Sample records for nanocomposite cutizr alloys

  1. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  2. Effect of Immersion Time on Corrosion Behavior of Single-Phase Alloy and Nanocomposite Bismuth Telluride-Based Thermoelectrics in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Keshavarz, Mohsen K.; Fattah-Alhosseini, Arash

    2018-05-01

    The corrosiveness of bismuth telluride-based thermoelectric materials (n-type single-phase alloy and a nanocomposite with MoS2 nanoinclusions), in 0.1 molar solution of sodium chloride (NaCl), was investigated. The electrochemical impedance spectroscopy curves obtained after 1, 24, 48 and 72 h immersion time revealed the enhancement of the corrosion resistance of the nanocomposite specimen in a 0.1 molar NaCl solution in comparison with the single-phase bismuth telluride-based alloys, and the passivity increased by immersion time up to 72 h. The nanocomposite sample with submicron grains provided suitable nucleation sites for passive film nucleation that led to higher protective behavior.

  3. Pressure Dependences of Elastic Constants of AMg6 Aluminum-Magnesium Alloy and n-AMg6/C60 Nanocomposite Alloy

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. M.; Gromnitskaya, E. L.

    2018-04-01

    The ultrasonic study results for dependence of the elastic wave velocities and second-order elasticity coefficients of the polycrystalline aluminum alloy AMg6 and its nanocomposite n-AMg6/C60 on hydrostatic pressure up to 1.6 GPa have been described. The ultrasonic research has been carried out using a highpressure ultrasonic piezometer based on the piston-cylinder device. The pressure derivatives of the secondorder elastic constants of these materials established in the present study have been compared with the results of the third-order elastic constants measurements of the test alloys using the Thurston-Brugger method. Involving available literature data, we determined the relationships between the pressure derivatives of the second-order elastic constants of the AMg6 alloy and the Mg-content and nanostructuring.

  4. Synthesis, structures and magnetic properties of Pr-lean Pr2Fe14B/Fe3B nanocomposite alloys

    NASA Astrophysics Data System (ADS)

    Mingxiang, Pan; Pengyue, Zhang; Hongliang, Ge; Hangfu, Yang; Qiong, Wu

    2012-09-01

    The lean rare-earth Pr4.5Fe77-xTixB18.5 (x=0, 1, 4, 5) nanocomposite alloys were prepared by melt spinning method and subsequent thermal annealing. The effect of Ti content and annealing temperature on the magnetic properties and the microstructure of these magnets were investigated. The enhancing coercivity Hc from 211.4 to 338.2 kA/m has been observed at the optimal annealing temperature of 700 °C by the addition of 5 at% Ti in Pr2Fe14B/Fe3B alloys. It was also found that increasing Ti content leads to marked grain refinement in the annealed alloys, resulting in strong exchange-coupling interaction between the hard and the soft phases in these ribbons. In addition, the magnetization reversal behaviors of Pr2Fe14B/Fe3B nanocomposites were discussed in detail.

  5. Metal Amorphous Nanocomposite (MANC) Alloy Cores with Spatially Tuned Permeability for Advanced Power Magnetics Applications

    NASA Astrophysics Data System (ADS)

    Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.

    2018-04-01

    Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.

  6. Metal Amorphous Nanocomposite (MANC) Alloy Cores with Spatially Tuned Permeability for Advanced Power Magnetics Applications

    NASA Astrophysics Data System (ADS)

    Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.

    2018-06-01

    Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.

  7. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Pradnya, E-mail: pradnyaprb@gmail.com; Kumar, Sanjeev; Bhui, Prabhjyot

    The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperaturemore » growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.« less

  8. Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj

    2018-04-01

    The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.

  9. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less

  10. Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation

    PubMed Central

    Guo, Ruiqiang; Huang, Baoling

    2015-01-01

    Single-crystalline Si-based nanocomposites have become promising candidates for thermoelectric applications due to their prominent merits. Reducing the thermal conductivity κ without deteriorating the electrical properties is the key to improve their performance. Through non-equilibrium molecular dynamics simulations, we show that κ of single-crystalline Si-based nanocomposites can be reduced to the alloy limit by embedding various nanoinclusions of similar lattice constants but different lattice orientations or space symmetries with respect to the matrix. The surprisingly low κ is mainly due to the large acoustic phonon density of states mismatch caused by the destruction of lattice periodicity at the interfaces between the nanoinclusions and matrix, which leads to the substantial reduction of phonon group velocity and relaxation time, as well as the enhancement of phonon localization. The resulting κ is also temperature-insensitive due to the dominance of boundary scattering. The increase in thermal resistance induced by lattice structure mismatch mainly comes from the nanoinclusions and the channels between them and is caused by the enhanced boundary scattering at the interfaces parallel to the heat flux. Approaching the alloy limit of κ with potentially improved electrical properties by fillers will remarkably improve ZT of single-crystalline Si-based nanocomposites and extend their application. PMID:25851401

  11. Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites.

    PubMed

    Fan, Gao-Chao; Zhu, Hua; Shen, Qingming; Han, Li; Zhao, Ming; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-04-25

    High-efficient exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites was applied to develop an enhanced photoelectrochemical aptasensing platform with ultrahigh sensitivity, good selectivity, reproducibility and stability.

  12. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGES

    Yu, K. Y.; Fan, Z.; Chen, Y.; ...

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe 96Zr 4 nanocomposite alloy. Irradiation resulted in amorphization of Fe 2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphousmore » nanocomposites.« less

  13. Hybrid nanocomposite coatings from metal (Mg alloy)-drug deposited onto medical implant by laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir; Serbezov, Svetlin

    2013-03-01

    Drug-eluting medical implants are active implants whose function is to create healing effects. The current requirements for active medical coatings for Drug-eluting medical implants are to be biocompatible, biodegradable, polymer free, mechanically stable and enable a controlled release of one or more drugs and defined degradation. This brings hybrid nanocomposite coatings into focus especially in the field of cardiovascular implants. We studied the properties of Metal (Mg alloy)-Paclitaxel coatings obtained by novel Laser Adaptive Ablation Deposition Technique (LAAD) onto cardiovascular stents from 316 LVM stainless steel material. The morphology and topology of coatings were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Comparative measurements were made of the morphology and topology of hybrid, polymer free nanocomposite coatings deposited by LAAD and polymerdrug coatings deposited by classical spray technique. The coatings obtained by LAAD are homogeneous without damages and cracks. Metal nanoparticles with sizes from 40 nm to 230 nm were obtained in drug matrixes. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of metal nanoparticles presence in hybrid nanocomposites coatings. The new technology opens up possibilities to obtain new hybrid nanocomposite coatings with applications in medicine, pharmacy and biochemistry.

  14. Study the effect of mechanical alloying parameters on synthesis of Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayesteh, Payam, E-mail: shayesteh.payam@gmail.com; Mirdamadi, Shamseddin; Razavi, Hossein

    2014-01-01

    Graphical abstract: - Highlights: • Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite synthesized through MA. • Effect of BPR, rotating speed, milling time and PCA concentration investigated. • After annealing at 1100 °C crystalline phase were appeared. • Williamson–Hall analysis was used in order to study the grain size of nano composite. - Abstract: In this study, Cr{sub 2}Nb–20 vol.% Al{sub 2}O{sub 3} nanocomposite was prepared successfully by mechanochemical reaction between Al, Nb and Cr{sub 2}O{sub 3} powders. Amorphization of powder occurred during mechanical alloying because of high energy collisions between powders and steel balls in milling container which transfer high degreemore » of energy to powders. Therefore, annealing was needed to form crystalline phases. The influence of different mechanical alloying parameters such as BPR, rotating speed, milling time and PCA concentration on synthesis of composite material were investigated. After mechanical alloying, the powder was encapsulated in quartz and then annealed at 1100 °C for 3 h. After annealing, 3 different phases were appeared (Cr{sub 2}Nb (cubic), Cr{sub 2}Nb (hexagonal) and α-Al{sub 2}O{sub 3}). The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)« less

  15. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    PubMed

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  16. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    PubMed Central

    Marrero, Raúl; Li, Xiaochun; Choi, Hongseok

    2018-01-01

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding. PMID:29534441

  17. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  18. Synthesis and Magnetic Properties of Fe-Co-Ni/C Nanocomposites

    NASA Astrophysics Data System (ADS)

    Muratov, D. G.; Kozhitov, L. V.; Karpenkov, D. Yu.; Yakushko, E. V.; Korovin, E. Yu.; Vasil'ev, A. V.; Popkova, A. V.; Kazaryan, T. M.; Shadrinov, A. V.

    2018-03-01

    Nanoparticles of the Fe-Co-Ni ternary alloy, encapsulated in the carbon matrix of nanocomposites, have been synthesized, The structure, phase composition, and magnetic properties of the obtained materials have been determined with the help of diffractometry and magnetometry. It has been established that nanoparticles of the ternary alloy are formed due to solution of cobalt in the Fe-Ni alloy. The composition of the nanoparticles of the alloy depends on the mass percent ratio of the metas in the precursor. With growth of the iron content, nanoparticles of the ternary alloy with various composition are formed with FCC and BCC crystal lattice structure. As the synthesis temperature and relative iron content are increased, the magnetization of the Fe-Co-Ni/C nanocomposites increases from 26 to 157 A·m2/kg. The coercive force is determined by the synthesis temperature, the size of the nanoparticles, and the composition of the alloy, and its value varies from 330 to 43 Oe.

  19. Reactive Nanocomposites for Controllable Adhesive Debonding

    DTIC Science & Technology

    2011-08-01

    technologies include shape memory alloy (SMA)-based approach, a chemical foaming agent (CFA) approach, and a reactive nanocomposite (RNC) approach. SMA...anofoil (a) Component 1 Thermoset Adhesive Component 2 Nano-coating (b) Figure 2. Debonding approach where (a) freestanding...J. Controlled Adhesive Debonding of RAH-66 Comanche Chines Using Shape Memory Alloys ; ARL-TR-2937; U.S. Army Research Laboratory: Aberdeen Proving

  20. Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kalaignan, G. Paruthimal; Anthuvan, J. Tennis

    2015-12-01

    Ni-W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni-W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni-W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni-W/PTFE nanocomposite coating has better corrosion resistance than the Ni-W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni-W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  1. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com; Simchi, A.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase.more » The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.« less

  2. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  3. Graphene-magnesium nanocomposite: An advanced material for aerospace application

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sarkar, Jit

    2018-02-01

    This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.

  4. Nanoparticle Addition to Enhance the Mechanical Response of Magnesium Alloys Including Nanoscale Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    In this study, various magnesium alloy nanocomposites derived from AZ (Aluminium-Zinc) or ZK (Zinc-Zirconium) series matrices and containing Al2O3, Si3N4, TiC or carbon nanotube (CNT) nanoparticle reinforcement (representative oxide, nitride, carbide or carbon nanoparticle reinforcement, respectively) were fabricated using solidification processing followed by hot extrusion. The main aim here was to simultaneously enhance tensile strength and ductility of each alloy using nanoparticles. The magnesium-oxygen strong affinity and magnesium-carbon weak affinity (comparison of extremes in affinity) are both well known in the context of magnesium composite processing. However, an approach to possibly quantify this affinity in magnesium nanocomposite processing is not clear. In this study accordingly, Nanoscale Electro Negative Interface Density or NENID quantifies the nanoparticle-alloy matrix interfacial area per unit volume in the magnesium alloy nanocomposite taking into consideration the electronegativity of the nanoparticle reinforcement. The beneficial (as well as comparative) effect of the nanoparticles on each alloy is discussed in this article. Regarding the mechanical performance of the nanocomposites, it is important to understand the experimentally observed nanoparticle-matrix interactions during plastic deformation (nanoscale deformation mechanisms). Little is known in this area based on direct observations for metal matrix nanocomposites. Here, relevant multiple nanoscale phenomena includes the emanation of high strain zones (HSZs) from nanoparticle surfaces.

  5. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  6. Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Madhan Kumar, A.; Fida Hassan, S.; Sorour, Ahmad A.; Paramsothy, M.; Gupta, M.

    2018-06-01

    In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.

  7. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    PubMed

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (<100 nm) and zinc oxide (ZnO) (<50 and <100 nm)] through solvent casting method. Incorporation of Ag-Cu alloy into the PLA/PEG matrix increased the glass transition temperature (Tg) significantly. The crystallinity of the nanocomposites (NCs) was significantly influenced by NP incorporation as evidenced from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The PLA nanocomposite reinforced with NPs exhibited much higher tensile strength than that of PLA/PEG blend. Melt rheology of NCs exhibited a shear-thinning behavior. The mechanical property drastically reduced with a loading of NPs, which is associated with degradation of PLA. SEM micrographs exhibited that both Ag-Cu alloy and ZnO NPs were dispersed well in the PLA film matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development of a flexible nanocomposite TiO2 film as a protective coating for bioapplications of superelastic NiTi alloys

    NASA Astrophysics Data System (ADS)

    Aun, Diego Pinheiro; Houmard, Manuel; Mermoux, Michel; Latu-Romain, Laurence; Joud, Jean-Charles; Berthomé, Gregory; Buono, Vicente Tadeu Lopes

    2016-07-01

    An experimental procedure to coat superelastic NiTi alloys with flexible TiO2 protective nanocomposite films using sol-gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO2 at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.

  9. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  10. Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications

    PubMed Central

    Jurczyk, Karolina; Miklaszewski, Andrzej; Jurczyk, Mieczyslawa U.; Jurczyk, Mieczyslaw

    2015-01-01

    Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10) composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering. PMID:28793695

  11. Magnetic Hysteresis in Nanocomposite Films Consisting of a Ferromagnetic AuCo Alloy and Ultrafine Co Particles

    PubMed Central

    Chinni, Federico; Spizzo, Federico; Montoncello, Federico; Mattarello, Valentina; Maurizio, Chiara; Mattei, Giovanni; Del Bianco, Lucia

    2017-01-01

    One fundamental requirement in the search for novel magnetic materials is the possibility of predicting and controlling their magnetic anisotropy and hence the overall hysteretic behavior. We have studied the magnetism of Au:Co films (~30 nm thick) with concentration ratios of 2:1, 1:1, and 1:2, grown by magnetron sputtering co-deposition on natively oxidized Si substrates. They consist of a AuCo ferromagnetic alloy in which segregated ultrafine Co particles are dispersed (the fractions of Co in the AuCo alloy and of segregated Co increase with decreasing the Au:Co ratio). We have observed an unexpected hysteretic behavior characterized by in-plane anisotropy and crossed branches in the loops measured along the hard magnetization direction. To elucidate this phenomenon, micromagnetic calculations have been performed for a simplified system composed of two exchange-coupled phases: a AuCo matrix surrounding a Co cluster, which represents an aggregate of particles. The hysteretic features are qualitatively well reproduced provided that the two phases have almost orthogonal anisotropy axes. This requirement can be plausibly fulfilled assuming a dominant magnetoelastic character of the anisotropy in both phases. The achieved conclusions expand the fundamental knowledge on nanocomposite magnetic materials, offering general guidelines for tuning the hysteretic properties of future engineered systems. PMID:28773075

  12. Ferromagnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Mazaleyrat, F.; Varga, L. K.

    2000-06-01

    A survey of magnetic nanocomposites applicable in high-frequency signal and power electronics is given. First, the preparation and properties of ribbon and powder cores from the nanocrystalline "bulk" alloys (Finemet and Nanoperm) is reviewed. A technology is presented to apply continuously a large stress during the annealing and winding of the rapidly quenched ribbons in order to induce uniaxial anisotropy in it. The obtained toroidal cores with flat hysteresis curve are applicable up to 1 MHz with considerable permeability (˜250). The powder cores prepared from ground Finemet with powder size of 30-400 μm are applicable up to 1 MHz and in some cases up to 10 MHz for smaller powder sizes with low permeability (˜10). Finally, the most common methods used for the preparation of metallic nano-particle s are presented. Presently, the compacts prepared from nano-size (40-80 nm) iron powders do not show the expected behavior. It is anticipated that the iron-based ferromagnetic nanocomposites should replace partly the ferrite-type materials in the forthcoming years.

  13. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharzadeh, H.; Kim, H.S.; Simchi, A., E-mail: simchi@sharif.edu

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometricmore » alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.« less

  14. Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Jie; Yan, Hong

    2018-06-01

    A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.

  15. Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Jie; Yan, Hong

    2018-03-01

    A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.

  16. Electromagnetic wave absorbing properties and hyperfine interactions of Fe—Cu—Nb—Si—B nanocomposites

    NASA Astrophysics Data System (ADS)

    Han, Man-Gui; Guo, Wei; Wu, Yan-Hui; Liu, Min; Magundappa, L. Hadimani

    2014-08-01

    The Fe—Cu—Nb—Si—B alloy nanocomposite containing two ferromagnetic phases (amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy (HR-TEM) images show the coexistence of these two phases. It is found that Fe—Si nanograins are surrounded by the retained amorphous ferromagnetic phase. Mössbauer spectroscopy measurements show that the nanophase is the D03-type Fe—Si phase, which is employed to find the atomic fractions of resonant 57Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe—Cu—Nb—Si—B nanocomposite are measured in the frequency range of 0.5 GHz-10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than -10 dB in a frequency band of 1.93 GHz-3.20 GHz.

  17. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.

    PubMed

    Ji, Liwen; Zhou, Weidong; Chabot, Victor; Yu, Aiping; Xiao, Xingcheng

    2015-11-11

    Reduced graphene oxides loaded with tin-antimony alloy (RGO-SnSb) nanocomposites were synthesized through a hydrothermal reaction and the subsequent thermal reduction treatments. Transmission electron microscope images confirm that SnSb nanoparticles with an average size of about 20-30 nm are uniformly dispersed on the RGO surfaces. When they were used as anodes for rechargeable sodium (Na)-ion batteries, these as-synthesized RGO-SnSb nanocomposite anodes delivered a high initial reversible capacity of 407 mAh g(-1), stable cyclic retention for more than 80 cycles and excellent cycle stability at ultra high charge/discharge rates up to 30C. The significantly improved performance of the synthesized RGO-SnSb nanocomposites as Na-ion battery anodes can be attributed to the synergetic effects of RGO-based flexible framework and the nanoscale dimension of the SnSb alloy particles (<30 nm). Nanosized intermetallic SnSb compounds can exhibit improved structural stability and conductivity during charge and discharge reactions compared to the corresponding individuals (Sn and Sb particles). In the meantime, RGO sheets can tightly anchor SnSb alloy particles on the surfaces, which can not only effectively suppress the agglomeration of SnSb particles but also maintain excellent electronic conduction. Furthermore, the mechanical flexibility of the RGO phase can accommodate the volume expansion and contraction of SnSb particles during the prolonged cycling, therefore, improve the electrode integrity mechanically and electronically. All of these contribute to the electrochemical performance improvements of the RGO-SnSb nanocomposite-based electrodes in rechargeable Na-ion batteries.

  18. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  19. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    NASA Astrophysics Data System (ADS)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  20. Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting.

    PubMed

    Kannan, C; Ramanujam, R

    2017-07-01

    In this research work, a comparative evaluation on the mechanical and microstructural characteristics of aluminium based single and hybrid reinforced nanocomposites was carried out. The manufacture of a single reinforced nanocomposite was conducted with the distribution of 2 wt.% nano alumina particles (avg. particle size 30-50 nm) in the molten aluminium alloy of grade AA 7075; while the hybrid reinforced nanocomposites were produced with of 4 wt.% silicon carbide (avg. particle size 5-10 µm) and 2 wt.%, 4 wt.% nano alumina particles. Three numbers of single reinforced nanocomposites were manufactured through stir casting with reinforcements preheated to different temperatures viz. 400 °C, 500 °C, and 600 °C. The stir cast procedure was extended to fabricate two hybrid reinforced nanocomposites with reinforcements preheated to 500 °C prior to their inclusion. A single reinforced nanocomposite was also developed by squeeze casting with a pressure of 101 MPa. Mechanical and physical properties such as density, hardness, ultimate tensile strength, and impact strength were evaluated on all the developed composites. The microstructural observation was carried out using optical and scanning electron microscopy. On comparison with base alloy, an improvement of 63.7% and 81.1% in brinell hardness was observed for single and hybrid reinforced nanocomposites respectively. About 16% higher ultimate tensile strength was noticed with the squeeze cast single reinforced nanocomposite over the stir cast.

  1. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  2. Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S; DeGeorge, V; Ohodnicki, PR

    2014-05-07

    Soft magnetic nanocomposites variants of FeCo-based (HTX002) alloys (Fe65Co35)(81+x)B12Nb4-xSi2Cu1, exhibiting high inductions (up to 1.9 T), low losses, and high temperature stability are studied for high frequency inductors and current sensors. For alloys with x 0, 1, 1.5, 2, and 3, we report field induced anisotropy, K-U, after annealing at temperatures of 340-450 degrees C for 1 h in a 2 T transverse magnetic field. The anisotropy field, H-K, measured by AC permeametry on toroidal cores, and by first order reversal curves on square sections of ribbon, decreases with annealing temperature and saturates at high annealing temperatures suggesting a nanostructuremore » related anisotropy mechanism in which the amorphous phase exhibits a higher H-K than the crystalline phase. A high saturation induction nanocrystalline phase and high H-K amorphous phase were achieved by low temperature annealing resulting in a value of K-U exceeding 14 X 10(3) erg/cm(3), more than twice that reported previously for Fe-rich amorphous and nanocomposite alloys. (C) 2014 AIP Publishing LLC.« less

  3. Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review

    PubMed Central

    Saheb, Nouari; Qadir, Najam Ul; Siddiqui, Muhammad Usama; Arif, Abul Fazl Muhammad; Akhtar, Syed Sohail; Al-Aqeeli, Nasser

    2014-01-01

    Metal and ceramic matrix composites have been developed to enhance the stiffness and strength of metals and alloys, and improve the toughness of monolithic ceramics, respectively. It is possible to further improve their properties by using nanoreinforcement, which led to the development of metal and ceramic matrix nanocomposites, in which case, the dimension of the reinforcement is on the order of nanometer, typically less than 100 nm. However, in many cases, the properties measured experimentally remain far from those estimated theoretically. This is mainly due to the fact that the properties of nanocomposites depend not only on the properties of the individual constituents, i.e., the matrix and reinforcement as well as the interface between them, but also on the extent of nanoreinforcement dispersion. Therefore, obtaining a uniform dispersion of the nanoreinforcement in the matrix remains a key issue in the development of nanocomposites with the desired properties. The issue of nanoreinforcement dispersion was not fully addressed in review papers dedicated to processing, characterization, and properties of inorganic nanocomposites. In addition, characterization of nanoparticles dispersion, reported in literature, remains largely qualitative. The objective of this review is to provide a comprehensive description of characterization techniques used to evaluate the extent of nanoreinforcement dispersion in inorganic nanocomposites and critically review published work. Moreover, methodologies and techniques used to characterize reinforcement dispersion in conventional composites, which may be used for quantitative characterization of nanoreinforcement dispersion in nanocomposites, is also presented. PMID:28788670

  4. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries.

    PubMed

    Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J

    2014-02-12

    Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.

  5. The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys.

    PubMed

    Ren, Kezhi; Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke

    2017-04-01

    We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

  6. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301

  7. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using

  8. Computational alloy design of (Co1-xNix)88Zr7B4Cu1 nanocomposite soft magnets

    NASA Astrophysics Data System (ADS)

    Dong, B.; Healy, J.; Lan, S.; Daniil, M.; Willard, M. A.

    2018-05-01

    The dependence of coercivity on composition is an important factor for establishing optimized soft magnetic properties. In this study, we have used the random anisotropy and coherent rotation models to estimate the variation of coercivity with composition in (Co1-xNix)88Zr7B4Cu1 nanocomposite alloys. Our calculations that the magnetoelastic anisotropy contribution to coercivity dominates for Ni rich compositions (x > 0.5). A small range of compositions (0.65 < x < 0.75) is predicted to result in low values of coercivity (<10 A/m). To validate this prediction, (Co1-xNix)88Zr7B4Cu1 nanocomposites in this range were prepared by melt spinning followed by 3600 s isothermal annealing at the primary crystallization peak temperature (˜673 K). Hysteresis loops were measured using vibrating sample magnetometry at room temperature and saturation magnetostriction was measured using a strain gage based magnetostrictometer. Moderately small coercivities (30-40 A/m) and magnetostrictions (3-4 ppm) were measured at for samples with 0.685 < x < 0.725. Our measured coercivity had a minimum value of 32 A/m at x = 0.725, a shift in composition of about 5 at% in the direction of higher Ni content and without the anticipated low value of coercivity. Several reasons for the inaccuracy of this approach are described, including: ignored contributions from amorphous phase (especially in magnetoealstic anisotropy), composition segregation during crystallization leading to unpredictable compositional shifts in prediction, and the general observation that the predictability of minimum coercivity from minimal combined anisotropies has unexplained deviation even in far less complicated materials.

  9. Metal-Semiconductor Nanocomposites for High Efficiency Thermoelectric Power Generation

    DTIC Science & Technology

    2013-12-07

    standard III–V compound semiconductor processing techniques with terbium- doped InGaAs of high terbium concentration, Journal of Vacuum Science...even lower the required temperature for strong covalent bonding. We performed the oxide bonding for this substrate transfer task (see Figure 16 for...appropriate controls for assessing ErSb:InGaSb and other nanocomposites of p-type III-V compound semiconductors and their alloys. UCSC group calculated

  10. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    NASA Astrophysics Data System (ADS)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  11. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100

  12. Thermoelectric-figure-of-merit enhancement of silicon-germanium through nanocomposite concept

    NASA Astrophysics Data System (ADS)

    Wang, Dezhi

    SiGe alloy has been the thermoelectric material element of RTGs (Radioisotope thermoelectric power generators) for more than 20 years because of its good performance at high temperature. It also has a very high potential application in converting exhaust heat into useful electricity, which currently attracts a lot of research interest in the automotive industry where 40% of the energy was rejected as exhaust heat. However, its low conversion efficiency (8%) is a major concern although it is the best in practice. A new concept, namely Si-Ge nanocomposite, was proposed to enhance thermoelectric figure-of-merit. Fast heating pressure sintering was found to be an appropriate synthesizing method and a lab-made direct current-induced hot press system was established. It can reach l200°C within several minutes and many parameters can be controlled. The uniquely designed graphite die assembly can stand l60MPa pressure which is better than the best commercial products (127MPa). Numerous Si-Ge nanocomposite samples were pressed using our DC hot press. Fully dense n-type Si-Ge nanocomposite samples of nanoSi80nanoGe20P were finally obtained. The nanocomposite structure was characterized via XRD, SEM, EDS, and TEM. The proposed nanocomposite structure, dots in a matrix, was observed. Most importantly, the thermoelectric property measurements showed that the Si-Ge nanocomposite of n-type nanoSi80nanoGe20 possessed higher electrical conductivity but lower thermal conductivity, thus a higher ZT than that of n-type nanoSi80microGe20. This result proved that thermoelectric-figure-of-merit enhancement through the nanocomposite concept was the right direction.

  13. Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam

    2017-06-01

    In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.

  14. Potentiodynamic studies of Ni-P-TiO{sub 2} nano-composited coating on the mild steel deposited by electroless plating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in

    2016-05-06

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent,more » lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.« less

  15. Carbon nanotube reinforced aluminum based nanocomposite fabricated by thermal spray forming

    NASA Astrophysics Data System (ADS)

    Laha, Tapas

    The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin beta-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous

  16. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    DOE PAGES

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; ...

    2017-07-25

    Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less

  17. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir

    Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less

  18. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    NASA Astrophysics Data System (ADS)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-11-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  19. Polyolefin nanocomposites

    DOEpatents

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  20. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  1. Synergetic Effect of Graphene and MWCNTs on Microstructure and Mechanical Properties of Cu/Ti3SiC2/C Nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaosong; Song, Tingfeng; Shao, Zhenyi; Liu, Wanxia; Zhu, Degui; Zhu, Minhao

    2017-11-01

    Multi-walled carbon nanotubes (MWCNTs) and graphenes have been taken for novel reinforcements due to their unique structure and performance. However, MWCNTs or graphenes reinforced copper matrix composites could not catch up with ideal value due to reinforcement dispersion in metal matrix, wettability to metal matrix, and composite material interface. Taking advantage of the superior properties of one-dimensional MWCNTs and two-dimensional graphenes, complementary performance and structure are constructed to create a high contact area between MWCNTs and graphenes to the Cu matrix. Mechanical alloying, hot pressing, and hot isostatic pressing techniques are used to fabricate Cu matrix self-lubricating nanocomposites. Effects of MWCNTs and graphenes on mechanical properties and microstructures of Cu/Ti3SiC2/C nanocomposites are studied. The fracture and strengthening mechanisms of Cu/Ti3SiC2/C nanocomposites are explored on the basis of structure and composition of Cu/Ti3SiC2/C nanocomposites with formation and function of interface.

  2. Electrochromic nanocomposite films

    DOEpatents

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  3. Smart Nacre-inspired Nanocomposites.

    PubMed

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Hassan, S. Fida; Paramsothy, M.; Gasem, Z. M.; Patel, F.; Gupta, M.

    2014-08-01

    Room-temperature tensile properties of AZ31 alloy have significantly been improved when reinforced with carbon nanotube via ingot metallurgy process. However, high-temperature (up to 250 °C) elongation-to-failure tensile test of the developed nanocomposite revealed a considerable softening in the AZ31 alloy matrix accompanied by an incredible ductility increment (up to 132%). Microstructural characterization of the fractured samples revealed that the dynamic recrystallization process has induced a complete recrystallization in the AZ31 alloy at a lower temperature (150 °C) followed by substantial grain growth at a higher temperature used in this study. Fractography on the fractured surfaces revealed that the room-temperature mixed brittle-ductile modes of fracture behavior of AZ31 alloy have transformed into a complete ductile mode of fracture at high temperature.

  5. Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qiufen; Huang, Ying; Miao, Juan; Zhao, Yang; Wang, Yan

    2012-10-01

    The nanocomposites Li2SnO3/polyaniline (Li2SnO3/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li2SnO3/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li2SnO3/PANI exhibits better cycling properties and lower initial irreversible capacities than Li2SnO3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g-1 in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li2SnO3/PANI is 563 mAh g-1 while it is 687.5 mAh g-1 to Li2SnO3. The capacity retained of Li2SnO3/PANI (569.2 mAh g-1) is higher than that of Li2SnO3 (510.2 mAh g-1) after 50 cycles. The PANI in the Li2SnO3/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.

  6. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    NASA Astrophysics Data System (ADS)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  7. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2015-12-01

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime

  8. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  9. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  10. Study of distribution of Carbon nanotube in Al-CNT nanocomposite synthesized via Spark-Plasma sintering

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Laha, T.

    2018-03-01

    In the present study, first ever attempt has been made to develop physically functionalized multiwalled carbon nanotube (MWCNT) reinforced Al-11 5Si alloy nanocomposites synthesized via novel consolidation technique viz spark plasma sintering (SPS). There is a recent trend in employing carbon nanotubes (CNTs), an allotrope of carbon, as reinforcement for high strength structural metallic composite materials, as these cylindrical nano-fibers poses extremely unique mechanical properties such as very high elastic modulus (~ 300 GPa to 1.5 TPa) as well as tensile strength (~150 GPa). However, it has remained as an ever-existing problem to achieve a porosity-free nanocrystalline matrix with homogenously dispersed CNTs, owing to the very high coagulation tendency of CNTs. The gas-atomized, spherical Al-11.5Si alloy powders (1-8 μm) were subjected to high energy ball milling for the purpose of achieving nanocrystallinity in the powders. The improvement in MWCNT dispersion was effort by treating the MWCNTs with a physical surfactant, sodium dodecyl sulfate (SDS). The nano-grained ball-milled Al-Si powders with varying MWCNT content (0.5 and 1 wt%) were consolidated via spark plasma sintering in order to retain the nano-sized grains in the Al-Si matrix, attributed to the faster and highly effective sintering kinetics of the sintering techniques. FESEM study shows problem of MWCNT agglomeration persists by addition of non-SDS treated as pristine MWCNT in the composite. After treated with SDS, MWCNTs are well separated out from each other and as a result of that good morphological and mechanical property such as high hardness value obtained after analysis. Detailed TEM study of the 0.5wt% MWCNT reinforced SPS nanocomposite revealed that the distribution of CNTs in the matrix. Mechanical analysis study of the nanocomposite attributes higher hardness in case of SDS treated CNT reinforced nanocomposite owing to less agglomeration problem of the CNT in the matrix. Nano

  11. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.

    PubMed

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2016-01-07

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (∼2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s(-1), with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.

  12. Update on dental nanocomposites.

    PubMed

    Chen, M-H

    2010-06-01

    Dental resin-composites are comprised of a photo-polymerizable organic resin matrix and mixed with silane-treated reinforcing inorganic fillers. In the development of the composites, the three main components can be modified: the inorganic fillers, the organic resin matrix, and the silane coupling agents. The aim of this article is to review recent studies of the development of dental nanocomposites and their clinical applications. In nanocomposites, nanofillers are added and distributed in a dispersed form or as clusters. For increasing the mineral content of the tooth, calcium and phosphate ion-releasing composites and fluoride-releasing nanocomposites were developed by the addition of DCPA-whiskers or TTCP-whiskers or by the use of calcium fluoride or kaolinite. For enhancing mechanical properties, nanocomposites reinforced with nanofibers or nanoparticles were investigated. For reducing polymerization shrinkage, investigators modified the resin matrix by using methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores or epoxy-resin-based nanocomposites. The effects of silanization were also studied. Clinical consideration of light-curing modes and mechanical properties of nanocomposites, especially strength durability after immersion, was also addressed.

  13. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability.

    PubMed

    Liu, Xiangmei; Man, H C

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  15. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications

    NASA Technical Reports Server (NTRS)

    Tan, Seng

    2012-01-01

    Microcellular nanocomposite foams and sandwich structures have been created to have excellent electrical conductivity and radiation-resistant properties using a new method that does not involve or release any toxicity. The nanocomposite structures have been scaled up in size to 12 X 12 in. (30 X 30 cm) for components fabrication. These sandwich materials were fabricated mainly from PE, CNF, and carbon fibers. Test results indicate that they have very good compression and compression-after-impact properties, excellent electrical conductivity, and superior space environment durability. Compression tests show that 1000 ESH (equivalent Sun hours) of UV exposure has no effect on the structural properties of the sandwich structures. The structures are considerably lighter than aluminum alloy (= 36 percent lighter), which translates to 36 percent weight savings of the electronic enclosure and its housing. The good mechanical properties of the materials may enable the electronic housing to be fabricated with a thinner structure that further reduces the weight. There was no difficulty in machining the sandwich specimens into electronic enclosure housing.

  16. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  17. Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite

    NASA Astrophysics Data System (ADS)

    Rahmanifard, Roohollah; Farhangi, Hasan; Novinrooz, Abdul Javad; Moniri, Samira

    2013-02-01

    This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.

  18. Electrodeposition of r-GO/SiC nano-composites on Magnesium and its Corrosion Behavior in Aqueous Electrolyte

    NASA Astrophysics Data System (ADS)

    Kavimani, V.; K, Soorya Prakash; R, Rajesh; Rammasamy, Devaraj; Selvaraj, Nivas Babu; Yang, Tao; Prabakaran, Balasubramanian; Jothi, Sathiskumar

    2017-12-01

    In this paper a detailed investigation for corrosion behavior of magnesium substrate electrodeposited differently by nanoparticles like Reduced Graphene Oxide (r-GO synthesized through Modified Hummer's Method), Silicon Carbide (SiCsbnd mechanically alloyed) and also r-GO/SiC nanocomposites (dispersed through ultrasonication process) as coating materials for varying time period was done. Synthesized nanocomposite was characterized through various physio-chemical techniques and confirmation of the same was carried out. Surface morphology of the developed set of specimens was scrutinized through SEM and EDAX which establishes a clean surface coating with minimal defects attainment through electro deposition technique. Electrochemical corrosion behavior for the magnesium substrates coated with r-GO, SiC, r-GO/SiC for 5 and 10 min coating time period was conceded over in 0.1 M of NaCl and Na2SO4 aqueous solution using Tafel polarization and then compared with a pure magnesium substrate. r-GO/SiC nanocomposite coated magnesium substrate showcased a drastic breakthrough in corrosion resistance when compared with other set of specimens in aqueous medium. Delamination behavior for the same set of specimens was carried and the r-GO/SiC nanocomposite coated magnesium exposed a minimum delamination area accounting to the hydrophobic property of graphene and the binding effect of SiC nano particles.

  19. Graphene-Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy.

    PubMed

    Boucherif, Abderrahim Rahim; Boucherif, Abderraouf; Kolhatkar, Gitanjali; Ruediger, Andreas; Arès, Richard

    2017-05-01

    The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene-porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect-free new epitaxial semiconductor alloys and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nedil, M.; Habib, M. A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F.

    2013-08-01

    This letter describes the fabrication and characterization of a fluidic patch antenna operating at the S-band frequency (4 GHz). The antenna prototype is composed of a nanocomposite material made by a liquid metal alloy (eutectic gallium indium) blended with single-wall carbon-nanotube (SWNTs). The nanocomposite is then enclosed in a polymeric substrate by employing the UV-assisted direct-writing technology. The fluidic antennas specimens feature excellent performances, in perfect agreement with simulations, showing an increase in the electrical conductivity and reflection coefficient with respect to the SWNTs concentration. The effect of the SWNTs on the long-term stability of antenna's mechanical properties is also demonstrated.

  1. Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applications

    NASA Astrophysics Data System (ADS)

    Chiguma, Jasper

    The design, fabrication and measurement of electrical and thermal properties of polymers loaded with nanotubes and fibers are the foci of the work presented in this dissertation. The resulting products of blending polymers with nanomaterials are called nanocomposites and are already finding applications in many areas of human endeavour. Among some of the most recent envisioned applications of nanocomposites is in electronic devices as thermal interface materials (TIMs). This potential application as TIMs, has been made more real by the realization that carbon nanotubes, could potentially transfer their high electrical, thermal and mechanical properties to polymers in the nanocomposites. In Chapter 1, the events leading to the discovery of carbon nanotubes are reviewed followed by an elaborate discussion of their structure and properties. The discussion of the structure and properties of carbon nanotubes help in understanding the envisaged applications. Chapter 2 focuses on the fabrication of insulating polymer nanocomposites, their electrical and mechanical properties. Poly (methyl methacrylate) (PMMA) and a polyimide formed by reacting pyromellitic dianhydride (PMDA) and 4, 4'-oxydianiline (ODA) (PMDA-ODA) nanocomposites with carbon nanotubes were prepared by in-situ polymerization. Poly (1-methyl-4-pentene) (TPX), Polycarbonate (PC), Poly (vinyl chloride) (PVC), Poly (acrylonitrile-butadiene-styrene) (ABS), the alloys ABS-PC, ABS-PVC, and ABS-PC-PVC nanocomposites were prepared from the respective polymers and carbon nanotubes and their mechanical and electrical properties measured. Chapter 3 covers the nanocomposites that were prepared by the in-situ polymerization of the conducting polymers Polyaniline (PANi), Polypyrrole (PPy) and Poly (3, 4-ethylenedioxythiophene) (PEDOT) by in-situ polymerization. These are evaluated for electrical conductivity. The use of surfactants in facilitating carbon nanotube dispersion is discussed and applied in the preparation of

  2. Dynamic piezoresistive response of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  3. Thermoelectric Transport in Nanocomposites.

    PubMed

    Liu, Bin; Hu, Jizhu; Zhou, Jun; Yang, Ronggui

    2017-04-15

    Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit ( ZT ). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT . Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the electronic performance due to manipulation of electron scattering and band structures. In this review, we summarize the latest progress in both theoretical and experimental works in the field of nanocomposite thermoelectric materials. In particular, we present various models of both phonon transport and electron transport in various nanocomposites established in the last few years. The phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation, etc., in nanocomposites are discussed.

  4. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process.

    PubMed

    Xuan, Yang; Nastac, Laurentiu

    2018-02-01

    Recent studies showed that the microstructure and mechanical properties of aluminum based nanocomposites can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because ultrasonic cavitation processing plays an important role not only in degassing and dispersion of the nanoparticles, but also in breaking up the dendritic grains and refining the as-cast microstructure. In the present study, A356 alloy and Al 2 O 3 nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles were added into the molten A356 alloy and dispersed via ultrasonic cavitation processing. Ultrasonic cavitation was applied over various temperature ranges during molten alloy cooling and solidification to investigate the grain structure formation and the nanoparticle dispersion behavior. Optical Microscopy and Scanning Electron Microscopy were used to investigate in detail the differences in the microstructure characteristics and the nanoparticle distribution. Experimental results indicated that the ultrasonic cavitation processing and Al 2 O 3 nanoparticles play an important role for microstructure refinement. In addition, it was shown in this study that the Al 2 O 3 nanoparticles modified the eutectic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  6. Thermoelectric Transport in Nanocomposites

    PubMed Central

    Liu, Bin; Hu, Jizhu; Zhou, Jun; Yang, Ronggui

    2017-01-01

    Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT. Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the electronic performance due to manipulation of electron scattering and band structures. In this review, we summarize the latest progress in both theoretical and experimental works in the field of nanocomposite thermoelectric materials. In particular, we present various models of both phonon transport and electron transport in various nanocomposites established in the last few years. The phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation, etc., in nanocomposites are discussed. PMID:28772777

  7. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  8. Experimental analysis of graphene nanocomposite on Kevlar

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  9. The Use of In Situ X-ray Imaging Methods in the Research and Development of Magnesium-Based Grain-Refined and Nanocomposite Materials

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.; Casari, D.; Mirihanage, W. U.; Terzi, S.; Mathiesen, R. H.; Salvo, L.; Daudin, R.; Lhuissier, P.; Guo, E.; Lee, P. D.

    2016-12-01

    Metallurgists have an ever-increasing suite of analytical techniques at their disposition. Among these techniques are the in situ methods, being those approaches that are designed to actually study events that occur in the material during for instance solidification, (thermo)-mechanical working or heat treatment. As such they are a powerful tool in unraveling the mechanisms behind these processes, supplementary to ex situ methods that instead analyze the materials before and after their processing. In this paper, case studies are presented of how in situ imaging methods—and more specifically micro-focus x-ray radiography and synchrotron x-ray tomography—are used in the research and development of magnesium-based grain-refined and nanocomposite materials. These results are drawn from the EC collaborative research project ExoMet (www.exomet-project.eu). The first example concerns the solidification of a Mg-Nd-Gd alloy with Zr addition to assess the role of zirconium content and cooling rate in crystal nucleation and growth. The second example concerns the solidification of a Mg-Zn-Al alloy and its SiC-containing nanocomposite material to reveal the influence of particle addition on microstructural development. The third example concerns the (partial) melting-solidification of Elektron21/AlN and Elektron21/Y2O3 nanocomposite materials to study such effects as particle pushing/engulfment and agglomeration during repeated processing. Such studies firstly visualize and by that confirm what is known or assumed. Secondly, they advance science by monitoring and quantifying phenomena as they evolve during processing and by that contribute toward a better understanding of the physics at play.

  10. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less

  11. Melt rheological properties of nucleated PET/MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.

    2018-05-01

    This work investigates the effect of precipitated Polyethylene Terephthalate (p-PET) and loading of Multiwalled carbon nanotubes (MWCNT) on morphology and rheology of Polyethylene Terephthalate (PET)/MWCNT nanocomposites. As received PET and Self-Nucleated PET (Nuc-PET) nanocomposites with different loadings of multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing technique. Synthesized reorganized PET crystallizes rapidly from the melt and it is used in small quantities as a self-nucleating agent to make Nuc-PET. In the present study, Rheological properties of nanocomposites are obtained and results show with increase in MWCNT loading complex viscosity of nanocomposites increases. Nonterminal solid like rheological behavior of PET nanocomposites were observed at low frequencies, which indicates the formation of the network like structures of MWCNT in nanocomposites. Morphological and rheological properties of self-nucleated PET nanocomposites improved significantly may be due to self-nucleating agent p-PET. Morphological properties were studied by Scanning Electron Microscopy (SEM). SEM shows better dispersion of MWCNT in Nuc-PET nanocomposites.

  12. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  13. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility.

    PubMed

    Park, Min-Gu; Lee, Dong-Hun; Jung, Heechul; Choi, Jeong-Hee; Park, Cheol-Min

    2018-03-27

    To design an easily manufactured, large energy density, highly reversible, and fast rate-capable Li-ion battery (LIB) anode, Co-Sn intermetallics (CoSn 2 , CoSn, and Co 3 Sn 2 ) were synthesized, and their potential as anode materials for LIBs was investigated. Based on their electrochemical performances, CoSn 2 was selected, and its C-modified nanocomposite (CoSn 2 /C) as well as Ti- and C-modified nanocomposite (CoSn 2 / a-TiC/C) was straightforwardly prepared. Interestingly, the CoSn 2 , CoSn 2 /C, and CoSn 2 / a-TiC/C showed conversion/nonrecombination, conversion/partial recombination, and conversion/full recombination during Li insertion/extraction, respectively, which were thoroughly investigated using ex situ X-ray diffraction and extended X-ray absorption fine structure analyses. As a result of the interesting conversion/full recombination mechanism, the easily manufactured CoSn 2 / a-TiC/C nanocomposite for the Sn-based Li-ion battery anode showed large energy density (first reversible capacity of 1399 mAh cm -3 ), high reversibility (first Coulombic efficiency of 83.2%), long cycling behavior (100% capacity retention after 180 cycles), and fast rate capability (appoximately 1110 mAh cm -3 at 3 C rate). In addition, degradation/enhancement mechanisms for high-capacity and high-performance Li-alloy-based anode materials for next-generation LIBs were also suggested.

  14. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  15. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  16. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    PubMed Central

    Cai, Chuan; Wang, Ying

    2009-01-01

    Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  17. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  18. Magnetic properties and crystallization kinetics of (Fe 100–xNi x) 80Nb 4Si 2B 14 metal amorphous nanocomposites

    DOE PAGES

    Aronhime, Natan; Zoghlin, Eli; Keylin, Vladimir; ...

    2017-09-26

    Fe-Ni based metal amorphous nanocomposites (MANCs) are investigated in the pseudo-binary alloys (Fe 100–xNi x) 80Nb 4Si 2B 14. To optimize the soft magnetic properties of the nanocomposites, primary and secondary crystallization kinetics must be understood. As such, primary and secondary crystallization temperatures are determined by differential scanning calorimetry, and activation energies are calculated, along with the resulting crystalline phases. Time-temperature-transformation diagrams for primary and secondary crystallization in (Fe 70Ni 30) 80Nb 4Si 2B 14 are presented. Saturation magnetization and Curie temperature are determined. In conclusion, the shape of magnetization vs. time curves for (Fe 30Ni 70) 80Nb 4Si 2Bmore » 14 at various temperatures suggest that the secondary crystal product often consumes some of the primary crystalline product.« less

  19. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  20. Low temperature texture development in Nd2Fe14B/α-Fe nanocomposite magnets via equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Besley, L.; Garitaonandia, J. S.; Molotnikov, A.; Kishimoto, H.; Kato, A.; Davies, C.; Suzuki, K.

    2018-05-01

    While suitable texture has been developed in Nd2Fe14B/α-Fe nanocomposites via thermomechanical processing methods such as die upsetting by incorporating low melting point eutectic Nd-Cu additives, significant grain coarsening occurs during this process due to the high temperature and long timescales involved, resulting in a loss of exchange coupling. Equal channel angular pressing (ECAP) is a severe plastic deformation technique which has been successfully used to produce a suitable texture in single-phase Nd2Fe14B at temperatures on the order of 500°C while preserving grain sizes on the order of 20-30nm. We investigate the development of texture in a commercial Nd2Fe14B/α-Fe nanocomposite alloy with added Nd90Cu10 produced via ECAP and then characterise it using texture x-ray diffraction and magnetic measurements. It is found that initial texture can be developed in this nanocomposite system at T = 520°C via ECAP. The average grain size of Nd2Fe14B as measured via X-ray diffraction after ECAP remains below 50nm with a developed texture. The effect of varying the amount of Nd90Cu10 additive is also investigated. It is found that with decreasing Nd90Cu10, the degree of texture is reduced while the volume fraction of α-Fe increases. This work demonstrates the development of texture in nanocomposite Nd2Fe14B/α-Fe with Nd-Cu additives whilst maintaining a grain size of approximately 50nm.

  1. Wear behaviour and morphology of stir cast aluminium/SiC nanocomposites

    NASA Astrophysics Data System (ADS)

    Tanwir Alam, Md; Arif, Sajjad; Husain Ansari, Akhter

    2018-04-01

    Wear and friction play a vital role in the service life of components. Aluminium matrix nanocomposites possess tremendous potential for a number of applications in addition to their present uses. It is valuable to the field of newer materials for better performance in tribological applications. In this work, dry sliding wear, friction coefficient and morphology of aluminium alloy (A356) reinforced with silicon carbide nanoparticles (SiCn) were investigated. A356/SiCn nanocomposites (AMNCs) containing 1–5 weight percentage of SiCn were prepared through two-step stir casting process via mechanical ball milling. The wear test was conducted on pin-on-disc test apparatus. Regression analysis was performed to develop mathematical functions to fit the experimental data points. Morphological studies of Al and SiCn as-received, wear debris and worn surfaces were further analysed by SEM along with EDS. The occurrence of oxide layers was observed on worn surfaces. Iron trace was identified by wear debris. It was found that the wear loss and friction coefficient were strongly influenced by mechanical milling and SiCn content. The results exhibited that the friction coefficient reduces with the addition of SiCn as well as with the increase in load. However, wear resistance increases as the reinforcement content increases because of the embedding and wettability effects.

  2. Zn(2+) release behavior and surface characteristics of Zn/LDPE nanocomposites and ZnO/LDPE nanocomposites in simulated uterine solution.

    PubMed

    Yang, Zhihong; Xie, Changsheng; Xia, Xianping; Cai, Shuizhou

    2008-11-01

    To decrease the side effects of the existing copper-bearing intrauterine devices, the zinc/low-density polyethylene (Zn/LDPE) nanocomposite and zinc-oxide/low-density polyethylene (ZnO/LDPE) nanocomposite have been developed in our research for intrauterine devices (IUDs). In this study, the influences of preparation methods of nanocomposites and particle sizes of zinc and zinc oxide on Zn(2+) release from composites incubated in simulated uterine solution were investigated. All release profiles are biphasic: an initial rapid release phase is followed by a near zero-order release period. Zn(2+) release rates of nanocomposites prepared by compressing moulding are higher than those of the nanocomposites prepared by hot-melt extrusing. Compared with Zn(2+) release from the microcomposites, the release profiles of the nanocomposites exhibit a sharp decrease in Zn(2+) release rate in the first 18 days, an early onset of the zero-order release period and a high release rate of Zn(2+) at the later stage. The microstructure of the Zn/LDPE sample and the ZnO/LDPE sample after being incubated for 200 days was characterized by SEM, XRD and EDX techniques. The results show that the dissolution depth of ZnO/LDPE nanocomposite is about 60 mum. Lots of pores were formed on the surface of the Zn/LDPE sample and ZnO/LDPE sample, indicating that these pores can provide channels for the dissolution of nanoparticles in the matrix. The undesirable deposits that are composed of ZnO are only detected on the surface of Zn/LDPE nanocomposite, which may increase the risk of side effects associated with IUDs. It can be expected that ZnO/LDPE nanocomposite is more suitable for IUDs than Zn/LDPE nanocomposite.

  3. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  4. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    PubMed

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  5. Load transfer of nanocomposite film on aluminum substrate.

    PubMed

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2018-01-01

    Nanocomposite films have attracted much attention in recent years. Depending on the composition of the film and fabrication method, a large range of applications has been employed for nanocomposite films. In this study, nanocomposite films reinforced with multi-walled carbon nanotubes (MWCNTs) were deposited on the aluminum substrate through hot press processing. A shear lag model and Euler beam theory were employed to evaluate the stress distribution and load carrying capability of the nanocomposite film subjected to tensile load and bending moment. The influence of MWCNT on the Young's modulus and load carrying capability of the nanocomposite film was investigated through a parametric study. The theoretical predictions were verified by comparison with experimental tests. A close agreement with difference less than 6% was achieved between the theoretical prediction and experimental measurements. The Young's modulus and load transfer of the nanocomposite film reinforced with MWCNTs increases with the increase of the MWCNT loading. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 20% in both the Young's modulus and load carrying capability.

  6. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  7. Fracture behavior of polypropylene/clay nanocomposites.

    PubMed

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  8. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  9. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    NASA Astrophysics Data System (ADS)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  10. Nanocomposites: suitable alternatives as antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Matharu, Rupy Kaur; Ciric, Lena; Edirisinghe, Mohan

    2018-07-01

    The exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents. This review aims to provide a comprehensive account of various nanocomposites that elucidate promising antimicrobial activity. The composition, physical and chemical properties, as well as the antimicrobial performance of these nanocomposites, are discussed in detail.

  11. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  12. Optoperforation of Intact Plant Cells, Spectral Characterization of Alloy Disorder in InAsP Alloys, and Bimetallic Concentric Surfaces for Metal-Enhanced Fluorescence in Upconverting Nanocrystals

    NASA Astrophysics Data System (ADS)

    Merritt, Travis R.

    The techniques of optoperforation, spectral characterization of alloy disorder, and metal-enhanced uorescence were applied to previously unconsidered or disregarded systems in order to demonstrate that such applications are both feasible and consequential. These applications were the subject of three disparate works and, as such, are independently discussed. Despite being ostensibly restricted to mammalian cells, optoperforation was demonstrated in intact plant cells by means of successful femtosecond-laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into cells of vital Arabidopsis seedling stems. By monitoring the rate of dye uptake, and the reaction of both CFP-expressing vacuoles and nanocellulose substrates, the intensity and exposure time of the perforating laser were adjusted to values that both preserved cell vitality and permitted the laser-assisted uptake of the uorophore. By using these calibrated laser parameters, dye was injected and later observed in targeted cells after 72 hours, all without deleteriously affecting the vital functions of those cells. In the context of alloy disorder, photoluminescence of excitonic transitions in two InAsxP1--x alloys were studied through temperature and magnetic field strength dependencies, as well as compositionally-dependent time-resolved behavior. The spectral shape, behavior of the linewidths at high magnetic fields, and the divergence of the peak positions from band gap behavior at low temperatures indicated that alloy disorder exists in the x=0.40 composition while showing no considerable presence in the x=0.13 composition. The time-resolved photoluminescence spectrum for both compositions feature a fast and slow decay, with the slow decay lifetime in x=0.40 being longer than that of x=0.13, which may be due to carrier migration between localized exciton states in x=0.40. In order to achieve broadband metal-enhanced uorescence in upconverting NaYF4:Yb,Er nanocrystals, two nanocomposite

  13. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  14. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    NASA Astrophysics Data System (ADS)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  15. High Temperature Epoxy Nanocomposites for Aerospace Applications

    DTIC Science & Technology

    2009-06-10

    thermal stability (~430°C) can be used for formulation of next generation aerospace nanocomposite matrix materials. 10 Publications: 1. J. Langat ...Properties Evaluation of Thermally Stable Layered Organosilicate Nanocomposites, Polymers for Advanced Technology, 18, 574(2007). 3. J. Langat , M...Properties in Polymer Nanocomposites, edited by Dr. Sergei Nazarenko (MRS Fall Meeting Symposium KK Proceedings) Boston, MA 2008 (in print). 5. J. Langat

  16. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite.

    PubMed

    Bahrami, M; Fathi, M H; Ahmadian, M

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multifunctional Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  18. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  19. Controlled fabrication of luminescent and magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  20. Nanocomposites

    DTIC Science & Technology

    2013-09-10

    reduced density larger than unity indicates densification of polymer nanocomposites. Fullerene (C60) has a 0.76 nm diameter, which is hypothesized to be...found a definite particle size dependent density and tensile modulus. The effect is subtle, yet, quite robust as various systems, inorganic or

  1. Preparation, characterization and properties of polymer-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Fonseca, Claudia Alencar

    Nanocomposites are a relatively new class of composites, that in the polymer area typically consist of particle-filled polymers where at least one dimension of the dispersed particles is in the nanometer range. Amongst all potential nanocomposite precursors, those based on clay and layered silicates have been more widely investigated. These nanocomposites exhibit markedly improved mechanical, thermal, optical and physico-chemical properties when compared to conventional (microscale) composites. In the present work, properties of nanocomposites of Ethylene Methacrylic Acid copolymers and organically modified Montmorillonite formed from the melt was investigated. Nanocomposites of Poly(vinyl alcohol) and Montmorillonite formed from solution was also studied.

  2. Nanocrystal-polymer nanocomposite electrochromic device

    DOEpatents

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  3. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Preparation and Characterization of Guar-Montmorillonite Nanocomposites

    PubMed Central

    Mansa, Rola; Detellier, Christian

    2013-01-01

    Polymer-clay nanocomposites are highly sought-after materials, mainly due to their applicability in a variety of avenues. From the standpoint of the preparation of these nanocomposites, however, organic compatibility with clay and adherence to “green chemistry” concepts and principles can be limiting factors. As such, the objective was to prepare a biopolymer-modified clay nanocomposite using a simple and environmentally friendly method of preparation, whereby pre-treatment of the clay for organic compatibility was bypassed. Novel montmorillonite nanocomposites were prepared using neutral guar gum and cationic guar gum. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the formation of intercalated structures. A monolayer configuration of cationic guar within the interlayer space was indicated by XRD results, while treatment with neutral guar gum resulted in the observance of both monolayer and bilayer configurations. Additionally, TEM results indicated partial exfoliation. Results attributed from 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy (CP/MAS NMR) of the nanocomposites indicated peaks corresponding to the guar constituent, confirming the adsorption of the biopolymer. Inductively coupled plasma emission spectrometry (ICP-ES) results indicated the exchange of cations present in neutral guar gum with the sodium cations of montmorillonite, in the case of the neutral guar nanocomposites. PMID:28788384

  5. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  6. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  7. Synthesis of Silicon Nitride and Silicon Carbide Nanocomposites through High Energy Milling of Waste Silica Fume for Structural Applications

    NASA Astrophysics Data System (ADS)

    Suri, Jyothi

    Nanocomposites have been widely used in a multitude of applications in electronics and structural components because of their improved mechanical, electrical, and magnetic properties. Silicon nitride/Silicon carbide (Si 3N4/SiC) nanocomposites have been studied intensively for low and high temperature structural applications, such as turbine and automobile engine components, ball bearings, turbochargers, as well as energy applications due to their superior wear resistance, high temperature strength, high oxidation resistance and good creep resistance. Silica fume is the waste material produced during the manufacture of silicon and ferro-silicon alloys, and contains 94 to 97 wt.% SiO2. In the present dissertation, the feasibility of using waste silica fume as the raw material was investigated to synthesize (I) advanced nanocomposites of Si3N4/SiC, and (2) porous silicon carbide (SiC) for membrane applications. The processing approach used to convert the waste material to advanced ceramic materials was based on a novel process called, integrated mechanical and thermal activation process (IMTA) process. In the first part of the dissertation, the effect of parameters such as carbothermic nitridation and reduction temperature and the graphite concentration in the starting silica fume plus graphite mixture, were explored to synthesize nanocomposite powders with tailored amounts of Si3N4 and SiC phases. An effective way to synthesize carbon-free Si3N 4/SiC composite powders was studied to provide a clear pathway and fundamental understanding of the reaction mechanisms. Si3N4/SiC nanocomposite powders were then sintered using two different approaches, based on liquid phase sintering and spark plasma sintering processes, with Al 2O3 and Y2O3 as the sintering aids. The nanocomposites were investigated for their densification behavior, microstructure, and mechanical properties. Si3N4/SiC nanocomposites thus obtained were found to possess superior mechanical properties at much

  8. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    PubMed Central

    Siddiqui, Muhammad Usama; Arif, Abul Fazal M.

    2016-01-01

    The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites. PMID:28773817

  9. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar, E-mail: ifahmad@ksu.edu.sa; Islam, Mohammad; Dar, Mushtaq Ahmad

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~more » 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.« less

  10. Multisource Synergistic Electrocatalytic Oxidation Effect of Strongly Coupled PdM (M = Sn, Pb)/N-doped Graphene Nanocomposite on Small Organic Molecules

    PubMed Central

    Wu, Peng; Huang, Yiyin; Kang, Longtian; Wu, Maoxiang; Wang, Yaobing

    2015-01-01

    A series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm−2) of PdSn/NG is higher than the sum current density (45.63 + 47.59 mA cm−2) of Pd/NG and PdSn/G. It reveals a synergistic electrocatalytic oxidation effect in PdSn/N-doped graphene Nanocomposite. Extend experiments show this multisource synergetic catalytic effect of metal alloying and N-doped graphene support in one catalyst on small organic molecule (methanol, ethanol and Ethylene glycol) oxidation is universal in PdM(M = Sn, Pb)/NG catalysts. Further, The high dispersion of small nanoparticles, the altered electron structure and Pd(0)/Pd(II) ratio of Pd in catalysts induced by strong coupled the metal alloying and N-doped graphene are responsible for the multisource synergistic catalytic effect in PdM(M = Sn, Pb) /NG catalysts. Finally, the catalytic durability and stability are also greatly improved. PMID:26434949

  11. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.

    2018-04-01

    Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.

  12. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  13. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    PubMed Central

    Kim, Jun Young

    2009-01-01

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are highly dependent on the uniform dispersion of CNT and the interactions between the CNT and TLCP, which can be enhanced by chemical modification of the CNT, providing a design guide of CNT-reinforced TLCP nanocomposites with great potential for industrial uses.

  14. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  15. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their

  16. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    PubMed Central

    Bikiaris, Dimitrios

    2010-01-01

    In the last few years, great attention has been paid to the preparation of polypropylene (PP) nanocomposites using carbon nanotubes (CNTs) due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  17. Polymer Layered Silicate Nanocomposites: A Review

    PubMed Central

    Mittal, Vikas

    2009-01-01

    This review aims to present recent advances in the synthesis and structure characterization as well as the properties of polymer layered silicate nanocomposites. The advent of polymer layered silicate nanocomposites has revolutionized research into polymer composite materials. Nanocomposites are organic-inorganic hybrid materials in which at least one dimension of the filler is less than 100 nm. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or pre-polymers from solution, in-situ polymerization, melt intercalation etc. The nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modifications, exhibit significant improvement in the composite properties, which include enhanced mechanical strength, gas barrier, thermal stability, flame retardancy etc. Only a small amount of filler is generally required for the enhancement in the properties, which helps the composite materials retain transparency and low density.

  18. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  19. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.

    PubMed

    Zhang, Youfa; Ge, Dengteng; Yang, Shu

    2014-06-01

    A superhydrophobic aluminum alloy was prepared by one-step spray coating of an alcohol solution consisting of hydrophobic silica nanoparticles (15-40 nm) and methyl silicate precursor on etched aluminum alloy with pitted morphology. The as-sprayed metal surface showed a water contact angle of 155° and a roll-off angle of 4°. The coating was subjected to repeated mechanical tests, including high-pressure water jetting, sand particles impacting, and sandpaper shear abrasion. It remained superhydrophobic with a roll-off angle <10° up to three cycles of water jetting (25 kPa for 10 min) and sand particle impinging. After five cycles, the roll-off angle increased, but no more than 19° while the water contact angle remained greater than 150°. The superhydrophobic state was also maintained after three cycles of sandpaper abrasion. It was found that the micro-protrusion structures on the etched aluminum alloy played an important role to enhance the coating mechanical robustness, where the nanoparticles could grab on the rough surface, specifically in the groove structures, in comparison with the smooth glass substrates spray coated with the same materials. Further, we showed that the superhydrophobicity could be restored by spray a new cycle of the nanocomposite solution on the damaged surface. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    PubMed Central

    Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681

  1. Hydrogen Storage Performance in Pd/Graphene Nanocomposites.

    PubMed

    Zhou, Chunyu; Szpunar, Jerzy A

    2016-10-05

    We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).

  2. Glass transition behavior of polystyrene/silica nanocomposites.

    NASA Astrophysics Data System (ADS)

    Xie, Yuping; Sen, Sudeepto; Kumar, Sanat; Bansal, Amitabh

    2006-03-01

    The change in thermomechanical properties of nano-filled polymers is of considerable scientific and technological interest. The interaction between the nanofillers and the matrix polymer controls the nanocomposite properties. We will present the results from recent and ongoing DSC experiments on polystyrene/silica nanocomposites. Polystyrene of different molecular weights (and from different sources) and silica nanoparticles 10-15 nm in diameter (both as received from Nissan and surface modified by grafted or physisorbed polystyrene) are being used to process the nanocomposites. We are studying trends in the glass transition behavior by changing the matrix molecular weights and the silica weight fractions. Recent data indicate that the glass transition temperature can both decrease and increase depending on the polymer-nanofiller combination as well as the thermal treatment of the nanocomposites prior to the DSC runs.

  3. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  4. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite.

    PubMed

    Panáček, Aleš; Balzerová, Anna; Prucek, Robert; Ranc, Václav; Večeřová, Renata; Husičková, Vendula; Pechoušek, Jiří; Filip, Jan; Zbořil, Radek; Kvítek, Libor

    2013-10-01

    Nanocomposites consisting of diatomaceous earth particles and silver nanoparticles (silver NPs) with high antimicrobial activity were prepared and characterized. For the purpose of nanocomposite preparation, silver NPs with an average size of 28nm prepared by modified Tollens process were used. Nanocomposites were prepared using poly(diallyldimethylammonium) chloride (PDDA) as an interlayer substance between diatomite and silver NPs which enables to change diatomite original negative surface charge to positive one. Due to strong electrostatic interactions between negatively charged silver NPs and positively charged PDDA-modified diatomite, Ag/PDDA-diatomite nanocomposites with a high content of silver (as high as 46.6mgAg/1g of diatomite) were prepared. Because of minimal release of silver NPs from prepared nanocomposites to aqueous media (<0.3mg Ag/1g of nanocomposite), the developed nanocomposites are regarded as a potential useful antimicrobial material with a long-term efficiency showing no risk to human health or environment. All the prepared nanocomposites exhibit a high bactericidal activity against Gram-negative and Gram-positive bacteria and fungicidal activity against yeasts at very low concentrations as low as 0.11g/L, corresponding to silver concentration of 5mg/L. Hence, the prepared nanocomposites constitute a promising candidate suitable for the microbial water treatment in environmental applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ

  6. Scattering, absorption and transmittance of experimental graphene dental nanocomposites

    NASA Astrophysics Data System (ADS)

    Pérez, María. M.; Salas, Marianne; Moldovan, Marionara; Dudea, Diana; Yebra, Ana; Ghinea, Razvan

    2017-08-01

    Optical properties of experimental graphene dental nanocomposites were studied. Spectral reflectance was measured and S and K coefficients as well as transmittance of samples were calculated using Kubelka-Munk's equations. The spectral behavior of S, K and T experimental graphene exhibited different trends compared with the commercial nanocomposites and they were statistically different. Experimental nanocomposites show higher scattering and lower transmittance when compared with commercial nanocomposite, probably, due to the shape, type and size of the filler. K for short wavelength of the pre-polymerized experimental nancomposites was very low. According to our results, hidroxypatite with graphene oxide used in dental nanocomposites needs to be improved to reproduce esthetic properties of natural dental tissues and to have potentially clinical applications.

  7. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading

  8. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Treesearch

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  9. Effect of Nanofiller Characteristics on Nanocomposite Properties

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  10. Highly tensile-strained Ge/InAlAs nanocomposites

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.

  11. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  12. Highly tensile-strained Ge/InAlAs nanocomposites

    PubMed Central

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282

  13. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.

    PubMed

    Yoonessi, Mitra; Lebrón-Colón, Marisabel; Scheiman, Daniel; Meador, Michael A

    2014-10-08

    Surface functionalization of pretreated carbon nanotubes (CNT) using aromatic, aliphatic, and aliphatic ether diamines was performed. The pretreatment of the CNT consisted of either acid- or photo-oxidation. The acid treated CNT had a higher initial oxygen content compared to the photo-oxidized CNT and this resulted in a higher density of functionalization. X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to verify the presence of the oxygenated and amine moieties on the CNT surfaces. Epoxy/0.1 wt % CNT nanocomposites were prepared using the functionalized CNT and the bulk properties of the nanocomposites were examined. Macroscale correlations between the interfacial modification and bulk dynamic mechanical and thermal properties were observed. The amine modified epoxy/CNT nanocomposites exhibited up to a 1.9-fold improvement in storage modulus (G') below the glass transition (Tg) and up to an almost 4-fold increase above the Tg. They also exhibited a 3-10 °C increase in the glass transition temperature. The aromatic diamine surface modified epoxy/CNT nanocomposites resulted in the largest increase in shear moduli below and above the Tg and the largest increase in the Tg. Surface examination of the nanocomposites with scanning electron microscopy (SEM) revealed indications of a greater adhesion of the epoxy resin matrix to the CNT, most likely due to the covalent bonding.

  14. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  16. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites.

    PubMed

    Koskun, Yağmur; Şavk, Aysun; Şen, Betül; Şen, Fatih

    2018-06-20

    Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 μM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM -1  cm -2 . Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Development of High Strength Thermally Stable Al-based Alloys with Nanocomposite Structure

    DTIC Science & Technology

    2010-02-05

    Lin Z.G., Mezouar M ., Crichton W., Inoue A. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy // Appl...and (1.1–4.3)×1023 m -3, respectively, results in essential increasing of the microhardness (by 740–1740 MPa) in comparison with that of amorphous...crystallization event are in the ranges (0.22-0.59), (14.8–21.0) nm and (1.1–4.3)×1023 m -3, respectively. The lattice parameters of fcc Al nanocrystals have been

  18. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  19. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  20. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  1. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    PubMed Central

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  2. Polymer matrix nanocomposites for automotive structural components

    DOE PAGES

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field andmore » propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.« less

  3. Polymer matrix nanocomposites for automotive structural components

    NASA Astrophysics Data System (ADS)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  4. Polymer matrix nanocomposites for automotive structural components.

    PubMed

    Naskar, Amit K; Keum, Jong K; Boeman, Raymond G

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  5. Structural Evolution and Mechanical Properties of PMR-15/Layered Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi (Technical Monitor); Dean, Derrick; Abdalla, Mohamed; Green, Keith; Small, Sharee

    2003-01-01

    In the first year of this research, we successfully synthesized and characterized Polymer/ Layered Silicate nanocomposite using the polyimide PMR-15 as the polymer and several layered silicate nanoparticles. We have scaled up the process to allow fabrication of monoliths using these nanocomposites. The morphology of these systems was found to evolve during processing to an exfoliated structure for one system and intercalated for the rest. Correlation with Transmission Electron Microscopy studies is underway. Dynamic mechanical analysis (DMA) results showed a significant increase in the thermomechanical properties (E' and E'') of 2.5 wt.% clay loaded nanocomposites in comparison to the neat polyimide. Increasing the clay loading to 5 wt.% decreased these properties. Higher glass transition temperatures were observed for 2.5 wt.% nanocomposites compared to the neat polyimide. A lower coefficient of thermal expansion was observed only for the PGV/PMR-15 nanocomposite. An improvement in the flexural properties (modulus, strength and elongation) was observed for the 2.5 wt.% nanocomposite but not for the 5 wt.% nanocomposites. The improved barrier properties polymer/ silicate nanocomposites suggest that moisture uptake should be decreased for PMR-15 nanocomposites. The results of some recent experiments to examine delineate the ability of the silicate nanoparticles in improving the hydrolytic degradation of PMR-15 will be discussed.

  6. Impedance analysis on PVA/PVP: GO blend nanocomposite polymer films

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Basha, S. K. Shahenoor; Kumar, B. Ranjit

    2018-05-01

    Nanocomposite polymer films have been prepared by doping Graphene oxide (GO) in PVA/PVP blend polymers by solution cast technique. AC conductivity studies were performed on to the prepared nanocomposite films and the maximum ionic conductivity is found to be 6.13x10-4 Scm-1 for (0.30:0.3) wt% of nanocomposite polymer film at room temperature. The maximum ionic conductivity of nanocomposite polymer films of PVA/PVP: GO holds great promise in potential applications.

  7. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  8. Mussel-Inspired Polydopamine Functionalized Plasmonic Nanocomposites for Single-Particle Catalysis.

    PubMed

    Wang, Jun-Gang; Hua, Xin; Li, Meng; Long, Yi-Tao

    2017-01-25

    Polydopamine functionalized plasmonic nanocomposites with well-distributed catalytically active small gold nanoislands around large gold core were fabricated without using any chemical reductant or surfactant. The optical properties, surface molecular structures, and ensemble catalytic activity of the gold nanocomposites were investigated by time-of-flight secondary ion mass spectrometry and UV-vis spectroscopy, respectively. Moreover, the considerable catalytic activity of the nanocomposites toward 4-nitrophenol reduction was real time monitored by dark-field spectroscopy techniques at the single-nanoparticle level avoiding averaging effects in bulk systems. According to the obtained plasmonic signals from individual nanocomposites, the electron charging and discharging rates for these nanocomposites during the catalytic process were calculated. Our results offer new insights into the design and synthesis of plasmonic nanocomposites for future catalytic applications as well as a further mechanistic understanding of the electron transfer during the catalytic process at the single-nanoparticle level.

  9. Multifaceted prospects of nanocomposites for cardiovascular grafts and stents

    PubMed Central

    Vellayappan, Muthu Vignesh; Balaji, Arunpandian; Subramanian, Aruna Priyadarshini; John, Agnes Aruna; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Supriyanto, Eko; Yusof, Mustafa

    2015-01-01

    Cardiovascular disease is the leading cause of death across the globe. The use of synthetic materials is indispensable in the treatment of cardiovascular disease. Major drawbacks related to the use of biomaterials are their mechanical properties and biocompatibility, and these have to be circumvented before promoting the material to the market or clinical setting. Revolutionary advancements in nanotechnology have introduced a novel class of materials called nanocomposites which have superior properties for biomedical applications. Recently, there has been a widespread recognition of the nanocomposites utilizing polyhedral oligomeric silsesquioxane, bacterial cellulose, silk fibroin, iron oxide magnetic nanoparticles, and carbon nanotubes in cardiovascular grafts and stents. The unique characteristics of these nanocomposites have led to the development of a wide range of nanostructured copolymers with appreciably enhanced properties, such as improved mechanical, chemical, and physical characteristics suitable for cardiovascular implants. The incorporation of advanced nanocomposite materials in cardiovascular grafts and stents improves hemocompatibility, enhances antithrombogenicity, improves mechanical and surface properties, and decreases the microbial response to the cardiovascular implants. A thorough attempt is made to summarize the various applications of nanocomposites for cardiovascular graft and stent applications. This review will highlight the recent advances in nanocomposites and also address the need of future research in promoting nanocomposites as plausible candidates in a campaign against cardiovascular disease. PMID:25897223

  10. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    NASA Astrophysics Data System (ADS)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  11. Natural biopolymer-based nanocomposite films for packaging applications.

    PubMed

    Rhim, Jong-Whan; Ng, Perry K W

    2007-01-01

    Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.

  12. Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Peng

    Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application. For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites. To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities

  13. Recent advances of conductive nanocomposites in printed and flexible electronics

    NASA Astrophysics Data System (ADS)

    Khan, Saleem; Lorenzelli, Leandro

    2017-08-01

    Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.

  14. Remineralization of demineralized enamel via calcium phosphate nanocomposite.

    PubMed

    Weir, M D; Chow, L C; Xu, H H K

    2012-10-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of -26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures.

  15. Remineralization of Demineralized Enamel via Calcium Phosphate Nanocomposite

    PubMed Central

    Weir, M.D.; Chow, L.C.; Xu, H.H.K.

    2012-01-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of −26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures. PMID:22933607

  16. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were thenmore » characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.« less

  17. Laser additive manufacturing bulk graphene-copper nanocomposites.

    PubMed

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  18. Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection.

    PubMed

    Barik, Abdul; Solanki, Pratima R; Kaushik, Ajeet; Ali, Azahar; Pandey, M K; Kim, C G; Malhotra, B D

    2010-10-01

    Cholesterol oxidase (ChOx) has been covalently immobilized onto polyaniline-carboxymethyl cellulose (PANI-CMC) nanocomposite film deposited onto indium-tin-oxide (ITO) coated glass plate using glutaraldehyde as a cross-linker. Fourier transform infrared (FTIR) spectroscopic and electrochemical studies have been used to characterize the PANI-CMC/ITO nanocomposite electrode and ChOx/PANI-CMC/ITO bioelectrode. Scanning electron microscopy (SEM) studies reveal the formation of PANI-CMC nanocomposite fibers of size approximately 150 nm in diameter. The ChOx/PANI-CMC/ITO bioelectrode exhibits linearity as 0.5-22 mM, detection limit as 1.31 mM, sensitivity as 0.14 mA/mM cm2, response time as 10 s and shelf-life of about 10 weeks when bioelectrode is stored at 4 degrees C. The low value of Michaelis-Menten constant (K(m)) obtained as 2.71 mM reveals high affinity of immobilized ChOx for PANI-CMC/ITO nanocomposite electrode.

  19. Laser additive manufacturing bulk graphene-copper nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J.

    2017-11-01

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  20. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    PubMed

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  1. Electrical conduction in PVDF/ZnO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Utpal; Jha, Anal K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Prasad, K.

    2018-05-01

    A hybrid combination of Ag and ZnO nanoparticles were utilized to fabricate PVDF/ZnO(90/10)-Ag nanocomposites (with Ag as filler: 0.5, 1 and 1.5%) utilizing melt-mixing technique. X-ray diffraction study confirmed the formations of nanocomposites. Electric modulus analysis indicated the dielectric relaxation in this system to be of non- Debye type. Correlated barrier hopping model successfully explained the charge conduction in PVDF/ZnO-Ag nanocomposites and ac conductivity data followed Jonscher's power law.

  2. PVDF-PZT nanocomposite film based self-charging power cell.

    PubMed

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Lin Wang, Zhong

    2014-03-14

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ∼0.010 μA h, higher than that of a pure PVDF film based SCPC (∼0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  3. MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-05-01

    Multi-walled carbon nanotubes (MWCNT)/CdS hybrid nanocomposite were synthesized by one step hydrothermal method. MWCNTs were used as a substrate for the growth of CdS nanoparticles. MWCNT/CdS nanocomposite and pure CdS were characterized by XRD, TEM, UV-vis and photoluminescence spectroscopy. HRTEM study confirms the intimate contact of CdS with MWCNT. The photocatalytic activity of nanocomposite was studied for the degradation of methylene blue dye under UV irradiation. The enhanced photocatalytic activity of MWCNT/CdS nanocomposite as compared to pure CdS has been attributed to reduced recombination of photogenerated charge carriers due to interfacial electron transfer from CdS to MWCNT.

  4. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

  5. Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.

    2013-07-01

    The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.

  6. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  7. Nanocomposites Based on Biodegradable Polymers

    PubMed Central

    Armentano, Ilaria; Luzi, Francesca; Morena, Francesco; Martino, Sabata; Torre, Luigi

    2018-01-01

    In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites. PMID:29762482

  8. Nanocomposites Based on Biodegradable Polymers.

    PubMed

    Armentano, Ilaria; Puglia, Debora; Luzi, Francesca; Arciola, Carla Renata; Morena, Francesco; Martino, Sabata; Torre, Luigi

    2018-05-15

    In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  9. Use of Nanocomposites for Flexible Pressure Sensors =

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alexandra Conceicao Teixeira

    Polymer nanocomposites (PNCs) are defined as polymers bonded with nanoparticles to create materiais with improved properties. The development of this type of material is rapidly emerging as a multidisciplinary research activity, since their final properties can benefit many different fields of application, namely in the development of electrical devices as studied herein. A fabrication technique to produce conductive PNCs was developed in this work and used to fabricate flexible capacitive pressure sensors. The process is based on vertically aligned-carbon nanotubes (A-CNTs) embedded in a flexible and biocompatible matrix of polydimethylsiloxane (PDMS). Thin A-CNTs/PDMS nanocomposite films ( 400 mum) were produced using wetting of as-grown A-CNTs with uncured PDMS and the resulting nanocomposites were used to fabricate flexible pressure sensors. The sensing capability of this A-CNTs/PDMS nanocomposite is attributed to the distinctive combination of mechanical flexibility and electrical properties. The fabricated nanocomposites were characterized and mechanical and electrical properties evaluated. The PDMS is significantly modified by the reinforcing A-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties ali different than the PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNTs/PDMS nanocomposites over PDMS by more than 900 % and 100 %, in the CNTs longitudinal and transverse directions, respectively. Regarding the electrical measurements, A-CNTs/PDMS nanocomposites presented an electrical conductivity of 0.35 Sim. The rather low conductivity does not compromise the developed capacitive sensor, but since passive telemetry is required to measure and power the sensor, solutions to overcome this problem were also studied. The configuration of the developed flexible sensor is similar to typical silicon-based capacitive pressure sensors. It is composed of three thin

  10. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  11. Cellulose-Organic Montmorillonite Nanocomposites as Biomacromolecular Quorum-Sensing Inhibitor.

    PubMed

    Demircan, Deniz; Ilk, Sedef; Zhang, Baozhong

    2017-10-09

    The aim of this study was to develop simple cellulose nanocomposites that can interfere with the quorum-sensing (QS)-regulated physiological process of bacteria, which will provide a sustainable and inexpensive solution to the serious challenges caused by bacterial infections in various products like food packaging or biomedical materials. Three cellulose nanocomposites with 1-5 w% octadecylamine-modified montmorillonite (ODA-MMT) were prepared by regeneration of cellulose from ionic liquid solutions in the presence of ODA-MMT suspension. Structural characterization of the nanocomposites showed that the ODA-MMT can be exfoliated or intercalated, depending on the load level of the nanofiller. Thermal gravimetric analysis showed that the incorporation of ODA-MMT nanofiller can improve the thermal stability of the nanocomposites compared with regenerated cellulose. Evaluation of the anti-QS effect against a pigment-producing bacteria C. violaceum CV026 by disc diffusion assay and flask incubation assay revealed that the QS-regulated violacein pigment production was significantly inhibited by the cellulose nanocomposites without interfering the bacterial vitality. Interestingly, the nanocomposite with the lowest load of ODA-MMT exhibited the most significant anti-QS effect, which may be correlated to the exfoliation of nanofillers. To our knowledge, this is the first report on the anti-QS effect of cellulose nanocomposites without the addition of any small molecular agents. Such inexpensive and nontoxic biomaterials will thus have great potential in the development of new cellulosic materials that can effectively prevent the formation of harmful biofilms.

  12. Low shrinkage light curable nanocomposite for dental restorative material.

    PubMed

    Chen, Min-Huey; Chen, Ci-Rong; Hsu, Seng-Haw; Sun, Shih-Po; Su, Wei-Fang

    2006-02-01

    The aim of this study was to develop a low shrinkage visible light curable nanocomposite dental restorative material without sacrificing the other properties of conventional materials. This nanocomposite was developed by using an epoxy resin 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexane carboxylate (ERL4221) matrix with 55% wt of 70-100 nm nanosilica fillers through ring-opening polymerization. GPS (gamma-glycidoxypropyl trimethoxysilane) was used to modify the surfaces of silica nanoparticles. The nanocomposite was shown to exhibit low polymerization shrinkage strain, which is only a quarter of currently used methacrylate-based composites. It also exhibited a low thermal expansion coefficient of 49.8 microm/m degrees C which is comparable to that of the methacrylate based composites (51.2 microm/m degrees C). The strong interfacial interactions between the resin and fillers at nanoscales were demonstrated by an observed high strength and high thermal stability of the nanocomposite. A microhardness of 62 KHN and a tensile strength of 47 MPa were reached. A high degree of conversion ( approximately 70%) can be obtained after less than 60 s of irradiation upon the nanocomposite. A transmission electron microscope (TEM) study of the nanocomposite showed no aggregation of fillers. Comparable results to the methacrylate based composites were obtained from the one day MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) cytotoxicity test. The developed epoxy resin based nanocomposite demonstrated low shrinkage and high strength and is suitable for dental restorative material applications.

  13. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  14. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    NASA Astrophysics Data System (ADS)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-12-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  15. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful

    2016-01-01

    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nanocomposites for Machining Tools

    PubMed Central

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  17. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing

    PubMed Central

    Sharma, Priyanka; Tuteja, Satish K.; Bhalla, Vijayender; Shekhawat, G.; Dravid, Vinayak P.; Suri, C.Raman

    2014-01-01

    We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene–graphene oxide (fG–GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG–GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654

  18. Cost efficient PMMA/NG nanocomposites for electromagnetic interference shielding applications

    NASA Astrophysics Data System (ADS)

    Yadav, Prachi; Rattan, Sunita; Tripathi, Ambuj; Kumar, Sandeep

    2017-06-01

    Cost-efficient polymethylmethacrylate/exfoliated nanographite (PMMA/NG) nanocomposites were prepared through the melt blending technique. The crystalline size of NG in nanocomposites was estimated using Scherrer’s formula and was found to be in the range of 42.4-50.6 nm. Scanning electron micrographs showed the homogeneous dispersion of NG in the PMMA matrix. The thermal degradation temperature (T d) of nanocomposites was found to rise monotonically with increase in the loading of NG. Differential scanning calorimetry measurement showed a significant improvement in glass transition temperature (T g) from 97.2 °C for neat PMMA to 106.4 °C for 4.0 wt% PMMA/NG nanocomposites. DC electrical conductivity measurement revealed that the prepared nanocomposites exhibited a low percolation threshold of 0.45 vol%. The s-parameters (S 11 and S 21) were measured through vector network analyser and were explored in the estimation of electromagnetic interference (EMI) shielding effectiveness (SE). The EMI SE of 19.2 dB (~ 99% attenuation of incoming microwave (MW) power) was attained in the 4.0 wt% PMMA/NG nanocomposite at 12.7 GHz MW frequency. Moreover, the observed broadband EMI SE spectra indicate that the prepared nanocomposites can be employed in lightweight and low-cost commercial EMI shielding applications.

  19. Novel Flaxseed Gum Nanocomposites Are Slow Release Iron Supplements.

    PubMed

    Liang, Shan; Huang, Yu; Shim, Youn Young; Ma, Xiang; Reaney, Martin J T; Wang, Yong

    2018-05-23

    Nanocomposites, based on iron salts and soluble flaxseed gum (FG), were prepared as potential treatments of iron deficiency anemia (IDA). FG was extracted, characterized, and formulated into iron-loading nanocomposites via ion-exchange against FeCl 3 , Fe 2 (SO 4 ) 3 , FeCl 2 , and FeSO 4 ·7H 2 O. FG-iron nanocomposites preparation condition was optimized, and physicochemical properties of the nanocomposites were investigated. In vitro release kinetics of iron in simulated gastric fluid (SGF) was also evaluated. FG heteropolysaccharide, consisting of rhamnose (33.73%), arabinose (24.35%), xylose (14.23%), glucose (4.54%), and galactose (23.15%) monosaccharides, linked together via varieties of glycosidic bonds, was a good recipient for both ferric and ferrous irons under screened conditions (i.e., 80 °C, 2 h, I/G = 1:2). Iron loaded contents in the nanocomposites prepared from FG-FeCl 3 , FG-Fe 2 (SO 4 ) 3 , FG-FeCl 2 , and FG-FeSO 4 ·7H 2 O were 25.51%, 10.36%, 5.83%, and 22.83%, respectively. Iron in these nanocomposites was mostly in a bound state, especially in FG-FeCl 3 , due to chelation forming bonds between iron and polysaccharide hydroxyl or carboxyl groups and formed stable polysaccharide-iron crystal network structures. Free iron ions were effectively removed by ethanol treatments. Because of chelation, the nanocomposites delayed iron release in SGF and the release kinetics were consistent with Korsmeyer-Peppas model. This indicates that such complexes might reduce side effects of free iron in human stomach. Altogether, this study indicates that these synthetic FG-iron nanocomposites might be developed as novel iron supplements for iron deficiency, in which FG-FeCl 3 is considered as the best option.

  20. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    NASA Astrophysics Data System (ADS)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  1. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  2. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  3. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  4. Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward

    2003-01-01

    Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.

  5. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    PubMed

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  6. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  7. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide-silver (rGO-Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO-Ag were evaluated in ovarian cancer cells. The synthesized rGO-Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO-Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO-Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. T. amurensis plant extract-mediated rGO-Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO-Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be

  8. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Background Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). Results AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion T. amurensis plant extract-mediated rGO–Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO–Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and

  9. Manufacturing of three-dimensionally microstructured nanocomposites through microfluidic infiltration.

    PubMed

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-03-12

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors.

  10. Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor

    NASA Astrophysics Data System (ADS)

    Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar

    Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.

  11. Manufacturing of Three-dimensionally Microstructured Nanocomposites through Microfluidic Infiltration

    PubMed Central

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-01-01

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors. PMID:24686754

  12. Polymer-ceramic nanocomposites for applications in the bone surgery

    NASA Astrophysics Data System (ADS)

    Stodolak, E.; Gadomska, K.; Lacz, A.; Bogun, M.

    2009-01-01

    The subject of this work was preparation and investigation of properties of a nanocomposite material based on polymer matrix modified with nanometric silica particles (SiO2). The composite matrix consisted of resorbable P(L/DL)LA polymer with certified biocompatibility. Nanometric silica was introduced into the matrix by means of ultrasonic homogenisation and/or mechanical stirring. The silica was introduced directly e.g. as nanoparticles or inside calcium alginate fibres which contained 3 wt.% of amorphous SiO2. Proper dispersion of nano-filliers was confirmed by means of thermal analysis (TG/DTA, DSC). It was observed, that the presence of inorganic nanoparticles influenced several surface parameters of the nanocomposites i.e. hydrophility (a decrease of surface energy) and topography (both in micro- and nano-scale). Additionally, the nanocomposites exhibited enhanced mechanical properties (Young's modulus, tensile strength) compared to the pure polymer. The nanocomposites were bioactive materials (SBF/3 days/37oC). Biological tests (MTT test) showed a good viability of human osteoblasts (hFOB 1.19) in contact with the nanocomposites surface. Results of preliminary biological tests carried out with the use of mother cells extracted from human bone marrow showed that the nanocomposites may provide differenation of bone cells.

  13. Graphene nanocomposites as thermal interface materials for cooling energy devices

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  14. Nanocomposite thermite ink

    DOEpatents

    Tappan, Alexander S [Albuquerque, NM; Cesarano, III, Joseph; Stuecker, John N [Albuquerque, NM

    2011-11-01

    A nanocomposite thermite ink for use in inkjet, screen, and gravure printing. Embodiments of this invention do not require separation of the fuel and oxidizer constituents prior to application of the ink to the printed substrate.

  15. Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites.

    PubMed

    Koli, Valmiki B; Delekar, Sagar D; Pawar, Shivaji H

    2016-12-01

    In this study, nanocomposites of Fe-doped TiO 2 with multi-walled carbon nanotubes (0.1- 0.5 wt. %) were prepared by using sol-gel method. The structural and morphological analysis were carried out with using X-ray diffraction pattern and transmission electron microscopy, which confirm the presence of pure anatase phase and particle sizes in the range 15-20 nm. X-ray photoelectron spectroscopy was used to determine the surface compositions of the nanocomposites. UV-vis diffuse reflectance spectra confirm redshift in the optical absorption edge of nanocomposites with increasing amount of multi-walled carbon nanotubes. Nanocomposites show photoinactivation against gram-positive Bacillus subtilis as well as gram-negative Pseudomonas aeruginosa. Fe-TiO 2 -multi-walled carbon nanotubes (0.5 wt. %) nanocomposites show higher photoinactivation capability as compared with other nanocomposites. The photoluminescence study reveals that the Fe-TiO 2 -multi-walled carbon nanotubes nanocomposites are capable to generate higher rate of reactive oxygen species species than that of other nanocomposites. Our experimental results demonstrated that the Fe-TiO 2 -multi-walled carbon nanotubes nanocomposites act as efficient antibacterial agents against a wide range of microorganisms to prevent and control the persistence and spreading of bacterial infections.

  16. Concepts for smart nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Pammi, SriLaxmi; Brown, Courtney; Datta, Saurabh; Kirikera, Goutham R.; Schulz, Mark J.

    2003-10-01

    This paper explores concepts for new smart materials that have extraordinary properties based on nanotechnology. Carbon and boron nitride nanotubes in theory can be used to manufacture fibers that have piezoelectric, pyroelectric, piezoresistive, and electrochemical field properties. Smart nanocomposites designed using these fibers will sense and respond to elastic, thermal, and chemical fields in a positive human-like way to improve the performance of structures, devices, and possibly humans. Remarkable strength, morphing, cooling, energy harvesting, strain and temperature sensing, chemical sensing and filtering, and high natural frequencies and damping will be the properties of these new materials. Synthesis of these unique atomically precise nanotubes, fibers, and nanocomposites is at present challenging and expensive, however, there is the possibility that we can synthesize the strongest and lightest actuators and most efficient sensors man has ever made. A particular advantage of nanotube transducers is their very high load bearing capability. Carbon nanotube electrochemical actuators have a predicted energy density at low frequencies that is thirty times greater than typical piezoceramic materials while boron nitride nanotubes are insulators and can operate at high temperatures, but they have a predicted piezoelectric induced stress constant that is about twenty times smaller than piezoceramic materials. Carbon nanotube fibers and composites exhibit a change in electrical conductivity due to strain that can be used for sensing. Some concepts for nanocomposite material sensors are presented and initial efforts to fabricate carbon nanocomposite load sensors are discussed.

  17. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Treesearch

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  18. Anomalous toluene transport in model segmented polyurethane-urea/clay nanocomposites.

    PubMed

    Rath, Sangram K; Bahadur, Jitendra; Panda, Himanshu S; Sen, Debasis; Patro, T Umasankar; S, Praveen; Patri, Manornajan; Khakhar, Devang V

    2018-05-16

    The kinetics of liquid solvent sorption in polymeric systems and their nanocomposites often deviate from normal Fickian behaviour. This needs to be understood and interpreted, in terms of their underlying mechanistic origins. In the present study, the results of time dependent toluene sorption measurements in model segmented polyurethane-urea/clay nanocomposites have been analysed at room temperature. The studies revealed pronounced S-shaped sorption curves and unusually higher swelling of the nanocomposites compared to the neat polyurethane-urea matrix. Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements on the nanocomposites in the dry and liquid toluene saturated state have been carried out. The DMA studies revealed a significant decrease in the α relaxation temperature and storage modulus of the nanocomposites in the swollen state compared to the dry samples. The SAXS results showed that the nanoclay dispersion morphology transformed from intercalation in the dry state to exfoliation in the swollen state and the interdomain distance between hard segments increased upon swelling. Thermodynamic analysis of the Flory-Huggins interaction parameter (χ) of nanocomposite/toluene systems revealed increasingly negative χ values with increased clay loading. These results imply a significant plasticization effect of toluene on the nanocomposites. An interpretation of these data, which relates the abovementioned results, is presented in the framework of differential swelling stress (DSS) induced deviation from Fickian transport characteristics. We expect that these findings and methods may provide new insight into the analysis of the solvent diffusion process in heterogeneous polymers and their nanocomposites.

  19. Dielectric behaviour of montmorillonite/cyanoethylated cellulose nanocomposites.

    PubMed

    Madusanka, Nadeesh; Shivareddy, Sai G; Eddleston, Mark D; Hiralal, Pritesh; Oliver, Rachel A; Amaratunga, Gehan A J

    2017-09-15

    A dielectric nanocomposite based oncyanoethylatedcellulose (CRS) and MMT nanoclay was successfully prepared with different weight percentages (5%, 10% and 15%) of MMT. MMT nanoplatets obtained via sonication of MMT nanoclay in acetone for a prolonged period was used in the preparation of CRS-MMT nanocomposites. CRS-MMT thin films on SiO 2 /Si wafers are used to form metal-insulator-metal (MIM) type capacitors. At 1kHz CRS-MMT nanocomposites exhibited high dielectric constants (ε r ) of 71, 55 and 42 with low leakage current densities (10 -6 -10 -7 A/cm 2 ) for nanocomposites with 5%, 10% and 15% weight of MMT respectively, higher than values of pure CRS (21), Na-MMT(10). Reduction of ε r with higher MMT loading can be attributed to a network formation as evidenced via strong bonding interactions between CRS and MMT leading to a lower molecular mobility. The leakage is studied using conductive atomic force microscopy (C-AFM) indicates that leakage pathways are associated with MMT nanoplatelets embedded in the CRS polymer matrix. Copyright © 2017. Published by Elsevier Ltd.

  20. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  1. Synthesis of Cu-W nanocomposite by high-energy ball milling.

    PubMed

    Venugopal, T; Rao, K Prasad; Murty, B S

    2007-07-01

    The Cu-W bulk nanocomposites of different compositions were successfully synthesized by high-energy ball milling of elemental powders. The nanocrystalline nature of the Cu-W composite powder is confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy. The Cu-W nanocomposite powder could be sintered at 300-400 degrees C below the sintering temperature of the un-milled Cu-W powders. The Cu-W nanocomposites showed superior densification and hardness than that of un-milled Cu-W composites. The nanocomposites also have three times higher hardness to resistivity ratio in comparison to Oxygen free high conductivity copper.

  2. Biogenic Growth of Alloys and Core-Shell Nanostructures Using Urease as a Nanoreactor at Ambient Conditions

    PubMed Central

    Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K.

    2013-01-01

    Biomineralization is an extremely efficient biologically guided process towards the advancement of nano-bio integrated materials. As a prime module of the natural world, enzymes are expected to play a major role in biogenic growth of inorganic nanostructures. Although there have been developments in designing enzyme-responsive nanoparticle systems or generation of inorganic nanostructures in an enzyme-stimulated environment, reports regarding action of enzymes as reducing agents themselves for the growth of inorganic nanoparticles still remains elusive. Here we present a mechanistic investigation towards the synthesis of metal and metallic alloy nanoparticles using a commonly investigated enzyme, Jack bean urease (JBU), as a reducing as well as stabilizing agent under physiological conditions. The catalytic functionality of urease was taken advantage of towards the development of metal-ZnO core-shell nanocomposites, making urease an ideal bionanoreactor for synthesizing higher order nanostructures such as alloys and core- shell under ambient conditions. PMID:24018831

  3. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    PubMed

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  5. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications

    PubMed Central

    Li, Shanghua; Meng Lin, Meng; Toprak, Muhammet S.; Kim, Do Kyung; Muhammed, Mamoun

    2010-01-01

    This article provides an up-to-date review on nanocomposites composed of inorganic nanoparticles and the polymer matrix for optical and magnetic applications. Optical or magnetic characteristics can change upon the decrease of particle sizes to very small dimensions, which are, in general, of major interest in the area of nanocomposite materials. The use of inorganic nanoparticles into the polymer matrix can provide high-performance novel materials that find applications in many industrial fields. With this respect, frequently considered features are optical properties such as light absorption (UV and color), and the extent of light scattering or, in the case of metal particles, photoluminescence, dichroism, and so on, and magnetic properties such as superparamagnetism, electromagnetic wave absorption, and electromagnetic interference shielding. A general introduction, definition, and historical development of polymer–inorganic nanocomposites as well as a comprehensive review of synthetic techniques for polymer–inorganic nanocomposites will be given. Future possibilities for the development of nanocomposites for optical and magnetic applications are also introduced. It is expected that the use of new functional inorganic nano-fillers will lead to new polymer–inorganic nanocomposites with unique combinations of material properties. By careful selection of synthetic techniques and understanding/exploiting the unique physics of the polymeric nanocomposites in such materials, novel functional polymer–inorganic nanocomposites can be designed and fabricated for new interesting applications such as optoelectronic and magneto-optic applications. PMID:22110855

  6. Influence of Oxygen ions irradiation on Polyaniline/Single Walled Carbon Nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Gaikwad, Sumedh D.; Bodkhe, Gajanan A.; Asokan, K.; Yasuzawa, Mikito; Koinkar, Pankaj; Shirsat, Mahendara D.

    2017-01-01

    Influence of Oxygen ions (100 MeV) irradiation on Polyaniline (PANI)/Single Walled Carbon Nanotubes (SWNTs) nanocomposite was studied in the present investigation. PANI/SWNTs nanocomposite was synthesized by electrochemical Cyclic Voltammetry technique. Nanocomposite was exposed under SHI irradiation of Oxygen (100 MeV) ions for three different fluences such as 1×1010 ions/cm2, 5×1010 ions/cm2 and 1×1011 ions/cm2. The SHI irradiated PANI/SWNTs nanocomposite was investigated by using morphological (AFM), structural (XRD) and spectroscopy (FTIR) characterization. AFM study exhibits effects of SHI irradiation on morphology of the nanocomposite and root mean square roughness of the nanocomposite is observed to be decreased as fluence was increased. The FTIR absorption spectrum exhibits formation of new functional sites with the increase in intensity of absorption peaks, due to SHI irradiation. X-Ray Diffraction studies show a gradual decrease in the crystalline nature of the nanocomposite upon irradiation.

  7. Gas Barrier Behavior of Polystyrene-Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergei; Meneghetti, Paulo; Photinon, Kanokorn; Qutubuddin, Syed

    2004-03-01

    Polystyrene (PS)/clay nanocomposites were synthesized via in-situ polymerization using montmorillonite functionalized with a zwitterionic surfactant, octadecyldimethyl betaine (C18DMB), or with a polymerizable cationic surfactant, vinylbenzyldimethyldodecylammonium chloride (VDAC). The co-polymerization of VDAC with the styrene monomer resulted in exfoliated nanocomposites for PS/VDAC as characterized by x-ray diffraction (XRD) while intercalated structure was observed for PS/C18DMB. Oxygen barrier of PS/clay nanocomposites were studied and compared with conventional PS composite of untreated MMT. The improvement of oxygen barrier was more significant for intercalated than for exfoliated system. Nielsen model, which assumes that the filler particles are dispersed uniformly in the polymer, was applied to the data. The aspect ratio determined from the model was 43 for PS/C18DMB, nearly four times higher than for PS/VDAC. These results appear contradictory to the morphology characterized by XRD since for exfoliated nanocomposite the aspect ratio ideally would be around 100 or 200. Transmission Electron Microscope (TEM) was used to explain and correlate the actual nano-structural morphology to the barrier performance. In the case of PS/C18DMB, some of the clay layers form a staircase-like arrangement resulting in a high aspect ratio which creates a more tortuous path for the gas diffusing molecule to transverse the nanocomposite film. For PS/VDAC, the nano-layers were dispersed individually but arranged themselves in domains of low aspect ratio reducing the tortuosity effect.

  8. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    PubMed

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; hide

    2001-01-01

    Nature abounds with intricate composite architectures composed of hard and soft materials synergistically intertwined to provide both useful functionality and mechanical integrity. Recent synthetic efforts to mimic such natural designs have focused on nanocomposites, prepared mainly by slow procedures like monomer or polymer infiltration of inorganic nanostructures or sequential deposition. Here we report the self-assembly of conjugated polymer/silica nanocomposite films with hexagonal, cubic or lamellar mesoscopic order using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. Polymerization results in polydiacetylene/silica nanocomposites that are optically transparent and mechanically robust. Compared to ordered diacetylene-containing films prepared as Langmuir monolayers or by Langmuir-Blodgett deposition, the nanostructured inorganic host alters the diacetylene polymerization behaviour, and the resulting nanocomposite exhibits unusual chromatic changes in response to thermal, mechanical and chemical stimuli. The inorganic framework serves to protect, stabilize, and orient the polymer, and to mediate its function. The nanocomposite architecture also provides sufficient mechanical integrity to enable integration into devices and microsystems.

  10. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review

    PubMed Central

    Bramhill, Jane; Ross, Sukunya; Ross, Gareth

    2017-01-01

    This review presents scientific findings concerning the use of bioactive nanocomposites in the field of tissue repair and regeneration. Bioactivity is the ability of a material to incite a specific biological reaction, usually at the boundary of the material. Nanocomposites have been shown to be ideal bioactive materials due the many biological interfaces and structures operating at the nanoscale. This has resulted in many researchers investigating nanocomposites for use in bioapplications. Nanocomposites encompass a number of different structures, incorporating organic-inorganic, inorganic-inorganic and bioinorganic nanomaterials and based upon ceramic, metallic or polymeric materials. This enables a wide range of properties to be incorporated into nanocomposite materials, such as magnetic properties, MR imaging contrast or drug delivery, and even a combination of these properties. Much of the classical research was focused on bone regeneration, however, recent advances have enabled further use in soft tissue body sites too. Despite recent technological advances, more research is needed to further understand the long-term biocompatibility impact of the use of nanoparticles within the human body. PMID:28085054

  11. Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique

    NASA Astrophysics Data System (ADS)

    Tao, Shan; Ahmad, Zubair; Zhang, Pengyue; Yan, Mi; Zheng, Xiaomei

    2017-09-01

    The phase composition, magnetic and microstructural properties of Nd2Fe14B/(α-Fe, Fe3B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd7Y6Fe61B22Mo4 permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe3B and hard Nd2Fe14B/Y2Fe14B nanograins (20-50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd7Y6Fe61B22Mo4 magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd7Y6Fe61B22Mo4 alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m3 are obtained in directly casted Nd7Y6Fe61B22Mo4 sheet magnets.

  12. Viscoelastic and Mechanical Properties of Thermoset PMR-type Polyimide-Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Abdalla, Mohamed O.; Dean, Derrick; Campbell, Sandi

    2002-01-01

    High temperature thermoset polyimide-clay nanocomposites were prepared by blending 2.5 and 5 wt% of an unmodified Na(+-) montmorillonite (PGV) and two organically modified FGV (PGVCl0COOH, PGVC12) with a methanol solution of PMR-15 precursor. The methanol facilitated the dispersal of the unmodified clay. Dynamic mechanical analysis results showed a significant increase in the thermomechanical properties (E' and E") of 2.5 wt% clay loaded nanocomposites in comparison with the neat polyimide. Higher glass transition temperatures were observed for 2.5 wt% nanocomposites compared to the neat polyimide. Flexural properties measurements for the 2.5 wt% nanocomposites showed a significant improvement in the modulus and strength, with no loss in elongation. This trend was not observed for the 5 wt% nanocomposites. An improvement in the CTE was observed for the PGV/PMR-15 nanocomposites, while a decrease was observed for the organically modified samples. This was attributed to potential variations in the interface caused by modifier degradation.

  13. Preparation process and properties of exfoliated graphite nanoplatelets filled Bisphthalonitrile nanocomposites

    NASA Astrophysics Data System (ADS)

    Lei, Yajie; Hu, Guo-Hua; Zhao, Rui; Guo, Heng; Zhao, Xin; Liu, Xiaobo

    2012-11-01

    Exfoliated graphite nanoplatelets (xGnP) filled 4,4'-Bis (3,4-dicyanophenoxy) biphenyl (BPh) nanocomposites were prepared by a resin transfer molding process. The rheological behavior of the BPh pre-polymer, and the morphology and electrical, mechanical and thermal properties of the xGnP/BPh nanocomposites were systematically investigated. The results showed that the xGnP/BPh pre-polymer possessed a higher complex viscosity and storage modulus than the pure BPh and that the xGnP could significantly enhance the mechanical and electrical properties of the resulted nanocomposites. The electrical percolation threshold of the xGnP/BPh nanocomposites was between 5 and 10 wt% xGnP. The flexural strength and modulus of the xGnP/BPh nanocomposites with 10 wt% xGnP exhibited maximum values and their thermal stabilities were greatly improved. Those novel xGnP/BPh nanocomposites could have advanced applications in areas like aerospace and military industry.

  14. Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties

    NASA Astrophysics Data System (ADS)

    Adel Mehraban, F.; Karimzadeh, F.; Abbasi, M. H.

    2015-05-01

    In this study, an Al/Al2O3-Al3Ni hybrid nanocomposite was developed on the surface of Al6061-T6 plate with preplaced NiO powder on its surface using friction-stir processing (FSP). The x-ray diffraction results showed that NiO particles were reduced by Al during FSP and Al3Ni and Al2O3 were formed as in situ reaction products. A thermodynamic analysis indicated that the reaction is thermodynamically possible and exothermic. Thus, the reaction that is initiated by the severe plastic deformation and friction associated with FSP could continue by the heat that is generated by the exothermic reaction. During each FSP pass, the FSP products are detached quickly from the interface and the growth of the particles is limited and nanometer-sized reinforcements were produced. The presence of facet and hexagonal nanoparticles in transmission electron microscopy micrographs of the stir zone confirmed the formation of Al3Ni and Al2O3 nanoreinforcements, respectively. Mechanical test results showed that the microhardness and ultimate tensile strength in the stir zone of nanocomposite decreased due to the dissolution of precipitates in Al6061-T6 during FSP. The tribological properties of Al6061 at 350°C were significantly improved by developing surface Al/Al2O3-Al3Ni nanocomposite.

  15. Poly(vinyl acetate)/clay nanocomposite materials for organic thin film transistor application.

    PubMed

    Park, B J; Sung, J H; Park, J H; Choi, J S; Choi, H J

    2008-05-01

    Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.

  16. Electromechanical modeling and experimental verification of a directly printed nanocomposite

    NASA Astrophysics Data System (ADS)

    Nafari, Alireza; Sodano, Henry A.

    2018-03-01

    Piezoelectric materials are currently among the most promising building blocks of sensing, actuating and energy harvesting systems. However, these materials are limited in applications due to difficulty in machining and casting it on to curve surfaces. To mitigate this issue, one method is through additive manufacturing (direct printing) of piezoelectric nanocomposite in which piezoelectric nanomaterials are embedded into a polymer matrix. Although significant progress has been recently made in this area, modeling the electromechanical response of a directly printed nanocomposite remains a challenge. Thus the objective of this study is to develop robust micromechanical and finite element models that allows the study of the electroelastic properties of a directly printed nanocomposite containing piezoelectric inclusions. Furthermore, the dependence of these properties on geometrical parameters such as aspect ratio and alignment of the active phase are investigated. The focus of this work is a demonstration of the effect gradual alignment of piezoelectric nanowires in a nanocomposite from randomly oriented to purely aligned improves the electroelastic properties of a directly printed nanocomposite. Finally, these models are verified through experimental measurement of electroelastic properties of the nanocomposites containing barium titanate nanowires in Polydimethylsiloxane (PDMS) polymer.

  17. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  18. Photonic structures based on hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Husaini, Saima

    In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal

  19. Controllable synthesis and property of graphene-based magnetic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Kong-Lin; Li, Xiang-Zi; Wei, Xian-Wen; Ding, Ting-Hui; Jiang, Miao; Zhang, Wen-Juan; Ye, Yin

    2014-12-01

    A facile and effective solution phase reduction method was developed to synthesize graphene-based magnetic metal nanocomposites. Metals (Co, and Ni) or alloys (Fe51Co49, Fe48Ni52, Ni49Co51, Co51Cu49, and Ni52Cu48)/reduced graphene oxide (RGO) nanocomposites were successfully prepared by reduction of the corresponding aqueous metal ions and ethylenediamine (EDA)-graphene oxide (GO) with hydrazine hydrate at 353 K for 1 h under N2 atmosphere. The effects of synthetic parameters such as metal ions concentration, adding sequence of NaOH and N2H4·H2O, linkage agent and reaction time on the formation of nanocomposites were investigated. The experimental results showed that using ethylenediamine and adding sequence played critical roles in the formation of metals or alloys/RGO nanocomposites. Magnetic hysteresis measurements revealed that the as-synthesized metals or alloys in nanocomposites showed excellent soft magnetic behavior with enhanced saturation magnetization, and could have promising applications in biotechnology, catalysis, and magnetic storage devices.

  20. Synthesis of photothermal nanocomposites and their application to antibacterial assays

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2018-04-01

    In this work, we report a novel gold nanorod (AuNR)-based nanocomposite that shows strong binding to bacterium and high antibacterial efficiency. The AuNRs were used as a photothermal material to transform near-infrared radiation (NIR) into heat. We selected poly (acrylic acid) to modify the surface of the AuNRs based on a simple self-assembly method. After conjugation of the bacterium-binding molecule vancomycin, the nanocomposites were capable of efficiently gathering on the cell walls of bacteria. The nanocomposites exhibited a high bacterial inhibition capability owing to NIR-induced heat generation in situ. Therefore, the prepared photothermal nanocomposites show great potential for use in antibacterial assays.

  1. Carbon nanotube-polymer nanocomposite infrared sensor.

    PubMed

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites.

  2. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin

    Using x-ray photon correlation spectroscopy, we examined slow nanoscale motion of silica nanoparticles individually dispersed in entangled poly (ethylene oxide) melt at particle volume fractions up to 42 %. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slowdown at higher volume fractions- when all chains are practically on themore » nanoparticle interface- and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.« less

  3. Dielectric spectroscopy of Ag-starch nanocomposite films

    NASA Astrophysics Data System (ADS)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  4. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    DOE PAGES

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin; ...

    2017-12-06

    Using x-ray photon correlation spectroscopy, we examined slow nanoscale motion of silica nanoparticles individually dispersed in entangled poly (ethylene oxide) melt at particle volume fractions up to 42 %. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slowdown at higher volume fractions- when all chains are practically on themore » nanoparticle interface- and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.« less

  5. Preparation and characterization of graphene/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Wu, Jili; Bai, Song; Shen, Xiaoping; Jiang, Lei

    2010-11-01

    Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH 2) 2) and thioacetamide (C 2H 5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.

  6. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film.

    PubMed

    Huq, Tanzina; Salmieri, Stephane; Khan, Avik; Khan, Ruhul A; Le Tien, Canh; Riedl, Bernard; Fraschini, Carole; Bouchard, Jean; Uribe-Calderon, Jorge; Kamal, Musa R; Lacroix, Monique

    2012-11-06

    Nanocrystalline cellulose (NCC) reinforced alginate-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 1 to 8% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 5 wt% NCC content exhibits the highest tensile strength which was increased by 37% compared to the control. Incorporation of NCC also significantly improved water vapor permeability (WVP) of the nanocomposite showing a 31% decrease due to 5 wt% NCC loading. Molecular interactions between alginate and NCC were supported by Fourier Transform Infrared Spectroscopy. The X-ray diffraction studies also confirmed the appearance of crystalline peaks due to the presence of NCC inside the films. Thermal stability of alginate-based nanocomposite films was improved after incorporation of NCC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.

    PubMed

    Tam, Lik-Ho; Wu, Chao

    2017-10-13

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  8. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites

    PubMed Central

    2017-01-01

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect. PMID:29027979

  9. Hydrogen absorption of Pd/ZrO2 composites prepared from Zr65Pd35 and Zr60Pd35Pt5 amorphous alloys

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Katsuragawa, Naoya; Hattori, Masatomo; Yogo, Toshinobu; Yamamura, Shin-ichi

    2018-01-01

    Metal-dispersed composites were derived from amorphous Zr65Pd35 and Zr65Pd30Pt5 alloys and their hydrogen absorption behavior was studied. X-ray diffractograms and scanning electron micrographs indicated that mixtures containing ZrO2, the metallic phase of Pd, and PdO were formed for both amorphous alloys heat-treated in air. In the composites, micron-sized Pd-based metal precipitates were embedded in a ZrO2 matrix after heat treatment at 800 °C in air. The hydrogen temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr65Pd35 and Zr65Pd30Pt5 materials. Rapid hydrogen absorption and release were observed on the composite derived from the amorphous alloy below 100 °C. The hydrogen pressure-concentration isotherm showed that the absorbed amount of hydrogen in materials depended on the formation of the Pd or Pt-doped Pd phase and its large interface area to the matrix in the nanocomposites. The results indicate the importance of the composite structure for the fabrication of a new type of hydrogen storage material prepared from amorphous alloys.

  10. Additive Manufacturing of High-Performance 316L Stainless Steel Nanocomposites via Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    AlMangour, Bandar Abdulaziz

    Austenitic 316L stainless steel alloy is an attractive industrial material combining outstanding corrosion resistance, ductility, and biocompatibility, with promising structural applications and biomedical uses. However, 316L has low strength and wear resistance, limiting its high-performance applicability. Adding secondary hard nanoscale reinforcements to steel matrices, thereby forming steel-matrix nanocomposites (SMCs), can overcome these problems, improving the performance and thereby the applicability of 316L. However, SMC parts with complex-geometry cannot be easily achieved limiting its application. This can be avoided through additive manufacturing (AM) by generating layer-by-layer deposition using computer-aided design data. Expanding the range of AM-applicable materials is necessary to fulfill industrial demand. This dissertation presents the characteristics of new AM-processed high-performance 316L-matrix nanocomposites with nanoscale TiC or TiB2 reinforcements, addressing specific aspects of material design, process control and optimization, and physical metallurgy theory. The nanocomposites were prepared by high-energy ball-milling and consolidated by AM selective laser melting (SLM). Continuous and refined ring-like network structures were obtained with homogenously distributed reinforcements. Additional grain refinement occurred with reinforcement addition, attributed to nanoparticles acting as nuclei for heterogeneous nucleation. The influence of reinforcement content was first investigated; mechanical and tribological behaviors improved with increased reinforcement contents. The compressive yield strengths of composites with TiB2 or TiC reinforcements were approximately five or two times those of 316L respectively. Hot isostatic pressing post-treatment effectively eliminated major cracks and pores in SLM-fabricated components. The effects of the SLM processing parameters on the microstructure and mechanical performance were also investigated. Laser

  11. Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Moussa, S.; Namouchi, F.; Guermazi, H.

    2015-07-01

    Hybrid nanocomposites were elaborated by incorporating ZnO nanoparticles into a transparent epoxy polymer matrix, using the direct dispersion method. The effect of the nanoparticles on the structural and optical properties of the polymer matrix was investigated using Fourier transform infrared (FTIR), Raman and UV-Visible spectroscopies. Nanocomposites FTIR spectra showed a variation of band intensities attributed to nanoparticles agglomeration within the polymer. The UV-Visible measurements showed a redshift on the band gap energy of the nanocomposites differently from neat epoxy resin, caused by interactions between ZnO NPs and polymer chains. Raman spectra confirm these interactions and the formation of hydrogen bonds in the nanocomposites. The UV-Visible transmittance spectra revealed that addition of a very low concentration (0.2wt%) of ZnO nanoparticles to a transparent epoxy matrix would maintain high visible-light transparency. The decrease of transmittance with increasing ZnO percentage is due to light scattering which originates from the agglomeration of nanoparticles in the matrix, the mismatch between the refractive index of ZnO and that of the epoxy matrix, and the increase of the surface roughness of the nanocomposite with increasing ZnO addition. Moreover, the UV-vis absorption spectra revealed that adding more than 1wt% ZnO leads to the improvement of the UV shielding properties of the nanocomposites. These results prove that the elaborated ZnO/epoxy nanocomposites can be used as UV shielding materials.

  12. New biocide guanidine-containing nanocomposites

    NASA Astrophysics Data System (ADS)

    Gorbunova, Marina; Lemkina, Larisa

    2014-08-01

    New water-soluble nanocomposites based on Ag and copolymers of 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride with N-vinylpyrrolidone [poly(AGC-VP)] and vinylacetate [poly(AGC-VA)] have been developed. The average silver particle size ranged from 52 to 62 nm for poly(AGC-VA) and from 28 to 30 nm for poly(AGC-VP), with the corresponding UV-vis absorption peak position at 405-410 nm. The using of copolymers resulted in improvement in bactericide properties of composites. Following these results, the newly developed nanocomposite scaffold may be considered for new water-soluble medicines and biocides.

  13. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    NASA Astrophysics Data System (ADS)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  14. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  15. Nano-composites for water remediation: a review.

    PubMed

    Tesh, Sarah J; Scott, Thomas B

    2014-09-17

    As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of polymer matrix on photo-sensitivity of CdSe polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Tripathi, S. K.

    2018-04-01

    This paper reports the effect of three different polymer matrices (PVP, PMMA and PVK) and Ag doping on the photo-sensitivity of CdSe polymer nanocomposites. The results reveal that the photoconductivity is high for linear chain polymer nanocomposites as compared to aromatic ones with decreasing trend as: CdSe-PMMA > CdSe-PVP > CdSe-PVK. The large substituents or branches along the polymer backbone hinder the stacking sequences in CdSe-PVK nanocomposites resulting in lowest photoconductivity. On contrary, CdSe-PVK nanocomposite exhibit highest photosensitivity. The reason behind it is the low value of dark conductivity in CdSe-PVK nanocomposite and photoconductive PVK matrix. With Ag doping, no considerable effect on the value of photosensitivity has been observed. The obtained results indicate that the photo-conducting properties of these polymer nanocomposites can be tuned by using different polymer matrices.

  17. Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.

    Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.

  18. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda

    2014-04-24

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup −3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16more » wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.« less

  19. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability.

    PubMed

    Chen, Ye; Tao, Jing; Deng, Lin; Li, Liang; Li, Jun; Yang, Yang; Khashab, Niveen M

    2013-08-14

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 10(4) Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable.

  20. Evolution of microstructure, strain and physical properties in oxide nanocomposite films

    DOE PAGES

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; ...

    2014-06-24

    Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures,more » strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.« less

  1. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  2. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2017-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  3. Polypyrrole based nanocomposites for supercapacitor applications: A review

    NASA Astrophysics Data System (ADS)

    Sardar, A.; Gupta, P. S.

    2018-05-01

    Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  4. Metallic Nanocomposites as Next-Generation Thermal Interface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Narumanchi, Sreekant V; King, Charles C

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownianmore » motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of

  5. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    PubMed

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  6. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  7. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    NASA Astrophysics Data System (ADS)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  8. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    PubMed

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    PubMed

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermoreversibly Cross-Linked EPM Rubber Nanocomposites with Carbon Nanotubes

    PubMed Central

    Criscitiello, Francesco; van Essen, Machiel; Araya-Hermosilla, Rodrigo; Migliore, Nicola; Lenti, Mattia; Raffa, Patrizio

    2018-01-01

    Conductive rubber nanocomposites were prepared by dispersing conductive nanotubes (CNT) in thermoreversibly cross-linked ethylene propylene rubbers grafted with furan groups (EPM-g-furan) rubbers. Their features were studied with a strong focus on conductive and mechanical properties relevant for strain-sensor applications. The Diels-Alder chemistry used for thermoreversible cross-linking allows for the preparation of fully recyclable, homogeneous, and conductive nanocomposites. CNT modified with compatible furan groups provided nanocomposites with a relatively large tensile strength and small elongation at break. High and low sensitivity deformation experiments of nanocomposites with 5 wt % CNT (at the percolation threshold) displayed an initially linear sensitivity to deformation. Notably, only fresh samples displayed a linear response of their electrical resistivity to deformations as the resistance variation collapsed already after one cycle of elongation. Notwithstanding this mediocre performance as a strain sensor, the advantages of using thermoreversible chemistry in a conductive rubber nanocomposite were highlighted by demonstrating crack-healing by welding due to the joule effect on the surface and the bulk of the material. This will open up new technological opportunities for the design of novel strain-sensors based on recyclable rubbers. PMID:29360772

  11. Effects of environmental ageing on HMS-polypropylene/Cloisite nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komatsu, L. G. H., E-mail: dfparra@ipen.br; Oliani, W. L., E-mail: dfparra@ipen.br; Ferreto, H. F. R., E-mail: dfparra@ipen.br

    High melt strength polypropylene Nanocomposites (NC-HMSPP) were obtained with concentrations of 0.1 and 5 wt% of Cloisite 20A. The melt intercalation, using twin screw extruder was done to homogenize the nanocomposite in presence of polypropylene graft maleic anhydride (PP-g-MA) compatibilizer agent. In this work, the manufactured dumbbell samples were settled in device for natural ageing assay. The period of exposition was January to December of 2012. The effects of environmental ageing was determined by carbonyl index (FT-IR) and the results showed that nanocomposites were more stable than HMSPP. The mechanical properties (elongation and rupture strength) were evaluated and the thermalmore » behavior was investigated by differential scanning calorimetry (DSC) and X ray diffraction (DRX). The morphology was observed by scanning electron microscopy (SEM) in which the nanocomposites showed intense cracks on the surface.« less

  12. Transmittance properties of one dimensional ternary nanocomposite photonic crystals

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.

    2018-03-01

    In the present work, we have theoretically investigated the transmittance characteristics of one dimensional ternary photonic crystals that containing a nanocomposite layer. The nanocomposite layer was designed from metallic nanoparticles of (Ag) in a transparent matrix of a dielectric material (MgF2). The numerical results are obtained based on the theoretical modeling of the characteristic matrix method and Maxwell-Garnett model. The investigated results demonstrate the significant effect of the volume fraction of the nanoparticles on the effective permittivity of the nanocomposite material as well as the transmission characteristics of our design. Moreover, the roles played by other parameters such as the thickness of the nanocomposite layer, the permittivity of the host dielectric material and the spherical radius of the nanoparticles are included her. The proposed structure could be promising for many applications such as THz optical filters, reflectors and optical switches.

  13. Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites.

    PubMed

    Goikuria, U; Larrañaga, A; Vilas, J L; Lizundia, E

    2017-09-01

    Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO 2 , TiO 2 , Al 2 O 3 and Fe 2 O 3 ) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75°C for the nanocomposites having 10wt% of Fe 2 O 3 and ZnO. The activation energies of thermodegradation process (E a ) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dosimetry characteristics of HDPE-SWCNT nanocomposite for real time application

    NASA Astrophysics Data System (ADS)

    Malekie, Shahryar; Ziaie, Farhood; Feizi, Shahzad; Esmaeli, Abdolreza

    2016-10-01

    In this experimental work, different dosimetric characteristics of high density polyethylene-single wall carbon nanotube nanocomposite were investigated. The nanocomposite samples were prepared with different nanotube contents of 0.22, 0.25, and 0.39 weight percentages which were before, exactly in, and after percolation region of the nanocomposite, respectively. The samples were exposed to 60Co gamma radiation source over the dose rate of 65-214 mGy/min, while the applied bias was 100 V. A linear response achieved for the sample contained 0.25 nanotube wt% verified that the percolation threshold is the optimum point for dosimetric purposes. The current-voltage characteristics curve measured for 0.25 CNT wt% nanocomposite showed that the behavior of this sample was bias polarity independent. Also, the results showed that the response of this nanocomposite was energy-independent. The maximum discrepancy of photocurrent due to angular variation within 0-90° with respect to beam incidence and the reproducibility of the response were measured as 5.4% and 0.8%, respectively. The stability study showed that this material may be suitable for protection dose level control. Therefore, this kind of nanocomposite requiring calibration can be used as a real-time dosimeter.

  15. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  16. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor); Chen, Gang (Inventor)

    2008-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  17. Nanocomposites with High Thermoelectric Figures of Merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Ren, Zhifeng (Inventor); Dresselhaus, Mildred (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  18. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor)

    2012-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  19. One-pot biosynthesis of polymer-inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Geng, Jiaqing; Yang, Dong; Zhu, Yong; Cao, Lichao; Jiang, Zhongyi; Sun, Yan

    2011-06-01

    A biological method is demonstrated to fabricate the polymer-inorganic nanocomposites (PINCs) utilizing bacterium as an efficient and versatile biofactory. Gluconacetobacter xylinum that can produce bacterial cellulose is incubated in the culture medium containing titanium or silica precursor. The PINCs can be acquired under the elaborate control of the culturing condition of G. xylinum, in which the formation of inorganic nanoparticles about several tens of nanometers in size synchronizes the fabrication of reticulated bacterial cellulose membrane composed of dense and finely branched nanofibers about 60-120 nm in diameter. The composition and chemical states, morphology, thermal stability of the inorganic nanoparticles, and nanocomposites were extensively characterized. A tentative mechanism for the formation of PINCs is proposed. It is hoped that this study may establish a generic platform toward facile and green synthesis of nanocomposite materials.

  20. Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy protection.

    PubMed

    Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    Zinc molybdate (ZM) is a safer anticorrosive additive for cooling systems when compared with chromates and lead salts, due to its insolubility in aqueous media. For most molybdate pigments, their molybdate anion (MoO 4 -2 ) acts as an anionic inhibitor and its passivation capacity is comparable with chromate anion (CrO 4 -2 ). To alleviate the environmental concerns involving chromates-based industrial protective coatings, we have proposed new alternative in this work. We have synthesized ZM nanocrystals via ultrasound-assisted process and encapsulated them within an epoxy/PDMS coating towards corrosion protection. The surface morphology and mechanical properties of these ZM doped epoxy/PDMS nanocomposite coatings is exhaustively discussed to show the effect of ZM content on protective properties. The presence of ZM nanocrystals significantly contributed to the corrosion barrier performance of the coating while the amount of ZM nanocrystals needed to prepare an epoxy coating with optimum barrier performance was established. Beyond 2 wt% ZM concentration, the siloxane-structured epoxy coating network became saturated with ZM pigments. This further broadened inherent pores channels, leading to the percolation of corrosion chloride ions through the coating. SEM evidence has revealed proof of surface delamination on ZM3 coating. A model mechanism of corrosion resistance has been proposed for ZM doped epoxy/PDMS nanocomposite coatings from exhaustive surface morphological investigations and evidence. This coating matrix may have emerging applications in cooling systems as anticorrosive surface paints as well as create an avenue for environmental corrosion remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Characterization and in vitro biocompatibility study of Ti-Si-N nanocomposite coatings developed by using physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Trivedi, Pramanshu; gupta, Pallavi; Srivastava, Swati; Jayaganthan, R.; Chandra, Ramesh; Roy, Partha

    2014-02-01

    Amongst the Ti alloys used as orthopedic implant materials, Ti6Al4V is one of the widely used alloys. Magnetron sputtering was used to deposit nanocomposite coating of Ti-Si-N on the Ti6Al4V substrate at different power and then the coating structure and surface properties were characterized through contact angle measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). In vitro biocompatibility of the coatings was assessed by using mouse bone marrow mesenchymal stem cells (mBMMSC). Antibacterial studies were performed using Escherichia coli (E. coli) microorganisms. The osteogenic differentiation was also carried out in order to get gene expressions. The AFM results confirmed that the coatings deposited at 120 W was smoother as compared to other coatings developed at different power, along with optimum contact angle, also these coatings showed good antibacterial results. The fluorescent and viability results of 120 W sample confirmed their good biocompatibility as compared to the coatings deposited 20, 40, 60, and 100 W power. Hence, the coating deposited at 120 W exhibit desirable microstructural characteristics beneficial for surface modification of orthopedic implants.

  2. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer.

    PubMed

    Tomoda, Keishiro; Ohkoshi, Takumi; Hirota, Keiji; Sonavane, Ganeshchandra S; Nakajima, Takehisa; Terada, Hiroshi; Komuro, Masahito; Kitazato, Kenji; Makino, Kimiko

    2009-07-01

    Nanoparticles have widely been studied in drug delivery research for targeting and controlled release. The aim of this article is application of nanoparticles as an inhalable agent for treatment of lung cancer. To deposit effectively deep the particles in the lungs, the PLGA nanoparticles loaded with the anticancer drug 6-{[2-(dimethylamino)ethyl]amino}-3-hydroxyl-7H-indeno[2,1-c]quinolin-7-one dihydrochloride (TAS-103) were prepared in the form of nanocomposite particles. The nanocomposite particles consist of the complex of drug-loaded nanoparticles and excipients. In this study, the anticancer effects of the nanocomposite particles against the lung cancer cell line A549. Also, the concentration of TAS-103 in blood and lungs were determined after administration of the nanocomposite particles by inhalation to rats. TAS-103-loaded PLGA nanoparticles were prepared with 5% and 10% of loading ratio by spray drying method with trehalose as an excipient. The 5% drug-loaded nanocomposite particles were more suitable for inhalable agent because of the sustained release of TAS-103 and higher FPF value. Cytotoxicity of nanocomposite particles against A549 cells was higher than that of free drug. When the nanocomposite particles were administered in rats by inhalation, drug concentration in lung was much higher than that in plasma. Furthermore, drug concentration in lungs administered by inhalation of nanocomposite particles was much higher than that after intravenous administration of free drug. From these results, the nanocomposite particle systems could be promising for treatment of lung cancer.

  3. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  4. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.

    PubMed

    Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo

    2018-02-27

    A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

  5. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.

    PubMed

    Wei, Haoran; Rodriguez, Katia; Renneckar, Scott; Leng, Weinan; Vikesland, Peter J

    2015-08-21

    Nanocellulose is of research interest due to its extraordinary optical, thermal, and mechanical properties. The incorporation of guest nanoparticles into nanocellulose substrates enables production of novel nanocomposites with a broad range of applications. In this study, gold nanoparticle/bacterial cellulose (AuNP/BC) nanocomposites were prepared and evaluated for their applicability as surface-enhanced Raman scattering (SERS) substrates. The nanocomposites were prepared by citrate mediated in situ reduction of Au(3+) in the presence of a BC hydrogel at 303 K. Both the size and morphology of the AuNPs were functions of the HAuCl4 and citrate concentrations. At high HAuCl4 concentrations, Au nanoplates form within the nanocomposites and are responsible for high SERS enhancements. At lower HAuCl4 concentrations, uniform nanospheres form and the SERS enhancement is dependent on the nanosphere size. The time-resolved increase in the SERS signal was probed as a function of drying time with SERS 'hot-spots' primarily forming in the final minutes of nanocomposite drying. The application of the AuNP/BC nanocomposites for detection of the SERS active dyes MGITC and R6G as well as the environmental contaminant atrazine is illustrated as is its use under low and high pH conditions. The results indicate the broad applicability of this nanocomposite for analyte detection.

  6. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    PubMed

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  7. High performance of poly(dopamine)-functionalized graphene oxide/poly(vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Ma, Jiaojiao; Pan, Jingkai; Yue, Jia; Xu, Yu; Bao, Jianjun

    2018-01-01

    In this paper, poly(vinyl alcohol) (PVA)/poly(dopamine)-functionalized graphene oxide (PGO) nanocomposites with high performance were prepared by an environment-friendly and facile strategy. GO was firstly functionalized and simultaneously reduced by poly(dopamine) to yield PGO. Then it was mixed with PVA in aqueous solution to make PVA/PGO nanocomposites. Transmission electron microscopy revealed that the PGO nanosheets are well dispersed and randomly oriented throughout the PVA matrix. At the same time, the thermal properties and water barrier properties of the PVA/PGO nanocomposites have been strikingly enhanced by the incorporation of PGO. The degradation temperature of the nanocomposites is more than 30 °C higher than that of pure PVA by the addition of 0.7 wt% PGO, which shows good thermal stability. The water vapor permeability of the nanocomposites also decreases to 0.71 × 10-12 g cm/(cm2 s Pa), corresponding to 80% reduction than that of pure PVA. Moreover, the PVA/PGO nanocomposites also present enhanced conductive properties. The PVA/PGO nanocomposites with such outstanding properties show great promising applications in the fields of packaging, electronics, fuel cell industry, fiber, and so on.

  8. Physical Properties and Cellular Responses to Crosslinkable Poly(Propylene Fumarate)/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Kee-Won; Wang, Shanfeng; Yaszemski, Michael J.; Lu, Lichun

    2008-01-01

    A series of crosslinkable nanocomposites has been developed using hydroxyapatite (HA) nanoparticles and poly(propylene fumarate) (PPF). PPF/HA nanocomposites with four different weight fractions of HA nanoparticles have been characterized in terms of thermal and mechanical properties. To assess surface chemistry of crosslinked PPF/HA nanocomposites, their hydrophilicity and capability of adsorbing proteins have been determined using static contact angle measurement and MicroBCA protein assay kit after incubation with 10% fetal bovine serum (FBS), respectively. In vitro cell studies have been performed using MC3T3-E1 mouse pre-osteoblast cells to investigate the ability of PPF/HA nanocomposites to support cell attachment, spreading, and proliferation after 1, 4, and 7 days. By adding HA nanoparticles to PPF, the mechanical properties of crosslinked PPF/HA nanocomposites have not been increased due to the initially high modulus of crosslinked PPF. However, hydrophilicity and serum protein adsorption on the surface of nanocomposites have been significantly increased, resulting in enhanced cell attachment, spreading, and proliferation after 4 days of cell seeding. These results indicate that crosslinkable PPF/HA nanocomposites are useful for hard tissue replacement because of excellent mechanical strength and osteoconductivity. PMID:18403013

  9. Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films

    NASA Astrophysics Data System (ADS)

    Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.

    2018-04-01

    In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.

  10. Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Sajid, E-mail: sajidahmadiitkgp@gmail.com; Dubey, K.; Bhattacharya, Shovit

    2016-05-23

    Nearly 60% of the world’s useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research{sup [1]}. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel{sup [2]}. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe andmore » p-type SiGe-x wt.%TiB{sub 2} (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α{sup 2}/ρ) of SiGe alloy on addition of TiB{sub 2} upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.« less

  11. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhenhe; Kibria, Md Golam; AlOtaibi, Bandar

    Synergistic effect in alloys and plasmonic effect have both been explored for increasing the efficiency of water splitting. In depth understanding and comparison of their respective contributions in certain promising systems is highly desired for catalyst development, yet rarely investigated so far. We report herein our thorough investigations on a series of highly interesting nanocomposites composed of Pt, Au and C3N4 nanocomponents, which are designed to benefit from both synergistic and plasmonic effects. Detailed analyses led to an important conclusion that the contribution from the synergistic effect was at least 3.5 times that from the plasmonic effect in the bestmore » performing sample, Pt50Au50 alloy decorated C3N4. It showed remarkable turnover frequency of >1.6 mmol h-1 g-1 at room temperature. Our work provides physical insights for catalyst development by rationally designing samples to compare long-known synergistic effect with recently emerging, attractive plasmonic effect and represents the first case study in the field.« less

  12. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  13. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

    PubMed Central

    Moura, Duarte; Mano, João F.; Paiva, Maria C.; Alves, Natália M.

    2016-01-01

    Abstract Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. PMID:27877909

  14. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  15. Impact of yttria stabilized zirconia nanoinclusions on the thermal conductivity of n-type Si80Ge20 alloys prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Lahwal, Ali; Bhattacharya, S.; He, Jian; Wu, Di; Peterson, A.; Poon, S. J.; Williams, L.; Dehkordi, A. Mehdizadeh; Tritt, T. M.

    2015-04-01

    Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering. In this work, we report the preparation and thermoelectric study of SiGe-yttria stabilized zirconia (YSZ) nanocomposites prepared by Spark Plasma Sintering (SPS). We experimentally investigated the reduction of lattice thermal conductivity (κL) in the temperature range (30-800 K) of n-type Si80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20-40 nm diameter) into the Si-Ge matrix. These samples synthesized by using the SPS technique were found to have densities > 95% of the theoretical density. The thermal conductivity, at both low and high temperatures, was measured by steady state and laser flash techniques, respectively. At room temperature, we observed approximately a 50% reduction in the lattice thermal conductivity as result of adding 10% YSZ by volume to the Si80Ge20P2 host matrix. A phenomenological model developed by Callaway was used to corroborate both the temperature dependence and reduction of κ L over the measured temperature range (30-800 K) of both Si80Ge20P2 and Si80Ge20P2 + YSZ samples. The observed κL is discussed and interpreted in terms of various phonon scattering mechanisms such as alloy disorder, the Umklapp phonon scattering, and boundary scattering. In addition, a contribution from the phonon scattering by YSZ nanoparticles was further included to account for the κL of Si80Ge20P2 + YSZ sample. The theoretical calculations are in reasonably good agreement with the experimental results for both the Si80Ge20P2 and Si80Ge20P2 + YSZ alloys.

  16. A quantum dot-spore nanocomposite pH sensor.

    PubMed

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Physical properties of bifunctional BST/LSMO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran-Huarac, Juan, E-mail: baristary26@gmail.com; Morell, Gerardo; Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00936

    2014-02-28

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that domore » not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.« less

  18. Holographic patterning of organic-inorganic photopolymerizable nanocomposites

    NASA Astrophysics Data System (ADS)

    Sakhno, Oksana V.; Goldenberg, Leonid M.; Smirnova, Tatiana N.; Stumpe, J.

    2009-09-01

    We present here novel easily processible organic-inorganic nanocomposites suitable for holographic fabrication of diffraction optical elements (DOE). The nanocomposites are based on photocurable acrylate monomers and inorganic nanoparticles (NP). The compatibility of inorganic NP with monomers was achieved by capping the NP surface with proper organic shells. Surface modification allows to introduce up to 50wt.% of inorganic NP in organic media. Depending on the NP nature (metal oxides, phosphates, semiconductors, noble metals) and their properties, the materials for both efficient DOE and multifunctional elements can be designed. Organic-inorganic composites prepared have been successfully used for the effective inscription of periodic volume refractive index structures using the holographic photopolymerization method. The nanocomposite preparation procedure, their properties and optical performance of holographic gratings are reported. The use of functional NP makes it possible to obtain effective holographic gratings having additional physical properties such as light-emission or NLO. Some examples of such functional polymer-NP structures and their possible application fields are presented. The combination of easy photo-patterning of soft organic compounds with physical properties of inorganic materials in new nanocomposites and the flexibility of the holographic patterning method allow the fabrication of mono- and multifunctional one- and multi-dimensional passive or active optical and photonic elements.

  19. Dielectric Properties of PANI/CuO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ambalagi, Sharanabasamma M.; Devendrappa, Mahalesh; Nagaraja, Sannakki; Sannakki, Basavaraja

    2018-02-01

    The combustion method is used to prepare the Copper Oxide (CuO) nanoparticles. The nanocomposites of Polyaniline (PANI) by doping with copper oxide nanoparticles have synthesized at 10, 20, 30, 40 and 50 different weight percentages during the in-situ polymerization. The samples of nanocomposite of PANI-CuO were characterized by using X-Ray diffraction (XRD) technique. The physical properties such as dielectric constant, dielectric loss and A C conductivity of the nanocomposites are studied as a function of frequency in the range 5Hz-35MHz at room temperature. It is found that the dielectric constant decreases as the frequency increases. The dielectric constant it remains constant at higher frequencies and it is also observed that in particular frequency both the dielectric constant and dielectric loss are decreased as a weight percentage of CuO increased. In case of AC conductivity it is found that as the frequency increases the AC conductivity remains constant up to 3.56MHz and afterwards it increases as frequency increases. This is due to the increase in charge carriers through the hopping mechanism in the polymer nanocomposites. It is also observed that as a weight percentage of CuO increased the AC conductivity is also increasing at a particular frequency.

  20. Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Shelley, J. Stebbins

    2000-10-01

    Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets. Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual

  1. Recent Advances in Nanocomposite Materials of Graphene Derivatives with Polysaccharides

    PubMed Central

    Terzopoulou, Zoi; Kyzas, George Z.; Bikiaris, Dimitrios N.

    2015-01-01

    This review article presents the recent advances in syntheses and applications of nanocomposites consisting of graphene derivatives with various polysaccharides. Graphene has recently attracted much interest in the materials field due to its unique 2D structure and outstanding properties. To follow, the physical and mechanical properties of graphene are then introduced. However it was observed that the synthesis of graphene-based nanocomposites had become one of the most important research frontiers in the application of graphene. Therefore, this review also summarizes the recent advances in the synthesis of graphene nanocomposites with polysaccharides, which are abundant in nature and are easily synthesized bio-based polymers. Polysaccharides can be classified in various ways such as cellulose, chitosan, starch, and alginates, each group with unique and different properties. Alginates are considered to be ideal for the preparation of nanocomposites with graphene derivatives due to their environmental-friendly potential. The characteristics of such nanocomposites are discussed here and are compared with regard to their mechanical properties and their various applications. PMID:28787964

  2. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemicalmore » approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.« less

  3. Synthesis and characterization of intercalated polyaniline-clay nanocomposite using supercritical CO2

    NASA Astrophysics Data System (ADS)

    Abdelraheem, A.; El-Shazly, A. H.; Elkady, M. F.

    2018-05-01

    Lately, supercritical CO2 (SCCO2) have been getting great interest. It can be used in numerous applications because it is environmentally friendly, safe, comparatively low cost, and nonflammable. One of its applications is being a solvent in the synthesis of polymeric-clay nanocomposite. In this paper, intercalated polyaniline-clay nanocomposite (PANC) was prepared using SCCO2. The intercalation structure of polyaniline chains between clay layers was verified by various characterization techniques. Scanning electron microscope and transmission electron microscope (SEM-TEM) were used to show the morphology of the synthesized nanocomposite. The molecular structure of PANC nanocomposite was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The BET surface area and the conductivity of the nanocomposite were determined.

  4. Elastic Modulus and Thermal Conductivity of Thiolene/TiO2 Nanocomposites

    PubMed Central

    2017-01-01

    Metal oxide based polymer nanocomposites find diverse applications as functional materials, and in particular thiol-ene/TiO2 nanocomposites are promising candidates for dental restorative materials. The important mechanical and thermal properties of the nanocomposites, however, are still not well understood. In this study, the elastic modulus and thermal conductivity of thiol-ene/TiO2 nanocomposite thin films with varying weight fractions of TiO2 nanoparticles are investigated by using Brillouin light scattering spectroscopy and 3ω measurements, respectively. As the TiO2 weight fraction increases from 0 to 90%, the effective elastic longitudinal modulus of the films increases from 6.2 to 37.5 GPa, and the effective thermal conductivity from 0.04 to 0.76 W/m K. The former increase could be attributed to the covalent cross-linking of the nanocomposite constituents. The latter one could be ascribed to the addition of high thermal conductivity TiO2 nanoparticles and the formation of possible conductive channels at high TiO2 weight fractions. The linear dependence of the thermal conductivity on the sound velocity, reported for amorphous polymers, is not observed in the present nanocomposite system. PMID:29755637

  5. Environmental degradation of structured nanocomposites

    DTIC Science & Technology

    2017-03-01

    2 C . FOCUS AND APPROACH OF PRESENT STUDY ..............................6 II...9 C . FABRICATION OF EPOXY NANOCOMPOSITES ..........................10 D. ARTIFICIAL WEATHER EXPOSURE...42 C . DISCUSSION

  6. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films

    USDA-ARS?s Scientific Manuscript database

    The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...

  7. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  8. Self-sensing performance of MWCNT-low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Gupta, Tejendra K.; Kumar, S.; Khan, Amal Z.; Varadarajan, Kartik M.; Cantwell, Wesley J.

    2018-01-01

    Carbon nanotubes (CNTs) based polymer nanocomposites offer a range of remarkable properties. Here, we demonstrate self-sensing performance of low density polyethylene (LDPE)-multiwalled carbon nanotubes (MWCNTs) nanocomposites for the first time. The dispersion of the CNTs and the morphology of the nanocomposites was investigated using scanning electron microscopy, x-ray diffraction and Raman spectroscopic techniques. The thermal properties were measured using thermal gravimetric analysis and differential scanning calorimetry and were found to increase with increasing wt% of MWCNTs in LDPE matrix. An overall improvement in ultimate tensile strength, yield strength and Young’s modulus was found to be 59.6%, 48.5% and 129.3%, respectively for 5.0 wt% loading of MWCNTs. The electrical percolation threshold was observed at 1.0 wt% of MWCNTs and the highest electrical conductivity of 2.8 × 10-2 Scm-1 was observed at 5.0 wt% loading of MWCNTs. These piezo-resistive nanocomposites offer tunable self-sensing capabilities with gauge factors in the ranges of 17-52 and 42-530 in linear elastic (strain ˜3%) and inelastic regimes (strain ˜15%) respectively. Our demonstration would provide guidelines for the fabrication of low cost, self-sensing MWCNT-LDPE nanocomposites for potential use as civil water pipelines and landfill membranes.

  9. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  10. In Vitro Cytocompatibility of One- and Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites

    PubMed Central

    Farshid, Behzad; Lalwani, Gaurav; Sitharaman, Balaji

    2015-01-01

    This study investigates the in vitro cytocompatibility of one- and two-dimensional (1-D and 2-D) carbon and inorganic nanomaterial reinforced polymeric nanocomposites fabricated using biodegradable polymer poly (propylene fumarate), crosslinking agent N-vinyl pyrrolidone (NVP) and following nanomaterials: single- and multi- walled carbon nanotubes, single- and multi- walled graphene oxide nanoribbons, graphene oxide nanoplatelets, molybdenum disulfide nanoplatelets, or tungsten disulfide nanotubes dispersed between 0.02–0.2 wt% concentrations in the polymer. The extraction media of unreacted components, crosslinked nanocomposites and their degradation products between 1X-100X dilutions were examined for effects on viability and attachment employing two cell lines: NIH3T3 fibroblasts and MC3T3 pre-osteoblasts. The extraction media of unreacted PPF/NVP elicited acute dose-dependent cytotoxicity attributed to leaching of unreacted components into cell culture media. However, extraction media of crosslinked nanocomposites showed no dose dependent adverse effects. Further, all crosslinked nanocomposites showed high viability (78–100%), high cellular attachment (40–55%), and spreading that was confirmed by confocal and scanning electron microscopy. Degradation products of nanocomposites showed a mild dose-dependent cytotoxicity possibly due to acidic degradation components of PPF. In general, compared to PPF control, none of the nanocomposites showed significant differences in cellular response to the unreacted components, crosslinked nanocomposites and their degradation products. The initial minor cytotoxic response and lower cell attachment numbers were observed only for a few nanocomposite groups; these effects were absent at later time points for all PPF nanocomposites. The favorable cytocompatibility results for all the nanocomposites opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications. PMID:25367032

  11. Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair

    NASA Astrophysics Data System (ADS)

    Gutmanas, E. Y.; Gotman, I.; Sharipova, A.; Psakhie, S. G.; Swain, S. K.; Unger, R.

    2017-09-01

    In this paper we present a short review-scientific report on processing and properties, including in vitro degradation, of load bearing biodegradable nanocomposites as well as of macroporous 3D scaffolds for bone ingrowth. Biodegradable implantable devices should slowly degrade over time and disappear with ingrown of natural bone replacing the synthetic graft. Compared to low strength biodegradable polymers, and brittle CaP ceramics, biodegradable CaP-polymer and CaP-metal nanocomposites, mimicking structure of natural bone, as well as strong and ductile metal nanocomposites can provide to implantable devices both strengths and toughness. Nanostructuring of biodegradable β-TCP (tricalcium phosphate)-polymer (PCL and PLA), β-TCP-metal (FeMg and FeAg) and of Fe-Ag composites was achieved employing high energy attrition milling of powder blends. Nanocomposite powders were consolidated to densities close to theoretical by high pressure consolidation at ambient temperature—cold sintering, with retention of nanoscale structure. The strength of developed nanocomposites was significantly higher as compared with microscale composites of the same or similar composition. Heat treatment at moderate temperatures in hydrogen flow resulted in retention of nanoscale structure and higher ductility. Degradation of developed biodegradable β-TCP-polymer, β-TCP-metal and of Fe-Ag nanocomposites was studied in physiological solutions. Immersion tests in Ringer's and saline solution for 4 weeks resulted in 4 to 10% weight loss and less than 50% decrease in compression or bending strength, the remaining strength being significantly higher than the values reported for other biodegradable materials. Nanostructuring of Fe-Ag based materials resulted also in an increase of degradation rate because of creation on galvanic Fe-Ag nanocouples. In cell culture experiments, the developed nanocomposites supported the attachment the human osteoblast cells and exhibited no signs of cytotoxicity

  12. Preparation of Tween 80-Zn/Al-Levodopa-Layered Double Hydroxides Nanocomposite for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Hussein, Mohd Zobir; Fakurazi, Sharida

    2014-01-01

    We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay). PMID:24782658

  13. The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films.

    PubMed

    Rapacz-Kmita, Alicja Rapacz-Kmita; Pierchała, Małgorzata Karolina; Tomas-Trybuś, Anna; Szaraniec, Barbara; Karwot, Janusz

    2017-01-01

    The aim of this study was to evaluate the effect of the not activated (unmodified) montmorillonite (MMT) filler on the antibacterial properties of polymer nanocomposites with a biodegradable polylactide (PLA) matrix. The subject of research was selected to verify the reports on the lack of antibacterial properties of unmodified montmorillonite in nanocomposites and to investigate the potential conditions of their manufacturing which are decisive for the resulting properties. Evaluation of antibacterial and mechanical properties of both the starting materials and the obtained nanocomposites filled with layered silicates as well as the wettability of the materials, measured by a sitting drop method was made on samples in the form of a film. The results show that the surface wettability of the polymer nanocomposites did not exhibit significant change compared to the film of neat PLA. However, a significant improvement in the mechanical and antimicrobial properties of the nanocomposite films obtained in a specific solvent casting process of the nanocomposite preceded by exfoliation of the film in an ultrasonic homogenizer was demonstrated. The antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis was also observed, and, moreover, the montmorillonite-containing films revealed a zone of inhibition of bacterial growth when tested against the lactosepositive bacteria of the Enterobacteriaceae family, which are present in the waste water. The advantageous properties of the obtained PLA/MMT nanocomposites suggest that the unmodified montmorillonite may be potentially used as filler for polymer films in the packaging industry.

  14. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  15. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites

    PubMed Central

    Li, Feng; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-01-01

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed. PMID:29659504

  16. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  17. Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Mohamad Haafiz, M K; Zakaria, Zainoha

    2015-11-01

    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.

    PubMed

    Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-04-16

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  19. Synthesis and applications of MANs/poly(MMA-co-BA) nanocomposite latex by miniemulsion polymerization

    PubMed Central

    Chen, Huayao; Zhou, Xinhua; Gunasekaran, Sundaram

    2017-01-01

    We have synthesized core-shell structured 3-methacryloxypropyltrimethoxysilane (MPS) functionalized antimony-doped tin oxide nanoparticles (MANs)–poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-BA, PMB) nanocomposite latex particles via miniemulsion polymerization method. Polymerizable anionic surfactant DNS-86 (allyloxy polyoxyethylene(10) nonyl ammonium sulfate) was first introduced to synthesize core-shell nanocomposite. The morphologies of synthesized MANs and MANs/PMB latex nanocomposite particles were studied with transmission electron microscopy, which revealed particles, on average 70 nm in size, with a core-shell structure. Owing to the uniformity and hydrophobicity of MANs, the MANs-embedded PMB latex nanocomposite can be tailored more precisely than other nanoparticles-embedded nanocomposites. Films incorporating 10 wt% of MANs in the MAN/PMB latex nanocomposite exhibit good transmittance in the visible region, and excellent opacity in the near infrared region. The MANs/PMB nanocomposite film also appears suitable for heat insulation applications. PMID:29291076

  20. Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith.

    PubMed

    Li, Na; Hu, Changwen; Cao, Minhua

    2013-05-28

    CoNi alloy nanoparticles anchored on a spherical carbon monolith (CoNi-C) were prepared by a solvothermal route and subsequent heat treatment without any templates. Their permittivity and permeability behaviors were studied in the frequency range of 2-18 GHz. The CoNi-C composites showed the best microwave absorbing performances compared to those of Co-C and Ni-C. The maximum reflection loss of the CoNi-C nanocomposites can reach -50.2 dB at 7.7 GHz with samples of 4 mm in thickness, better than that of the Ni-C composites, while the Co-C composites showed almost no absorption at all. The absorption mechanism of the three absorbents was also discussed.

  1. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    milling. Detailed systematic impedance analysis , electronic conductivity measurement and high-resolution electron microscopy studies have shown that...carbon particles determined by TEM analysis . Results of the studies so far have shown that Sn and Si-based nanocomposites appear to be quite promising... Analysis of the As-milled Powders 117 2. Electrochemical Characteristics of Si/SiC Nanocomposites 120 3. Microstructural/Morphological Analysis of

  2. Water-Assisted Production of Thermoplastic Nanocomposites: A Review.

    PubMed

    Karger-Kocsis, József; Kmetty, Ákos; Lendvai, László; Drakopoulos, Stavros X; Bárány, Tamás

    2014-12-29

    Water-assisted, or more generally liquid-mediated, melt compounding of nanocomposites is basically a combination of solution-assisted and traditional melt mixing methods. It is an emerging technique to overcome several disadvantages of the above two. Water or aqueous liquids with additives, do not work merely as temporary carrier materials of suitable nanofillers. During batchwise and continuous compounding, these liquids are fully or partly evaporated. In the latter case, the residual liquid is working as a plasticizer. This processing technique contributes to a better dispersion of the nanofillers and affects markedly the morphology and properties of the resulting nanocomposites. A survey is given below on the present praxis and possible future developments of water-assisted melt mixing techniques for the production of thermoplastic nanocomposites.

  3. Water-Assisted Production of Thermoplastic Nanocomposites: A Review

    PubMed Central

    Karger-Kocsis, József; Kmetty, Ákos; Lendvai, László; Drakopoulos, Stavros X.; Bárány, Tamás

    2014-01-01

    Water-assisted, or more generally liquid-mediated, melt compounding of nanocomposites is basically a combination of solution-assisted and traditional melt mixing methods. It is an emerging technique to overcome several disadvantages of the above two. Water or aqueous liquids with additives, do not work merely as temporary carrier materials of suitable nanofillers. During batchwise and continuous compounding, these liquids are fully or partly evaporated. In the latter case, the residual liquid is working as a plasticizer. This processing technique contributes to a better dispersion of the nanofillers and affects markedly the morphology and properties of the resulting nanocomposites. A survey is given below on the present praxis and possible future developments of water-assisted melt mixing techniques for the production of thermoplastic nanocomposites. PMID:28787925

  4. Multicolored Emission and Lasing in DCM-Adamantane Plasma Nanocomposite Optical Films.

    PubMed

    Alcaire, María; Cerdán, Luis; Zamarro, Fernando Lahoz; Aparicio, Francisco J; González, Juan Carlos; Ferrer, Francisco J; Borras, Ana; Espinós, Juan Pedro; Barranco, Angel

    2017-03-15

    We present a low-temperature versatile protocol for the fabrication of plasma nanocomposite thin films to act as tunable emitters and optical gain media. The films are obtained by the remote plasma-assisted deposition of a 4-(dicyano-methylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) laser dye alongside adamantane. The experimental parameters that determine the concentration of the dye in the films and their optical properties, including light absorption, the refractive index, and luminescence, are evaluated. Amplified spontaneous emission experiments in the DCM/adamantane nanocomposite waveguides show the improvement of the copolymerized nanocomposites' properties compared to films that were deposited with DCM as the sole precursor. Moreover, one-dimensional distributed feed-back laser emission is demonstrated and characterized in some of the nanocomposite films that are studied. These results open new paths for the optimization of the optical and lasing properties of plasma nanocomposite polymers, which can be straightforwardly integrated as active components in optoelectronic devices.

  5. Assessment of morphology and property of graphene oxide-hydroxypropylmethylcellulose nanocomposite films.

    PubMed

    Ghosh, Tapas Kumar; Gope, Shirshendu; Mondal, Dibyendu; Bhowmik, Biplab; Mollick, Md Masud Rahaman; Maity, Dipanwita; Roy, Indranil; Sarkar, Gunjan; Sadhukhan, Sourav; Rana, Dipak; Chakraborty, Mukut; Chattopadhyay, Dipankar

    2014-05-01

    Graphene oxide (GO) was synthesized by Hummer's method and characterized by using Fourier transform infrared spectroscopy and Raman spectroscopy. The as synthesized GO was used to make GO/hydroxypropylmethylcellulose (HPMC) nanocomposite films by the solution mixing method using different concentrations of GO. The nanocomposite films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermo-gravimetric analysis. Mechanical properties, water absorption property and water vapor transmission rate were also measured. XRD analysis showed the formation of exfoliated HPMC/GO nanocomposites films. The FESEM results revealed high interfacial adhesion between the GO and HPMC matrix. The tensile strength and Young's modulus of the nanocomposite films containing the highest weight percentage of GO increased sharply. The thermal stability of HPMC/GO nanocomposites was slightly better than pure HPMC. The water absorption and water vapor transmission rate of HPMC film was reduced with the addition of up to 1 wt% GO. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. PLGA/Ag nanocomposites: in vitro degradation study and silver ion release.

    PubMed

    Fortunati, E; Latterini, L; Rinaldi, S; Kenny, J M; Armentano, I

    2011-12-01

    New nanocomposite films based on a biodegradable poly (DL-Lactide-co-Glycolide) copolymer (PLGA) and different concentration of silver nanoparticles (Ag) were developed by solvent casting. In vitro degradation studies of PLGA/Ag nanocomposites were conducted under physiological conditions, over a 5 week period, and compared to the behaviour of the neat polymer. Furthermore the silver ions (Ag(+)) release upon degradation was monitored to obtain information on the properties of the nanocomposites during the incubation. The obtained results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles that do not affect the degradation mechanism of PLGA polymer in the nanocomposite. However results clearly evinced the stabilizing effect of the Ag nanoparticles in the PLGA polymer and the mineralization process induced by the combined effect of silver and nanocomposite surface topography. The Ag(+) release can be controlled by the polymer degradation processes, evidencing a prolonged antibacterial effect.

  7. Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites

    PubMed Central

    2017-01-01

    Inspired by the ability of the sea cucumber to (reversibly) increase the stiffness of its dermis upon exposure to a stimulus, we herein report a stimuli-responsive nanocomposite that can reversibly increase its stiffness upon exposure to warm water. Nanocomposites composed of cellulose nanocrystals (CNCs) that are grafted with a lower critical solution temperature (LCST) polymer embedded within a poly(vinyl acetate) (PVAc) matrix show a dramatic increase in modulus, for example, from 1 to 350 MPa upon exposure to warm water, the hypothesis being that grafting the polymers from the CNCs disrupts the interactions between the nanofibers and minimizes the mechanical reinforcement of the film. However, exposure to water above the LCST leads to the collapse of the polymer chains and subsequent stiffening of the nanocomposite as a result of the enhanced CNC interactions. Backing up this hypothesis are energy conserving dissipative particle dynamics (EDPD) simulations which show that the attractive interactions between CNCs are switched on upon the temperature-induced collapse of the grafted polymer chains, resulting in the formation of a percolating reinforcing network. PMID:28852703

  8. Fabrication, characterization and gas sensing studies of PPy/MWCNT/SLS nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, D. C., E-mail: dctiwari2001@yahoo.com; Atri, Priyanka, E-mail: dctiwari2001@yahoo.com; Sharma, R.

    2014-04-24

    Multiwall carbon nanotubes (MWCNT) coated with polypyrrole nanocomposite was prepared by in-situ chemical oxidative polymerization method in the presence of surfactant (SLS). The scanning electron microscope (SEM) pictures indicate the core shell structure of PPy/MWCNT/SLS nanocomposite. Nature of the prepared material was investigated by X-ray diffraction spectroscopy. This nanocomposite shows the excellent gas sensing behaviour for ammonia gas at 150 ppm and 300 ppm levels.

  9. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  10. Conjugated polymer/graphene oxide nanocomposite as thermistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Girish M., E-mail: varadgm@gmail.com; Deshmukh, Kalim

    2015-06-24

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  11. Transportation of drug-gold nanocomposites by actinomyosin motor system

    NASA Astrophysics Data System (ADS)

    Kaur, Harsimran; Chaudhary, Archana; Kaur, Inderpreet; Singh, Kashmir; Bharadwaj, Lalit M.

    2011-06-01

    Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson's disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV-Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 μm/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0-6.0 μm/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.

  12. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  13. Te/C nanocomposites for Li-Te Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  14. Transparent Large Strain Thermoplastic Polyurethane Magneto-Active Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Carpen, Ileana; Peck, John; Sola, Francisco; Bail, Justin; Lerch, Bradley; Meador, Michael

    2010-01-01

    Smart adaptive materials are an important class of materials which can be used in space deployable structures, morphing wings, and structural air vehicle components where remote actuation can improve fuel efficiency. Adaptive materials can undergo deformation when exposed to external stimuli such as electric fields, thermal gradients, radiation (IR, UV, etc.), chemical and electrochemical actuation, and magnetic field. Large strain, controlled and repetitive actuation are important characteristics of smart adaptive materials. Polymer nanocomposites can be tailored as shape memory polymers and actuators. Magnetic actuation of polymer nanocomposites using a range of iron, iron cobalt, and iron manganese nanoparticles is presented. The iron-based nanoparticles were synthesized using the soft template (1) and Sun's (2) methods. The nanoparticles shape and size were examined using TEM. The crystalline structure and domain size were evaluated using WAXS. Surface modifications of the nanoparticles were performed to improve dispersion, and were characterized with IR and TGA. TPU nanocomposites exhibited actuation for approximately 2wt% nanoparticle loading in an applied magnetic field. Large deformation and fast recovery were observed. These nanocomposites represent a promising potential for new generation of smart materials.

  15. Deposition of nanocomposite Cu-TiO2 using heterogeneous colliding plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Thareja, Raj K.; Singh, Ravi Pratap; Costello, John T.

    2018-03-01

    The formation of CuTiO2 nanocomposites has been observed in an experiment in which laser plasma plumes of Cu and Ti collide and stagnate in an oxygen atmosphere. The inherent advantage of this technique lies in its simplicity and flexibility where laser, target composition and geometry along with ambient atmosphere are all controllable parameters through which the stoichiometry of the deposited nanocomposites may be selected. The experiment has been performed at three oxygen ambient pressures 10-4, 10-2, 100 mbar and we observe its effect on stoichiometry, and morphology of the deposited nanocomposites. Here, we show how the stoichiometry of deposited nanocomposites can be readily controlled by changing just one parameter, namely the ambient oxygen pressure. The different peaks of photoluminescence spectra λ =390{ nm}( {E=3.18{ eV}} ) corresponding to the anatase phase of TiO2, along with the peaks at λ = 483 nm ( E = 2.56 eV) and 582 nm ( E = 2.13 eV) of deposited nanocomposites, shows the doping/blending effect on the band gaps which may potentially be of value in solar cell technology. The technique can, in principle, be extended to include nanocomposites of other materials making it potentially more widely applicable.

  16. Chemically stabilized reduced graphene oxide/zirconia nanocomposite: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Sagadevan, Suresh; Zaman Chowdhury, Zaira; Enamul Hoque, Md; Podder, Jiban

    2017-11-01

    In this research, chemical method was used to fabricate reduced graphene oxide/zirconia (rGO/ZrO2) nanocomposite. X-ray Diffraction analysis (XRD) was carried out to examine the crystalline structure of the nanocomposites. The nanocomposite prepared here has average crystallite size of 14 nm. The surface morphology was observed using scanning electron microscopic analysis (SEM) coupled with electron dispersion spectroscopy (EDS) to detect the chemical element over the surface of the nanocomposites. High-resolution Transmission electron microscopic analysis (HR-TEM) was carried out to determine the particle size and shape of the nanocomposites. The optical property of the prepared samples was determined using UV-visible absorption spectrum. The functional groups were identified using FTIR and Raman spectroscopic analysis. Efficient, cost effective and properly optimized synthesis process of rGO/ZrO2 nanocomposite can ensure the presence of infiltrating graphene network inside the ZrO2 matrix to enhance the electrical properties of the hybrid composites up to a greater scale. Thus the dielectric constant, dielectric loss and AC conductivity of the prepared sample was measured at various frequencies and temperatures. The analytical results obtained here confirmed the homogeneous dispersion of ZrO2 nanostructures over the surface of reduced graphene oxide nanosheets. Overall, the research demonstrated that the rGO/ZrO2 nano-hybrid structure fabricated here can be considered as a promising candidate for applications in nanoelectronics and optoelectronics.

  17. Metallic Nanocomposites as Next-Generation Thermal Interface Materials: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Narumanchi, Sreekant V; King, Charles C

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownianmore » motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of

  18. Carbon nanotube network evolution during deformation of PVDF-MWNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Rizvi, Reza; Naguib, Hani E.

    2013-04-01

    The emergence of novel electronic systems and their requirements have necessitated the evolution of new material classes. The traditional electronic semiconductors and components are shifting from silicon based substrates to polymers and other organic compounds. Sensor components are no exceptions, where compliant polymeric materials offer the possibility of flexible electronics. This paper examines the fabrication and characterization of piezoresistive nanocomposites for pressure sensing applications. The matrix material employed was Polyvinylidene Fluoride (PVDF). The PVDF phase was reinforced with conductive particles, in order to form a conductive filler network throughout the nanocomposite. Multiwall carbon nanotubes (MWNT) were selected as conductive particles to form the networks. The composites were prepared by melt mixing the PVDF and conductive particles in compositions ranging from 0.25 to 10 wt% conductive particle in PVDF. The dielectric permittivity and electrical conductivity of the composites was characterized and the electrical percolation behavior of PVDF nanocomposites fitted to the statistical percolation model. Scanning electron was employed to understand the morphology of the filler networks in the PVDF nanocomposites. Quasi-static piezoresistance of the nanocomposites was characterized using a custom-built force-resistance measurement setup under compressive loading conditions.

  19. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties.

    PubMed

    Li, Yang; Ren, Hongfeng; Ragauskas, Arthur J

    2011-08-01

    Novel rigid polyurethane nanocomposite foams have been prepared by the polymerization of a sucrose-based polyol, a glycerol-based polyol and polymeric diphenylmethane diisocyanate in the presence of cellulose whiskers. Varying amounts of sulfuric acid hydrolyzed cellulose whiskers (0.25, 0.50, 0.75 and 1.00 wt%) prepared from a commercial fully bleached softwood kraft pulp were incorporated to investigate the effect of its dosage on the mechanical and thermal properties of polyurethane nanocomposites. Fourier transform infrared spectra of the nanocomposite foams suggested that additional hydrogen bonds were developed and crosslinking occurred between the hydroxyl groups of cellulose whiskers and isocyanate groups which increased the phase separation of soft and hard segments in the polyurethane. The closed cells of control foam and nanocomposite foams were homogeneously dispersed and the cell sizes were approximately 350 microm in diameter as observed by scanning electron microscope. A substantial improvement of mechanical properties at low whisker content (< or = 1.00 wt%) was obtained, especially the compressive strength and modulus at 1.00 wt% whiskers content which were increased by 269.7% and 210.0%, respectively. Thermal stability of the nanocomposites was also enhanced as determined by differential scanning calorimetry and thermogravimetric analysis.

  20. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    PubMed Central

    Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing

    2017-01-01

    In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. PMID:28737689

  1. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    PubMed Central

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-01-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550

  2. Liquid crystalline epoxy nanocomposite material for dental application.

    PubMed

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  3. TiO2 nanocomposite for the controlled release of drugs against pathogens causing wound infections

    NASA Astrophysics Data System (ADS)

    Devanand Venkatasubbu, G.; Nagamuthu, S.; Anusuya, T.; Kumar, J.; Chelliah, Ramachandran; Rani Ramakrishnan, Sudha; Antony, Usha; Khan, Imran; Oh, Deog-Hwan

    2018-02-01

    Chitosan titanium dioxide nanocomposite has been used for wound healing. Titanium dioxide (TiO2) nanoparticles are synthesised and made in to nanocomposite along with chitosan. Curcumin nanoparticles are synthesised. Three different drugs with antimicrobial activity are incorporated into the chitosan/TiO2nanocomposite. Ciprofloxacin, amoxicillin and curcumin nanoparticles are incorporated within the chitosan/TiO2 nanoparticles. The nanoparticles and nanocomposite are characterized with XRD, FTIR, TEM and SEM. Drug loading was found to be around 45% for all the three drug molecules. The drug release profile shows a controlled release of drug molecules from the nanocomposite. Antibacterial studies shows a good inhibition of bacterial species by the nanocomposites.

  4. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  5. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects.

    PubMed

    Wu, Tongfei; Frydrych, Martin; O'Kelly, Kevin; Chen, Biqiong

    2014-07-14

    Biodegradable and biocompatible materials with shape-memory effects (SMEs) are attractive for use as minimally invasive medical devices. Nanocomposites with SMEs were prepared from biodegradable poly(glycerol sebacate urethane) (PGSU) and renewable cellulose nanocrystals (CNCs). The effects of CNC content on the structure, water absorption, and mechanical properties of the PGSU were studied. The water-responsive mechanically adaptive properties and shape-memory performance of PGSU-CNC nanocomposites were observed, which are dependent on the content of CNCs. The PGSU-CNC nanocomposite containing 23.2 vol % CNCs exhibited the best SMEs among the nanocomposites investigated, with the stable shape fixing and shape recovery ratios being 98 and 99%, respectively, attributable to the formation of a hydrophilic, yet strong, CNC network in the elastomeric matrix. In vitro degradation profiles of the nanocomposites were assessed with and without the presence of an enzyme.

  6. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  7. Degradation of Nylon-6/Clay Nanocomposites in NO(x)

    NASA Astrophysics Data System (ADS)

    Shelley, J. S.; Devries, K. L.

    2000-04-01

    Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the 1993 Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NOx. Nylon-6 fibers are severely degraded by interaction with NOx and other pollutants, showing a strong synergism between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to non-diffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/day nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellar surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NOx. The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume will be discussed along with fracture toughness of the materials.

  8. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  9. Thermal Behaviour of Nanocomposites based on Glycerol Plasticized Thermoplastic Starch and Cellulose Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kaushik, Anupama; Kaur, Ramanpreet

    2011-12-01

    The objective of this study was to study the thermal behaviour of cellulose nanocrystals/TPS based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WAXRD & TEM. These nanocrystals were then dispersed in glycerol plasticized starch in varying proportions and films were cast. The thermal degradation of thermoplastic starch/cellulose nanocrystallite nanocomposites was studied using TGA under nitrogen atmosphere. Thermal degradation was carried out for nanocomposites at a rate of 10 °C/min and at different rates under nitrogen atmosphere namely 2, 5, 10, 20 and 40 °C/min for nanocomposites containing 10% cellulose nanocrystals. Ozawa and Flynn and Kissinger methods were used to determine the apparent activation energy of these nanocomposites. The addition of cellulose nanocrystallites produced a significant effect on the activation energy for thermal degradation of the composites materials in comparison with the matrix alone. These nanocomposites are potential applicant for food packaging applications.

  10. Structure and corrosion behaviour of electrodeposited Co-Mo/TiO2 nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Krawiec, H.; Vignal, V.; Latkiewicz, M.; Herbst, F.

    2018-01-01

    The structure and the corrosion behaviour in the Ringer's solution of Co-Mo/TiO2 nano-composite coatings have been investigated. They consist of aggregates of TiO2 nanoparticles uniformly distributed in a Co-Mo alloy matrix (crystallite size of about 2 nm). Both nodular (thickness less than 20 μm) and globular structures (thickness greater than 20 μm) have been observed using field-emission scanning electron microscopy. Under potentiostatic control (in Ringer's solution), oxidation of the coating first occurs followed by (with increasing applied potential) both oxidation and selective dissolution of Co. At the OCP value, Co is oxidized in the form of Co2+-based compounds (CoO, Co(OH)2 or α-CoMoO4) in the coating. This process only occurs in the outermost part of the coating. Therefore, the bulk properties of the coating are not affected after long-term ageing in the Ringer's solution at OCP.

  11. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  12. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  13. Structure and magnetic properties of the Nd9.5Fe84.5B6 alloy subjected to severe plastic deformation and annealing

    NASA Astrophysics Data System (ADS)

    Menushenkov, V. P.; Shchetinin, I. V.; Chernykh, S. V.; Savchenko, A. G.; Gorshenkov, M. V.; Zhukov, D. G.

    2017-10-01

    The effect of severe plastic deformation (SPD) by torsion and subsequent annealing on the structure and magnetic properties of the cast Nd9.5Fe84.5B6 alloy is studied. SPD by torsion is shown to lead to partial amorphization of the Nd2Fe14B phase and the precipitation of α-Fe; subsequent annealing results in the crystallization of the amorphous phase and the formation of a nanocomposite Nd2Fe14B/α-Fe structure. After SPD by torsion at 20 revolutions and annealing at 873 K, the (101) texture is formed; in this case, the coercive force is H c = 360 kA/m and the maximum energy product is ( BH) max = 166 kJ/m3. The residual magnetization and the squareness ratio of the hysteretic loop of the textured alloy decrease as the ambient temperature decreases.

  14. Effect of one-step polishing system on the color stability of nanocomposites.

    PubMed

    Alawjali, S S; Lui, J L

    2013-08-01

    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system. The nanocomposites tested were Tetric EvoCeram, Grandio and Herculite Précis. A total of 120 discs (40/nanocomposite, 8mm×2mm) were fabricated. Ten specimens for each nanocomposite cured under Mylar strips served as the control. The other specimens were polished with OptraPol, OneGloss and Occlubrush immersed in coffee (Nescafé) up to seven days. Color measurements were made with a spectrophotometer at baseline and after one and seven days. Two way repeated measure ANOVA, two way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The immersion time was a significant factor in the discoloration of the nanocomposites. The effect of three one-step polishing systems on the color stability was also significant. The color change values of the materials cured against Mylar strips were the greatest. The lowest mean color change values were from the Occlubrush polished groups. The effect of the three different types of nanocomposite on the color change was significant. The highest color change values were with Tetric EvoCeram groups. The lowest color change values were with Herculite Précis groups. The color change of nanocomposite resins is affected by the type of composite, polishing procedure and the period of immersion in the staining agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. High energy density in PVDF nanocomposites using an optimized nanowire array.

    PubMed

    Guo, Ru; Luo, Hang; Liu, Weiwei; Zhou, Xuefan; Tang, Lin; Zhou, Kechao; Zhang, Dou

    2018-06-22

    TiO2 nanowire arrays are often utilized to prepare high performance polymer nanocomposites, however, the contribution to the energy density is limited due to their non-ferroelectric characteristics. A nanocomposite with an optimized nanowire array combining the ferroelectric properties of lead zirconate titanate (PZT) with TiO2, readily forming nanowires (denoted as a TiO2-P nanowire array), is prepared to enhance the permittivity. Poly(vinylidene fluoride) (PVDF) is used as the polymer matrix due to its high breakdown strength, e.g. 600-700 kV mm-1. As a result, the permittivity and breakdown electric field reach 53 at 1 kHz and 550 kV mm-1, respectively. Therefore, the nanocomposites achieve a higher discharge energy density of 12.4 J cm-3 with excellent cycle stability, which is the highest among nanocomposites based on a nanowire array as a filler in a PVDF matrix. This work provides not only a feasible approach to obtain high performance dielectric nanocomposites, but also a wide range of potential applications in the energy storage and energy harvesting fields.

  16. Nutraceutically inspired pectin-Mg(OH)₂ nanocomposites for bioactive packaging applications.

    PubMed

    Moreira, Francys K V; De Camargo, Lais A; Marconcini, José M; Mattoso, Luiz H C

    2013-07-24

    This paper reports on the development of bioactive edible films based on pectin as a dietary matrix and magnesium hydroxide (Mg(OH)2) nanoplates as a reinforcing filler. Nanocomposites of high-methoxyl (HM) and low-methoxyl (LM) pectins were prepared using the casting method at concentrations of Mg(OH)2 ranging from 0.5 to 5 wt %. Atomic force microscopy and FTIR spectroscopy were employed to characterize the nanocomposite structure. The tensile properties and thermal stability of the nanocomposites were also examined to ascertain the effect of Mg(OH)2 inclusion and degree of methoxylation. The results provided evidence that the Mg(OH)2 nanoplates were uniformly dispersed and interacted strongly with the film matrix. The mechanical and thermal properties were significantly improved in the nanocomposite films compared to the control. Mg(OH)2 nanoplates were more effective in improving properties of LM pectin. Preliminary migration studies using arugula leaves confirmed that pectin-Mg(OH)2 nanocomposites can release magnesium hydroxide by contact, demonstrating their potential for magnesium supplementation in bioactive packaging.

  17. Morphology and Admittance Spectroscopy of Cellulose Acetate/Graphene Quantum Dots Nanocomposites

    NASA Astrophysics Data System (ADS)

    Arthisree, D.; Joshi, Girish M.; Kumar, Annamalai Senthil

    Graphene quantum dots (GQDs) are considered as fascinating materials feasible for biological, optoelectronic devices, energy and environmental applications. Casting nanocomposite films for technological application is a challenging research interest. Cellulose acetate (CA) is one of the most abundant, economic, environmental friendly and biodegradable biomaterials. It has been found that CA is a preferred composite matrix to prepare recasting films, due to its efficient antifouling feature. In the present investigation, we exhibited preparation of CA/GQD nanocomposite by solution blending as a function of GQD loading 0.1-0.5wt.%. Morphology and electrical properties were examined as a function of GQD loading. The nanocomposite was characterized by impedance spectroscopy, and the measured admittance (Y) was plotted against temperature across broadband frequency. The magnitude of Y exhibits direct relation under the varying temperature. The morphology of the nanocomposites was observed by atomic force microscope technique in contact mode. Collective observation from our results is that it can be revealed that CA/GQD nanocomposites are suitable for thermal sensing applications.

  18. Biochar-based nano-composites for the decontamination of wastewater: A review.

    PubMed

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Protein cage assisted metal-protein nanocomposite synthesis: Optimization of loading conditions

    NASA Astrophysics Data System (ADS)

    Sana, Barindra; Calista, Marcia; Lim, Sierin

    2012-11-01

    Ferritin is an iron-storage protein in most living systems with a cage-like structure. It has inherent property to form metallic nanocore within its cavity. The metallic core formed within the Archaeoglobus fulgidus ferritin cavity is stabilized by modulating the protein structure by site directed mutagenesis. Encapsulation protocol of various metals within the engineered ferritin cage (AfFtn-AA) is optimized. Dense metallic cores are visualized using electron microscopy and the bound metal was quantified by ICP-spectrometry. The AfFtn-AA is loaded with up to about 350 cobalt, 2000 chromium, and as high as 7000 iron atoms, separately. The metal-protein nanocomposites formed by encapsulation of cobalt, chromium, and iron are studied. Magnetic resonance imaging of the agarose embedded nanocomposites shows brightening of T1-weighted images and signal loss of T2-weighted images with increasing concentration of the nanocomposites. Shortening of magnetic relaxation times in the presence of the nanocomposites confirm their ability to enhance magnetic relaxation rate and suggests that the nanocomposites have potential application as MRI contrast agent.

  20. a Study of Nanocomposite Coatings on the Surface of Ship Exhaust Pipe

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng

    In order to improve the high temperature oxidation resistance of exhaust pipes, the nanocomposite coatings are carried out on the surface of exhaust pipe by pulsed current electrodeposition technology, and the microstructure and oxidation behavior of the nanocomposite coatings are investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and oxidation resistance of nanocomposite coatings in presence of attapulgite and cerium oxide CeO2. The results show that the amount of the attapulgite-CeO2 has significant influence on the structural properties of nanocomposite coatings. The surface of coating becomes more compact and smooth with the increase of the amount of the attapulgite and CeO2. Furthermore, the anti-oxidation performances of the nanocomposite coatings formed with attapulgite and CeO2 were both better than those of the composite coatings formed without attapulgite and CeO2.

  1. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    DOEpatents

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  2. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics.

    PubMed

    Morsi, Rania E; Alsabagh, Ahmed M; Nasr, Shimaa A; Zaki, Manal M

    2017-04-01

    Multifunctional nanocomposites of chitosan with silver nanoparticles, copper nanoparticles and carbon nanotubes either as bi- or multifunctional nanocomposites were prepared. Change in the overall morphology of the prepared nanocomposites was observed; carbon nanotubes, Ag NPs and Cu NPs are distributed homogeneously inside the polymer matrix individually in the case of the bi-nanocomposites while a combination of different dimensional shapes; spherical NPs and nanotubes was observed in the multifunctional nanocomposite. Multifunctional nanocomposites has a higher antimicrobial activity, in relative short contact times, against both Gram negative and Gram positive bacteria; E. coli, Staphylococcus aureus; respectively in addition to the fungal strain; Aspergillus flavus isolated from local wastewater sample. The nanocomposites are highly differentiable at the low contact time and low concentration; 1% concentration of the multifunctional nanocomposite is very effective against the tested microbes at contact time of only 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Space charge effects on the dielectric response of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang

    2017-08-01

    Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.

  4. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  5. Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

    PubMed Central

    Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

    2012-01-01

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

  6. Organic-vapor detection using carbon-nanotubes nanocomposite microacoustic sensors

    NASA Astrophysics Data System (ADS)

    Penza, M.; Tagliente, M. A.; Aversa, P.; Cassano, G.

    2005-06-01

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) ST,X quartz 315 and 433 MHz two-port resonator oscillators. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic matrix was prepared by Langmuir-Blodgett technique with a fixed SWCNTs weight filler-content as nanostructured and nanosensing interface, for vapor detection at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray Specular Reflectivity and Field-Emission Gun Scanning Electron Microscopy, respectively. The measured acoustic sensing characteristics indicate that the SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, and toluene) of the SWCNTs/CdA nanocomposite is up to two times higher than that of unembedded CdA device; also the SWCNTs/CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials and increases with SAW oscillating frequency with a linear dependence in the frequency change response up to a very low sub-ppm limit of detection.

  7. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gómez, Humberto; Ram, Manoj K.; Alvi, Farah.; Villalba, P.; Stefanakos, Elias (Lee); Kumar, Ashok

    A novel graphene-polyaniline nanocomposite material synthesized using chemical precipitation technique is reported as an electrode for supercapacitors. The graphene (G)-polyaniline (PANI) nanocomposite film was dissolved in N-Methyl-2-pyrrolidone (NMP) and characterized using Raman, FTIR, Scanning Electron Microscopy, Transmission Electron Microscopy, and cyclic voltammetry (CV) techniques. The interesting composite structure could be observed using different ratios of graphene and aniline monomer. The supercapacitor is fabricated using G-PANI in N-Methyl-2-pyrrolidone (NMP) and G-PANI-Nafion films on graphite electrodes. A specific capacitance of 300-500 F g -1 at a current density of 0.1 A g -1 is observed over graphene-PANI nanocomposite materials. The aim of this study is to tailor the properties of the capacitors through the optimization of their components, and packaging towards a qualification for portable systems applications. Based on experimental data shown in this work, conducting polymer nanocomposite capacitor technology could be viable, and could also surpass existing technologies when such a novel approach is used.

  8. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    PubMed Central

    Muñoz-Bonilla, Alexandra; Cerrada, María L.; Fernández-García, Marta; Kubacka, Anna; Ferrer, Manuel; Fernández-García, Marcos

    2013-01-01

    Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning calorimetry (DSC). TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites. PMID:23629663

  9. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  10. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  11. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  12. Raman Spectroscopy of Novel UHMW Polyethylene-Based Nanocomposites with Nanographite and Nanoclay

    NASA Astrophysics Data System (ADS)

    Prokhorov, K. A.; Sagitova, E. A.; Averin, A. A.; Nikolaeva, G. Yu; Baimova, A. V.; Novokshonova, L. A.; Brevnov, P. N.; Pashinin, P. P.

    2018-04-01

    We analyze the Raman spectra of nanocomposites based on ultrahigh-molecular-weight polyethylene with nanoclay, thermoexpanded graphite, and reduced graphite oxide fillers. We discuss the potential of Raman spectroscopy for quantitative analysis of the nanocomposite structure, the influence of the fillers on the phase and conformation compositions of the polymer matrix, as well as for the monitoring of dispersion of the nanographite fillers in the nanocomposites.

  13. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  14. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    NASA Astrophysics Data System (ADS)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol

  15. Wellbore Seal Repair Using Nanocomposite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus

  16. Injectable Nanocomposite Analgesic Delivery System for Musculoskeletal Pain Management.

    PubMed

    Khanal, Manakamana; Gohil, Shalini V; Kuyinu, Emmanuel; Kan, Ho-Man; Knight, Brittany E; Baumbauer, Kyle M; Lo, Kevin W-H; Walker, Joseph; Laurencin, Cato T; Nair, Lakshmi S

    2018-05-24

    Musculoskeletal pain is a major health issue which results from surgical procedures (i.e. total knee and/ or hip replacements and rotator cuff repairs), as well as from non-surgical conditions (i.e. sympathetically-mediated pain syndrome and occipital neuralgia). Local anesthetics, opioids or corticosteroids are currently used for the pain management of musculoskeletal conditions. Even though local anesthetics are highly preferred, the need for multiple administration presents significant disadvantages. Development of unique delivery systems that can deliver local anesthetics at the injection site for prolonged time could significantly enhance the therapeutic efficacy and patient comfort. The goal of the present study is to evaluate the efficacy of an injectable local anesthetic nanocomposite carrier to provide sustained analgesic effect. The nanocomposite carrier was developed by encapsulating ropivacaine, a local anesthetic, in lipid nanocapsules (LNC-Rop), and incorporating the nanocapsules in enzymatically crosslinked glycol chitosan (0.3GC) hydrogels. Cryo Scanning Electron Microscopic (Cryo SEM) images showed the ability to distribute the LNCs within the hydrogel without adversely affecting their morphology. The study demonstrated the feasibility to achieve sustained release of lipophilic molecules from the nanocomposite carrier in vitro and in vivo. A rat chronic constriction injury (CCI) pain model was used to evaluate the efficacy of the nanocomposite carrier using thermal paw withdrawal latency (TWL). The nanocomposite carriers loaded with ropivacaine and dexamethasone showed significant improvement in pain response compared to the control groups for at least 7 days. The study demonstrated the clinical potential of these nanocomposite carriers for post-operative and neuropathic pain. Acute or chronic pain associated with musculoskeletal conditions is considered a major health issue, with healthcare costs totaling several billion dollars. The opioid crisis

  17. Simulation and Design of Nanocomposite for Application in Ballistic Protection

    DTIC Science & Technology

    2008-12-01

    diene terpolymer ( EPDM ) nanocomposites with organo- montmorillonite (OMMT). It was found that the tensile modulus can be increased by 60% and...Y. D. and Li, W., 2005: Morphology and characterization of clay-reinforced EPDM nanocomposites, J. Comp. Mat., 39, 745- 754. [3] Avila, A. F

  18. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite

    PubMed Central

    Namvar, Farideh; Azizi, Susan; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Rasedee, Abdullah; Soltani, Mozhgan; Rahim, Raha Abdul

    2016-01-01

    The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. PMID:27555781

  19. Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Tifeng; Yan, Xingbin; Balan, Lavinia

    2014-01-01

    This special issue addresses the research studies on chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. It contains twentyfour articles including two reviews and twenty-two research articles. It is used to create new functional nanomaterials and nanocomposites with a variety of sizes and morphologies such as Zn/Al layered double hydroxide, tin oxide nanowires, FeOOH-modified anion resin, Au nanoclusters silica composite nanospheres, Ti-doped ZnO sol-composite films, TiO2/ZnO composite, graphene oxide nanocomposites, LiFePO4/C nanocomposites, and chitosan nanoparticles. These nanomaterials and nanocomposites have widespread applications in tissue engineering, antitumor, sensors, photoluminescence, electrochemical, and catalytic properties. In addition, this themed issue includes somemore » research articles about self-assembly systems covering organogels and Langmuir films. Furthermore, B. Blasiak et al. performed a literature survey on the recent advances in production, functionalization, toxicity reduction, and application of nanoparticles in cancer diagnosis, treatment, and treatment monitoring. P. Colson et al. performed a literature survey on the recent advances in nanosphere lithography due to its compatibility with wafer-scale processes as well as its potential to manufacture a wide variety of homogeneous one-, two-, or three-dimensional nanostructures.« less

  20. Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors.

    PubMed

    Cherusseri, Jayesh; Kar, Kamal K

    2016-03-28

    Hierarchical 3D nanocomposite electrodes with tube brush-like morphology are synthesized by electrochemically depositing polypyrrole (PPY) on carbon nanopetal (CNP) coated carbon fibers (CFs). Initially CNPs are synthesized on CF substrate by chemical vapour deposition. The CNPs synthesized on CF (CNPCF) are further used as an electrically conducting large surface area bearing template for the electropolymerization of PPY in order to fabricate CNPCF-PPY nanocomposite electrodes for supercapacitors (SCs). The CF in CNPCF-PPY nanocomposite functions as (i) a mechanical support for the CNPs, (ii) a current collector for the SC cell and also (iii) to prevent the agglomeration of CNPs within the CNPCF-PPY nanocomposite. Transmission electron microscopy and scanning electron microscopy are used to examine the surface morphology of CNPCF-PPY nanocomposites. The chemical structure of the nanocomposites is analysed by Fourier transform infrared spectroscopy. X-Ray photoelectron spectroscopy has been used to understand the chemical bonding states of the hierarchical CNPCF-PPY nanocomposites. The electrochemical properties of symmetric type CNPCF-PPY SC cells are examined by electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge measurements. The hierarchical CNPCF-PPY SC exhibits a maximum gravimetric capacitance of 280.4 F g(-1) and an area specific capacitance of 210.3 mF cm(-2) at a current density of 0.42 mA cm(-2). The CNPCF-PPY SC cell exhibits good cycling stability of more than 5000 cycles. The present study proclaims the development of a novel lightweight SC with high-performance.

  1. Synthesis and characterization of polyaniline coated gold nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah

    2015-08-28

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emissionmore » scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix.« less

  2. Chitosan-Based Nanocomposite Beads for Drinking Water Production

    NASA Astrophysics Data System (ADS)

    Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD

    2017-05-01

    Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.

  3. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    PubMed

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  4. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  5. Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc

    2017-06-01

    Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).

  6. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    PubMed

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  7. Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery

    PubMed Central

    Ferrández-Rives, Mariola; Gómez Ribelles, José Luis

    2017-01-01

    Electrospun mats and films of polyvinyl alcohol (PVA) hydrogel are produced for drug delivery. To provide mechanical consistency to the gel a reinforcement by nanoclays is introduced in the polymer matrix. Four different suspensions of nanoparticles in the polymer solution are prepared in an adequate solvent. These suspensions are subjected to an electrospinning process to produce the nanofiber mat, while films are produced by casting. The influence of the process parameters over the nanofibers microstructure is analyzed by scanning electron microscopy (SEM). The effectiveness of nanoclay encapsulation in the nanocomposites is tested by a thermogravimetric analysis. A crosslinking reaction in solution is carried out to prevent the dissolution of the nanocomposites in aqueous media. A model protein (bovine serum albumin, BSA) is absorbed in the nanocomposites to characterize the release kinetics in phosphate-buffered saline (PBS). PMID:29261123

  8. Transparent bulk-size nanocomposites with high inorganic loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shi; Gaume, Romain, E-mail: gaume@ucf.edu; Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816

    2015-12-14

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymermore » nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.« less

  9. Characteristics of Thermoplastic Potato Starch/Bentonite Nanocomposite Film

    NASA Astrophysics Data System (ADS)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.; Sandu, I. G.; Wan, C. L. Mei

    2018-06-01

    The aim of this study is to investigate the effect of bentonite towards thermoplastic potato starch nanocomposite films on the mechanical, microstructure and physical properties. The nanocomposite films were prepared using bentonite nano filler (0, 1, 5, 10, 15 and 20%) through solution casting technique. Obtained result indicate that, tensile strength increased significantly with increasing bentonite content and the highest tensile strength was recorded for nanocomposite film with 20% bentonite content. Meanwhile, elongation at break increased as the bentonite content increased from 0 to 15%, however significantly decreased at 20% bentonite content due to ductile structure and anti-plasticizing effect. Besides, good dispersion between bentonite nano filler and starch matrix with slightly remaining anglomerates was evident in scanning electron microscopy (SEM) image. Overall result shows that the addition of bentonite nano filler in potato starch film significantly influenced the properties of the films.

  10. Toxicity evaluation of zinc aluminium levodopa nanocomposite via oral route in repeated dose study

    NASA Astrophysics Data System (ADS)

    Kura, Aminu Umar; Cheah, Pike-See; Hussein, Mohd Zobir; Hassan, Zurina; Tengku Azmi, Tengku Ibrahim; Hussein, Nor Fuzina; Fakurazi, Sharida

    2014-05-01

    Nanotechnology, through nanomedicine, allowed drugs to be manipulated into nanoscale sizes for delivery to the different parts of the body, at the same time, retaining the valuable pharmacological properties of the drugs. However, efficient drug delivery and excellent release potential of these delivery systems may be hindered by possible untoward side effects. In this study, the sub-acute toxicity of oral zinc aluminium nanocomposite with and without levodopa was assessed using the Organization for Economic Co-operation and Development guidelines. No sign or symptom of toxicity was observed in orally treated rats with the nanocomposite at 5 and 500 mg/kg concentrations. Body weight gain, feeding, water intake, general survival and organosomatic index were not significantly different between control and treatment groups. Aspartate aminotransferase (AST) in 500 mg/kg levodopa nanocomposite (169 ± 30 U/L), 5 mg/kg levodopa nanocomposite (172 ± 49 U/L), and 500 mg/kg layered double hydroxides (LDH) nanocomposite (175 ± 25 U/L) were notably elevated compared to controls (143 ± 05 U/L); but the difference were not significant ( p > 0.05). However, the differences in aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio of 500 mg/kg levodopa nanocomposite (0.32 ± 0.12) and 500 mg/kg LDH nanocomposite (0.34 ± 0.12) were statistically significant ( p < 0.05) compared to the control (0.51 ± 0.07). Histology of the liver, spleen and brain was found to be of similar morphology in both control and experimental groups. The kidneys of 500-mg/kg-treated rats with levodopa nanocomposite and LDH nanocomposite were found to have slight inflammatory changes, notably leukocyte infiltration around the glomeruli. The ultra-structure of the neurons from the substantia nigra of nanocomposite-exposed group was similar to those receiving only normal saline. The observed result has suggested possible liver and renal toxicity in orally administered levodopa intercalated

  11. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  12. Nanocomposites prepared from acrylonitrile butadiene rubber and organically modified montmorillonite with vinyl groups

    NASA Astrophysics Data System (ADS)

    Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung

    2006-01-01

    Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.

  13. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes.

  14. Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    De, Arijit; Kundu, Susmita

    2016-07-01

    Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.

  15. The Structure-Property Relationship of Poly(amide-imide)/Organoclay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadateh

    2011-06-01

    Surface treated montmorillonite (MMT) was used to prepare nanocomposites with poly(amide-imide) (PAI) 5 by solution intercalation technique with various percent of organoclay (5-15 mass %). Surface modification of the MMT was performed with Cloisite 20A for ample compatibilization with the PAI matrix. The PAI 5 chains were produced through polycondensation of 4,4-diamino diphenyl sulfone 4 with N-trimellitylimido-L-alanine 3 in a medium consisting of triphenyl phosphite, N-methyl-2-pyrolidone (NMP), pyridine and calcium chloride. The PAI-Nanocomposites morphology and clay dispersion were investigated by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and PAI chains on the properties of PAI-Nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements. Thermal stability of nanocomposites increased relative to the neat polyamide with increasing organoclay content but water uptake of these materials decreased as compared to the neat polyamide indicating reduced permeability.

  16. HMSPP nanocomposite and Brazilian bentonite properties after gamma radiation exposure

    NASA Astrophysics Data System (ADS)

    Fermino, D. M.; Parra, D. F.; Oliani, W. L.; Lugao, A. B.; Díaz, F. R. V.

    2013-03-01

    This work concerns the study of the mechanical and thermal behavior of the nanocomposite high melt strength polypropylene (HMSPP) (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba (PB), which is known as "chocolate" and is used in concentrations of 5% and 10% by weight, in comparison to the American Cloisite 20A clay nanocomposites. An agent compatibilizer polypropylene-graft (PP-g-AM) was added at a 3% concentration, and the clay was dispersed using the melt intercalation technique using a twin-screw extruder. The specimens were prepared by the injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGA). The morphology of the nanocomposites was studied with scanning electron microscopy (SEM), while the organophilic bentonite and nanocomposites were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).

  17. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2017-01-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  18. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.

    PubMed

    Zhu, Lijuan; Wang, Dali; Wei, Xuan; Zhu, Xinyuan; Li, Jianqi; Tu, Chunlai; Su, Yue; Wu, Jieli; Zhu, Bangshang; Yan, Deyue

    2013-08-10

    A multifunctional pH-sensitive superparamagnetic iron-oxide (SPIO) nanocomposite system was developed for simultaneous tumor magnetic resonance imaging (MRI) and therapy. Small-size SPIO nanoparticles were chemically bonded with antitumor drug doxorubicin (DOX) and biocompatible poly(ethylene glycol) (PEG) through pH-sensitive acylhydrazone linkages, resulting in the formation of SPIO nanocomposites with magnetic targeting and pH-sensitive properties. These DOX-conjugated SPIO nanocomposites exhibited not only good stability in aqueous solution but also high saturation magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating their magnetic targeting property. Comparing to free DOX, the DOX-conjugated SPIO nanocomposites showed better antitumor effect under magnetic field. At the same time, the relaxivity value of these SPIO nanocomposites was higher than 146s(-1)mM(-1) Fe, leading to ~4 times enhancement compared to that of free SPIO nanoparticles. As a negative contrast agent, these SPIO nanocomposites illustrated high resolution in MRI diagnosis of tumor-bearing mice. All of these results confirm that these pH-sensitive SPIO nanocomposites are promising hybrid materials for synergistic MRI diagnosis and tumor therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Pan, Shuyang (Inventor); Aksay, Ilhan A. (Inventor)

    2018-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 wt %, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 sq m/g to 2630 sq m2/g; and a method for producing the nanocomposite and uses thereof.

  20. Polyimide/carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2003-01-01

    The goal of this product is to design and characterize well-defined conductive nanocomposite materials. The materials will be composed of a polymer matrix composed of rigid-backbone polyimides, and will be filled with modified or unmodified multi-walled carbon nanotubes (MWNTs). The ultimate design of this project is to create composite materials with optical clarity and a high conductivity.

  1. Sustainable nanocomposites toward electrochemical energy storage and environmental remediation

    NASA Astrophysics Data System (ADS)

    Zhu, Jiahua

    Energy shortage and environmental pollution are the two most concerns right now for the long term sustainable development of human society. New technology developments are the key solutions to these challenges, which strongly rely on the continuous upgrading of advanced material performance. In this dissertation, sustainable nanocomposites with multifunctionalities are designed and fabricated targeting to the applications in high energy/power density capacitor electrodes and efficient heavy metal adsorbent for polluted water purification. Contrary to the helical carbon structure from pure cotton fabrics under microwave heating and radical oxidized ignition of nanoparticles from conventional heating, magnetic carbon tubular nanocomposite fabrics decorated with unifromally dispersed Co-Co3O4 nanoparticles were successfully synthesized via a microwave heating process using cotton fabric and inorganic salt as precursors, which have shown better anti-corrosive performance and demonstrated great potential as novel electrochemical pseudocapacitor electrode. Polyaniline nanofibers (PANI-NFs)/graphite oxide (GO) nanocomposites with excellent interfacial interaction and elongated fiber structure were synthesized via a facile interfacial polymerization method. The PANI-NFs/GO hybrid materials showed orders of magnitude enhancement in capacitance and energy density than that of individual GO and PANI-NF components. At the same weight loading of PANI in the composites, fibrous PANI demonstrated higher energy density and long term stability than that of particle-shaped PANI at higher power density. Besides the efforts focusing on the inside of the capacitor including new electrodes, electrolyte materials, and capacitor configuration designs. A significant small external magnetic field (720 Gauss) induced capacitance enhancement is reported for graphene and graphene nanocomposite electrodes. The capacitance of Fe2O3/graphene nanocomposites increases by 154.6% after appling

  2. Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Panda, Bishnu P.; Mohanty, Smita; Nayak, Sanjay K.

    2014-09-01

    This research aims to study the effect of accelerated weathering conditions on the photodegradation characteristics for fibrillar silicate clay-filled Polypropylene (PP) nanocomposites in the presence of metallocene linear low density polyethylene (m-LLDPE). Silane-treated attapulgite (ATP) clay along with ethylene octene elastomer-grafted maleic anhydride (POE-g-MAH) was used to compatibilize both blend and nanocomposite system. The result showed that developed PP/m-LLDPE nanocomposites displayed good UV resistance with little change in retained stress-at-break and elongation-at-break values. Balanced loss of toughness values noted maintaining higher fracture toughness values for nanocomposites containing 5 phr ATP clay. Infrared analysis was used to detect progress of degradation followed by change in carbonyl index revealed predominated chain scission in late irradiation, while crosslinking was dominant for initial irradiation period. An increase in crystallinity during UV exposure (chemi-crystallization) was detected with exposure time for all compositions and virtually independent of initial structure of the polymer. The highest value of crystallization observed for PP and the lowest one for nanocomposites containing 5 phr of ATP clay revealed good oxidation stability. Surface morphology revealed induced degradation throughout cross-section of PP, while severity of the surface degradation was significantly reduced for developed nanocomposites.

  3. Review: nanocomposites in food packaging.

    PubMed

    Arora, Amit; Padua, G W

    2010-01-01

    The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging.

  4. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation.

    PubMed

    Hunge, Y M; Yadav, A A; Mathe, V L

    2018-07-01

    The present work deals with the preparation of WO 3 and WO 3 -ZnO nanocomposites in presence of ultrasonic irradiation, and its use in the sonocatalytic degradation of brilliant blue dye. WO 3 -ZnO nanocomposite is prepared using one step in-situ ultrasound assisted method. The successfully prepared WO 3 and WO 3 -ZnO nanocomposites were characterized using different characterization techniques such as XRD, Raman, BET, FE-SEM and EDS. The XRD pattern reveals that the formation of monoclinic and hexagonal crystal structures of WO 3 and ZnO respectively. BET study shows that WO 3 -ZnO nanocomposite have maximum surface area than that of the WO 3 . EDS study confirms the formation of WO 3 -ZnO nanocomposites. Further the use of the prepared WO 3 and WO 3 -ZnO nanocomposites as a sonocatalyst for the degradation of brilliant blue dye. The rate constant (k) was evaluated as a function of the initial concentration of brilliant blue dye. It is found that WO 3 -ZnO nanocomposites exhibits maximum sonocatalytic activity as compared to WO 3 photocatalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Development of a Brazing Alloy for the Mechanically Alloyed High Temperature Sheet Material INCOLOY Alloy MA 956.

    DTIC Science & Technology

    1981-09-01

    OF A BRAZING ALLOY FOR THE MECHANICALLY ALLOYED HIGH TEMPERATURE SHEET MATERIAL INCOLOY ALLOY MA 956 W. E. Morgan and Dr. P. J. Bridges N. Wiggin...PERIOD COVERED DEVELOPMENT OF A BRAZING ALLOY FOR THE Final Report MECHANICALLY ALLOYED HIGH TEMPERATURE Dec 1978 - March 1981 SHEET MATERIAL INCOLOY...block nomber) High temperature ODS alloys, Braze development, Braze alloys, INCOLOY MA 956, Ni-Cr-Pd, Fe-Cr-Pd, Ni-Cr-Ge, Fe-Cr-Ge, Fe-Cr-B, Fe-Cr-Si

  6. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  7. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites.

    PubMed

    Martínez-Orozco, R D; Rosu, H C; Lee, Soo-Wohn; Rodríguez-González, V

    2013-12-15

    Nanocomposites of graphene oxide (GO) and silver nanoparticles (AgNPs) were synthetized using a practical photochemical silver functionalization. Their photocatalytic activities were evaluated with two dyes, Rhodamine B and Indigo Carmine, under visible-light irradiation. The prepared nanocomposites were characterized by HRTEM, FESEM, XRD, Raman, FTIR and UV-vis absorption spectroscopy. These nanocomposites present new defect domains of sp(3) type in combination with several graphitic functional groups that act as nucleation sites for anchoring AgNPs, while the sp(2)-sp(3) edge defects domains of GO generate the photoactivity. Furthermore, their photocatalytic performances are governed by their large adsorption capacity, and strong interaction with dye chromophores. A comprehensive photocatalytic way underlying the importance of adsorption is suggested to explain the low visible-light responsive photoactivity of the AgNPs-GO nanocomposites and the possible binding-site saturation. Then, the usage of H2SO4 allows the production of ionic species and helps to confirm the strong adsorption of both dyes. The ability to synthesize AgNPs-GO nanocomposites with extensive adsorptive capacity is certainly of interest for the efficient removal of hazardous materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Efficient drug delivery using SiO2-layered double hydroxide nanocomposites.

    PubMed

    Li, Li; Gu, Zi; Gu, Wenyi; Liu, Jian; Xu, Zhi Ping

    2016-05-15

    MgAl-layered double hydroxide (MgAl-LDH) nanoparticles have great potentials in drug and siRNA delivery. In this work, we used a nanodot-coating strategy to prepare SiO2 dot-coated layered double hydroxide (SiO2@MgAl-LDH) nanocomposites with good dispersibility and controllable size for drug delivery. The optimal SiO2@MgAl-LDH nanocomposite was obtained by adjusting synthetic parameters including the mass ratio of MgAl-LDH to SiO2, the mixing temperature and time. The optimal SiO2@MgAl-LDH nanocomposite was shown to have SiO2 nanodots (10-15nm in diameter) evenly deposited on the surface of MgAl-LDHs (110nm in diameter) with the plate-like morphology and the average hydrodynamic diameter of 170nm. We further employed SiO2@MgAl-LDH nanocomposite as a nanocarrier to deliver methotrexate (MTX), a chemotherapy drug, to the human osteosarcoma cell (U2OS) and found that MTX delivered by SiO2@MgAl-LDH nanocomposite apparently inhibited the U2OS cell growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites

    PubMed Central

    Kaith, B. S.; Rajput, Jaspreet

    2014-01-01

    Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices. PMID:24523653

  10. Elastomeric nanocomposite scaffolds made from poly (glycerol sebacate) chemically crosslinked with carbon nanotubes

    PubMed Central

    Patel, Alpesh; Dolatshahi-Pirouz, Alireza; Zhang, Hongbin; Rangarajan, Kaushik; Iviglia, Giorgio; Shin, Su-Ryon; Hussain, Mohammad Asif

    2015-01-01

    Carbon nanotube (CNT)-based nanocomposites often possess properties such as high stiffness, electrical conductivity, and thermal stability and have been studied for various biomedical and biotechnological applications. However, the current design approaches utilize CNTs as physical filler, and thus, the true potential of CNT-based nanocomposites has not been achieved. Here, we introduce a general approach of fabricating stiff, elastomeric nanocomposites from poly(glycerol sebacate) (PGS) and CNTs. The covalent crosslinking between the nanotubes and polymer chains resulted in novel property combinations that are not observed in conventional nanocomposites. The addition of 1% CNTs resulted a five-fold increase in the tensile modulus and a six-fold increase in compression modulus compared with PGS alone, which is far superior to the previously reported studies for CNT-based nanocomposites. Despite significant increase in mechanical stiffness, the elasticity of the network was not compromised and the resulting nanocomposites showed more than 94% recovery. This study demonstrates that the chemical conjugation of CNTs to a PGS backbone results in stiff and elastomeric nanocomposites. Additionally, in vitro studies using human mesenchymal stem cells (hMSCs) indicated that the incorporation of CNTs to PGS network significantly enhanced the differentiation potential of the seeded hMSCs rendering them potentially suitable for applications ranging from scaffolding in musculoskeletal tissue engineering to biosensors in biomedical devices. PMID:26146547

  11. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2015-01-01

    An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hongjin

    SnPb solders have long been used as interconnect materials in microelectronic packaging. Due to the health threat of lead to human beings, the use of lead-free interconnect materials is imperative. Three kinds of lead-free interconnect materials are being investigated, namely lead-free metal solders (SnAg, SnAgCu, etc.), electrically conductive adhesives (ECAs) and carbon nanotubes (CNTs). However, there are still limitations for the full utilization of these lead-free interconnect materials in the microelectronic packaging, such as higher melting point of lead-free metal solders, lower electrical conductivity of the ECAs and poor adhesion of CNTs to substrates. This thesis is devoted to the research and development of low processing temperature lead-free interconnect materials for microelectronic packaging applications with an emphasis on fundamental studies of nanoparticles synthesis, dispersion and oxidation prevention, and nanocomposites fabrication. Oxide-free tin (Sn), tin/silver (96.5Sn3.5Ag) and tin/silver/copper (96.5Sn3.0Ag0.5Cu) alloy nanoparticles with different sizes were synthesized by a low temperature chemical reduction method. Both size dependent melting point and latent heat of fusion of the synthesized nanoparticles were obtained. The nano lead-free solder pastes/composites created by dispersing the SnAg or SnAgCu alloy nanoparticles into an acidic type flux spread and wet on the cleaned copper surface at 220 to 230°C. This study demonstrated the feasibility of nano sized SnAg or SnAgCu alloy particle pastes for low processing temperature lead-free interconnect applications in microelectronic packaging.

  13. Supported porous carbon and carbon-CNT nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Schopf, Dimitri; Es-Souni, Mohammed

    2016-03-01

    Supported porous carbon and porous carbon-MWCNT-nanocomposite films are produced by pyrolysis of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on thermally resistant substrates. All films are characterized by SEM, RAMAN and XRD. The application of these films as supercapacitors is explored with outstanding supercapacitance values ranging from 80 to 120 F g-1 (up to 70 mF cm-2) in a three-electrode set-up in 1 M KOH, depending on microstructure. Additionally, the implementation of porous nanocarbon-MWCNT-nanocomposite films as electrodes in a symmetrical supercapacitor device is investigated. In all cases, long-term charge-discharge stability is demonstrated.

  14. Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2018-05-01

    This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.

  15. Processing-structure-properties relationships in PLA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  16. New poly(butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties.

    PubMed

    Ray, Suprakas Sinha; Okamoto, Kazuaki; Maiti, Pralay; Okamoto, Masami

    2002-04-01

    New poly(butylene succinate) (PBS)/layered silicate nanocomposites have been successfully prepared by simple melt extrusion of PBS and octadecylammonium modified montmorillonite (C18-mmt) at 150 degrees C. The d-spacing of both C18-mmt and intercalated nanocomposites was investigated by wide-angle X-ray diffraction analysis. Bright-field transmission electron microscopic study showed several stacked silicate layers with random orientation in the PBS matrix. The intercalated nanocomposites exhibited remarkable improvement of mechanical properties in both solid and melt states as compared with that of PBS matrix without clay.

  17. Novel approach to synthesis and characterization of POT/ZnO nanocomposites

    NASA Astrophysics Data System (ADS)

    Islam, Shama; Khan, Hana; Khan, Zubair MSH; Kumar, Shabir Ahmad; Rahman, Raja Saifu; Zulfequar, M.

    2018-05-01

    The novel insitu polymerization method has been used to synthesis poly o-toluidine/Zinc Oxide (POT/ZnO) nanocomposites with varying weight percentages (5, 10, 15, 20) of ZnO in polymer matrix. The structural properties of synthesized polymer has been discussed with XRD and SEM techniques and found that the crystallinity of the material increases with ZnO doping. Electrical conductivity of the compressed pellets of nanocomposites is depends on the concentration of ZnO in POT and found to increase upto five orders. The indirect bandgap of nanocomposites decreases with increasing ZnO.

  18. The characterization of high-density polyethylene/organoclay nanocomposites

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tathiane Cordeiro; Tavares, Maria Inês Bruno; Soares, Igor Lopes; Moreira, Ana M.

    2009-01-01

    Polymeric nanocomposites, which are hybrids of polymers and modified inorganic clay with organic surfactants, are extremely attractive in both science and industry. These materials present improvements in such polymer properties as modulus, heat capacity, thermal stability, flame resistance, and so on. Research has been conducted in recent decades to obtain high-quality materials that can be used in applications like food packing, car components, and combustible cells. Polymeric nanocomposites present many advantages in relation to composites due to the quantity of filler added to the polymer and also to the improved properties. In a composite, the quantity of filler must be as high as possible (i.e., over 30%). In the polymeric nanocomposite the quantity of filler varies from 1% to 5% because of the nanosize of the particles. These nanoparticles often have a large surface area that results in improved polymer-matrix properties.

  19. Computational Modeling of Interfacial Behaviors in Nanocomposite Materials

    PubMed Central

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2017-01-01

    Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123

  20. Anisotropic elasticity of quasi-one-component polymer nanocomposites.

    PubMed

    Voudouris, Panayiotis; Choi, Jihoon; Gomopoulos, Nikos; Sainidou, Rebecca; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George

    2011-07-26

    The in-plane and out-of-plane elastic properties of thin films of "quasi-one-component" particle-brush-based nanocomposites are compared to those of "classical" binary particle-polymer nanocomposite systems with near identical overall composition using Brillouin light scattering. Whereas phonon propagation is found to be independent of the propagation direction for the binary particle/polymer blend systems, a pronounced splitting of the phonon propagation velocity along the in-plane and out-of-plane film direction is observed for particle-brush systems. The anisotropic elastic properties of quasi-one-component particle-brush systems are interpreted as a consequence of substrate-induced order formation into layer-type structures and the associated breaking of the symmetry of the film. The results highlight new opportunities to engineer quasi-one-component nanocomposites with advanced control of structural and physical property characteristics based on the assembly of particle-brush materials.

  1. Giant room temperature magnetoelectric response in strain controlled nanocomposites

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Herklotz, Andreas; Dörr, Kathrin; Manzoor, Sadia

    2017-05-01

    We report giant magnetoelectric coupling at room temperature in a self-assembled nanocomposite of BiFeO3-CoFe2O4 (BFO-CFO) grown on a BaTiO3 (BTO) crystal. The nanocomposite consisting of CFO nanopillars embedded in a BFO matrix exhibits weak perpendicular magnetic anisotropy due to a small out-of-plane compression (˜0.3%) of the magnetostrictive (CFO) phase, enabling magnetization rotation under moderate in-plane compression. Temperature dependent magnetization measurements demonstrate strong magnetoelastic coupling between the BaTiO3 substrate and the nanocomposite film, which has been exploited to produce a large magnetoelectric response in the sample. The reorientation of ferroelectric domains in the BTO crystal upon the application of an electric field (E) alters the strain state of the nanocomposite film, thus enabling control of its magnetic anisotropy. The strain mediated magnetoelectric coupling coefficient α = μ o d M / d E calculated from remnant magnetization at room temperature is 2.6 × 10-7 s m-1 and 1.5 × 10-7 s m-1 for the out-of-plane and in-plane orientations, respectively.

  2. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  3. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Pan, Shuyang (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 weight percentage, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 square meters per gram to 2630 square meters per gram; and a method for producing the nanocomposite and uses thereof.

  4. Fabrication and physical properties of transparent poly (methyl-methacrylate)-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Vasiliu, Elena

    Transparent polymer nanocomposites have promising potential for protective coating applications with improved surface resistance, higher temperature performance and low gas permeability for containers and films. Extremely thin protective layers are required for improved performance of various electronic devices in aviation, aerospace and medical equipment as well as for lenses and fiber optics in optical communications. This research study developed a method for fabricating optically transparent nanocomposites of poly(methyl-methacrylate)(PMMA) and a commercial organically-modified layered silicate CloisiteRTM 6A (C6A). The nanocomposites were produced by dispersing C6A and PMMA separately in a common solvent xylene followed by mixing the two solutions by mechanical stirring and/or ultrasonic agitation and then removing the solvent by evaporation. Processing conditions such as the mixing methods and times and the rates of solvent removal were investigated in order to achieve a high degree of dispersion and exfoliation of C6A in the polymer matrix and produce a nanocomposite material with high optical transparency. Small-angle x-ray scattering (SAXS) was used to monitor the morphology of the C6A after each processing step. Thin films of PMMA/C6A nanocomposites were produced by casting and spraying. SAXS results suggest that C6A was partially exfoliated in the composite material with an average of 2 to 3 platelets per crystallite. Transmission electron microscopy (TEM) confirmed the existence of both exfoliated and intercalated C6A in PMMA. One mm thick discs were obtained by molding the sprayed films. The optical transmission of the nanocomposite films and discs was measured with an UV/VIS spectrometer. The spectroscopic results served to identify the best process for producing PMMA-C6A films of high optical transparency. Even the nanocomposite films containing up to 20 wt.% C6A prepared by this process exhibited optical transmittance in the range of 80 to 90

  5. Photocatalytic dye degradation with copper-titanium dioxide nanocomposites under sunlight and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Qayyum Khan, Abdul; Yuan, Shuai; Niu, Sheng; Liu, Fengjiang; Feng, Guang; Jiang, Mengci; Zeng, Heping

    2018-01-01

    Photocatalytic methalyne blue dye degradation was carried out with copper (Cu)-titanium dioxide (TiO2) nanocomposites under sunlight and visible light irradiation. The Cu-TiO2 nanocomposites were fabricated via femtosecond laser ablation of pressed targets in water. The current method provides a facile route for Cu-TiO2 nanocomposites preparation, which is free from impurities on the catalysts surface. The Cu-TiO2 nanocomposites (with Cu content of 5 wt%) have shown 3 folds faster dye degradation kinetics compared with TiO2 nanoparticles under sunlight irradiation. While under visible light irradiation, the same nanocomposites exhibited 2.6 folds faster kinetics compared with TiO2 nanoparticles. The faster light harvesting efficiency of the catalysts is attributed to more hydroxyl radical generation.

  6. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization.

    PubMed

    Wang, X W; Zhang, C-A; Wang, P L; Zhao, J; Zhang, W; Ji, J H; Hua, K; Zhou, J; Yang, X B; Li, X P

    2012-05-08

    Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were facilely prepared via in situ polymerization. The properties of the nanocomposites were studied using FTIR, XRD, and (1)H NMR, and the state of dispersion of GO in the PBS matrix was examined by SEM. The crystallization and melting behavior of the PBS matrix in the presence of dispersed GO nanosheets have been studied by DSC and polarized optical microscopy. Through the mechnical testing machine and DMA, PBS/GO nanocomposites with 3% GO have shown a 43% increase in tensile strength and a 45% improvement in storage modulus. This high performance of the nanocomposites is mainly attributed to the high strength of graphene oxide combined with the strong interfacial interactions in the uniformly dispersed PBS/GO nanocomposites.

  7. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    PubMed

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.

  8. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  9. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  10. Fabrication of novel dental nanocomposites and investigation their physicochemical and biological properties

    NASA Astrophysics Data System (ADS)

    Jaymand, Mehdi; lotfi, Mehrdad; Abbasian, Mojtaba

    2018-03-01

    This article evaluates physicochemical, mechanical, and biological properties of a series of novel dental nanocomposites that fabricated from multifunctional methacrylate-based dental monomers, triethyleneglycol dimethacrylate (TEGDMA) monomer, and modified silica nanoparticles (SiO2 NPs). The antibacterial activities of the monomers were investigated against lactobacillus plantarum by standard agar disk diffusion method. The cytotoxicity characteristics of the monomers and fabricated nanocomposites were evaluated by MTT and trypan blue cell viability tests, respectively against NIH3T3 cell line. In addition, the mechanical properties, as well as physicochemical characteristics including water sorption, sol fraction, and double bond conversion were also investigated. According to the results, the formulated nanocomposites have potential to apply as dental nanocomposites mainly due to their acceptable physicochemical, mechanical and biological characteristics.

  11. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties.

    PubMed

    Malagurski, Ivana; Levic, Steva; Nesic, Aleksandra; Mitric, Miodrag; Pavlovic, Vladimir; Dimitrijevic-Brankovic, Suzana

    2017-11-01

    New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhanced Cyanate Ester Nanocomposites through Improved Nanoparticle Surface Interactions

    DTIC Science & Technology

    2013-05-01

    and a chemically active 3- aminopropyl surface. The cure behavior and thermal properties of the cyanate ester/modified silica nanocomposites were...area of 150 m 2 /g. Nanoparticles with a chemically active 3- aminopropyl surface were prepared by treating Aerosil 200 particles with 3...however, was visibly observed to severely undercure the nanocomposites with octyl and 3- aminopropyl surface moieties, providing a good initial

  13. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms.

    PubMed

    Cheng, Lei; Weir, Michael D; Xu, Hockin H K; Antonucci, Joseph M; Lin, Nancy J; Lin-Gibson, Sheng; Xu, Sarah M; Zhou, Xuedong

    2012-07-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO(4)) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0-0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total streptococci, and mutans streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP-NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP-NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. Copyright © 2012 Wiley Periodicals, Inc.

  14. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Xu, Sarah M.; Zhou, Xuedong

    2012-01-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO4) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0–0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total Streptococci, and mutans Streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP–NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP–NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. PMID:22566464

  15. Synthesis of graphene oxide-copper molybdate (GO-CuM) nanocomposites for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Singh, Gajendar; Bhargava, V. Sai; Sharma, Manu

    2018-05-01

    Transition metal molybdates (TMBs) MMoO4 (M=Ni, Cu, Fe, Zn, Co, etc.) based nanocomposites have been considered as remarkable materials in the field of electronics, optics, catalysis, supercapicitors and energy storage devices. Nanocomposites of TMBs with graphene oxide have also been chosen as an effective material in photocatalytic application. GO-CuM nanocomposites were synthesized by ultra-sonication method at RT, followed by reflux route for preparation of CuM and GO by modified Hemmer's method. As prepared nanocomposites were characterized using analytical techniques such as PXRD, SEM, FT-IR and UV-Visible spectroscopy. The enhanced photocatalytic activity of Methylene blue (MB) dye was observed by GO-CuM nanocomposites as compared to pure copper molybdate. GO-CuM nanocomposites show high photodegradation rate (0.094 min-1) whereas CuM was degraded only 30 % with the rate of 0.0029 min-1. The high photocatalytic efficiency is due to the presence of graphene oxide that helps to delay the charge recombination in photocatalytic reaction The effect of the different amount of graphene oxide on the photocatalytic activity of as prepared photocatalyst has also been investigated.

  16. Nanocomposites from lignin-containing cellulose nanocrystals and poly(lactic acid)

    Treesearch

    Liqing Wei; Umesh Agarwal; Nicole Stark; Ronald Sabo

    2017-01-01

    Utilizing lignin-containing cellulose nanocrystals (HLCNCs) as reinforcing agents to poly(lactic acid) (PLA) for nanocomposites was studied for the first time. The PLA/HLCNCs nanocomposites were prepared by extrusion and injecting molding. The freeze-dried HLCNCs showed micron scale agglomerates. As indicated by the water contact angle measurements, the HLCNCs were...

  17. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaonkar, Amita, E-mail: ami.gaonkar@gmail.com; Murudkar, Vrishali, E-mail: vru0077@gmail.com; Deshpande, V. D., E-mail: vindesh2@rediffmail.com

    2016-05-06

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversionalmore » method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.« less

  18. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.

    2016-05-01

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversional method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.

  19. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOEpatents

    Harrup, Mason K [Idaho Falls, ID; Stewart, Frederick F [Idaho Falls, ID

    2007-05-15

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  20. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate.

    PubMed

    Figueiredo, Ana R P; Figueiredo, Andrea G P R; Silva, Nuno H C S; Barros-Timmons, Ana; Almeida, Adelaide; Silvestre, Armando J D; Freire, Carmen S R

    2015-06-05

    Antimicrobial bacterial cellulose/poly(2-aminoethyl methacrylate) (BC/PAEM) nanocomposites were prepared by in situ radical polymerization of 2-aminoethyl methacrylate, using variable amounts of N,N-methylenebis(acrylamide) (MBA) as cross-linker. The obtained nanocomposites were characterized in terms of their structure, morphology, thermal stability, mechanical properties and antibacterial activity. The ensuing composite membranes were significantly more transparent than those of pure BC and showed improved thermal and mechanical properties. The antibacterial activity of the obtained nanocomposites was assessed towards a recombinant bioluminescent Escherichia coli and only the non-crosslinked nanocomposite (BC/PAEM) proved to have antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Rafic, Sewench N.; Muhsen, Mustafa M.

    2017-09-01

    Polyaniline (PANI) was prepared by chemical oxidative polymerization of aniline monomers as emeraldine salt form. By the same method, polyaniline-cadmium sulfide nanocomposites were synthesized in the presence of different percentages (10-50 wt.%) of cadmium sulfide (CdS) which was prepared by using sol-gel method. The optical band gap was decrease with increasing of CdS concentration, that is obtained from UV-VIS measurements. From SEM and AFM, there is uniform distribution for cadmium sulfide nanoparticles in the PANI matrix. The electrical measurements of nanocomposites exhibit the effect of crystallite size and the high resistivity of CdS on the resistivity of nanocomposites. Emeraldine salt PANI, CdS and PANI-CdS nanocomposites were investigated as gas sensors. From this investigation, the sensitivity of PANI-CdS for NO2 gas increase with the increasing of operation temperature and the optimum sensitivity was obtained at 200∘C. The sensitivity of nanocomposites at best temperature (200∘C) was increased and faster response time with the increasing of CdS contents.

  2. Removal of bisphenol A in canned liquid food by enzyme-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Tapia-Orozco, Natalia; Meléndez-Saavedra, Fanny; Figueroa, Mario; Gimeno, Miquel; García-Arrazola, Roeb

    2018-02-01

    Laccase from Trametes versicolor was immobilized on TiO2 nanoparticles; the nanocomposites obtained were used for the removal of bisphenol A (BPA) in a liquid food matrix. To achieve a high enzymatic stability over a wide pH range and at temperatures above 50 °C, the nanocomposite structures were prepared by both physical adsorption and covalent linking of the enzyme onto the nanometric support. All the nanocomposite structures retained 40% of their enzymatic activity after 60 days of storage. Proof-of-concept experiments in aqueous media using the nanocomposites resulted on a > 60% BPA removal after 48 h and showed that BPA was depleted within 5 days. The nanocomposites were tested in canned liquid food samples; the removal reached 93.3% within 24 h using the physically adsorbed laccase. For the covalently linked enzyme, maximum BPA removal was 91.3%. The formation of BPA dimers and trimers was observed in all the assays. Food samples with sugar and protein contents above 3 and 4 mg mL-1 showed an inhibitory effect on the enzymatic activity.

  3. Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials

    PubMed Central

    2011-01-01

    A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics. PACS: 61.46. +w · 72.80.Tm · 81.05.Rm · 75.75. +a · 82.45.Aa PMID:21711809

  4. Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials.

    PubMed

    Zhou, Tao; Cheng, Dandan; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2011-03-31

    A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics.PACS: 61.46. +w · 72.80.Tm · 81.05.Rm · 75.75. +a · 82.45.Aa.

  5. Modeling diffusion in foamed polymer nanocomposites.

    PubMed

    Ippalapalli, Sandeep; Ranaprathapan, A Dileep; Singh, Sachchida N; Harikrishnan, G

    2013-04-15

    Two-way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady-state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas-transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect-ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan

    2015-12-01

    Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.

  7. Effect of nanocomposite gate-dielectric properties on pentacene microstructure and field-effect transistor characteristics.

    PubMed

    Lee, Wen-Hsi; Wang, Chun-Chieh

    2010-02-01

    In this study, the effect of surface energy and roughness of the nanocomposite gate dielectric on pentacene morphology and electrical properties of pentacene OTFT are reported. Nanoparticles TiO2 were added in the polyimide matrix to form a nanocomposite which has a significantly different surface characteristic from polyimide, leading to a discrepancy in the structural properties of pentacene growth. A growth mode of pentacene deposited on the nanocomposite is proposed to explain successfully the effect of surface properties of nanocomposite gate dielectric such as surface energy and roughness on the pentacene morphology and electrical properties of OTFT. To obtain the lower surface energy and smoother surface of nanocomposite gate dielectric that is responsible for the desired crystalline, microstructure of pentacene and electrical properties of device, a bottom contact OTFT-pentacene deposited on the double-layer nanocomposite gate dielectric consisting of top smoothing layer of the neat polyimide and bottom layer of (PI+ nano-TiO2 particles) nanocomposite has been successfully demonstrated to exhibit very promising performance including high current on to off ratio of about 6 x 10(5), threshold voltage of -10 V and moderately high filed mobility of 0.15 cm2V(-1)s(-1).

  8. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites

    PubMed Central

    Ayandele, Ebunoluwa; Sarkar, Biswajit; Alexandridis, Paschalis

    2012-01-01

    Hybrid materials with superior structural and functional properties can be obtained by incorporating nanofillers into polymer matrices. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have attracted much attention recently due to their nanometer size, the ease of which these particles can be incorporated into polymeric materials and the unique capability to reinforce polymers. We review here the state of POSS-containing polymer nanocomposites. We discuss the influence of the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending on the structure of nanocomposites, as affected by surface functional groups, and the POSS concentration. PMID:28348318

  9. Nanoasperity: structure origin of nacre-inspired nanocomposites.

    PubMed

    Xia, Shuang; Wang, Zuoning; Chen, Hong; Fu, Wenxin; Wang, Jianfeng; Li, Zhibo; Jiang, Lei

    2015-02-24

    Natural nacre with superior mechanical property is generally attributed to the layered "brick-and-mortar" nanostructure. However, the role of nanograins on the hard aragonite platelets, which is so-called nanoasperity, is rarely addressed. Herein, we prepared silica platelets with aragonite-like nanoasperities via biomineralization strategy and investigated the effects of nanoasperity on the mechanical properties of resulting layered nanocomposites composed of roughened silica platelets and poly(vinyl alcohol). The tensile deformation behavior of the nanocomposites demonstrates that nanograins on silica platelets are responsive for strain hardening, improved strength, and toughness. The structure origin is attributed to the nanoasperity-controlled platelet sliding.

  10. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    PubMed Central

    Jeon, In-Yup; Baek, Jong-Beom

    2010-01-01

    Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  11. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    PubMed

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  12. On the Injection Molding Processing Parameters of HDPE-TiO₂ Nanocomposites.

    PubMed

    Mourad, Abdel-Hamid I; Mozumder, Mohammad Sayem; Mairpady, Anusha; Pervez, Hifsa; Kannuri, Uma Maheshwara

    2017-01-20

    In recent years, the development and use of polymeric nanocomposites in creating advanced materials has expanded exponentially. A substantial amount of research has been done in order to design polymeric nanocomposites in a safe and efficient manner. In the present study, the impact of processing parameters, such as, barrel temperature, and residence time on the mechanical and thermal properties of high density polyethylene (HDPE)-TiO₂ nanocomposites were investigated. Additionally, scanning electron microscopy and X-ray diffraction spectroscopy were used to analyze the dispersion, location, and phase morphology of TiO₂ on the HDPE matrix. Mechanical tests revealed that tensile strength of the fabricated HDPE-TiO₂ nanocomposites ranged between 22.53 and 26.30 MPa, while the Young's modulus showed a consistent increase as the barrel temperature increased from 150 °C to 300 °C. Moreover, the thermal stability decreased as the barrel temperature increased.

  13. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model

    PubMed Central

    Melo, Mary Anne S.; Weir, Michael D.; Rodrigues, Lidiany K.A.; Xu, Hockin H.K.

    2013-01-01

    Objectives Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) in a human in situ model for the first time, and to determine colony-forming units (CFU) and Ca and P ion concentrations of biofilms on the composite restorations. Methods NACP with a mean particle size of 116 nm were synthesized via a spray-drying technique. Two composites were fabricated: NACP nanocomposite, and control composite filled with glass particles. Twenty-five volunteers wore palatal devices containing bovine enamel slabs with cavities restored with NACP or control composite. After 14 days, the adherent biofilms were collected for analyses. Transverse microradiography determined the enamel mineral profiles at the margins, and the enamel mineral loss ! Z was measured. Results NACP nanocomposite released Ca and P ions and the release significantly increased at cariogenic low pH (p < 0.05). Biofilms on NACP nanocomposite contained higher Ca (p = 0.007) and P ions (p = 0.005) than those of control (n = 25). There was no significant difference in biofilm CFU between the two composites (p > 0.1). Microradiographs showed typical subsurface lesions in enamel next to control composite, but much less lesion around NACP nanocomposite. Enamel mineral loss ! Z (mean ± sd; n = 25) around NACP nanocomposite was 13.8 ± 9.3 μm, much less than 33.5 ± 19.0 μm of the control (p = 0.001). Significance Novel NACP nanocomposite substantially reduced caries formation in a human in situ model for the first time. Enamel mineral loss at the margins around NACP nanocomposite was less than half of the mineral loss around control composite. Therefore, the Ca and P ion-releasing NACP

  14. Production of intergranular attack of alloy 600, alloy 690, and alloy 800 tubing in tubesheet crevices: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, D.B.; Glaves, C.L.,

    1987-07-01

    Three model boilers, manufactured to simulate full-size tube sheet crevices, were tested with various secondary side environments. The first was faulted with organics representative of the decomposition of humic acid. The second was faulted with sodium carbonate and sodium hydroxide, while the third was faulted with sodium sulfate and sodium hydroxide. Each model contained seven tubes, which included Alloy 600 in the mill-annealed (MA) and thermally-treated (TT) conditions and Alloy 690 in the thermally-treated condition. Two models contained Alloy 800 tubes in the mill-annealed condition and one had Alloy 800 in the mill-annealed/cold-worked/glass-bead-peened condition. Two different sizes of tubesheet crevicesmore » were used in all model boilers. In the organics-faulted boiler, tubes of Alloy 600MA, Alloy 690TT and Alloy 800MA experienced no significant intergranular attack (IGA); however, the Alloy 600TT had intergranular attack (IGA) three to four grains deep. The carbonate-caustic faulted boiler experienced throughwall stress corrosion cracking (SCC) in all tubes of Alloy 600 MA and Alloy 800 MA. Eddy current indications were present in Alloy 690TT, Alloy 600TT and Alloy 800 in the mill-annealed/cold worked/glass-bead-peened condition. Metallographic examination of tubes from the third model boiler, faulted with sodium sulfate and caustic, revealed IGA in the mill-annealed Alloy 600 tubes. The IGA was more extensive in an Alloy 600 tube annealed at 1700/sup 0/F than an Alloy 600 tube annealed at 1875/sup 0/F.« less

  15. Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Liu, Ping; Xue, Zenghui

    Recently, the arguments have existed in the strengthening mechanism and microstructural model of the nanocomposite film due to lack of the convincible experimental evidences. In this investigation, the quarternary TiSiCN nanocomposite films with the different C and Si contents are synthesized by the reactive-magnetron-sputtering technique. The TiSiCN film is characterized as the nanocomposite structure with the TiN nanocrystallites surrounded by the (Si 3N 4 + C + CN x) interface phase. When the C/Si content ratio is 2:2, the TiSiCN nanocomposite film is remarkably strengthened with the maximal hardness and elastic modulus of 46.1 GPa and 425 GPa, respectively. Meanwhile,more » the (Si 3N 4 + C + CN x) interfaces exhibit as a crystallized form, which can coordinate the growth misorientations and maintain the coherently epitaxial growth between the TiN nanocrystallites and interfaces. Through the high-resolution transmission electron microscopy (HRTEM) observations, this investigation firstly provides the direct experimental evidence for the crystallized feature of the interfaces when the TiSiCN nanocomposite film is strengthened, suggesting that the strengthening effect of the TiSiCN nanocomposite film can be attributed to the coherent-interface strengthening mechanism, which is expressed as the “nc-TiN/c-Si 3N 4/c-C/c-CN x” model.« less

  16. Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films

    DOE PAGES

    Li, Wei; Liu, Ping; Xue, Zenghui; ...

    2017-05-18

    Recently, the arguments have existed in the strengthening mechanism and microstructural model of the nanocomposite film due to lack of the convincible experimental evidences. In this investigation, the quarternary TiSiCN nanocomposite films with the different C and Si contents are synthesized by the reactive-magnetron-sputtering technique. The TiSiCN film is characterized as the nanocomposite structure with the TiN nanocrystallites surrounded by the (Si 3N 4 + C + CN x) interface phase. When the C/Si content ratio is 2:2, the TiSiCN nanocomposite film is remarkably strengthened with the maximal hardness and elastic modulus of 46.1 GPa and 425 GPa, respectively. Meanwhile,more » the (Si 3N 4 + C + CN x) interfaces exhibit as a crystallized form, which can coordinate the growth misorientations and maintain the coherently epitaxial growth between the TiN nanocrystallites and interfaces. Through the high-resolution transmission electron microscopy (HRTEM) observations, this investigation firstly provides the direct experimental evidence for the crystallized feature of the interfaces when the TiSiCN nanocomposite film is strengthened, suggesting that the strengthening effect of the TiSiCN nanocomposite film can be attributed to the coherent-interface strengthening mechanism, which is expressed as the “nc-TiN/c-Si 3N 4/c-C/c-CN x” model.« less

  17. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    PubMed Central

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  18. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    PubMed

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    PubMed

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in

    2016-09-15

    Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy.more » The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.« less

  1. Polyaniline-ZnO nanocomposites as ethanol gas sensors

    NASA Astrophysics Data System (ADS)

    Talegaonkar, Janhavi; Patil, Y. B.; Patil, D. R.

    2018-05-01

    Polyaniline and it`s nanocomposites with ZnO were successfully synthesized by photo-induced polymerization method with various concentrations of ZnO, followed by characterizations viz. SEM, EDAX, XRD, FTIR and UV-Vis. Thick films of synthesized powders were fabricated by screen printing technique for monitoring various gases at different operating temperatures and at various gas concentrations. CuO activated polyaniline-ZnO nano-composite exhibits maximum response of ethanol gas at room temperature. The sensor exhibits high sensitivity, highest selectivity, quick response, fast recovery, long term stability, etc. An exceptional sensitivity was found to low concentrations of ethanol gas at room temperature and no cross sensitivity was observed even to high concentrations of other hazardous and polluting gases. The efforts have been made to develop the ethanol sensor based on PANI and its nanocomposites. The effects of microstructure and surfactant concentration on the ethanol response, selectivity, response and recovery of the sensor in the presence of ethanol gas were studied and discussed.

  2. Novel amperometric glucose biosensor based on MXene nanocomposite.

    PubMed

    Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  3. Novel amperometric glucose biosensor based on MXene nanocomposite

    PubMed Central

    Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757

  4. Graphene oxide--MnO2 nanocomposites for supercapacitors.

    PubMed

    Chen, Sheng; Zhu, Junwu; Wu, Xiaodong; Han, Qiaofeng; Wang, Xin

    2010-05-25

    A composite of graphene oxide supported by needle-like MnO(2) nanocrystals (GO-MnO(2) nanocomposites) has been fabricated through a simple soft chemical route in a water-isopropyl alcohol system. The formation mechanism of these intriguing nanocomposites investigated by transmission electron microscopy and Raman and ultraviolet-visible absorption spectroscopy is proposed as intercalation and adsorption of manganese ions onto the GO sheets, followed by the nucleation and growth of the crystal species in a double solvent system via dissolution-crystallization and oriented attachment mechanisms, which in turn results in the exfoliation of GO sheets. Interestingly, it was found that the electrochemical performance of as-prepared nanocomposites could be enhanced by the chemical interaction between GO and MnO(2). This method provides a facile and straightforward approach to deposit MnO(2) nanoparticles onto the graphene oxide sheets (single layer of graphite oxide) and may be readily extended to the preparation of other classes of hybrids based on GO sheets for technological applications.

  5. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering

    PubMed Central

    Doulabi, Azadehsadat Hashemi; Mequanint, Kibret; Mohammadi, Hadi

    2014-01-01

    This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided. PMID:28788131

  7. Microwave-assisted synthesis of carbon supported metal/metal oxide nanocomposites and their application in water purification

    NASA Astrophysics Data System (ADS)

    Gunawan, Gunawan

    A novel, easy, and cost effective method for synthesizing carbon supported metal/metal oxide nanocomposites has been studied. Carbon supported metal/metal oxide nanocomposites have niche applications in the area of catalysis, fuel cells, electrodes, and more. The method utilizes a commercial microwave and features the addition of a developed graphite-jacket technique with renewable carbon resources, tannin and lignin. The method has been successfully used to synthesize carbon/nickel, carbon/iron oxide, and carbon/nickel phosphide nanocomposites. The method has shown its versatility in the synthesis of carbon nanocomposites. The process is much simpler when compared with the available methods for synthesizing carbon nanocomposites. The synthesized nanocomposites were classified using several characterization techniques, such as electron microscopy, X-ray powder diffraction, surface area analysis, thermogravimetric analysis, and spectrophotometric studies. One application of the carbon nanocomposite is in wastewater remediation. The synthesized carbon/iron oxide nanocomposite was noted as being useful for removing arsenic (As) and phosphorus (P) from contaminated water. The adsorption process of the nanocomposite was critically studied in order to understand the process of removing pollutants from contaminated water. The study shows that the nanocomposites are capable of removing As and P from contaminated water. Kinetic and adsorption isotherm studies were applied to understand the adsorption of As and P onto the adsorbent. Several methods, such as pseudo-first and second order kinetic models, Elovich's equation, and the Weber-Morris intraparticle diffusion model were used to explain the kinetic aspects of the adsorption process. For the adsorption isotherm study, Langmuir and Freundlich isotherm models were applied.

  8. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    PubMed

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  9. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.

    PubMed

    Liu, Xiaowang; Hu, Qiyan; Fang, Zhen; Zhang, Xiaojun; Zhang, Beibei

    2009-01-06

    Magnetic chitosan nanocomposites have been synthesized on the basis of amine-functionalized magnetite nanoparticles. These nanocomposites can be removed conveniently from water with the help of an external magnet because of their exceptional properties. The nanocomposites were applied to remove heavy metal ions from water because chitosan that is inactive on the surface of the magnetic nanoparticles is coordinated with them. The interaction between chitosan and heavy metal ions is reversible, which means that those ions can be removed from chitosan in weak acidic deionized water with the assistance of ultrasound radiation. On the basis of the reasons referred to above, synthesized magnetic chitosan nanocomposites were used as a useful recyclable tool for heavy metal ion removal. This work provides a potential platform for developing a unique route for heavy metal ion removal from wastewater.

  10. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    PubMed

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  11. Degradability studies of PLA nanocomposites under controlled water sorption and soil burial conditions

    NASA Astrophysics Data System (ADS)

    Norazlina, H.; Hadi, A. A.; Qurni, A. U.; Amri, M.; Mashelmie, S.; Kamal, Y.

    2018-04-01

    Polymer blended nanocomposites based on polylactic acid (PLA) were prepared via a simple melting process and investigated for its biodegradation behaviour. The treated CNTs were surface modified by using acid treatment and characterisations of composites were done by using Fourier Transform Infra-Red (FTIR) and UV-Vis. FTIR spectra and UV-Vis peak confirmed the surface modification of CNTs. The water uptake and weight loss behaviour based on CNTs and m-CNTs loading at different temperatures (25° and 45°C) were studied. It was found that the water absorption and weight loss of nanocomposites increased by the incorporation of CNTs and m-CNTs. Moisture induced degradation of composite samples was significant at elevated temperature. The addition of treated CNTs successfully reduced the water uptake and weight loss of nanocomposites due to less hydrolytic effect of water on nanocomposites. In soil burial test, the weight loss increases with addition of nanofiller. The loading of m-CNT reduced the ability of nanocomposites degradation.

  12. Fabrication of γ-MPS-Modified HNT-PMMA Nanocomposites by Ultrasound-Assisted Miniemulsion Polymerization

    NASA Astrophysics Data System (ADS)

    Buruga, Kezia; Kalathi, Jagannathan T.

    2018-04-01

    Halloysite nanotubes (HNTs) were modified with γ-methacryloxypropyltrimethoxysilane (γ-MPS) to improve their interaction with the polymer, and the modified HNTs (MHNTs) were subsequently used for the synthesis of MHNT-polymethylmethacrylate (PMMA) nanocomposites by miniemulsion polymerization assisted by ultrasound. Reduced agglomeration of HNTs due to modification with γ-MPS was evident from scanning electron microscopy analysis. Modification of HNTs and exfoliation of MHNTs in the polymer nanocomposite were confirmed by the presence of their respective characteristic peaks in Fourier-transform infrared spectra and x-ray diffraction patterns. Transmission electron microscopic analysis showed that the surface of the MHNTs differed significantly from that of unmodified HNTs. MHNT-PMMA nanocomposite exhibited significantly higher glass-transition temperature (T g) compared with neat PMMA or unmodified HNT-PMMA nanocomposite. Hence, such modification of HNTs along with miniemulsion polymerization assisted by ultrasound is a promising approach to achieve better dispersion of HNTs in the polymer and to obtain nanocomposites with enhanced properties.

  13. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites

    NASA Astrophysics Data System (ADS)

    Huo, Shiyan; Xie, Lijing; Xiang, Junfeng; Pang, Siqin; Hu, Fang; Umer, Usama

    2018-02-01

    Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.

  14. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer.

    PubMed

    Bakhshi, Raheleh; Darbyshire, Arnold; Evans, James Eaton; You, Zhong; Lu, Jian; Seifalian, Alexander M

    2011-08-01

    Stent angioplasty is a successful treatment for arterial occlusion, particularly in coronary artery disease. The clinical communities were enthusiastic about the use of drug-eluting stents; however, these stents have a tendency to be a contributory factor towards late stage thrombosis, leading to mortality in a significant number of patients per year. This work presents an innovative approach in self-expanding coronary stents preparation. We developed a new nanocomposite polymer based on polyhedral oligomeric silsesquioxanes (POSS) and poly(carbonate-urea)urethane (PCU), which is an antithrombogenic and a non-biodegradable polymer with in situ endothelialization properties. The aim of this work is to coat a NiTi stent alloy with POSS-PCU. In prolonged applications in the human body, the corrosion of the NiTi alloy can result in the release of deleterious ions which leads to unwanted biological reactions. Coating the nitinol (NiTi) surface with POSS-PCU can enhance surface resistance and improve biocompatibility. Electrohydrodynamic spraying was used as the polymer deposition process and thus a few experiments were carried out to compare this process with casting. Prior to deposition the NiTi has been surface modified. The peel strength of the deposit was studied before and after degradation of the coating. It is shown that the surface modification enhances the peel strength by 300%. It is also indicated how the adhesion strength of the POSS-PCU coating changes post-exposure to physiological solutions comprised of hydrolytic, oxidative, peroxidative and biological media. This part of the study shows that the modified NiTi presents far greater resistance to decay in peel strength compared to the non-modified NiTi. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    PubMed Central

    Piao, Shang Hao; Kwon, Seung Hyuk; Choi, Hyoung Jin

    2016-01-01

    This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER) behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particular focus is given to the electro-responsive ER characteristics of the polymer/clay nanocomposites in terms of the yield stress and viscoelastic properties along with their applications. PMID:28787852

  16. A solution blending route to ethylene propylene diene terpolymer/layered double hydroxide nanocomposites

    PubMed Central

    Acharya, H; Bhowmick, Anil K

    2007-01-01

    Ethylene propylene diene terpolymer (EPDM)/MgAl layered double hydroxide (LDH) nanocomposites have been synthesized by solution intercalation using organically modified LDH (DS-LDH). The molecular level dispersion of LDH nanolayers has been verified by the disappearance of basal XRD peak of DS-LDH in the composites. The internal structures, of the nanocomposite with the dispersion nature of LDH particles in EPDM matrix have been studied by TEM and AFM. Thermogravimetric analysis (TGA) shows thermal stability of nanocomposites improved by ≈40 °C when 10% weight loss was selected as point of comparison. The degradation for pure EPDM is faster above 380 °C while in case of its nanocomposites, it is much slower.

  17. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes

    PubMed Central

    Harris, J P; Hess, A E; Rowan, S J; Weder, C; Zorman, C A; Tyler, D J; Capadona, J R

    2012-01-01

    We recently introduced a series of stimuli-responsive, mechanically-adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet becomes mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E’ = ~5 GPa) than the neat polymer microprobes (E’ = ~2 GPa) and could sustain higher loads (~17 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of inserting into cortical tissue. Further, we demonstrated the material’s ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to 8 weeks demonstrated increased cell density at the microelectrode-tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially other biomedical applications. PMID:21654037

  18. High-Pressure Study of Bio-inspired Multi-Functional Nanocomposites Using Atomic Force Microscopy Methods

    NASA Astrophysics Data System (ADS)

    Diaz Gonzalez, Alfredo J.

    Bioinspired design has been crucial in the development of new types of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties as well as gas barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has been designed to serve as sensing devices. Here we expand the multi-functionality of nacre-mimetics by designing an optically transparent and electron conductive coating that reacts to high-pressure based on PEDOT:PSS and nanoclay. The main objectives of this project are: (i) to develop a multifunctional nanocomposite and evaluate the effect of high-pressure applied at the surface and (ii) to establish protocols for the morphological and structural characterization, and electro-mechanical testing of the nanocomposites based on a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmittance spectroscopy. The synthesis of the nanocomposite, containing PEDOT:PSS (conductive polymer) and nanoclay, was achieved using the self-assembly of core/shell platelets. Two different types of nanoclay, Cloisite Na+ and Laponite RD, are used and their properties compared. The reduction of thickness in PEDOT:PSS has been shown to increase the light transmittance across a film. Similarly, the thickness of the nanocomposite was reduced and compared to PEDOT:PSS. The measured optical transmittance for both nanocomposites is comparable to the bare polymer, demonstrating that the addition of the nanoclay does not affect the transparency of PEDOT:PSS significantly. The layered structure of the nanocomposites is investigated by imaging the fracture surface with SEM. The fracture surface of the Laponite RD based nanocomposite is much flatter than the Cloisite Na+ nanocomposite, since the particle size in Cloisite Na+ is about 10 times larger than Laponite RD. The characterization of electro-mechanical properties of the nanocomposites

  19. Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites.

    PubMed

    Gupta, Rashmi; Bajpai, A K

    2011-01-01

    Tailored with superparamagnetic properties the magnetic nanocomposites have been thoroughly investigated in recent past because of their potential applications in the fields of biomedicine and bioengineering such as protein detection, magnetic targeted drug carriers, bioseparation, magnetic resonance imaging contrast agents and hyperthermia. Magnetic drug targeting has come up as a safe and effective drug-delivery technology, i.e., with the least amount of magnetic particles a maximum of drug may be easily administered and transported to the site of choice. In the present work novel magnetic drug-targeting carriers consisting of magnetic nanoparticles encapsulated within a smart polymer matrix with potential of controlled drug release is described. To make such magnetic polymeric drug-delivery systems, both the magnetic nanoparticles and antibiotic drug (ciprofloxacin) were incorporated into the hydrogel. The controlled release process and release profiles were investigated as a function of experimental protocols such as percent loading of drug, chemical composition of the nanocomposite, pH of release media and strength of magnetic field on the release profiles. The structure, morphology and compositions of magnetic hydrogel nanocomposites were characterized by FT-IR, TEM, XRD and VSM techniques. It was found that magnetic nanocomposites were biocompatible and superparamagnetic in nature and could be used as a smart drug carrier for controlled and targeted drug delivery.

  20. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengju; Hu, Yanjie; Jiang, Hao; Li, Chunzhong

    2014-01-01

    A three-dimensional ordered mesoporous carbon (OMC)/carbon nanotubes (CNTs) nanocomposite is prepared via a two-step procedure. Firstly, OMC is synthesized through a co-assembly strategy associated with the incorporation of Ni nanoparticles. Then Ni nanoparticles are used as catalyst for the growth of CNTs. The introduction of CNTs into OMC can construct a 3D conductive network, greatly improving the rate performance of the nanocomposites. The nanocomposite with optimal CNTs content, when applied as supercapacitor electrodes, exhibits a high specific capacitance (338.1 F g-1 at 1 A g-1), excellent rate capability (130.2 F g-1 at 50 A g-1) and high cycling stability (91.6% capacity retention after 4000 cycles) in 6 M KOH aqueous solution. Such intriguing electrochemical performance is mainly attributed to the synergistic effects between OMC and CNTs. It is reckoned that the present 3D OMC/CNTs nanocomposite can serve as a promising electrode material for supercapacitors.

  1. Production and characterization of a novel carbon nanotube/titanium nitride nanocomposite

    NASA Astrophysics Data System (ADS)

    Baddour, Carole Emilie; Das, Kaushik; Vengallatore, Srikar; Meunier, Jean-Luc

    2016-12-01

    A novel titanium nitride (TiN)/carbon nanotube (CNT) nanocomposite is produced with the purpose to mechanically, structurally and chemically stabilize a ‘felt-like’ CNT growth structure. The CNTs are grown on stainless steel (SS) 304 by chemical vapor deposition using the direct growth method previously developed, which does not require the use of an additional catalyst precursor. The TiN coating is achieved by physical vapor deposition and is shown here to generate a nanocomposite with a porous three-dimensional architecture. The contact stiffness is evaluated using nanoindentation, and wetting properties of the TiN/CNT nanocomposites are determined from contact angle measurements. An increase in contact stiffness and effective elastic modulus with TiN coating time was observed. The TiN coating on the non-wetting CNT felt results in a wetting nanocomposite surface. The wetting property is found to be a function of the TiN coating thickness on the CNT structure.

  2. Aerosol Processing of Crumpled Graphene Oxide-based Nanocomposites for Drug Delivery.

    PubMed

    Wang, Wei-Ning; He, Xiang

    2016-01-01

    The flexibility of graphene oxide (GO) nanosheets and their unique properties enable them to be excellent two dimensional (2D) building blocks for designing functional materials. Aerosol routes are proved to be a rational approach to fold the 2D flat GO nanosheets into 3D crumpled spheres to mitigate the restacking issue for large-scale applications, such as for drug delivery. The fundamentals of graphene, GO, and the crumpling process of GO nanosheets are summarized. Various crumpled graphene oxide (CGO)-based nanocomposites have been synthesized by aerosol routes. This mini review focuses on the state-of-the-art in the design and fabrication of these nanocomposites for a specific application in drug delivery. Various techniques are demonstrated and discussed to control the release rates, tailor the morphology, and adjust the components inside the nanocomposites. Potential risks and possible trends are also pointed out. Aerosol processing of CGO-based nanocomposites provides a promising approach to design functional nanomaterials for drug delivery and other related applications.

  3. Effect of halloysite content on carboxymethyl cellulose/halloysite nanotube bio-nanocomposite films

    NASA Astrophysics Data System (ADS)

    Suppiah, Kathiravan; Leng, Teh Pei; Husseinsyah, Salmah; Rahman, Rozyanty; Keat, Yeoh Cheow

    2017-04-01

    Carboxymethyl cellulose/halloysite nanotube (CMC/HNT) bio-nanocomposite films were prepared by solution casting method. The effect of HNT content on tensile properties and morphology were studied. The results showed that the tensile strength of the CMC/HNT bio-nanocomposite films achieved optimum at 10 wt% of HNT content. The elongation at break and modulus of elasticity increased with increasing HNT content. The morphology of CMC/HNT bio-nanocomposite films showed that the poor distribution of HNT filler was observed at 20 wt% of HNT content.

  4. Nanocomposite protective coatings for battery anodes

    DOEpatents

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  5. Characterization of SWNT based Polystyrene Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mitchell, Cynthia; Bahr, Jeffrey; Tour, James; Arepalli, Sivaram; Krishnamoorti, Ramanan

    2003-03-01

    Polystyrene nanocomposites with functionalized single walled carbon nanotubes (SWNTs), prepared by the in-situ generation and addition of organic diazonium compounds, were characterized using a range of structural and dynamic methods. These were contrasted to the properties of polystyrene composites prepared with unfunctionalized SWNTs at the same loadings. The functionalized nanocomposites demonstrated a percolated SWNT network structure at concentrations of 1 vol SWNT based composites at similar loadings of SWNT exhibited behavior comparable to that of the unfilled polymer. This formation of the SWNT network structure is because of the improved compatibility between the SWNTs and the polymer matrix due to the functionalization. Further structural evidence for the compatibility of the modified SWNTs and the polymer matrix will be discussed in the presentation.

  6. Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties.

    PubMed

    Bellingeri, Romina; Mulko, Lucinda; Molina, Maria; Picco, Natalia; Alustiza, Fabrisio; Grosso, Carolina; Vivas, Adriana; Acevedo, Diego F; Barbero, Cesar A

    2018-09-01

    The present work aimed to study the properties of a novel nanocomposite with promising biomedical applications. Nanocomposites were prepared by the addition of different concentrations of chitosan decorated carbon nanotubes to acrylamide-co-acrylic acid hydrogels. The nanocomposites chemical structure was characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The FT-IR shows the typical bands due to the hydrogel and additionally the peaks at 1750 cm -1 and 1450 cm -1 that correspond to the carbon nanotubes incorporated into the polymer matrix. Mechanical properties and swelling measurements in different buffer solutions were also performed. The nanocomposites showed improved mechanical properties and a stronger pH-response. In order to evaluate antimicrobial activity, the growth and adhesion of Staphylococcus aureus to nanocomposites were studied. Cytocompatibility was also evaluated by MTT assay on MDCK and 3T3 cell lines. The nanocomposites were found to be cytocompatible and showed a reduced bacterial colonization. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Insights into the relationship between the color and photocatalytic property of attapulgite/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Mu, Bin; An, Xingcai; Wang, Aiqin

    2018-05-01

    Attapulgite/CdS (APT/CdS) nanocomposites were fabricated by hydrothermal decomposition of the cadmium-thiourea complex in the presence of APT. The incorporating of APT not only adjusted the color of APT/CdS nanocomposites and controlled the growth of CdS nanoparticles on the surface of APT without the free agglomeration, but also changed the band-gap energy of nanocomposites to affect their photocatalytic property for degradation of organic dyes. Interestingly, there was a close relationship between the color and the photocatalytic property of APT/CdS nanocomposites. The as-prepared nanocomposites with the optimal color properties exhibited the optimal photocatalytic performance for degradation of methylene blue, methyl violet and congo red within 70 min. The key bridge between the color and the photocatalytic activity was mainly band-gap energy. Therefore, it was presumed that the photocatalytic activity of APT/CdS nanocomposites could be evaluated directly from their color property.

  8. Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Subhani, Tayyab; Wang, Nannan; Zhu, Yanqiu

    2018-05-01

    This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

  9. Interaction Between U-Mo Alloys and Alloys Al-Be

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Tarasov, B. A.; Shornikov, D. P.

    The main objective of the work is the experimental determination of the effect of doping on the kinetics of the interaction of beryllium, aluminum and uranium-molybdenum alloy dispersed in the nuclear fuel. It is shown that an increase in the content of Be in Al leads to a linear decrease in the rate of interaction of the alloy with uranium-molybdenum alloy. Besides AlBe-alloys have higher thermal and mechanical properties than other matrix alloys such as AlSi.

  10. Experimental Evidence of Dipolar Interaction in Bilayer Nanocomposite Magnets

    DTIC Science & Technology

    2010-11-25

    corporated to improve experimental systems. However, re- ported bulk nanocomposite magnets exhibit (BH)max val- ues that are far below the...Appl Phys A DOI 10.1007/s00339-010-6073-6 Experimental evidence of dipolar interaction in bilayer nanocomposite magnets A.J. Zambano · H. Oguchi · I...Abstract We use magnetic thin film hard/non/soft-mag- netic trilayer systems to probe the nature of the hard–soft phase interaction and the role

  11. Powder compression mechanics of spray-dried lactose nanocomposites.

    PubMed

    Hellrup, Joel; Nordström, Josefina; Mahlin, Denny

    2017-02-25

    The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites

    PubMed Central

    2016-01-01

    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400–800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal–carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and

  13. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications.

    PubMed

    Kumar, Suneel; Kumar, Ashish; Bahuguna, Ashish; Sharma, Vipul; Krishnan, Venkata

    2017-01-01

    In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned.

  14. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

    PubMed Central

    Kumar, Suneel; Kumar, Ashish; Bahuguna, Ashish; Sharma, Vipul

    2017-01-01

    In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned. PMID:28884063

  15. A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells

    NASA Astrophysics Data System (ADS)

    Acharya, Amitabha; Rawat, Kiran; Bhat, Kaisar Ahmad; Patial, Vikram; Padwad, Yogendra S.

    2015-11-01

    A multifunctional hybrid nanocomposite material of iron oxide nanoparticles and CdS quantum dots was synthesized by a direct amide coupling reaction. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential studies. The TEM studies suggested that the sizes of the particles were in the range of 13.5 ± 1 nm. The energy dispersive x-ray (EDX) analysis confirmed the presence of Fe, Cd and S in the nanocomposites. To check the utility of this nanocomposite as a molecular imaging probe, these nanoparticles were further conjugated with folic acid. The folic acid conjugated nanocomposites were treated with rat glioma cells (C6, folic acid receptor over-expressing cell lines), human lung adenocarcinoma epithelial cells (A549, folic acid receptor negative cell lines) and normal mouse splenocytes for cell uptake and cytotoxicity studies. The nanoparticle internalization to C6 cells was confirmed by green fluorescence emission from these cells. Prussian blue staining studies suggested the intracellular presence of iron oxide. Further it was found that folic acid conjugated nanocomposites were significantly toxic to C6 cells only after 48 h but not to A549 cells or splenocytes. These studies indicated that the prepared nanocomposites have the potential to be used as delivery agent for magnetic and fluorescent materials towards folic acid receptor over-expressing cells and thus can find their application in the field of in vitro imaging diagnosis.

  16. Aspergilli Response to Benzalkonium Chloride and Novel-Synthesized Fullerenol/Benzalkonium Chloride Nanocomposite

    PubMed Central

    Unković, Nikola; Ljaljević Grbić, Milica; Stupar, Miloš; Vukojević, Jelena; Janković, Vesna; Jović, Danica; Djordjević, Aleksandar

    2015-01-01

    A comprehensive comparative analysis of antifungal potential of benzalkonium chloride and newly synthesized fullerenol/benzalkonium chloride nanocomposite was conducted to assess the possible impact of carbon-based nanocarrier on antimicrobial properties of the commonly used biocide. Physical characterization of synthesized nanocomposite showed zeta potential of +37.4 mV and inhomogeneous particles size distribution, with nanocomposite particles' dimensions within 30–143 nm and maximum number of particles at 44 nm. The effect of pure and fullerenol nanocarrier-bound biocide was evaluated in eight Aspergillus species. In mycelial growth assay, nanocomposite was more potent, as fungicidal effect of 1.04/0.6 μg mL−1 was obtained in all but one of the isolates (A. niger), while proportional concentration of pure biocide (0.6 μg mL−1) completely inhibited mycelial growth of only three Aspergillus species. However, conidia appear to be less susceptible to nanocomposite treatment, as lower fungistatic (MIC) and fungicidal (MFC) concentrations were obtained with biocide alone (MIC in range from 0.03 to 0.15 μg mL−1 and MFC from 0.075 to 0.45 μg mL−1). To a different degree, both substances stimulated aflatoxin B1 production and inhibited ochratoxin A synthesis. Very low mycelium biomass yield, in range from 1.0 to 3.0 mg dry weight, was documented in both biocide and nanocomposite enriched medium. PMID:26295057

  17. Influence of gamma irradiation on structural, thermal and antibacterial properties of HPMC/ZnO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Madhukumar, R.; Latha, S.

    This work was carried out to evaluate the effect of gamma irradiation on the structural, thermal and antibacterial properties of HPMC/ZnO nanocomposite films exposed to Cobalt-60 (Average energy: 1.25 MeV). The X-ray diffraction study revealed that the crystallite size (L in Å) decreased as irradiation dose increased. The crystallinity (X{sub c}) of the nanocomposites initially increased and at higher doses it was decreased. The thermal stability of the nanocomposites increased up to 50 kGy and after that decreased as the irradiation dose increased. But, HPMC/ZnO nanocomposite films, showed a promising range of antimicrobial activity against tested micro-organisms making nanocomposites suitablemore » for food packing and other biomedical applications.« less

  18. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  19. Effects of Plastizers on the Structure and Properties of Starch-Clay Nanocomposites

    USDA-ARS?s Scientific Manuscript database

    Biodegradable nanocomposites were successfully fabricated from corn starch and montmorillonite (MMT) nanoclays by melt extrusion processing. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and film propertie...

  20. Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings

    PubMed Central

    Ali, Kamran; Narayana, Sivaprasad; Okonkwo, Paul C.; Yusuf, Moinuddin M.; Alashraf, Abdullah

    2018-01-01

    This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical) by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L) to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement. PMID:29619143