel spacing multi-wavelength laser array for future PICs.

    PubMed

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H; Qiu, Bocang

    2014-12-09

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.

  12. Nonimaging applications for microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon

    2001-10-01

    In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.

  13. Engineering photonic and plasmonic light emission enhancement

    NASA Astrophysics Data System (ADS)

    Lawrence, Nathaniel

    Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated

  14. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  15. Thermo-optical vacuum testing of IRNSS laser retroreflector array qualification model

    NASA Astrophysics Data System (ADS)

    Porcelli, L.; Boni, A.; Ciocci, E.; Contessa, S.; Dell'Agnello, S.; Delle Monache, G.; Intaglietta, N.; Martini, M.; Mondaini, C.; Patrizi, G.; Salvatori, L.; Tibuzzi, M.; Lops, C.; Cantone, C.; Tuscano, P.; Maiello, M.; Venkateswaran, R.; Chakraborty, P.; Ramana Reddy, C. V.; Sriram, K. V.

    2017-09-01

    We describe the activities performed by SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and cube/microsat Characterization Facilities Laboratory) of INFN-LNF for the thermo-optical vacuum testing activity of a IRNSS (Indian Regional Navigation Satellite System) LRA (Laser Retroreflector Array), under contract for ISRO-LEOS. To our knowledge, this is the first publication on the characterization of the optical performance of an LRA operating at about 36,000 km altitude (typical of regional GNSS segments, namely QZSS, COMPASS-G) executed in fully representative, carefully lab-simulated space conditions. In particular, this is the only such publication concerning IRNSS. Since laser ranging to its altitude is more challenging than to GNSS altitudes (from about 19,100 km for GLONASS to about 23,200 km for Galileo), comparative measurements were long awaited by ILRS (International Laser Ranging Service) and we present measurements of the absolute laser return to ground stations of the ILRS in terms of lidar OCS (Optical Cross Section) at the IRNSS relevant value of velocity aberration, in turn derived from measurements of the full FFDP (Far Field Diffraction Pattern) over a very large range of velocity aberrations. These measurements were acquired: (i) on a full-size qualification model of a IRNSS CCR (Cube Corner Retroreflector) LRA that ISRO-LEOS provided to INFN-LNF; (ii) during the lab-simulation of a 1/4 orbit segment, in which the LRA CCRs are exposed to the perturbation of the sun heat at varying angles, from grazing incidence (90° with respect to the direction perpendicular to the plane of array), up to the perpendicular to the LRA, with a same time variation consistent with the actual space orbit. In this 1/4 orbit condition, the LRA experiences potentially large thermal degradations of the OCS, depending on the detailed thermal and mechanical design of the LRA. Since all GNSS constellations have different LRA designs or configurations, this is another

  16. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence

    NASA Astrophysics Data System (ADS)

    Cho, Chang-Hee; Aspetti, Carlos O.; Park, Joohee; Agarwal, Ritesh

    2013-04-01

    To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated, there are difficulties in integrating quantum structures with conventional electronics. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in `bulk-sized' silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.

  17. Optical transfer function of Starlette retroreflector array

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1975-01-01

    An optical transfer function was computed for the retroreflector array carried by the Starlette satellite (1975 10A). The range correction is given for extrapolating laser range measurements to the center of mass of the satellite. The gain function and active reflecting area of the array are computed for estimating laser-echo signal strengths.

  18. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clevenson, Hannah, E-mail: hannahac@mit.edu; Desjardins, Pierre; Gan, Xuetao

    2014-06-16

    We present high-sensitivity, multi-use optical gas sensors based on a one-dimensional photonic crystal cavity. These devices are implemented in versatile, flexible polymer materials which swell when in contact with a target gas, causing a measurable cavity length change. This change causes a shift in the cavity resonance, allowing precision measurements of gas concentration. We demonstrate suspended polymer nanocavity sensors and the recovery of sensors after the removal of stimulant gas from the system. With a measured quality factor exceeding 10{sup 4}, we show measurements of gas concentration as low as 600 parts per million (ppm) and an experimental sensitivity ofmore » 10 ppm; furthermore, we predict detection levels in the parts-per-billion range for a variety of gases.« less

  19. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  20. Optical transfer function of NTS-1 retroreflector array

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1974-01-01

    An optical transfer function was computed for the retroreflector array carried by the NTS-1 satellite. Range corrections are presented for extrapolating laser range measurements to the center of mass of the satellite. The gain function of the array was computed for use in estimating laser-echo signal strengths.

  1. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  2. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  3. Optical Characteristics of Vertical Cavity Surface Emitting Lasers and Two Dimensional Coherently Coupled Arrays.

    NASA Astrophysics Data System (ADS)

    Catchmark, Jeffrey Michael

    1995-01-01

    The following describes extensive experimental and theoretical research concerning the optical, electrical and thermal characteristics of GaAs/AlGaAs vertical cavity surface emitting lasers (VCSELs) and coherently coupled two dimensional VCSEL arrays grown by molecular beam epitaxy. The temperature and wavelength performance of VCSELs containing various epitaxial designs is discussed in detail. By employing a high barrier confinement spacer region and by blue shifting the optical gain with respect to the Fabry Perot transmission wavelength, greater than 150^circ rm C continuous wave operation was obtained. This is accomplished while maintaining a variation in the threshold current of only +/-0.93mA over a temperature range of 150^circrm C. This exceptional performance is achieved while attaining a minimum threshold current of approximately 4.3mA at 75^circrm C. In addition, the optical characteristics of multi-transverse mode VCSEL arrays are examined experimentally. A total of nine transverse modes have been identified and are found to couple coherently into distinct array modes. While operating in higher order transverse modes, a record 1.4W (pulsed) of optical power is obtained from a 15 x 15 VCSEL array. Array mode formation in coherently coupled VCSEL arrays is also examined theoretically. A numerical model is developed to describe the formation of supermodes in reflectivity modulated VCSEL arrays. Using this model, the effects of depth of reflectivity modulation, cavity length, window size and grid size on mode formation are explored. The array modes predicted by this model are in agreement with those observed experimentally. Analytic models will also be presented describing the effects of thermally induced waveguiding on the optical characteristics of VCSELs operating in the fundamental transverse mode. A thermal waveguide is found to have a significant effect on the spot size and radius of curvature of the phase of the fundamental optical mode. In addition

  4. Deterministic radiative coupling of two semiconductor quantum dots to the optical mode of a photonic crystal nanocavity.

    PubMed

    Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E

    2017-06-22

    A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.

  5. A Two-Dimensional Ruddlesden-Popper Perovskite Nanowire Laser Array based on Ultrafast Light-Harvesting Quantum Wells.

    PubMed

    Zhang, Haihua; Wu, Yishi; Liao, Qing; Zhang, Zhaoyi; Liu, Yanping; Gao, Qinggang; Liu, Peng; Li, Meili; Yao, Jiannian; Fu, Hongbing

    2018-06-25

    Miniaturized nanowire nanolasers of 3D perovskites feature a high gain coefficient; however, room-temperature optical gain and nanowire lasers from 2D layered perovskites have not been reported to date. A biomimetic approach is presented to construct an artificial ligh-harvesting system in mixed multiple quantum wells (QWs) of 2D-RPPs of (BA) 2 (FA) n-1 Pb n Br 3n+1 , achieving room-temperature ASE and nanowire (NW) lasing. Owing to the improvement of flexible and deformable characteristics provided by organic BA cation layers, high-density large-area NW laser arrays were fabricated with high photostability. Well-controlled dimensions and uniform geometries enabled 2D-RPPs NWs functioning as high-quality Fabry-Perot (FP) lasers with almost identical optical modes, high quality (Q) factor (ca. 1800), and similarly low lasing thresholds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  7. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    PubMed Central

    Siuzdak, Katarzyna; Atanasov, Peter A; Bittencourt, Carla; Dikovska, Anna; Nedyalkov, Nikolay N; Śliwiński, Gerard

    2014-01-01

    Summary A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs) which have a size distribution (80 ± 42 nm) and self-organization characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability. PMID:25551038

  8. One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry

    NASA Technical Reports Server (NTRS)

    Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph

    1992-01-01

    Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.

  9. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  10. A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen

    2017-01-01

    A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.

  11. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  12. Monolithically Integrated High-β Nanowire Lasers on Silicon.

    PubMed

    Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J

    2016-01-13

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.

  13. Possibilities of improving the performance of an autonomous cw chemical DF laser by replacing the slot nozzles by the ramp ones in the nozzle array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkin, A S; Gurov, L V; Kurdyukov, M V

    2011-08-31

    The results of a comparative numerical study of the performance of an autonomous cw chemical DF laser are obtained by simulating the processes in the nozzles and laser cavity where several configurations of slot and ramp nozzle arrays are employed. Three-dimensional Navier-Stokes equations solved with the Ansys CFX software are used to describe the reacting multicomponent flow in the nozzles and laser cavity. To investigate lasing characteristics, a supplementary code is developed and is used to calculate the radiation intensity in the Fabry-Perot resonator, taking into account its nonuniform distribution along the aperture width and height. It is shown thatmore » the use of the nozzle array consisting of ramp nozzles, which, in contrast to the slot nozzles, provide enhanced mixing of the reactants makes it possible to improve the laser performance in the case of a high-pressure (more than 15 Torr) active medium. (control of radiation parameters)« less

  14. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity.

    PubMed

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2014-05-23

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access.

  15. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity

    PubMed Central

    SUMIKURA, HISASHI; KURAMOCHI, EIICHI; TANIYAMA, HIDEAKI; NOTOMI, MASAYA

    2014-01-01

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access. PMID:24853336

  16. Efficient generation and transportation of energetic electrons in a carbon nanotube array target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Jiang, Gang; Wu, Weidong; Wang, Chaoyang; Gu, Yuqiu; Tang, Yongjian

    2010-01-01

    Laser-driven energetic electron propagation in a carbon nanotube-array target is investigated using two-dimensional particle-in-cell simulations. Energetic electrons are efficiently generated when the array is irradiated by a short intense laser pulse. Confined and guided transportation of energetic electrons in the array is achieved by exploiting strong transient electromagnetic fields created at the wall surfaces of nanotubes. The underlying mechanisms are discussed in detail. Our investigation shows that the laser energy can be transferred more effectively to the target electrons in the array than that of in the flat foil due to the hole structures in the array.

  17. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  18. Health monitoring of carbon cantilever using femtosecond laser inscribed FBG array in gradient-index CYTOP polymer fibre

    NASA Astrophysics Data System (ADS)

    Theodosiou, Antreas; Kalli, Kyriacos; Komodromos, Michael

    2017-04-01

    We report on the femtosecond laser inscription of a fibre Bragg grating array in multimode, gradient-index, CYTOP polymer optical fibre and its demonstration as a quasi-distributed sensor for cantilever health monitoring measurements. We exploit the key advantage of polymer optical fibres, having a significantly lower Young's modulus compared with silica fibres, for vibration measurements. We also modify the typical multi-mode Bragg grating spectrum through control of the femtosecond laser inscription process, thereby producing gratings having single peak wavelength spectra. The sensor array is used to recover the time-dependent, wavelength response from each Bragg grating sensor and extract the mode shape of the beam. The mode shapes of the beam were used to observe "damage" introduced to the cantilever by adding masses to its surface; adjusting the level of damage by using different weights and placing them at different point across the beam. We show that health monitoring measurements are feasible with polymer based fibre Bragg gratings. The accurate and rapid detection of damage points on structural beams and the damage level is an important parameter for improved maintenance and servicing of beams under load and for the prevention of long-term damage.

  19. An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.

    PubMed

    Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong

    2010-10-11

    Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.

  20. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  1. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.

    PubMed

    Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu

    2010-08-30

    To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

  2. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  3. Fabrication of microlens array and bifocal microlens using the methods of laser ablation and solvent reflow

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Chian; Ho, Jeng-Rong

    2015-12-01

    Based on the techniques of laser microdrilling and solvent reflow, this study reports on a straightforward approach for fabricating plastic microlens arrays (MLAs). First, we use the ArF excimer laser to drill microholes on a polymethylmethacrylate plate for defining the lens number, initial depth, and diameter. The propylene glycol monomethyl ether acetate solvent is then employed to regulate the surface profile that leads to a resulting negative (concave) MLA. The corresponding positive (convex), polydimethyl-siloxane MLA is obtained by the soft-replica-molding technique. Through varying the pattern size and period on the mask and the light intensity for laser drilling and regulating the solvent in the reflow process, we exhibit the feasibility of making MLAs with various sizes and shapes. By modifying the laser ablation step to drill two microholes with different diameters and depths at two levels, we fabricate a bifocal microlens. The obtained microlenses have excellent surface and optical properties: surface roughness down to several nanometers and focal lengths varying from hundreds to thousands of micrometers. This approach is flexible for constructing microlenses with various sizes and shapes and can fabricate MLAs with a high fill factor.

  4. 40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Hui; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Sato, Tomonari; Kawaguchi, Yoshihiro; Notomi, Masaya; Matsuo, Shinji

    2011-08-01

    CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.

  5. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  6. Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array

    PubMed Central

    Wu, Jianglai; Tang, Anson H. L.; Mok, Aaron T. Y.; Yan, Wenwei; Chan, Godfrey C. F.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2017-01-01

    Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged. PMID:28966855

  7. Precision Laser Annealing of Focal Plane Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing windowmore » over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.« less

  8. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water.

    PubMed

    Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric

    2008-07-01

    We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.

  9. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption.

    PubMed

    Matsuo, Shinji; Shinya, Akihiko; Chen, Chin-Hui; Nozaki, Kengo; Sato, Tomonari; Kawaguchi, Yoshihiro; Taniyama, Hideaki; Notomi, Masaya

    2011-01-31

    We have demonstrated an ultracompact buried heterostructure photonic crystal (PhC) laser, consisting of an InGaAsP-based active region (5.0 x 0.3 x 0.15 μm3) buried in an InP layer. By employing a buried heterostructure with an InP layer, we can greatly improve thermal resistance and carrier confinement. We therefore achieved a low threshold input power of 6.8 μW and a maximum output power in the output waveguide of -10.3 dBm by optical pumping. The output light is effectively coupled to the output waveguide with a high external differential quantum efficiency of 53%. We observed a clear eye opening for a 20-Gbit/s NRZ signal modulation with an absorbed input power of 175.2 μW, resulting in an energy cost of 8.76 fJ/bit. This is the smallest reported energy cost for any type of semiconductor laser.

  10. Visible-wavelength semiconductor lasers and arrays

    DOEpatents

    Schneider, Jr., Richard P.; Crawford, Mary H.

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  11. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.

    2015-02-09

    Five, 8.36 μm-emitting quantum-cascade lasers (QCLs) have been monolithically phase-locked in the in-phase array mode via resonant leaky-wave coupling. The structure is fabricated by etch and regrowth which provides large index steps (Δn = 0.10) between antiguided-array elements and interelement regions. Such high index contrast photonic-crystal (PC) lasers have more than an order of magnitude higher index contrast than PC-distributed feedback lasers previously used for coherent beam combining in QCLs. Absorption loss to metal layers inserted in the interelement regions provides a wide (∼1.0 μm) range in interelement width over which the resonant in-phase mode is strongly favored to lase. Room-temperature, in-phase-mode operation withmore » ∼2.2 kA/cm{sup 2} threshold-current density is obtained from 105 μm-wide aperture devices. The far-field beam pattern has lobewidths 1.65× diffraction limit (D.L.) and 82% of the light in the main lobe, up to 1.8× threshold. Peak pulsed near-D.L. power of 5.5 W is obtained, with 4.5 W emitted in the main lobe. Means of how to increase the device internal efficiency are discussed.« less

  12. Laser photovoltaic power system synergy for SEI applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  13. Design and fabrication of an elliptical micro-lens array with grating for laser safety

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.

    2015-10-01

    With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.

  14. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less

  15. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    PubMed

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  16. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  17. Reliability of high-power QCW arrays

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Junghans, Jeremy; Remley, Jennifer; Schnurbusch, Don; Stephens, Ed

    2010-02-01

    Northrop Grumman Cutting Edge Optronics has developed a family of arrays for high-power QCW operation. These arrays are built using CTE-matched heat sinks and hard solder in order to maximize the reliability of the devices. A summary of a recent life test is presented in order to quantify the reliability of QCW arrays and associated laser gain modules. A statistical analysis of the raw lifetime data is presented in order to quantify the data in such a way that is useful for laser system designers. The life tests demonstrate the high level of reliability of these arrays in a number of operating regimes. For single-bar arrays, a MTTF of 19.8 billion shots is predicted. For four-bar samples, a MTTF of 14.6 billion shots is predicted. In addition, data representing a large pump source is analyzed and shown to have an expected lifetime of 13.5 billion shots. This corresponds to an expected operational lifetime of greater than ten thousand hours at repetition rates less than 370 Hz.

  18. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through

  19. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    PubMed

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  20. Online detecting system of roller wear based on laser-linear array CCD technology

    NASA Astrophysics Data System (ADS)

    Guo, Yuan

    2010-10-01

    Roller is an important metallurgy tool in the rolling mill. And the surface of a roller affects the quantity of the rolling product directly. After using a period of time, roller must be repaired or replaced. Examining the profile of a working roller between the intervals of rolling is called online detecting for roller wear. The study of online detecting roller wear is very important for selecting the grinding time in reason, reducing the exchanging times of rollers, improving the quality of the product and realizing online grinding rollers. By applying the laser-linear array CCD detective technology, a method for online non-touch detecting roller wear was brought forward. The principle, composition and the operation process of the linear array CCD detecting system were expatiated. And an error compensation algorithm is exactly calculated to offset the shift of the roller axis in this measurement system. So the stability and the accuracy were improved remarkably. The experiment proves that the accuracy of the detecting system reaches to the demand of practical production process. It can provide a new method of high speed and high accuracy online detecting for roller wear.

  1. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukova, Elena S., E-mail: zhukovaelenka@gmail.com; Gorshunov, Boris P.; 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart

    2014-06-14

    Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ε{sup ′}(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from severalmore » wavenumbers up to ν = 7000 cm{sup −1}, at temperatures 5–300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ε{sup ′}(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν{sub 1}, ν{sub 2}, and ν{sub 3} of the H{sub 2}O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm{sup −1} reveal a rich set of highly anisotropic features in the low-energy response of H{sub 2}O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ∼90 cm{sup −1} and ∼160 cm{sup −1}, several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400–500 cm{sup −1}) and translational (150–200 cm{sup −1}) vibrations of water-I molecule that is weakly coupled to the nano-cavity “walls.” A model is presented that explains the “fine structure” of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six

  2. Optical and infrared transfer function of the Lageos retroreflector array

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1978-01-01

    The transfer function of the retroreflector array carried by the LAGEOS satellite (1976 39A) was computed at three wavelengths: 5230, 6943, and 106000 A. The range correction is given for extrapolating laser range measurements to the center of gravity of the satellite. The reflectivity of the array was calculated for estimating laser-echo signal strengths.

  3. Large depth high-precision FMCW tomography using a distributed feedback laser array

    NASA Astrophysics Data System (ADS)

    DiLazaro, Thomas; Nehmetallah, George

    2018-02-01

    Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.

  4. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  5. A linear photodiode array employed in a short range laser triangulation obstacle avoidance sensor. M.S. Thesis; [Martian roving vehicle sensor

    NASA Technical Reports Server (NTRS)

    Odenthal, J. P.

    1980-01-01

    An opto-electronic receiver incorporating a multi-element linear photodiode array as a component of a laser-triangulation rangefinder was developed as an obstacle avoidance sensor for a Martian roving vehicle. The detector can resolve the angle of laser return in 1.5 deg increments within a field of view of 30 deg and a range of five meters. A second receiver with a 1024 elements over 60 deg and a 3 meter range is also documented. Design criteria, circuit operation, schematics, experimental results and calibration procedures are discussed.

  6. Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Yang, Clayton S.-C.; Jin, Feng; Jia, Ken; Brown, EiEi; Hömmerich, Uwe; Jia, Yingqing; Trivedi, Sudhir; Wijewarnasuriya, Priyalal; Decuir, Eric; Samuels, Alan C.

    2016-09-01

    Recently, a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing ( 1-5 second) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the longwave infrarμed region (LWIR, 5.6 to 10 μm) has been developed. Similar to the conventional Ultraviolet (UV)-Visible (Vis) LIBS, a broad band emission spectrum of condensed phase samples covering the entire 5.6 to 10 μm region can be acquired from just a single laser-induced micro-plasma or averaging a few single laser-induced micro-plasmas. This setup has enabled probing samples "as is" without the need for extensive sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement. A Martian regolith simulant (JSC Mars-1A) was studied with this novel Vis + LWIR LIBS array system. A broad SiO2 vibrational emission feature around 9.5 μm and multiple strong emission features between 6.5 to 8 μm can be clearly identified. The 6.5 to 8 μm features are possibly from biological impurities of the simulant. JSC Mars-1A samples with organic methyl salicylate (MeS, wintergreen oil) and Dimethyl methyl-phosphonate (DMMP) residues were also probed using the LWIR LIBS array system. Both molecular spectral signature around 6.5 μm and 9.5 μm of Martian regolith simulant and MeS and DMMP molecular signature emissions, such as Aromatic CC stretching band at 7.5 μm, C-CH3O asymmetric deformation at 7.6 μm, and P=O stretching band at 7.9 μm, are clearly observed from the LIBS emission spectra in the LWIR region.

  7. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less

  8. A digital optical phase-locked loop for diode lasers based on field programmable gate array.

    PubMed

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  9. Open-path spectroscopic methane detection using a broadband monolithic distributed feedback-quantum cascade laser array.

    PubMed

    Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain

    2017-04-10

    Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.

  10. Interface module for transverse energy input to dye laser modules

    DOEpatents

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  11. Generation of Hermite-Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser.

    PubMed

    Kong, Weipeng; Sugita, Atsushi; Taira, Takunori

    2012-07-01

    We have demonstrated high-order Hermite-Gaussian (HG) mode generation based on 2D gain distribution control edge-pumped, composite all-ceramic Yb:YAG/YAG microchip lasers using a V-type cavity. Several hundred milliwatts to several watts HG(mn) modes are achieved. We also generated different kinds of vortex arrays directly from the oscillator with the same power level. In addition, a more than 7 W doughnut-shape mode can be generated in the same cavity.

  12. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Cheol; Xue, Weiqi; Piels, Molly; Zibar, Darko; Mørk, Jesper; Semenova, Elizaveta; Chung, Il-Sug

    2016-12-01

    For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.

  13. Analysis of unresolved transition arrays in XUV spectral region from highly charged lead ions produced by subnanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2017-02-01

    Soft x-ray and extreme ultraviolet (XUV) spectra from lead (Pb, Z=82) laser-produced plasmas (LPPs) were measured in the 1.0-7.0 nm wavelength region employing a 150-ps, 1064-nm Nd:YAG laser with focused power densities in the range from 3.1×1013 W/cm2 to 1.4×1014 W/cm2. The flexible atomic code (FAC) and the Cowan's suite of atomic structure codes were applied to compute and explain the radiation properties of the lead spectra observed. The most prominent structure in the spectra is a broad double peak, which is produced by Δn=0, n=4-4 and Δn=1, n=4-5 transition arrays emitted from highly charged lead ions. The emission characteristics of Δn=1, n=4-5 transitions were investigated by the use of the unresolved transition arrays (UTAs) model. Numerous new spectral features generated by Δn=1, n=4-5 transitions in ions from Pb21+ to Pb45+ are discerned with the aid of the results from present computations as well as consideration of previous theoretical predictions and experimental data.

  14. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-03-01

    A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.

  15. Analyses of absorption distribution of a rubidium cell side-pumped by a Laser-Diode-Array (LDA)

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Juhong; Rong, Kepeng; Wang, Shunyan; Cai, He; An, Guofei; Zhang, Wei; Yu, Qiang; Wu, Peng; Wang, Hongyuan; Wang, You

    2018-01-01

    A diode-pumped alkali laser (DPAL) has been regarded as one of the most potential candidates to achieve high power performances of next generation. In this paper, we investigate the physical properties of a rubidium cell side-pumped by a Laser-Diode-Array (LDA) in this study. As the saturated concentration of a gain medium inside a vapor cell is extremely sensitive to the temperature, the populations of every energy-level of the atomic alkali are strongly relying on the vapor temperature. Thus, the absorption characteristics of a DPAL are mainly dominated by the temperature distribution. In this paper, the temperature, absorption, and lasing distributions in the cross-section of a rubidium cell side-pumped by a LDA are obtained by means of a complicated mathematic procedure. Based on the original end-pumped mode we constructed before, a novel one-direction side-pumped theoretical mode has been established to explore the distribution properties in the transverse section of a rubidium vapor cell by combining the procedures of heat transfer and laser kinetics together. It has been thought the results might be helpful for design of a side-pumped configuration in a high-powered DPAL.

  16. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    NASA Astrophysics Data System (ADS)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  17. Electrode array for neural stimulation

    DOEpatents

    Wessendorf, Kurt O [Albuquerque, NM; Okandan, Murat [Edgewood, NM; Stein, David J [Albuquerque, NM; Yang, Pin [Albuquerque, NM; Cesarano, III, Joseph; Dellinger, Jennifer [Albuquerque, NM

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  18. Target-based coherent beam combining of an optical phased array fed by a broadband laser source

    NASA Astrophysics Data System (ADS)

    Hyde, Milo W., IV; McCrae, Jack E.; Tyler, Glenn A.

    2017-11-01

    The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.

  19. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  20. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit.

    PubMed

    Liu, Renming; Zhou, Zhang-Kai; Yu, Yi-Cong; Zhang, Tengwei; Wang, Hao; Liu, Guanghui; Wei, Yuming; Chen, Huanjun; Wang, Xue-Hua

    2017-06-09

    Reaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods. In such hybrid nanosystems, both the ultrasmall mode volume of ∼71  nm^{3} and the ultrashort interaction distance of less than 0.9 nm make the coupling coefficient between a single J-aggregate exciton and the cuboid nanorod as high as ∼41.6  meV, enabling strong light-matter interactions to be achieved at the quantum optics limit in single open plasmonic nanocavities.

  1. Nanocavity formation processes in MgO( 1 0 0 ) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    NASA Astrophysics Data System (ADS)

    van Veen, A.; van Huis, M. A.; Fedorov, A. V.; Schut, H.; Labohm, F.; Kooi, B. J.; De Hosson, J. Th. M.

    2002-05-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.

  2. Visible-wavelength semiconductor lasers and arrays

    DOEpatents

    Schneider, R.P. Jr.; Crawford, M.H.

    1996-09-17

    The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1{lambda}) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%. 5 figs.

  3. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  4. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Pena, Ana; Wang, Zengbo; Whitehead, David; Li, Lin

    2010-11-01

    A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.

  5. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  6. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.

    2012-09-01

    Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.

  7. Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching.

    PubMed

    Zhang, F; Wang, C; Yin, K; Dong, X R; Song, Y X; Tian, Y X; Duan, J A

    2018-02-05

    In this study, a high-efficiency single-pulsed femtosecond laser assisted with chemical wet etching method has been proposed to obtain large-area concave microlens array (MLA). The quasi-periodic MLA consisting of about two million microlenses with tunable diameter and sag height by adjusting laser scanning speed and etching time is uniformly manufactured on fused silica and sapphire within 30 minutes. Moreover, the fabricated MLA behaves excellent optical focusing and imaging performance, which could be used to sense the change of the liquid refractive index (RI). In addition, it is demonstrated that small period and high RI of MLA could acquire high sensitivity and broad dynamic measurement range, respectively. Furthermore, the theoretical diffraction efficiency is calculated by the finite domain time difference (FDTD) method, which is in good agreement with the experimental results.

  8. Target-in-the-loop phasing of a fiber laser array fed by a linewidth-broadened master oscillator

    NASA Astrophysics Data System (ADS)

    Hyde, Milo W.; Tyler, Glenn A.; Rosado Garcia, Carlos

    2017-05-01

    In a recent paper [J. Opt. Soc. Am. A 33, 1931-1937 (2016)], the target-in-the-loop (TIL) phasing of an RF-modulated or multi-phase-dithered fiber laser array, fed by a linewidth-broadened master oscillator (MO) source, was investigated. It was found that TIL phasing was possible even on a target with scattering features separated by more than the MO's coherence length as long as the received, backscattered irradiance changed with the array's modulation or phase dither. To simplify the problem and gain insight into how temporal coherence affects TIL phasing, speckle and atmospheric turbulence were omitted from the analysis. Here, the scenario analyzed in the prior work is generalized by including speckle and turbulence. First, the key analytical result from the prior paper is reviewed. Simulations, including speckle and turbulence, are then performed to test whether the conclusions derived from that result hold under more realistic conditions.

  9. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  10. Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency.

    PubMed

    Lachinova, Svetlana L; Vorontsov, Mikhail A

    2008-08-01

    We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.

  11. High-Reliability Pump Module for Non-Planar Ring Oscillator Laser

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak

    2007-01-01

    We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.

  12. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    PubMed

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  14. Dual Q-switched laser outputs from a single lasing medium using an intracavity MEMS micromirror array.

    PubMed

    Bauer, Ralf; Lubeigt, Walter; Uttamchandani, Deepak

    2012-09-01

    An intracavity array of individually controlled microelectromechanical system scanning micromirrors was used to actively Q-switch a single side-pumped Nd:YAG gain medium. Two equal power independent laser outputs were simultaneously obtained by separate actuation of two adjacent micromirrors with a combined average output power of 125 mW. Pulse durations of 28 ns FWHM at 8.7 kHz repetition frequency and 34 ns FWHM at 7.9 kHz repetition frequency were observed for the two output beams with beam quality factors M2 of 1.2 and 1.1 and peak powers of 253 W and 232 W, respectively.

  15. High-power laser diodes at various wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuel, M.A.

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  16. Interface module for transverse energy input to dye laser modules

    DOEpatents

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  17. Laser micromachining of optical devices

    NASA Astrophysics Data System (ADS)

    Kopitkovas, Giedrius; Lippert, Thomas; David, Christian; Sulcas, Rokas; Hobley, Jonathan; Wokaun, Alexander J.; Gobrecht, Jens

    2004-10-01

    The combination of a gray tone phase mask with a laser assisted wet etching process was applied to fabricate complex microstructures in UV transparent dielectric materials. This one-step method allows the generation of arrays of plano-convex and Fresnel micro-lenses using a conventional XeCl excimer laser and an absorbing liquid, which is in contact with the UV transparent material. An array of plano-convex micro-lenses was tested as beam homogenizer for a high power XeCl excimer and ps Nd:YAG laser. The roughness of the etched features varies from several μm to 10 nm, depending on the laser fluence and concentration of the dye in the organic liquid. The etching process can be divided into several etching mechanisms which vary with laser fluence.

  18. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  19. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  20. Metal-optic and Plasmonic Semiconductor-based Nanolasers

    DTIC Science & Technology

    2012-05-07

    provides a means to integrate laser sources for silicon photonics technology. Using wafer bonding techniques, the metal- clad nanocavity can be integrated...SUPPLEMENTARY NOTES 14. ABSTRACT Over the past few decades, semiconductor lasers have relentlessly followed the path towards miniaturization...Smaller lasers are more energy e cient, are cheaper to make, and open up new applications in sensing and displays, among many other things. Yet, up until

  1. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  2. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  3. Solar-pumped laser for free space power transmission

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1989-01-01

    Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.

  4. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.

    PubMed

    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Balgarkashi, Akshay; Huffaker, Diana L

    2017-09-13

    Semiconductor nanowire lasers are considered promising ultracompact and energy-efficient light sources in the field of nanophotonics. Although the integration of nanowire lasers onto silicon photonic platforms is an innovative path toward chip-scale optical communications and photonic integrated circuits, operating nanowire lasers at telecom-wavelengths remains challenging. Here, we report on InGaAs nanowire array lasers on a silicon-on-insulator platform operating up to 1440 nm at room temperature. Bottom-up photonic crystal nanobeam cavities are formed by growing nanowires as ordered arrays using selective-area epitaxy, and single-mode lasing by optical pumping is demonstrated. We also show that arrays of nanobeam lasers with individually tunable wavelengths can be integrated on a single chip by the simple adjustment of the lithographically defined growth pattern. These results exemplify a practical approach toward nanowire lasers for silicon photonics.

  5. Oxide-confined 2D VCSEL arrays for high-density inter/intra-chip interconnects

    NASA Astrophysics Data System (ADS)

    King, Roger; Michalzik, Rainer; Jung, Christian; Grabherr, Martin; Eberhard, Franz; Jaeger, Roland; Schnitzer, Peter; Ebeling, Karl J.

    1998-04-01

    We have designed and fabricated 4 X 8 vertical-cavity surface-emitting laser (VCSEL) arrays intended to be used as transmitters in short-distance parallel optical interconnects. In order to meet the requirements of 2D, high-speed optical links, each of the 32 laser diodes is supplied with two individual top contacts. The metallization scheme allows flip-chip mounting of the array modules junction-side down on silicon complementary metal oxide semiconductor (CMOS) chips. The optical and electrical characteristics across the arrays with device pitch of 250 micrometers are quite homogeneous. Arrays with 3 micrometers , 6 micrometers and 10 micrometers active diameter lasers have been investigated. The small devices show threshold currents of 600 (mu) A, single-mode output powers as high as 3 mW and maximum wavelength deviations of only 3 nm. The driving characteristics of all arrays are fully compatible to advanced 3.3 V CMOS technology. Using these arrays, we have measured small-signal modulation bandwidths exceeding 10 GHz and transmitted pseudo random data at 8 Gbit/s channel over 500 m graded index multimode fiber. This corresponds to a data transmission rate of 256 Gbit/s per array of 1 X 2 mm2 footprint area.

  6. Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy

    PubMed Central

    2015-01-01

    By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156

  7. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  8. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  9. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    NASA Astrophysics Data System (ADS)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  10. High Energy 2-Micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.

  11. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    DTIC Science & Technology

    2015-11-25

    ion -trap array based on two crossed photo-ionization laser beams . With the use of a continuous flux of pre-cooled neutral...push laser Atomic beam Dierential pumping tube Push laser 2D-MOT 50 K Shield 4 K Shield 4 K stage Trap chip MOT laser Ion To ion pump 5s2 1S0 461...conducted a series of Ramsey experiments on a single trapped ion in the presence and absence of neu- tral atom flux as well as each of the PI laser

  12. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  13. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOEpatents

    Vertes, Akos; Walker, Bennett N.

    2013-09-10

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  14. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOEpatents

    Vertes, Akos; Walker, Bennett N

    2015-04-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  15. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOEpatents

    Vertes, Akos [Reston, VA; Walker, Bennett N [Washington, DC

    2012-02-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  16. Laser principles.

    PubMed

    Bogdan Allemann, Inja; Kaufman, Joely

    2011-01-01

    Since the construction of the first laser in the 1960s, the role that lasers play in various medical specialities, including dermatology, has steadily increased. However, within the last 2 decades, the technological advances and the use of lasers in the field of dermatology have virtually exploded. Many treatments have only become possible with the use of lasers. Especially in aesthetic medicine, lasers are an essential tool in the treatment armamentarium. Due to better research and understanding of the physics of light and skin, there is now a wide and increasing array of different lasers and devices to choose from. The proper laser selection for each indication and treatment requires a profound understanding of laser physics and the basic laser principles. Understanding these principles will allow the laser operator to obtain better results and help avoid complications. This chapter will give an in-depth overview of the physical principles relevant in cutaneous laser surgery. Copyright © 2011 S. Karger AG, Basel.

  17. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Jelanie; Matuszeski, Adam

    2011-01-01

    Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total

  18. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    NASA Astrophysics Data System (ADS)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  19. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn; Li, Hongyin

    2016-05-15

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  20. Laser technology for high precision satellite tracking

    NASA Technical Reports Server (NTRS)

    Plotkin, H. H.

    1974-01-01

    Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.

  1. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  2. Lithographic fine-tuning of vertical cavity surface emitting laser-pumped two-dimensional photonic crystal lasers.

    PubMed

    Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel

    2002-01-01

    Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.

  3. III-Nitride Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that

  4. 780nm-range VCSEL array for laser printer system and other applications at Ricoh

    NASA Astrophysics Data System (ADS)

    Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi

    2016-03-01

    A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.

  5. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  6. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  7. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array

    PubMed Central

    Yoo, Je-Min; Negi, Sandeep; Tathireddy, Prashant; Solzbacher, Florian; Song, Jong-In; Rieth, Loren W.

    2013-01-01

    Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication. PMID:23458659

  8. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shiftmore » relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.« less

  9. Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable Quantum Cascade Laser (QCL) based microscope.

    PubMed

    Bassan, Paul; Weida, Miles J; Rowlette, Jeremy; Gardner, Peter

    2014-08-21

    Chemical imaging in the field of vibrational spectroscopy is developing into a promising tool to complement digital histopathology. Applications include screening of biopsy tissue via automated recognition of tissue/cell type and disease state based on the chemical information from the spectrum. For integration into clinical practice, data acquisition needs to be speeded up to implement a rack based system where specimens are rapidly imaged to compete with current visible scanners where 100's of slides can be scanned overnight. Current Fourier transform infrared (FTIR) imaging with focal plane array (FPA) detectors are currently the state-of-the-art instrumentation for infrared absorption chemical imaging, however recent development in broadly tunable lasers in the mid-IR range is considered the most promising potential candidate for next generation microscopes. In this paper we test a prototype quantum cascade laser (QCL) based spectral imaging microscope with a focus on discrete frequency chemical imaging. We demonstrate how a protein chemical image of the amide I band (1655 cm(-1)) of a 2 × 2.4 cm(2) breast tissue microarray (TMA) containing over 200 cores can be measured in 9 min. This result indicates that applications requiring chemical images from a few key wavelengths would be ideally served by laser-based microscopes.

  10. Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength

    NASA Astrophysics Data System (ADS)

    Tsuji, Hidenobu; Imaki, Masaharu; Kotake, Nobuki; Hirai, Akihito; Nakaji, Masaharu; Kameyama, Shumpei

    2017-03-01

    We demonstrate a range imaging pulsed laser sensor with two-dimensional scanning of a transmitted beam and a scanless receiver using a high-aspect avalanche photodiode (APD) array for the eye-safe wavelength. The system achieves a high frame rate and long-range imaging with a relatively simple sensor configuration. We developed a high-aspect APD array for the wavelength of 1.5 μm, a receiver integrated circuit, and a range and intensity detector. By combining these devices, we realized 160×120 pixels range imaging with a frame rate of 8 Hz at a distance of about 50 m.

  11. Tri-channel single-mode terahertz quantum cascade laser.

    PubMed

    Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo

    2014-12-01

    We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.

  12. Delamination Detection Using Guided Wave Phased Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  13. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities.

    PubMed

    Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya

    2013-05-20

    We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.

  14. Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

    DOE PAGES

    Halavanau, A.; Qiang, G.; Ha, G.; ...

    2017-10-26

    A transversely inhomogeneous laser distribution on the photocathode surface generally produces electron beams with degraded beam quality. In this paper, we explore the use of microlens arrays to dramatically improve the transverse uniformity of an ultraviolet drive-laser pulse used in a photoinjector. Here, we also demonstrate a capability of microlens arrays to generate transversely modulated electron beams and present an application of such a feature to diagnose the properties of a magnetized beam.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Phase locking of stimulated emission from arrays of stripe GaAIAs/GaAs lasers using active directional couplers

    NASA Astrophysics Data System (ADS)

    Bazarov, A. E.; Goldobin, I. S.; Eliseev, P. G.; Kobilzhanov, O. A.; Pak, G. T.; Petrakova, T. V.; Pushkina, T. N.; Semenov, A. T.

    1987-04-01

    An experimental study was made of the characteristics of radiation emitted by arrays of stripe injection lasers in the form of coupled symmetric active Y couplers. An output power of 300 mW in one direction was achieved under cw emission conditions. The periodicity of lobes in the angular distribution corresponded to diffraction of radiation from phase-locked sources and the presence of a peak in the direction of the normal to the emitting surface indicated that the radiation from the individual sources was in phase. An output power of 72.5 mW was obtained in the case of single-frequency cw emission (in an external dispersive resonator).

  16. Non-ablative fractional laser in conjunction with microneedle arrays for improved cutaneous vaccination

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Li, Bo; Wu, Mei X.

    2015-03-01

    Skin is more potent than the muscle for vaccination, but it is not a common site for immunization to date owing, in part, to a relatively high rate of pains and skin irritation and difficulty of administration. Here, we show effective and lesion free cutaneous vaccination by a combination of a biodegradable microneedle array (MNs) and an FDA-approved nonablative fractional laser (NAFL). Delivering a vaccine into many micropores, instead of a single "big" pore in the skin, effectively segregated vaccine-induced inflammation into many microzones and resulted in quick resolution of the inflammation, provided that distances between any two micropores were far enough. When the inoculation site was treated by NAFL prior to insertion of the MNs comprised of PR8 model influenza vaccine, the mice displayed vigorous antigen-uptake, giving rise to strong, Th1-biased immunity. The mice were protected from a challenge of homologous influenza virus at a high dose as well as heterologous H1N1 and H3N2 viruses. The adjuvant effect of NAFL was ascribed primarily to activation of the dsDNA sensing pathway by dsDNA released from laser-damaged skin cells. Thus, mice deficient in the dsDNA sensing pathway, but not toll like receptor (TLR) or inflammasome pathways, showed poor response to NAFL. Importantly, both mice and swine exhibited strong, protective immunity, but no overt skin reactions with this approach, in sharp contrast to intradermal injections that caused severe, overt skin reactions. The effective lesion-free transcutaneous vaccination merits further clinical studies.

  17. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Weicheng; National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixedmore » conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.« less

  18. Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Qiang, G.; Ha, G.

    2017-07-24

    A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the propertiesmore » of a magnetized beam.« less

  19. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  20. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1996-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam

  1. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  2. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1998-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. Figure 1 is a photograph of the 2 THz double feedhorn structure designed and constructed under the auspices of this grant

  3. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays

    PubMed Central

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J.

    2018-01-01

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace level. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species diffuse and react with the materials, decrease charge transfer rate and block intense hot-spots. No ex-situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decrease the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays, by exploiting a shock pressure generated by laser ablation of graphite and water impermeability nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities are investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, chemical/thermal stability, instantaneous, scale and room temperature processing capability, and can be further extended to integrate other 2D material with various 0-3D nanomaterials. PMID:26394237

  4. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambino, Nadia, E-mail: gambinon@ethz.ch; Brandstätter, Markus; Rollinger, Bob

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device hasmore » been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.« less

  5. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  6. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  7. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  8. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  9. Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.

    PubMed

    Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E

    2009-06-22

    An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.

  10. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  11. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  12. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  13. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  14. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    NASA Astrophysics Data System (ADS)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  15. Laser Sources for Generation of Ultrasound

    NASA Technical Reports Server (NTRS)

    Wagner, James W.

    1996-01-01

    Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.

  16. Time-resolved second-harmonic generation from gold nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Ferrara, D. W.; Tetz, K. A.; McMahon, M. D.; Haglund, R. F., Jr.

    2007-09-01

    We have studied the effects of planar inversion symmetry and particle-coupling of gold nanoparticle (NP) arrays by angle dependent second-harmonic generation (SHG). Time- and angle- resolved measurements were made using a mode-locked Ti:sapphire 800 nm laser onto gold NP arrays with plasmon resonance tuned to match the laser wavelength in order to produce maximum SHG signal. Finite-difference time domain simulations are used to model the near-field distributions for the various geometries and compared to experiment. The arrays were fabricated by focused ion-beam lithography and metal vapor deposition followed by standard lift-off protocols, producing NPs approximately 20nm high with various in-plane dimensions and interparticle gaps. Above a threshold fluence of ~ 7.3 × 10 -5 mJ/cm2 we find that the SHG scales with the third power of intensity, rather than the second, and atomic-force microscopy shows that the NPs have undergone a reshaping process leading to more nearly spherical shapes.

  17. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and productionmore » capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost

  18. Ultrastable laser array at 633 nm for real-time dimensional metrology

    NASA Astrophysics Data System (ADS)

    Lawall, John; Pedulla, J. Marc; Le Coq, Yann

    2001-07-01

    We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.

  19. Hybrid indium phosphide-on-silicon nanolaser diode

    NASA Astrophysics Data System (ADS)

    Crosnier, Guillaume; Sanchez, Dorian; Bouchoule, Sophie; Monnier, Paul; Beaudoin, Gregoire; Sagnes, Isabelle; Raj, Rama; Raineri, Fabrice

    2017-04-01

    The most-awaited convergence of microelectronics and photonics promises to bring about a revolution for on-chip data communications and processing. Among all the optoelectronic devices to be developed, power-efficient nanolaser diodes able to be integrated densely with silicon photonics and electronics are essential to convert electrical data into the optical domain. Here, we report a demonstration of ultracompact laser diodes based on one-dimensional (1D) photonic crystal (PhC) nanocavities made in InP nanoribs heterogeneously integrated on a silicon-waveguide circuitry. The specific nanorib design enables an efficient electrical injection of carriers in the nanocavity without spoiling its optical properties. Room-temperature continuous-wave (CW) single-mode operation is obtained with a low current threshold of 100 µA. Laser emission at 1.56 µm in the silicon waveguides is obtained with wall-plug efficiencies greater than 10%. This result opens up exciting avenues for constructing optical networks at the submillimetre scale for on-chip interconnects and signal processing.

  20. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  1. Two-color beam improvement of the colloidal particle lens array assisted surface nanostructuring

    NASA Astrophysics Data System (ADS)

    Afanasiev, Andrei; Bredikhin, Vladimir; Pikulin, Alexander; Ilyakov, Igor; Shishkin, Boris; Akhmedzhanov, Rinat; Bityurin, Nikita

    2015-05-01

    We consider laser nanostructuring of the material surface by means of a colloidal particle lens array. Here, the monolayer of dielectric micro- or nanospheres placed on the surface acts as an array of near-field lenses that focus the laser radiation into the multitude of distinct spots, allowing the formation of many structures in a single stage. We show that conversion of a small part of the energy of the femtosecond beam into the second harmonic (SH) is an efficient way to increase the surface density of obtained nanostructures. By combining the fundamental frequency and the SH, one benefits both from the power of the former and from the focusing ability of the latter. This combination provides an efficient nanostructuring with sphere diameter close to the wavelength of the second harmonic. The possibility to create arrays of nanostructures with surface density above 5 × 10 8 cm - 2 with femtosecond Ti:sapphire laser operating at 800 nm was demonstrated by employing 0.45 μm spheres.

  2. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  3. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  4. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.

  5. Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu

    2018-02-01

    Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.

  6. High-speed micro-scale laser shock peening using a fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Chenfei; Deng, Leimin; Sun, Shiding; Lu, Yongfeng

    2017-03-01

    Laser shock peening using low-energy nanosecond (ns) fiber lasers was investigated in this study to realize high-speed micro-scale laser shock peening on selected positions without causing surface damage. Due to the employment of a fiber laser with high-frequency and prominent environmental adaptability, the laser peening system is able to work with a much higher speed compared to traditional peening systems using Nd:YAG lasers and is promising for in-situ applications in harsh environments. Detailed surface morphology investigations both on sacrificial coatings and Al alloy surfaces after the fiber laser peening revealed the effects of focal position, pulse duration, peak power density, and impact times. Micro-dent arrays were also obtained with different spot-to-spot distances. Obvious micro-hardness improvement was observed inside the laser-peening-induced microdents after the fiber laser shock peening.

  7. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  8. Micro-dressing of a carbon nanotube array with MoS2 gauze

    NASA Astrophysics Data System (ADS)

    Lim, Sharon Xiaodai; Woo, Kah Whye; Ng, Junju; Lu, Junpeng; Kwang, Siu Yi; Zhang, Zheng; Tok, Eng Soon; Sow, Chorng-Haur

    2015-10-01

    Few-layer MoS2 film has been successfully assembled over an array of CNTs. Using different focused laser beams with different wavelengths, site selective patterning of either the MoS2 film or the supporting CNT array is achieved. This paves the way for applications and investigations into the fundamental properties of the hybrid MoS2/CNT material with a controlled architecture. Through Raman mapping, straining and electron doping of the MoS2 film as a result of interaction with the supporting CNT array are detected. The role of the MoS2 film was further emphasized with a lower work function being detected from Ultra-violet Photoelectron Spectrsocopy (UPS) measurements of the hybrid material, compared to the CNT array. The effect of the changes in the work function was illustrated through the optoelectronic behavior of the hybrid material. At 0 V, 3.49 nA of current is measured upon illuminating the sample with a broad laser beam emitting laser light with a wavelength of 532 nm. With a strong response to external irradiation of different wavelengths, and changes to the power of the excitation source, the hybrid material has shown potential for applications in optoelectronic devices.

  9. Efficient energy absorption of intense ps-laser pulse into nanowire target

    NASA Astrophysics Data System (ADS)

    Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.

    2016-06-01

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  10. Efficient energy absorption of intense ps-laser pulse into nanowire target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habara, H.; Honda, S.; Katayama, M.

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less

  11. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  12. Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor.

    PubMed

    Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing

    2018-05-09

    Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.

  13. Quasi four-level Tm:LuAG laser

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)

    1997-01-01

    A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.

  14. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  15. Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing

    2017-09-01

    We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.

  16. Competing Liquid Phase Instabilities during Pulsed Laser Induced Self-Assembly of Copper Rings into Ordered Nanoparticle Arrays on SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Fowlkes, J. D.; Roberts, N. A.

    Nanoscale copper rings of different radii, thicknesses, and widths were synthesized on silicon dioxide thin films and were subsequently liquefied via a nanosecond pulse laser treatment. During the nanoscale liquid lifetimes, the rings experience competing retraction dynamics and thin film and/or Rayleigh-Plateau types of instabilities, which lead to arrays of ordered nanodroplets. Surprisingly, the results are significantly different from those of similar experiments carried out on a Si surface.(1) We use hydrodynamic simulations to elucidate how the different liquid/solid interactions control the different instability mechanisms in the present problem.

  17. Nonlinear Photochromic Switching in the Plasmonic Field of a Nanoparticle Array

    NASA Astrophysics Data System (ADS)

    Otolski, Christopher J.; Argyropoulos, Christos; Elles, Christopher G.

    2017-06-01

    Plasmonic nanostructures provide unique environments for non-resonant excitation and switching of photochromic compounds. In this study, photochromic diarylethene molecules were deposited on top of a periodically ordered array of gold nanorods (170 x 80 nm) and then irradiated with <100 fs laser pulses. Irradiation at 800 nm drives the plasmon resonance of the nanoparticle array and induces the photochromic conversion of molecules via non-resonant two-photon excitation. Transmission measurements using broadband continuum laser pulses probe the progress of the photochemical cycloreversion reaction as molecules switch from a visible-absorbing closed-ring structure to a transparent open-ring structure. The spatial dependence of the two-photon conversion of molecules in the plasmonic near field of the array is modeled using calculated field enhancements, and compared with similar measurements for a film of molecules on a glass substrate. Wavelength-dependent polarization effects in the near field of the array lead to interesting anisotropy results in the transmission signal. The results emphasize the importance of both the spatial dependence and anisotropy of the enhanced electric fields in driving non-resonant photochromic reactions.

  18. Investigation of High Linearity DFB Lasers for Analog Communications

    DTIC Science & Technology

    1998-02-01

    personal communication systems (PCS) service and phased array radar. In this thesis, we examine the dynamic range and distortion for a Fujitsu DFB laser. We...PCS) service and phased array radar. In this thesis, we examine the dynamic range and distortion for a Fujitsu DFB laser. We extract parameters from...is dependent upon the coupling coefficient, as discussed in Chapter 3. Spatial hole burning is more important at lower frequencies (owing to finite

  19. Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi

    2018-01-01

    Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.

  20. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  1. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  2. A 2 THz Heterodyne Array Receiver for SOFIA: Summary of Research

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1998-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approximately 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the Far-Infra Red (FIR) portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galactic evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (> 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The

  3. Development of an automation technique for the establishment of functional lipid bilayer arrays

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C. R.; Geschke, O.; Emnéus, J.; Nielsen, C. H.

    2009-02-01

    In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 × 8 arrays with apertures having diameters of 301 ± 5 µm were fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 × 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment of the lipid membranes to the formation of bilayers. The results showed that multiple lipid bilayers could be reproducible formed across the airbrush-pretreated 8 × 8 rectangular arrays. The ionophoric peptide valinomycin was incorporated into established membrane arrays, resulting in ionic currents that could be effectively blocked by tetraethylammonium. This shows that functional bimolecular lipid membranes were established, and furthermore outlines that the established lipid membrane arrays could host functional membrane-spanning molecules.

  4. Excitation of high density surface plasmon polariton vortex array

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  5. Detection system of capillary array electrophoresis microchip based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  6. Wide-area SWIR arrays and active illuminators

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula

    2012-01-01

    We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.

  7. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1986-03-10

    A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than

  8. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  9. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2011-03-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  10. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2010-07-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  11. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  12. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  13. A portable array biosensor for food safety

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Ngundi, Miriam M.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Ligler, Frances S.

    2004-11-01

    An array biosensor developed for simultaneous analysis of multiple samples has been utilized to develop assays for toxins and pathogens in a variety of foods. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Results for four mycotoxin competition assays in buffer and food samples are presented.

  14. Comparing a new laser strainmeter array with an adjacent, parallel running quartz tube strainmeter array.

    PubMed

    Kobe, Martin; Jahr, Thomas; Pöschel, Wolfgang; Kukowski, Nina

    2016-03-01

    In summer 2011, two new laser strainmeters about 26.6 m long were installed in N-S and E-W directions parallel to an existing quartz tube strainmeter system at the Geodynamic Observatory Moxa, Thuringia/Germany. This kind of installation is unique in the world and allows the direct comparison of measurements of horizontal length changes with different types of strainmeters for the first time. For the comparison of both data sets, we used the tidal analysis over three years, the strain signals resulting from drilling a shallow 100 m deep borehole on the ground of the observatory and long-period signals. The tidal strain amplitude factors of the laser strainmeters are found to be much closer to theoretical values (85%-105% N-S and 56%-92% E-W) than those of the quartz tube strainmeters. A first data analysis shows that the new laser strainmeters are more sensitive in the short-periodic range with an improved signal-to-noise ratio and distinctly more stable during long-term drifts of environmental parameters such as air pressure or groundwater level. We compared the signal amplitudes of both strainmeter systems at variable signal periods and found frequency-dependent amplitude differences. Confirmed by the tidal parameters, we have now a stable and high resolution laser strainmeter system that serves as calibration reference for quartz tube strainmeters.

  15. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  16. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  17. Direct laser writing for micro-optical devices using a negative photoresist.

    PubMed

    Tsutsumi, Naoto; Hirota, Junichi; Kinashi, Kenji; Sakai, Wataru

    2017-12-11

    Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.

  18. Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network.

    PubMed

    Huang, Zhihua; Lin, Honghuan; Xu, Dangpeng; Li, Mingzhong; Wang, Jianjun; Deng, Ying; Zhang, Rui; Zhang, Yongliang; Tian, Xiaocheng; Wei, Xiaofeng

    2013-07-15

    Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4 J with an effective mode field diameter of around 500 μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect.

  19. Laser Surface Microstructuring of Biocompatible Materials Using a Microlens Array and the Talbot Effect: Evaluation of the Cell Adhesion.

    PubMed

    Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T

    2017-02-22

    A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material.

  20. Advanced propulsion concepts study: Comparative study of solar electric propulsion and laser electric propulsion

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1975-01-01

    Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.