Sample records for nanoclusters ag ncs

  1. A near-infrared BSA coated DNA-AgNCs for cellular imaging.

    PubMed

    Mu, Wei-Yu; Yang, Rui; Robertson, Akrofi; Chen, Qiu-Yun

    2018-02-01

    Near-infrared silver nanoclusters, have potential applications in the field of biosensing and biological imaging. However, less stability of most DNA-AgNCs limits their application. To obtain stable near-infrared fluorescence DNA-AgNCs for biological imaging, a new kind of near-infrared fluorescent DNA-Ag nanoclusters was constructed using the C3A rich aptamer as a synthesis template, GAG as the enhancer. In particular, a new DNA-AgNCs-Trp@BSA was obtained based on the self-assembly of bovine serum albumin (BSA) and tryptophan loaded DNA-AgNCs by hydrophobic interaction. This self-assembly method can be used to stabilize DNAn-Ag (n = 1-3) nanoclusters. Hence, the near-infrared fluorescence DNA-AgNCs-Trp@BSA was applied in cellular imaging of HepG-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of (Ag, Sn) Doping on the Structure and Optical Properties of Au Nanocluster

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Karna, Shashi

    2014-03-01

    Noble metal nanoclusters (NCs) consisting of a few to 35 atoms in size in the sub 2 nm range dimension are considered to be nontoxic as opposed to nanoparticles that are cytotoxic. Also, due to the quantum confinement of electrons, these NCs exhibit atom-like energy spectrum and display fluorescent properties useful in a wide range of applications, including medical diagnosis. The unique features of NCs such as size-tunable optical properties, intense fluorescence in the visible, and biocompatibility have stimulated an active area of investigation of noble metal NCs comprised of Au, Ag, Cu, and Pt. Furthermore, the electronic properties of nanoclusters can be modified by combining them with other elements. In this study, we consider the space-filled configuration of Au32 NC and investigate the effects of Ag and Sn atom incorporation on geometry and electronic spectrum. Our study suggests that Ag and Sn doping of Au32 NC red-shifts the absorption maximum and also reduces the oscillator strength.

  3. Sonochemical synthesis of Ag nanoclusters: electrogenerated chemiluminescence determination of dopamine.

    PubMed

    Liu, Tao; Zhang, Lichun; Song, Hongjie; Wang, Zhonghui; Lv, Yi

    2013-01-01

    We report a facile one-pot sonochemical approach to preparing highly water-soluble Ag nanoclusters (NCs) using bovine serum albumin as a stabilizing agent and reducing agent in aqueous solution. Intensive electrogenerated chemiluminescence (ECL) was observed from the as-prepared Ag (NCs) and successfully applied for the ECL detection of dopamine with high sensitivity and a wide detection range. A possible ECL mechanism is proposed for the preparation of Ag NCs. With this method, the dopamine concentration was determined in the range of 8.3 × 10(-9) to 8.3 × 10(-7) mol/L without the obvious interference of uric acid, ascorbic acid and some other neurotransmitters, such as serotonin, epinephrine and norepinephrine, and the detection limit was 9.2 × 10(-10) mol/L at a signal/noise ratio of 3. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Cytidine-directed rapid synthesis of water-soluble and highly yellow fluorescent bimetallic AuAg nanoclusters.

    PubMed

    Zhang, Yuanyuan; Jiang, Hui; Ge, Wei; Li, Qiwei; Wang, Xuemei

    2014-09-16

    Fluorescent gold/silver nanoclusters templated by DNA or oligonucleotides have been widely reported since DNA or oligonucleotides could be designed to position a few metal ions at close proximity prior to their reduction, but nucleoside-templated synthesis is more challenging. In this work, a novel type of strategy taking cytidine (C) as template to rapid synthesis of fluorescent, water-soluble gold and silver nanoclusters (C-AuAg NCs) has been developed. The as-prepared C-AuAg NCs have been characterized by UV-vis absorption spectroscopy, fluorescence, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma mass spectroscopy (ICP-MS). The characterizations demonstrate that C-AuAg NCs with a diameter of 1.50 ± 0.31 nm, a quantum yield ∼9%, and an average lifetime ∼6.07 μs possess prominent fluorescence properties, good dispersibility, and easy water solubility, indicating the promising application in bioanalysis and biomedical diagnosis. Furthermore, this strategy by rapid producing of highly fluorescent nanoclusters could be explored for the possible recognition of some disease-related changes in blood serum. This raises the possibility of their promising application in bioanalysis and biomedical diagnosis.

  5. High selectivity of colorimetric detection of p-nitrophenol based on Ag nanoclusters

    NASA Astrophysics Data System (ADS)

    Qu, Fei; Chen, Ping; Zhu, Shuyun; You, Jinmao

    2017-01-01

    Ag nanoclusters (Ag NCs) templated by hyperbranched polyethyleneimine (PEI) with different terminal groups and molecular weights had been developed as a special optical sensor for detecting p-nitrophenol (p-NP). When adding p-NP into Ag NCs, an obvious color change from pale yellow to deep yellow could be observed by naked eyes, accompanying with an apparent red-shift of absorption peak, and the reason was attributed to the formation of oxygen anion of p-NP based on the transfer of H+ from p-NP to amine groups of PEI. The molecular weights of template would greatly affect the sensitivity of p-NP. Ag NCs capped by PEI terminated ethylenediamine (EDA) possessed better sensitivity than other Ag NCs, showing good linear range from 5 to 140 μM with the limit of detection as low as 1.28 μM. Most importantly, this present system displayed high selectivity toward p-NP even in the presence of other nitrophenols and nitrotoluenes. This reliable method had been successfully applied for the detection of p-NP in real water and soil samples.

  6. Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents.

    PubMed

    Xu, Dong; Wang, Qingyun; Yang, Tao; Cao, Jianzhong; Lin, Qinlu; Yuan, Zhiqin; Li, Le

    2016-03-18

    Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications.

  7. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  8. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Ren, Xiangling; Meng, Xianwei; Fang, Zheng; Tang, Fangqiong

    2013-09-01

    An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors.An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a

  9. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    PubMed

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules.

    PubMed

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-11-21

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  11. Bio-NCs - the marriage of ultrasmall metal nanoclusters with biomolecules

    NASA Astrophysics Data System (ADS)

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-10-01

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  12. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.

    PubMed

    Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-11-15

    Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    PubMed

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols.

    PubMed

    Feng, Lingyan; Wu, Li; Xing, Feifei; Hu, Lianzhe; Ren, Jinsong; Qu, Xiaogang

    2017-12-15

    Electrochemiluminescence (ECL) of metal nanoclusters and their application have been widely reported due to the good biocompatibility, fascinating electrocatalytic activity and so on. Using DNA as synthesis template opens new opportunities to modulate the physical properties of AgNCs. Triplex DNA has been reported for the site-specific, homogeneous and highly stable silver nanoclusters (AgNCs) fabrication from our recent research. Here we further explore their extraordinary ECL properties and applications in biosensor utilization. By reasonable design of DNA sequence, AgNCs were obtained in the predefined position of CG.C + sites of triplex DNA, and the ECL emission at a low potential was observed with this novel DNA template. Finally, a simple and label-free method was developed for biothiols detection based on the enhanced catalytic reaction and a robust interaction between the triplex-AgNCs and cysteine, by influencing the microenvironment provided by DNA template. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor.

    PubMed

    Zhang, Zhihong; Guo, Chuanpan; Zhang, Shuai; He, Linghao; Wang, Minghua; Peng, Donglai; Tian, Junfeng; Fang, Shaoming

    2017-03-15

    We synthesized two kinds of carbon-based nanocomposites of silver nanoclusters (AgNCs). An aptamer for targeted platelet-derived growth factor-BB (PDGF-BB) detection was used as the organic phase to produce AgNCs@Apt, three dimensional reduced graphene oxide@AgNCs@Aptamer (3D-rGO@AgNCs@Apt), and graphene quantum dots@AgNCs@Aptamer (GQD@AgNCs@Apt) nanocomposites. The formation mechanism of the developed nanocomposites was described by detailed characterizations of their chemical and crystal structures. Subsequently, the as-synthesized nanoclusters containing aptamer strands were applied as the sensitive layers to fabricate a novel electrochemical aptasensor for the detection of PDGF-BB, which may be directly used to determine the target protein. Electrochemical impedance spectra showed that the developed 3D-rGO@AgNCs@Apt-based biosensor exhibited the highest sensitivity for PDGF-BB detection among three kinds of fabricated aptasensors, with an extremely low detection limit of 0.82pgmL -1 . In addition, the 3D-rGO@AgNCs@Apt-based biosensor showed high selectivity, stability, and applicability for the detection of PDGF-BB. This finding indicated that the AgNC-based nanocomposites prepared by a one-step method could be used as an electrochemical biosensor for various detection procedures in the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.

    2015-03-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  17. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jinbo; Zhang, Libing; Teng, Ye; Lou, Baohua; Jia, Xiaofang; Gu, Xiaoxiao; Wang, Erkang

    2015-07-01

    Guanine proximity based fluorescence enhanced DNA-templated silver nanoclusters (AgNCs) have been reported and applied for bioanalysis. Herein, we studied the G-quadruplex enhanced fluorescence of DNA-AgNCs and gained several significant conclusions, which will be helpful for the design of future probes. Our results demonstrate that a G-quadruplex can also effectively stimulate the fluorescence potential of AgNCs. The major contribution of the G-quadruplex is to provide guanine bases, and its special structure has no measurable impact. The DNA-templated AgNCs were further analysed by native polyacrylamide gel electrophoresis and the guanine proximity enhancement mechanism could be visually verified by this method. Moreover, the fluorescence emission of C3A (CCCA)4 stabilized AgNCs was found to be easily and effectively enhanced by G-quadruplexes, such as T30695, AS1411 and TBA, especially AS1411. Benefiting from the high brightness of AS1411 enhanced DNA-AgNCs and the specific binding affinity of AS1411 for nucleolin, the AS1411 enhanced AgNCs can stain cancer cells for bioimaging.Guanine proximity based fluorescence enhanced DNA-templated silver nanoclusters (AgNCs) have been reported and applied for bioanalysis. Herein, we studied the G-quadruplex enhanced fluorescence of DNA-AgNCs and gained several significant conclusions, which will be helpful for the design of future probes. Our results demonstrate that a G-quadruplex can also effectively stimulate the fluorescence potential of AgNCs. The major contribution of the G-quadruplex is to provide guanine bases, and its special structure has no measurable impact. The DNA-templated AgNCs were further analysed by native polyacrylamide gel electrophoresis and the guanine proximity enhancement mechanism could be visually verified by this method. Moreover, the fluorescence emission of C3A (CCCA)4 stabilized AgNCs was found to be easily and effectively enhanced by G-quadruplexes, such as T30695, AS1411 and TBA, especially

  18. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes.

    PubMed

    Lin, Xiaodong; Liu, Yaqing; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei; Wang, Shuo

    2018-02-21

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way.

  19. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    PubMed

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Polyethyleneimine-capped silver nanoclusters for microRNA oligonucleotide delivery and bacterial inhibition

    PubMed Central

    Liang, Jichao; Luo, Ailing; Wang, Lingqian; Zhu, Jing; Xiong, Huayu; Chen, Yong

    2017-01-01

    Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this paper, polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) were prepared for the purpose of microRNA (miRNA) delivery. The resultant PEI-AgNCs were characterized by a photoluminescence assay and transmission electron microscopy. A cytotoxicity assay showed that PEI-AgNCs exhibit relatively low cytotoxicity. Interestingly, PEI-AgNCs were confirmed to transfect miRNA mimics more effectively than PEI in HepG2 and 293A cells. In this regard, hsa-miR-21 or hsa-miR-221 mimics (miR-21/221m) were transported into HepG2 cells by using PEI-AgNCs. The miR-21/221 expression was determined post-transfection by quantitative real-time polymerase chain reaction. Compared with the negative control, PEI-AgNCs/miR-21/221m groups exhibited higher miR-21/221 levels. In addition, AgNCs endow PEI with stronger antibacterial activity, and this advantage provided PEI-AgNCs the potential to prevent bacterial contamination during the transfection process. Furthermore, we showed that PEI-AgNCs are viable nanomaterials for plain imaging of the cells by laser scanning confocal microscopy, indicating great potential as an ideal fluorescent probe to track the transfection behavior. These results demonstrated that PEI-AgNCs are promising and novel nonviral vectors for gene delivery. PMID:29238194

  1. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.

    PubMed

    Qu, Fei; Zou, Xuan; Kong, Rongmei; You, Jinmao

    2016-01-01

    In this assay, a tunable pH sensing system was developed based on Ag nanoclusters (Ag NCs) capped by hyperbranched polyethyleneimine (PEI) with different molecular weights (abbreviated as Ag NC-PEIs). For instance, when the molecular weight of PEI was 600 or 1800, the fluorescence intensities of Ag NCs exhibited a linear fashion over the pH range 4.10-7.96; when the molecular weight of PEI was 25,000, the pH linear range was from 4.78 to 7.96; when the molecular weight of PEI was 70,000, the pH linear range was 6.09-8.95. According to the molecular weight of PEI 600/1800, 25,000, and 70,000, the color change point was pH 4.10-4.78, 5.33-6.09, and 6.09-6.80, respectively. Therefore, Ag NC-PEI 600 and 1800 were proper to acid conditions; Ag NC-PEI 25,000 was sensitive to weak acid media; while Ag NC-PEI 70,000 was adapted to neutral solution. The tunable and selective color change points brought an excellent feature of Ag NC-PEIs as visual pH indicators, which was flexible and applicable to a variety of environments. Besides, the ratios of absorbance at 415 nm and 268 nm of Ag NCs also showed linear relationships with pH variations. Therefore, there were three ways of this system for sensing pH values, including fluorescence assay, ultraviolet-visible measurement, and visual detection, suggesting that this tunable pH-sensing platform was more feasible, reliable, and accurate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    PubMed

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  3. Ag nanocluster-based color converters for white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki

    2017-11-01

    The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.

  4. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm{sup 3+}-Yb{sup 3+} doped optical fiber beyond plasmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.

    2015-12-07

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb{sup 3+}) and Thulium (Tm{sup 3+}) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailedmore » laser diode with input power of 20–100 mW to excite the Yb{sup 3+}. Four times enhancement of Yb{sup 3+} emission of 900–1100 nm and Tm{sup 3+} upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.« less

  5. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.

    PubMed

    Hosseini, Morteza; Mehrabi, Fatemeh; Ganjali, Mohammad Reza; Norouzi, Parviz

    2016-11-01

    A fluorescent aptasensor for detection of oxytetracycline (OTC) was presented based on fluorescence quenching of DNA aptamer-templated silver nanoclusters (AgNCs). The specific DNA scaffolds with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could produce DNA-AgNCs via a chemical reduction method, and another was the OTC aptamer fragment that could selectively bind to the OTC antibiotic. Thus, the as-prepared AgNCs could exhibit quenched fluorescence after binding to the target OTC. The fluorescence ratio of the DNA-AgNCs was quenched in a linearly proportional manner to the concentration of the target in the range of 0.5 nM to 100 nM with a detection limit of 0.1 nM. This proposed nanobiosensor was demonstrated to be sensitive, selective, and simple, introducing a viable alternative for rapid determination of toxin OTC in honey and water samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    PubMed

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  7. DNA nanostructure-based fluorescence thermometer with silver nanoclusters.

    PubMed

    Bu, Congcong; Mu, Lixuan; Cao, XIngxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-04-27

    Linking the fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains by the thermal sensitive DNA stem-loop at teminal 5' and 3', DNA nanostructure-based fluorescence thermometers were fabricated. The variations of the temperature alter the distance between AgNCs and G-rich DNA chain, which could affect the interaction between them. As a result, the intensity of fluorescence emission from AgNCs at 636 nm can be sensitively modulated. It was found that such red emission is more sensitive to the temperature comparing with its intrinsic green emission at 543 nm, and sensitivity of -3.6%/℃ was achieved. Varying the melting temperature of the DNA stem-loop could readily adjust the response temperature range of thermometers. Novel DNA nanostructure-based fluorescence thermometers in this work could be anticipated to measure the temperature of biological system, even a single cell. © 2018 IOP Publishing Ltd.

  8. DNA nanostructure-based fluorescence thermometer with silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Bu, Congcong; Mu, Lixuan; Cao, Xingxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-07-01

    DNA nanostructure-based fluorescence thermometers were fabricated by linking fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains via a thermally sensitive DNA stem-loop at terminals 5‧ and 3‧. Variations of temperature alter the distance between the AgNCs and G-rich DNA chain, affecting the interaction between them. As a result, the intensity of fluorescence emission from the AgNCs at 636 nm can be sensitively modulated. It was found that the intensity of such red emission is more temperature sensitive than the equivalent green emission at 543 nm; sensitivity of ‑3.6%/°C was achieved. Through variation of the melting temperature of the DNA stem-loop, the response temperature range of the thermometers could be readily adjusted. Novel DNA nanostructure-based fluorescence thermometers as described in this work are anticipated to be able to measure the temperature of biological systems at small scales—even a single cell.

  9. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Aldeek, Fadi; Palui, Goutam; Trapiella-Alfonso, Laura; Mattoussi, Hedi

    2012-10-23

    We have used one phase growth reaction to prepare a series of silver nanoparticles (NPs) and luminescent nanoclusters (NCs) using sodium borohydride (NaBH(4)) reduction of silver nitrate in the presence of molecular scale ligands made of polyethylene glycol (PEG) appended with lipoic acid (LA) groups at one end and reactive (-COOH/-NH(2)) or inert (-OCH(3)) functional groups at the other end. The PEG segment in the ligand promotes solubility in a variety of solvents including water, while LAs provide multidentate coordinating groups that promote Ag-ligand complex formation and strong anchoring onto the NP/NC surface. The particle size and properties were primarily controlled by varying the Ag-to-ligand (Ag:L) molar ratios and the molar amount of NaBH(4) used. We found that while higher Ag:L ratios produced NPs, luminescent NCs were formed at lower ratios. We also found that nonluminescent NPs can be converted into luminescent clusters, via a process referred to as "size focusing", in the presence of added excess ligands and reducing agent. The nanoclusters emit in the far red region of the optical spectrum with a quantum yield of ~12%. They can be redispersed in a number of solvents with varying polarity while maintaining their optical and spectroscopic properties. Our synthetic protocol also allowed control over the number and type of reactive functional groups per nanocluster.

  10. Hairpin DNA probe with 5'-TCC/CCC-3' overhangs for the creation of silver nanoclusters and miRNA assay.

    PubMed

    Xia, Xiaodong; Hao, Yuanqiang; Hu, Shengqiang; Wang, Jianxiu

    2014-01-15

    A facile strategy for the assay of target miRNA using fluorescent silver nanoclusters (AgNCs) has been described. Due to the preferable interaction between cytosine residues and Ag(+), a short cytosine-rich oligonucleotide (ODN) with only six bases 5'-TCCCCC-3' served as an efficient scaffold for the creation of the AgNCs. The AgNCs displayed a bright red emission when excited at 545nm. Such ODN base-stabilized AgNCs have been exploited for miRNA sensing. Overhangs of TCC at the 5' end (5'-TCC) and CCC at the 3' end (CCC-3') (denoted as 5'-TCC/CCC-3') appended to the hairpin ODN probe which also contains recognition sequences for target miRNA were included. Interestingly, the AgNCs/hairpin ODN probe showed similar spectral properties as that templated by 5'-TCCCCC-3'. The formation of the hairpin ODN probe/miRNA duplex separated the 5'-TCC/CCC-3' overhangs, thus disturbing the optical property or structure of the AgNCs. As a result, fluorescence quenching of the AgNCs/hairpin ODN probe was obtained, which allows for facile determination of target miRNA. The proposed method is simple and cost-effective, holding great promise for clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.

    PubMed

    Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po

    2018-01-16

    A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.

  12. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO2/SiO2:Ag thin films

    NASA Astrophysics Data System (ADS)

    Güner, S.; Budak, S.; Gibson, B.; Ila, D.

    2014-08-01

    We have deposited five periodic SiO2/SiO2 + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO2:Ag layers were 2.7-5 nm and SiO2 buffer layers were 1-15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO2 were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO2 was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 1014 and 1 × 1016 ions/cm2 values. Optical absorption spectra were recorded in the range of 200-900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  13. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  14. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL(-1) to 100 ng mL(-1) and a low limit of detection of 0.037 pg mL(-1). Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions.

    PubMed

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2012-01-15

    An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus.

    PubMed

    Zhang, Li; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; He, Yiliang

    2017-11-27

    While the discovery of numerous attractive properties of silver at the nanoscale has increased their demand in many sectors including medicine, optics, sensing, painting and cosmetics, it has also raised wide public concerns about their effect on living organisms in aquatic environment. Despite the continuous effort to understand the various aspects of the toxicity of silver nanomaterials, the molecular level understanding on their cytotoxicity mechanism to biological organisms has remained unclear. Herein, we demonstrated the underlying mechanism of the photosynthetic toxicity against green algae namely, Scenedesmus obliquus by using an emerging silver nanomaterial, called silver nanoclusters (defined as r-Ag NCs). By exploiting the unique fluorescence properties of r-Ag NCs along with various other analytical/biological tools, we proposed that the photosynthetic toxicity of r-Ag NCs was largely attributed to the "joint-toxicity" effect of particulate form of r-Ag NCs and its released Ag + , which resulted in the disruption of the electron transport chain of light reaction and affected the content of key enzymes (RuBP carboxylase/ oxygenase) of Calvin cycle of algae cells. We believe that the present study can also be applied to the assessment of the ecological risk derived from other metal nanoparticles.

  17. Versatile logic devices based on programmable DNA-regulated silver-nanocluster signal transducers.

    PubMed

    Huang, Zhenzhen; Tao, Yu; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2012-05-21

    A DNA-encoding strategy is reported for the programmable regulation of the fluorescence properties of silver nanoclusters (AgNCs). By taking advantage of the DNA-encoding strategy, aqueous AgNCs were used as signal transducers to convert DNA inputs into fluorescence outputs for the construction of various DNA-based logic gates (AND, OR, INHIBIT, XOR, NOR, XNOR, NAND, and a sequential logic gate). Moreover, a biomolecular keypad that was capable of constructing crossword puzzles was also fabricated. These AgNC-based logic systems showed several advantages, including a simple transducer-introduction strategy, universal design, and biocompatible operation. In addition, this proof of concept opens the door to a new generation of signal transducer materials and provides a general route to versatile biomolecular logic devices for practical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.

    PubMed

    Zhang, Jian Rong; Yue, Yuan Yuan; Luo, Hong Qun; Li, Nian Bing

    2016-02-07

    Picric acid (PA) explosive is a hazard to public safety and health, so the sensitive and selective detection of PA is very important. In the present work, polyethyleneimine stabilized Ag nanoclusters were successfully used for the sensitive and selective quantification of PA on the basis of fluorescence quenching. The quenching efficiency of Ag nanoclusters is proportional to the concentration of PA and the logarithm of PA concentration over two different concentration ranges (1.0 nM-1 μM for the former and 0.25-20 μM for the latter), thus the proposed quantitative strategy for PA provides a wide linear range of 1.0 nM-20 μM. The detection limit based on 3σ/K is 0.1 nM. The quenching mechanism of Ag nanoclusters by PA is discussed in detail. The results indicate that the selective detection of PA over other nitroaromatics including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), p-nitrotoluene (p-NT), m-dinitrobenzene (m-DNB), and nitrobenzene (NB), is due to the electron transfer and energy transfer between PA and polyethyleneimine-capped Ag nanoclusters. In addition, the experimental data obtained for the analysis of artificial samples show that the proposed PA sensor is potentially applicable in the determination of trace PA explosive in real samples.

  19. Real-time ab initio KMC simulation of the self-assembly and sintering of bimetallic epitaxial nanoclusters: Au + Ag on Ag(100).

    PubMed

    Han, Yong; Liu, Da-Jiang; Evans, James W

    2014-08-13

    Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).

  20. Real-Time Ab Initio KMC Simulation of the Self-Assembly and Sintering of Bimetallic Epitaxial Nanoclusters: Au + Ag on Ag(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Liu, Da-Jiang; Evans, James W

    2014-08-13

    Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).

  1. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  2. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    PubMed

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  4. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  5. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols.

    PubMed

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-04-07

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 ± 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ∼0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h(-1)) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.

  6. Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source

    NASA Astrophysics Data System (ADS)

    Zhao, Junlei; Cao, Lu; Palmer, Richard E.; Nordlund, Kai; Djurabekova, Flyura

    2017-11-01

    In this paper, we study the mechanisms of growth of Ag nanoclusters in a solid Ar matrix and the emission of these nanoclusters from the matrix by a combination of experimental and theoretical methods. The molecular dynamics simulations show that the cluster growth mechanism can be described as "thermal spike-enhanced clustering" in multiple sequential ion impact events. We further show that experimentally observed large sputtered metal clusters cannot be formed by direct sputtering of Ag mixed in the Ar. Instead, we describe the mechanism of emission of the metal nanocluster that, at first, is formed in the cryogenic matrix due to multiple ion impacts, and then is emitted as a result of the simultaneous effects of interface boiling and spring force. We also develop an analytical model describing this size-dependent cluster emission. The model bridges the atomistic simulations and experimental time and length scales, and allows increasing the controllability of fast generation of nanoclusters in experiments with a high production rate.

  7. Generation of fluorescent silver nanoclusters in reverse micelles using gamma irradiation: low vs. high dosages and spectral evolution with time

    NASA Astrophysics Data System (ADS)

    Martin, Brett D.; Fontana, Jake; Wang, Zheng; Trammell, Scott A.

    2015-04-01

    Reverse micelles (RMs) containing aqueous solutions of Ag+ ions in their core produce fluorescent Ag nanoclusters (NCs), upon exposure to gamma irradiation. The fluorescence spectra of the NCs evolve over days to weeks after the exposure, and usually show large increases in intensity. Responses of as high as 2.8 × 104 CPS/Gy were reached. A dosage as low as 0.5 Gy (10 % of the lethal dosage for humans) produces NCs having fluorescence intensities higher than background. The RMs can be employed in novel gamma radiation detectors with appearance of fluorescence indicating that radiation was once present. In applications involving detection and tracking of fissile materials, the evolution of the fluorescence spectra over time may provide additional information about the radiation source. A two-phase liquid system is used for RM formation in a simple procedure. It is likely that this synthesis method may be adapted to produce NCs from other metal ions.

  8. A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols

    NASA Astrophysics Data System (ADS)

    Zhang, Shuming; Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli; Shui, Lingling

    2018-04-01

    Ratiometric fluorescent probes could eliminate the influence from experimental factors and improve the detection accuracy. In this article, a ratiometric nanoprobe was constructed based on silver nanoclusters (AgNCs) with nitrogen-doped carbon dots (NCDs) and used for the detection of biothiols. The fluorescence peak of AgNCs was observed at 650 nm with excitation wavelength at 370 nm. In order to construct the ratiometric fluorescent probe, NCDs with the excitation and emission wavelengths at 370 nm and 450 nm were selected. After adding AgNCs, the fluorescence of NCDs was quenched. The mechanism of the fluorescence quenching was studied by fluorescence, UV-Vis absorption and the fluorescence lifetime spectra. The results indicated that the quenching could be ascribed to the inner filter effect (IFE). With the addition of biothiols, the fluorescence of AgNCs at 650 nm decreased due to the breakdown of AgNCs, and the fluorescence of NCDs at 450 nm recovered accordingly. Thus, the relationship between the ratio of the fluorescence intensities (I450/I650) and biothiol concentration was used to establish the determination method for biothiols. Cysteine (Cys) was taken as the model of biothiols, and the working curve for Cys was I450/I650 = 0.60CCys - 1.86 (CCys: μmol/L) with the detection limit of 0.14 μmol/L (S/N = 3). Then, the method was used for the detection of Cys in human urine and serum samples with satisfactory accuracy and recovery ratios. Furthermore, the probe could be applied for the visual semi-quantitative determination of Cys by naked eyes.

  9. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor.

    PubMed

    Zhang, Baozhu; Wei, Chunying

    2018-05-15

    A novel turn-on fluorescent biosensor has been constructed using C-PS2.M-DNA-templated silver nanoclusters (Ag NCs) with an average diameter of about 1 nm. The proposed approach presents a low-toxic, simple, sensitive, and selective detection for Pb 2+ . The fluorescence intensity of C-PS2.M-DNA-Ag NCs enhances significantly in the presence of Pb 2+ , which is attributed to the special interaction between Pb 2+ and its aptamer DNA PS2.M. Pb 2+ induces the aptamer to form G-quadruplex and makes two darkish DNA/Ag NCs located at the 3' and 5' terminus close, resulting in the fluorescence light-up. Moreover, Pb 2+ can be detected as low as 3.0 nM within a good linear range from 5 to 50 nM (R = 0.9862). Furthermore, the application for detection of Pb 2+ in real water samples further demonstrates the reliability of the sensor. Thus, this sensor system shows a potential application for monitoring Pb 2+ in environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag(+) and Hg(2+).

    PubMed

    Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei

    2015-04-22

    In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Cui, Qinghua; Liu, Guiying; Wu, Fei; Xu, Shujuan; Shao, Yong

    2011-07-01

    DNA single-nucleotide polymorphism (SNP) detection has attracted much attention due to mutation related diseases. Various methods for SNP detection have been proposed and many are already in use. Here, we find that the abasic site (AP site) in the DNA duplex can be developed as a capping scaffold for the generation of fluorescent silver nanoclusters (Ag NCs). As a proof of concept, the DNA sequences from fragments near codon 177 of cancer supression gene p53 were used as a model for SNP detection by in situ formed Ag NCs. The formation of fluorescent Ag NCs in the AP site-containing DNA duplex is highly selective for cytosine facing the AP site and guanines flanking the site and can be employed in situ as readout for SNP detection. The fluorescent signal-on sensing for SNP based on this inorganic fluorophore is substantially advantageous over the previously reported signal-off responses using low-molecular-weight organic ligands. The strong dependence of fluorescent Ag NC formation on the sequences surrounding the AP site was successfully used to identify mutations in codon 177 of cancer supression gene p53. We anticipate that this approach will be employed to develop a practical SNP detection method by locating an AP site toward the midway cytosine in a target strand containing more than three consecutive cytosines.

  13. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection.

    PubMed

    Zhang, Jingpu; Li, Chao; Zhi, Xiao; Ramón, Gabriel Alfranca; Liu, Yanlei; Zhang, Chunlei; Pan, Fei; Cui, Daxiang

    2016-01-19

    MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.

  14. A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters.

    PubMed

    Zhang, Peng; Liu, Hui; Li, Xiaocheng; Ma, Suzhen; Men, Shuai; Wei, Heng; Cui, Jingjing; Wang, Hongning

    2017-01-15

    The harm of Salmonella typhimurium (S. typhimurium) to public health mainly by the consumption of contaminated agricultural products or water stresses an urgent need for rapid detection methods to help control the spread of S. typhimurium. In this work, an intelligently designed sensor system took creative advantage of triple trigger sequences-regenerated strand displacement amplification and self-protective hairpin template-generated-scaffolded silver nanoclusters (AgNCs) for the first time. In the presence of live S. typhimurium, single-stranded trigger sequences were released from aptamer-trigger sequences complex, initiating a branch migration to open the hairpin template I containing complementary scaffolds of AgNCs. Then the first strand displacement amplification was induced to produce numerous scaffolds of AgNCs and reporter strands which initiated a branch migration to open the hairpin template II containing complementary scaffolds of AgNCs. Then the second strand displacement amplification was induced to generate numerous scaffolds of AgNCs and trigger sequences which initiated the third branch migration and strand displacement amplification to produce numerous scaffolds of AgNCs and reporter strands in succession. Cyclically, the reproduction of the trigger sequences and cascade successive production of scaffolds were achieved successfully, forming highly fluorescent AgNCs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. typhimurium down to 50 CFU/mL with a linear range from 10 2 to 10 7 CFU/mL. It is the first report on a fluorescent biosensor for detecting viable S. typhimurium directly, which can distinguish from heat denatured S. typhimurium. And it develops a new strategy to generate the DNA-scaffolds for forming AgNCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. First principles study of the Ag nanoclusters adsorption effect on the photocatalytic properties of AgBr(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Chi, Yuhua; Zhao, Lianming; Li, Xue; Zhu, Houyu; Guo, Wenyue

    2018-05-01

    The electronic structures and photocatalytic performance of Agn/AgBr(1 1 0)(n = 7-13) are studied using density functional theory (DFT). The adsorption of Agn (n = 7-13) nanoclusters on AgBr(1 1 0) surface induces a new metal-induced gap band (MIGB) located between the valence band (VB) and the conduction band (CB), the variety of the electronic characters of AgBr(1 1 0) favor the visible and infrared light absorption, which improves the sunlight utilization. The dominant localization of the photo-excited electrons on the Agn clusters of Agn/AgBr(1 1 0)(n = 7-13) facilitates the oxidation-reduction reactions occurring on the surface and also effectively reduces the photolysis of AgBr under the sunlight irradiation. The overpotentials of the CB and VB edges indicate that photocatalytic conversion of CO2 with H2O to methanol is possible on AgBr(1 1 0) deposited with the Agn nanoclusters, which has been realized experimentally (An et al., 2012). The substantial strengthening of visible and infrared light absorption and the free energy profiles for the conversion of CO2 with H2O to methanol indicate that Ag13/AgBr(1 1 0) surface can be expected to be the excellent photocatalysts.

  16. Preparation of Au Nanoclusters-Modified Polylactic Acid Fiber with Bright Red Fluorescence and its Use as Sensing Probe.

    PubMed

    Zhu, Wenli; Li, Huili; Wan, Ajun; Liu, Lanbo

    2017-01-01

    In present work, the Au nanoclusters-modified polylactic acid fiber (PLA-Au NCs) with bright red fluorescence were fabricated by the encapsulation of Au nanoclusters (Au NCs) in the PLA fiber treated with H 2 O 2 . The Au 25 nanoclusters stabilized by bovine serum albumin (BSA-Au NCs) were prepared via an improved "green" synthetic routine. With pretreatment of the PLA fiber in H 2 O 2 concentration of 12 and 18 %, the as-prepared PLA-Au NCs exhibited brighter red emission with a strong peak centered at ~640 nm than BSA-Au NCs. The fluorescence can be quenched by nitric oxide (NO). A good linear relationship between the relative fluorescence quenching intensity of the as-prepared PLA-Au NCs and the concentration of NO can be obtained in the range of 0.0732 to 0.7320 mM, and the detection limit was 0.0070 mM.

  17. The solely motif-doped Au36-xAgx(SPh-tBu)24 (x = 1-8) nanoclusters: X-ray crystal structure and optical properties.

    PubMed

    Fan, Jiqiang; Song, Yongbo; Chai, Jinsong; Yang, Sha; Chen, Tao; Rao, Bo; Yu, Haizhu; Zhu, Manzhou

    2016-08-18

    We report the observation of new doping behavior in Au36-xAgx(SR)24 nanoclusters (NCs) with x = 1 to 8. The atomic arrangements of Au and Ag atoms are determined by X-ray crystallography. The new gold-silver bimetallic NCs share the same framework as that of the homogold counterpart, i.e. possessing an fcc-type Au28 kernel, four dimeric AuAg(SR)3 staple motifs and twelve simple bridging SR ligands. Interestingly, all the Ag dopants in the Au36-xAgx(SR)24 NCs are selectively incorporated into the surface motifs, which is in contrast to the previously reported Au-Ag alloy structures with the Ag dopants preferentially displacing the core gold atoms. This distinct doping behavior implies that the previous assignments of an fcc Au28 core with four dimers and 12 bridging thiolates for Au36(SR)24 are more justified than other assignments of core vs. surface motifs. The UV-Vis adsorption spectrum of Au36-xAgx(SR)24 is almost the same as that of Au36(SR)24, indicating that the Ag dopants in the motifs do not change the optical properties. The similar UV-Vis spectra are further confirmed by TD-DFT calculations. DFT also reveals that the energies of the HOMO and LUMO of the motif-doped AuAg alloy NC are comparable to those of the homogold Au36 NC, indicating that the electronic structure is not disturbed by the motif Ag dopants. Overall, this study reveals a new silver-doping mode in alloy NCs.

  18. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    NASA Astrophysics Data System (ADS)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  19. One phase growth of in-situ functionalized gold and silver nanoparticles and luminescent nanoclusters

    NASA Astrophysics Data System (ADS)

    Aldeek, Fadi; Muhammed, M. A. H.; Mattoussi, Hedi

    2013-02-01

    We describe the growth and characterization of a set of gold and silver nanoparticles (NPs) as well as fluorescent nanoclusters (NCs) using one-step reduction (in aqueous phase) of Au and Ag precursors in the presence of modular bifunctional ligands. These ligands are made of bidentate (lipoic acid) anchoring groups appended with poly(ethylene glycol) segment, LA-PEG. The particle size can be easily controlled by varying the metal-to-ligand molar ratio during growth. We found that while high metal-to-ligand molar ratios promote the formation of NPs, small size and highly fluorescent NCs are exclusively formed when molar excesses of ligands are used. Both sets of NCs emit in the red to near infrared (NIR) region of the optical spectrum, though the exact location of the emission depends on the material used. The growth strategy further permitted the in-situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), which opens up the opportunity to conjugate these materials to biomolecules using simple to implement coupling chemistries.

  20. Pre-Incubation of Auric Acid with DNA Is Unnecessary for the Formation of DNA-Templated Gold Nanoclusters.

    PubMed

    Chen, Yang; Tao, Guangyu; Lin, Ruoyun; Pei, Xiaojing; Liu, Feng; Li, Na

    2016-06-06

    The rationale for the preparation of DNA-templated gold nanoclusters (DNA-Au NCs) has not been well understood, thereby slowing down the advancement of the synthesis and applications of DNA-Au NCs. The interaction between metal ions and the DNA template seems to be the key factor for the successful preparation of DNA-templated metal nanoclusters. With the help of circular dichroism in this contribution, we put efforts into interrogating the necessity of pre-incubation of HAuCl4 with poly-adenine template in the formation of Au NCs by citrate reduction. Our results revealed that the pre-incubation of HAuCl4 with poly-adenine is not favorable for the formation of Au NCs, which is distinctly different from the formation process for silver nanoclusters. It is our hope that this study can provide guidance in the preparation of Au NCs with more DNA templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water.

    PubMed

    Chen, Yong-Siou; Kamat, Prashant V

    2014-04-23

    Glutathione-capped metal nanoclusters (Aux-GSH NCs) which exhibit molecular-like properties are employed as a photosensitizer for hydrogen generation in a photoelectrochemical cell (PEC) and a photocatalytic slurry reactor. The reversible reduction (E(0) = -0.63 V vs RHE) and oxidation (E(0) = 0.97 and 1.51 V vs RHE) potentials of these metal nanoclusters make them suitable for driving the water-splitting reaction. When a mesoscopic TiO2 film sensitized by Aux-GSH NCs is used as the photoanode with a Pt counter electrode in aqueous buffer solution (pH = 7), we observe significant photocurrent activity under visible light (400-500 nm) excitation. Additionally, sensitizing Pt/TiO2 nanoparticles with Aux-GSH NCs in an aqueous slurry system and irradiating with visible light produce H2 at a rate of 0.3 mmol of hydrogen/h/g of Aux-GSH NCs. The rate of H2 evolution is significantly enhanced (∼5 times) when a sacrificial donor, such as EDTA, is introduced into the system. Using metal nanoclusters as a photosensitizer for hydrogen generation lays the foundation for the future exploration of other metal nanoclusters with well-controlled numbers of metal atoms and capping ligands.

  2. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  3. Detection of large deletion in human BRCA1 gene in human breast carcinoma MCF-7 cells by using DNA-Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Borghei, Yasaman-Sadat; Hosseini, Morteza; Ganjali, Mohammad Reza

    2018-01-01

    Here we describe a label-free detection strategy for large deletion mutation in breast cancer (BC) related gene BRCA1 based on a DNA-silver nanocluster (NC) fluorescence upon recognition-induced hybridization. The specific hybridization of DNA templated silver NCs fluorescent probe to target DNAs can act as effective templates for enhancement of AgNCs fluorescence, which can be used to distinguish the deletion of BRCA1 due to different fluorescence intensities. Under the optimal conditions, the fluorescence intensity of the DNA-AgNCs at emission peaks around 440 nm (upon excitation at 350 nm) increased with the increasing deletion type within a dynamic range from 1.0 × 10-10 to 2.4 × 10-6 M with a detection limit (LOD) of 6.4 × 10-11 M. In this sensing system, the normal type shows no significant fluorescence; on the other hand, the deletion type emits higher fluorescence than normal type. Using this nanobiosensor, we successfully determined mutation using the non-amplified genomic DNAs that were isolated from the BC cell line.

  4. Multifunctional Dumbbell-Shaped DNA-Templated Selective Formation of Fluorescent Silver Nanoclusters or Copper Nanoparticles for Sensitive Detection of Biomolecules.

    PubMed

    Chen, Jinyang; Ji, Xinghu; Tinnefeld, Philip; He, Zhike

    2016-01-27

    In this work, a multifunctional template for selective formation of fluorescent silver nanoclusters (AgNCs) or copper nanoparticles (CuNPs) is put forward. This dumbbell-shaped (DS) DNA template is made up of two cytosine hairpin loops and an adenine-thymine-rich double-helical stem which is closed by the loops. The cytosine loops act as specific regions for the growth of AgNCs, and the double-helical stem serves as template for the CuNPs formation. By carefully investigating the sequence and length of DS DNA, we present the optimal design of the template. Benefiting from the smart design and facile synthesis, a simple, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection is proposed. Through the systematic comparison, it is found that the strategy based on CuNPs formation is more sensitive for ATP assay than that based on AgNCs synthesis, and the detection limitation was found to be 81 pM. What's more, the CuNPs formation-based method is successfully applied in the detection of ATP in human serum as well as the determination of cellular ATP. In addition to small target molecule, the sensing strategy was also extended to the detection of biomacromolecule (DNA), which illustrates the generality of this biosensor.

  5. Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications.

    PubMed

    Santhosh, Mallesh; Chinnadayyala, Somasekhar R; Singh, Naveen K; Goswami, Pranab

    2016-10-01

    Human serum albumin (HSA)-stabilized Au18 nanoclusters (AuNCs) were synthesized and chemically immobilized on an Indium tin oxide (ITO) plate. The assembly process was characterized by advanced electrochemical and spectroscopic techniques. The bare ITO electrode generated three irreversible oxidation peaks, whereas the HSA-AuNC-modified electrode produced a pair of redox peaks for bilirubin at a formal potential of 0.27V (vs. Ag/AgCl). However, the native HSA protein immobilized on the ITO electrode failed to produce any redox peak for bilirubin. The results indicate that the AuNCs present in HSA act as electron transfer bridge between bilirubin and the ITO plate. Docking studies of AuNC with HSA revealed that the best docked structure of the nanocluster is located around the vicinity of the bilirubin binding site, with an orientation that allows specific oxidation. When the HSA-AuNC-modified electrode was employed for the detection of bilirubin using chronoamperometry at 0.3V (vs. Ag/AgCl), a steady-state current response against bilirubin in the range of 0.2μM to 7μM, with a sensitivity of 0.34μAμM(-1) and limit of detection of 86.32nM at S/N 3, was obtained. The bioelectrode was successfully applied to measure the bilirubin content in spiked serum samples. The results indicate the feasibility of using HSA-AuNC as a biorecognition element for the detection of serum bilirubin levels using an electrochemical technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    NASA Astrophysics Data System (ADS)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  7. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes† †Electronic supplementary information (ESI) available: Chemicals, materials and DNA sequences used in the investigation, the construction of YES, AND, OR, XOR and INH logic gates, CD and PAGE experimental results. See DOI: 10.1039/c7sc05246d

    PubMed Central

    Lin, Xiaodong; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei

    2018-01-01

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way. PMID:29675221

  8. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2015-05-01

    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.

  9. Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing.

    PubMed

    Huang, Yin; Lei, Jianping; Cheng, Yan; Ju, Huangxian

    2016-03-15

    This work designed a novel ratiometric electrochemiluminescence (ECL) immunosensing approach based on two different ECL emitters: CdS quantum dots (QDs) as cathodic emitter and luminol as anodic emitter. The ECL immunosensor was constructed by a layer-by-layer modification of CdS QDs, Au nanoparticles and capture antibody on a glassy carbon electrode. With hydrogen peroxide as ECL coreactant, the immunosensor showed a cathodic ECL emission of CdS QDs at -1.5 V (vs Ag/AgCl) in air-saturated pH 8.0 buffer. Upon the formation of sandwich immunoassay, the lumiol/palladium nanoclusters (Pd NCs)@graphene oxide probe was introduced to the electrode. Therefore, the cathodic ECL intensity decreased and luminol anodic ECL emission was appeared at +0.3 V (vs Ag/AgCl) owing to the competition of the coreactant of hydrogen peroxide. Using carcino-embryonic antigen as model, this ratiometric ECL strategy could be used for immunoassay with a linear range of 1.0-100 pg mL(-1) and a detection limit of 0.62 pg mL(-1). The enhanced ratiometric ECL signal resulted from the high density and excellent electrocatalysis of the loaded Pd NCs. The immunosensor exhibited good stability and acceptable fabrication reproducibility and accuracy, showing a great promising for clinical application. This electrocatalysis-regulated ratiometric ECL provides a new concept for ECL measurement, and could be conveniently extended for detection of other protein biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Raman Scattering Studies on Ag Nanocluster Composites Formed by Ion Implantation into Silica

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Jiang, Chang Zhong; Fu, De Jun; Fu, Qiang

    2005-12-01

    Highly-pure amorphous silica slides were implanted by 200 keV Ag ions with doses ranged from 1× 1016 to 2× 1017 ions/cm2. Optical absorption spectra show that Ag nanoclusters with various sizes have been formed. Enhancement of surface enhanced Raman scattering signal by a factor up to about 103 was obtained by changing the Ag particle size. The silica was damaged by the implanted Ag ions, and the large compression stress on the silica leads to the shift of Raman peaks. New bands at 1368 and 1586 cm-1, which are attributed to the vibration of Ag-O bond and O2 molecules in silica, are observed in the samples with doses higher than 1× 1017 ions/cm2.

  11. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation.

    PubMed

    Cifuentes-Rius, Anna; Ivask, Angela; Das, Shreya; Penya-Auladell, Nuria; Fabregas, Laura; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Voelcker, Nicolas H

    2017-11-29

    Gold nanoclusters (Au NCs) have become a promising nanomaterial for cancer therapy because of their biocompatibility and fluorescent properties. In this study, the effect of ultrasmall protein-stabilized 2 nm Au NCs on six types of mammalian cells (fibroblasts, B-lymphocytes, glioblastoma, neuroblastoma, and two types of prostate cancer cells) under electromagnetic radiation is investigated. Cellular association of Au NCs in vitro is concentration-dependent, and Au NCs have low intrinsic toxicity. However, when Au NC-incubated cells are exposed to a 1 GHz electromagnetic field (microwave radiation), cell viability significantly decreases, thus demonstrating that Au NCs exhibit specific microwave-dependent cytotoxicity, likely resulting from localized heating. Upon i.v. injection in mice, Au NCs are still present at 24 h post administration. Considering the specific microwave-dependent cytotoxicity and low intrinsic toxicity, our work suggests the potential of Au NCs as effective and safe nanomedicines for cancer therapy.

  12. Design and mechanistic study of a novel gold nanocluster-based drug delivery system.

    PubMed

    Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou

    2018-05-22

    Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.

  13. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  14. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  15. Insights into the Distinguishing Stress-induced Cytotoxicity of Chiral Gold Nanoclusters and the Relationship with GSTP1

    PubMed Central

    Zhang, Chunlei; Zhou, Zhijun; Zhi, Xiao; Ma, Yue; Wang, Kan; Wang, Yuxia; Zhang, Yingge; Fu, Hualin; Jin, Weilin; Pan, Fei; Cui, Daxiang

    2015-01-01

    Chiral gold nanoclusters (Au NCs) exhibit attracting properties owing to their unique physical and chemical properties. Herein we report for the first time chiral gold nanoclusters' cytotoxicity and potential molecular mechanism. The L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs were prepared and characterized by HRTEM, UV-vis, photoluminescence and circular dichroism (CD) spectroscopy. Results showed that the CD spectra of L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs exhibited multiple bands which were identically mirror-imaged, demonstrating that the chirality of GSH-capped NCs had contributions from both the metal core and the ligand. The effects of AuNCs@L-GSH and AuNCs@D-GSH on cells were similar based on the cell physiology related cytotoxicity, although the effects became more prominent in AuNCs@D-GSH treated cells, including ROS generation, mitochondrial membrane depolarization, cell cycle arrest and apoptosis. Global gene expression and pathway analysis displayed that both AuNCs@L-GSH and AuNCs@D-GSH caused the up-regulation of genes involved in cellular rescue and stress response, while AuNCs@D-GSH individually induced up-regulation of transcripts involved in some metabolic- and biosynthetic-related response. MGC-803 cells were more sensitive to the oxidative stress damage induced by chiral Au NCs than GES-1 cells, which was associated with GSTP1 hypermethylation. In conclusion, chiral gold nanoclusters exhibit this chirality-associated regulation of cytotoxicity, different gene expression profiling and epigenetic changes should be responsible for observed phenomena. Our study highlights the importance of the interplays between chiral materials and biological system at sub-nano level. PMID:25553104

  16. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure

    PubMed Central

    Chen, Tao; Yang, Sha; Chai, Jinsong; Song, Yongbo; Fan, Jiqiang; Rao, Bo; Sheng, Hongting; Yu, Haizhu; Zhu, Manzhou

    2017-01-01

    We report the first noble metal nanocluster with a formula of Au4Ag13(DPPM)3(SR)9 exhibiting crystallization-induced emission enhancement (CIEE), where DPPM denotes bis(diphenylphosphino)methane and HSR denotes 2,5-dimethylbenzenethiol. The precise atomic structure is determined by x-ray crystallography. The crystalline state of Au4Ag13 shows strong luminescence at 695 nm, in striking contrast to the weak emission of the amorphous state and hardly any emission in solution phase. The structural analysis and the density functional theory calculations imply that the compact C–H⋯π interactions significantly restrict the intramolecular rotations and vibrations and thus considerably enhance the radiative transitions in the crystalline state. Because the noncovalent interactions can be easily modulated via varying the chemical environments, the CIEE phenomenon might represent a general strategy to amplify the fluorescence from weakly (or even non-) emissive nanoclusters. PMID:28835926

  17. Advanced materials interfaces

    USDA-ARS?s Scientific Manuscript database

    Silver nanoclusters (AgNCs) are known for their ultra small size and unique optical and chemical properties. Despite extensive studies of AgNCs for biomedical applications, previous research on their use as antimicrobials for food applications is very limited. This research focused on incorporating ...

  18. A molecular beacon based on DNA-templated silver nanoclusters for the highly sensitive and selective multiplexed detection of virulence genes.

    PubMed

    Han, Dan; Wei, Chunying

    2018-05-01

    In this work, we develop a fluorescent molecular beacon based on the DNA-templated silver nanoclusters (DNA-Ag NCs). The skillfully designed molecular beacon can be conveniently used for detection of diverse virulence genes as long as the corresponding recognition sequences are embedded. Importantly, the constructed detection system allows simultaneous detection of multiple nucleic acids, which is attributed to non-overlapping emission spectra of the as-synthesized silver nanoclusters. Based on the target-induced fluorescence enhancement, three infectious disease-related genes HIV, H1N1, and H5N1 are detected, and the corresponding detection limits are 3.53, 0.12 and 3.95nM, respectively. This design allows specific, versatile and simultaneous detection of diverse targets with easy operation and low cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters.

    PubMed

    Chen, Xi; Essner, Jeremy B; Baker, Gary A

    2014-08-21

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.

  20. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-08

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.

  1. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-02-07

    We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ∼2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ∼800 nm for Ag29(DHLA)12 is higher than 10(4) GM and the hyperpolarizability is 106 × 10(-30) esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties.

  2. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei

    2014-08-01

    Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple

  3. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances.

    PubMed

    Ran, Xiang; Wang, Zhenzhen; Zhang, Zhijun; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2016-01-11

    We display a nucleic acid controlled AgNC platform for latent fingerprint visualization. The versatile emission of aptamer-modified AgNCs was regulated by the nearby DNA regions. Multi-color images for simultaneous visualization of fingerprints and exogenous components were successfully obtained. A quantitative detection strategy for exogenous substances in fingerprints was also established.

  4. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 - 5, 147) and monometallic Au and Ag low-energy surfaces*

    NASA Astrophysics Data System (ADS)

    Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.

    2018-02-01

    Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7

  5. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    PubMed

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    DTIC Science & Technology

    2016-01-13

    excess Au salt. The purified sample was lyophilized and resuspended at a concentration of 10 mg/mL in ultrapure water . BSA ( PDB :3v03) 100 % α...effect of scaffold protein secondary structure on the pressure response of protein-stabilized gold nanoclusters (P:NCs). These studies were...demonstrate that the pressure response of P:NCs is indeed dependent on the secondary structure of the protein. Proteins with high beta sheet content

  7. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Linxiao; Shang, Li; Nienhaus, G. Ulrich

    2013-01-01

    We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded

  8. Microwave-Assisted Synthesis of Red-Light Emitting Au Nanoclusters with the Use of Egg White

    ERIC Educational Resources Information Center

    Tian, Jinghan; Yan, Lei; Sang, Aohua; Yuan, Hongyan; Zheng, Baozhan; Xiao, Dan

    2014-01-01

    We developed a simple, cost-effective, and eco-friendly method to synthesize gold nanoclusters (AuNCs) with red fluorescence. The experiment was performed using HAuCl[subscript 4], egg white, Na[subscript 2]CO[subscript 3] (known as soda ash or washing soda), and a microwave oven. In our experiment, fluorescent AuNCs were prepared within a…

  9. Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espiau de Lamaestre, R.; Fontainebleau Research Center, Corning SA, 77210 Avon; Bea, H.

    2007-11-15

    The synthesis of Ag nanoclusters in soda lime silicate glasses and silica was studied by optical absorption and electron spin resonance experiments under both low (gamma ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution--notably via their interaction with defects--are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: Irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolvedmore » noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which, in turn, leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence but also--and primarily--on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag{sup +} to Ag{sup 0}) as compared to gamma photon irradiation.« less

  10. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters.

    PubMed

    Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei

    2014-09-07

    Ultra-small metallic nanoparticles, or so-called "nanoclusters" (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.

  11. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  12. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  13. Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione.

    PubMed

    Ghosh, Catherine; Mondal, Tridib; Bhattacharyya, Kankan

    2017-05-15

    Effect of gold nanoclusters (Au-NCs) on the circular dichroism (CD) spectra and enzymatic activity of α-chymotrypsin (ChT) (towards hydrolysis of a substrate, N-succinyl-l-phenylalanine p-nitroanilide) are studied. The CD spectra indicate that on binding to Au-NC, ChT is completely unfolded, resulting in nearly zero ellipticity. α-chymotrypsin (ChT) coated gold nano-clusters exhibit almost no enzymatic activity. Addition of glutathione (GSH) or oxidized glutathione (GSSG) restore the enzyme activity of α-chymotrypsin by 30-45%. ChT coated Au-NC exhibits two emission maxima-one at 480nm (corresponding to Au 10 ) and one at 640nm (Au 25 ). On addition of glutathione (GSH) or oxidized glutathione (GSSG) the emission peak at 640nm vanishes and only one peak at 480nm (Au 10 ) remains. MALDI mass spectrometry studies suggest addition of glutathione (GSH) to α-chymotrypsin capped Au-NCs results in the formation of glutathione-capped Au-NCs and α-chymotrypsin is released from Au-NCs. CD spectroscopy indicates that the conformation of the released α-chymotrypsin is different from that of the native α-chymotrypsin. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    PubMed

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster.

    PubMed

    Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M

    2016-01-18

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua

    2018-05-01

    Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.

  17. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu; Dai, Qilin

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  18. PET and NIR Optical Imaging Using Self-Illuminating 64Cu-Doped Chelator-Free Gold Nanoclusters

    PubMed Central

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-01-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster (64Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide 64Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. 64Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, 64Cu-doped AuNCs showed high tumor uptake (14.9%ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. PMID:25224367

  19. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters.

    PubMed

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-12-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster ((64)Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide (64)Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. (64)Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, (64)Cu-doped AuNCs showed high tumor uptake (14.9 %ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. Published by Elsevier Ltd.

  20. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction

    NASA Astrophysics Data System (ADS)

    Fernández-Ujados, Mónica; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-12-01

    A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g. stored at pH 3-12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications.

  2. Programmable Modulation of Copper Nanoclusters Electrochemiluminescence via DNA Nanocranes for Ultrasensitive Detection of microRNA.

    PubMed

    Zhou, Ying; Wang, Haijun; Zhang, Han; Chai, Yaqin; Yuan, Ruo

    2018-03-06

    The DNA nanocrane with functionalized manipulator and fixed-size base offered a programmable approach to modulate the luminous efficiency of copper nanoclusters (Cu NCs) for achieving remarkable electrochemiluminescence (ECL) enhancement, further the Cu NCs as signal label was constructed in biosensor for ultrasensitive detection of microRNA-155. Herein, the DNA nanocrane was first constructed by combining binding-induced DNA assembly as manipulator and tetrahedral DNA nanostructure (TDN) as base, which harnessed a small quantity of specific target (microRNA (miRNA)-155) binding to trigger assembly of separate DNA components for producing numerous AT-rich double-stranded DNA (dsDNA) on the vertex of TDN. Upon the incubation of Cu 2+ on the AT-rich dsDNA, each DNA-stabilized Cu NCs probe could be in situ electrochemically generated on an individual TDN owing to the A-Cu 2+ -T bond. Thus, the generation of Cu NCs was highly regulated with AT-rich dsDNA as the template, and its lateral distance was tuned by the TDN size, which were two key factors to influence the luminous efficiency of Cu NCs. By coordinate modulation, the detection limit of the ultrasensitive biosensor for miRNA-155 down to 36 aM and the programmable modulation strategy paved the way for comprehensive applications of DNA nanomachines and metal nanoclusters in biosensing and clinical diagnosis.

  3. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    PubMed

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  4. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  5. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  6. A thermochromic silver nanocluster exhibiting dual emission character

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Qing; Dong, Xi-Yan; Huang, Ren-Wu; Li, Bo; Zang, Shuang-Quan; Mak, Thomas C. W.

    2015-01-01

    A Ag12(SCH2C10H7)6(CF3CO2)6(CH3CN)6 (1) nanocluster modified using naphthalen-2-yl-methanethiol was synthesized and structurally characterized by single crystal X-ray analysis. The targeted luminescent nanocluster displays dual emission with the property of reversible thermochromism spanning from red to bright yellow.A Ag12(SCH2C10H7)6(CF3CO2)6(CH3CN)6 (1) nanocluster modified using naphthalen-2-yl-methanethiol was synthesized and structurally characterized by single crystal X-ray analysis. The targeted luminescent nanocluster displays dual emission with the property of reversible thermochromism spanning from red to bright yellow. Electronic supplementary information (ESI) available: Experimental section and supporting Fig. S1-S6. CCDC 1004246. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr05122j

  7. Mechanistic insights into the photocatalytic properties of metal nanocluster/graphene ensembles. Examining the role of visible light in the reduction of 4-nitrophenol.

    PubMed

    Koklioti, Malamatenia A; Skaltsas, Theodosis; Sato, Yuta; Suenaga, Kazu; Stergiou, Anastasios; Tagmatarchis, Nikos

    2017-07-13

    Metal nanoclusters (M NCs ) based on silver and gold, abbreviated as Ag NCs and Au NCs , respectively, were synthesized and combined with functionalized graphene, abbreviated as f-G, forming novel M NC /f-G ensembles. The preparation of M NCs /f-G was achieved by employing attractive electrostatic interactions developed between negatively charged M NCs , attributed to the presence of carboxylates due to α-lipoic acid employed as a stabilizer, and positively charged f-G, attributed to the presence of ammonium units as addends. The realization of M NC /f-G ensembles was established via titration assays as evidenced by electronic absorption and photoluminescence spectroscopy as well as scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX) spectroscopy analyses. Photoinduced charge-transfer phenomena were inferred within M NCs /f-G, attributed to the suppression of M NC photoluminescence by the presence of f-G. Next, the M NC /f-G ensembles were successfully employed as proficient catalysts for the model reduction of 4-nitrophenol to the corresponding 4-aminophenol as proof for the photoinduced hydrogen production. Particularly, the reduction kinetics decelerated by half when bare M NCs were employed vs. the M NC /f-G ensembles, highlighting the beneficial role of M NCs /f-G in catalysing the process. Furthermore, Au NCs /f-G displayed exceptionally higher catalytic activity both in the dark and under visible light illumination conditions, which is ascribed to three synergistic mechanisms, namely, (a) hydride transfer from Au-H, (b) hydride transfer from photogenerated Au-H species, and (c) hydrogen produced by the photoreduction of water. Finally, recycling and re-employing M NCs /f-G in successive catalytic cycles without loss of activity toward the reduction of 4-nitrophenol was achieved, thereby highlighting their wider applicability.

  8. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  9. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters.

    PubMed

    Wu, Di; Qi, Wenjing; Liu, Chun; Zhang, Qing

    2017-04-01

    A "turn-on" fluorescent sensor for ozone using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer was developed. The spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine (IDS) was utilized. Ozone cleaves C = C bond of IDS and suppresses energy transfer from BSA-Au NCs to IDS. Therefore, this proposed fluorescent sensor is a "turn-on" detection motif. It is the first application of fluorescent nanoclusters in sensitively detecting ozone from 0.2 to 12 μM with the limit of detection of 35 nM (the volume of 500 μL, 1.68 ppb). The proposed fluorescent sensor for ozone is more sensitive and faster (within 2 min) than most methods and is with good selectivity for ozone detection against other reactive oxygen species, reactive nitrogen, or metallic ions. Besides, the proposed method is also utlized in ozone detection in ambient air by monitoring 1 h (60 min) in Qijiang district in Chongqing city. The average of concentration of ozone in ambient air ranges from 44.97 to 52.85 μg/m 3 . The results are compared with the automatic monitoring data provided by Qijiang Environmental Monitoring Station and the relative deviations range, respectively, from 2.1 to 5.6%, which suggests that it is a promising fluorescent sensor for ozone in ambient air. This study not only develops a new model of energy transfer motif using BSA-Au NCs as donor and IDS as acceptor but also expands the application of BSA-Au NCs in environmental science. Graphical abstract A "turn-on" fluorescent sensor for ozone detection using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer is developed. It is the first time to utilize spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine and to achieve fast, sensitive, and selective ozone detection with a limit of detection of down to 35 nM (the volume of 500 μL, 1.68 ppb).

  10. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    NASA Astrophysics Data System (ADS)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a

  11. Linear and Nonlinear Optical Response in Silver Nanoclusters: Insight from a Computational Investigation (Postprint)

    DTIC Science & Technology

    2016-01-05

    applying DFT and TDDFT. Synthesis and optical characterization of the silver glutathione nanoclusters Ag32(SG)19 and Ag15(SG)11 were recently reported by...Ag15. Synthesis and optical characterization of the Ag32(SG)19, Ag31(SG)19, and Ag15(SG)11 silver glutathione nanoclusters have been reported.19,20 A...Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. P. Ultrastable Silver Nanoparticles . Nature

  12. High-performance liquid chromatographic analysis of as-synthesised N,N'-dimethylformamide-stabilised gold nanoclusters product

    NASA Astrophysics Data System (ADS)

    Xie, Shunping; Paau, Man Chin; Zhang, Yan; Shuang, Shaomin; Chan, Wan; Choi, Martin M. F.

    2012-08-01

    Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands.Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of

  13. Nano-bio assemblies for artificial light harvesting systems

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Maity, Subarna; Patra, Amitava

    2018-02-01

    Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.

  14. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  15. Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs.

    PubMed

    Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng

    2015-06-16

    A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Outstanding features of Cu-doped ZnS nanoclusters

    NASA Astrophysics Data System (ADS)

    Tawfik, Wael Z.; Farghali, A. A.; Moneim, Ahmed; Imam, N. G.; El-Dek, S. I.

    2018-05-01

    ZnS and their Cu-doped nanoclusters (NCs) were synthesized successfully using the wet chemical route with different Cu content. The crystalline structure was investigated using x-ray powder diffraction which assured the single-phase formation in cubic symmetry. High-resolution transmission electron microscope indicated the microstructure of NCs with a size ranging from 2–4 nm. A butterfly hysteresis (M-H) loop was observed at room temperature with large values of coercivity for the Cu content of x = 0.05. Photoluminescence emission spectra were recorded from 500–615 nm for pure and Cu-doped ZnS NCs at a 350 nm excitation wavelength. The sample exhibited green fluorescence bands peaking at 535, 544, 552.5, 558.2, and 560.6 nm, which confirmed the characteristic feature of Zn2+ as luminescent centers in the lattice. The additional yellow and orange emissions are due to defect levels or/and impurity centers. The dielectric constant as well as the conductivity values increased with increasing Cu content.

  17. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.

    PubMed

    He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun

    2018-03-14

    Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.

  18. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets.

    PubMed

    Zhang, Yunyi; Li, Yongxin; Zhang, Cuiyun; Zhang, Qingfeng; Huang, Xinan; Yang, Meiding; Shahzad, Sohail Anjum; Lo, Kenneth Kam-Wing; Yu, Cong; Jiang, Shichun

    2017-08-01

    A fluorescence turn-on assay for alkaline phosphatase (ALP) activity is developed through the controlled release of polyethyleneimine-capped copper nanoclusters (PEI-capped CuNCs) from the MnO 2 nanosheets. In an aqueous solution, the positively charged PEI-capped CuNCs could be adsorbed onto the surface of the negatively charged MnO 2 nanosheets. Such adsorption through favorable electrostatic interactions could efficiently quench the nanocluster fluorescence emission via resonance energy transfer from the PEI-capped CuNCs to the MnO 2 nanosheets. 2-Phospho-L-ascorbic acid (AAP) could be hydrolyzed to L-ascorbic acid (AA) in the presence of ALP. AA could reduce MnO 2 into Mn 2+ and trigger the disintegration of the MnO 2 nanosheets. As a result, the CuNCs were released and the quenched fluorescence was recovered efficiently. The detection strategy is simple, inexpensive, sensitive, selective, with low toxicity, and has better biocompatibility. The newly fabricated biosensor for ALP activity will potentially make it a robust candidate for numerous biological and biomedical applications.

  19. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  20. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    NASA Astrophysics Data System (ADS)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  1. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    PubMed

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    PubMed

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  3. Dextran-encapsulated photoluminescent gold nanoclusters: synthesis and application

    NASA Astrophysics Data System (ADS)

    Chiu, Wei-Ju; Chen, Wei-Yu; Lai, Hong-Zheng; Wu, Ching-Yi; Chiang, Hsiang-Lin; Chen, Yu-Chie

    2014-07-01

    Dextrans are widely used as additives in food, pharmaceutical, and cosmetics because of their hydrophilicity, biocompatibility, and low toxicity. These features allow the use of dextrans to modify the surface of nanoparticles to improve cell compatibility for biomedical applications. Additionally, dextran molecules covalently bound with fluorescent dyes are frequently used as tracers in animal studies. These facts show that dextrans are useful compounds for biomedicine-related applications and research. Our aim was to explore a facile way to generate dextran-derived nanoparticles with photoluminescent property for the use in fluorescence imaging of bacteria and cancer cells. Dextran-encapsulated gold nanoclusters (AuNCs@dextran) were generated through a one-pot reaction by stirring dextrans and aqueous tetrachloroauric acid overnight. The generated AuNCs exhibit bright and green photoluminescence under the illumination of an ultraviolet lamp ( λ max = 365 nm), and high cell biocompatibility was found as well. Therefore, the generated AuNCs can be used as fluorescence tracers and nanoprobes. We explored the suitability of AuNCs@dextran as labeling agents for bacteria, such as Staphylococcus aureus and Escherichia coli. After the bacteria were labeled by AuNCs@dextran, they became quite visible under a fluorescence microscope. Additionally, we demonstrated that nanocomposites composed of AuNCs@dextran and silica beads can be readily internalized by cancer cells. The nanocomposites can be readily detected in the cells through their photoluminescence, suggesting possible applications in drug delivery and fluorescence imaging.

  4. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    NASA Astrophysics Data System (ADS)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  5. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    PubMed

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Wang, Qi; Mao, Guoming; Liu, Hao; Yu, Rongdi; Ren, Xiaomin

    2018-04-01

    Periodic Ag nanocluster arrays for surface enhanced Raman spectroscopy (SERS) were fabricated through magnetron sputtering Ag over a large-area monolayer template which is based on silica (SiO2) nanospheres. High-density nanogaps between the adjacent Ag nanoclusters acted as "hot-spots", making a dominant contribution to the high-performance SERS detection. Moreover, the nanospheres and Ag nanoclusters effectively increased the surface roughness and also enlarged the surface area of as-obtained SERS substrate, which resulted in a further enhancement in Raman signals. As-prepared SERS substrates showed very high sensitivity with the enhancement factor (EF) value of 4.1 × 1012 for Rhodamine 6G (R6G), allowing the corresponding detection limit as low as 10-16 M. Additionally, SERS signal of melamine was still strong even though its concentration was lowered to 10-7 M. Our results show that preparing highly sensitive SERS substrate with periodic Ag nanoclusters over SiO2 nanosphere template is a convenient and promising pathway for chemical and biologic sensing.

  7. Albumin-stabilized fluorescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Sych, Tomash; Polyanichko, Alexander; Kononov, Alexei

    2017-07-01

    Ligand-stabilized Ag nanoclusters (NCs) possess many attractive features including high fluorescence quantum yield, large absorption cross-section, good photostability, large Stokes shift and two-photon absorption cross sections. While plenty of fluorescent clusters have been synthesized on various polymer templates, only a few studies have been reported on the fluorescent Ag clusters on peptides and proteins. We study silver NCs synthesized on different protein matrices, including bovine serum albumin, human serum albumin, egg albumin, equine serum albumin, and lysozyme. Our results show that red-emitting Ag NCs can effectively be stabilized by the disulfide bonds in proteins and that the looser structure of the denatured protein favors formation of the clusters.

  8. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.

    PubMed

    Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li

    2018-05-15

    Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid

    PubMed Central

    Govindaraju, Saravanan; Ankireddy, Seshadri Reddy; Viswanath, Buddolla; Kim, Jongsung; Yun, Kyusik

    2017-01-01

    Since the last two decades, protein conjugated fluorescent gold nanoclusters (NCs) owe much attention in the field of medical and nanobiotechnology due to their excellent photo stability characteristics. In this paper, we reported stable, nontoxic and red fluorescent emission BSA-Au NCs for selective detection of L-dopamine (DA) in cerebrospinal fluid (CSF). The evolution was probed by various instrumental techniques such as UV-vis spectroscopy, High resolution transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL). The synthesised BSA-Au NCs were showing 4–6 nm with high fluorescent ~8% Quantum yield (QY). The fluorescence intensity of BSA-Au NCs was quenched upon the addition of various concentrations of DA via an electron transfer mechanism. The decrease in BSA-Au NCs fluorescence intensity made it possible to determine DA in PBS buffer and the spiked DA in CSF in the linear range from 0 to 10 nM with the limit of detection (LOD) 0.622 and 0.830 nM respectively. Best of our knowledge, as-prepared BSA-Au NCs will gain possible strategy and good platform for biosensor, drug discovery, and rapid disease diagnosis such as Parkinson’s and Alzheimer diseases. PMID:28067307

  10. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    PubMed

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  11. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  12. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks

    DOE PAGES

    Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; ...

    2014-08-25

    A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH 2, this catalyst (Pd@UiO-66-NH 2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found thatmore » alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. As a result, we further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.« less

  13. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  14. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior.

    PubMed

    Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo

    2009-07-07

    This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.

  15. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giantmore » magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and

  16. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline.

    PubMed

    Yang, Xiaoming; Zhu, Shanshan; Dou, Yao; Zhuo, Yan; Luo, Yawen; Feng, Yuanjiao

    2014-05-01

    Tetracycline and Eu(3+), while coexisting, usually appear as a complex by chelating. This complex shows low fluorescence intensity, leading to its limitation of analytical goals. Gold nanoclusters (AuNCs), emerging as novel nano-material, are attracting increasing attentions in multiple fields. Herein, gold nanoclusters first function as a fluorescence-enhanced reagent rather than a conventional fluorescent-probe, and a dramatic enhanced-fluorescence system was built based on Eu(3+)-Tetracycline complex (EuTC) by introducing gold nanoclusters. Simultaneously, three types of gold nanoclusters were employed for exploring various conditions likely affecting the system, which demonstrate that no other gold nanoclusters than DNA-templated gold nanoclusters enormously caused fluorescence-enhancement of EuTC. Moreover, this enhanced-fluorescence system permitted available detection of tetracycline (TC) in a linear range of 0.01-5 μM, with a detection limit of 4 nM at a signal-to-noise ratio of 3. Significantly, the practicality of this method for detection of TC in human urine and milk samples was validated, demonstrating its advantages of simplicity, sensitivity and low cost. Interestingly, this system described here is probably promising for kinds of applications based on its dramatically enhanced-fluorescence. © 2013 Published by Elsevier B.V.

  17. Strain effect on the photoluminescence property of gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Saravanan, K.; David, C.; Jayalakshmi, G.; Panigrahi, B. K.; Avasthi, D. K.

    2018-02-01

    Herein, we report the temperature-dependent photoluminescence (PL) properties of Au nanoclusters (NCs) embedded in a Si matrix. Gold NCs have been synthesized in Si by a multistep procedure that involves ion implantation and gold decoration by drive in annealing. Transmission electron microscopic studies reveal profuse nucleation of Au NCs, with mean sizes of ˜8 nm in the near-surface region. PL measurements in the range of 2 eV to 3.65 eV were carried out in the temperature range of 5 K to 300 K. The Au NCs exhibit PL emissions at 3 eV and 2.5 eV; these are attributed to the recombination of sp-band electrons with the holes of a deep lying d-band below the Fermi level in the vicinity of the L symmetry point of the Brillouin zone and the recombination of sp band electrons with the holes of the first d band below the Fermi level in the vicinity of the X symmetry point of the Brillouin zone, respectively. Temperature-dependent PL measurements show that the PL intensity of Au NCs initially decreases with the increase of temperature up to 50 K, and, thereafter, the intensity starts to increase and reaches a maximum at 150 K. A further increase in temperature causes the intensity to decrease. However, the PL intensity of Au NCs embedded in a sapphire matrix monotonically decreases with the increase of temperature. The present work discusses the plausible mechanism behind this unusual PL behaviour by invoking the role of strain at the NC-matrix interface.

  18. Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H2O2

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Zhong, Dan; Zhou, Zinan; Yang, Xiaoming

    2015-11-01

    Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material.Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising

  19. Surface-confined fluorescence enhancement of Au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging

    NASA Astrophysics Data System (ADS)

    Tian, Rui; Yan, Dongpeng; Li, Chunyang; Xu, Simin; Liang, Ruizheng; Guo, Lingyan; Wei, Min; Evans, David G.; Duan, Xue

    2016-05-01

    Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling.Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC

  20. Cellular Uptake and Tissue Biodistribution of Functionalized Gold Nanoparticles and Nanoclusters.

    PubMed

    Escudero-Francos, María A; Cepas, Vanesa; González-Menédez, Pedro; Badía-Laíño, Rosana; Díaz-García, Marta E; Sainz, Rosa M; Mayo, Juan C; Hevia, David

    2017-02-01

    In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments. Neither morphological damage nor modifications to the cell cycle and doubling time were detected after contact with nanoparticles. Associations between cells and AuNPs and AuNCs were demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). AuNCs@GSH exhibited fluorescence emission at 611 nm, whereas AuNCs@BSA showed a band at 640 nm. These properties were employed to confirm their associations with cells by fluorescence confocal microscopy; both clusters were observed in cells and maintained their original fluorescence. In vivo assays were performed using 9 male mice treated with 1.70 μg Au/g body weight gold nanoparticles for 24 h. ICP-MS measurements showed a different biodistribution for each type of nanoparticle; AuNPs-MUA mainly accumulated in the brain, AuNCs@GSH in the kidney, and AuNCs@BSA in the liver and spleen. Spleen indexes were not affected by nanoparticle treatment; however, AuNCs@BSA increased the thymus index significantly from 1.28 to 1.79, indicating an immune response. These nanoparticles have great potential as organ-specific drug carriers and for diagnosis, photothermal therapy, and imaging.

  1. Simultaneous electrochemical detection of dopamine and uric acid over ceria supported three dimensional gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Palanisamy, Sivakumar

    2014-12-01

    CeO2 is well known for being an active material to support the growth of Au nanoclusters (Au NCs). In this work, three dimensional (3D) Au NCs were deposited on three different shaped CeO2 nanostructures such as nanoparticles (NPs), nanorod arrays (NRAs) and nanoflowers (NFs) modified Ti substrate for electrochemical simultaneous detection of dopamine (DA) and uric acid (UA). The electrodeposition of 3D Au NCs were carried out via cyclic voltammetric (CV) method at over-potential, while CeO2 nanostructures were deposited by galvanostatic constant current method under the optimized conditions. The morphology and elemental composition analysis of 3D Au NCs with CeO2 nanostructures were characterized by SEM, XRD, XPS and EDAX measurements. The electrocatalytic activity of 3D Au NCs on different CeO2 supports were thoroughly investigated by using voltammetric and amperometric techniques. According to the obtained results, CeO2 NPs supported 3D Au NCs (3D Au NCs@CeO2 NPs) displayed strong signal for DA as compared to that of CeO2 NRAs (3D Au NCs@CeO2 NRAs) and CeO2 NFs supported 3D Au NCs (3D Au NCs@CeO2 NFs). In addition, the 3D Au NCs@CeO2 NPs electrode resulted in more sensitive and simultaneous detection of DA in the presence of excess UA. Thus, the 3D Au NCs@CeO2 NPs electrode can practically be applied for the detection of DA using biological samples.

  2. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  3. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    PubMed

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  4. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters.

    PubMed

    Dai, Haichao; Shi, Yan; Wang, Yilin; Sun, Yujing; Hu, Jingting; Ni, Pengjuan; Li, Zhuang

    2014-03-15

    In this work, we proposed a facile, environmentally friendly and cost-effective assay for melamine with BSA-stabilized gold nanoclusters (AuNCs) as a fluorescence reader. Melamine, which has a multi-nitrogen heterocyclic ring, is prone to coordinate with Hg(2+). This property causes the anti-quenching ability of Hg(2+) to AuNCs through decreasing the metallophilic interaction between Hg(2+) and Au(+). By this method, detection limit down to 0.15 µM is obtained, which is approximately 130 times lower than that of the US food and Drug Administration estimated melamine safety limit of 20 µM. Furthermore, several real samples spiked with melamine, including raw milk and milk powder, are analyzed using the sensing system with excellent recoveries. This gold-nanocluster-based fluorescent method could find applications in highly sensitive detection of melamine in real samples. © 2013 Elsevier B.V. All rights reserved.

  5. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

    PubMed

    Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje

    2017-05-03

    Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

  6. Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging.

    PubMed

    Wang, Chan; Yao, Yagang; Song, Qijun

    2016-04-01

    The copper nanoclusters (CuNCs) offer excellent potential as functional biological probes due to their unique photoluminescence (PL) properties. Herein, CuNCs capped with hyperbranched polyethylenimine (PEI) were prepared by the interfacial etching approach. The resultant PEI-CuNCs exhibited good dispersion and strong fluorescence with high quantum yields (QYs, up to 7.5%), which would be endowed for bioimaging system. By changing the reaction temperatures from 25 to 150 °C, the size of PEI-CuNCs changed from 1.8 to 3.5 nm, and thus tunable PL were achieved, which was confirmed by transmission electron microscopy (TEM) imagings and PL spectra. Besides, PEI-CuNCs had smart absorption characteristics that the color changes from colorless to blue with changing the pH value from 2.0 to 13.2, and thus they could be used as color indicator for pH detection. In addition, the PEI-CuNCs exhibited good biocompatibility and low cytotoxicity to 293T cells through MTT assay. Owing to the positively charged of PEI-CuNCs surface, they had the ability to capture DNA, and the PEI-CuNCs/DNA complexes could get access to cells for efficient gene expression. Armed with these attractive properties, the synthesized PEI-CuNCs are quite promising in biological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Shen, Danjin; Henry, Maxime; Trouillet, Vanessa; Comby-Zerbino, Clothilde; Bertorelle, Franck; Sancey, Lucie; Antoine, Rodolphe; Coll, Jean-Luc; Josserand, Véronique; Le Guével, Xavier

    2017-05-01

    Gold nanoclusters (Au NCs) are an emerging type of theranostic agents combining therapeutic and imaging features with reduced toxicity. Au NCs stabilized by a zwitterion ligand with a fine control of the metal core size and the ligand coverage were synthesized by wet chemistry. Intense fluorescence signal is reported for the highest ligand coverage, whereas photoacoustic signal is stronger for the largest metal core. The best Au NC candidate with an average molecular weight of 17 kDa could be detected with high sensitivity on a 2D-near-infrared imaging instrument (limit of detection (LOD) = 2.3 μ M ) and by photoacoustic imaging. In vitro and in vivo experiments demonstrate an efficient cell uptake in U87 cell lines, a fast renal clearance (t1 /2 α = 6.5 ± 1.3 min), and a good correlation between near infrared fluorescence and photoacoustic measurements to follow the early uptake of Au NCs in liver.

  8. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution.

    PubMed

    Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-10-17

    Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV-vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg(2+) on the basis of the interactions between Hg(2+) and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg(2+) in a linear range of 1.0×10(-7) mol L(-1)×10(-3) mol L(-1), with a detection limit of 2.4×10(-8) mol L(-1) at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Bovine Serum Albulmin Protein-Templated Silver Nanocluster (BSA-Ag13 ): An Effective Singlet Oxygen Generator for Photodynamic Cancer Therapy.

    PubMed

    Yu, Yong; Geng, Junlong; Ong, Edward Yong Xi; Chellappan, Vijila; Tan, Yen Nee

    2016-10-01

    This paper reports a novel synthesis approach of bovine serum albumin (BSA) protein-templated ultrasmall (<2 nm) Ag nanocluster (NC) with strong singlet oxygen generation capacity for photodynamic therapy (PDT). An atomically precise BSA-Ag 13 NC (i.e., 13 Ag atoms per cluster) is successfully synthesized for the first time by using NaOH-dissolved NaBH 4 solution as the controlling reducing agent. The ubiquitous size of BSA-Ag 13 NC results in unique behaviors of its photoexcited states as characterized by the ultrafast laser spectroscopy using time-correlated single photon counting and transient absorption techniques. In particular, triply excited states can be largely present in the excited BSA-Ag 13 NC and readily sensitized molecular oxygen to produce singlet oxygen ( 1 O 2 ) with a high quantum efficiency (≈1.26 using Rose Bengal as a standard). This value is much higher than its Au analogue (i.e., ≈0.07 for BSA-Au 25 NC) and the commonly available photosensitizers. Due to the good cellular uptake and inherent biocompatibility imparted by the surface protein, BSA-Ag 13 NC can be applied as an effective PDT agent in generating 1 O 2 to kill cancer cell as demonstrated in this study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Switchable DNA wire: deposition-stripping of copper nanoclusters as an "ON-OFF" nanoswitch.

    PubMed

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-19

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the "ON-OFF" switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an "ON-OFF" nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an "ON-OFF" state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further.

  11. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1.

    PubMed

    Luo, Yawen; Miao, Hong; Yang, Xiaoming

    2015-11-01

    Glutathione (GSH), playing roles as both a reducing reagent and protecting ligand, has been successfully employed for synthesizing Cu nanoclusters (CuNCs@GSH) on the basis of a simple and facile approach. The as-prepared CuNCs exhibited a fluorescence emission at 600nm with a quantum yield (QY) of approximately 3.6%. Subsequently, the CuNCs described here was employed as a broad-range pH sensor by virtue of the fluorescence intensity of CuNCs responding sensitively to pH fluctuating in a linear range of 4.0-12.0. Meanwhile, these prepared CuNCs were applied for detections of vitamin B1 (VB1) on the basis of positively charged VB1 neutralizing the negative surface charge of CuNCs, thus leading to the instability and aggregations of CuNCs, and further facilitating to quench their fluorescence. In addition, the proposed analytical method permitted detecting VB1 with a linear range of 2.0×10(-8)-1.0×10(-4) mol L(-1) as well as a detection limit of 4.6×10(-9) mol L(-1). Eventually, the practicability of this sensing approach was validated by assaying VB1 in human urine samples and pharmaceutical tablets, confirming its potential to broaden avenues for assaying VB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula

    NASA Astrophysics Data System (ADS)

    Kalaiyarasan, Gopi; K, Anusuya; Joseph, James

    2017-10-01

    Companies processing the milk for the further production of powdered infant formulation normally check the protein level through a test measuring nitrogen content. The addition of melamine which is a nitrogen-rich organic chemical in milk increases the nitrogen content and therefore enhances its apparent protein content. However, the melamine causes kidney failure and death owing to the formation of kidney stone. Thus the determination of melamine in humans and milk products have gained great significance in recent years. The gold nanoclusters (AuNCs) have attracting features due to its unique electronic and optical properties like fluorescence nature. Therefore one can use AuNCs in the field of biosensor, bio-imaging, nanobiotechnology, drug delivery, diagnosis etc. We report, a new ratiometric nanosensor established for the selective and sensitive detection of melamine based optical sensing using glutathione stabilized AuNCs. The AuNCs were characterized by high-resolution transmission electron microscopy (HR-TEM), UV-visible and Photoluminescence (PL) spectroscopic techniques. In the presence of melamine, the PL intensity at 430 nm increases owing to the (turn-on) enhancement in fluorescence, whereas PL intensity at 610 nm decreases due to the melamine-induced aggregation and subsequent aggregation-enhanced emission quenching. The observed changes were ascribed to the hydrogen bonding interaction between melamine and AuNCs, which led to the aggregation of the nanoclusters. This was confirmed by dynamic light scattering and HR-TEM measurements. The present probe showed an extreme selectivity towards the determination of 28.2 μM melamine in the presence of 100-fold excess of common interfering molecules such as Alanine, Glycine, Glucose, Cystine etc. The proposed method was successfully applied to determine melamine in cow milk.

  13. Trends and Advances in Electrochemiluminescence Nanobiosensors

    PubMed Central

    Rizwan, Mohammad; Mohd-Naim, Noor Faizah

    2018-01-01

    The rapid and increasing use of the nanomaterials (NMs), nanostructured materials (NSMs), metal nanoclusters (MNCs) or nanocomposites (NCs) in the development of electrochemiluminescence (ECL) nanobiosensors is a significant area of study for its massive potential in the practical application of nanobiosensor fabrication. Recently, NMs or NSMs (such as AuNPs, AgNPs, Fe3O4, CdS QDs, OMCs, graphene, CNTs and fullerenes) or MNCs (such as Au, Ag, and Pt) or NCs of both metallic and non-metallic origin are being employed for various purposes in the construction of biosensors. In this review, we have selected recently published articles (from 2014–2017) on the current development and prospects of label-free or direct ECL nanobiosensors that incorporate NCs, NMs, NSMs or MNCs. PMID:29315277

  14. Improvement of mimetic peroxidase activity of gold nanoclusters on the luminol chemiluminescence reaction by surface modification with ethanediamine.

    PubMed

    Han, Lu; Li, Ying; Fan, Aiping

    2018-06-01

    Peroxidase is a commonly used catalyst in luminol-H 2 O 2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol-H 2 O 2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol-H 2 O 2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1 O 2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Switchable DNA wire: deposition-stripping of copper nanoclusters as an “ON-OFF” nanoswitch

    PubMed Central

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-01

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the “ON-OFF” switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an “ON-OFF” nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an “ON-OFF” state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further. PMID:26781761

  16. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

    PubMed

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.

  17. Synthesis and sensing integration: A novel enzymatic reaction modulated Nanoclusters Beacon (NCB) "Illumination" strategy for label-free biosensing and logic gate operation.

    PubMed

    Hong, Lu; Zhou, Fu; Wang, Guangfeng; Zhang, Xiaojun

    2016-12-15

    A novel fluorescent label-free "turn-on" NAD(+) and adenosine triphosphate (ATP) biosensing strategy is proposed by fully exploiting ligation triggered Nanocluster Beacon (NCB). In the presence of the target, the split NCB was brought to intact, which brought the C-rich sequence and enhancer sequence in close proximity resulting in the lightening of dark DNA/AgNCs ("On" mode). Further application was presented for logic gate operation and aptasensor construction. The feasibility was investigated by Ultraviolet-visible spectroscopy (UV-vis), Fluorescence, lifetime and High Resolution Transmission Electron Microscopy (HRTEM) etc. The strategy displayed good performance in the detection of NAD(+) and ATP, with the detection limit of 0.002nM and 0.001mM, the linear range of 10-1000nM and 0.003-0.01mM, respectively. Due to the DNA/AgNCs as fluorescence reporter, the completely label-free fluorescent strategy boasts the features of simplicity and low cost, and showing little reliance on the sensing environment. Meanwhile, the regulation by overhang G-rich sequence not relying on Förster energy transfer quenching manifests the high signal-to-background ratios (S/B ratios). This method not only provided a simple, economical and reliable fluorescent NAD(+) assay but also explored a flexible G-rich sequence regulated NCB probe for the fluorescent biosensors. Furthermore, this sensing mode was expanded to the application of a logic gate design, which exhibited a high performance for not only versatile biosensors construction but also for molecular computing application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water.

    PubMed

    Jin, Lihua; Zhang, Zaihua; Tang, Anwen; Li, Cong; Shen, Yehua

    2016-05-15

    In this work, we have presented a novel strategy to utilize as-synthesized yeast extract-stabilized Cu nanoclusters (Cu NCs) for sensitive and selective detection of S(2-). The fluorescence intensity of Cu NCs was enhanced significantly in the presence of both Na2S2O8 and S(2-). By virtue of this specific response, a Cu NC-based fluorescent turn-on sensor was developed, which allows the detection of S(2-) in the range of 0.02-0.8 μM with a detection limit of 10nM. The enhancing mechanism was also discussed based on fluorescence decay, transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies, indicating that S(2-) enhanced the Cu NCs emission mainly through sulfide-induced aggregation of Cu NCs. Furthermore, we demonstrated the usability of the present approach for the detection of S(2-) in water samples, which illustrates its great potential for the environmental monitoring and water quality inspection fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mercury speciation with fluorescent gold nanocluster as a probe.

    PubMed

    Yang, Jian-Yu; Yang, Ting; Wang, Xiao-Yan; Chen, Ming-Li; Yu, Yong-Liang; Wang, Jian-Hua

    2018-05-11

    Fluorescent nanoparticles are widely used for sensing biologically significant species. However, it is rarely reported for the discrimination or speciation of metal species. In this work, we report for the first time the speciation of mercury (Hg 2+ ) and methylmercury (CH 3 Hg + ) by taking advantage of the fluorescence feature of folic acid-capped gold nanoclusters (FA-AuNCs). FA-Au NCs exhibit an average size of 2.08±0.15 nm and a maximum emission at λ ex /λ em = 280/440 nm with a quantum yield of 27.3%. It is interesting that Hg 2+ causes a significant quench on the fluorescence of FA-Au NCs, whereas CH 3 Hg + leads to a remarkable fluorescence enhancement. Based on this discriminative fluorescent response between Hg 2+ and CH 3 Hg + , a novel nanosensor for the speciation of CH 3 Hg + and Hg 2+ was developed, providing limits of detection (LOD) of 28 nM for Hg 2+ and 25 nM for CH 3 Hg + within 100-1000 nM. This sensing system is highly selective to mercury. Its practical applications were further demonstrated by the analysis of CH 3 Hg + and the speciation of mercury (CH 3 Hg + and Hg 2+ ) in environmental water and fish samples.

  20. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes.

    PubMed

    Selvaprakash, Karuppuchamy; Chen, Yu-Chie

    2017-06-15

    Ricin produced from the castor oil plant, Ricinus communis, is a well-known toxin. The toxin comprises A and B chains. Ricin A chain can cause toxicity by inhibiting protein synthesis, and ricin B can bind to the galactose ligand on the cell membrane of host cells. Inhalation or ingestion of ricin may even lead to death. Therefore, rapid and convenient sensing methods for detecting ricin in suspicious samples must be developed. In this study, we generated protein encapsulated gold nanoclusters (AuNCs@ew) with bright photoluminescence by using chicken egg white proteins as starting materials to react with aqueous tetrachloroaurate. The generated nanoclusters, which were mainly composed of chicken ovalbumin-encapsulated AuNCs, can recognize ricin B because of the presence of Galβ(1→4)GlcNAc ligands on chicken ovalbumin. The generated conjugates of AuNCs@ew and ricin B were heavy and readily settled down under centrifugation (13,000rpm, 60min). Thus, bright spots resulting from the conjugates at the bottom of the sample vials were easily visualized by the naked eye under ultraviolet light illumination. The limit of detection (LOD) was ~4.6µM. The LOD was reduced to ~400nM when fluorescence spectroscopy was used as the detection tool, while the LOD can be further improved to ~7.8nM when using matrix-assisted laser desorption/ionization mass spectrometry as the detection method. We also demonstrated the feasibility of using the proposed approach to selectively detect ricin B chain in complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission

    NASA Astrophysics Data System (ADS)

    Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan

    2015-07-01

    We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.

  2. Self-Assembly Driven Aggregation-Induced Emission of Copper Nanoclusters: A Novel Technology for Lighting.

    PubMed

    Liu, Yi; Yao, Dong; Zhang, Hao

    2018-04-18

    Because of the specific properties including HOMO-LUMO electronic transition, size-dependent fluorescent emission, and intense light absorption, metal nanoclusters (NCs) have been considered to be one of the most competitive color conversion materials in light-emitting diodes (LEDs). However, the monotonous emission color and the low emission stability and intensity of individual metal NCs strongly limit their universal application. Inspired by the concept of "aggregation-induced emission" (AIE), the utilization of highly ordered metal NC assemblies opens a door to resolve these problems. After self-assembly, the emission stability and intensity of metal NC assemblies are enhanced. At the same time, the emission color of metal NC assemblies become tunable. We termed this process as self-assembly driven AIE of metal NCs. In this review, we use Cu NCs as the example to convey the concept that the compact and ordered arrangement can efficiently improve the metal NCs' emission stability, tunability, and intensity. We first introduce the synthesis of 2D Cu NC self-assemblies and their emissions. We further summarize some of the factors that can affect the emissions of 2D Cu NC self-assemblies. We then discuss the utilization of 2D Cu NC self-assemblies as color conversion materials for LEDs. At last, we outline current challenges and our perspectives on the development of this area.

  3. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Joya, Khurram S.; Sinatra, Lutfan; Abdulhalim, Lina G.; Joshi, Chakra P.; Hedhili, M. N.; Bakr, Osman M.; Hussain, Irshad

    2016-05-01

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these

  4. Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin.

    PubMed

    You, Xiaoying; Li, Yinhuan; Li, Baoping; Ma, Jie

    2016-01-15

    A chemiluminescence resonance energy transfer (CRET) platform was developed for sensitive and label-free detection of protease by using trypsin as a model analyte. In this CRET platform, bis(2,4,6-trichlorophenyl)oxalate-hydrogen peroxide chemiluminescence (CL) reaction was utilized as an energy donor and bovine serum albumin (BSA)-stabilized gold nanoclusters (Au NCs) as an energy acceptor. The BSA-stabilized Au NCs triggered the CRET phenomenon by accepting the energy from TCPO-H2O2 CL reaction, thus producing intense CL. In the presence of trypsin, the protein template of BSA-stabilized Au NCs was digested, which frustrated the energy transfer efficiency between the CL donor and the BSA-stabilized Au NCs, leading to a significant decrease in the CL signal. The decreased CL signal was proportional to the logarithm of trypsin concentration in the range of 0.01-50.0µg mL(-1). The detection limit for trypsin was 9ng mL(-)(1) and the relative standard deviations were lesser than 3% (n=11). This Au NCs-based CRET platform was successfully applied to the determination of trypsin in human urine samples, demonstrating its potential application in clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi

    2017-06-01

    Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

  6. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites.

    PubMed

    Cheng, Yan; Chang, Yun; Feng, Yanlin; Liu, Ning; Sun, Xiujuan; Feng, Yuqing; Li, Xi; Zhang, Haiyuan

    2017-05-01

    Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO 2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. One-step synthesis of boronic acid functionalized gold nanoclusters for photoluminescence sensing of dopamine

    NASA Astrophysics Data System (ADS)

    Chen, Huide; Liu, Chunxiu; Xia, Yunsheng

    2017-03-01

    This study is the first to report one-step synthesis of boronic acid functionalized gold nanoclusters (AuNCs) using mixed ligands of 4-mercaptophenylboronic acid (MPBA) and glutathione. Furthermore, the emission color of the products can be fancily tuned from green to near-infrared by simply changing the proportion of the two stabilizers. In basic media, dopamine (DA) molecules themselves polymerize each other and form polydopamine with large amounts of cis-diol groups, which then react with boronic acid groups on the AuNC’s surface based on the formation of boronate esters. As a result, the photoluminescence of the AuNCs is well quenched by the electron transfer effect. Accordingly, DA molecules are assayed from 0.5 to 9 μM, and the detection limit is as low as 0.1 μM. The as-prepared AuNCs exhibit high selectivity; the existing biomolecules including various amino acids, ascorbic acid, uric acid, glucose, etc, do not interfere with the assay. The proposed method is successfully applied to the assay of DA in human serum, indicating its practical potential.

  8. Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu+- and Ag+-Doped CdSe Nanocrystals.

    PubMed

    Nelson, Heidi D; Hinterding, Stijn O M; Fainblat, Rachel; Creutz, Sidney E; Li, Xiaosong; Gamelin, Daniel R

    2017-05-10

    Mid-gap luminescence in copper (Cu + )-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag + )-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag + and Cu + ionization energies (∼1.5 eV), which should make hole trapping by Ag + highly unfavorable. Here, Ag + -doped CdSe NCs (Ag + :CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag + :CdSe and Cu + :CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu + :CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu + to Cu 2+ , in Ag + :CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se 2- ligands, and Ag + is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu + to Ag + . The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe 4 ] dopant clusters (M = Ag + , Cu + ). These findings reconcile the similar spectroscopies of Ag + - and Cu + -doped semiconductor NCs with the vastly different ionization potentials of their Ag + and Cu + dopants.

  9. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.

    PubMed

    Russell, B A; Jachimska, B; Komorek, P; Mulheran, P A; Chen, Y

    2017-03-08

    The study of gold nanoclusters (AuNCs) has seen much interest in recent history due to their unique fluorescence properties and environmentally friendly synthesis method using proteins as a growth scaffold. The differences in the physicochemical properties of lysozyme encapsulated AuNCs in comparison to natural lysozyme are characterised in order to determine the effects AuNCs have on natural protein behaviour. The hydrodynamic radius (dynamic light scattering), light absorbance (UV-Vis), electrophoretic mobility, relative density, dynamic viscosity, adsorption (quartz crystal microbalance) and circular dichroism (CD) characteristics of the molecules were studied. It was found that lysozyme forms small dimer/trimer aggregates upon the synthesis of AuNCs within the protein. The diameter of Ly-AuNCs was found to be 8.0 nm across a pH range of 2-11 indicating dimer formation, but larger aggregates with diameters >20 nm were formed between pH 3 and 6. The formation of larger aggregates limits the use of Ly-AuNCs as a fluorescent probe in this pH range. A large shift in the protein's isoelectric point was also observed, shifting from 11.0 to 4.0 upon AuNC synthesis. This resulted in major changes to the adsorption characteristics of lysozyme, observed using a QCM. A monolayer of 8 nm was seen for Ly-AuNCs at pH 4, offering further evidence that the proteins form small aggregates, unlike the natural monomer form of lysozyme. The adsorption of Ly-AuNCs was seen to decrease as pH was increased; this is in major contrast to the lysozyme adsorption behaviour. A decrease in the α-helix content was observed from 25% in natural lysozyme to 1% in Ly-AuNCs. This coincided with an increase in the β-sheet content after AuNC synthesis indicating that the natural structure of lysozyme was lost. The formation of protein dimers, the change in the protein surface charge from positive to negative, and secondary structure alteration caused by the AuNC synthesis must be considered before

  10. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.

    PubMed

    Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang

    2018-07-05

    A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation.

    PubMed

    Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F

    2012-02-07

    This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society

  12. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips.

    PubMed

    Patel, Ravi; Bothra, Shilpa; Kumar, Rajender; Crisponi, Guido; Sahoo, Suban K

    2018-04-15

    The present work reports the interaction of various vitamin B 6 cofactors with the red emitting glutathione stabilized copper nanoclusters (GSH-CuNCs). Addition of pyridoxamine (PM) resulted a new turn-on band at 410nm due to the possible adsorption over the surface of GSH-CuNCs. The nano-assembly PM-GSH-CuNCs was applied for the selective detection of nitro-aromatic compounds. Upon addition of picric acid (PA), the fluorescence of PM-GSH-CuNCs was selectively quenched at 410nm and ~ 625nm among the other tested nitro-aromatic compounds. With a linearity range from 9.9μM to 43μM, the concentration of PA can be detected down to 2.74μM. The high selectivity exhibited by the nano-assembly allows to detect PA in real samples like tap water, river water and matchstick. Advantageously, the nano-assembly PM-GSH-CuNCs was chemically adsorbed over the cellulosic strips and applied for the naked-eye detection of PA down to 1μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.

    PubMed

    Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-02-19

    Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.

  14. Stimuli-disassembling gold nanoclusters for diagnosis of early stage oral cancer by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Chang Soo; Ingato, Dominique; Wilder-Smith, Petra; Chen, Zhongping; Kwon, Young Jik

    2018-01-01

    A key design consideration in developing contrast agents is obtaining distinct, multiple signal changes in diseased tissue. Plasmonic gold nanoparticles (Au NPs) have been developed as contrast agents due to their strong surface plasmon resonance (SPR). This study aims to demonstrate that stimuli-responsive plasmonic Au nanoclusters (Au NCs) can be used as a contrast agent for optical coherence tomography (OCT) in detecting early-stage cancer. Au NPs were clustered via acid-cleavable linkers to synthesize Au NCs that disassemble under mildly acidic conditions into individual Au NPs, simultaneously diminishing SPR effect (quantified by scattering intensity) and increasing Brownian motion (quantified by Doppler variance). The acid-triggered morphological and accompanying optico-physical property changes of the acid-disassembling Au NCs were confirmed by TEM, DLS, UV/Vis, and OCT. Stimuli-responsive Au NCs were applied in a hamster check pouch model carrying early-stage squamous carcinoma tissue. The tissue was visualized by OCT imaging, which showed reduced scattering intensity and increased Doppler variance in the dysplastic tissue. This study demonstrates the promise of diagnosing early-stage cancer using molecularly programmable, inorganic nanomaterial-based contrast agents that are capable of generating multiple, stimuli-triggered diagnostic signals in early-stage cancer.[Figure not available: see fulltext.

  15. Tailoring Enzyme-Like Activities of Gold Nanoclusters by Polymeric Tertiary Amines for Protecting Neurons Against Oxidative Stress.

    PubMed

    Liu, Ching-Ping; Wu, Te-Haw; Lin, Yu-Lung; Liu, Chia-Yeh; Wang, Sabrina; Lin, Shu-Yi

    2016-08-01

    The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions. Surprisingly, the methylated form of AuNCs-NH2 (i.e., MAuNCs-N(+) R3 , where R = H or CH3 ) results in a dramatic recovery of the intrinsic peroxidase-like activity while blocking most primary and tertiary amines (1°- and 3°-amines) of dendrimers to form quaternary ammonium ions (4°-amines). However, the hidden peroxidase-like activity is also found in hydroxyl-terminated dendrimer-encapsulated AuNCs (AuNCs-OH, inside backbone with 3°-amines), indicating that 3°-amines are dominant in mediating the peroxidase-like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°-amines on the surface of dendrimer-encapsulated AuNCs provides sufficient suppression of the critical mediator •OH for the peroxidase-like activity. Finally, it is demonstrated that AuNCs-NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Copper nanocluster coupling europium as an off-to-on fluorescence probe for the determination of phosphate ion in water samples.

    PubMed

    Cao, Haiyan; Chen, Zhaohui; Huang, Yuming

    2015-10-01

    This paper reports an "off-to-on" fluorescence (FL) probe for sensitively and selectively detecting phosphate ions (Pi's). Fabrication of the probe was based on the competition between Pi's and tannic acid-stabilized copper nanoclusters (TA-Cu NCs) for Eu(3+) binding. The addition of Eu(3+) ions to TA-Cu NCs triggered the aggregation of TA-Cu NCs, which quenched the FL of TA-Cu NCs. After Pi addition, the aggregated TA-Cu NCs solubilized into the aqueous solution to facilitate the Pi-triggered dispersion of TA-Cu NCs. This phenomenon was due to the stronger binding ability between Pi's and Eu(3+) than that between TA and Eu(3+), leading to FL recovery of Cu NCs. The degree of redispersion of TA-Cu NCs was directly related to Pi concentration. Thus, Pi concentration can be quantitatively determined by the change in FL of the TA-Cu NCs dispersion. Under the optimized conditions, the change in FL presented a linear relationship with Pi concentration from 0.07 μmol L(-1) to 80 μmol L(-1). The limit of detection for Pi was 9.6×10(-3) μmol L(-1) at a signal-to-noise ratio of 3. For Pi determination in real samples, only 1 mL water sample was needed. The proposed probe was highly sensitive, free from the interference of other common species in aqueous media, and particularly useful for the fast and simple diagnosis of water-eutrophication extent. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Subramaniyam Ramesh, Bala; Giorgakis, Emmanouil; Lopez-Davila, Victor; Kamali Dashtarzheneha, Ashkan; Loizidou, Marilena

    2016-07-01

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.

  18. High-temperature investigation on morphology, phase and size of iron/iron-oxide core–shell nanoclusters for radiation nanodetector

    NASA Astrophysics Data System (ADS)

    Khanal, Lokendra Raj; Williams, Thomas; Qiang, You

    2018-06-01

    Iron/iron-oxide (Fe–Fe3O4) core–shell nanoclusters (NCs) synthesized by a cluster deposition technique were subjected to a study of their high temperature structural and morphological behavior. Annealing effects have been investigated up to 800 °C in vacuum, oxygen and argon environments. The ~18 nm average size of the as-prepared NCs increases slowly in temperatures up to 500 °C in all three environments. The size increases abruptly in the argon environment but slowly in vacuum and oxygen when annealed at 800 °C. The x-ray diffraction (XRD) studies have shown that the iron core remains in the core–shell NCs only when they were annealed in the vacuum. A dramatic change in the surface morphology, an island like structure and/or a network like pattern, was observed at the elevated temperature. The as-prepared and annealed samples were analyzed using XRD, scanning electron microscopy and imageJ software for a close inspection of the temperature aroused properties. This work presents the temperature induced size growth mechanism, oxidation kinetics and phase transformation of the NCs accompanied by cluster aggregation, particle coalescence, and diffusion.

  19. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.

    PubMed

    Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng

    2013-01-01

    Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.

  20. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster

    NASA Astrophysics Data System (ADS)

    Hosseini, Morteza; Ahmadi, Elnaz; Borghei, Yasaman-Sadat; Ganjali, Mohammad Reza

    2017-03-01

    In this study, DNA/gold nanoclusters (AuNCs) were used to develop an AuNC-based turn-on fluorescence probe for the analysis of mi-RNA-21, which is a potential screening biomarker for cancer detection. AuNCs on a DNA scaffold were prepared through a one-pot wet-chemical route and evaluated by transmission electron microscopy and dynamic light scattering. Experiments revealed that the fluorescence intensity of the DNA-AuNCs showed a gradual increase with the addition of the target species in a concentration range from 1pM to 10 nM. The method had a detection limit of 0.7 pM and was able to discriminate the target species from mismatched mi-RNAs very efficiently. The method was used for the determination of mi-RNA spiked human plasma samples, and was evaluated as a promising nanobiosensor for application in the selective detection of mi-RNA in various biomedical and clinical tests.

  1. A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Liao, Shenghua

    2017-07-01

    A facile strategy for detecting xanthine in serum samples by copper nanocluster (CuNCs) with high intrinsic peroxidase-like activity was reported. Firstly, a simple, mild and time-saving method for preparing CuNCs was developed, in which dithiothreitol (DTT) and bovine serum albumin (BSA) were used as reductant and stabilizer, respectively. The as-prepared CuNCs exhibited a fluorescence emission at 590 nm with a quantum yield (QY) of approximately 5.29%, the fluorescence intensity of the as-prepared CuNCs exhibited no considerable change when stored under ambient condition with the lifetime is 1.75 μs. Moreover, the as-prepared CuNCs exhibited high intrinsic peroxidase-like activity with lower K m ( K m = 8.90 × 10-6 mol L-1) for H2O2, which indicated that CuNCs have a higher affinity for H2O2. Compared with natural enzyme, the as-synthesized CuNCs are more catalytic stable over a wide range of pH (4.0 13.0) and temperature (4 80 °C). Finally, an indirect method for sensing xanthine was established because xanthine oxidase can catalyse the oxidation of xanthine to produce H2O2. Xanthine could be detected as low as 3.8 × 10-7 mol L-1 with a linear range from 5.0 × 10-7 to 1.0 × 10-4 mol L-1. These results proved that the proposed method is sensitive and accurate and could be successfully applied to the determination of xanthine in the serum sample with satisfaction.

  2. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe.

    PubMed

    Liu, Jing-Min; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-03-19

    The simplicity of the green-synthesized routine and the availability of surface modification of diverse bioactive molecules make noble metal nanostructures highly suitable as multifunctional biomaterials for biological and biomedical application. Here, we report the preparation of trypsin stabilized gold nanoclusters (try-AuNCs) with near-infrared fluorescence for biosensing heparin based on surface plasmon enhanced energy transfer (SPEET) and folic acid (FA) modified try-AuNCs for in vivo cancer bioimaging. The SPEET/try-AuNCs fluorescence biosensor was designed via heparin mediated energy transfer between try-AuNCs and cysteamine modified gold nanoparticles (cyst-AuNPs). The developed SPEET/try-AuNCs fluorescence biosensor allowed sensitive and selective detection of heparin with a linear range of 0.1-4.0 μg mL(-1) and a detection limit (3s) of 0.05 μg mL(-1). The relative standard deviation for eleven replicate detections of 2.5 μg mL(-1) heparin was 1.1%, and the recoveries of the spiked heparin in human serum samples ranged from 97% to 100%. In addition, folic acid was immobilized on the surface of try-AuNCs to ameliorate the specific affinity of AuNCs for tumors, and the near-infrared fluorescent FA-try-AuNCs were applied for in vivo cancer imaging of high folate receptor (FR) expressing Hela tumor. In vivo study of the dynamic behavior and targeting ability of FA-try-AuNCs probe to Hela tumor bearing mice and normal nude mice validated the high specific affinity of FA-try-AuNCs probe to FR positive tumors. The results show that the prepared try-AuNCs have great potential as multifunctional biomaterials for biosensing biomolecules with SPEET mode and in vivo cancer imaging with high targeting ability.

  3. The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites.

    PubMed

    Wang, Cheng Yan; Tan, Xing Rong; Chen, Shi Hong; Hu, Fang Xin; Zhong, Hua An; Zhang, Yu

    2012-02-01

    One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs-MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs-MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM-12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM⁻¹), rapid response time (within 6 s). The apparent Michaelis-Menten constant (K(app)(m)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.

  4. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters.

    PubMed

    Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang

    2017-05-15

    Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.

  6. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    PubMed

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Kha; Su, Wei-Nien; Chen, Ching-Hsiang; Rick, John; Hwang, Bing-Joe

    2017-03-01

    Surface-enhanced Raman scattering (SERS) and fluorescence microscopy are a widely used biological and chemical characterization techniques. However, the peak overlapping in multiplexed experiments and rapid photobleaching of fluorescent organic dyes is still the limitations. When compared to Ag nanocubes (NCs), higher SERS sensitivities can be obtained with thin shelled silica Ag@SiO2 NCs, in contrast metal-enhanced photoluminescence (MEPL) is only found with NCs that have thicker silica shells. A 'dual functionality' represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of 1.5 nm and 4.4 nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at 90% after 12 weeks of storage. Based on the distinguished detection of creatinine and flavin adenine dinucleotide in the mixture, the integration of SERS and MEPL together on a stable single plasmonic nanoparticle platform offers an opportunity to enhance both biomarker detection sensitivity and specificity.

  8. Defects and nanocluster engineering in MgO

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; van Veen, A.; van Huis, M. A.; Schut, H.; Kooi, B. J.; De Hosson, J. Th.; Zimmerman, R. L.

    2001-07-01

    The optical properties of MgO crystals are known to change after introduction of nanosize metal precipitates. In this work the formation of metallic nanoclusters in the presence of nanosize rectangular shaped cavities was studied. The rectangular cavities were formed by 30 keV He+ implantation followed by 1273 K annealing. The formation of cavities and their location was established by Positron Beam Analysis (PBA). The rectangular shape and their alignment in (100) direction was observed by X-TEM. Subsequently, the samples were implanted with 600 keV Ag and 1000 keV Au in order to introduce the metal ions in the vicinity of the cavities. The samples were then annealed to provide the formation of nanoclusters. The evolution of the implantation induced defects was monitored by PBA. The optical properties were studied by light absorption measurements.

  9. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters.

    PubMed

    Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin

    2017-08-15

    In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells.

    PubMed

    Wang, Xiaojuan; Wang, Yanan; He, Hua; Ma, Xiqi; Chen, Qi; Zhang, Shuai; Ge, Baosheng; Wang, Shengjie; Nau, Werner M; Huang, Fang

    2017-05-31

    Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.

  11. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  12. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-01

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available

  13. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko

    2017-03-10

    Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less

  14. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  15. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.

    PubMed

    Chatterjee, Krishnendu; Kuo, Chiung Wen; Chen, Ann; Chen, Peilin

    2015-06-26

    Rifampicin or rifampin (R) is a common drug used to treat inactive meningitis, cholestatic pruritus and tuberculosis (TB), and it is generally prescribed for long-term administration under regulated dosages. Constant monitoring of rifampicin is important for controlling the side effects and preventing overdose caused by chronic medication. In this study, we present an easy to use, effective and less costly method for detecting residual rifampicin in urine samples using protein (bovine serum albumin, BSA)-stabilized gold nanoclusters (BSA-Au NCs) adsorbed on a paper substrate in which the concentration of rifampicin in urine can be detected via fluorescence quenching. The intensity of the colorimetric assay performed on the paper-based platforms can be easily captured using a digital camera and subsequently analyzed. The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL. The detection limit for rifampicin was measured as 70 ng/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine. We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.

  16. A novel dual-functional biosensor for fluorometric detection of inorganic pyrophosphate and pyrophosphatase activity based on globulin stabilized gold nanoclusters.

    PubMed

    Xu, Shenghao; Feng, Xiuying; Gao, Teng; Wang, Ruizhi; Mao, Yaning; Lin, Jiehua; Yu, Xijuan; Luo, Xiliang

    2017-03-15

    A novel ultrasensitive dual-functional biosensor for highly sensitive detection of inorganic pyrophosphate (PPi) and pyrophosphatase (PPase) activity was developed based on the fluorescent variation of globulin protected gold nanoclusters (Glo@Au NCs) with the assistance of Cu 2+ . Glo@Au NCs and PPi were used as the fluorescent indicator and substrate for PPase activity evaluation, respectively. In the presence of Cu 2+ , the fluorescence of the Glo@Au NCs will be quenched owing to the formation of Cu 2+ -Glo@Au NCs complex, while PPi can restore the fluorescence of the Cu 2+ -Glo@Au NCs complex because of its higher binding affinity with Cu 2+ . As PPase can catalyze the hydrolysis of PPi, it will lead to the release of Cu 2+ and re-quench the fluorescence of the Glo@Au NCs. Based on this mechanism, quantitative evaluation of the PPi and PPase activity can be achieved ranging from 0.05 μM to 218.125 μM for PPi and from 0.1 to 8 mU for PPase, with detection limits of 0.02 μM and 0.04 mU, respectively, which is much lower than that of other PPi and PPase assay methods. More importantly, this ultrasensitive dual-functional biosensor can also be successfully applied to evaluate the PPase activity in human serum, showing great promise for practical diagnostic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Transformation from gold nanoclusters to plasmonic nanoparticles: A general strategy towards selective detection of organophosphorothioate pesticides.

    PubMed

    Lu, Qian; Zhou, Tingyao; Wang, Yaping; Gong, Lingshan; Liu, Jinbin

    2018-01-15

    Luminescent gold nanoclusters (AuNCs) synthesized using non-thiolate DNA ligands were reported to show both optical and structure responses toward diethyposphorthioate (DEP) derived from the hydrolysis of chlorpyrifos (CP). After incubation of AuNCs with DEP, the non-thiolate DNA ligands were immediately replaced and the tiny AuNCs with ultrasmall size transformed gradually to plasmonic nanoparticles, which resulted in significant luminescence quenching of the AuNCs, offering a new possibility to selectively detect organophosphorothioate pesticides that could be easily hydrolyzed to form the special structures such as DEP containing two binding sites (e.g. S and O atoms). Therefore, selecting CP as a model analyte, we here developed a general strategy for the construction of a novel chemosensor for the determination of CP using the non-thiolate DNA coated AuNCs as an optical probe. Based on aggregation-induced luminescence quenching, this strategy exhibited highly sensitive and selective responses towards CP with a limit of detection (LOD) of 0.50μM, and was applied successfully to the analysis of CP in real sample. More interestingly, this facile strategy could easily distinguish CP from other thiol reagents through solution color change in spite of the existence of the coordination between Au and S atom for both of them, and the response mechanisms for them were studied in detail. In additional, it could be extended to detect the other organophosphorothioate pesticides with the similar structure as CP, which exploits a new platform for the construction of chemosensor and application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    PubMed

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent

    NASA Astrophysics Data System (ADS)

    Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra

    2018-04-01

    Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.

  20. Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-06-03

    Quantum mechanical studies of Ag nanoclusters have shown that plasmonic behavior can be modeled in terms of excited states where collectivity among single excitations leads to strong absorption. However, new computational approaches are needed to provide understanding of plasmonic excitations beyond the single-excitation level. We show that semiempirical INDO/CI approaches with appropriately selected parameters reproduce the TD-DFT optical spectra of various closed-shell Ag clusters. The plasmon-like states with strong optical absorption comprise linear combinations of many singly excited configurations that contribute additively to the transition dipole moment, whereas all other excited states show significant cancellation among the contributions to themore » transition dipole moment. The computational efficiency of this approach allows us to investigate the role of double excitations at the INDO/SDCI level. The Ag cluster ground states are stabilized by slight mixing with doubly excited configurations, but the plasmonic states generally retain largely singly excited character. The consideration of double excitations in all cases improves the agreement of the INDO/CI absorption spectra with TD-DFT, suggesting that the SDCI calculation effectively captures some of the ground-state correlation implicit in DFT. Furthermore, these results provide the first evidence to support the commonly used assumption that single excitations are in many cases sufficient to describe the optical spectra of plasmonic excitations quantum mechanically.« less

  1. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  2. Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters.

    PubMed

    Ishida, Yohei; Corpuz, Ryan D; Yonezawa, Tetsu

    2017-12-19

    variety of photoluminescent monometallic nanoclusters of Au, Ag, and Cu, all of which showed stable emission in both solution and solid form via our matrix sputtering method with the induction of cationic-, neutral-, and anionic-charged thiol ligands. We also succeeded in synthesizing photoluminescent bimetallic Au-Ag nanoclusters that showed tunable emission within the UV-NIR region by controlling the composition of the atomic ratio by a double-target sputtering technique. Most importantly, we have revealed the formation mechanism of these unique photoluminescent nanoclusters by sputtering, which had relatively larger diameters (ca. 1-3 nm) as determined using TEM and stronger emission quantum yield (max. 16.1%) as compared to typical photoluminescent nanoclusters prepared by chemical means. We believe the high tunability of sputtering systems presented here has significant advantages for creating novel photoluminescent nanoclusters as a complementary strategy to common chemical methods. This Account highlights our journey toward understanding the photophysical properties and formation mechanism of photoluminescent noble metal nanoclusters via the sputtering method, a novel strategy that will contribute widely to the body of scientific knowledge of metal nanoparticles and nanoclusters.

  3. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    PubMed

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  4. Small size yet big action: a simple sulfate anion templated a discrete 78-nuclearity silver sulfur nanocluster with a multishell structure.

    PubMed

    Cheng, Li-Ping; Wang, Zhi; Wu, Qiao-Yu; Su, Hai-Feng; Peng, Tao; Luo, Geng-Geng; Li, Yan-An; Sun, Di; Zheng, Lan-Sun

    2018-03-07

    A discrete 78-nucleus silver-sulfur nanocluster with a sulfate-centered multishell structure was isolated and characterized. Its crystal structure revealed 18 and 60 Ag atoms in the inner and outer shell, respectively. The inner shell of 18-nuclearity Ag atoms is a very rare convex polyhedron featuring an elongated triangular orthobicupola. The incorporation of a sulfate anion and multishell arrangement in the nanocluster led to a dramatic decrease in the band gap (E g = 1.40 eV). Our study showed that simple anions can also induce the formation of high-nuclearity silver clusters with excellent optical properties.

  5. Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.

    PubMed

    Cao, Yongqiang; Zhang, Aiyu; Ma, Qian; Liu, Ning; Yang, Ping

    2013-01-01

    A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Calin, Nathalie; Sanader, Željka; Krstić, Marjan; Comby-Zerbino, Clothilde; Dugourd, Philippe; Brevet, Pierre-François; Bonačić-Koutecký, Vlasta; Antoine, Rodolphe

    2017-01-19

    We report a combined experimental and theoretical study of the two-photon absorption and excited emission properties of monodisperse ligand stabilized Ag 11 , Ag 15 and Ag 31 nanoclusters in aqueous solutions. The nanoclusters were synthesized using a cyclic reduction under oxidative conditions and separated by vertical gel electrophoresis. The two-photon absorption cross-sections of these protected noble metal nanoclusters measured within the biologically attractive 750-900 nm window are several orders of magnitude larger than that reported for commercially available standard organic dyes. The two-photon excited fluorescence spectra are also presented for excitation wavelengths within the same excitation spectral window. They exhibit size-tunability. Because the fundamental photophysical mechanisms underlying these multiphoton processes in ligand protected clusters with only a few metal atoms are not fully understood yet, a theoretical model is proposed to identify the key driving elements. Elements that regulate the dipole moments and the nonlinear optical properties are the nanocluster size, its structure and the charge distribution on both the metal core and the bound ligands. We coined this new class of NLO materials as "Ligand-Core" NLO-phores.

  7. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    NASA Astrophysics Data System (ADS)

    Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu

    2011-03-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.

  8. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    NASA Astrophysics Data System (ADS)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  9. Matrix photochemical study and conformational analysis of CH3C(O)NCS and CF3C(O)NCS.

    PubMed

    Ramos, Luis A; Ulic, Sonia E; Romano, Rosana M; Beckers, Helmut; Willner, Helge; Della Védova, Carlos O

    2014-01-30

    The vapor of acetyl isocyanide, CH3C(O)NCS, and trifluoroacetyl isocyanide, CF3C(O)NCS, were isolated in solid Ar at 15 K. The existence of rotational isomerism was confirmed when the matrixes were irradiated with broad-band UV-vis light (200 ≤ λ ≤ 800 nm) and also by temperature-dependent Ar-matrix IR spectroscopy. The initial spectra showed the vapor of CH3C(O)NCS and CF3C(O)NCS consist of two conformers syn-syn and syn-anti (with the C═O bond syn with respect to the C-H or C-F bond and syn or anti with respect to the N═C double bond). When CH3C(O)NCS is irradiated, simultaneously with the randomization process, H2CCO and HSCN are produced. In the case of the photolysis of CF3C(O)NCS, the main products are CF3NCS and CO. The assignment of the IR bands to the different photoproducts was made on the basis of the usual criteria, taking account reported antecedents in the literature.

  10. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    PubMed

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  11. A label-free fluorescent biosensor for the detection of protein kinase activity based on gold nanoclusters/graphene oxide hybrid materials.

    PubMed

    Liu, Qing; Li, Ning; Wang, Mengke; Wang, Lei; Su, Xingguang

    2018-07-12

    Protein kinase (PKA) can regulate many cellular biological processes by phosphorylation substrate peptide or protein. A new fluorescent biosensing method for the detection of PKA activity was developed by using 11-mercaptoundecanoic acid-capped gold nanoclusters (MUA-Au NCs) and graphene oxide (GO) with low background noise. In this strategy, the special designed peptide could be anchored on the surface of MUA-Au NCs by the Au-S bond and also adsorbed on the surface of GO owing to the electrostatic interaction. As a result, the fluorescence of MUA-Au NCs was quenched leading to low background fluorescence due to the forster resonance energy transfer (FRET) between MUA-Au NCs and GO via peptide as a bridge. However, when the substrate peptide was phosphorylated by PKA, the FRET between GO and MUA-Au NCs was disrupted because of the weakened interaction between the phosphorylated peptide and the GO, resulting in recovery of the fluorescence intensity. The developed label-free fluorescence "turn-off-on" method can detect protein kinase activity in the range of 0.6-2.0 U mL -1 with a detection limit of 0.17 U mL -1 (3σ). The feasibility of this present method for kinase inhibitor screening was also studied by assessment of H-89 kinase inhibition with an IC 50 value of 0.049 μmol L -1 . Copyright © 2018. Published by Elsevier B.V.

  12. Surface Enhanced Raman Scattering studies of L-amino acids adsorbed on silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Botta, Raju; Rajanikanth, A.; Bansal, C.

    2015-01-01

    Silver nanocluster films were prepared using plasma inert gas phase condensation technique. These were used as Raman active substrates for Surface Enhanced Raman Scattering (SERS) studies of 19 standard L-amino acids adsorbed on the surface of Ag nanoclusters via Agsbnd N bonds. A detailed study of two essential aromatic amino acids viz. L-Phenylalanine and L-Tryptophan showed a correlation between the Raman intensity of the characteristic lines of phenol and indole side chains and their molar concentrations in the range 1 μM-1 mM. This indicates that Raman studies can be used for quantitative determination of the amino acids in proteins.

  13. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  14. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  15. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  16. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms.

    PubMed

    Bhamore, Jigna R; Jha, Sanjay; Basu, Hirakendu; Singhal, Rakesh Kumar; Murthy, Z V P; Kailasa, Suresh Kumar

    2018-04-01

    Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I 0 /I at 648 nm are proportional to the concentrations of Hg 2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg 2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg 2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg 2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.

  17. Exploring Interfacial Events in Gold-Nanocluster-Sensitized Solar Cells: Insights into the Effects of the Cluster Size and Electrolyte on Solar Cell Performance.

    PubMed

    Abbas, Muhammad A; Kim, Tea-Yon; Lee, Sang Uck; Kang, Yong Soo; Bang, Jin Ho

    2016-01-13

    Gold nanoclusters (Au NCs) with molecule-like behavior have emerged as a new light harvester in various energy conversion systems. Despite several important strides made recently, efforts toward the utilization of NCs as a light harvester have been primarily restricted to proving their potency and feasibility. In solar cell applications, ground-breaking research with a power conversion efficiency (PCE) of more than 2% has recently been reported. Because of the lack of complete characterization of metal cluster-sensitized solar cells (MCSSCs), however, comprehensive understanding of the interfacial events and limiting factors which dictate their performance remains elusive. In this regard, we provide deep insight into MCSSCs for the first time by performing in-depth electrochemical impedance spectroscopy (EIS) analysis combined with physical characterization and density functional theory (DFT) calculations of Au NCs. In particular, we focused on the effect of the size of the Au NCs and electrolytes on the performance of MCSSCs and reveal that they are significantly influential on important solar cell characteristics such as the light absorption capability, charge injection kinetics, interfacial charge recombination, and charge transport. Besides offering comprehensive insights, this work represents an important stepping stone toward the development of MCSSCs by accomplishing a new PCE record of 3.8%.

  18. Template-free fabrication of hollow N-doped carbon sphere (h-NCS) to synthesize h-NCS@PANI positive material for MoO3//h-NCS@PANI asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqin; Xiang, Xinxin; Liu, Yunhua; Xiao, Dan

    2018-06-01

    Asymmetric supercapacitors (ASCs) based on pseudocapacitor electrode materials are vital to improve the electrochemical properties of devices in aqueous electrolytes. This study fabricates hollow N-doped carbon sphere (h-NCS) to produce h-NCS@PANI nanocomposite as positive electrode and α-MoO3 as negative electrode to assemble ASC device. In particular, a facile template-free synthesis method, catalyzed by Cu2+, is used to prepare hollow PANI nanosphere precursor to build h-NCS. The mechanism of the precursor formation is illustrated in detail. After polymerization of PANI on the surface of h-NCS, the capacitance increases to 327 F g-1 at 1 A g-1. Furthermore, a hydrothermal reaction is carried out to produce α-MoO3 negative electrode material. The maximum specific capacitance of 720 F g-1 is achieved at 1 A g-1. The obtained h-NCS@PANI and α-MoO3 are utilized to construct an ASC device. The electrochemical properties of this device are investigated comprehensively. The maximum energy density of 34.1 W h kg-1 and power density of 9350.6 W kg-1 are observed, which provide an insight into the development of ASCs.

  19. 47 CFR Appendix to Part 216 - NCS Directives

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...

  20. 47 CFR Appendix to Part 216 - NCS Directives

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...

  1. 47 CFR Appendix to Part 216 - NCS Directives

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...

  2. 47 CFR Appendix to Part 216 - NCS Directives

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...

  3. 47 CFR Appendix to Part 216 - NCS Directives

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...

  4. Theoretical Studies of Nanocluster Formation

    DTIC Science & Technology

    2016-05-26

    background, technical approach 2. Core-shell nanoclusters (Mg/Cu, Si/Al, etc.) - energetic additives for propellants , explosives - gas generators...shell nanocluster synthesis Core-shell nanoclusters such as SiAln, NinAlm, Aln(CuO)m, etc. may be useful ingredients in propellants and explosives

  5. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    NASA Astrophysics Data System (ADS)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  6. Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine.

    PubMed

    Gu, Zefeng; Cao, Zhijuan

    2018-06-07

    A novel assay for histidine and cysteine has been constructed based on modulation of fluorescent copper nanoclusters (CuNCs) by molecular switches. In our previous work, a dumbbell DNA template with a poly-T (thymine) loop has been developed as an excellent template for the formation of strongly fluorescent CuNCs. Herein, for the first time, we established this biosensor for sensing two amino acids by using dumbbell DNA-templated CuNCs as the single probe. Among 20 natural amino acids, only histidine and cysteine can selectively quench fluorescence emission of CuNCs, because of the specific interaction of these compounds with copper ions. Furthermore, by using nickel ions (Ni 2+ ) and N-ethylmaleimide as the masking agents for histidine and cysteine respectively, an integrated logic gate system was designed by coupling with the fluorescent CuNCs and demonstrated selective and sensitive detection of cysteine and histidine. Under optimal conditions, cysteine can be detected in the concentration ranges of 0.01-10.0 μM with the detection limit (DL) of as low as 98 pM, while histidine can be detected in the ranges of 0.05-40.0 μM with DL of 1.6 nM. In addition, histidine and cysteine can be observed with the naked eye under a hand-held UV lamp (DL, 50 nM), which can be easily adapted to automated high-throughput screening. Finally, the strategy has been successfully utilized for biological fluids. The proposed system can be conducted in homogeneous solution, eliminating the need for organic cosolvents, separation processes of nanomaterials, or any chemical modifications. Overall, the assay provides an alternative method for simultaneous detection of cysteine and histidine by taking the advantages of high speed, no label and enzyme requirement, and good sensitivity and specificity, and will satisfy the great demand for determination of amino acids in fields such as food processing, biochemistry, pharmaceuticals, and clinical analysis. Graphical abstract.

  7. Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline.

    PubMed

    Xu, Shenghao; Li, Xiaolin; Mao, Yaning; Gao, Teng; Feng, Xiuying; Luo, Xiliang

    2016-04-01

    In this work, we present a direct one-step strategy for rapidly preparing dual ligand co-functionalized fluorescent Au nanoclusters (NCs) by using threonine (Thr) and 11-mercaptoundecanoic acid (MUA) as assorted reductants and capping agents in aqueous solution at room temperature. Fluorescence spectra, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared (IR) spectroscopy were performed to demonstrate the optical properties and chemical composition of the as-prepared AuNCs. They possess many attractive features such as near-infrared emission (λem = 606 nm), a large Stoke's shift (>300 nm), high colloidal stability (pH, temperature, salt, and time stability), and water dispersibility. Subsequently, the as-prepared AuNCs were used as a versatile probe for "turn off" sensing of Hg(2+) based on aggregation-induced fluorescence quenching and for "turn-on" sensing of oxytetracycline (OTC). This assay provided good linearity ranging from 37.5 to 3750 nM for Hg(2+) and from 0.375 to 12.5 μM for OTC, with detection limits of 8.6 nM and 0.15 μM, respectively. Moreover, the practical application of this assay was further validated by detecting OTC in human serum samples.

  8. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

    PubMed Central

    Yeryukov, Nikolay A; Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Gridchin, Victor A; Sheremet, Evgeniya S; Zahn, Dietrich R T

    2015-01-01

    Summary We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs) with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density. PMID:25977845

  9. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  10. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine.

    PubMed

    Ban, Rui; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2015-02-21

    A novel luminescence probe based on mono-6-amino-β-cyclodextrin (NH2-β-CD) functionalised gold nanoclusters (β-CD-AuNC) was designed for dopamine (DA) detection. The NH2-β-CD molecules were conjugated onto the surface of 11-mercaptoundecanoic acid capped AuNCs (11-MUA-AuNC) via a carbodiimide coupling reaction. The integrity of the β-CD cavities was preserved on the surface of AuNCs and they retained their capability for molecular DA host-guest recognition. DA could be captured by the β-CD cavities to form an inclusion complex in which the oxidised DA could quench the fluorescence of the β-CD-AuNC probe by electron transfer. The probe could be used to quantify DA in the range of 5-1000 nM with a detection limit of 2 nM. This sensitivity was 1-2 orders of magnitude higher than that in previously reported methods. Interference by both ascorbic acid (AA) and uric acid (UA) was not observed. Therefore, the β-CD-AuNC probe could be directly used to determine the DA content in biological samples without further separation. This strategy was successfully applied to a DA assay in spiked human serum samples and it exhibited remarkable accuracy, sensitivity and selectivity.

  11. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    PubMed

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  12. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    PubMed

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  13. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    PubMed

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  14. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    PubMed

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  15. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines.

    PubMed

    Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū

    2012-08-29

    We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.

  16. Calcium Sensor, NCS-1, Promotes Tumor Aggressiveness and Predicts Patient Survival.

    PubMed

    Moore, Lauren M; England, Allison; Ehrlich, Barbara E; Rimm, David L

    2017-07-01

    Neuronal Calcium Sensor 1 (NCS-1) is a multi-functional Ca 2+ -binding protein that affects a range of cellular processes beyond those related to neurons. Functional characterization of NCS-1 in neuronal model systems suggests that NCS-1 may influence oncogenic processes. To this end, the biological role of NCS-1 was investigated by altering its endogenous expression in MCF-7 and MB-231 breast cancer cells. Overexpression of NCS-1 resulted in a more aggressive tumor phenotype demonstrated by a marked increase in invasion and motility, and a decrease in cell-matrix adhesion to collagen IV. Overexpression of NCS-1 was also shown to increase the efficacy of paclitaxel-induced cell death in a manner that was independent of cellular proliferation. To determine the association between NCS-1 and clinical outcome, NCS-1 expression was measured in two independent breast cancer cohorts by the Automated Quantitative Analysis method of quantitative immunofluorescence. Elevated levels of NCS-1 were significantly correlated with shorter survival rates. Furthermore, multivariate analysis demonstrated that NCS-1 status was prognostic, independent of estrogen receptor, progesterone receptor, HER2, and lymph node status. These findings indicate that NCS-1 plays a role in the aggressive behavior of a subset of breast cancers and has therapeutic or biomarker potential. Implications: NCS-1, a calcium-binding protein, is associated with clinicopathologic features of aggressiveness in breast cancer cells and worse outcome in two breast cancer patient cohorts. Mol Cancer Res; 15(7); 942-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  18. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    PubMed

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  19. Synthesizing a nano-composite of BSA-capped Au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection.

    PubMed

    Guo, Xinrong; Wu, Fangying; Ni, Yongnian; Kokot, Serge

    2016-10-26

    A strong red fluorescent nanocomposite, consisting of graphite-like carbon nitride nanosheets (g-C 3 N 4 NSs) and serum albumin-capped Au nanoclusters (AuNCs), was synthesized. Dopamine (DA) can quench the red fluorescence of the nanocomposite, based on the Forster resonance energy transfer (FRET) mechanism. In this quenching process, the energy is transferred from the fluorescent g-C 3 N 4 NSs-AuNCs to the oxidized DA quinine molecules (DA is easily oxidated to form DA quinine in air). The red fluorescence emission at 420 nm decreases dramatically and the quenching ratio (F 0 - F)/F 0 is linearly related to the concentration of DA in the range of 0.05-8.0 μmol L -1 with a detection limit of 0.018 μmol L -1  (S/N = 3). Additionally, this sensor has a potential of application to assay the DA in the real samples, such as human serum and human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  1. Surface mediated assembly of small, metastable gold nanoclusters.

    PubMed

    Pettibone, John M; Osborn, William A; Rykaczewski, Konrad; Talin, A Alec; Bonevich, John E; Hudgens, Jeffrey W; Allendorf, Mark D

    2013-07-21

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.

  2. Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster

    NASA Astrophysics Data System (ADS)

    Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom

    2018-04-01

    In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.

  3. Quantum sized gold nanoclusters with atomic precision.

    PubMed

    Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao

    2012-09-18

    Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical

  4. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters.

    PubMed

    Hu, Yufang; Zhang, Qingqing; Xu, Lihua; Wang, Jiao; Rao, Jiajia; Guo, Zhiyong; Wang, Sui

    2017-11-01

    Electrochemical methods allow fast and inexpensive analysis of enzymatic activity. Here, a simple and yet efficient "signal-on" electrochemical assay for sensitive, label-free detection of DNA-related enzyme activity was established on the basis of terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. TdT, which is a template-independent DNA polymerase, can catalyze the sequential addition of deoxythymidine triphosphate (dTTP) at the 3'-OH terminus of single-stranded DNA (ssDNA); then, the TdT-yield T-rich DNA nanowires can be employed as the synthetic template of copper nanoclusters (CuNCs). Grown DNA nanowires-templated CuNCs (noted as DNA-CuNCs) were attached onto graphene oxide (GO) surface and exhibited unique electrocatalytic activity to H 2 O 2 reduction. Under optimal conditions, the proposed biosensor was utilized for quantitatively monitoring TdT activity, with the observed LOD of 0.1 U/mL. It also displayed high selectivity to TdT with excellent stability, and offered a facile, convenient electrochemical method for TdT-relevant inhibitors screening. Moreover, the proposed sensor was successfully used for BamHI activity detection, in which a new 3'-OH terminal was exposed by the digestion of a phosphate group. Ultimately, it has good prospects in DNA-related enzyme-based biochemical studies, disease diagnosis, and drug discovery. Graphical Abstract Extraordinary TdT-generated DNA-CuNCs are synthesized and act as a novel electrochemical sensing platform for sensitive detection of TdT and BamHI activity in biological environments.

  5. Growth Patterns of the Neurocentral Synchondrosis (NCS) in Immature Cadaveric Vertebra.

    PubMed

    Blakemore, Laurel; Schwend, Richard; Akbarnia, Behrooz A; Dumas, Megan; Schmidt, John

    2018-03-01

    Gross anatomic study of osteological specimens. To evaluate the age of closure for the neurocentral synchondrosis (NCS) in all 3 regions of the spine in children aged 1 to 18 years old. The ossification of the human vertebra begins from a vertebral body ossification center and a pair of neural ossification centers located within the centrum called the NCS. These bipolar cartilaginous centers of growth contribute to the growth of the vertebral body, spinal canal, and posterior elements of the spine. The closure of the synchondroses is dependent upon location of the vertebra and previous studies range from 2 to 16 years of age. Although animal and cadaveric studies have been performed regarding NCS growth and early instrumentation's effect on its development, the effects of NCS growth disturbances are still not completely understood. The vertebrae of 32 children (1 to 18 y old) from the Hamann-Todd Osteological collection were analyzed (no 2 or 9 y old specimens available). Vertebrae studied ranged from C1 to L5. A total of 768 vertebral specimens were photographed on a background grid to allow for measurement calibration. Measurements of the right and left NCS, pedicle width at the NCS, and spinal canal area were taken using Scandium image-analysis software (Olympus Soft Imaging Solutions, Germany). The percentage of the growth plate still open was found by dividing the NCS by the pedicle width and multiplying by 100. Data were analyzed with JMP 11 software (SAS Institute Inc., Cary, NC). The NCS was 100% open in all 3 regions of the spine in the 1- to 3-year age group. The cervical NCS closed first with completion around 5 years of age. The lumbar NCS was nearly fully closed by age 11. Only the thoracic region remained open through age 17 years. The left and right NCS closed simultaneously as there was no statistical difference between them. In all regions of the spine, the NCS appeared to close sooner in males than in females. Spinal canal area increased with age

  6. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  7. Syntheses, structures and properties of homo- and heterobimetallic complexes of the type [Zn(tren)NCS] 2[M(NCS) 4] [tren = tris(2-aminoethyl)amine; M = Zn, Cu

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Soumi; Bhar, Kishalay; Das, Sumitra; Chantrapromma, Suchada; Fun, Hoong-Kun; Ghosh, Barindra Kumar

    2010-04-01

    A 2:2:1:6 molar ratio of Zn(ClO 4) 2·6H 2O, tris(2-aminoethyl)amine (tren), Zn(ClO 4) 2·6H 2O/Cu(ClO 4) 2·6H 2O and NH 4NCS in methanol-water solution mixtures affords homo-/heterobimetallic compounds of the type [Zn(tren)NCS] 2[M(NCS) 4] (M = Zn, 1; M = Cu, 2) which have been characterized using microanalytical, spectroscopic, magnetic and other physicochemical results. The structures of the compounds are determined by X-ray diffraction measurements. Structural analyses reveal that 1 and 2 are isomorphous and consist of two discrete [Zn(tren)NCS] + cations and a [M(NCS) 4] 2- (M = Zn/Cu) anion. Zinc(II) centers in the [Zn(tren)NCS] + units adopt distorted trigonal bipyramidal geometry with ZnN 5 chromophores coordinated through four N atoms of tren and one N atom of terminal thiocyanate. Each metal(II) center in [M(NCS) 4] 2- has a distorted tetrahedral coordination environment with an MN 4 chromophore ligated by four N atoms of the terminal thiocyanates. In solid state, doubly N-H…S hydrogen bonded 1D chains of [Zn(tren)NCS] + cations are interconnected by tetrahedral [Zn(NCS) 4] 2-/[Cu(NCS) 4] 2- anions through cooperative N-H…S and N-H…N (in 1) and N-H…S and C-H…S (in 2) hydrogen bonds resulting in 3D network structures. Establishment of such networks seems to be aiding the crystallization.

  8. Atomically Precise Metal Nanoclusters for Catalytic Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Rongchao

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily highmore » selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au 25(SR) 18, Au 28(SR) 20, Au 38(SR) 24, Au 99(SR) 42, Au 144(SR) 60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our works include: i) Effects of ligand, cluster charge state, and size on the catalytic

  9. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    PubMed Central

    Zhang, Z. W.; Yao, L.; Wang, X.-L.; Miller, M. K.

    2015-01-01

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. Here we report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using a combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters. PMID:26023747

  10. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    DOE PAGES

    Zhang, Z. W.; Yao, L.; Wang, X. -L.; ...

    2015-05-29

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. We report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using amore » combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters.« less

  11. Relativistic DFT investigation of electronic structure effects arising from doping the Au25 nanocluster with transition metals.

    PubMed

    Alkan, Fahri; Muñoz-Castro, Alvaro; Aikens, Christine M

    2017-10-26

    We perform a theoretical investigation using density functional theory (DFT) and time-dependent DFT (TDDFT) on the doping of the Au 25 (SR) 18 -1 nanocluster with group IX transition metals (M = cobalt, rhodium and iridium). Different doping motifs, charge states and spin multiplicities were considered for the single-atom doped nanoclusters. Our results show that the interaction (or the lack of interaction) between the d-type energy levels that mainly originate from the dopant atom and the super-atomic levels plays an important role in the energetics, the electronic structure and the optical properties of the doped systems. The evaluated MAu 24 (SR) 18 q (q = -1, -3) systems favor an endohedral disposition of the doping atom typically in a singlet ground state, with either a 6- or 8-valence electron icosahedral core. For the sake of comparison, the role of the d energy levels in the electronic structure of a variety of doped Au 25 (SR) 18 -1 nanoclusters was investigated for dopant atoms from other families such as Cd, Ag and Pd. Finally, the effect of spin-orbit coupling (SOC) on the electronic structure and absorption spectra was determined. The information in this study regarding the relative energetics of the d-based and super-atom energy levels can be useful to extend our understanding of the preferred doping modes of different transition metals in protected gold nanoclusters.

  12. Unusual Structure and Magnetism in MnO Nanoclusters

    NASA Astrophysics Data System (ADS)

    Ganguly, Shreemoyee; Kabir, Mukul; Sanyal, Biplab; Mookerjee, Abhijit

    2011-03-01

    We report an unusual structural and magnetic evolution in stoichiometric MnO nanoclusters by an extensive and unbiased search through the potential energy surface within density functional theory. The (MnO)n nanoclusters adopt two-dimensional structures in size ranges in which Mnn nanoclusters are three-dimensional and regardless of the size of the nanocluster, the magnetic coupling is found to be antiferromagnetic, and is strikingly different from Mn-based molecular magnets. Both of these features are explained through the inherent electronic structures of the nanoclusters. We gratefully acknowledge financial support from Swedish Research Links program funded by VR/SIDA and Carl Tryggers Foundation, Sweden.

  13. Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid.

    PubMed

    Yang, Dongqin; Luo, Minchuan; Di, Junwei; Tu, Yifeng; Yan, Jilin

    2018-05-18

    A method is described for ratiometric fluorometric assays of H 2 O 2  by using two probes that have distinct response profiles. Under the catalytic action of ferrous ion, the 615 nm emission of protein-stabilized gold nanoclusters (under 365 nm photoexcitation) is quenched by H 2 O 2 , while an increased signal is generated with a peak at 450 nm by oxidizing coumarin with the H 2 O 2 /Fe(II) system to form a blue emitting fluorophore. These decrease/increase responses give a ratiometric signal. The ratio of the fluorescences at the two peaks are linearly related to the concentration of H 2 O 2 in the range from 0.05 to 10 μM, with a 7.7 nM limit of detection. The detection scheme was further coupled to the urate oxidase catalyzed oxidation of uric acid which proceeds under the formation of H 2 O 2 . This method provides an simple and effective means for the construction of ratiometric fluorometric (enzymatic) assays that involve the detection of H 2 O 2 . Graphical abstract Under catalysis by ferrous ion, hydrogen peroxide quenches the luminescence of gold nanoclusters (AuNCs) and oxidizes coumarin into a fluorescent derivative, which rendered fluorescence ON and OFF at two distinct wavelengths for ratiometric measurements.

  14. Fluorescent DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Lin, Ruoqian

    Because of the ultra-small size and biocompatibility of silver nanoclusters, they have attracted much research interest for their applications in biolabeling. Among the many ways of synthesizing silver nanoclusters, DNA templated method is particularly attractive---the high tunability of DNA sequences provides another degree of freedom for controlling the chemical and photophysical properties. However, systematic studies about how DNA sequences and concentrations are controlling the photophysical properties are still lacking. The aim of this thesis is to investigate the binding mechanisms of silver clusters binding and single stranded DNAs. Here in this thesis, we report synthesis and characterization of DNA-templated silver nanoclusters and provide a systematic interrogation of the effects of DNA concentrations and sequences, including lengths and secondary structures. We performed a series of syntheses utilizing five different sequences to explore the optimal synthesis condition. By characterizing samples with UV-vis and fluorescence spectroscopy, we achieved the most proper reactants ratio and synthesis conditions. Two of them were chosen for further concentration dependence studies and sequence dependence studies. We found that cytosine-rich sequences are more likely to produce silver nanoclusters with stronger fluorescence signals; however, sequences with hairpin secondary structures are more capable in stabilizing silver nanoclusters. In addition, the fluorescence peak emission intensities and wavelengths of the DNA templated silver clusters have sequence dependent fingerprints. This potentially can be applied to sequence sensing in the future. However all the current conclusions are not warranted; there is still difficulty in formulating general rules in DNA strand design and silver nanocluster production. Further investigation of more sequences could solve these questions in the future.

  15. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.

    PubMed

    Li, Ru-Dong; Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-03-15

    Developing direct and convenient methods for microRNAs (miRNAs) analysis is of great significance in understanding biological functions of miRNAs, and early diagnosis of cancers. We have developed a rapid, enzyme-free method for miRNA detection based on nanoparticle-assisted signal amplification coupling fluorescent metal nanoclusters as signal output. The proposed method involves two processes: target miRNA-mediated nanoparticle capture, which consists of magnetic microparticle (MMP) probe and CuO nanoparticle (NP) probe, and nanoparticle-mediated amplification for signal generation, which consists of fluorescent DNA-Cu/Ag nanocluster (NC) and 3-mercaptopropionic acid (MPA). In the presence of target miRNA, MMP probe and NP probe sandwich-capture the target miRNA via their respective complementary sequence. The resultant sandwich complex (MMP probe-miRNA-CuO NP probe) is separated using a magnetic field and further dissolved by acidolysis to turn CuO NP into a great amount of copper (II) ions (Cu(2+)). Cu(2+) could disrupt the interactions between thiol moiety of MPA and the fluorescent Cu/Ag NCs by preferentially reacting with MPA to form a disulfide compound as intermediate. By this way, the fluorescence emission of the DNA-Cu/Ag NCs in the presence of MPA increases upon the increasing concentration of Cu(2+), which is directly proportional to the amount of target miRNA. The proposed method allows quantitative detection of a liver-specific miR-221-5p in the range of 5 pM to 1000 pM with a detection limit of ~0.73 pM, and shows a good ability to discriminate single-base difference. Moreover, the detection assay can be applied to detect miRNA in cancerous cell lysates in excellent agreement with that from a commercial miRNA detection kit. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. FINAL REPORT: NATIONAL CHILDREN'S STUDY (NCS) ESTIMATING SUBJECT BURDEN FOR POTENTIAL NCS MEASUREMENTS

    EPA Science Inventory

    Purpose The National Children's Study (NCS), a large longitudinal cohort study of environmental exposures among children, is currently in the planning stage. Prior to enrollment of 100,000 pregnant women across the United Sates for this study, a better understanding of the partic...

  17. Experimental measurements of U60 nanocluster stability in aqueous solution

    NASA Astrophysics Data System (ADS)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  18. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  19. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    PubMed

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (<100 nm) and zinc oxide (ZnO) (<50 and <100 nm)] through solvent casting method. Incorporation of Ag-Cu alloy into the PLA/PEG matrix increased the glass transition temperature (Tg) significantly. The crystallinity of the nanocomposites (NCs) was significantly influenced by NP incorporation as evidenced from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The PLA nanocomposite reinforced with NPs exhibited much higher tensile strength than that of PLA/PEG blend. Melt rheology of NCs exhibited a shear-thinning behavior. The mechanical property drastically reduced with a loading of NPs, which is associated with degradation of PLA. SEM micrographs exhibited that both Ag-Cu alloy and ZnO NPs were dispersed well in the PLA film matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    PubMed Central

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  1. Programmable Assembly of Hybrid Nanoclusters.

    PubMed

    Ni, Songbo; Wolf, Heiko; Isa, Lucio

    2018-02-20

    Hybrid nanoparticle clusters (often metallic) are interesting plasmonic materials with tunable resonances and a near-field electromagnetic enhancement at interparticle junctions. Therefore, in recent years, we have witnessed a surge in both the interest in these materials and the efforts to obtain them. However, a versatile fabrication of hybrid nanoclusters, that is, combining more than one material, still remains an open challenge. Current lithographical or self-assembly methods are limited to the preparation of hybrid clusters with up to two different materials and typically to the fabrication of hybrid dimers. Here, we provide a novel strategy to deposit and align not only hybrid dimers but also hybrid nanoclusters possessing more complex shapes and compositions. Our strategy is based on the downscaling of sequential capillarity-assisted particle assembly over topographical templates. As a proof of concept, we demonstrate dimers, linear trimers, and 2D nanoclusters with programmable compositions from a range of metallic nanoparticles. Our process does not rely on any specific chemistry and can be extended to a large variety of particles and shapes. The template also simultaneously aligns the hybrid (often anisotropic) nanoclusters, which could facilitate device integration, for example, for optical readout after transfer to other substrates by a printing step. We envisage that this new fabrication route will enable the assembly and positioning of complex hybrid nanoclusters of different functional nanoparticles to study coupling effects not only locally but also at larger scales for new nanoscale optical devices.

  2. Cost-effective three dimensional Ag/polymer dyes/graphene-carbon spheres hybrids for high performance nonenzymatic sensor and its application in living cell H2O2 detection.

    PubMed

    Lu, Baoping; Yuan, Xuna; Ren, Yuehong; Shi, Qinghua; Wang, Song; Dong, Jinlong; Nan, Ze-Dong

    2018-05-03

    We describe a facile method to synthesize a new type of catalyst by electrodepositing Ag nanocrystals (AgNCs) on the different polymer dyes, Poly (methylene blue) (PMB) or Poly (4-(2-Pyridylazo)-Resorcinol) (PAR) modified graphene‑carbon spheres (GS) hybrids. The self-assembled GS take dual advantages of carbon spheres and graphene. Carbon spheres acts as nano-spacers prevent the aggregation of graphene and guarantee the fast electron transfer of GS. Secondly, polymerized dyes used here are beneficial for AgNCs growing as a linker. The effects of dyes on the growth habits, morphologies and catalytic properties for AgNCs were investigated. A novel electrochemical nonenzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection is fabricated based on the Ag/Polymer dyes/GS ternary composites modified glass carbon electrode (GCE) for the first time. It was found that the proposed electrodes, especially for Ag/PMB/GS/GCE, displayed a peculiar electrocatalytic activity towards H 2 O 2 reduction synergistically as compared to Ag/PAR/GS/GCE or Ag/GS/GCE alone. Ag/PMB/GS/GCE showed a linear response over the H 2 O 2 concentration range of 0.5 to 1112 μM. The detection limit and sensitivity is 0.15 μM and 400 μA mM -1  cm -2 , respectively. These outstanding results enable the practical application of Ag/PMB/GS/GCE for the H 2 O 2 tracking released from MCF-7 (human breast cancer cells) with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Nanoclustering as a dominant feature of plasma membrane organization.

    PubMed

    Garcia-Parajo, Maria F; Cambi, Alessandra; Torreno-Pina, Juan A; Thompson, Nancy; Jacobson, Ken

    2014-12-01

    Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at nanoscale lengths. In this Commentary, we present selected examples of glycosylphosphatidyl-anchored proteins, Ras family members and several immune receptors that provide evidence for nanoclustering. We advocate the view that nanoclustering is an important part of the hierarchical organization of proteins in the plasma membrane. According to this emerging picture, nanoclusters can be organized on the mesoscale to form microdomains that are capable of supporting cell adhesion, pathogen binding and immune cell-cell recognition amongst other functions. Yet, a number of outstanding issues concerning nanoclusters remain open, including the details of their molecular composition, biogenesis, size, stability, function and regulation. Notions about these details are put forth and suggestions are made about nanocluster function and why this general feature of protein nanoclustering appears to be so prevalent. © 2014. Published by The Company of Biologists Ltd.

  4. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  5. Equilibrium Gold Nanoclusters Quenched with Biodegradable Polymers

    PubMed Central

    Murthy, Avinash K.; Stover, Robert J.; Borwankar, Ameya U.; Nie, Golay D.; Gourisankar, Sai; Truskett, Thomas M.; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 nm to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semi-quantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging. PMID:23230905

  6. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  7. Formation of solid Kr nanoclusters in MgO

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Kooi, B. J.; de Hosson, J. Th.

    2003-06-01

    The phenomenon of positron confinement enables us to investigate the electronic structure of nanoclusters embedded in host matrices. Solid Kr nanoclusters are a very interesting subject of investigation because of the very low predicted value of the positron affinity of bulk Kr. In this work, positron trapping in solid Kr nanoclusters embedded in MgO is investigated. The Kr nanoclusters were created by means of 280 keV Kr ion implantation in single crystals of MgO(100) and subsequent thermal annealing at a temperature of 1100 K. The nanoclusters were observed by cross-sectional transmission electron microscopy in high-resolution mode. The fcc Kr nanoclusters are rectangularly shaped with sizes of 2 to 5 nm and are in a cube-on-cube orientation relationship with the MgO host matrix. From the Moiré fringes in high-resolution recordings, the lattice parameter of the solid Kr was deduced and found to vary from 5.3 to 5.8 Å. The corresponding pressures are 0.6 2.5 GPa as found using the Ronchi equation of state. The relationship between lattice parameter and cluster size was investigated and it was found that the lattice parameter increases linearly with increasing nanocluster size. The defect evolution during annealing was monitored by means optical absorption spectroscopy and positron beam analysis. No evidence of positron trapping was found despite the very low positron affinity of solid Kr. Alternative definitions of the positron affinity are proposed for application to insulator materials.

  8. Uranyl peroxide nanoclusters at high-pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Katlyn M.; Szymanowski, Jennifer E. S.; Zhang, Fuxiang

    Here, U 60 ([UO 2(O 2)(OH)] 60 60– in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U 60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U 60-bearing material: Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 ( Fm3¯; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), andmore » the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U 60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U 60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U 60 clusters at high pressure may have been enhanced by the interaction between U 60 nanoclusters and the alcohol pressure medium. Once formed, U 60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.« less

  9. Uranyl peroxide nanoclusters at high-pressure

    DOE PAGES

    Turner, Katlyn M.; Szymanowski, Jennifer E. S.; Zhang, Fuxiang; ...

    2017-08-14

    Here, U 60 ([UO 2(O 2)(OH)] 60 60– in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U 60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U 60-bearing material: Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 ( Fm3¯; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), andmore » the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U 60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U 60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U 60 clusters at high pressure may have been enhanced by the interaction between U 60 nanoclusters and the alcohol pressure medium. Once formed, U 60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.« less

  10. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  11. A new AgNC fluorescence regulation mechanism caused by coiled DNA and its applications in constructing molecular beacons with low background and large signal enhancement.

    PubMed

    Zhou, Weijun; Dong, Shaojun

    2017-11-14

    Herein, we report a new fluorescence regulation mechanism of DNA-templated AgNCs caused by coiled DNA. Based on these phenomena, a novel dual fluorescent AgNC-MB with exponential signal enhancement and remarkably low background was developed. The AgNC-MB could effectively facilitate template design and avoid the disturbance caused by undesirable hybridization.

  12. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm)

    NASA Astrophysics Data System (ADS)

    Martin, Matthew N.; Li, Dawei; Dass, Amala; Eah, Sang-Kee

    2012-06-01

    An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d < 2 nm, <250 atoms per nanocluster), which takes only 2 min and can be easily reproduced. With two immiscible solvents, gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning.An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d < 2 nm, <250 atoms per nanocluster), which takes only 2 min and can be easily reproduced. With two immiscible solvents, gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning. Electronic supplementary information (ESI) available: Experimental details of gold nanocluster synthesis and mass-spectrometry. See DOI: 10.1039/c2nr30890h

  13. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  14. A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters

    NASA Astrophysics Data System (ADS)

    Chevrier, D. M.; Chatt, A.; Sham, T. K.; Zhang, P.

    2013-04-01

    Tiopronin-capped gold nanoparticles and gold nanoclusters of sizes 3.0 and 1.5 nm, respectively, were investigated with XAFS at the gold L3-edge. The specific EXAFS fitting procedure is discussed for obtaining reliable fit parameters for each system. The difficulties and challenges faced when analysing EXAFS data for gold nanoparticles and nanoclusters are also mentioned. Fitting results for gold nanoparticles reveal a small amount of surface Au-thiolate interactions with a large Au-Au metal core. For gold nanoclusters, only a one-shell fit was obtainable. Instead of Au-Au metal core, long-range interactions are expected for gold nanoclusters. Tiopronin-capped gold nanoclusters are proposed to be polymeric in nature, which helps explain the observed red luminescence.

  15. Synthesis, Characterization and Application of Water-soluble Gold and Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    The term `nanotechnology' has emerged as a buzzword since the last few decades. It has found widespread applications across disciplines, from medicine to energy. The synthesis of gold and silver nanoclusters has found much excitement, due to their novel material properties. Seminal work by various groups, including ours, has shown that the size of these clusters can be controlled with atomic precision. This control gives access to tuning the optical and electronic properties. The majority of nanoclusters reported thus far are not water soluble, which limit their applications in biology that requires water-solubility. Going from organic to aqueous phase is by no means a simple task, as it is associated with many challenges. Their stability in the presence of oxygen, difficulty in characterization, and separation of pure nanoclusters are some of the major bottlenecks associated with the synthesis of water-soluble gold nanoclusters. Water-soluble gold nanoclusters hold great potential in biological labeling, bio-catalysis and nano-bioconjugates. To overcome this problem, a new ligand with structural rigidity is needed. After considering various possibilities, we chose Captopril as a candidate ligand. In my thesis research, the synthesis of Au25 nanocluster capped with captopril has been reported. Captopril-protected Au25 nanocluster showed significantly higher thermal stability and enhanced chiroptical properties than the Glutathione-capped cluster, which confirms our initial rationale, that the ligand is critical in protecting the nanocluster. The optical absorption properties of these Au25 nanoclusters are studied and compared to the plasmonic nanoparticles. The high thermal stability and solubility of Au25 cluster capped with Captopril motivated us to explore this ligand for the synthesis of other gold clusters. Captopril is a chiral molecule with two chiral centers. The chiral ligand can induce chirality to the overall cluster, even if the core is achiral

  16. Photophysical and redox properties of molecule-like CdSe nanoclusters.

    PubMed

    Dolai, Sukanta; Dass, Amala; Sardar, Rajesh

    2013-05-21

    Advancing our understanding of the photophysical and electrochemical properties of semiconductor nanoclusters with a molecule-like HOMO-LUMO energy level will help lead to their application in photovoltaic devices and photocatalysts. Here we describe an approach to the synthesis and isolation of molecule-like CdSe nanoclusters, which displayed sharp transitions at 347 nm (3.57 eV) and 362 nm (3.43 eV) in the optical spectrum with a lower energy band extinction coefficient of ~121,000 M(-1) cm(-1). Mass spectrometry showed a single nanocluster molecular weight of 8502. From this mass and various spectroscopic analyses, the nanoclusters are determined to be of the single molecular composition Cd34Se20(SPh)28, which is a new nonstiochiometric nanocluster. Their reversible electrochemical band gap determined in Bu4NPF6/CH3CN was found to be 4.0 V. There was a 0.57 eV Coulombic interaction energy of the electron-hole pair involved. The scan rate dependent electrochemistry suggested diffusion-limited transport of nanoclusters to the electrode. The nanocluster diffusion coefficient (D = 5.4 × 10 (-4) cm(2)/s) in acetonitrile solution was determined from cyclic voltammetry, which suggested Cd34Se20(SPh)28 acts as a multielectron donor or acceptor. We also present a working model of the energy level structure of the newly discovered nanocluster based on its photophysical and redox properties.

  17. Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells 'in vitro'.

    PubMed

    Orta-García, Sandra Teresa; Plascencia-Villa, Germán; Ochoa-Martínez, Angeles Catalina; Ruiz-Vera, Tania; Pérez-Vázquez, Francisco Javier; Velázquez-Salazar, J Jesús; Yacamán, Miguel José; Navarro-Contreras, Hugo Ricardo; Pérez-Maldonado, Iván N

    2015-10-01

    The antimicrobial properties of silver nanoparticles (AgNPs) have made these particles one of the most used nanomaterials in consumer products. Therefore, an understanding of the interactions (unwanted toxicity) between nanoparticles and human cells is of significant interest. The aim of this study was to assess the in vitro cytotoxicity effects of silver nanoclusters (AgNC, < 2 nm diameter) on peripheral blood mononuclear cells (PBMC). Using flow cytometry and comet assay methods, we demonstrate that exposure of PBMC to AgNC induced intracellular reactive oxygen species (ROS) generation, DNA damage and apoptosis at 3, 6 and 12 h, with a dose-dependent response (0.1, 1, 3, 5 and 30 µg ml(-1)). Advanced electron microscopy imaging of complete and ultrathin-sections of PBMC confirmed the cytotoxic effects and cell damage caused by AgNC. The present study showed that AgNC produced without coating agents induced significant cytotoxic effects on PBMC owing to their high aspect ratio and active surface area, even at much lower concentrations (<1 µg ml(-1)) than those applied in previous studies, resembling what would occur under real exposure conditions to nanosilver-functionalized consumer products. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Ultrafast plasmon-enhanced hot electron process in model heterojunctions: Ag/TiO2 and Ag/graphite

    NASA Astrophysics Data System (ADS)

    Petek, Hrvoje

    We study the plasmonically enhanced nonlinear photoemission from Ag nanocluster-decorated graphite and TiO2(110) surfaces by time-resolved two-photon photoemission spectroscopy (TR-2PP). Evaporating Ag atoms on graphite and TiO2 surfaces forms pancake-like Ag clusters with 5 nm diameter and 1-1.5 nm height through self-limiting growth mode. The Ag nanoparticles enhance the two-photon photoemission (2PP) signal by approximately two-orders of magnitude as compared with the bare surfaces for p-polarized excitation. In the case of s-polarization there is essentially no enhancement for graphite, and only about an order-of-magnitude enhancement for TiO2. Wavelength dependent measurements of the enhancement reveal that for Ag/graphite there is a single plasmonic resonance due to the ⊥-plasmon mode at 3.6 eV. By contrast, for Ag/TiO2 there are ⊥ and ||-plasmon modes with resonant energies of 3.8 and 3.1 eV, respectively. Apparently the dielectric properties of the substrate have strong influence on the type and frequency of Ag plasmonic modes that can exist on the surfaces. 2PP spectra of the Ag/graphite and Ag/TiO2 surfaces reveal two distinct components that are common to both. The high energy component consists of a coherent 2PP process from an occupied interface state, which only exists in the presence of Ag. We identify this state, as an interface state formed by charge donation from the Ag-5s band to the unoccupied states of the substrates. The low energy component consists of a hot electron signal that is created by plasmon dephasing. TR-2PP measurements are performed on the plasmon-induced electron dynamics to assess their relevance for plasmonically enhanced femtochemistry. This research was supported by NSF Grant CHE-1414466.

  19. The role of protein characteristics in the formation and fluorescence of Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Xu, Yaolin; Sherwood, Jennifer; Qin, Ying; Crowley, Dorothy; Bonizzoni, Marco; Bao, Yuping

    2014-01-01

    Protein-encapsulated gold nanoclusters have shown many advantages over other gold nanocluster systems, including green synthesis, biocompatibility, high water solubility, and the ease of further conjugation. In this article, we systematically investigated the effects of the protein size and amino acid content on the formation and fluorescent properties of gold nanoclusters using four model proteins (bovine serum albumin, lysozyme, trypsin, and pepsin). We discovered that the balance of amine and tyrosine/tryptophan containing residues was critical for the nanocluster formation. Protein templates with low cysteine contents caused blue shifts in the fluorescent emissions and difference in fluorescent lifetimes of the gold nanoclusters. Furthermore, the protein size was found to be a critical factor for the photostability and long-term stability of gold nanoclusters. The size of the protein also affected the Au nanocluster behaviour after immobilization.Protein-encapsulated gold nanoclusters have shown many advantages over other gold nanocluster systems, including green synthesis, biocompatibility, high water solubility, and the ease of further conjugation. In this article, we systematically investigated the effects of the protein size and amino acid content on the formation and fluorescent properties of gold nanoclusters using four model proteins (bovine serum albumin, lysozyme, trypsin, and pepsin). We discovered that the balance of amine and tyrosine/tryptophan containing residues was critical for the nanocluster formation. Protein templates with low cysteine contents caused blue shifts in the fluorescent emissions and difference in fluorescent lifetimes of the gold nanoclusters. Furthermore, the protein size was found to be a critical factor for the photostability and long-term stability of gold nanoclusters. The size of the protein also affected the Au nanocluster behaviour after immobilization. Electronic supplementary information (ESI) available See DOI: 10

  20. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    NASA Astrophysics Data System (ADS)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  1. 47 CFR 216.1 - NCS Directives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false NCS Directives. 216.1 Section 216.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS... Directives, which establish and implement organizational responsibilities, authorities, policies and...

  2. 47 CFR 216.1 - NCS Directives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false NCS Directives. 216.1 Section 216.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS... Directives, which establish and implement organizational responsibilities, authorities, policies and...

  3. 47 CFR 216.1 - NCS Directives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false NCS Directives. 216.1 Section 216.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS... Directives, which establish and implement organizational responsibilities, authorities, policies and...

  4. 47 CFR 216.1 - NCS Directives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false NCS Directives. 216.1 Section 216.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS... Directives, which establish and implement organizational responsibilities, authorities, policies and...

  5. 47 CFR 216.1 - NCS Directives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false NCS Directives. 216.1 Section 216.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS... Directives, which establish and implement organizational responsibilities, authorities, policies and...

  6. Surface-supported Ag islands stabilized by a quantum size effect: Their interaction with small molecules relevant to ethylene epoxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Dahai

    2013-05-15

    This dissertation focuses on how QSE-stabilized, surface-supported Ag nanoclusters will interact with ethylene or oxygen. Experiments are performed to determine whether the QSE-mediated Ag islands react differently toward adsorption of ethylene or oxygen, or whether the adsorption of these small molecules will affect the QSE-mediated stability of Ag islands. Studies of the interaction of oxygen with Ag/Si(111)-7×7 were previously reported, but these studies were performed at a low Ag coverage where 3D Ag islands were not formed. So the study of such a system at a higher Ag coverage will be a subject of this work. The interaction of ethylenemore » with Ag/Si(111)-7×7, as well as the interaction of oxygen with Ag/NiAl(110) are also important parts of this study.« less

  7. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  8. The National Comorbidity Survey Adolescent Supplement (NCS-A): I. Background and Measures

    PubMed Central

    Merikangas, Kathleen R.; Avenevoli, Shelli; Costello, E. Jane; Koretz, Doreen; Kessler, Ronald C.

    2009-01-01

    Objective This paper presents an overview of the background and measures used in the National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Methods The NCS-A is a national psychiatric epidemiological survey of adolescents ages 13–17. Results The NCS-A was designed to provide the first nationally representative estimates of the prevalence, correlates and patterns of service use for DSM-V mental disorders among US adolescents and to lay the groundwork for follow-up studies of risk-protective factors, consequences, and early expressions of adult mental disorders. The core NCS-A diagnostic interview, the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI), is a fully-structured research diagnostic interview designed for use by trained lay interviewers. A multi-construct, multi-method, multi-informant battery was also included to assess risk and protective factors and barriers to service use. Design limitations due to the NCS-A evolving as a supplement to an ongoing survey of mental disorders of US adults include restricted age range of youth, cross-sectional assessment, and lack of full parental/surrogate informant reports on youth mental disorders and correlates. Conclusions Despite these limitations, the NCS-A contains unparalleled information that can be used to generate national estimates of prevalence and correlates of adolescent mental disorders, risk and protective factors, patterns of service use, and barriers to receiving treatment for these disorders. The retrospective NCS-A data on the development of psychopathology can additionally complement data from longitudinal studies based on more geographically restricted samples and serve as a useful baseline for future prospective studies of the onset and progression of mental disorders in adulthood. PMID:19242382

  9. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  10. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    PubMed

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An oscillator based on a single Au nanocluster

    NASA Astrophysics Data System (ADS)

    Gorshkov, O. N.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Pavlov, D. A.

    2017-01-01

    Metal nanoclusters embedded into the ultrathin dielectric films attracted much attention in recent years due to their unusual electronic, optical, etc., properties differing from those of the bulk metals essentially and, hence, to the prospects of their applications in novel nanoelectronic, single electronic, non-volatile memory, etc., devices. Here, we report on the experimental observation of the electrical oscillations in an oscillating loop connected to a contact of a conductive probe of an Atomic Force Microscope to a tunnel-transparent ( ˜6.5 nm thick) yttria stabilized zirconia film with embedded Au nanoclusters on the Si substrate. The oscillations were attributed to the negative differential resistance of the probe-to-sample contact originating from the resonant electron tunnelling between the probe and the Si substrate via the quantum confined electron energy levels in small ( ≈2.5 nm in diameter) Au nanoclusters. This observation demonstrates the prospects of building an oscillator nanoelectronic device based on an individual nanometer-sized metal nanocluster.

  12. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    PubMed

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  13. Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance

    PubMed Central

    Tao, Jing; Niebieskikwiat, Dario; Jie, Qing; Schofield, Marvin A.; Wu, Lijun; Li, Qiang; Zhu, Yimei

    2011-01-01

    It is generally accepted that electronic and magnetic phase separation is the origin of many of exotic properties of strongly correlated electron materials, such as colossal magnetoresistance (CMR), an unusually large variation in the electrical resistivity under applied magnetic field. In the simplest picture, the two competing phases are those associated with the material state on either side of the phase transition. Those phases would be paramagnetic insulator and ferromagnetic metal for the CMR effect in doped manganites. It has been speculated that a critical component of the CMR phenomenon is nanoclusters with quite different properties than either of the terminal phases during the transition. However, the role of these nanoclusters in the CMR effect remains elusive because the physical properties of the nanoclusters are hard to measure when embedded in bulk materials. Here we show the unexpected behavior of the nanoclusters in the CMR compound La1-xCaxMnO3 (0.4 ≤ x < 0.5) by directly correlating transmission electron microscopy observations with bulk measurements. The structurally modified nanoclusters at the CMR temperature were found to be ferromagnetic and exhibit much higher electrical conductivity than previously proposed. Only at temperatures much below the CMR transition, the nanoclusters are antiferromagnetic and insulating. These findings substantially alter the current understanding of these nanoclusters on the material’s functionality and would shed light on the microscopic study on the competing spin-lattice-charge orders in strongly correlated systems. PMID:22160678

  14. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles.

    PubMed

    Liu, Yanyan; Li, Hongchang; Guo, Bin; Wei, Lijuan; Chen, Bo; Zhang, Youyu

    2017-05-15

    Herein we report a novel switch-off fluorescent probe for highly selective determination of uric acid (UA) based on the inner filter effect (IFE), by using poly-(vinylpyrrolidone)-protected gold nanoparticles (PVP-AuNPs) and chondroitin sulfate-stabilized gold nanoclusters (CS-AuNCs) as the IFE absorber/fluorophore pair. In this IFE-based fluorometric assay, the newly designed CS-AuNCs were explored as an original fluorophore and the hydrogen peroxide (H 2 O 2 ) -driven formed PVP-AuNPs can be a powerful absorber to influence the excitation of the fluorophore, due to the complementary overlap between the absorption band of PVP-AuNPs and the emission band of CS-AuNCs. Under the optimized conditions, the extent of the signal quenching depends linearly on the H 2 O 2 concentration in the range of 1-100μM (R 2 =0.995) with a detection limit down to 0.3μM. Based on the H 2 O 2 -dependent fluorescence IFE principle, we further developed a new assay strategy to enable selective sensing of UA by using a specific uricase-catalyzed UA oxidation as the in situ H 2 O 2 generator. The proposed uricase-linked IFE-based assay exhibited excellent analytical performance for measuring UA over the concentration ranging from 5 to 100μM (R 2 =0.991), and can be successfully applied to detection of UA as low as 1.7μM (3σ) in diluted human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid.

    PubMed

    Liu, Xiaofang; Wei, Shaping; Chen, Shihong; Yuan, Dehua; Zhang, Wen

    2014-08-01

    In this paper, graphene-multiwall carbon nanotube-gold nanocluster (GP-MWCNT-AuNC) composites were synthesized and used as modifier to fabricate a sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical behavior of the sensor was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The combination of GP, MWCNTs, and AuNCs endowed the electrode with a large surface area, good catalytic activity, and high selectivity and sensitivity. The linear response range for simultaneous detection of AA, DA, and UA at the sensor were 120-1,701, 2-213, and 0.7-88.3 μM, correspondingly, and the detection limits were 40, 0.67, and 0.23 μM (S/N=3), respectively. The proposed method offers a promise for simple, rapid, selective, and cost-effective analysis of small biomolecules.

  16. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-01-01

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350

  17. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  18. Atomically precise metal nanoclusters: stable sizes and optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Rongchao

    2015-01-01

    Controlling nanoparticles with atomic precision has long been a major dream of nanochemists. Breakthroughs have been made in the case of gold nanoparticles, at least for nanoparticles smaller than ~3 nm in diameter. Such ultrasmall gold nanoparticles indeed exhibit fundamentally different properties from those of the plasmonic counterparts owing to the quantum size effects as well as the extremely high surface-to-volume ratio. These unique nanoparticles are often called nanoclusters to distinguish them from conventional plasmonic nanoparticles. Intense work carried out in the last few years has generated a library of stable sizes (or stable stoichiometries) of atomically precise gold nanoclusters, which are opening up new exciting opportunities for both fundamental research and technological applications. In this review, we have summarized the recent progress in the research of thiolate (SR)-protected gold nanoclusters with a focus on the reported stable sizes and their optical absorption spectra. The crystallization of nanoclusters still remains challenging; nevertheless, a few more structures have been achieved since the earlier successes in Au102(SR)44, Au25(SR)18 and Au38(SR)24 nanoclusters, and the newly reported structures include Au20(SR)16, Au24(SR)20, Au28(SR)20, Au30S(SR)18, and Au36(SR)24. Phosphine-protected gold and thiolate-protected silver nanoclusters are also briefly discussed in this review. The reported gold nanocluster sizes serve as the basis for investigating their size dependent properties as well as the development of applications in catalysis, sensing, biological labelling, optics, etc. Future efforts will continue to address what stable sizes are existent, and more importantly, what factors determine their stability. Structural determination and theoretical simulations will help to gain deep insight into the structure-property relationships.

  19. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference.

  20. Photo-oxidation method using MoS2 nanocluster materials

    DOEpatents

    Wilcoxon, Jess P.

    2001-01-01

    A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.

  1. Growth and Stability of Titanium Dioxide Nanoclusters on Graphene/Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Ryan T.; Novotny, Zbynek; Netzer, Falko P.

    Titanium dioxide/graphene composites have recently been demonstrated to improve the photocatalytic activity of TiO2 in visible light. To better understand the interactions of TiO2 with graphene we have investigated the growth of TiO2 nanoclusters on single-layer graphene/Ru(0001) using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Deposition of Ti in the O2 background at 300 K resulted in the formation of nanoclusters nucleating on intrinsic defects in the graphene (Gr) layer. The saturation nanocluster density decreased as the substrate temperature was increased from 300 to 650 K, while deposition at 700 K resulted in the significant etching of themore » Gr layer. We have also prepared nanoclusters with Ti2O3 stoichiometry using lower O2 pressures at 650 K. Thermal stability of the TiO2 nanoclusters prepared at 300 K was evaluated with AES and STM. No change in oxidation state for the TiO2 nanoclusters or etching of the Gr layer was observed up to ~900 K. Annealing studies characterized using STM revealed that cluster ripening proceeds via a Smoluchowski mechanism below 800 K and that Ostwald ripening dominates above 800 K. At even higher temperatures, the nanoclusters undergo reduction to TiOx (x ≈ 1 - 1.5) which is accompanied by oxidation and etching of the Gr. Our studies demonstrate that highly thermally stable TiOx nanoclusters of controlled composition and morphology can be prepared on Gr supports.« less

  2. Self-directed exploration provides a Ncs1-dependent learning bonus

    PubMed Central

    Mun, Ho-Suk; Saab, Bechara J.; Ng, Enoch; McGirr, Alexander; Lipina, Tatiana V.; Gondo, Yoichi; Georgiou, John; Roder, John C.

    2015-01-01

    Understanding the mechanisms of memory formation is fundamental to establishing optimal educational practices and restoring cognitive function in brain disease. Here, we show for the first time in a non-primate species, that spatial learning receives a special bonus from self-directed exploration. In contrast, when exploration is escape-oriented, or when the full repertoire of exploratory behaviors is reduced, no learning bonus occurs. These findings permitted the first molecular and cellular examinations into the coupling of exploration to learning. We found elevated expression of neuronal calcium sensor 1 (Ncs1) and dopamine type-2 receptors upon self-directed exploration, in concert with increased neuronal activity in the hippocampal dentate gyrus and area CA3, as well as the nucleus accumbens. We probed further into the learning bonus by developing a point mutant mouse (Ncs1P144S/P144S) harboring a destabilized NCS-1 protein, and found this line lacked the equivalent self-directed exploration learning bonus. Acute knock-down of Ncs1 in the hippocampus also decoupled exploration from efficient learning. These results are potentially relevant for augmenting learning and memory in health and disease, and provide the basis for further molecular and circuit analyses in this direction. PMID:26639399

  3. A selective and label-free strategy for rapid screening of telomere-binding Ligands via fluorescence regulation of DNA/silver nanocluster

    NASA Astrophysics Data System (ADS)

    Cheng, Rui; Xu, Jing; Zhang, Xiafei; Shi, Zhilu; Zhang, Qi; Jin, Yan

    2017-03-01

    Herein, the conformational switch of G-rich oligonucleotide (GDNA) demonstrated the obvious functional switch of GDNA which was found to significantly affect the fluorescence of the in-situ synthesized DNA/silver nanocluster (DNA-AgNC) in homogeneous solution. We envisioned that the allosteric interaction between GDNA and DNA-AgNC would be possible to be used for screening telomere-binding ligands. A unimolecular probe (12C5TG) is ingeniously designed consisting of three contiguous DNA elements: G-rich telomeric DNA (GDNA) as molecular recognition sequence, T-rich DNA as linker and C-rich DNA as template of DNA-AgNC. The quantum yield and stability of 12C5TG-AgNC is greatly improved because the nearby deoxyguanosines tended to protect DNA/AgNC against oxidation. However, in the presence of ligands, the formation of G-quadruplex obviously quenched the fluorescence of DNA-AgNC. By taking full advantage of intramolecular allosteric effect, telomere-binding ligands were selectively and label-free screened by using deoxyguanines and G-quadruplex as natural fluorescence enhancer and quencher of DNA-AgNC respectively. Therefore, the functional switching of G-rich structure offers a cost-effective, facile and reliable way to screen drugs, which holds a great potential in bioanalysis as well.

  4. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  5. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    PubMed

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  6. A Study of Utah's New Century Scholarship (NCS) Program

    ERIC Educational Resources Information Center

    Kearl, Christine; Byrnes, Deborah; Maahs-Fladung, Cathy

    2013-01-01

    This was a study about the New Century Scholarship (NCS) program offered to Utah high school students at commencement for earning an Associate of Arts (AA) degree by the time they graduate from high school. An Associate of Arts degree is earning 60 college credits toward a specific AA program. The goal of the NCS program was to assist students to…

  7. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    PubMed Central

    Mehrmohammadi, M; Yoon, KY; Qu, M; Johnston, KP; Emelianov, SY

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR. PMID:21157009

  8. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  9. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.

    PubMed

    Li, Haiyin; Chang, Jiafu; Hou, Ting; Ge, Lei; Li, Feng

    2016-11-01

    Reliable, selective and sensitive approaches for trinitrophenol (TNP) detection are highly desirable with respect to national security and environmental protection. Herein, a simple and novel fluorescent strategy for highly sensitive and specific TNP assay has been successfully developed, which is based on the quenching of the fluorescent poly(thymine)-templated copper nanoclusters (DNA-CuNCs), through the synergetic effects of acid induction and electron transfer. Upon the addition of TNP, donor-acceptor complexes between the electron-deficient nitro-groups in TNP and the electron-donating DNA templates are formed, resulting in the close proximity between TNP and CuNCs. Moreover, the acidity of TNP contributes to the pH decrease of the system. These factors combine to dramatically quench the fluorescence of DNA-CuNCs, providing a "signal-off" strategy for TNP sensing. The as-proposed strategy demonstrates high sensitivity for TNP assay, and a detection limit of 0.03μM is obtained, which is lower than those reported by using organic fluorescent materials. More significantly, this approach shows outstanding selectivity over a number of TNP analogues, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitrophenol (DNP), 3-nitrophenol (NP), nitrobenzene (NB), phenol (BP), and toluene (BT). Compared with previous studies, this method does not need complex DNA sequence design, fluorescent dye labeling, or sophisticated organic reactions, rendering the strategy with additional advantages of simplicity and cost-effectiveness. In addition, the as-proposed strategy has been adopted for the detection of TNP in natural water samples, indicating its great potential to be applied in the fields of public safety and environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Silicon nanocluster-sensitized emission from erbium: The role of stress in the formation of silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Temple, M. P.; Kallis, A.; Wojdak, M.; Oton, C. J.; Barbier, D.; Saleh, H.; Kenyon, A. J.; Loh, W. H.

    2008-12-01

    Erbium-doped silicon-rich silicon oxide films deposited by plasma enhanced chemical vapor deposition suffer from compressive stress as deposited, which converts to a large tensile stress on annealing due to the release of hydrogen. Although the cracking that results from this stress can be avoided by patterning the films into ridges, significant stress remains along the ridge axis. Measurements of erbium photoluminescence sensitized by silicon nanoclusters in stressed and relaxed films suggest an important role for internal film stresses in promoting the phase separation of excess silicon into nanoclusters, which has previously been thought of as a thermally driven process.

  11. Photoluminescence and structural characteristics of CdS nanoclusters synthesized by hydrothermal microemulsion

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Xu, G. Q.; Gan, L. M.; Chew, C. H.; Li, W. S.; Shen, Z. X.

    2001-01-01

    Spherical and uniform CdS nanoclusters were synthesized by hydrothermal microemulsion. The reaction of Cd2+ ions with S2- ions generated from the decomposition of thioacetamide proceeded in water microdroplets. The mean diameter of the CdS nanoclusters can be varied from 20 to 80 nm by increasing the reaction temperature from 30 to 120 °C. XRD results indicate that the resulting CdS nanoclusters have a reduced and distorted hexagonal lattice compared to bulk materials. Two intense luminescence bands, i.e., green and red, were observed to coexist in the CdS nanoclusters. Their peak positions and relative intensities were found to be sensitive to the size and structure of nanoclusters. These emissions are attributed to surface defects (green emission) and the Cd-Cl composite vacancies (red emission).

  12. Selective hydrogenation of acetylene in the presence of ethylene on palladium nanocluster surfaces: A DFT study

    NASA Astrophysics Data System (ADS)

    Abdollahi, Tahereh; Farmanzadeh, Davood

    2018-03-01

    In this work, by density functional theory, the palladium nanoclusters were investigated in order to design new catalysts for the selective hydrogenation of acetylene present in olefin feeds. At first, the palladium nanoclusters were studied using PBE-G functional with DNP-ECP basis set. According to the performed calculations, among all the Pdn (n = 2-15) nanoclusters, two Pd12 and Pd2 nanoclusters can be used as catalysts in the reactions of hydrogenation of acetylene and ethylene. The adsorption energy of hydrogen on the Pd12 nanocluster is higher than that of acetylene and ethylene, and therefore, the Pd12 nanocluster is more appropriate for the hydrogenation of acetylene and ethylene. However, the calculated activation energy barriers for the reactions of hydrogenation of acetylene and ethylene showed that the Pd2 nanocluster has more selectivity in comparison to the Pd12 nanocluster. According to our results, the activation energy of the hydrogenation of acetylene to vinyl on the Pd2 nanocluster is 23.96 kJ/mol lower than that on the Pd12 nanocluster. Also, the activation energy of the hydrogenation of ethylene to ethyl on the Pd2 nanocluster is higher than that on the Pd12 nanocluster Therefore, it seems that the Pd2 surface can be used as a catalyst for the selective hydrogenation of acetylene.

  13. Nanoclustering phase competition induces the resistivity hump in colossal magnetoresistive manganites

    NASA Astrophysics Data System (ADS)

    Pradhan, Kalpataru; Yunoki, Seiji

    2017-12-01

    Using a two-band double-exchange model with Jahn-Teller lattice distortions and superexchange interactions, supplemented by quenched disorder, at an electron density n =0.65 , we explicitly demonstrate the coexistence of the n =1 /2 -type (π ,π ) charge-ordered and the ferromagnetic nanoclusters above the ferromagnetic transition temperature Tc in colossal magnetoresistive (CMR) manganites. The resistivity increases due to the enhancement of the volume fraction of the charge-ordered and the ferromagnetic nanoclusters upon decreasing the temperature down to Tc. The ferromagnetic nanoclusters start to grow and merge, and the volume fraction of the charge-ordered nanoclusters decreases below Tc, leading to the sharp drop in the resistivity. By applying a small external magnetic field h , we show that the resistivity above Tc increases, as compared with the case when h =0 , a fact that further confirms the coexistence of the charge-ordered and the ferromagnetic nanoclusters. In addition, we show that the volume fraction of the charge-ordered nanoclusters decreases upon increasing the bandwidth, and consequently the resistivity hump diminishes for large bandwidth manganites, in good qualitative agreement with experiments. The obtained insights from our calculations provide a complete pathway to understand the phase competition in CMR manganites.

  14. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    NASA Astrophysics Data System (ADS)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  15. Simulation studies of glassy nanoclusters

    NASA Astrophysics Data System (ADS)

    Bowles, Richard

    2015-03-01

    Glassy materials are amorphous solids usually formed by rapidly cooling a liquid below its equilibrium freezing temperature, trapping the particles in a liquid-like structure at the glass transition temperature. While appearing throughout nature and industry, these systems continue to challenge the way we think about the dynamics and thermodynamics of condensed matter and a fundamental understanding of the glass state remains elusive. This talk describes molecular simulation studies of glassy behaviour in binary Lennard-Jones nanoclusters. We show that the relaxation dynamics of the clusters is nonuniform and the core of the cluster goes through a glass transition at higher temperatures than at the surface. As the nanoclusters are cooled, they also exhibit a fragile-strong crossover in their dynamics and we explore how this phenomena is linked to the potential energy landscape of the clusters. Finally, we compare the properties of nanoclusters formed through vapour condensation, directly to the glassy state, with those of glassy clusters formed through traditional supercooling. The condensation clusters are shown to form ultra-stable glassy states analogous to the ultra-stable glasses formed by thin film vapour deposition onto a cold substrate. In all, our work suggests that nanoscale clusters exhibit some unique glassy features, while also offering potential insights into the fundamental nature of the glass transition.

  16. Synthesis and thermal responsiveness of self-assembled gold nanoclusters.

    PubMed

    Ren, Shenqiang; Lim, Sung-Keun; Gradecak, Silvija

    2010-09-14

    A simple and versatile approach was developed to generate hierarchical assemblies of ultra-small gold nanocluster thin films using the combination of galvanic reaction and a block copolymer coordinated with gold complex. Variation of the temperature allows effective control over the optical response of these stimuli-responsive organic-nanocluster hybrid structures.

  17. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    NASA Astrophysics Data System (ADS)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent

  18. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters

    NASA Astrophysics Data System (ADS)

    Lauritsen, J. V.; Nyberg, M.; Vang, R. T.; Bollinger, M. V.; Clausen, B. S.; Topsøe, H.; Jacobsen, K. W.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F.

    2003-03-01

    Nanostructures often have unusual properties that are linked to their small size. We report here on extraordinary chemical properties associated with the edges of two-dimensional MoS2 nanoclusters, which we show to be able to hydrogenate and break up thiophene (C4H4S) molecules. By combining atomically resolved scanning tunnelling microscopy images of single-layer MoS2 nanoclusters and density functional theory calculations of the reaction energetics, we show that the chemistry of the MoS2 nanoclusters can be associated with one-dimensional metallic states located at the perimeter of the otherwise insulating nanoclusters. The new chemistry identified in this work has significant implications for an important catalytic reaction, since MoS2 nanoclusters constitute the basis of hydrotreating catalysts used to clean up sulfur-containing molecules from oil products in the hydrodesulfurization process.

  19. Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance

    NASA Astrophysics Data System (ADS)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2017-11-01

    TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.

  20. Multifunctional silver nanocluster-hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing.

    PubMed

    Chen, Hau-Yun; Albert, Karunya; Wen, Cheng-Che; Hsieh, Pei-Ying; Chen, Sih-Yu; Huang, Nei-Chung; Lo, Shen-Chuan; Chen, Jen-Kun; Hsu, Hsin-Yun

    2017-04-01

    Novel therapeutics is urgently needed to prevent cancer-related deaths. MicroRNAs that act as tumor suppressors have been recognized as a next-generation tumor therapy, and the restoration of tumor-suppressive microRNAs using microRNA replacements or mimics may be a less toxic, more effective strategy due to fewer off-target effects. Here, we designed the novel multifunctional oligonucleotide nanocarrier complex composed of a tumor-targeting aptamer sequence specific to mucin 1 (MUC1), poly-cytosine region for fluorescent silver nanocluster (AgNC) synthesis, and complimentary sequence for microRNA miR-34a loading. MiR-34a was employed because of its therapeutic effect of inhibiting oncogene expression and inducing apoptosis in carcinomas. By monitoring the intrinsic fluorescence of AgNC, it was clearly shown that the constructed complex (MUC1-AgNC m -miR-34a) enters MCF-7 cells. To evaluate the efficacy of this nanocarrier for microRNA delivery, we investigated the gene and protein expression levels of downstream miR-34a targets (BCL-2, CDK6, and CCND1) by quantitative PCR and western blotting, respectively, and the results indicated their effective inhibition by miR-34a. This novel multifunctional AgNC-based nanocarrier can aid in improving the efficacy of breast cancer theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Size-ordered 63Ni nanocluster film as a betavoltaic battery unit

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Yakovlev, V. P.; Vasiliev, O. S.; Lebedinskii, Yu. Yu.; Fetisov, V. V.; Kozlova, T. I.; Kozodaev, M. G.

    2018-04-01

    We create thin metallic films formed as a size-ordered deposition of Ni nanoclusters whose sizes are distributed over the range of 2-7 nm. The morphology, chemical composition, and electrical characteristics of the films are measured. The conductivity of the films under investigation changes approximately as the inverse square root of the average nanocluster size. We observe experimentally that, under irradiation by electrons with energies of 10-25 keV, the films show signs of being subjected to the electromotive force. We discuss how this effect is connected with the size-ordered spatial distribution of metallic nanoclusters. We analyze the possibility of using 63Ni nanocluster films in betavoltaic battery units and estimate the expected efficiency of converting β-decay energy into electricity.

  2. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser.

    PubMed

    Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha

    2016-04-05

    Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the different stages of the nanocluster formation are investigated in detail using absorption and fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode. It is shown that a laser power of as low as 0.75 mW is enough to write fluorescent structures, corresponding to the specifications of a commercially available laser pointer. The as-formed nanocluster-containing microstructures can be useful in direct labeling applications such as authenticity marking and fluorescent labeling.

  3. Theoretical study of water-gas shift reaction on the silver nanocluster

    NASA Astrophysics Data System (ADS)

    Arab, Ali; Sharafie, Darioush; Fazli, Mostafa

    2017-10-01

    The kinetics of water gas shift reaction (WGSR) on the silver nanocluster was investigated using density functional theory according to the carboxyl associative mechanism. The hybrid B3PW91 functional along with the 6-31+G* and LANL2DZ basis sets were used throughout the calculations. It was observed that CO and H2O molecules adsorb physically on the Ag5 cluster without energy barrier as the initial steps of WGSR. The next three steps including H2Oads dissociation, carboxyl (OCOHads) formation, and CO2(ads) formation were accompanied by activation barrier. Transition states, as well as energy profiles of these three steps, were determined and analyzed. Our results revealed that the carboxyl and CO2(ads) formation were fast steps whereas H2Oads dissociation was the slowest step of WGSR.

  4. Ballistic Deposition of Nanoclusters.

    NASA Astrophysics Data System (ADS)

    Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall

    Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.

  5. VizieR Online Data Catalog: SFiNCs: X-ray, IR and membership catalogs (Getman+, 2017)

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Broos, P. S.; Kuhn, M. A.; Feigelson, E. D.; Richert, A. J. W.; Ota, Y.; Bate, M. R.; Garmire, G. P.

    2017-06-01

    Sixty five X-ray observations for the 22 Star Formation in Nearby Clouds (SFiNCs) star-forming regions (SFRs) (see tables 1 and 2), made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS), were pulled from the Chandra archive (spanning 2000 Jan to 2015 Apr; see table 2). Our final Chandra-ACIS catalog for the 22 SFiNCs SFRs comprises 15364 X-ray sources (Tables 3 and 4 and section 3.2). To obtain MIR photometry for X-ray objects and to identify and measure MIR photometry for additional non-Chandra disky stars that were missed in previous studies of the SFiNCs regions (typically faint YSOs), we have reduced the archived Spitzer-IRAC data by homogeneously applying the MYStIX-based Spitzer-IRAC data reduction methods of Kuhn+ (2013, J/ApJS/209/29) to the 423 Astronomical Object Request (AORs) data sets for the 22 SFiNCs SFRs (Table 5). As in MYStIX, here the SFiNCs IRAC source catalog retains all point sources with the photometric signal-to-noise ratio >5 in both [3.6] and [4.5] channels. This catalog covers the 22 SFiNCs SFRs and their vicinities on the sky and comprises 1638654 IRAC sources with available photometric measurements for 100%, 100%, 29%, and 23% of these sources in the 3.6, 4.5, 5.8, and 8.0um bands, respectively (see table 6 and section 3.4). Source position cross correlations between the SFiNCs Chandra X-ray source catalog and an IR catalog, either the "cut-out" IRAC or 2MASS, were made using the steps described in section 3.5. Tables 7 and 8 provide the list of 8492 SFiNCs probable cluster members (SPCMs) and their main IR and X-ray properties (see section 4). (9 data files).

  6. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    PubMed

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  7. Copper nanocluster-enhanced luminol chemiluminescence for high-selectivity sensing of tryptophan and phenylalanine.

    PubMed

    Borghei, Yasaman-Sadat; Hosseini, Morteza; Khoobi, Mehdi; Ganjali, Mohammad Reza

    2017-09-01

    A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys-CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H 2 O 2 . Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10 -6 to 2.7 × 10 -5  M for phenylalanine and 1.0 × 10 -7 to 3.0 × 10 -5  M for tryptophan, respectively. The effect of various parameters such as Cys-CuNC concentration, H 2 O 2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained. Copyright © 2017 John Wiley & Sons, Ltd.

  8. pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters.

    PubMed

    Waszkielewicz, Magdalena; Olesiak-Banska, Joanna; Comby-Zerbino, Clothilde; Bertorelle, Franck; Dagany, Xavier; Bansal, Ashu K; Sajjad, Muhammad T; Samuel, Ifor D W; Sanader, Zeljka; Rozycka, Miroslawa; Wojtas, Magdalena; Matczyszyn, Katarzyna; Bonacic-Koutecky, Vlasta; Antoine, Rodolphe; Ozyhar, Andrzej; Samoc, Marek

    2018-05-01

    Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

  9. Translation, cross-cultural adaptation and validation of the Italian version of the Nottingham Clavicle Score (NCS).

    PubMed

    Vascellari, Alberto; Schiavetti, Stefano; Rebuzzi, Enrico; Coletti, Nicolò

    2015-11-01

    The Nottingham Clavicle Score (NCS) is a specific Patient Reported Outcome Measure of injuries to the clavicle, acromio-clavicular joint (ACJ) and sterno-clavicular joint. The purpose of this study was to translate the NCS into Italian and establish its cultural adaptiveness and validity. The original version of the NCS was translated into Italian in accordance with the cross-cultural adaptation guidelines described by Guillemin. Sixty-six patients [average age 45.7 years (SD 11.3)] who had received surgical treatment for injuries of the ACJ and the clavicle were included in the study. The study population completed the NCS twice within 5 days, the Oxford Shoulder Score (OSS), the Disability of the Arm, Shoulder and Hand (DASH) questionnaire and the short-form 36 (SF-36). Statistical tests assessed the construct validity, discriminant validity, internal consistency, reliability and feasibility of the NCS. The translation and adaptation of the NCS for an Italian context required no major cultural adaptation. Internal consistency was high (Cronbach's α, 0.86). Test-retest reproducibility was excellent (ρ = 0.981, p < 0.00001). Administration time was 45 s (range 1 min 32 s-8 min), and all items were answered. The Italian NCS showed strong correlation with the DASH (-0.87), the OSS (-0.84) and those subscales of the SF-36 (physical functioning, role physical and bodily pain) which aim to measure similar constructs. The Italian NCS scale is a reliable, valid, consistent shoulder assessment form that can be used to assess the functional limitations of patients with injuries of clavicle or ACJ. III.

  10. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Krasavin, A. V.; Tkalya, E. V.; Lebedinskii, Yu. Yu.; Vasiliev, O. S.; Yakovlev, V. P.; Kozlova, T. I.; Fetisov, V. V.

    2016-10-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters' tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  11. Stability of nanoclusters in an oxide dispersion strengthened alloy under neutron irradiation

    DOE PAGES

    Liu, Xiang; Miao, Yinbin; Wu, Yaqiao; ...

    2017-06-01

    In this paper, we report atom probe tomography results of the nanoclusters in a neutron-irradiated oxide dispersion strengthened alloy. Following irradiation to 5 dpa at target temperatures of 300 °C and 450 °C, fewer large nanoclusters were found and the residual nanoclusters tend to reach an equilibrium Guinier radius of 1.8 nm. With increasing dose, evident decrease in peak oxygen and titanium (but not yttrium) concentrations in the nanoclusters was observed, which was explained by atomic weight, solubility, diffusivity, and chemical bonding arguments. Finally, the chemical modifications indicate the equilibrium size is indeed a balance of two competing processes: radiationmore » enhanced diffusion and collisional dissolution.« less

  12. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application.

    PubMed

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-21

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.

  13. Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-08-15

    A magnetic and fluorescent nano-composite was prepared. It comprised of a core of Fe3O4 nanoparticles (NPs), a silica shell and satellitic Au nano-clusters (AuNCs) capped with bovine serum albumin (BSA). This nano-composite has many desirable properties, e.g. magnetism, red emission, high water solubility, and high resistance to photo-bleaching. On addition of the analyte, 6-mercaptopurine (6-MP) or indeed other similar thiols, AuNCs formed aggregates because the existing cross-links within the Fe3O4 NPs@SiO2 and AuNC structure were broken in favor of the gold-thiol bonds. On suitable irradiation of such aggregates, red fluorescence was emitted at 613 nm. It decreased significantly as a function of the added 6-MP concentration, and the quenching ratio (F0 - F) / F0 was related linearly to the concentration of 6-MP in the range of 0.01 to 0.5 μmol L(-1). The detection limit was 0.004 μmol L(-1) (S/N=3). The method was strongly selective for 6-MP in the presence of oxidants, phenols, heavy-metal ions, and especially bio-thiols. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    PubMed

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  15. A DFT study for the structural and electronic properties of Zn m Se n nanoclusters

    NASA Astrophysics Data System (ADS)

    Yadav, Phool Singh; Pandey, Dheeraj Kumar

    2012-09-01

    An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.

  16. Polarization properties of fluorescent BSA protected Au25 nanoclusters.

    PubMed

    Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-04-21

    BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.

  17. Fundamental Studies and Isolation Strategies for Metal Compound Nanoclusters

    DTIC Science & Technology

    2009-02-28

    probe nanocluster structure, bonding and stability, metal oxide, carbide and silicide clusters with up to 50 atoms were investigated with mass...transition metal compounds (carbides, oxides, silicides ) that are expected to have high stability, an essential property for their isolation...Metal carbide, oxide and silicide nanoclusters are studied in the size range from a few up to about 300 atoms. New infrared laser spectroscopy

  18. Adsorption of Bromine on Gold Nanoclusters

    NASA Astrophysics Data System (ADS)

    Salvo, Christopher; Keagy, Josiah; Yarmoff, Jory

    Small metal nanoclusters are extremely effective as catalysts, with rates that rival those of enzymes in biological systems. The first step in a catalytic reaction is the adsorption of a precursor molecule. The neutralization of alkali projectiles during low energy ion scattering (LEIS), which is acutely sensitive to the local electrostatic potential a few Å's above the surface, is used here to probe Au nanoclusters grown on SiO2 as they are reacted with Br2. Previous work had demonstrated very efficient neutralization in scattering from small catalytically active Au clusters, which was interpreted as an indication that the bare clusters are negatively charged. X-ray photoelectron spectroscopy and LEIS show little or no Br signal after exposing SiO2 and Au foil to Br2, suggesting that adsorption does not occur because the Br-Br bond does not break. Dissociative adsorption occurs rapidly, however, when small Au nanoclusters are reacted with Br2. 1.5 keV Na+ ions scattered from the Au clusters show a decrease in the neutralization probability as Br is reacted, indicating that adsorption results in charge being transferred from the cluster to the Br adatom. This material is based upon work supported by the National Science Foundation under CHE - 1611563.

  19. Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material

    NASA Astrophysics Data System (ADS)

    Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.

    2018-04-01

    Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.

  20. The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dabaghmanesh, Samira; Neek-Amal, Mehdi; Partoens, Bart; Neyts, Erik C.

    2017-11-01

    Carbon supported metal oxide nanoparticles hold promise for various future applications in diverse areas including spintronics, catalysis and biomedicine. These applications, however, typically depend on the structure and morphology of the nanoparticles. In this contribution, we employ classical molecular dynamic simulations based on a recently developed force field to study the structural properties of Cr2O3 nanoclusters over graphene and carbon nanotubes. We observe that Cr2O3 nanoclusters tend to aggregate over both freestanding graphene and carbon nanotubes and form larger nanoclusters. These large nanoclusters are characterized by their worm-like shape with a lattice constant similar to that of bulk Cr2O3. We also investigate the structural deformation induced in graphene due to the presence of Cr2O3 nanoclusters.

  1. Au38Cu1(2-PET)24 nanocluster: synthesis, enantioseparation and luminescence.

    PubMed

    Kazan, Rania; Zhang, Bei; Bürgi, Thomas

    2017-06-20

    A CuAu 38 bimetallic nanocluster was synthesized by adding a single copper atom to the Au 38 (2-PET) 24 nanocluster. The absence of Cu x Au 38-x (2-PET) 24 doped species was demonstrated by MALDI-TOF mass spectrometry. A separation of bimetallic clusters was attained for the first time where isomers of the E2 enantiomer of the Au 38 Cu 1 (2-PET) 24 adduct were successfully isolated from their parent cluster using chiral HPLC. The CD of the isolated isomers revealed a change in their electronic structure upon copper addition. The luminescence of the Au 38 Cu 1 adduct is significantly enhanced in comparison with the parent Au 38 nanocluster. The stability of the newly formed adduct is strongly dependent on the coexistence of the Au 38 nanoclusters.

  2. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems

    PubMed Central

    Stefanini, Fabio; Neftci, Emre O.; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS. PMID:25232314

  3. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.

    PubMed

    Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.

  4. Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soy, Esin; Guisinger, Nathan P.; Trenary, Michael

    We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less

  5. Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)

    DOE PAGES

    Soy, Esin; Guisinger, Nathan P.; Trenary, Michael

    2017-07-05

    We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less

  6. Electron localization in rod-shaped triicosahedral gold nanocluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Meng; Jin, Renxi; Sfeir, Matthew Y.

    Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. There is little known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. We reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ~100-ps localization from the two vertexes of three icosahedrons tomore » one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm -1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The electron localization phenomenon we observed provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.« less

  7. Electron localization in rod-shaped triicosahedral gold nanocluster

    DOE PAGES

    Zhou, Meng; Jin, Renxi; Sfeir, Matthew Y.; ...

    2017-05-30

    Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. There is little known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. We reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ~100-ps localization from the two vertexes of three icosahedrons tomore » one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm -1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The electron localization phenomenon we observed provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.« less

  8. Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.

    PubMed

    Chung, Taerin; Koker, Tugba; Pinaud, Fabien

    2016-09-08

    The assembly of plasmonic metal nanoparticles into hot spot surface-enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self-complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split-green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near-field dipolar couplings between AuNPs and provides SERS enhancement factors above 10 8 . Among the different nanoclusters studied, AuNP/GFP chains allow near-infrared SERS detection of the GFP chromophore imidazolinone/exocyclic CC vibrational mode with theoretical enhancement factors of 10 8 -10 9 . For larger AuNP/GFP assemblies, the presence of non-GFP seeded nanogaps between tightly packed nanoparticles reduces near-field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster

    NASA Astrophysics Data System (ADS)

    Das, Anindita; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Rosi, Nathaniel L.; Jin, Rongchao

    2014-05-01

    Solving the total structures of gold nanoclusters is of critical importance for understanding their electronic, optical and catalytic properties. Herein, we report the X-ray structure of a charge-neutral Au24(SCH2Ph-tBu)20 nanocluster. This structure features a bi-tetrahedral Au8 kernel protected by four tetrameric staple-like motifs. Electronic structure analysis is further carried out and the optical absorption spectrum is interpreted. The Au24(SCH2Ph-tBu)20, Au23(S-c-C6H11)16 and Au25(SCH2CH2Ph)18 nanoclusters constitute the first crystallographically characterized ``trio''.Solving the total structures of gold nanoclusters is of critical importance for understanding their electronic, optical and catalytic properties. Herein, we report the X-ray structure of a charge-neutral Au24(SCH2Ph-tBu)20 nanocluster. This structure features a bi-tetrahedral Au8 kernel protected by four tetrameric staple-like motifs. Electronic structure analysis is further carried out and the optical absorption spectrum is interpreted. The Au24(SCH2Ph-tBu)20, Au23(S-c-C6H11)16 and Au25(SCH2CH2Ph)18 nanoclusters constitute the first crystallographically characterized ``trio''. Electronic supplementary information (ESI) available: Experimental and supporting Fig. S1-S3. CCDC NUMBER(1000102). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr01350f

  10. RF heating of nanoclusters for cancer therapy

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Letfullin, Alla R.; George, Thomas F.

    2015-03-01

    Nanodrugs selectively delivered to a tumor site can be activated by radiation for drug release, or nanoparticles (NPs) can be used as a drug themselves by producing biological damage in cancer cells through thermal, mechanical ablations or charged particle emission. Radio-frequency (RF) waves have an excellent ability to penetrate into the human body without causing healthy tissue damage, which provides a great opportunity to activate/heat NPs delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of NPs in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of NPs in the RF range. To resolve these weaknesses in the RF activation of NPs and dramatically increase absorption of contrast agents in tumor, we suggest aggregating the nanoclusters inside or on the surface of the cancer cells. We simulate space distribution of temperature changes inside and outside metal and dielectric nanopraticles/nanoclusters, determine the number of nanoparticles needed to form a cluster, and estimate the thermal damage area produced in surrounding medium by nanopraticles/nanoclusters heated in the RF field.

  11. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study.

    PubMed

    Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan

    2015-11-11

    The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.

  12. Bimetallic core-based cuboctahedral core-shell nanoclusters for the formation of hydrogen peroxide (2e- reduction) over water (4e- reduction): role of core metals.

    PubMed

    Mahata, Arup; Pathak, Biswarup

    2017-07-13

    The design of an efficient and selective catalyst for hydrogen peroxide (H 2 O 2 ) formation is highly sought due to its industrial importance. As alternatives to a conventional Pd-Au alloy-based catalyst, three cuboctahedral core-shell nanoclusters (Au 19 @Pt 60 , Co 19 @Pt 60 and Au 10 Co 9 @Pt 60 NCs) have been investigated. Their catalytic activities toward H 2 O 2 formation have been compared with that of pure Pt cuboctahedral NC (Pt 79 ). Much attention has been devoted to thermodynamic and kinetic parameters to find out the feasibility of the two-electron (2e - ) over the four-electron (4e - ) oxygen reduction reaction (ORR) to improve the product selectivity (H 2 O vs. H 2 O 2 ). Elementary steps corresponding to H 2 O 2 formation are significantly improved over the Au 10 Co 9 @Pt 60 NC catalyst compared with the pure core-shell NCs and periodic surface based catalysts. Furthermore, the Au 10 Co 9 @Pt 60 NC favours H 2 O 2 formation via the much desired Langmuir-Hinshelwood mechanism. The potential-dependent study shows that the H 2 O 2 formation is thermodynamically favourable up to 0.43 V on the Au 10 Co 9 @Pt 60 NC and thus the overpotential for the 2e - ORR process is significantly lowered. Besides, the Au 10 Co 9 @Pt 60 NC is highly selective for H 2 O 2 formation over H 2 O formation.

  13. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    PubMed

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  14. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties.

    PubMed

    Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2012-08-07

    Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.

  15. Interplay between plasmon and single-particle excitations in a metal nanocluster

    PubMed Central

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-01-01

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. This study provides guidance on improving plasmonic applications. PMID:26673449

  16. Hairpin stabilized fluorescent silver nanoclusters for quantitative detection of NAD+ and monitoring NAD+/NADH based enzymatic reactions.

    PubMed

    Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab

    2017-03-01

    A set of 90 mer long ssDNA candidates, with different degrees of cytosine (C-levels) (% and clusters) was analyzed for their function as suitable Ag-nanocluster (AgNC) nucleation scaffolds. The sequence (P4) with highest C-level (42.2%) emerged as the only candidate supporting the nucleation process as evident from its intense fluorescence peak at λ 660 nm . Shorter DNA subsets derived from P4 with only stable hairpin structures could support the AgNC formation. The secondary hairpin structures were confirmed by PAGE, and CD studies. The number of base pairs in the stem region also contributes to the stability of the hairpins. A shorter 29 mer sequence (Sub 3) (ΔG = -1.3 kcal/mol) with 3-bp in the stem of a 7-mer loop conferred highly stable AgNC. NAD + strongly quenched the fluorescence of Sub 3-AgNC in a concentration dependent manner. Time resolved photoluminescence studies revealed the quenching involves a combined static and dynamic interaction where the binding constant and number of binding sites for NAD + were 0.201 L mol -1 and 3.6, respectively. A dynamic NAD + detection range of 50-500 μM with a limit of detection of 22.3 μM was discerned. The NAD + mediated quenching of AgNC was not interfered by NADH, NADP + , monovalent and divalent ions, or serum samples. The method was also used to follow alcohol dehydrogenase and lactate dehydrogenase catalyzed physiological reactions in a turn-on and turn-off assay, respectively. The proposed method with ssDNA-AgNC could therefore be extended to monitor other NAD + /NADH based enzyme catalyzed reactions in a turn-on/turn-off approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Ren, Ping; Zhang, Kan; Du, Suxuan; Meng, Qingnan; He, Xin; Wang, Shuo; Wen, Mao; Zheng, Weitao

    2017-06-01

    Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag2O groups on the films surfaces through self-oxidation, because Ag cations (Ag+) in Ag2O are the filled-shell (4d105S0) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag2O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  18. Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process

    NASA Astrophysics Data System (ADS)

    Gao, T.; Hu, X.; Li, Y.; Tian, Z.; Xie, Q.; Chen, Q.; Liang, Y.; Luo, X.; Ren, L.; Luo, J.

    2017-11-01

    The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger-Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.

  19. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  20. The National Comorbidity Survey Adolescent Supplement (NCS-A): II. Overview and Design

    PubMed Central

    Kessler, Ronald C.; Avenevoli, Shelli; Costello, E. Jane; Green, Jennifer Greif; Gruber, Michael J.; Heeringa, Steven; Merikangas, Kathleen R.; Pennell, Beth-Ellen; Sampson, Nancy A.; Zaslavsky, Alan M.

    2009-01-01

    OBJECTIVE To present an overview of the design and field procedures of the National Comorbidity Survey Replication Adolescent Supplement (NCS-A) METHOD The NCS-A is a nationally representative face-to-face household survey of the prevalence and correlates of DSM-IV mental disorders among US adolescents (ages 13–17) that was carried out between February 2001 and January 2004 by the Survey Research Center of the Institute for Social Research at the University of Michigan. The sample was based on a dual-frame design that included 904 adolescent residents of the households that participated in the National Comorbidity Survey Replication (85.9% response rate) and 9244 adolescent students selected from a representative sample of 320 schools in the same nationally representative sample of counties as the NCS-R (74.7% response rate). RESULTS Comparisons of sample and population distributions on Census socio-demographic variables and, in the school sample, school characteristics documented only minor differences that were corrected with post-stratification weighting. Comparisons of DSM-IV disorder prevalence estimates among household vs. school sample respondents in counties that differed in the use of replacement schools for originally selected schools that refused to participate showed that the use of replacement schools did not introduce bias into prevalence estimates. CONCLUSIONS The NCS-A is a rich nationally representative dataset that will substantially increase understanding of the mental health and well-being of adolescents in the United States. PMID:19242381

  1. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    PubMed

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  2. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhen; Zhang, Jun; Jiang, Shengwei; Lin, Gan; Luo, Bing; Yao, Huan; Lin, Yuchun; He, Chengyong; Liu, Gang; Lin, Zhongning

    2016-05-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.

  3. The Small RNA ncS35 Regulates Growth in Burkholderia cenocepacia J2315

    PubMed Central

    Kiekens, Sanne; Sass, Andrea; Van Nieuwerburgh, Filip; Deforce, Dieter

    2018-01-01

    ABSTRACT Burkholderia cenocepacia J2315 is a member of the B. cepacia complex. It has a large genome with three replicons and one plasmid; 7,261 genes code for annotated proteins, while 113 code for functional RNAs. Small regulatory RNAs of B. cenocepacia have not yet been functionally characterized. We investigated a small regulatory RNA, designated ncS35, that was discovered by differential RNA sequencing. Its expression under various conditions was quantified, and a deletion mutant, ΔncS35, was constructed. Compared to planktonic growth in a rich medium, the expression of ncS35 was elevated when B. cenocepacia J2315 was grown in biofilms and in minimal medium. Cells of the deletion mutant showed increased aggregation, higher metabolic activity, a higher growth rate, and an increased susceptibility to tobramycin. A transcriptomic analysis revealed upregulation of the phenylacetic acid and tryptophan degradation pathways in ΔncS35. Computational target prediction indicated that ncS35 likely interacts with the first gene of the tryptophan degradation pathway. Overall, we demonstrated that small RNA ncS35 is a noncoding RNA with an attenuating effect on the metabolic rate and growth. It is possible that slower growth protects B. cenocepacia J2315 against stressors acting on fast-dividing cells and enhances survival under unfavorable conditions. IMPORTANCE Small RNAs play an important role in the survival of bacteria in diverse environments. We explored the physiological role of ncS35, a small RNA expressed in B. cenocepacia J2315, an opportunistic pathogen in cystic fibrosis patients. In cystic fibrosis patients, infections can lead to “cepacia syndrome,” a rapidly progressing and often fatal pneumonia. Infections with Burkholderia spp. are difficult to threat with antibiotics because of their high intrinsic resistance and ability to form biofilms. We show that ncS35 attenuates the growth and reduces the metabolic rate of B. cenocepacia and influences

  4. Tailoring magnetic properties of Co nanocluster assembled films using hydrogen

    NASA Astrophysics Data System (ADS)

    Romero, C. P.; Volodin, A.; Paddubrouskaya, H.; Van Bael, M. J.; Van Haesendonck, C.; Lievens, P.

    2018-07-01

    Tailoring magnetic properties in nanocluster assembled cobalt (Co) thin films was achieved by admitting a small percentage of H2 gas (∼2%) into the Co gas phase cluster formation chamber prior to deposition. The oxygen content in the films is considerably reduced by the presence of hydrogen during the cluster formation, leading to enhanced magnetic interactions between clusters. Two sets of Co samples were fabricated, one without hydrogen gas and one with hydrogen gas. Magnetic properties of the non-hydrogenated and the hydrogen-treated Co nanocluster assembled films are comparatively studied using magnetic force microscopy and vibrating sample magnetometry. When comparing the two sets of samples the considerably larger coercive field of the H2-treated Co nanocluster film and the extended micrometer-sized magnetic domain structure confirm the enhancement of magnetic interactions between clusters. The thickness of the antiferromagnetic CoO layer is controlled with this procedure and modifies the exchange bias effect in these films. The exchange bias shift is lower for the H2-treated Co nanocluster film, which indicates that a thinner antiferromagnetic CoO reduces the coupling with the ferromagnetic Co. The hydrogen-treatment method can be used to tailor the oxidation levels thus controlling the magnetic properties of ferromagnetic cluster-assembled films.

  5. Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2015-12-01

    A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.

  6. On the possibility of controlling the hydrophilic/hydrophobic characteristics of toroid Mo138 nanocluster polyoxometalates

    NASA Astrophysics Data System (ADS)

    Grzhegorzhevskii, K. V.; Adamova, L. V.; Eremina, E. V.; Ostroushko, A. A.

    2017-03-01

    The possibility of changing the hydrophilic (polar) surfaces of toroid nanocluster polyoxomolibdates to hydrophobic (nonpolar) surfaces via the modification of Mo138 nanoclusters by surfactant molecules (dodecylpyridinium chloride) as a result of the interaction between these compounds in solutions is demonstrated. Benzene and methanol are used as molecular probes (indicators of the condition of nanocluster surfaces). Comparative characteristics of the equilibrium sorption of benzene and methanol vapors on the initial and modified surfaces of the solid polyoxometalate, and data on the sorption of organic molecules on the surfaces of Rhodamine B-modified nanoclusters of the toroid (Mo138) and keplerate (Mo132) types are obtained.

  7. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  8. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  9. Optimal packing size of non-ligated CdSe nanoclusters for microstructure synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tefera, Anteneh G.; Mochena, Mogus D.; Johnson, Elijah

    2014-09-14

    Structural and electrostatic properties of nanoclusters of CdSe of diameter 1–2 nm are studied with first principle calculations to determine the optimal size for synthesizing microstructures. Based on robustness of the core structure, i.e., the retention of tetrahedral geometry, hexagonal ring structure, and overall wu{sup ¨}rtzite structure to surface relaxations, we conclude that nanoclusters of ~2 nm diameter are the best candidates to form a dense microstructure with minimal interstitial space. Se-terminated surfaces retain a zigzag structure as Se atoms are pulled out and Cd atoms are pulled in due to relaxation, therefore, are best suited for inter-nanocluster formations.

  10. Heterogeneous Nature of Relaxation Dynamics of Room-Temperature Ionic Liquids (EMIm) 2[Co(NCS) 4] and (BMIm) 2[Co(NCS) 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensel-Bielowka, Stella; Wojnarowska, Zaneta; Dzida, Marzena

    2015-08-11

    Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel–Fulcher–Tammann dependence or a breakdown of the Stokes–Einstein and related relations. In this study, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observed in the entiremore » studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Finally and moreover, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole–Cole function should be used instead.« less

  11. Heterogeneous nature of relaxation dynamics of room-temperature ionic liquids (EMIm) 2[Co(NCS) 4] and (BMIm) 2[Co(NCS) 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensel-Bielowka, Stella; Wojnarowska, Zaneta E.; Dzida, Marzena

    2015-08-11

    Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel Fulcher Tammann dependence or a breakdown of the Stokes Einstein and related relations. In this paper, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observedmore » in the entire studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Furthermore, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole Cole function should be used instead.« less

  12. Low-Temperature Sintering Behavior (≤ 400°C) of Micro-sized Silver Particles Decorated by Silver Nanoparticles Through Surface Iodination

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Tang, Hongbo

    2018-05-01

    This paper introduces a facile and effective route to decorate micro-sized silver particle surfaces with Ag/AgI nanoclusters through a wet chemical reaction at room temperature using iodine and ethanol as reactant and solvent, respectively. Photosensitivity of AgI is utilized in the route, and AgI decomposes into Ag upon contact with sunshine, forming Ag/AgI nanoclusters. The modified micro-sized Ag particles showed sinterability even at 200°C and formed rigid electrical conductive networks at 350°C. Moreover, sintered film containing the modified Ag particles reached the best conductivity, 9.35 mΩ/sq, after sintering at 350°C for 20 min, while the film with untreated control Ag particles obtained its best conductivity at 400°C. The excellent sinterability should be attributed to the nanoclusters which served as a sintering aid during the heating process. However, increase of sintering temperature and time destroyed densification and conductivity of the sintered film containing the modified particles.

  13. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  14. Virus templated plasmonic nanoclusters with icosahedral symmetry via directed assembly

    NASA Astrophysics Data System (ADS)

    Ratna, Banahalli; Fontana, Jake; Dressick, Walter; Phelps, Jamie; Johnson, John; Sampson, Travian; Rendell, Ronald; Soto, Carissa

    2015-03-01

    Controlling the spatial and orientational order of plasmonic nanoparticles may lead to structures with novel electromagnetic properties and applications such as sub-wavelength imaging and ultra-sensitive chemical sensors. Here we report the directed assembly of three-dimensional, icosahedral plasmonic nanoclusters with resonances at visible wavelengths. We show using transmission electron microcopy and in situ dynamic light scattering the nanoclusters consist of twelve gold nanospheres attached to thiol groups at predefined locations on the surface of a genetically engineered cowpea mosaic virus with icosahedral symmetry. We measured the bulk absorbance from aqueous suspensions of nanoclusters and reproduced the major features of the spectrum using finite-element simulations. Furthermore, because the viruses are easily produced in gram quantities the directed assembly approach is capable of high-throughput, providing a strategy to realize large quantities for applications. NRL summer intern under the HBCU/MI Summer Research Program.

  15. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    PubMed

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  16. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers

    NASA Astrophysics Data System (ADS)

    Truskett, Thomas M.; Johnston, Keith; Maynard, Jennifer; Borwankar, Ameya; Miller, Maria; Wilson, Brian; Dinin, Aileen; Khan, Tarik; Kaczorowski, Kevin

    2012-02-01

    Stabilizing concentrated protein solutions is of wide interest in drug delivery. However, a major challenge is how to reliably formulate concentrated, low viscosity (i.e., syringeable) solutions of biologically active proteins. Unfortunately, proteins typically undergo irreversible aggregation at intermediate concentrations of 100-200 mg/ml. In this talk, I describe how they can effectively avoid these intermediate concentrations by reversibly assembling into nanoclusters. Nanocluster assembly is achieved by balancing short-ranged, cosolute-induced attractions with weak, longer-ranger electrostatic repulsions near the isoelectric point. Theory predicts that native proteins are stabilized by a self-crowding mechanism within the concentrated environment of the nanoclusters, while weak cluster-cluster interactions can result in colloidally-stable dispersions with moderate viscosities. I present experimental results where this strategy is used to create concentrated antibody dispersions (up to 260 mg/ml) comprising nanoclusters of proteins [monoclonal antibody 1B7, polyclonal sheep Immunoglobin G and bovine serum albumin], which upon dilution in vitro or administration in vivo, are conformationally stable and retain activity.

  17. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    PubMed

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in <222> direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction <022>.This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  18. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    PubMed

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Theoretical Studies of Nanoclusters (Briefing Charts)

    DTIC Science & Technology

    2015-07-23

    nanoclusters. However, scanning transmission electron microscopy ( STEM ) measures show cluster inversion occurred to produce MgyCux(!) a) copper atoms b...methane (née CLL -1) as a potential explosive ingredient: a theoretical study”, Propellants, Explosives, Pyrotechnics 38, 9-13 (2013). Jesus Paulo L

  20. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  1. Growth of silicon nanoclusters in thermal silicon dioxide under annealing in an atmosphere of nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, E. V., E-mail: Ivanova@mail.ioffe.ru; Sitnikova, A. A.; Aleksandrov, O. V.

    2016-06-15

    It is found for the first time that silicon nanoclusters are formed in the surface layer of thermal silicon dioxide under high-temperature annealing (T = 1150°C) in dried nitrogen. Analysis of the cathodoluminescence spectra shows that an imperfect surface layer appears upon such annealing of silicon dioxide, with silicon nanoclusters formed in this layer upon prolonged annealing. Transmission electron microscopy demonstrated that the silicon clusters are 3–5.5 nm in size and lie at a depth of about 10 nm from the surface. Silicon from the thermal film of silicon dioxide serves as the material from which the silicon nanoclusters aremore » formed. This method of silicon-nanocluster formation is suggested for the first time.« less

  2. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    NASA Astrophysics Data System (ADS)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  3. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization.

    PubMed

    Zhu, Ningning; Zhang, Aiping; He, Pingang; Fang, Yuzhi

    2003-03-01

    A novel, sensitive electrochemical DNA hybridization detection assay, using cadmium sulfide (CdS) nanoclusters as the oligonucleotide labeling tag, is described. The assay relies on the hybridization of the target DNA with the CdS nanocluster oligonucleotide DNA probe, followed by the dissolution of the CdS nanoclusters anchored on the hybrids and the indirect determination of the dissolved cadmium ions by sensitive anodic stripping voltammetry (ASV) at a mercury-coated glassy carbon electrode (GCE). The results showed that only a complementary sequence could form a double-stranded dsDNA-CdS with the DNA probe and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. The combination of the large number of cadmium ions released from each dsDNA hybrid with the remarkable sensitivity of the electrochemical stripping analysis for cadmium at mercury-film GCE allows detection at levels as low as 0.2 pmol L(-1) of the complementary sequence of DNA.

  4. Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.

    PubMed

    Qin, Wei; Lohrman, Jessica; Ren, Shenqiang

    2014-07-07

    Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High rate deposition system for metal-cluster/SiO x C y H z -polymer nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Peter, T.; Rehders, S.; Schürmann, U.; Strunskus, T.; Zaporojtchenko, V.; Faupel, F.

    2013-06-01

    A system for deposition of nanocomposite materials consisting of a SiO x C y H z -polymer matrix and Ag nanoclusters is presented. Ag nanoclusters with sizes between 2 and 20 nm are produced in a gas aggregation cluster source and are deposited through a focused beam at a high rate. This cluster source is presented in detail and the characteristics of the produced nanoclusters are shown. Simultaneously, a SiO x C y H z -polymer matrix is grown from the precursor hexamethyldisiloxane in an RF plasma. The beam of clusters is deposited into the growing polymer, forming the composite material. This process allows the rapid deposition of composite material with varying metal nanocluster concentrations and properties. Since the cluster generation is separated from the matrix growth, the properties of both can be controlled independently. In this study, we present two types of nanocomposite samples, in the first the Ag nanoclusters are homogeneously distributed in the matrix, in the second type the Ag nanoclusters form a layer which is covered by the matrix. These samples are investigated using transmission electron micrography to determine the morphology. Furthermore, the optical properties are probed using optical transmission spectroscopy and the plasmonic resonance behavior is discussed.

  6. Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody-protein A/G-gold nanocluster conjugates

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad; Schneider, Lilli; Ströbel, Philipp; Marx, Alexander; Packeisen, Jens; Schlücker, Sebastian

    2014-01-01

    SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates.SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates

  7. Interplay between plasmon and single-particle excitations in a metal nanocluster

    DOE PAGES

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-17

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag 55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will bemore » converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. Ultimately, this study provides guidance on improving plasmonic applications.« less

  8. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    PubMed

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity.

    PubMed

    Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Cai, Jie; Wu, Shuyan; Cai, Ziping

    2012-05-30

    In this contribution, bovine serum albumin stabilized gold nanoclusters as novel fluorescent probes were successfully utilized for the detection of ciprofloxacin for the first time. Our prepared gold nanoclusters exhibited strong emission with peak maximum at 635 nm. Cu(2+) was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of ciprofloxacin caused the fluorescence intensity restoration of the Cu(2+)-gold nanoclusters system. The increase in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by ciprofloxacin allows the sensitive detection of ciprofloxacin in the range of 0.4 ng mL(-1) to 50 ng mL(-1). The detection limit for ciprofloxacin is 0.3 ng mL(-1) at a signal-to-noise ratio of 3. The present sensor for ciprofloxacin detection possesses a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Electrochemical sensing of sulphur dioxide: a comparison using dodecanethiol and citrate capped gold nanoclusters.

    PubMed

    Sathe, Bhaskar R; Risbud, Mandar S; Mulla, Imtiaz S; Pillai, Vijayamohanan K

    2008-06-01

    A comparison of cyclic voltammograms of dodecanethiol (DDT) capped Au nanoclusters (5.0 0.5 nm) and trisodium citrate (Cit) capped Au nanoclusters (approximately 10-15 nm) modified glassy carbon electrode shows a dramatic variation in the current when exposed to a small amount of sulphur dioxide. This is explained using the electrocatalytic properties of Au nanoclusters towards the oxidation of SO2, thus facilitating the fabrication of electrochemical sensors for the detection of SO2. The intrinsic redox changes observed for gold nanocluster-modified glassy carbon electrodes disappear on passing SO2, despite a dramatic current increase, which indeed scales up with the amount of dissolved SO2. Interestingly, a complete rejuvenation of the redox behavior of gold is also observed on subsequent removal of SO2 from the solution by passing pure nitrogen for 15 minutes. Further, these nanoclusters when characterized with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) after SO2 passage reveal a variety of SO2 adsorption modes on gold surface. XP spectra also show a shift of 1.03 eV towards higher binding energy indicating a strong adsorption of SO2 gas, while FTIR gives conclusive evidence for the interaction of SO2 with gold nanoparticles.

  11. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions.

    PubMed

    Spiess, Matthias; Hernandez-Varas, Pablo; Oddone, Anna; Olofsson, Helene; Blom, Hans; Waithe, Dominic; Lock, John G; Lakadamyali, Melike; Strömblad, Staffan

    2018-06-04

    Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive β1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive β1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation. © 2018 Spiess et al.

  12. Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns

    PubMed Central

    Ma, Yue; Fu, Hualin; Zhang, Chunlei; Cheng, Shangli; Gao, Jie; Wang, Zhen; Jin, Weilin; Conde, João; Cui, Daxiang

    2016-01-01

    Epigenetic modifications sit ‘on top of’ the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns. PMID:27633378

  13. Structural evolution and properties of small-size thiol-protected gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Ma, Miaomiao; Liu, Liren; Zhu, Hengjiang; Lu, Junzhe; Tan, Guiping

    2018-07-01

    Ligand-protected gold clusters are widely used in biosensors and catalysis. Understanding the structural evolution of these kinds of nanoclusters is important for experimental synthesis. Herein, based on the particle swarm optimisation algorithm and density functional theory method, we use [Au1(SH)2]n, [Au2(SH)3]n, [Au3(SH)4]n (n = 1-3) as basic units to research the structural evolution relationships from building blocks to the final whole structures. Results show that there is a 'line-ring-core' structural evolution pattern in the growth process of the nanoclusters. The core structures of the ligand-protected gold clusters consist of Au3, Au4, Au6 and Au7 atoms. The electronics and optics analysis reflects that stability and optical properties gradually enhance with increase in size. These results can be used to understand the initial growth stage and design new ligand-protected nanoclusters.

  14. Non-Toxic Gold Nanoclusters for Solution-Processed White Light-Emitting Diodes.

    PubMed

    Chao, Yu-Chiang; Cheng, Kai-Ping; Lin, Ching-Yi; Chang, Yu-Li; Ko, Yi-Yun; Hou, Tzu-Yin; Huang, Cheng-Yi; Chang, Walter H; Lin, Cheng-An J

    2018-06-11

    Solution-processed optoelectronic devices are attractive because of the potential low-cost fabrication and the compatibility with flexible substrate. However, the utilization of toxic elements such as lead and cadmium in current optoelectronic devices on the basis of colloidal quantum dots raises environmental concerns. Here we demonstrate that white-light-emitting diodes can be achieved by utilizing non-toxic and environment-friendly gold nanoclusters. Yellow-light-emitting gold nanoclusters were synthesized and capped with trioctylphosphine. These gold nanoclusters were then blended with the blue-light-emitting organic host materials to form the emissive layer. A current efficiency of 0.13 cd/A was achieved. The Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.33) were obtained from our experimental analysis, which is quite close to the ideal pure white emission coordinates (0.33, 0.33). Potential applications include innovative lighting devices and monitor backlight.

  15. Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water.

    PubMed

    Li, Gao; Zeng, Chenjie; Jin, Rongchao

    2014-03-05

    We report the synthesis and catalytic application of thermally robust gold nanoclusters formulated as Au99(SPh)42. The formula was determined by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry in conjunction with thermogravimetric analysis. The optical spectrum of Au99(SPh)42 nanoclusters shows absorption peaks at ~920 nm (1.35 eV), 730 nm (1.70 eV), 600 nm (2.07 eV), 490 nm (2.53 eV), and 400 nm (3.1 eV) in contrast to conventional gold nanoparticles, which exhibit a plasmon resonance band at 520 nm (for spherical particles). The ceria-supported Au99(SPh)42 nanoclusters were utilized as a catalyst for chemoselective hydrogenation of nitrobenzaldehyde to nitrobenzyl alcohol in water using H2 gas as the hydrogen source. The selective hydrogenation of the aldehyde group catalyzed by nanoclusters is a surprise because conventional nanogold catalysts instead give rise to the product resulting from reduction of the nitro group. The Au99(SPh)42/CeO2 catalyst gives high catalytic activity for a range of nitrobenzaldehyde derivatives and also shows excellent recyclability due to its thermal robustness. We further tested the size-dependent catalytic performance of Au25(SPh)18 and Au36(SPh)24 nanoclusters, and on the basis of their crystal structures we propose a molecular adsorption site for nitrobenzaldehyde. The nanocluster material is expected to find wide application in catalytic reactions.

  16. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  17. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    NASA Astrophysics Data System (ADS)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  18. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    PubMed

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  19. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  20. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  1. An investigation into the melting of silicon nanoclusters using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fang, Kuan-Chuan; Weng, Cheng-I.

    2005-02-01

    Using the Stillinger-Weber (SW) potential model, we have performed molecular dynamics (MD) simulations to investigate the melting of silicon nanoclusters comprising a maximum of 9041 atoms. This study investigates the size, surface energy and root mean square displacement (RMSD) characteristics of the silicon nanoclusters as they undergo a heating process. The numerical results reveal that an intermediate nanocrystal regime exists for clusters with more than 357 atoms. Within this regime, a linear relationship exists between the cluster size and its melting temperature. It is found that melting of the silicon nanoclusters commences at the surface and that Tm,N = Tm,Bulk-αN-1/3. Therefore, the extrapolated melting temperature of the bulk with a surface decreases from Tm,Bulk = 1821 K to a value of Tm,357 = 1380 K at the lower limit of the intermediate nanocrystal regime.

  2. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS.

    PubMed

    Escobar Galindo, R; Manninen, N K; Palacio, C; Carvalho, S

    2013-07-01

    Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS-GDOES-ARXPS study of the surface characterization of Ag-TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1-10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20-30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with

  3. Star Formation in Nearby Clusters (SFiNCs)

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin

    propose here to extend the MYStIX effort to an archive study of 19 nearer and smaller star forming regions where the stellar clusters are dominated by a single late-OB star rather than numerous O stars as in the MYStIX fields. We call this project `Star Formation in Nearby Clusters' or SFiNCs (homophonic with `sphinx'). With a homogeneous analysis of the Chandra, 2MASS, Spitzer and Herschel archives, we expect to identify and characterize over 50 SFiNCs subclusters. The inferred empirical correlations among different cluster properties for nearly 200 SFiNCs+MYStIX subclusters with 30-3000 detected stars on scales of 0.1-20 pc will allow, for the first time, direct comparison with the results of theoretical simulations of cluster formation to seek deeper answers to the fundamental questions posed above. It is possible, for example, that smaller molecular clouds have less turbulence and thus produce small clusters in a single event rather than through subcluster mergers. Models based on meteoritic isotopes suggest that our Solar System formed in a complex of SFiNCs/MYStIX-like clusters (Gounelle & Meynet 2012, A&A, 545, 4). This project addresses NASA SMD Strategic Subgoals 3C (Advance scientific knowledge of the origin and history of the solar system) and 3D.3 (Understand how individual stars form and how those processes ultimately affect the formation of planetary systems). It lies in the `Star formation and pre-main sequence stars' Research Area of the Astrophysics Data Analysis program.

  4. Fabrication of novel compound SERS substrates composed of silver nanoparticles and porous gold nanoclusters: A study on enrichment detection of urea

    NASA Astrophysics Data System (ADS)

    Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee

    2018-01-01

    A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.

  5. Time-resolved electronic and optical properties of a thiolate-protected Au38 nanocluster

    NASA Astrophysics Data System (ADS)

    Meng, Qingguo; May, Stanley P.; Berry, Mary T.; Kilin, Dmitri S.

    2015-02-01

    Density functional theory and density matrix theory are employed to investigate the time-dependent optical and electronic properties of an Au14 nanocluster protected by six cyclic thiolate ligands, Au4(SCH3)4. The Au14[Au4(SCH3)4]6 nanocluster, i.e. Au38(SCH3)24, is equivalent to a truncated-octahedral face-centred cubic Au38 core coated by a monolayer of 24 methylthiol molecules. The electronic and optical properties, such as density of states, linear absorption spectra, nonradiative nonadiabatic dissipative electronic dynamics and radiative emission spectra were calculated and compared for the core Au14 and thiolate-protected Au38(SCH3)24 nanocluster. The main observation from computed photoluminescence for both models is a mechanism of radiative emission. Specifically, a strong contribution to light emission intensity originates from intraband transitions inside the conduction band (CB) in addition to interband LUMO → HOMO transition (HOMO: highest occupied molecular orbital and LUMO: lowest unoccupied molecular orbital). Such comparison clarifies the contributions from Au core and methylthiol ligands to the electronic and optical properties of the Au38(SCH3)24 nanocluster.

  6. Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje

    2018-03-01

    Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

  7. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

    PubMed Central

    Banchelli, Martina; Tiribilli, Bruno; Pini, Roberto; Dei, Luigi

    2016-01-01

    Summary Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir–Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir–Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis. PMID:26925348

  8. TH-C-17A-02: New Radioluminescence Strategies Based On CRET (Cerenkov Radiation Energy Transfer) for Imaging and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volotskova, O; Sun, C; Pratx, G

    2014-06-15

    Purpose: Cerenkov photons are produced when charged particles, emitted from radionuclides, travel through a media with a speed greater than that of the light in the media. Cerenkov radiation is mostly in the UV/Blue region and, thus, readily absorbed by biological tissue. Cerenkov Radiation Energy Transfer (CRET) is a wavelength-shifting phenomenon from blue Cerenkov light to more penetrating red wavelengths. We demonstrate the feasibility of in-depth imaging of CRET light originating from radionuclides realized by down conversion of gold nanoclusters (AuNCs, a novel particle composed of few atoms of gold coated with serum proteins) in vivo. Methods: Bovine Serum Albumin,more » Human Serum Albumin and Transferrin conjugated gold nanoclusters were synthesized, characterized and examined for CRET. Three different clinically used radiotracers: 18F-FDG, 90Y and 99mTc were used. Optical spectrum (440–750 nm) was recorded by sensitive bioluminescence imaging system at physiological temperature. Dose dependence (activity range from 0.5 up to 800uCi) and concentration dependence (0.01 to 1uM) studies were carried out. The compound was also imaged in a xenograft mouse model. Results: Only β+ and β--emitting radionuclides (18F-FDG, 90Y) are capable of CRET; no signal was found in 99mTc (γ-emitter). The emission peak of CRET by AuNCs was found to be ∼700 nm and was ∼3 fold times of background. In vitro studies showed a linear dependency between luminescence intensity and dose and concentration. CRET by gold nanoclusters was observed in xenografted mice injected with 100uCi of 18F-FDG. Conclusion: The unique optical, transport and chemical properties of AuNCs (gold nanoclusters) make them ideal candidates for in-vivo imaging applications. Development of new molecular imaging probes will allow us to achieve substantially improved spatiotemporal resolution, sensitivity and specificity for tumor imaging and detection.« less

  9. Photophysical characterization of fluorescent metal nanoclusters synthesized using oligonucleotides, proteins and small molecule ligands

    NASA Astrophysics Data System (ADS)

    Yeh, Hsin-Chih; Sharma, Jaswinder; Yoo, Hyojong; Martinez, Jennifer S.; Werner, James H.

    2010-02-01

    The size transition from bulk conducting metals to insulating nanoparticles and eventually to single atoms passes through the relatively unexplored few-atom nanocluster region. With dimensions close to the Fermi wavelength, these nanoclusters demonstrate molecule-like properties distinct from bulk metals or atoms, such as discrete and size-tunable electronic transitions which lead to photoluminescence. Current research aims to elucidate the fundamental photophysical properties of metal nanoclusters made by different means and based on different encapsulation agents. Here, we report the study of the photophysical properties, including quantum yields, lifetimes, extinction coefficients, blinking dynamics and sizes, of silver and gold nanoclusters synthesized using oligonucleotides, a protein (bovine serum albumin) and a Good's buffer molecule (MES, 2-(N-morpholino) ethanesulfonic acid) as encapsulation agents. We also investigate the change of photoluminescence as a function of temperature. Furthermore, we show that the fluorescent metal clusters can be used as a donor in forming a resonance energy transfer pair with a commercial organic quencher. These new fluorophores have great potential as versatile tools for a broad range of applications in biological and chemical detection.

  10. Ab Initio Study of Structural and Electronic Properties of (ZnO) n "Magical" Nanoclusters n = (34, 60)

    NASA Astrophysics Data System (ADS)

    Bovhyra, Rostyslav; Popovych, Dmytro; Bovgyra, Oleg; Serednytski, Andrew

    2017-01-01

    Density functional theory studies of the structural and electronic properties of nanoclusters (ZnO) n ( n = 34, 60) in different geometric configurations were conducted. For each cluster, an optimization (relaxation) of structure geometry was performed, and the basic properties of the band structure were investigated. It was established that for the (ZnO)34 nanoclusters, the most stable are fullerene-like hollow structures that satisfy the rule of six isolated quadrangles. For the (ZnO)60 nanoclusters, different types of isomers, including hollow structures and sodalite-like structures composed from (ZnO)12 nanoclusters, were investigated. It was determined that the most energetically favorable structure was sodalite-type structure composed of seven (ZnO)12 clusters with common quadrangle edges.

  11. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS.

    PubMed

    Miller, Thomas M; Viggiano, Albert A; Shuman, Nicholas S

    2018-05-14

    The kinetics of thermal electron attachment to methyl thiocyanate (CH 3 SCN), methyl isothiocyanate (CH 3 NCS), and ethyl thiocyanate (C 2 H 5 SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH 3 SCN and C 2 H 5 SCN undergo inefficient dissociative attachment to yield primarily SCN - at 300 K (k = 2 × 10 -10 cm 3 s -1 ), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH 3 SCN) and 0.14 eV (C 2 H 5 SCN). CN - product is formed at <1% branching at 300 K, increasing to ∼30% branching at 1000 K. Attachment to CH 3 NCS yields exclusively SCN - ionic product but at a rate at 300 K that is below our detection threshold (k < 10 -12 cm 3 s -1 ). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10 -11 cm 3 s -1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH 3 SCN proceeds through a dissociative state of CH 3 SCN - , while attachment to CH 3 NCS initially forms a weakly bound transient anion CH 3 NCS -* that isomerizes over an energetic barrier to yield SCN - . Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH 3 NCS data only if dissociation through the transient anion is considered.

  12. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at <1% branching at 300 K, increasing to ˜30% branching at 1000 K. Attachment to CH3NCS yields exclusively SCN- ionic product but at a rate at 300 K that is below our detection threshold (k < 10-12 cm3 s-1). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10-11 cm3 s-1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH3SCN proceeds through a dissociative state of CH3SCN-, while attachment to CH3NCS initially forms a weakly bound transient anion CH3NCS-* that isomerizes over an energetic barrier to yield SCN-. Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  13. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    PubMed

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  14. Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome.

    PubMed

    Mansilla, Alicia; Chaves-Sanjuan, Antonio; Campillo, Nuria E; Semelidou, Ourania; Martínez-González, Loreto; Infantes, Lourdes; González-Rubio, Juana María; Gil, Carmen; Conde, Santiago; Skoulakis, Efthimios M C; Ferrús, Alberto; Martínez, Ana; Sánchez-Barrena, María José

    2017-02-07

    The protein complex formed by the Ca 2+ sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.

  15. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  16. Synthesis of nickel entities: From highly stable zerovalent nanoclusters to nanowires. Growth control and catalytic behavior.

    PubMed

    Peinetti, Ana S; Mizrahi, Martín; Requejo, Félix G; Buceta, David; López-Quintela, M Arturo; González, Graciela A; Battaglini, Fernando

    2018-04-15

    Non-noble metal nanoclusters synthesis is receiving increased attention due to their unique catalytic properties and lower cost. Herein, the synthesis of ligand-free Ni nanoclusters with an average diameter of 0.7 nm corresponding to a structure of 13 atoms is presented; they exhibit a zero-valence state and a high stability toward oxidation and thermal treatment. The nanoclusters formation method consists in the electroreduction of nickel ions inside an ordered mesoporous alumina; also, by increasing the current density, other structures can be obtained reaching to nanowires of 10 nm diameter. A seed-mediated mechanism is proposed to explain the growth to nanowires inside these mesoporous cavities. The size dependence on the catalytic behavior of these entities is illustrated by studying the reduction of methylene blue where the nanoclusters show an outstanding performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass

    NASA Astrophysics Data System (ADS)

    Caccavale, F.; De Marchi, G.; Gonella, F.; Mazzoldi, P.; Meneghini, C.; Quaranta, A.; Arnold, G. W.; Battaglin, G.; Mattei, G.

    1995-03-01

    Ion-exchanged glass samples were obtained by immersing soda-lime slides in molten salt baths of molar concentration in the range 1-20% AgNO 3 in NaNO 3, at temperatures varying from 320 to 350°C, and processing times of the order of a few minutes. Irradiations of exchanged samples were subsequently performed by using H +m, He +, N + ions at different energies in order to obtain comparable projected ranges. The fluence was varied between 5 × 10 15 and 2 × 10 17 ions/cm 2. Most of the samples were treated at current densities lower than 2 μA/cm 2, in order to avoid heating effects. Some samples were irradiated with 4 keV electrons, corresponding to a range of 250 nm. The formation of nanoclusters of radii in the range 1-10 nm has been observed after irradiation, depending on the treatment conditions. The precipitation process is governed by the electronic energy deposition of incident particles. The most desirable results are obtained for helium implants. The process was characterized by the use of Secondary Ion Mass Spectrometry (SIMS) and nuclear techniques (Rutherford Backscattering (RBS), Nuclear Reactions (NRA)), in order to determine concentration-depth profiles and by optical absorption and Transmission Electron Microscopy (TEM) measurements for the silver nanoclusters detection and size evaluation.

  18. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  19. Adsorption-Coupled Diffusion of Gold Nanoclusters within a Large-Pore Protein Crystal Scaffold.

    PubMed

    Hartje, Luke F; Munsky, Brian; Ni, Thomas W; Ackerson, Christopher J; Snow, Christopher D

    2017-08-17

    Large-pore protein crystals (LPCs) are ordered biologically derived nanoporous materials exhibiting pore diameters greater than 8 nm. These substantial pores distinguish LPCs from typical nanoporous scaffolds, enabling engineered LPC materials to readily uptake, immobilize, and release macromolecular guests. In this study, macromolecular transport within an LPC environment was experimentally and computationally investigated by studying adsorption-coupled diffusion of Au 25 (glutathione) 18 nanoclusters within a cross-linked LPC scaffold via time-lapse confocal microscopy, bulk equilibrium adsorption, and hindered diffusion simulation. Equilibrium adsorption data is congruent with a Langmuir adsorption model, exhibiting strong binding behavior between nanoclusters and the scaffold. The standard Gibbs free energy of binding is equivalent to -37.2 kJ/mol, and the maximum binding capacity of 1.25 × 10 3 mg/g corresponds to approximately 29 nanoclusters per LPC unit cell. The hindered diffusion model showed good agreement with experimental data, revealing a pore diffusion coefficient of 3.7 × 10 -7 cm 2 /s under low nanocluster concentration. Furthermore, the model was sufficient to determine adsorption and desorption kinetic values for k a and k d equal to 13 cm 3 /mol·s and 1.7 × 10 -7 s -1 , respectively. At higher nanocluster concentrations, the simulated pore diffusion coefficient could be reduced by 3 orders of magnitude to 3.4 × 10 -10 cm 2 /s due to the effects of pore occlusion. This study demonstrates a strategy to analyze adsorption-coupled diffusion data to better understand complex transport of fluorescent macromolecules into LPCs. This approach fits the observable fluorescence data to the key molecular details and will benefit downstream efforts to engineer LPC-based nanoporous materials.

  20. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer.

    PubMed

    Jin, Hyung Dae; Garrison, Anna; Tseng, T; Paul, Brian K; Chang, Chih-Hung

    2010-11-05

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s(-1)) was achieved using a microreactor with a size of 1.687 cm(3). This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  1. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer

    NASA Astrophysics Data System (ADS)

    Jin, Hyung Dae; Garrison, Anna; Tseng, T.; Paul, Brian K.; Chang, Chih-Hung

    2010-11-01

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s - 1) was achieved using a microreactor with a size of 1.687 cm3. This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  2. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  3. Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal

    DOE PAGES

    Wu, Zili; Hu, Guoxiang; Jiang, De-en; ...

    2016-09-29

    Investigation of monodispersed and atomically-precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects in Au catalysis. We have explored the catalytic behavior of a newly-synthesized Au 22(L 8) 6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO 2, CeO 2 and Al 2O 3. Stability of the supported Au 22 nanoclusters was probed structurally by EXAFS and HAADF-STEM, and their adsorption and reactivity for CO oxidation were investigated by IR absorption spectroscopy and temperature programed flow reaction. Low temperature CO oxidation activity was observed for the supportedmore » pristine Au 22(L 8) 6 nanoclusters without ligand removal. Isotopically labeled O 2 was used to demonstrate that the reaction pathway occurs through a redox mechanism, consistent with the observed support-dependent activity trend: CeO 2 > TiO 2 > Al 2O 3. Substantiated by density functional theory (DFT) calculations, we conclude that the uncoordinated Au sites in the intact Au 22(L 8) 6 nanoclusters are capable of adsorbing CO, activating O2 and promoting CO oxidation reaction. Thanks to the presence of the in situ coordination unsaturated Au atoms, this work is the first clear demonstration of a ligand-protected Au nanocluster that are active for gas phase catalysis without the need of ligand removal.« less

  4. Numerical insights into the early stages of nanoscale electrodeposition: nanocluster surface diffusion and aggregative growth.

    PubMed

    Mamme, Mesfin Haile; Köhn, Christoph; Deconinck, Johan; Ustarroz, Jon

    2018-04-19

    Fundamental understanding of the early stages of electrodeposition at the nanoscale is key to address the challenges in a wide range of applications. Despite having been studied for decades, a comprehensive understanding of the whole process is still out of reach. In this work, we introduce a novel modelling approach that couples a finite element method (FEM) with a random walk algorithm, to study the early stages of nanocluster formation, aggregation and growth, during electrochemical deposition. This approach takes into account not only electrochemical kinetics and transport of active species, but also the surface diffusion and aggregation of adatoms and small nanoclusters. The simulation results reveal that the relative surface mobility of the nanoclusters compared to that of the adatoms plays a crucial role in the early growth stages. The number of clusters, their size and their size dispersion are influenced more significantly by nanocluster mobility than by the applied overpotential itself. Increasing the overpotential results in shorter induction times and leads to aggregation prevalence at shorter times. A higher mobility results in longer induction times, a delayed transition from nucleation to aggregation prevalence, and as a consequence, a larger surface coverage of smaller clusters with a smaller size dispersion. As a consequence, it is shown that a classical first-order nucleation kinetics equation cannot describe the evolution of the number of clusters with time, N(t), in potentiostatic electrodeposition. Instead, a more accurate representation of N(t) is provided. We show that an evaluation of N(t), which neglects the effect of nanocluster mobility and aggregation, can induce errors of several orders of magnitude in the determination of nucleation rate constants. These findings are extremely important towards evaluating the elementary electrodeposition processes, considering not only adatoms, but also nanoclusters as building blocks.

  5. Silver and copper nanoclusters in the lustre decoration of Italian Renaissance pottery: an EXAFS study

    NASA Astrophysics Data System (ADS)

    Padovani, S.; Borgia, I.; Brunetti, B.; Sgamellotti, A.; Giulivi, A.; D'Acapito, F.; Mazzoldi, P.; Sada, C.; Battaglin, G.

    Lustre is one of the most important decorative techniques of the Medieval and Renaissance pottery of the Mediterranean basin, capable of producing brilliant metallic reflections and iridescence. Following the recent finding that the colour of lustre decorations is mainly determined by copper and silver nanoclusters dispersed in the glaze layer, the local environment of copper and silver atoms has been studied by extended X-ray absorption fine structure (EXAFS) spectroscopy on original samples of gold and red lustre. It has been found that, in gold lustre, whose colour is attributed mainly to the silver nanocluster dispersion, silver is only partially present in the metallic form and copper is almost completely oxidised. In the red lustre, whose colour is attributed mainly to the copper nanocluster dispersion, only a fraction of copper is present in the metallic form. EXAFS measurements on red lustre, carried out in the total electron yield mode to probe only the first 150 nm of the glaze layer, indicated that in some cases lustre nanoclusters may be confined in a very thin layer close to the surface.

  6. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  7. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    We use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated and therebymore » the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  8. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  9. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE PAGES

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin; ...

    2017-09-05

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  10. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion.

    PubMed

    Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek

    2018-04-18

    The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.

  11. Fabrication and in vitro characterization of gadolinium-based nanoclusters for simultaneous drug delivery and radiation enhancement

    NASA Astrophysics Data System (ADS)

    Yoo, Shannon S.; Guo, Linghong; Sun, Xuejun; Shaw, Andrew R.; Yuan, Zhipeng; Löbenberg, Raimar; Roa, Wilson H.

    2016-09-01

    We report the synthesis of a gadolinium hydroxide (Gd(OH)3) nanorod based doxorubicin (Dox) delivery system that can enhance both magnetic resonance imaging contrast and radiation sensitivity. A simple and cost effective wet-chemical method was utilized in the presence of manganese (Mn) ions and Dox to produce the Gd(OH)3:Mn·Dox nanocluster structure. The Gd(OH)3:Mn·Dox nanocluster was composed of Mn-doped Gd(OH)3 nanorods arranged in parallel with Dox as a linker molecule between the adjacent nanorods. No other studies have utilized Dox as both the linker and therapeutic molecule in a nanostructure to date. The Gd(OH)3 nanorod is reported to have no significant cellular or in vivo toxicity, which makes it an ideal base material for this biomedical application. The Gd(OH)3:Mn·Dox nanocluster exhibited paramagnetic behavior and was stable in a colloidal solution. The nanocluster also enabled high Dox loading capacity and specifically released Dox in a sustained and pH-dependent manner. The positively charged Gd(OH)3:Mn·Dox nanoclusters were readily internalized into MDA-MB-231 breast cancer cells via endocytosis, which resulted in intracellular release of Dox. The released Dox in cells was effective in conferring cytotoxicity and inhibiting proliferation of cancer cells. Furthermore, a synergistic anticancer effect could be observed with radiation treatment. Overall, the Gd(OH)3:Mn·Dox nanocluster drug delivery system described herein may have potential utility in clinics as a multifunctional theranostic nanoparticle with combined benefits in both diagnosis and therapy in the management of cancer.

  12. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    PubMed Central

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659

  13. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  14. DEVELOPMENT OF EXPOSURE ASSESSMENT STUDY DESIGN FOR THE NATIONAL CHILDREN'S STUDY (NCS)

    EPA Science Inventory

    The general plan for the exposure monitoring component of the planned National Children's Study (NCS) is to measure indoor and outdoor concentrations and personal exposures for a variety of pollutants, including combustion products and pesticides. Due to the size of the study,...

  15. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal

    NASA Astrophysics Data System (ADS)

    Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun

    2017-03-01

    Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.

  16. Bulky Counterions: Enhancing the Two-Photon Excited Fluorescence of Gold Nanoclusters.

    PubMed

    Bertorelle, Franck; Moulin, Christophe; Soleilhac, Antonin; Comby-Zerbino, Clothilde; Dugourd, Philippe; Russier-Antoine, Isabelle; Brevet, Pierre-François; Antoine, Rodolphe

    2018-01-19

    Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions.

    PubMed

    Cai, Jiaying; Ma, Hong; Zhang, Junjie; Song, Qi; Du, Zhongtian; Huang, Yizheng; Xu, Jie

    2013-10-11

    Au nanoclusters with an average size of approximately 1 nm size supported on HY zeolite exhibit a superior catalytic performance for the selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furandicarboxylic acid (FDCA). It achieved >99 % yield of 2,5-furandicarboxylic acid in water under mild conditions (60 °C, 0.3 MPa oxygen), which is much higher than that of Au supported on metal oxides/hydroxide (TiO2 , CeO2 , and Mg(OH)2 ) and channel-type zeolites (ZSM-5 and H-MOR). Detailed characterizations, such as X-ray diffraction, transmission electron microscopy, N2 -physisorption, and H2 -temperature-programmed reduction (TPR), revealed that the Au nanoclusters are well encapsulated in the HY zeolite supercage, which is considered to restrict and avoid further growing of the Au nanoclusters into large particles. The acidic hydroxyl groups of the supercage were proven to be responsible for the formation and stabilization of the gold nanoclusters. Moreover, the interaction between the hydroxyl groups in the supercage and the Au nanoclusters leads to electronic modification of the Au nanoparticles, which is supposed to contribute to the high efficiency in the catalytic oxidation of HMF to FDCA. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Archaeal Tuc1/Ncs6 Homolog Required for Wobble Uridine tRNA Thiolation Is Associated with Ubiquitin-Proteasome, Translation, and RNA Processing System Homologs

    PubMed Central

    Chavarria, Nikita E.; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A.

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNALys UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNALys UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems. PMID:24906001

  19. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    PubMed

    Chavarria, Nikita E; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNA(Lys)UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(Lys)UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  20. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma.

    PubMed

    Li, Hui; Wang, Ping; Deng, Yunxiang; Zeng, Meiying; Tang, Yan; Zhu, Wei-Hong; Cheng, Yingsheng

    2017-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating malignancies in patients, and there is an urgent need for an effective treatment method. Herein, we report a novel gold nanocluster-based platform for confocal laser endomicroscopy-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for PDAC, which consists of four components: the PTT-carrier gold nanocluster, an active targeting ligand U11 peptide, a Cathepsin E (CTSE)-sensitive PDT therapy prodrug, and a CTSE-sensitive imaging agent (cyanine dye Cy5.5). Due to the strong coupling among cross-linked gold nanoparticles (AuNPs), the surface plasmon resonance peak of nanoclusters shifts to the near-infrared (NIR) region, thus making the nanoclusters useful in the effective PTT therapy. In the system, the labeling of nanoclusters with U11 peptide can distinctly increase their affinity and accelerate their uptake by pancreatic cancer cells. Cell apoptosis staining demonstrates that, upon incorporation of the uPAR-targeted unit, the antitumor efficacy of CTSE-sensitive nanocluster AuS-U11 is significantly enhanced with respect to that of the non-targeted nanocluster AuS-PEG and the insensitive nanocluster AuC-PEG. In vivo and ex vivo optical imaging confirms the high accumulation of AuS-U11 in the in situ pancreatic tumor model. Therapeutic studies further show that the combination of active targeting for tumor tissue, enzyme-triggered drug release of 5-ALA and fluorescent dye Cy5.5 in nanoclusters AuS-U11 could achieve optimal therapeutic efficacy with endomicroscopy-guided photothermal/photodynamic therapy with minimal side effects. As a consequence, the delicate gold nanocluster concept provides a promising strategy to enhance the therapy efficiency in the most challenging PDAC treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations.

    PubMed

    Pohjolainen, Emmi; Malola, Sami; Groenhof, Gerrit; Häkkinen, Hannu

    2017-09-20

    Biocompatible gold nanoclusters can be utilized as contrast agents in virus imaging. The labeling of viruses can be achieved noncovalently but site-specifically by linking the cluster to the hydrophobic pocket of a virus via a lipid-like pocket factor. We have estimated the binding affinities of three different pocket factors of echovirus 1 (EV1) in molecular dynamics simulations combined with non-equilibrium free-energy calculations. We have also studied the effects on binding affinities with a pocket factor linked to the Au 102 pMBA 44 nanocluster in different protonation states. Although the absolute binding affinities are over-estimated for all the systems, the trend is in agreement with recent experiments.3 Our results suggest that the natural pocket factor (palmitic acid) can be replaced by molecules pleconaril (drug) and its derivative Kirtan1 that have higher estimated binding affinities. Our results also suggest that including the gold nanocluster does not decrease the affinity of the pocket factor to the virus, but the affinity is sensitive to the protonation state of the nanocluster, i.e., to pH conditions. The methodology introduced in this work helps in the design of optimal strategies for gold-virus bioconjugation for virus detection and manipulation.

  2. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters.

    PubMed

    Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2015-01-25

    In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis, characterization and crystal structure of a 1D thiocyanato bridged [Cu(en)2Zn(NCS)4]ṡH2O. Comparison of the three structures with the same [Cu(en)2Zn(NCS)4] unit - different in structural terms

    NASA Astrophysics Data System (ADS)

    Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia

    2015-03-01

    In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).

  4. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    PubMed

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Formation of manganese nanoclusters in a sputtering/aggregation source and the roles of individual operating parameters

    NASA Astrophysics Data System (ADS)

    Khojasteh, Malak; Kresin, Vitaly V.

    2016-12-01

    We describe the production of size selected manganese nanoclusters using a dc magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length) we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the atomic vapor, and argon also plays the crucial role in the formation of condensation nuclei via three-body collisions. However, neither the argon flow nor the discharge power have a strong effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, which is governed by the helium supply and the aggregation path length. The size of mass selected nanoclusters was verified by atomic force microscopy of deposited particles.

  6. Light-induced Self-Assembly and Diffusion of Nanoclusters

    NASA Astrophysics Data System (ADS)

    Lian, Wenxuan

    Novel methods to build multiple types of three-dimensional structures from various nanoscale components are the most exciting and challenging questions in nano-science. The properties of the assembled structures can be potentially and designed, but the development of such approaches is challenging. In order to realize such rational assembly, a tunable interaction medium is often introduced into the system. Soft matter, such as polymers, surfactants and biomolecules are used to modify the surfaces of the nanoscale building blocks. Deoxyribonucleic acid (DNA) strands are known as polynucleotides since they are composed of simpler units called nucleotides. There are unique base pairing rules that are predictable and programmable, which can be used to regulate self-assembly process with high degree of control. Besides controlling static structure, it is important to develop methods for controlling systems in dynamic matter, with chemical stimuli or external fields. For example, here we study the use of azobezene-trimethylammonium bromide (AzoTAB) as a molecular agent that can control self-assembly via light excitation. In this thesis, DNA assisted self-assembly was conducted. The ability of AzoTAB as a light induced surfactant to control DNA assisted self-assembly was confirmed. The mechanism of AzoTAB as a light controlled self-assembly promoter was studied. In the second project, diffusion of nanoclusters was studied. The presence of polymers brings strong entanglement with nanoclusters. This entanglement is more obvious when the nanocluster is a framed structure like the octahedron in the study. The diffusion coefficient of the octahedron becomes larger during traveling. The following up studies are required to elucidate the origin of the observed effect.

  7. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    PubMed Central

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-01-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products. PMID:27189731

  8. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dong; Luo, Zhentao; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-03-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29-43(SG)27-37 nanoclusters (<2 nm) with a naturally-occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH-coated Au29-43(SG)27-37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29-43(SG)27-37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.

  9. Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability.

    PubMed

    Park, Ji Hun; Hudaya, Chairul; Kim, A-Young; Rhee, Do Kyung; Yeo, Seon Ju; Choi, Wonchang; Yoo, Pil J; Lee, Joong Kee

    2014-03-18

    Structurally regulated and hybridized Al-C nanoclusters are prepared from C60 and Al precursors by thermal evaporation-combined plasma-enhanced chemical vapour deposition. The resulting Al-C hybrid nanoclustered anodes for Li-ion batteries exhibit a high reversible capacity of >900 mA h g(-1) at an optimized current density of 6 A g(-1) for over 100 cycles.

  10. An ontology-based nurse call management system (oNCS) with probabilistic priority assessment

    PubMed Central

    2011-01-01

    Background The current, place-oriented nurse call systems are very static. A patient can only make calls with a button which is fixed to a wall of a room. Moreover, the system does not take into account various factors specific to a situation. In the future, there will be an evolution to a mobile button for each patient so that they can walk around freely and still make calls. The system would become person-oriented and the available context information should be taken into account to assign the correct nurse to a call. The aim of this research is (1) the design of a software platform that supports the transition to mobile and wireless nurse call buttons in hospitals and residential care and (2) the design of a sophisticated nurse call algorithm. This algorithm dynamically adapts to the situation at hand by taking the profile information of staff members and patients into account. Additionally, the priority of a call probabilistically depends on the risk factors, assigned to a patient. Methods The ontology-based Nurse Call System (oNCS) was developed as an extension of a Context-Aware Service Platform. An ontology is used to manage the profile information. Rules implement the novel nurse call algorithm that takes all this information into account. Probabilistic reasoning algorithms are designed to determine the priority of a call based on the risk factors of the patient. Results The oNCS system is evaluated through a prototype implementation and simulations, based on a detailed dataset obtained from Ghent University Hospital. The arrival times of nurses at the location of a call, the workload distribution of calls amongst nurses and the assignment of priorities to calls are compared for the oNCS system and the current, place-oriented nurse call system. Additionally, the performance of the system is discussed. Conclusions The execution time of the nurse call algorithm is on average 50.333 ms. Moreover, the oNCS system significantly improves the assignment of nurses

  11. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhibo; Liu, Ning; Chen, Biaohua

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology andmore » exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is

  12. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  13. DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.

    2017-12-01

    Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.

  14. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Vodnik, Vesna V., E-mail: vodves@vinca.rs; Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm weremore » well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.« less

  15. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    NASA Astrophysics Data System (ADS)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-07-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  16. Shape and size dependent nonlinear refraction and absorption in citrate-stabilized, near-IR plasmonic silver nanopyramids.

    PubMed

    Dadhich, Bhavesh Kumar; Kumar, Indrajit; Choubey, Ravi Kant; Bhushan, Bhavya; Priyam, Amiya

    2017-10-11

    Using a combination of a mild stabilizer and a mild reductant, sodium citrate and hydrazine hydrate, anisotropic silver nanocrystals (NCs) were synthesized with tunable plasmon peaks at 550 nm, 700 nm, 800 nm, 900 nm and 1010 nm (the samples are named Ag-550, Ag-700, Ag-800, Ag-900 and Ag-1010, respectively). TEM investigations revealed that Ag-550 NCs were pentagonal nanoplates while the other four samples were nanopyramids with a pentagonal base with the edge length varying between 15 and 30 nm. The non-linear optical (NLO) properties of these NCs were studied by the Z-scan technique using the CW He-Ne laser (632.8 nm, 15 mW). The shape change from 2D nanoplates (Ag-550) to 3D nanopyramids (Ag-700) resulted in sign reversal of the non-linear refractive index, n 2 , from a negative (-3.164 × 10 -8 cm 2 W -1 ) to a positive one (1.195 × 10 -8 cm 2 W -1 ). This corresponds to a change from a self-defocussing effect to a self-focussing one. Besides shape, the size effect is also prominently observed. Amongst nanopyramids, as the edge length increases, n 2 increases linearly and reaches a maximum of 3.124 × 10 -8 cm 2 W -1 . Doubling the edge length from 15 nm to 30 nm resulted in 162% increase in n 2 . On moving from Ag-550 to Ag-900 NCs, with the increasing plasmon wavelength, the non-linear absorption (NLA) coefficient increased exponentially to a high value of 8.52 × 10 -4 cm W -1 . However, Ag-1010 showed 29% decrease in NLA which is attributed to twinning present in the crystal structure as seen in the HR-TEM images. Due to the tunable NLO properties, these anisotropic Ag NCs hold great potential for applications in optical limiting, switching and data storage.

  17. First-principles calculated decomposition pathways for LiBH 4 nanoclusters

    DOE PAGES

    Huang, Zhi -Quan; Chen, Wei -Chih; Chuang, Feng -Chuan; ...

    2016-05-18

    Here, we analyze thermodynamic stability and decomposition pathways of LiBH 4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH 4) n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li) n, (B) n, (LiB) n, (LiH) n, and Li 2B nH n; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathwaysmore » markedly differ from those in bulk LiBH 4. While experiments have found that the bulk material decomposes into LiH and B, with Li 2B 12H 12 as a kinetically inhibited intermediate phase, (LiBH 4) n nanoclusters with n ≤ 12 are predicted to decompose into mixed Li nB n clusters via a series of intermediate clusters of Li nB nH m (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.« less

  18. The expanding universe of thiolated gold nanoclusters and beyond.

    PubMed

    Jiang, De-en

    2013-08-21

    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  19. Ag2S Quantum Dot-Sensitized Solar Cells by First Principles: The Effect of Capping Ligands and Linkers.

    PubMed

    Amaya Suárez, Javier; Plata, Jose J; Márquez, Antonio M; Fernández Sanz, Javier

    2017-09-28

    Quantum dots solar cells, QDSCs, are one of the candidates for being a reliable alternative to fossil fuels. However, the well-studied CdSe and CdTe-based QDSCs present a variety of issues for their use in consumer-goods applications. Silver sulfide, Ag 2 S, is a promising material, but poor efficiency has been reported for QDSCs based on this compound. The potential influence of each component of QDSCs is critical and key for the development of more efficient devices based on Ag 2 S. In this work, density functional theory calculations were performed to study the nature of the optoelectronic properties for an anatase-TiO 2 (101) surface sensitized with different silver sulfide nanoclusters. We demonstrated how it is possible to deeply tune of its electronic properties by modifying the capping ligands and linkers to the surface. Finally, an analysis of the electron injection mechanism for this system is presented.

  20. One-dimensional ordering of Ge nanoclusters along atomically straight steps of Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiguchi, Takeharu; Yoshida, Shunji; Itoh, Kohei M.

    2007-01-01

    Ge nanostructures grown by molecular beam epitaxy on a vicinal Si(111) surface with atomically well-defined steps are studied by means of scanning tunneling microscopy and spectroscopy. When the substrate temperature during deposition is around 250 degree sign C, Ge nanoclusters of diameters less than 2.0 nm form a one-dimensional array of the periodicity 2.7 nm along each step. This self-organization is due to preferential nucleation of Ge on the unfaulted 7x7 half-unit cells at the upper step edges. Scanning tunneling spectroscopy reveals localized electronic states of the nanoclusters.

  1. High-Temperature Annealing as a Method for the Silicon Nanoclusters Growth in Stoichiometric Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Dementev, P. A.; Sitnikova, A. A.; Aleksandrov, O. V.; Zamoryanskaya, M. V.

    2018-07-01

    A method for the growth of nanocomposite layers in stoichiometric amorphous silicon dioxide is proposed. It is shown that, after annealing at a temperature of 1150°C in nitrogen atmosphere, a layer containing silicon nanoclusters is formed. Silicon nanoclusters have a crystal structure and a size of 3-6 nm. In a film grown on a n-type substrate, a layer of silicon nanoclusters with a thickness of about 10 nm is observed. In the case of a film grown on a p-type substrate, a nanocomposite layer with a thickness of about 100 nm is observed. The difference in the formation of a nanocomposite layer in films on various substrates is associated with the doping of silicon dioxide with impurities from the substrate during the growth of the film. The formation of the nanocomposite layer was confirmed by transmission electron microscopy, XPS and local cathodoluminescence studies.

  2. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9.

    PubMed

    Nguyen, Phuong-Diem; Cong, Vu Thanh; Baek, Changyoon; Min, Junhong

    2017-03-15

    This study introduces the double-ligands stabilizing gold nanoclusters and the fabrication of gold nanocluster/graphene nanocomplex as a "turn-on" fluorescent probe for the detection of cancer-related enzyme matrix metalloproteinase-9. A facile, one-step approach was developed for the synthesis of fluorescent gold nanoclusters using peptides and mercaptoundecanoic acid as co-templating ligands. The peptide was designed to possess a metalloproteinase-9 cleavage site and to act not only as a stabilizer but also as a targeting ligand for the enzyme detection. The prepared gold nanoclusters show an intense red fluorescence with a broad adsorption spectrum. In the presence of the enzyme, due to the excellent quenching properties and the negligible background of graphene oxide, the developed peptide-gold nanocluster/graphene nanocomplex yielded an intense "turn-on" fluorescent response, which strongly correlated with the enzyme concentration. The limit of detection of the nanocomplex was 0.15nM. The sensor was successfully applied for "turn-on" detection of metalloproteinase-9 secreted from human breast adenocarcinoma MCF-7 cells with high sensitivity, selectivity, significant improvement in terms of detection time and simplicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Memory characteristics of metal-oxide-semiconductor structures based on Ge nanoclusters-embedded GeO(x) films grown at low temperature.

    PubMed

    Lin, Tzu-Shun; Lou, Li-Ren; Lee, Ching-Ting; Tsai, Tai-Cheng

    2012-03-01

    The memory devices constructed from the Ge-nanoclusters embedded GeO(x) layer deposited by the laser-assisted chemical vapor deposition (LACVD) system were fabricated. The Ge nanoclusters were observed by a high-resolution transmission electron microscopy. Using the capacitance versus voltage (C-V) and the conductance versus voltage (G-V) characteristics measured under various frequencies, the memory effect observed in the C-V curves was dominantly attributed to the charge storage in the Ge nanoclusters. Furthermore, the defects existed in the deposited film and the interface states were insignificant to the memory performances. Capacitance versus time (C-t) measurement was also executed to evaluate the charge retention characteristics. The charge storage and retention behaviors of the devices demonstrated that the Ge nanoclusters grown by the LACVD system at low temperature are promising for memory device applications.

  4. From isosuperatoms to isosupermolecules: new concepts in cluster science

    NASA Astrophysics Data System (ADS)

    Liu, Liren; Li, Pai; Yuan, Lan-Feng; Cheng, Longjiu; Yang, Jinlong

    2016-06-01

    As an extension of the superatom concept, a new concept ``isosuperatom'' is proposed, reflecting the physical phenomenon that a superatom cluster can take multiple geometrical structures with their electronic structures topologically invariant. The icosahedral and cuboctahedral Au135+ units in the Au25(SCH2CH2Ph)18-, Au23(SC6H11)16- and Au24(SAdm)16 nanoclusters are found to be examples of this concept. Furthermore, two isosuperatoms can combine to form a supermolecule. For example, the structure of the {Ag32(DPPE)5(SC6H4CF3)24}2- nanocluster can be understood well in terms of a Ag2212+ supermolecule formed by two Ag138+ isosuperatoms. On the next level of complexity, various combinations of isosuperatoms can lead to supermolecules with different geometrical structures but similar electronic structures, i.e., ``isosupermolecules''. We take two synthesized nanoclusters Au20(PPhpy2)10Cl42+ and Au30S(StBu)18 to illustrate two Au206+ isosupermolecules. The proposed concepts of isosuperatom and isosupermolecule significantly enrich the superatom concept, give a new framework for understanding a wide range of nanoclusters, and open a new door for designing assembled materials.As an extension of the superatom concept, a new concept ``isosuperatom'' is proposed, reflecting the physical phenomenon that a superatom cluster can take multiple geometrical structures with their electronic structures topologically invariant. The icosahedral and cuboctahedral Au135+ units in the Au25(SCH2CH2Ph)18-, Au23(SC6H11)16- and Au24(SAdm)16 nanoclusters are found to be examples of this concept. Furthermore, two isosuperatoms can combine to form a supermolecule. For example, the structure of the {Ag32(DPPE)5(SC6H4CF3)24}2- nanocluster can be understood well in terms of a Ag2212+ supermolecule formed by two Ag138+ isosuperatoms. On the next level of complexity, various combinations of isosuperatoms can lead to supermolecules with different geometrical structures but similar electronic

  5. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  6. Nanoclusters as a new family of high temperature superconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2017-03-01

    Electrons in metal clusters organize into quantum shells, akin to atomic shells in the periodic table. Such nanoparticles are referred to as "superatoms". The electronic shell levels are highly degenerate giving rise to sharp peaks in the density of states, which can enable exceptionally strong electron pairing in certain clusters containing tens to hundreds of atoms. A spectroscopic investigation of size - resolved aluminum nanoclusters has revealed a sharp rise in the density of states near the Fermi level as the temperature decreases towards 100 K. The effect is especially prominent in the closed-shell "magic" cluster Al66 [1, 2]. The characteristics of this behavior are fully consistent with a pairing transition, implying a high temperature superconducting state with Tc < 100K. This value exceeds that of bulk aluminum by two orders of magnitude. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks. ---------- 1. Halder, A., Liang, A., Kresin, V. V. A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T 100K. Nano Lett 15, 1410 - 1413 (2015) 2. Halder, A., Kresin, V. V. A transition in the density of states of metal "superatom" nanoclusters and evidence for superconducting pairing at T 100K. Phys. Rev. B 92, 214506 (2015).

  7. Unraveling the Planar-Globular Transition in Gold Nanoclusters through Evolutionary Search

    DOE PAGES

    Kinaci, Alper; Narayanan, Badri; Sen, Fatih G.; ...

    2016-11-28

    Au nanoclusters are of technological relevance for catalysis, photonics, sensors, and of fundamental scientific interest owing to planar to globular structural transformation at an anomalously high number of atoms i.e. in the range 12-14. The nature and causes of this transition remain a mystery. In order to unravel this conundrum, high throughput density functional theory (DFT) calculations, coupled with a global structural optimization scheme based on a modified genetic algorithm (GA) are conducted. Furthermore, more than 20,000 Au 12, Au 13, and Au 14 nanoclusters are evaluated. With any DFT functional, globular and planar structures coexist across the size rangemore » of interest. Contrary to what was previously believed, the planar-globular transition is gradual at room temperature rather than a sharp transition. The effects of anionicity, s-d band hybridization and long range interactions on the dimensional transition are quantified by using the structures adjacent to minima. Anionicity marginally changes the relative stability of the clusters. The degree of s-d hybridization is varied via changing the Hubbard U value which corroborate that s-d hybridization alone does not stabilize planar structures. van der Waals interactions, on the other hand, stabilize globular structures. Our results elucidate the balance between the different reasons of the dimensional transition in gold nanoclusters.« less

  8. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  9. Building machine learning force fields for nanoclusters

    NASA Astrophysics Data System (ADS)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  10. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001).

    PubMed

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  11. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001)

    PubMed Central

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  12. Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.

    PubMed

    Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla

    2017-12-01

    In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.

  13. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    PubMed Central

    2011-01-01

    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666

  14. The NCS code of practice for the quality assurance and control for volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Mans, Anton; Schuring, Danny; Arends, Mark P.; Vugts, Cornelia A. J. M.; Wolthaus, Jochem W. H.; Lotz, Heidi T.; Admiraal, Marjan; Louwe, Rob J. W.; Öllers, Michel C.; van de Kamer, Jeroen B.

    2016-10-01

    In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.radiationdosimetry.org. After describing the transition from IMRT to VMAT, the paper addresses machine quality assurance (QA) and treatment planning system (TPS) commissioning for VMAT. The final section discusses patient specific QA issues such as the use of class solutions, measurement devices and dose evaluation methods.

  15. Calculation of density of states of transition metals: From bulk sample to nanocluster

    NASA Astrophysics Data System (ADS)

    Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.

    2018-03-01

    A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.

  16. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    NASA Astrophysics Data System (ADS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  17. In-vitro Synthesis of Gold Nanoclusters in Neurons

    DTIC Science & Technology

    2016-04-01

    vitro pressure probes for evaluating the effects of traumatic brain injury. AuNCs were grown within NG-108-15 neuroblastoma -glioma hybrid cells...NG108-15 neuroblastoma -glioma hybrid cells (108CC15) (ATCC HB-12317) were maintained in culture in Dulbecco’s Modified Eagle Medium supplemented

  18. Anisotropic magnetic field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam

    2015-12-01

    Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.

  19. In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging.

    PubMed

    Li, Duo; Qiao, Zhenzhen; Yu, Yanru; Tang, Jinlu; He, Xiaoxiao; Shi, Hui; Ye, Xiaosheng; Lei, Yanli; Wang, Kemin

    2018-01-25

    A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.

  20. Ability of a beta-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters.

    PubMed Central

    Holt, C; Wahlgren, N M; Drakenberg, T

    1996-01-01

    The ability of casein in the form of colloidal-sized casein micelles to modulate the phase separation of calcium phosphate during milk secretion is adapted to produce nanometre-sized particles of calcium phosphate stabilized by a casein phosphopeptide (nanoclusters). The nanoclusters were prepared from an undersaturated solution of salts and the peptide by raising the pH homogeneously from about 5.5 to 6.7 with urea plus urease. Chemical analysis and IR spectroscopy showed that they comprise an amorphous dicalcium phosophate bound to the phosphopeptide. Multinuclear NMR spectroscopy of the cluster solutions showed that the small ions and free peptide in the solution were in a state of dynamic exchange with the nanoclusters. The peptide is linked to the calcium phosphate through its sequence of phosphorylated residues, but, in a proportion of adsorbed conformational states, the termini retain the conformational freedom of the unbound peptide. The ability of casein to form nanoclusters in milk suggests a more general mechanism for avoiding pathological calcification and regulating calcium flow in tissues and biological fluids exposed to or containing high concentrations of calcium. PMID:8615755

  1. Nanoporous Substrate with Mixed Nanoclusters for Surface Enhanced Raman Scattering.

    NASA Astrophysics Data System (ADS)

    Chang, Sehoon; Ko, Hyunhyub; Singamaneni, Srikanth; Gunawidjaja, Ray; Tsukruk, Vladimir

    2009-03-01

    Rapid detection of plastic and liquid explosives is an urgent need due to various societal and technological reasons. We employed a novel design of surface enhanced Raman scattering (SERS)-active substrate based on porous alumina membranes decorated with mixed nanoclusters of gold nanorods and nanoparticles. We demonstrated trace level detection of several important explosives such as dinitrotolene (DNT), trinitrotoluene (TNT), and hexamethylenetriperoxidediamine (HMTD) by fast, sensitive, reliable Raman spectroscopic method. We achieved near molecular-level detection (about 15˜ 30 molecules) of DNT and TNT utilizing the SERS substrate. However, trace level detection is challenging due to the lack of common optical signatures (fluorescence, absorption in UV-vis range) or chemical functionality of peroxide-based explosives such as HMTD. To overcome this, we employed photochemical decomposition approach and analyzed chemical fragments using SERS. We suggest that tailored polymer coating, mixed nanoclusters, and laser-induced photocatalytic decomposition are all critical for achieving this unprecedented sensitivity level..

  2. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGES

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  3. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  4. Ion-beam-assisted deposition of Au nanocluster/Nb 2O 5 thin films with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Cotell, C. M.; Schiestel, S.; Carosella, C. A.; Flom, S.; Hubler, G. K.; Knies, D. L.

    1997-05-01

    Gold nanocluster thin films (˜ 200 nm thickness) consisting of metal clusters ˜ 5 nm in size embedded in a matrix of Nb 2O 5 were deposited by ion beam-assisted deposition (IBAD) by coevaporation of Au and Nb with O 2+ ion bombardment. The microstructure and optical characteristics of these films were examined as-deposited and after annealing at 600°C. Annealing crystallized the amorphous oxide matrix and ripened the nanoclusters. A strong linear absorption at the wavelength of the surface plasmon resonance for Au developed as a result of annealing. The linear optical behavior was modeled using Mie scattering theory. Good agreement was found between the nanocluster sizes predicted by the theory and the particle sizes observed experimentally using transmission electron microscopy (TEM). The nonlinear optical (NLO) properties of the nanocluster films were probed experimentally using degenerate four wave mixing and nonlinear transmission. The wavelength was near the peak of the surface plasmon resonance as measured by VIS/UV spectroscopy. Values of | χxxxx(3)| were 7.3 × 10 -8 and 3.0 × 10 -10 esu for annealed and unannealed samples, respe The dominant mechanism for the nonlinear response was change in dielectric constant due to the generation of a distribution of hot, photoexcited electrons.

  5. 3D contour fluorescence spectroscopy with Brus model: Determination of size and band gap of double stranded DNA templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.

    2018-01-01

    Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.

  6. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds.

    PubMed

    Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S

    2012-11-12

    This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  8. Boron oxynitride nanoclusters on tungsten trioxide as a metal-free cocatalyst for photocatalytic oxygen evolution from water splitting

    NASA Astrophysics Data System (ADS)

    Xie, Ying Peng; Liu, Gang; Lu, Gao Qing (Max); Cheng, Hui-Ming

    2012-02-01

    Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers.Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers. Electronic supplementary information (ESI) available: (1) Experimental section. (2) XRD patterns, FT-IR and Raman spectra of B2O3@WO3 and B2O3-xNx@WO3. (3) Time course of O2 evolution from water splitting using B2O3@WO3 and B2O3-xNx@WO3. (4) XRD pattern and SEM image of pure WO3, UV-visible absorption spectra of pure WO3 and N-WO3. (5) UV-visible absorption spectra of bulk B2O3 and schematic of band edges of WO3, bulk B2O3, and B2O3-xNx nanocluster. See DOI: 10.1039/c2nr11846g

  9. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs).

    PubMed

    Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel

    2014-10-06

    Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.

  10. First-principles study of MoS2 and MoSe2 nanoclusters in the framework of evolutionary algorithm and density functional theory

    NASA Astrophysics Data System (ADS)

    Hashemi, Zohreh; Rafiezadeh, Shohreh; Hafizi, Roohollah; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2018-04-01

    Evolutionary algorithm is combined with full-potential ab initio calculations to investigate conformational space of (MoS2)n and (MoSe2)n (n = 1-10) nanoclusters and to identify the lowest energy structural isomers of these systems. It is argued that within both BLYP and PBE functionals, these nanoclusters favor sandwiched planar configurations, similar to their ideal planar sheets. The second order difference in total energy (Δ2 E) of the lowest energy isomers is computed to estimate the abundance of the clusters at different sizes and to determine the magic sizes of (MoS2)n and (MoSe2)n nanoclusters. In order to investigate the electronic properties of nanoclusters, their energy gap is calculated by several methods, including hybrid functionals (B3LYP and PBE0), GW approach, and Δ scf method. At the end, the vibrational modes of the lowest lying isomers are calculated by using the force constants method and the IR active modes of the systems are identified. The vibrational spectra are used to calculate the Helmholtz free energy of the systems and then to investigate abundance of the nanoclusters at finite temperatures.

  11. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  12. Two-Dimensional Ordering of Solute Nanoclusters at a Close-Packed Stacking Fault: Modeling and Experimental Analysis

    PubMed Central

    Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu

    2014-01-01

    Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232

  13. Computational investigation of single-wall carbon nanotube functionalized with palladium nanoclusters as hydrogen sulfide gas sensor

    NASA Astrophysics Data System (ADS)

    Bagherzadeh-Nobari, S.; Hosseini-Istadeh, K.; Kalantarinejad, R.; Elahi, S. M.; Shokri, A. A.

    2018-03-01

    Our aim is to study theoretically, the sensitivity of a hydrogen sulfide gas sensor, with regard to electrical conductance behavior. Our senor consists of a semiconductor single-wall carbon nanotube (SWCNT), functionalized with palladium nanoclusters, sandwiched between two gold electrodes. Initially, we have computed the optimized structure of the sensor, via molecular dynamic simulations. Then by using non-equilibrium Green's function method, combined with density functional theory, the electronic and transport properties of the sensor were calculated, and compared before and after adsorption of H2S gas, at different bias voltages. The highest sensitivity is achieved at 40 mV bias voltage. In this bias voltage, H2S gas adsorption causes a significant decrease of current, because as a result of charge transfer from the CNT and palladium nanoclusters, to H2S gas, majority carriers (electrons) decrease. The results show that CNT decorated with palladium nanoclusters can be a promising candidate in gas-sensorics.

  14. Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhou, Zhou, Shiming; Yao, Chuanhao; Liao, Lingwen; Wu, Zhikun

    2014-11-01

    In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters.In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting

  15. Potential energy surfaces of the ground and low-lying states of HCCS and NCS: CASSCF, MRCI and CCSD(T) studies

    NASA Astrophysics Data System (ADS)

    Li, Yumin; Iwata, Suehiro

    1997-07-01

    For astronomically interesting molecules, HCCS and NCS, the equilibrium geometries and potential energy curves of three states (X 2Π, A 2Π and B 2Σ+) as well as vertical excitation energies are studied using complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI) and coupled cluster (CCSD(T)) methods with cc-pVTZ basis sets. The difference and similarity in the three states of HCCS and NCS are illustrated. The results obtained are in good agreement with available experimental data.

  16. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    PubMed

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and structure of R{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (R = Rb or Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serezhkin, V. N., E-mail: lserezh@samsu.ru; Peresypkina, E. V.; Grigor’eva, V. A.

    2015-01-15

    Crystals Rb{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (I) and Cs{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (II) have been synthesized and studied by IR spectroscopy and X-ray diffraction. Crystals I are monoclinic, with the following parameters: a = 12.2118(5) Å, b = 10.2545(3) Å, c = 11.8754(4) Å, β = 110.287(1)°, sp. gr. C2/c, Z = 4, and R = 0.0523. Crystals II are orthorhombic, with a = 13.7309(3) Å, b = 10.5749(2) Å, c = 10.1891(2) Å, sp. gr. Pnma, Z = 4, and R = 0.0411. The basic structural units of crystals I and II are one-core complexes [UO{submore » 2}(NO{sub 3}){sub 2}(NCS){sub 2}]{sup 2−}, which belong to the crystallochemical group cis-AB{sub 2}{sup 01}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = NO{sub 3}{sup −}, M{sup 1} = NCS{sup −}), which are combined into a framework via electrostatic interactions with ions of alkaline metals R (R = Rb or Cs). The structural features of crystals I and II, which condition the formation of [UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}]{sup 2−} complexes with a cis rather than a trans position of isothiocyanate ions in the coordination sphere of uranyl ions, are discussed.« less

  18. Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody.

    PubMed

    Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha

    2016-10-01

    Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhou, Zhijun; Li, Zhiming; Zhang, Chunlei; Wang, Xiansong; Wang, Kan; Gao, Guo; Huang, Peng; Cui, Daxiang

    2013-04-01

    Biomimetic synthesis has become a promising green pathway to prepare nanomaterials. In this study, bovine serum albumin (BSA)-conjugated gold nanoclusters/nanoparticles were successfully synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The synthesized BSA-Au nanocomplexes have fluorescence emission (588 nm) of gold nanoclusters and surface plasmon resonance of gold nanoparticles. The BSA-Au nanocomplexes display non-cytotoxicity and excellent biocompatibility on MGC803 gastric cancer cells. After conjugation of folic acid molecules, the obtained BSA-Au nanocomplexes showed highly selective targeting for MGC803 cells and dual-modality dark-field and fluorescence imaging.

  20. A cuboctahedral platinum (Pt79) nanocluster enclosed by well defined facets favours di-sigma adsorption and improves the reaction kinetics for methanol fuel cells.

    PubMed

    Mahata, Arup; Choudhuri, Indrani; Pathak, Biswarup

    2015-08-28

    The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.